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Preface

This volume contains the papers presented at ISPEC 2018: the 14th International
Conference on Information Security Practice and Experience held during September
25-27, 2018, in Tokyo.

The ISPEC conference series is an established forum that brings together researchers
and practitioners to provide a confluence of new information security technologies,
including their applications and their integration with IT systems in various vertical
sectors. Previously, ISPEC took place in Singapore (2005), Hangzhou, China (2006),
Hong Kong, SAR China (2007), Sydney, Australia (2008), Xi’an, China (2009), Seoul,
Korea (2010), Guangzhou, China (2011), Hangzhou, China (2012), Lanzhou, China
(2013), Fuzhou, China (2014), Beijing, China (2015), Zhangjiajie, China (2016) and
Melbourne, Australia (2017).

In this year, there were 73 submissions in total. Each submission was reviewed by
an average of 2.8 Program Committee (PC) members. The committee decided to accept
two invited papers, 25 full papers, and 12 short papers, with an acceptance ratio of
34.2%. ISPEC 2018 was made possible by the joint effort of numerous people and
organizations worldwide. There is a long list of people who volunteered their time and
energy to put together the conference and who deserve special thanks. First and
foremost, we are deeply grateful to all the PC members for their great effort in reading,
commenting on, debating, and finally selecting the papers. We also thank all the
external reviewers for assisting the PC in their particular areas of expertise.

We would like to emphasize our gratitude to the general chairs, Prof. Kazuamsa
Omote and Prof. Jiageng Chen, for their generous support and leadership that ensured
the success of the conference. Thanks also go to the liaison chair, Dr. Naoto Yanai, the
local organizing chair, Dr. Keita Emura, the publication chairs, Dr. Weizhi Meng and
Prof. Takeshi Okamoto, the publicity chair, Prof. Atsuo Inomata, and the registration
chair, Prof. Masaki Fujikawa.

We sincerely thank the authors of all submitted papers and all the conference
attendees. Thanks are also due to the staff at Springer for their help in producing the
proceedings and to the developers and maintainers of the EasyChair software, which
greatly helped simplify the submission and review process. Last but certainly not least,
our thanks go to the Japanese Research Society ISEC of IEICE and CSEC of IPSJ for
supporting the conference, as well as Hitachi, Ltd., Mitsubishi Electric Corporation,
TOSHIBA Corporation, Huawei Technologies Co., Ltd., and ANDISEC, Ltd. for
sponsoring the conference.

July 2018 Chunhua Su
Hiroaki Kikuchi
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Macros Finder: Do You Remember
LOVELETTER?

Hiroya Miura®, Mamoru Mimura, and Hidema Tanaka

National Defense Academy, Yokosuka, Japan
{em56030,mim,hidema}@nda.ac. jp

Abstract. In recent years, the number of targeted email attacks which
use Microsoft (MS) document files has been increasing. In particular,
damage by malicious macros has spread in many organizations. Rele-
vant work has proposed a method of malicious MS document files detec-
tion. To the best of our knowledge, however, no method of detecting
malicious macros exists. Hence, we proposed a method which detects
malicious macros themselves using machine learning. First, the proposed
method creates corpuses from macros. Our method removes trivial words
in the corpus. It becomes easy for the corpuses to classify malicious
macros exactly. Second, Doc2Vec represents feature vectors from the
corpuses. Malicious macros contain the context. Therefore, the feature
vectors of Doc2Vec are classified with high accuracy. Machine learning
models (Support Vector Machine, Random Forest and Multi Layer Per-
ceptron) are trained, inputting the feature vectors and the labels. Finally,
the trained models predict test feature vectors as malicious macros or
benign macros. Evaluations show that the proposed method can obtain
a high F-measure (0.93).

Keywords: Macro - Machine learning
Natural language processing technique - Bag-of-Words - Doc2Vec

1 Introduction

In recent years, email has become one of the most popular communication tools.
In this situation, targeted email attacks have become a big threat to society.
A targeted email attack is a specific attack in which the attacker attempts
to persuade a victim to run specific action. Depending on the specific action,
there are two types of targeted email attacks. One is to open malicious links
and to download a malware, and the other is to open malicious attachments.
Attackers attempt to earn credibility with their victims through an eloquent
mail text. Moreover, the attackers convince victims to unknowingly download
a malicious file attachment or click-through to a malicious site. According to a
report published by Sophos [1], most targeted email attacks are the attachment
type. Moreover, the report shows that 85% of the attached files are Microsoft
Office documents (MS documents) files. The report shows that most malicious
© Springer Nature Switzerland AG 2018
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MS document files have malicious macros. Malicious macros have a long history.
For example, the LOVELETTER worm of malicious macro infected more than
45 million computers, and some organizations suffered serious damage in 2000.
After that, the occurrence of malicious macros gradually slacked off. However,
they were enlivened again from 2014 onwards.

Next, we show the importance of detecting malicious macros themselves.
Relevant work [5] analyzes the structure of docx files, and detects malicious
docx files. The work does not, however, discriminate between malicious macros
and benign macros. If the dataset contains benign macros and malicious macros,
the work probably cannot detect malicious docx files. If malicious docx files are
camouflaged with a structure of benign docx files, attackers can probably evade
the detection model. Detecting malicious macros themselves can overcome these
weaknesses. Hence, detecting malicious macros is an effective and important
method.

We will introduce an outline of the proposed method. The proposed method
detects malicious macros themselves using machine learning. First, the proposed
method creates corpuses from macros. Our method reduces trivial words in the
corpus. It becomes easy for the corpuses to classify malicious macros exactly.
We use Term Frequency (TF) or Term Frequency-Inverse Document Frequency
(TFIDF) in the reducing words process. TF is a method which weights value
corresponding to frequency of words in a corpus. TFIDF is a method which
weights a representative word in a corpus. Second, Doc2Vec (D2V) or Bag-
of-Words represents feature vectors from the corpuses. D2V is a model that
represents vectors from the context of the documents. Bow is a method that
represents vectors corresponding to the frequency of the words.

Next, Support Vector Machine (SVM), Random Forest (RF) and Multi Layer
Perceptron (MLP) are trained, inputting the feature vectors and the labels.
Finally, the trained models predict test feature vectors as malicious macros or
benign macros.

Next, we will show three viewpoints of verification experiments in this paper.

(1) Which is more effective, TF or TFIDF?
(2) Which is more effective, D2V or Bow?
(3) What is the best combination of these methods and classifiers?

In order to answer these questions, we conducted verification experiments. Based
on the results of these verification experiments, this paper makes the following
contributions:

(1) we confirmed that D2V was effective in classifying malicious macros.

(2) we confirmed that reducing words using TF was effective in classifying mali-
cious macros.

(3) we confirmed that classifiers in which the strong point was to solve the
problem of linear separability, were effective in classifying malicious macros.

We will introduce the structure of this paper. Section 2 introduces relevant
work and reveals the differences between this paper other and relevant study.
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Section 3 presents an overview of the background. Section 4 presents the proposed
method. Sectionb describes experiments. Section 6 discusses the results of the
experiments. Finally, we conclude this paper.

2 Related Work

In targeted email attacks, attackers use document files in which are embedded
malicious source codes, or executable files. Most malicious executable files are
camouflaged with a change of document icon and the file extension. Methods
of detecting these malicious files can be categorized into static analysis and
dynamic analysis. Dynamic analysis is the testing and evaluation of a program
by executing data in real-time. Static analysis is a method of program debugging
that is done by examining the code without executing the program.

Malicious document files are roughly categorized into MS document files
and PDF files [1]. This section presents the relevant work in two parts (MS
document files detection and malicious PDF files detection). Since our method
does not execute specimens for detecting malicious macros, our method is the
static analysis. Therefore, we present the relevant work within the static analysis
range, in this section.

We will show representative work for malicious executable files detection
using the dynamic analysis, as a reference. Rieck et al. [2] proposed a framework
for the dynamic analysis of malicious executable binaries behavior using machine
learning. Bayer et al. [3] proposed a tool which monitors the behavior of Windows
API, to classify malicious executable files. Next, we will show representative
work for malicious executable files detection using the static analysis. Perdisci
et al. [4] proposed a framework which detects malicious executable files using
the static analysis. The framework classifies malicious executable codes using
n-gram analysis. Even if executable files are packed, the framework is able to
classify.

MS Document File. This section presents relevant work on the detection of
malicious MS document files. Nissim et al. [5] proposed a framework (ALDOCX)
that classifies malicious docx files using various machine learning classifiers.
ALDOCX created feature vectors from the path structure of docx files. This
is a practical method, because ALDOCX framework has updatability and incor-
porates new unseen malicious docx files created daily. Naser et al. [6] proposed a
method to detect malicious docx files. The method parses structure of docx files,
and analyzes suspicious keywords. These works do not support the classification
of Excel files and Power Point files. Our method, however, can be applied to
malicious MS document files which are Word files, Excel files and Power Point
files.

Otsubo et al. [7] proposed a tool (O-checker) to detect malicious document
files (e.g. rtf, doc, xlIs, pps, jtd, pdf). O-checker detects malicious document
files which contain executable files, using deviation of file format specifications.
O-checker focuses on embedded executable files however, and cannot classify
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macros themselves. Even if the malicious documents do not contain executable
files, our proposed method can detect malicious macros.

Boldewin implemented a tool (OfficeMalScanner) [8] to detect MS document
files which contain malicious shellcodes or executable files. The tool scans entirely
malicious files, and detects features of strings of Windows API, shellcode patterns
and embedded OLE data [9]. The tool scores each document corresponding to
each of the features. If the scores are more than a certain threshold, the tool
judges the file as a malicious file.

Mimura et al. [10] de-obfuscate embedded executable files in a malicious
document file (e.g. doc, rtf, xlIs, pdf) and detect them. The detection rate was
verified in the work, and it was confirmed that the detection rate was higher than
the detection rate of OfficeMalScanner. [7,8,10] focused on embedded malicious
executable files or shellcodes, but not, however, on detecting malicious macros
themselves.

PDF File. Next, this section presents related work which deals with the detec-
tion of malicious PDF files. Igino Corona et al. [11] proposed a method that
refers to the frequency of suspicious reference APIs, to classify malicious PDF
files. Liu et al. [12] proposed a method that analyzes obfuscated scripts to classify
malicious PDF files. This method uses the characteristics of obfuscation, which
is common to our method. However, these methods classify only malicious PDF
files, and are fundamentally different from our method, which classifies malicious
macros.

3 Relevant Techniques

3.1 Malicious Macros

This section describes the behavior of malicious macros, and reveals their fea-
tures. There are two types of malicious macros, Downloader and Dropper.

Downloader is a malicious macro which enforces download malware upon a
victim. An attacker uses a slick text of the type that the victim expects, and
induces the victim to open an attachment. When the victim opens the attach-
ment, the computer is forced into connecting to a malicious server. When Down-
loader connects to the server, it tends to uses external applications (Internet
Explorer, etc.). Finally, the computer downloads and installs a malware from
the server.

With Dropper, malicious codes (a binary of EXE files, etc.) are embedded
in Dropper itself. When a victim opens the attachment of a phishing email,
Dropper executes the codes contained in it as an executable file. The difference
between Dropper and Downloader is that Dropper itself is able to fraudulently
operate upon victim computers. Unlike Downloader, Dropper can infect victims
without communicating an external resource (server or database, etc.).
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Table 1. Typical obfuscation methods

summary

Obfuscation of replacing statement name, etc.

Obfuscation of encoding and decoding ASCII code

Obfuscation of character string by encoding conversion using exclusive OR

Splitting characters

OT»JkC»Dl\J)—A:H:

Using reflection function

3.2 Obfuscation of Malicious Macros

The source codes of most malicious macro tend to be obfuscated. Therefore, cap-
turing the characteristics of obfuscation can effectively predict malicious macros.
We will show some obfuscation methods of the source codes.

Table 1 shows typical obfuscation methods in the source codes. Method 1
replaces class names, function names, etc with random strings. The random
strings tend to be more than 20 characters. Method 2 encodes and decodes
strings to ASCII codes. Macros provide AscB function and ChrB function. AscB
function encodes character strings to ASCII codes. ChrB function encodes ASCII
codes to character strings. Using AscB functions, attackers can conceal strings
to encode the hexadecimal of ASCII codes. Moreover, ChrB function can convert
ASCII codes to readable character strings. Method 3 performs using exclusive-
OR any strings with a key. Many of the keys are intricately calculated and
perform logic operations. Method 4 subdivides strings. Subdivided character
strings are assigned to variables. By adding together those variables, the original
strings are restored. Method 5 uses reflection functions which execute strings
as instructions. For example, the strings are function names, class names and
method names. CallByName function is a reflection function in the source codes.
Using the CallByName function, attackers can hide the executing function.

3.3 Bag-of-Words

Words and documents need to be represented by feature vectors so that com-
puters can interpret a natural language. Bow is the most basic natural language
processing technique. Bow is a method of representing the frequency of a token
in a sentence to an element of a vector corresponding to the token. Bow does not
consider word order or meaning of tokens. In Bow, the number of unique tokens
and the number of elements are the same. When the number of unique tokens
diverges, the number of elements likewise diverges. Therefore, when Bow repre-
sents feature vectors, it may be necessary to adjust the number of dimensions.

3.4 Doc2Vec

D2V is a natural language processing technique. D2V is a model that is improved
Word2Vec (W2V). First of all, we will introduce W2V. W2V is a model that is
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used to represent word embeddings. W2V is a two-layer neural network that is
trained to reconstruct the linguistic context of words. W2V has a hidden layer
and an output layer. The input of W2V is a large corpus of documents, and W2V
represents the input in feature vectors. The number of dimensions of the feature
vector is typically several hundred. Each unique token in the corpus is assigned
a corresponding element of the feature vector. Word vectors are positioned in
the vector space such that common contexts in the corpus are positioned in close
proximity to one another in the space. This is based on the probability of words
co-occurrence around a word. W2V has two algorithms, which are Continuous
Bag-of-Words (CBow) and Skip-Gram. CBow is an algorithm which predicts a
centric word from surrounding words. Skip-Gram is an algorithm which predicts
surrounding words from a centric word. Using these algorithms, W2V can obtain
similarity of words, and also predict equivalent words.

D2V has two algorithms which are Distributed Memory (DM) and Dis-
tributed Bag-of-Words (DBow). DM is an algorithm that is improved CBow.
In addition to a large corpus of documents, those document-IDs input into DM.
DBow is an algorithm which improves Skip-Gram. The input of DBow is not the
words of documents but document-IDs. Using these algorithms, D2V can obtain
similarity of documents, and also vectorize the documents.

3.5 Term Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency (TFIDF) is a numerical value
that determines the importance of the words in the corpus. We will introduce
how TFIDF value is calculated.

D
TFIDF = frequency; ; x log, document _freq,

The frequency;; is the frequency of a token 7 in a document j. The
document_freq; is the frequency of documents in which the token ¢ appears.
The T'F' is the frequency; ;. The IDF is the logarithm of a value in which D
( the number of total documents ) is divided by the document_freq;. TFIDF
value is a value which is the multiplication of TF and IDF. Finally, TFIDF
value is normalized.

When a word appears rarely in an entire corpus and appears frequently in a
document, the TFIDF value increases the priority of the word.

4 Proposed Method

This section proposes our method. Figure 1l shows an outline of the proposed
method. The purpose of the proposed method is to detect unseen malicious
macros with high classification accuracy. Step 1 extracts macros from MS doc-
ument files. Step 2 separates words in the macros to create corpuses. Step 3
replaces words with characteristics of the same types of obfuscation (such as
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Fig. 1. Process procedure of unseen malicious macros detection

hexadecimal ASCII codes), with a word. Step 4 reduces trivial words in the cor-
puses using TF or TFIDF. Step 5 represents feature vectors from the corpus
using Bow or D2V. The proposed method inputs the training feature vectors
and the labels into classifiers (SVM, RF and MLP). Finally, we input the test
feature vectors into trained classifiers, and obtain the labels.

4.1 Extract Source Code Process

The proposed method extracts macros from MS document files using Olevba
[13]. Olevba is open source software that can extract macros from MS document
files. Olevba can extract regardless of the platform.

4.2 Separating Words Process

The purpose of the separating words process is to create corpuses of the macros.
The process replaces special characters that are shown in Table 2 with a blank.
The source codes of malicious macros are intricately written, with many spe-
cial characters. Therefore, the separating words process creates simple corpuses
which are only alphabets and numbers.
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Table 2. Replaced special characters

Special character | Name Special character | Name

? double quote |+ plus

’ single quote |/ slash

{ quare bracket | & and

( round bracket | % percentage

, comma yen sign
period $ dollar sign

* asterisk # sharp

- haihun @] at mark

Table 3. Replacing specific strings

Methods Characters pattern Replaced strings
1 Hexadecimal (Type of 0xXX) Oxhex

2 Hexadecimal (Type of &HXX) andhex

3 Asc, AscB, AscW asc

4 A string of 20 or more characters | longchr

5 A number of 20 digits or more longnum

6 Element of array Elementofarray

4.3 Replement Process

This section discusses the replacement process. The purpose of the process is to
collect words into each obfuscation. The process replaces words with character-
istics of same type of obfuscation, with one token. Generally, malicious macros
are obfuscated. The process can convert the corpuses to improve classification
accuracy.

We will show an example of the process. The process replaces the hexadecimal
values with one token as follows.

Before the process: OxFF 0x14 0xA2

After the process: Oxhex Oxhex Oxhex

In this example, each hexadecimal value is treated as a different token before the
process replacing the tokens. However, after the process of replacing character-
istics, they are treated as the same token. The process replaces words regarded
as different features with one word. Therefore, the replacement process improves
the classification accuracy. Table 3 shows string patterns and replaced strings.
These string patterns frequently appear in malicious macros.



Macros Finder: Do You Remember LOVELETTER? 11

4.4 Reducing Words Process

The purpose of the reducing words process is to reduce trivial words for improv-
ing classification accuracy. The frequency of words in macros is biased. A feature
vectors of D2V and Bow are affected by the frequency of words. Thus, each word
in a corpus has the some worth for the classification of malicious macros.

The process prioritizes words in the corpuses with TF or TFIDF. First, the
process calculates the TF or TFIDF of each word in all the corpuses. Next,
we define a threshold. Finally, the process replaces words in which the TF or
TFIDF value is less than the threshold, with “NONE”. Through the process,
the words which are bigger than the threshold remain in the corpuses.

4.5 Representing Feature Vectors Process and Classification
of Macros

In the representing feature vectors process, D2V or Bow represents feature vec-
tors by processed corpuses. Next, we input training feature vectors and the labels
into classifiers (SVM, RF and MLP) in order to train the classifier. Test feature
vectors are input into the trained classifier, and our method detects malicious
macros.

5 Experiment

This section describes the verification experiments. The objective is to verify the
next four factors.

1 Investigating the most effective corpus for improving F-measure

2 Comparing D2V and Bow

3 Comparing TF and TFIDF

4 Tnvestigating the best combination of the above factors and classifiers (SVM,
RF and MLP).

Verification Experiment 1 investigates effective corpuses which classify mali-
cious macros. Bow represents feature vectors from malicious corpuses, benign
corpuses and corpuses which are both. Next, SVM classifies each the feature
vector, and obtains each classification accuracy.

The classification accuracy of D2V and Bow is compared in Verification
Experiment 2. Each method represents feature vectors from corpuses. The best
corpuses in Verification Experiment 1 are used in Verification Experiment 2. The
feature vectors are classified using SVM, RF and MLP.

The classification accuracy of TF and TFIDF is compared in Verification
Experiment 3. The best corpuses in Verification Experiment 1 are used in Ver-
ification Experiment 3. Feature vectors are represented using the best method
(D2V or Bow) in Verification Experiment 2.
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5.1 Experiment Environment

We implemented our proposed method with Python2.7 in the environment as
shown in Table 4. We used gensim-2.0.0 [14] to implement Bow and D2V. Gensim
has many functions related to natural language processing techniques. We used
scikit-learn-0.18.1 [15] to implement SVM, RF and MLP. Scikit learn is a machine
learning library and has many classification algorithms.

Table 4. Experiment environment

CPU IntelCorei7 (3.30 GHz)
Memory | 32GB
0S Windows8.1Pro

Table 5. Breakdown of The dataset

Specimens of 2015 Specimens of 2016
Benign files | Malicious files | Benign files | Malicious files
622 515 1200 641

5.2 DataSet

This section presents the dataset of the experiments. Table 5 shows the break-
down of the dataset. This dataset was collected and provided by Virus Total
[16]. We selected specimens which had been uploaded to Virus Total for the first
time between 2015 and 2016. We collected macros whose file extensions have
doc, docx, xls, xIsx, ppt and pptx. We treat the specimens which more than 29
out of 58 anti-virus vendors judged as malicious, as malicious specimens. We
treated the specimens which all anti-virus vendors judged as benign, as benign
specimens. There was no overlap in these specimens.

5.3 Evaluation Measure

This section presents the evaluation measures in the experiments. Malicious
macros is treated as true label and benign macros is treated as false labels in the
experiments. Table 6 shows the confusion matrix. We used Precision (P), Recall
(R) and F-measure (F) as evaluation metrics. We will indicate the definition of
each evaluation metric.

i TP

recitsion = ————

€C1S810 TP+FP
TP

Recall = ———
U= TPTFN

2Recall x Precision

F — measure =
Recall + Precision
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Table 6. Confusion matrix

Actual value

True | False
Predicted result | Positive | TP | FP
False FN | TN

0.9

0.4

F-measure

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Dimention

—malicious corpus =~ - benign corpus --=-both corpus

Fig. 2. The classification accuracy of each corpus in each dimension using TF and Bow

5.4 Verification Experiment 1

Experimental Approach. The objective is to investigate the most effective
corpus for improving F-measure in Verification Experiment 1. The experiment
selects from malicious corpuses, benign corpuses and corpuses which are both.
The procedure of the experiment is shown next. The corpuses are created using
Step 1 to Step 3 in Fig. 1. In the reducing process, we reduce the words in the
corpus using the T'F threshold. When the TF of a word is less than the TF
threshold, the word is replaced with one word. Next, Bow represents three fea-
ture vectors from malicious corpuses, benign corpuses and corpuses which are
both. Training feature vectors and the labels are input into an SVM classifier for
training. Test feature vectors are input into the trained classifier to obtain pre-
dicted labels. The parameter of SVM is the default. Training data are specimens
from 2015. Test data are specimens from 2016.
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Result of Verification Experiment 1. Figure 2 shows the classification accu-
racy of each feature vector. The horizontal axis is the dimensions, and the vertical
axis is the F-measure. When we represent feature vectors from malicious cor-
puses, the classification accuracy is higher than the classification accuracy of
benign corpuses and corpuses which are both. Therefore, we conclude that the
malicious feature vectors are effective in classifying malicious macros.

(@) SVM ) RF (&) MLP

neasure

1
z

F-measure

-

0 0
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

Dimension Dimension Dimension
e Bow —e—D2V Bow —e—D2V e Bow —e—DR2V

Fig. 3. The classification accuracy of each classifier using TF

5.5 Verification Experiment 2

Experimental Approach. The objective is to compare the classification accu-
racy of D2V and Bow in Verification Experiment 2. The procedure of the exper-
iment is shown next. The corpuses are created using Step 1 to Step 3 in Fig. 1.
In the reducing words process, we reduce the words in the corpus using TF. The
feature vectors of two patterns are represented from malicious macros using D2V
and Bow. D2V is set up such that the number of dimensions is 100, the num-
ber of epochs is 30 and the algorithm is DBow. Each of the feature vectors and
the labels are input into three classifiers (SVM, RF and MLP) for training. The
parameters of SVM and RF are default values. Verification Experiment 2 sets up
MLP such that the input layer size is the number of unique tokens, the hidden
layer size is 500, and the activation function is ReLU (Rectified Linear Unit). The
classifier is input into the test feature vectors to predict malicious macros and
benign macros. Finally, we obtain the F-measure of each of the feature vectors.
Training data and test data are the same as for Verification Experiment 1.

Result of Verification Experiment 2. (a), (b) and (c) in Fig.3 show the
result of Verification Experiment 2 in each classifier. The horizontal axis is the
dimensions, and the vertical axis is the F-measure. The F-measure of D2V is
higher than Bow in (a) and (c). In contrast, the F-measure of Bow is higher
than D2V in (b). In (c¢), when the number of dimensions is 21506 using D2V,
the F-measure is the best (0.93). Moreover, the F-measure of a combination of
MLP and D2V is stable.
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Fig. 4. The classification accuracy of each dimension using TF and TFIDF

5.6 Verification Experiment 3

Experimental Approach. The objective is to compare the F-measure of the
TF and the TFIDF in Verification Experiment 3. The corpuses are created using
Step 1 to Step 3 in Fig. 1. In the reducing process, we reduce the words in the
corpus using two methods, which are TF and TFIDF. The feature vectors are
represented using D2V. The settings of D2V are the same as in Verification
Experiment 2. Each of the training feature vectors and the labels are input
into MLP for training. MLP is input into the test feature vectors to predict
malicious macros and benign macros. Finally, we obtain the F-measure of each
of the feature vectors. The training data and the test data are the same as for
Verification Experiment 1.

Result of Verification Experiment 3. Figure4 shows the result of Verifi-
cation Experiment 3. The horizontal axis is the number of unique tokens, and
the vertical axis is the F-measure. Generally, the classification accuracy of the
TFIDF threshold is decreased. However, the classification accuracy of the T'F
threshold is stable and high. The highest F-measure is 0.93.
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6 Discussion

6.1 Efficient Corpus

In Verification Experiment 1, we confirmed high classification accuracy using
malicious corpuses. Benign macros are used for various purposes. Therefore,
benign macros contain various tokens. In contrast, the purpose of malicious
macros is simple. The purpose of malicious macros is to infect the victim’s com-
puter with malware. The source codes of the malicious macros contain many
tokens which communicate to external servers, and are obfuscated. The source
codes of the malicious macros frequently contain these characteristic tokens.
Therefore, the replacement process can capture the characteristic, and the pro-
posed method obtains high classification accuracy. In Bow, an element of the
feature vectors is the frequency of a token. Therefore, malicious corpuses do
better than other corpuses in Verification Experiment 1.

Table 7. Characteristic tokens

Token Appearance ratio | Token Appearance ratio
of malicious macro of benign macro

Elementofarray | 99% Elementofarray | 43%

Andchr 93.9% Andchr 28%

Next 90.9% Next 27.9%

Function 85.1% Function 18.3%

String 83.3% String 25.7%

Len 79% Len 14.7%

Public 77.5% Public 17.7%

Longchr 73.7% Longchr 19.7%
Createobject 73% Createobject 6.6%

Error 73% Error 20.7%

Byte 56.1% Byte 1.5%
Callbyname 51.3% Callbyname 0.1%

6.2 Effectiveness of Bow and D2V

In Verification Experiment 2, we verified an efficient method of representing
feature vectors. As a result, we concluded that D2V is better than Bow. As the
TF threshold is high, low frequently-tokens are reduced and high frequently-
tokens remain. In (c) of Fig. 3 using D2V, even if the dimension is the smallest
(concretely, the dimension is 1515), the classification accuracy remains high.
D2V represents word embedding. Therefore, we consider that the high-frequency
token contains the context.
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6.3 Efficient Classifier

In Verification Experiment 2, we confirmed that the classification accuracy of
MLP and SVM was high. However, the classification accuracy of the RF classifier
was low. Generally, the strong point of MLP and SVM is in solving the problem
of linear separability. However, the strong point of RF is in solving the problem
of linear inseparability. Therefore, we consider that the feature vectors of D2V
can be separated linearly. In (a) and (c) of Fig. 3, the classification accuracy of
D2V is higher than Bow. As a reason for this, we conclude that D2V tends to
suit SVM and MLP in the classification of malicious macros.

6.4 Effectiveness of TFIDF

When the number of tokens is small, the classification accuracy decreased in
Fig. 4 using TFIDF. Many words which are replaced in the replacement process,
exist in the malicious corpus. Therefore, the TFIDF values of replaced words
are small. While the TFIDF threshold is high, replaced words are reduced. We
indicate the representative tokens in Table 7. We define the appearance ratio as
“Number of the files which contain the token / Number of files”. Therefore, we
consider that the classification accuracy decreased using the TFIDF threshold.

In Fig. 4 using a T'F threshold, the classification accuracy is more stable and
we higher than TFIDF. As the T'F' threshold is high, the characteristic words of
malicious macros remained and low frequently-word are reduced. Therefore, TF
is more effective than TFIDF.

7 Conclusion

In this paper, we discussed effective methods of detecting unseen malicious
macros. The proposed method reduces trivial words in corpuses. Next, the cor-
puses are converted to feature vectors using a linguistic approach. The training
feature vectors and labels are input into a classifier. Finally, the test feature
vectors are input into the trained classifier, and we obtain predicted labels. This
paper investigated effective methods of reducing trivial words (TF and TFIDF),
vectorizing methods (D2V and Bow) and classifiers (SVM, RF and MLP). As a
result, it was seen that the combination of TF, D2V and MLP is effective for
the detection of unseen malicious macros in our method. The highest F-measure
is 0.93. We discussed effectiveness of the proposed method in this paper. We
concluded that the feature vectors of D2V are effective in classifying unseen
malicious macros. Our future work is to implement a tool which can detect
malicious macros in real-time.
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Abstract. Anomaly detection on log data is an important security
mechanism that allows the detection of unknown attacks. Self-learning
algorithms capture the behavior of a system over time and are able to
identify deviations from the learned normal behavior online. The intro-
duction of clustering techniques enabled outlier detection on log lines
independent from their syntax, thereby removing the need for parsers.
However, clustering methods only produce static collections of clusters.
Therefore, such approaches frequently require a reformation of the clus-
ters in dynamic environments due to changes in technical infrastructure.
Moreover, clustering alone is not able to detect anomalies that do not
manifest themselves as outliers but rather as log lines with spurious fre-
quencies or incorrect periodicity. In order to overcome these deficien-
cies, in this paper we introduce a dynamic anomaly detection approach
that generates multiple consecutive cluster maps and connects them by
deploying cluster evolution techniques. For this, we design a novel cluster-
ing model that allows tracking clusters and determining their transitions.
We detect anomalous system behavior by applying time-series analysis to
relevant metrics computed from the evolving clusters. Finally, we eval-
uate our solution on an illustrative scenario and validate the achieved
quality of the retrieved anomalies with respect to the runtime.

Keywords: Log data - Cluster evolution + Anomaly detection

1 Introduction

Recent technological advancements have led to an increase of network commu-
nication between computer systems. Unfortunately, this also causes the appear-
ance of novel attack vectors and other previously unimaginable threats. Poten-
tial entry points allowing intrusions thereby include legacy systems that are not
updated regularly or products that loose vendor support and are insufficiently
protected because of outdated security measures.
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It is therefore necessary to deploy Intrusion Detection Systems (IDS) that are
differentiated between three forms: (i) signature-based detection, a blacklisting
approach that compares events with a known set of patterns, (ii) anomaly-based
detection, which is able to detect deviations from learned normal system behav-
ior, and (iii) stateful protocol analysis, a whitelisting approach that requires
expert knowledge to build a model of allowed system behavior [13]. However,
complex computer systems generally require too much effort to be appropriately
modeled and blacklisting approaches are not protecting against unknown forms
of attacks. Thus, we argue that anomaly detection offers a feasible alternative
while being able to flexibly adapt to changing system environments.

Many anomaly detection techniques base on machine learning algorithms
that operate in three different settings: (i) supervised, where a training set that
contains labeled events both for normal and malicious behavior is analyzed to
classify future events, (ii) semi-supervised, where only normal system behavior
is provided as training input, and (iii) unsupervised, where no training set is
required and learning happens on-the-fly during detection [4]. We recommend
an unsupervised approach for several reasons. First, creating a comprehensive
labeled data set for supervised algorithms that considers all types of attacks is
a difficult task that requires time-consuming manual work and expert knowl-
edge. Second, capturing normal system behavior for semi-supervised algorithms
requires anomaly-free environments that can hardly be guaranteed in practice.
Finally, dynamic networks that exhibit changing system behavior over time fre-
quently require regenerations of the training data even in anomaly-free settings.

Attacks are usually planned to only show minor visible effects on the system.
Fortunately, even very subtle intrusions manifest themselves in log files that
record all events taking place in a system. Moreover, it is possible to trace a
detected attack to its origin by analyzing the corresponding log lines. Such an
investigation on historic data that detects anomalies in hindsight is known as
forensic analysis. Contrary to that, online anomaly detection processes the lines
as they are generated and identifies anomalies that do not comply with the
learned behavior, thereby identifying attacks close to the time when they occur.

There exist norms on what characters are allowed in log data (e.g., RFC3164)
and standards that define the syntax of log messages for specific services (e.g.,
syslog for UDP). However, log files often accumulate logs from multiple services
and thus several standards may be mixed together, each of which requiring its
own parser. Therefore, a more general approach that employs string metrics for
grouping similar log lines independent from their structure is beneficial. Methods
that form such cluster maps, i.e., sets of grouped log lines, successfully detected
anomalous lines in [17], however provide only a static view on the data. Such
existing solutions do not focus their attention on the following challenges:

— Log data is inherently dynamic and thus insufficiently analyzed by static clus-
ter maps. Cluster Evolution (CE) techniques solve this problem by identifying
connections between clusters from different maps.

— Anomalous log lines not only differ in their similarity but also relate to sudden
changes in frequency, correlation or interruptions of temporal patterns.
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— Cluster features, i.e., metrics retrieved from CE, require time-series analysis
(TSA) methods for detecting anomalies in their continuous developments.

— Parsers cannot be defined for text-based log lines without known syntaxes
and thus string metrics are required for similarity-based clustering.

Therefore, there is a need for dynamic log file anomaly detection that does
not only retrieve lines that stand out due to their dissimilarity with other lines,
but also identifies spurious line frequencies and alterations of long-term periodic
behavior. We therefore introduce an anomaly detection framework containing
the following novel features:

— An algorithm for consolidating the evolution of clusters from a continuous
and potentially endless series of static cluster maps,

— the computation of metrics based on the temporal cluster developments,

— time-series modeling and one-step ahead prediction for anomaly detection,

— linear scalability on the number of log lines allowing real-time analysis,

— detection of contextual anomalies, i.e., outliers within their neighborhood,

— a realistic scenario evaluating the efficiency and effectiveness of our method.

The paper is structured as follows: Sect.2 summarizes the field of CE for
anomaly detection. Section 3 gives an overview about the concept of our app-
roach. Sections4 and 5 explore the theoretical background of CE and TSA
respectively. Section 6 contains the evaluation and Sect.7 concludes the paper.

2 Related Work

A large amount of research in the field of Cluster Evolution (CE) focuses on
graphs (e.g., [3]). With its well-founded theoretical basis that covers both static
and dynamic techniques, graph theory is a powerful tool for analyzing many
kinds of network structures. For example, social networks conveniently represent
graphs and are therefore frequently the target of so-called community evolution
analyses. Similarly, the network connections between users within a computer
system are often represented as a graph that allows the derivation of several
relevant metrics that facilitate reasoning over the current state and behavior of
the system. This idea has successfully been extended to anomaly detection by
approximating and examining the dynamic development of metrics with time-
series models [12]. However, most graph-based algorithms are not designed for
a direct application of text-based CE.

When observing clusters over time it is important to identify any occurring
changes of individual clusters or the overall cluster structure. Spiliopoulou et al.
[15] introduces an algorithm on detecting these changes. Potentially applicable
metrics derived from cluster interdependencies are given in [16].

He et al. [8] generate an event count matrix as a template for storing the fre-
quencies of log lines. They then employ machine learning on fixed time windows,
sliding time windows and session identifiers in order to identify deviations from
the template. Applications that require tracking clusters over time also exist in
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research areas other than security, such as GPS tracking [9] where groups of
points move across a plane. The clusters are described by relevant properties
such as size, location and direction of movement, all of which are incremen-
tally updated in every time step. Zhou et al. [19] introduce a similar dynamic
collection of cluster features called Exponential Histogram of Cluster Features.
Lughofer and Sayed-Mouchaweh [11] discuss an incremental method that sup-
ports adding and removing elements from clusters as well as merges and splits
that can occur when clusters collide into or move through each other.

Chi et al. [5] suggest to smooth the time-series for retrieving more robust
insights into the cluster developments and introduce two frameworks that focus
on preserving the cluster quality and cluster memberships respectively. Xu
et al. [18] extend these techniques by an evolutionary clustering algorithm.
Chakrabarti et al. [2] outline the importance of alignment with snapshots of
historical clusterings and propose an adapted hierarchical and K-Means algo-
rithm as a solution.

3 Concept

This section uses an illustrative example to describe the concept of the anomaly
detection approach that employs Cluster Evolution (CE) and time-series analysis
(TSA). For this, consider log lines that correspond to three types of events,
marked with (), A and O. The bottom of Fig. 1 shows the occurrence of these
lines on the continuous time scale that is split up by tg,t1,t2, t3 into three time
windows. The center of the figure shows the resulting sequence of cluster maps
C,C',C" generated for each window. Note that in this example the clusters are
marked for clarity. Due to the isolated generation of each map it is usually not
possible to draw this connection and reason over the developments of clusters
beyond one time window. The cluster transitions shown in the top of the figure,
including changes in position (Ca in [t1,t2]), spread (Ca in [ta,t3]), frequency
(Co in [te, t3]) as well as splits (Co in [t2,t3]), are thus overseen.

@e @ (o O ®

C C -

| acc i cdcca |facac
IIIIItIT'ItITIItll'li]lIT'I'IItIIIItIIII IIII'TTTT'IIIItIIIII
tO tl t2 t3

Fig. 1. Bottom: log lines occurring within time windows. Center: static cluster maps
for every window. Top: schematic clusters undergoing transitions.
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We therefore introduce an approach for dynamic log file analysis that involves
CE and TSA in order to overcome these problems (Fig.2). In step (1), the
algorithm iteratively reads the log lines either from a file or receives them as a
stream. Our approach is able to handle any log format, however, preprocessing
may be necessary depending on the log standard at hand. In our case, we use
the preprocessing step (2) to remove any non-displayable special characters that
do not comply to the standard syslog format defined in RFC3164. Moreover,
this step extracts the time stamps associated with each log line as they are not
relevant for the clustering. This is due to the fact that the online handling of lines
ensures that each line is processed almost instantaneously after it is generated.

< time window

(4) Allocate line

(2) Preprocessing: (3) Insert line into!

=== :
S ) y : into cluster maps
. (1) Read input file Extract time cluster map of . R
Log file) . . . . of preceding and
line by line stamp, sanitize current time v
. . succeeding
strings window

windows >time window

(9) Find (8) Detect
correlations anomalies by

(5) Determine
cluster transitions

(7) Approximate

time-series model (6) Compute

between log lines comparing and compute one-| cluster evolution from previous to
by clustering time-| prediction with step ahead metrics current time
series actual value prediction window

Fig. 2. Flowchart of the dynamic clustering and anomaly detection procedure.

Step (3) involves grouping log lines within each time window according to
their similarity, resulting in a sequence of cluster maps. It is non-trivial to deter-
mine how clusters from one map relate to clusters from the maps created during
their preceding or succeeding time windows. Clustering the lines constituting
each map into the neighboring maps (4) establishes this connection across mul-
tiple time windows and allows the determination of transitions (5). A cluster from
one time window evolves to another cluster from the following time window if
they share a high fraction of common lines. More sophisticated case analysis is
also able to differentiate advanced transitions such as splits or merges.

Several features of the clusters are computed (6) and used for metrics that
indicate anomalous behavior. As the computations of these metrics follow the
regular intervals of the time windows, we use TSA models (7) to approximate
the development of the features over time. The models are then used to fore-
cast a future value and a prediction interval lying one step ahead. If the actual
recorded value occurring one time step later does not lie within these limits (8),
an anomaly is detected. Figure 3 shows how the prediction limits (dashed lines)
form “tubes” around the measured cluster sizes. Anomalies appear in points
where the actual cluster size lies outside of that tube.

Finally, the time-series of the cluster properties are also grouped according
to their pairwise correlations. An incremental algorithm groups the time-series
similarly to the clustering of log lines. Carrying out this correlation analysis in
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Cluster Size Evolution
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Fig. 3. Time-series representing the sizes of two evolving clusters (black solid lines)
with prediction intervals (blue dashed lines) and detected anomalies (red circles). Top:
a cluster affected by all anomalies. Bottom: a cluster not affected by periodic events.
Anomalies are caused by (a) incorrect periodicity, (b) sudden frequency increase, (c)
long-term frequency increase, (e) slow frequency increase. (d) is a false positive. (Color
figure online)

regular intervals allows determining whether time-series that used to correlate
with each other over a long time suddenly stop or whether new correlations
between clusters appear, which are indicators of anomalous events (9).

4 Cluster Evolution

This section describes in detail how online CE is performed on log lines. The
approach is introduced stepwise, starting with a novel clustering model that
establishes connections between cluster maps. Subsequently, we explain the pro-
cess of tracking individual clusters and determining their transitions.

4.1 Clustering Model

Considering only the lines of a single time window, we employ our incremental
clustering approach introduced in [17]. The procedure is as follows: The first line
always generates a new cluster with itself as the cluster representative, a surro-
gate line for the cluster contents. For every other incoming line the most similar
currently existing cluster is identified by comparing the Levenshtein distances
between all cluster representatives and the line at hand. The processed line is
then either allocated to the best fitting cluster or forms a new cluster with itself
as the representative if the similarity does not exceed a predefined threshold .
This clustering procedure is repeated for the log lines of every time win-
dow. The result is an ordered sequence of independent cluster maps C,C’,C", .. ..



Time Series Analysis 25

While the sequence itself represents a dynamic view of the data, every cluster
map created in a single time window only shows static information about the
lines that occurred within that window. The sequence of these static snapshots
is a time-series that only provides information about the development of the
cluster maps as a whole, e.g., the total number of clusters in each map. How-
ever, no dynamic features of individual clusters can be derived. It is not trivial
to determine whether a cluster C' € C transformed into another cluster C’ € C’
due to the fact that a set of log lines from a different time window was used
to generate the resulting cluster. This is due to the nature of log lines that are
only observed once in a specific point of time, while other applications employing
CE may not face this problem as they are able to observe features of the same
element over several consecutive time windows.
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Fig. 4. Solid lines: construction of cluster map. Dashed lines: log lines allocated to
neighboring map.

In order to overcome the problem of a missing link between the cluster maps,
we propose the following model: Every log line is not only clustered once to estab-
lish the cluster map in the time window in which it occurred, but is also allocated
to the cluster maps created in the preceding and succeeding time windows. These
two cases are called construction and allocation phase respectively. The construc-
tion phase establishes the cluster map as previously described and each cluster
stores the references to the lines that it contains. The allocation phase allocates
the lines to their most similar clusters from the neighboring cluster maps. This
is also carried out using the incremental clustering algorithm, with the difference
that no new clusters are generated and no existing clusters are changed, but only
additional references to the allocated lines are stored.

Figure 4 shows the phases for two consecutive cluster maps. The solid lines
represent the construction of the cluster maps C and C’ by the log lines s1, ..., s11
that occurred in the respective time window, e.g., clusters Ca and C( store
references to the lines in Racurr and Roeurr respectively, and C’ and C”O
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store their references in Rx,,,, and R’OCMT. The dashed lines represent the
allocation of the lines into the neighboring cluster maps. Clusters in C store
references to allocated log lines from the succeeding time window in Rapeq¢ and
Ryneat. Analogously, clusters in C’ store references to allocated log lines from
the preceding time window in R}, and R ., . Note that in the displayed
example, s3 was allocated to Ca in C but to Cy in C’. Further, s5 and sg are
not allocated at all. The following section describes how this model is used for

tracking individual clusters over multiple time windows.

4.2 Tracking

For any cluster C' € C and any other cluster C’ € C’, a metric is required that
measures whether it is likely that C' transformed into C’, i.e., whether both clus-
ters contain logs from the same system process. An intuitive metric that describes
the relatedness of C' and C’ is their fraction of shared members. As previously
mentioned, it is not possible to determine which members of each cluster are
identical and it is therefore necessary to make use of the previously introduced
clustering model that contains references to the neighboring lines. There exists
an overlap metric based on the Jaccard coefficient for binary sets introduced in
[7] that was adapted for our model by formulating it in the following way:
’ (Rcurr N R/ ) U (Rnezt N R/ )‘

prev curr

|R/ UR; U Rnea:t U Rcu7‘r|

curr prev

overlap(C,C") =

(1)

Note that the sets of references Ry, and R, both correspond to log lines that
were used to create cluster map C and can thus be reasonably intersected, while
Ryeqt and R.,,.,. both reference log lines from cluster map C’. The overlap lies in
the interval [0, 1], where 1 indicates a perfect match, i.e., all log lines from one
cluster were allocated into the other cluster, and 0 indicates a total mismatch.
Clusters can also be tracked over multiple time windows by applying the same
idea to C" and C”, C"" and C"”, and so on. In a simplistic setting where clusters
remain very stable over time, this is sufficient for tracking all log line clusters
separately. However, in realistic scenarios with changing environments clusters
frequently undergo transitions such as splits or merges which negatively influence
the overlap and may indicate anomalies. In the following chapter, the tracking

of clusters is therefore extended with a mechanism for handling transitions.

4.3 Transitions

Clusters are subject to change over time. There exist internal transitions that
only influence individual clusters within single time windows, and external tran-
sitions that affect other clusters as well [15]. We consider the cluster size denoted
by |C| as the most important internal feature as it directly corresponds to the
frequency of log lines allocated to cluster C. Formally, a cluster C' grows in size
from one time step to another if |C’| > |C]|, shrinks if |C'| < |C| and remains
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of constant size otherwise. Alternative internal features derived from the distri-
bution of the cluster members are their compactness measured by the standard
deviation, their relative position as well as their asymmetry, i.e., their skewness.

Clusters from different time windows are affected by external transitions. In
the following, 6 is a minimum threshold for the overlap defined in Eq. (1) and
Opart is @ minimum threshold for partial overlaps that is relevant for splits and
merges. In general, partially overlapping clusters yield smaller overlap scores,
thus Opere < 0. We take the following external transitions into account:

1. Survival: A cluster C survives and transforms into C” if overlap(C,C") > 6
and there exists no other cluster B € C or B’ € C’ so that overlap(B,C’) >
Opart or overlap(C, B') > Opqrt.

2. Split: A cluster C' splits into the parts C7,Cjy,...,C, if all individual
parts share a minimum amount of similarity with the original cluster, i.e.,
overlap(C, C!) > Opart, Vi, and the union of all parts matches the original
cluster, i.e., overlap(C,|JC!) > 6. There must not exist any other cluster
that yields an overlap larger than 6,4+ with any of the clusters involved.

3. Absorption: The group of clusters Cq,Co, ..., C, merge into a larger cluster
C" if all individual parts share a minimum amount of similarity with the
resulting cluster, i.e., overlap(C;, C’) > 0pqrt, Vi, and the union of all parts
matches the resulting cluster, i.e., overlap(lJ C;, C’") > 6. Again, there must
not exist any other cluster that yields an overlap larger than 6p.,; with any
of the clusters involved.

4. Disappearance or Emergence: A cluster C disappears or a cluster C’ emerges
if none of the above cases holds true.

By this reasoning it is not possible that a connection between two clusters is
established if their overlap does not exceed 8,4+, which prevents partial clusters
that do not exceed this threshold from contributing to the aggregated cluster in
the case of a split or merge. In order to track single clusters it is often necessary to
follow a specific “path” when a split or merge occurs. We suggest to prefer paths
to clusters based on the highest achieved overlap, largest cluster size, longest
time that the cluster exists or combinations of these.

4.4 Evolution Metrics

Knowing all the interdependencies and evolutionary relationships between the
clusters from at least two consecutive time windows, it is possible to derive in-
depth information about individual clusters and the interactions between clus-
ters. Definite features such as the cluster size that directly corresponds to the
frequency of the log lines within a time window are relevant metrics for anomaly
detection, however do not necessarily indicate anomalies regarding changes of
cluster members.

A more in-depth anomaly detection therefore requires the computation of
additional metrics that also take the effects of cluster transitions into account.
Toyoda and Kitsuregawa [16] applied several inter-cluster metrics in CE analysis
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that were adapted for our purposes. For example, we compute the stability of a
cluster by s = |R;Tey| + |Rewrr| — 2+ |R§,T€U N Reyurr|, where low scores indicate
small changes of the cluster and vice versa. For a better comparison with other
clusters, a relative version of the metric is computed by dividing the result by
|R;rw‘ + |Reurr|- There exist numerous other metrics that each take specific
types of migrations of cluster members into account.

A simple anomaly detection tool could use any of the desired metrics, com-
pare them with some predefined thresholds and raising alarms if one or more of
them exceeds this threshold. Even more effectively, these metrics conveniently

form time-series and can thus be analyzed with TSA methods.

5 Time-Series Analysis

The time-series derived from metrics such as the cluster size are the founda-
tion for analytical anomaly detection. This section therefore describes how T'SA
methods are used to model the cluster developments and perform anomaly detec-
tion by predicting future values of the time-series.

Model. Time-series are sequences of values associated with specific time points.
For our purposes, a time step therefore describes the status of the internal and
external transitions and their corresponding metrics of each cluster at the end
of a time window. These sequences are modeled using appropriate methods such
as autoregressive integrated moving-average (ARIMA) processes. ARIMA is a
well-researched modeling technique for TSA that is able to include the effects of
trends and seasonal behavior in its approximations [6].

Clearly, the length of the time-series is ever increasing due to the constant
stream of log messages and at one point will become problematic either by lack of
memory or by the fact that fitting an ARIMA model requires too much runtime.
As a solution, only a certain amount of the most recent values are stored and
used for the model as older values are of less relevance.

Forecast. With appropriate estimations for the parameters, an extrapolation
of the model into the future allows the computation of a forecast for the value
directly following the last known value. In our experiments an ARIMA model is
fitted in every time step and we are interested only in predictions one time step
ahead rather than long-term forecasts.

The smoothness of the path that a time-series follows can be highly different.
Therefore, neither a threshold for the absolute nor the relative deviation between
a prediction and the actual value is an appropriate choice for anomaly detection.
Assuming independent and normally distributed errors, the measured variance of
previous values is therefore used to generate a prediction interval which contains
the future value with a given probability. Using the ARIMA estimate ¢;, this
interval is computed by

Iy = [t — Z1-95e, Gt + Z1-2 5] (2)
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where Z;_a is the quantile 1 — & of the standard normal distribution and s is

the standard deviation of the error, s, = /=15 > (g — )2

Correlation. Some types of log lines appear with almost identical frequencies
during certain intervals, either because the processes that generate them are
linked in a technical way so that a log line always has to be followed by another
line, or the processes just happen to overlap in their periodical cycles. In any way,
the time-series of these clusters follow a similar pattern and they are expected
to continue this consistent behavior in the future. The relationship between two
time-series y;, z; is expressed by the cross-correlation function [6], which can be
estimated for any lag k as

Z{V:)H_l(yt*g)'(zt—kff) .
= — if k>0
CCF, = \/Ziv:&&yg*yf_\/.Zfil(jf*ZV (3)
Dot (We—7) (ze—x—%) f k<0
VE =)V (2 —2)?

where § and z are the arithmetic means of y; and z;, respectively. Using the cor-
relation as a measure of similarity allows grouping related time-series together.

Detection. For every evolving cluster, the anomaly detection algorithm checks
whether the actual retrieved value lies within the boundaries of the forecasted
prediction limits calculated according to Eq.2. An anomaly is detected if the
actual values falls outside of that prediction interval, i.e., y; ¢ I;. Figure 3 shows
the iteratively constructed prediction intervals forming “tubes” around the time-
series. The large numbers of clusters, time steps and the statistical chance of
random fluctuations causing false alarms often make it difficult to pay atten-
tion to all detected anomalies. We therefore suggest to combine the anomalies
identified for each cluster development into a single score. At first, we mirror
anomalous points that lie below the tube on the upper side by

(4)

5=t iy >0+ 2Z1-25

200 —yr Wy <gr— Z1-g58e

With the time period 7; describing the number of time steps a cluster is already

existing we define C4 ; as the set of clusters that contain anomalies at time step

t and exist for at least 2 time steps, i.e., 7+ > 2. We then define the anomaly
score a; for every time step by

ZCteCA,t ((?)t + Zl—%se) -log (Tt))
|CA,t| ZCtGCA7t (St . lOg (Tt))

When there is no anomaly occurring in any cluster at a specific time step, the
anomaly score is set to 0. The upper prediction limit in the numerator and the
actual value in the denominator ensure that a; € [0, 1], with 0 meaning that no
anomaly occurred and scores close to 1 indicating a strong anomaly. Dividing
by |Ca,| and incorporating the cluster existence time 7, ensures that anomalies

atzl—

(5)
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detected in multiple clusters and clusters that have been existing for a longer
time yield higher anomaly scores. The logarithm is used to dampen the influence
of clusters with comparatively large 7.

Finally, we detect anomalies based on changes in correlation. Clusters which
correlate with each other over a long time during normal system operation should
continue to do so in the future. In the case that some of these cluster perma-
nently stop correlating, an incident causing this change must have occurred and
should thus be reported as an anomaly. The same reasoning can be applied to
clusters which did not share any relationship but suddenly start correlating.
Therefore, after the correlation analysis has been carried out sufficiently many
times to ensure stable sets of correlating clusters, such anomalies are detected
by comparing which members joined and left these sets.

6 Evaluation

This section describes the evaluation of the introduced anomaly detection
methodology. At first, the attack scenario and evaluation method are outlined.
Then the detection capabilities of our method with different values for the sim-
ilarity threshold and time window size are assessed and discussed.

6.1 Attack Scenario

In order to identify many clusters, we pursue high log data diversity. For this,
we propose the following evaluation scenario that adapts an approach intro-
duced in [14]: A MANTIS Bug Tracker System' is deployed on an Apache Web
Server. Several users frequently perform normal actions on the hosted website,
e.g., reporting and editing bugs. At some point, an unauthorized person gains
access to the system with user credentials stolen in a social engineering attack.
The person then continues to browse on the website, however following a dif-
ferent scheme, e.g., searching more frequently for open issues which simulates
suspicious espionage activities. Such actions do not cohere with the behavior of
the other users and we therefore expect to observe corresponding alterations in
the developments of the log clusters. Due to the fact that only the probabilities
for clicking on certain buttons are changed, we expect that the log lines pro-
duced by the attacker will be clustered together with the log lines describing
normal behavior and that this causes an increase in the measured cluster size.
In addition, an automatized program that checks for updates in regular intervals
is compromised by the attacker and changes its periodic behavior. In this case,
we expect that the changes of the periodic cycles are also reported as anomalies.
The injected attacks include one missing periodic pulse, two sudden increases of
cluster size with different length and one slowly increasing cluster size.

! https://www.mantisbt.org/.
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6.2 Evaluation Environment

The log data was generated on a general purpose workstation, with an Intel Xeon
CPU E5-1620 v2 at 3.70 GHz 8 cores and 16 GB memory, running Ubuntu 16.04
LTS operating system. The workstation runs a virtual Apache Web server host-
ing the MANTIS Bug Tracker System, a MySQL database and a reverse proxy.
The log messages are aggregated with syslog. The anomaly detection algorithm
was implemented in Java version 1.8.0.141 and runs on a 64-bit Windows 7
machine, with an Intel i7-3770 CPU at 3.4 GHz and 8 GB memory.

6.3 Method

The log data was collected for 96 h from the previously mentioned Bug Tracker
System. Furthermore, sample log lines that correspond to the injected system
changes were extracted. These lines were aggregated with their respective occur-
rence time points in a ground truth table. One of these entries is counted as
a true positive (TP) if the algorithm detects an anomalous log cluster with a
representative similar to the log line specified in the ground truth table, i.e., the
computed string similarity is not smaller than the similarity threshold ¢ used
during clustering, and additionally the detection time is not earlier than 30 min
or later than 60 min of the time specified in the ground truth table. If one of
these requirements is not met, the entry is counted as a false negative (F'N).
Detected anomalies that do not correspond to any entries are counted as false
positives (F'P). True negatives (T'N) are determined computationally.

With this setting, statistically relevant characteristics regarding the qual-
ity of the resulting classification were measured. These include the true pos-
itive rate (TPR = %)’ false positive rate (FPR = FPI;%), precision
(P = 7p47p) and recall (R = TPR). Plotting the latter two against each
other leads to the Receiver Operating Characteristic (ROC) curve, a common
evaluation and comparison method for classification systems. Curves are created
by running the anomaly detection algorithm with different parameter settings,
with well-performing classifiers being located in the top-left corner of the ROC
diagram (high TPR, low FPR). We also added the first median as it describes
the performance of a random guesser and every reasonable classifier has to lie

above this line. Finally, also the well-known F}-score = 21'3?-.11%% is computed.

6.4 Results

Figure 3 shows the cluster size developments of two log line clusters, the one-
step ahead prediction limits forming tubes around the curves and the anomalies
that are detected whenever the actual size falls outside of this tube. The present
types of anomalies in the plot are: (a) a periodic process skipping one of its
peaks, (b) a spike formed by a rapid short-term increase in line frequency, (c) a
plateau formed by a long-term frequency increase, (d) a false positive and (e) a
slowly increasing trend. The curve in the top part of the figure corresponds to
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a cluster affected by all injected anomalies. While anomalies (a)-(c) are appro-
priately detected, anomaly (e) is not detected in this cluster because the model
adapts to the slow increase of frequency that occurs within the prediction bound-
aries, thereby learning the anomalous behavior without triggering an alarm. We
intentionally injected (e) in order to show these problems that occur with most
self-learning models. These issues can be solved by employing change point anal-
ysis methods that detect long-term changes in trends [10]. The bottom part of
the figure corresponds to a cluster containing only log lines that are specifically
affected by anomalies (c) and (e). Accordingly, the anomalies manifest them-
selves more clearly and the high deviations from the normal behavior makes
their detection easier. The fact that each of the numerous evolving clusters are
specific to certain log line types is a major advantage of our method. In partic-
ular, more than 300 evolving clusters representing more than 90% of the total
amount of log lines were identified.
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Fig. 5. The aggregated anomaly score displayed as a time-series and correctly increas-
ing when the system behavior changes (red shaded intervals). (Color figure online)

The anomaly score aggregated over all evolving clusters that exist for at least
20 time steps is displayed in Fig.5. The figure clearly shows that the anomaly
score increases at the beginning and end of every attack interval. This corre-
sponds to the fact that our algorithm detects changes of system behavior, but
almost immediately adapts to the new state. Only returning from this anomalous
state to the normal behavior is again detected as an anomaly.

Different parameters were used to create the ROC curves displayed in Fig. 6.
In the left plot, the similarity threshold ¢ € [0, 1] from the incremental clustering
procedure was varied. A high similarity threshold causes that only highly similar
lines are allocated to the same cluster, i.e., the total number of clusters per time
window increases. A low similarity threshold causes the opposite. We discovered
that low similarity thresholds (¢ < 0.5) cause too many different log line types
being grouped into the same clusters and the cluster representatives therefore
not appropriately describing their content. This in turn leads to mismatching
clusters between the time windows that do not reach the minimum required
threshold for establishing a connection.

The curves were created by changing the prediction level (1 — «), i.e., the
width of the prediction interval, with narrow tubes leading to higher TPR and
FPR and broad tubes leading to lower TPR and FPR. Favorable values (high
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TPR, low FPR) are located close to the top-left corner of the plot. The figure
shows that a moderate width is superior to the extremes as they suffer from either
low T PR or high F'PR. All threshold values yield reasonably good performances
in the ROC plot because our injected anomalies always manifest themselves
in multiple clusters, but there is a preference towards thresholds around 0.85
achieving TPR = 61.8% with only FPR = 0.7%. In general, higher thresholds
enable an increased granularity and should therefore be preferred for detecting
anomalies that only affect a single or few log line types.

Threshold ROC Curve Time window size ROC Curve
1 e 1
0.8 S ) SES
e 7
0.6 | b 0.6 ¥ b
o4 |~ [~4 i/
o o |
= = [
0.4 0% y 04 |- Somm ]
o7 | 45min
0‘.373 : :7 30min —--—
0.2 0.85 b 0.2 - AN
0.875 [ 10min
1st med?a‘: 1st mgc;\a‘:
0 o e b b b Lan g Loy 0 o Lo b b b Lan g Loy
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
FPR FPR

Fig. 6. Left: ROC curves for different threshold values. Right: ROC curves for different
time window sizes.

The top left part of Fig. 7 shows the runtime with respect to different thresh-
old values. Moderate threshold values yield lower runtimes then values closer to
0 or 1. The top right part of the figure shows that the runtime scales linearly with
the number of log lines, which is important for processing continuous streams.

In addition to the threshold, the influence of the time window size was inves-
tigated. The right side of Fig. 6 shows ROC curves where the same data set was
analyzed with a similarity threshold of 0.9 and varying time window sizes. The
curves indicate that good results are achieved with time window sizes similar to
the attack durations (10-30 min). In general, very large time windows are not
sufficiently fine-grained and therefore easily miss anomalies that only occur dur-
ing very short intervals. Clearly, smaller time windows yield finer granularities
(i.e., more time steps in any given period) and also reduce the average reaction
time, i.e., the average amount of time that passes between an anomaly occurring
and being detected (tmewindow) (y the other hand, time windows smaller than
the appearance frequency of certain log line types may result in incomplete clus-
ter maps that do not contain evolving clusters of these logs. Thus, the correct
choice for the time window size largely depends on the log frequencies.

Finally, the measurements regarding the runtime are shown in the bottom
part of Fig. 7. Time window sizes that performed well in the ROC analysis also
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Fig. 7. Left: runtime comparison for different parameter settings. Right: runtime mea-
sured with respect to the number of processed log line shows linear scalability. Top:
threshold as changed parameter. Bottom: time window size as changed parameter.

showed low runtimes, because generating the time-series model is easier when
the time window is aligned to the period. Again, the runtimes scaled linearly
with the number of log lines independent from the size of the time window.
For brevity, we only discuss the results of the evaluation centered around the
Fy-score but omit the plots. The results showed that the recall increases for a
higher threshold almost up to 1. Moreover, the size of the prediction interval had
a clear influence on the recall for any given threshold level, with smaller sizes
increasing the achieved recall score. This is due to the fact that actual anomalies
fall outside of the tube more easily and thus improve the recall. While the preci-
sion also improves with a higher threshold, the results showed just the opposite
characteristic regarding the prediction interval size, with large tubes increasing
the precision. This is due to the fact that from all the detected anomalies, only
highly diverging points that are likely to be actual anomalies exceeded the limits
of the tube. For high similarity thresholds, precision scores between 0.2 and 0.3
are reached. Only when precision and recall are combined in the Fj-score the
superiority of moderate tube sizes over the extremes becomes apparent. These
observations emphasize the importance of the tube size and confirm the superi-
ority of higher similarity thresholds already ascertained in the ROC analysis.
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7 Conclusion and Future Work

In this work we introduced a dynamic anomaly detection algorithm for log data.
By deploying an incremental clustering algorithm on multiple time windows
rather than the whole data, we were able to establish a sequence of static cluster
maps that collectively represent dynamic system behavior. We used cluster evolu-
tion techniques in order to identify developments of single clusters and employed
time-series analysis for detecting anomalous deviations of relevant metrics.

The evaluation showed that clusters formed by groups of log lines belonging
to a certain event are successfully tracked over time. Furthermore, the results
showed that injected anomalies manifested themselves as sudden changes in the
generated time-series and were appropriately detected by our algorithm.

We computed the overlap between cluster maps from two neighboring time
windows. However, the quality of the connections between clusters could be
enhanced by taking more distanced time windows into account. Moreover, there
exist other time-series models able to predict future values, some of which may
show a higher precision or runtime enhancements compared to ARIMA models.

As most unsupervised self-learners, our model suffers from poisoning of the
data, i.e., anomalous behavior affecting future detections [1]. For example, reg-
ularly occurring log lines from malicious processes are learned after some time.
An attacker is able to exploit this vulnerability by carefully injecting log lines
that slowly adapt the learner to the changed system behavior. We are planning
to investigate methods for change point analysis in order to solve these issues.

Acknowledgment. This work was partly funded by the FFG project synERGY
(855457).
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Abstract. Photo Response Non—Uniformity (PRNU) is one of the most
effective fingerprints used to detect the source camera of an image. Image
Anonymization on the other hand, is a task of fooling the source camera
identification, in order to protect the user’s anonymity in sensitive situa-
tions involving whistleblowers, social activists etc. To protect the privacy
of users especially over the web, image anonymization is of huge impor-
tance. Counter—Forensic attacks on source camera identification try to
make an image anonymous by nullifying the detection techniques. For
almost every counter—forensic source camera identification attack, anti—
counter attacks are being designed and hence there is a need to either
strengthen the previous counter—forensic attacks or design a new attack
altogether. In this work, we propose a new counter—forensic attack to
source camera identification, using the Universal Wavelet Relative Dis-
tortion function designed for steganography. The main principle behind
Universal Wavelet Relative Distortion is to embed changes in an image in
regions such as textures or noisy parts which are crucial to source cam-
era identification. We show through our experiments, when a random
bit—string is inserted recursively in an image, the correlation strength of
the noise residual based source camera identification gets significantly
weak and such methods fail to map the source camera of the image
under question. In the proposed method, the visual quality of the modi-
fied image is not changed, which makes our method a strong solution to
image anonymization.

Keywords: Cybercrime - Counter forensics - Digital forensics
Fingerprint - PCE - PSNR - SSIM - Steganography
Source camera identification

1 Introduction

Multimedia forensics is an emerging field which investigates the evidence in the
form of digital materials from a crime scene. Image forensics deals with provid-
ing evidence in a court of law or to help the investigative agencies regarding the
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images found with a suspect. Source Camera Identification is a crucial task of
identifying the source camera of an image under question. By mapping an image
under question back to its source, important evidence can be gathered against
any culprits with malicious intentions such as child pornographers. Now, with a
great success in source camera identification, images found in a crime scene can
be produced in a court of law as evidences. But, it rises an important debate
on the privacy and secrecy aspects in certain situations such as whistleblowers
and social/human activists who wish to share/send sensitive images and want to
remain anonymous. User Anonymization [1-3] is a field of science that deals with
making users remain anonymous while being able to share multimedia informa-
tion over the Internet. It is necessary for certain online users to be not concerned
about their privacy when using Internet and not worried about being tracked
online. Especially for social activists and whistleblowers, spreading their infor-
mation while maintaining anonymity is highly essential. It has been successfully
established [4-7] that the noise residual content in an image is a strong finger-
print which determines the source camera of the test image. The noise pattern
in an image is added by the underlying camera sensor while capturing a scene.
It is possible to map an image to its camera sensor by matching the noise resid-
ual in the image against the Sensor Pattern Noise (SPN) of the camera. As a
counter-attack to Photo Response Non Uniformity (PRNU) based source cam-
era identification, image anonymization technqiues either suppress the PRNU
content in an image or follow some other transformation on the image to make
the underlying source detection process fail.

The main principle involved in PRNU based source identification is to find a
correlation between the noise residual (PRNU) in an image and the sensor pat-
tern noise (SPN) of each camera in hand. The correlation is either in the form of
Normalized Cross Correlation (NCC) [4] or Peak—to—Correlation—Energy ratio
(PCE) [5]. The source camera is mapped to an image based on a decision thresh-
old against the correlation value. When a test image is manipulated through the
image anonymization techniques, the correct source mapping is not possible. At
present, Image anonymization techniques [8-12] w.r.t source camera identifica-
tion are successful in deceiving the PRNU based source camera identification
techniques. These techniques are also known as the counter—forensic attacks on
source camera identification. In case of anonymization techniques such as Seam
Carving [12] and Adaptive PRNU Denoising (APD) [10], the correlation value
of the manipulated test image with its source camera falls below the threshold
value, making it difficult to make any decision about the source of the image.
In case of Fingerprint Copy [11] anonymization technique, the noise residual in
the test image is removed and a fingerprint of another camera is added to the
test image, thus making the correlation value falsely point to the other camera
but not the original source. Though the present image anonymization techniques
are successful, recent advances [13-16] in source camera identification are able
to combat the geometrical manipulations as well the image anonymization tech-
niques. In this paper we follow the approach of suppressing the PRNU content in
an image, because several common geometrical transformations such as rotation,
scaling etc. could not effect the PRNU based methods of source detection [17].
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Our major contribution in this paper is a new image anonymization counter-
forensic attack on PRNU based Source Camera Identification (SCI). In this
paper, we adopt a recent steganographic technique to embed a random bit—string
into the test images. The distortion used in this paper, ultimately suppresses
the PRNU content in the test image to very low levels such that the correlation
between the PRNU of the image and that of the camera becomes very weak to
positively identify the source of the test image. The embedding mechanism of
the distortion function makes the PRNU based source camera identification task
insignificant.

The rest of the paper is organised as follows. Section 2 describes the back-
ground about PRNU based source camera identification and the other counter—
forensic attacks in brief. In Sect. 3, we detail our proposed counter—forensic attack
using the universal wavelet relative distortion. In Sect.4, we show our experi-
mental findings and conclude in Sect. 5 with a direction towards future work.

2 Background

Ever since the breakthrough about the usage of noise residual as a unique fin-
gerprint of camera in [4], there have been multitude of works to address Source
Camera Identification (SCI). For each camera at hand, a reference noise pattern
is estimated as the unique camera fingerprint and the test image’s noise residual
is used to map against the reference pattern. The PRNU based schemes also
found to be robust to many manipulations such as JPEG compression, gamma
correction, resizing and rotation [18]. Various enhancements [6] have been car-
ried out to improve the PRNU based methods, by making the schemes more
adaptive to any scene content. More recently, the use of sensor pattern noise
in SCT is strengthened by including a locally adaptive DCT filtering [7]. In this
paper we target the PRNU based SCI techniques for image anonymization. We
describe the methodologies of PRNU based SCI in Sect. 2.1.

2.1 PRNU Based Source Camera Identification

An image is formed in a camera sensor as per the reaction to the reflected
light from the object. While forming the final digital image, the sensor pattern
noise (K) of the camera is added along with other noise components such as
dark current, shot noise etc. The sensor pattern noise of the camera being a
multiplicative noise, is specific to each camera device [18] and thus the final
image formed can be represented as follows:

P, =F+ (POK + ¢1) (1)

where P, is the final digital image formed, P, is the amount of incident light on
the sensor from the object, K is the PRNU factor of the sensor and ¢; is the
collection of other noises.
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Through the application of a de—noise filter, majority of the other noise
components are eliminated. Thus, the Noise Residual or the PRNU component
of a single (i*") image I; can be calculated as:

PRNU;, = PV — DF(PV) (2)

where, DF' is a de—noise filter (we use Weiner filter in the wavelet domain). The
de—noised image is then subtracted from the original image to generate the noise
residual PRNUy,.

The camera fingerprint K can be approximated from the noise residuals of
N number of images taken from the same camera (N should be sufficiently large
for example greater than 50).

Camera fingerprint or the Sensor Pattern Noise (SPN) of a camera C; can
then be calculated as:

>N, PRNU;, - PY
N )32
il (B)

To map an image under question, I;.s; to one of the sensor pattern noises
available with the forensic analyst, a correlation mechanism is employed such
as Normalized Cross Correlation (NCC) [4] or the Peak-to-Correlation-Energy
ratio (PCE) [5]. The NCC between the noise residual (NR) of I .5 and SPN of
a camera C} is calculated as:

SPNg, =

3)

(NR(Liest) — NR(Iest)).(SPN(C;) — SPN(C;))
’NR(Itest) — NR(T001) HSPN(CJ-) - SPN(C’j)H

pj(Ltest) = ’ (4)

where,’.” is the dot product, |||| is Ls norm, bar represents the mean value.
The similarity between an image PRNU and a camera SPN is computed in
terms of Peak—to—Correlation—Energy ratio (PCE) as,

2
Ppeak
PCE(I;,C;) = —tpeek (5)
Wi\d nge p?

where, p represents the normalized cross correlation between PRNUj, ., and
SPNg;. ppeak is the largest cross correlation value specific to (Izest,Cj) by shift-
ing the image k possible times, r represents the set of all cross correlation values
for (test,C;) and e represents a small area near the cross correlation peak which
is removed in order to calculate the PCE ratio, p, represents the cross correlation
values corresponding to the entries in r, but not belonging to e.

As discussed in [5], PCE is a much stable test statistic than the NCC, for
the simple reason that PCE can perform well for any image size. In this paper,
we use the PCE as the correlation test statistic and target to minimize the PCE
value. Without any loss of generality, we state that PCE value between the noise
residual of Ij.s; and SPN of camera C; is HIGH when the test image actually
belongs to C}, else it will be LOW. PCE is a better correlation metric, because,
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the threshold selection for NCC has to be changed every—time the cameras in
hand changes. For the case of PCE, a fixed decision threshold can be applied [12].
Our goal in this paper is to make the PCE value of the noise residual of modified
test image and the sensor patter noise of the source camera to be less than the
fixed threshold, while maintaining the same image quality.

3 Proposed Image Anonymization

Image anonymization against PRNU based Source Camera Identification (SCI)
majorly involve disturbing the correlation process and hence making the source
attribution fail. We propose a technique to attack PRNU based SCI by formulat-
ing a distortion function which is used in steganography as a means to disturb
the correlation process in SCI [19,20]. In this section, we provide a detailed
description of the proposed image anonymization technique.

3.1 The Counter—Forensic Attack Model

In this section, we propose an image anonymization technique to counter PRNU
based source camera identification. We use the Universal Wavelet Relative Dis-
tortion (UNITWARD) distortion technique [20] to perform image anonymization
here. The key functionality in the distortion function is to embed a random
bit-string into noisy/textured regions of the image. On doing so, the image
noise characteristics are disturbed, so that source camera identification based on
PRNU of those images (as discussed in Sect. 2.1), fails.

The proposed image anonymization technique using UNIWARD is shown in
Algorithm 1. The technique can be broadly summarized into the following steps:

— First, the Sensor Pattern Noise (SPN) of the camera C' is calculated by aver-
aging the PRNU noise residuals of N (= 100 in our experiments) images.

— Then, image [;.s is generated from the input image I;.s:, by repeatedly
embedding random bit—strings into the image, until the PCE correlation
between PRNUz— and SPNc is less than a pre-defined decision thresh-
old. When the PCE falls below the threshold, the image is considered to be
sufficiently anonymized so as to prevent its source attribution.

Different authors have adopted PCE = 50 as the decision threshold [5,12], but
to further strengthen the proposed attack, we use a much lesser threshold value
of 10. In the proposed attack, we perform the embedding continuously till PCE
reaches 0 or less.

Unlike the other steganographic algorithms which does the embedding in
clean edges of the image, UNIWARD finds the regions with textured and/or
noisy regions for embedding. A distortion function is applied in the form of a
sum of relative changes between the embedded image and original in wavelet
domain. The distortion function is constructed using the directional filter banks
that find possible directions of texture and/or noisy regions for embedding [20].
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Algorithm 1. Generation of manipulated image for counter—forensic
attack on SCI

© B N NN W N R

o
N = O

13

19
20
21
22
23

24
25
26
27
28
29
30
31

32

33

34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49

Input: An image I;.s+ taken by camera C to be anonymized, Set of 100 images taken by C
for SPN calculation.
Output: Source anonymized image Itest.

Numerator = 0; //Initialization

Denominator = 0; //Initialization

SPN¢ = 0; //Initialization

for each image I taken by camera C do
PRNU(I) = I- DF(I);
Numerator = Numerator+PRNU (I).I; /* . is the dot product operator*/
Denominator = Denominator+[2;

end

SPNg = PNumerator_. // SpN computation for Camera C

DN Denominator 5
Ttest = Itest;
PCEprey = PCE(PRNU (Ttest), SPNG);
PCEcurrent = PCEprey;
repeat
PCEprey = PCEcurrent;
Ttemp = Itest;
Payload = GeneratePayload(Np);
repeat
/*Find the best region to embed the payload by computing the distortion cost from
Eq. 6 */
X:Itenzp
Y=X — (X+1)
/* K is the kernel built from 1-D low pass wavelet decomposition filters*/
for k = 1 to 3 do
Wh(X)=KF*X
WkE(Y)=K"xY
end
/* BEach W is of size n1 X na */
(n1,n2) = size(W'(X))
/* C = 1075 is a very small number to avoid division by zero */
MinCost = oo
for i = 1 to 3 do
for j = 1 to n; do
for K = 1 to ny do

W (X) =Wk (V)
D(X,Y) = D(X,Y) + ‘JHT&)
end
end
end
if D(X,Y) < MinCost then
MinCost = D(X,Y)
J=j
K=k
end
until All the regions are covered;
Tiest = Embed(Itemp, payload, J, K);
PCEcuyrrent = PCE(PRNU(E), SPN¢);
/* Exit criteria to ensure finiteness of the algorithm */
if PCEcurrent — PCEprey < € then
return PCEcyrrent;
end
until PCEcurrent < 05
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As described in [19], smoothness of the image is found in multiple directions
using Daubechies 8-tap Wavelet Directional Filter Bank. Direction residuals are
calculated in horizontal, vertical and diagonal directions to detect smoothness.
The directional residual for an image I is given as W®*) = K®) x I, « is the
mirror padded convolution operation, k € 1,2,3 denotes various directions, K
denotes the kernels in each specific direction.

Impact of embedding is pre-computed on the wavelet coefficients when a
JPEG coefficient is changed by 1. The pixels are chosen for embedding where
the impact is minimum i.e. sum of relative changes is minimum. The impact
between a pair of images (X,Y) where X is the input cover image, Y is the
output stego image, is called as the distortion function defined as follows:

8 W0~ W)
D(X,Y)z;zk:’ W) (6)

where W denotes the wavelet coefficients of an image, ¢ denotes the decompo-
sition levels in wavelet domain, (j, k) denote the corresponding wavelet coeffi-
cients, € is a very small number used to avoid division by zero. In case of JPEG
images, the distortion is calculated by decompressing the images into spatial
domain and using the above equation. When one JPEG coefficient is changed,
it impacts 8 x 8 pixels which in turn affect (8 + (s — 1)) x (8 + (s — 1)) wavelet
coefficients (where s x s is the size of 2-D wavelet support). The payload is of
no significance for image anonymization, but serves purely to perform the dis-
tortion (through UNIWARD) and disturb the PRNU content of the image by
embedding in noisy regions.

To ensure the finiteness of the algorithm, we set an exit criteria by checking
if there is only a negligible change (we used € = 1072, in step 49, in Algorithm 1)
in the PCE value between two successive iterations.

3.2 Attack Analysis

For PRNU based source camera identification to fail, there should not be any
block in the test image, whose noise residual matches with the SPN of the corre-
sponding camera. In this section, we analyse the proposed image anonymization
technique, so as to find out whether there is any block in the final output image,
whose SPN matches with the source camera. Our claim is as follows:

Claim: There is no block in the final anonymized image, I, that matches with
the SPN of camera C.

Proof: Let P be the statement that there is a block in the final anonymized
image, I, that matches with the SPN its source camera C. We use the technique
of proof by contradiction to prove that P is true. Let us assume P is false, i.e.,
there are L blocks in I that match the SPN of camera C (denoted as SPN¢ ).
For all of these L blocks that match SPN¢, the NCC values (p in Eq.4) will
be high. This causes the PCE wvalue to be high as there will be a ppeqr (as in
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Fig. 1. Performance evaluation of PCE value variation over 113 iterations for one test
image from camera C4 (Panasonic DMC FZ50).

Eq.5) associated with these L matched blocks. But, according to Algorithm 1,
the PCE between the final image and camera C, is bound to be less than 0,
which contradicts our assumption. Hence, it is proved that there is no block in
the final images, which matches with the SPN of its source.

The UNIWARD distortion discussed, finds a noisy region in one of the blocks
B for which the cost is least, (I € 1,2,3...L) and embeds the dummy payload
there. By the definition of NCC discussed, the p value corresponding to that block
B, where the embedding happened, would be low (which means it is not a match).
In the next iteration, the same process is repeated and now [ € 1,2,3...L — 1.
Ultimately when the PCE value becomes less than 0, it signifies that there are
no more noisy regions to embed. When there are no noisy regions to embed, the
PRNU based SCI techniques fail to map the source camera.

4 Experimental Results and Discussion

In this section, the performance of the proposed anonymization technique is eval-
uated. The benchmarks for evaluation are as follows: (I) PCE of the anonymized
image, to judge the strength of the attack, and (II) PSNR and SSIM for eval-
uating image quality degradation. In our experiments, we use Dresden Image

Table 1. List of cameras used in our experiments from dresden database

Camera make | Model Resolution | Format | Alias
KODAK M1063 3664 x 2748 | JPEG | C1
NIKON D70 3008 x 2000 | JPEG | C2
OLYMPUS |MJU 3648 x 2736 | JPEG | C3

PANASONIC | DMC-FZ50 | 3648 x 2736 | JPEG | C4
PRAKTICA |DCZ5.9 2560 x 1920 | JPEG | C5
SAMSUNG |L74 3072 x 2304 | JPEG | C6
SONY H50 3456 x 2592 | JPEG | C7
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Table 2. Average PCE obtained by different counter—forensic attacks, for seven camera
models, and ten images from each.

Camera | PCE value of counter—forensic attack
Original | Seam carving [12] | APD [10] | FP Copy [22] | Proposed attack

C1 6528.16 | 0.221 0.65 1.69 —0.59

C2 1018.43 | 0.85 0.71 —0.13 —1.005

C3 333.31 |—-0.26 0.22 0.431 —0.94

C4 172.4 0.51 0.58 2.73 —0.86

Ch 285.27 | 1.16 0.803 0.527 —0.72

C6 390.55 | 1.241 0.697 0.96 —0.64

c7 1778.5 |—0.95 —0.23 —0.29 —1.32

Database [21], which is a benchmark dataset for Image Source Identification
and related forensic researches. We experiment with a set of 7 cameras of differ-
ent makes and models, the list of which is provided in Table 1. We use 100 images
from each camera, for calculating the Sensor Pattern Noise (SPN) of each cam-
era. We test the proposed image anonymization technique with 10 images taken
from each camera (total 70 images). A pre-defined decision threshold is adopted
in our experiments for source camera identification. If PCE of the anonymized
image is greater than the threshold, only then it is possible to attribute the
image to its corresponding source camera. In earlier works, a decision threshold
of 50 was used [5,12], but to further strengthen the proposed attack, we use a
much lesser threshold value of 10. Hence, if the proposed attack is strong enough
for a threshold of 10, it is definitely strong for any threshold higher than 10.

4.1 PCE Results and Analysis

The objective of the proposed image anonymization technique is to minimise the
PCE correlation between the sensor pattern noise (SPN) of the camera and the
PRNU noise residual of the test image. We construct the SPN of the reference
cameras with 100 test images. The PRNU extraction is performed for the test
image, as explained in Sect.2. The PCE correlation is found considering the
entire images (no cropping). In the proposed approach, we repeatedly embed
random bit-strings into the image until the PCE of the anonymized image is
less than 0. This can be clearly observed from Table 2, which presents the aver-
age PCE results of different counter—forensic schemes. Specifically, in Table 2,
we present the performance evaluation results of the following state—of—the—art
counter—forensic attacks: Seam Carving [12], Adaptive PRNU Denoising [10],
Fingerprint Copy [22], in terms of anonymized image PCE, for the camera mod-
els listed in Table1. Total 10 images, which were not used in calculating the
sensor pattern noise, are used for testing here.

For a counter—forensic technique to be considered as a successful attack on
PRNU based source camera identification, the PCE correlation values must
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A) Original Image B) Final Anonymized Image
PCE: 73.98 PCE: 0.26

Fig. 2. Image Qualities (a) Before anonymization, and (b) After anonymization using
the proposed technique.

be sufficiently low, so as to prevent mapping of the image to its source. In
effect, the PCE values must be lower than the decision threshold. The aver-
age PCE values of different counter—forensic attacks are shown in Table 2. The
PCE values of the anonymized images using the proposed technique, fall below
0. For the other attacks, the PCE values are not mandatorily negative. This
is achieved by pre-defining the desired PCE range (<0, in Algorithm 1) of
the counter—forensically modified image, and controlling the number of itera-
tions of the algorithm, accordingly. PCE is the primary statistic to measure
the strength of image anonymity brought about by a counter—forensic attack.
Since, for every counter—forensic attack mentioned in Table 2, the obtained PCE
value falls below the decision threshold of 10, all of them qualify as successful
counter—forensic attacks. The proposed anonymization technique constitutes a
new form of counter—forensic attack, which would help to further strengthen
existing PRNU based source camera identification models.

The proposed anonymization technique is iterative, i.e., in each iteration a
random bit—string is embedded and the PCE value between the noise residual
and the SPN of the camera is measured. If the PCE value in i*" iteration is
above the decision threshold then the iterations are repeated until the desired
threshold is reached. In Fig. 1, we show the plot between the number of iterations
and the corresponding PCE values of one test image from camera C4 (Panasonic
DMC FZ50). The decision threshold is PCE = 10, and the PCE value can be
observed to gradually decrease over the subsequent iterations. After the tenth
iteration, it reaches below the threshold. However, we can further reduce the
PCE by conducting additional iterations, as evident from Fig. 1.

4.2 Image Quality Analysis

The proposed anonymization technique as well as all the compared methods
(namely APD, FP Copy and Seam Carving) are successful in defeating the
PRNU based source camera identification schemes (as discussed in Sect.4.1).
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Table 3. Average PSNR of the anonymized images with respect to the originals

Camera | Average PSNR [db]
APD [10] | FP copy [22] | Proposed | Seam carving [12]

C1 38.76 38.56 32.45 28.75
C2 36.52 39.91 31.2 29.84
C3 37.41 37.81 33.16 31.46
C4 34.68 41.59 28.97 32.67
C5 35.28 38.64 29.53 28.79
C6 32.69 33.63 31.25 30.28
c7 32.28 39.71 30.18 29.16

Table 4. Average SSIM of the anonymized images with respect to the originals

Camera | Average SSIM [db]
APD [10] | FP Copy [22] | Proposed | Seam Carving [12]

C1 0.994 0.987 0.911 0.910
C2 0.991 0.976 0.964 0.925
C3 0.983 0.995 0.932 0.928
C4 0.982 0.979 0.922 0.915
Cbh 0.992 0.988 0.907 0.917
C6 0.999 0.991 0.929 0.911
c7 0.997 0.982 0.936 0.928

In this section, we perform an analysis on the image quality generated from
different schemes. In Fig. 2, we present a comparison of a test image captured
by Panasonic DMC-FZ50 (camera C4), with its anonymized form (using the
proposed technique), in terms of image quality. There are no visually evident
artefacts in the anonymized image, shown in Fig. 2(b), as compared to the origi-
nal image in Fig. 2(a). In this paper, we use Peak Signal to Noise Ratio (PSNR)
and Structural Similarity Index (SSIM), as the evaluation metrics to measure
the quality of the final anonymized image. The PSNR and SSIM results for
different camera models, averaged over 10 test images from each, are shown
in Tables 3 and 4 respectively. Out of all the compared methods, the Adaptive
PRNU Denoising (APD) method works best for preserving the image quality
while removing the noise residual in an image. The Fingerprint Copy (FP Copy)
method also fairs well in preserving the image quality to a great extent. The
quality of the images anonymized by the proposed technique is better than that
of Seam Carved images both in terms of PSNR and SSIM.

The reduction in PSNR/SSIM is nothing but the cost to be incurred to
achieve considerably low PCE value. If we accept a higher PCE value (for e.g.
2), then the PSNR and SSIM results would be close to APD and FP Copy. This
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can be controlled in our attack model in step 49 of Algorithm 1. The results
presented in Tables 3 and 4, prove that the proposed image anonymization tech-
nique, preserves the image quality considerably, while reducing the PCE value
which is less than all other anonymization techniques.

5 Conclusion

The current counter—forensic image anonymization methods are being studied
carefully and anti measures are in place to overcome image anonymization. In
this scenario, every possibility of new image anonymization attacks, are very cru-
cial to be known to forensic experts. In this paper, we introduce a new counter—
forensic attack on PRNU based source camera identification. We showed through
our experiments that, the UNTWARD distortion function which is famously used
in steganography, can be a very efficient attack on the PRNU based source attri-
bution techniques. The embedding of random bit—strings may also serve as a
distraction apart from serving as a counter—forensic attack.

In future, we would like to extend this work and try to improve the output
image quality. We would like to experiment the robustness of the attack under
various image manipulations such as JPEG compression, image resizing etc.
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Abstract. Ring signature is a variant of digital signature, which makes
any member in a group generate signatures representing this group with
anonymity and unforgeability. In recent years, ring signatures have been
employed as a kind of anonymity technology in the blockchain-based
cryptocurrency such as Monero. Recently Malavolta et al. introduced
a novel ring signature protocol that has anonymity and unforgeability
in the standard model [33]. Their construction paradigm is based on
non-interactive zero-knowledge (NIZK) arguments of knowledge and re-
randomizable keys.

In this work, for the purpose of lower bandwidth cost in blockchain,
we improve their ring signature by proposing a compact NIZK argument
of knowledge. We show our NIZK holds under a new complexity assump-
tion Compact Linear Knowledge of Exponent Assumption. Without the
expense of security, our proposed ring signature scheme is anonymous
and unforgeable in the standard model. It saves almost half of storage
space of signature, and reduces almost half of pairing computations in
verification process. When the ring size is large, the effect of our improve-
ments is obvious.

Keywords: Blockchain + Ring signature - NIZK
Argument of knowledge

1 Introduction

In 2008, Satoshi Nakamoto first proposed the blockchain to build cryptocur-
rency bitcoin as a public transaction ledger [34]. With the decentralization of
blockchain, cryptocurrency bitcoin first solves double-spending problem with-
out a central server. The blockchain and bitcoin have also provided inspirations
for various applications offering value or trust [41]. In recent years, ring signa-
ture was deployed to build transaction protocols for blockchain-based cryptocur-
rencies. Monero is one of the popular cryptocurrencies that mainly focuses on
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anonymity, and its underlying CryptoNote protocol deploys ring signature as
core cryptographic tools to provide anonymity [36].

The notion of ring signature was first proposed to leak secrets, by Rivest,
Shamir and Tauman [35] with many extensions after that such as using different
mathematical assumptions [16], based on different cryptosystems [2,4,5], with
linkability and/or revocability [1,3,20,22,23,25,27,40], with blinding feature [8],
in a threshold setting [24,39,42,44,45], security enhancement [10,18,26,28, 30—
32] and efficiency improvement [21,29,43]. This cryptographic tool has ability
to leak the endorsement of any messages signed by one member in a group, but
does not reveal his identification. Compared with the group in group signatures
[9], a ring is not managed by a group manager. Actually, ring members can be
included in the ring completely unawarely. Since rings are ad-hoc, which means
that the signing process cannot be controlled by any centralized authority after
original setup.

In the past years, the security of most ring signature constructions holds in
ROM (Random Oracle Model) [11] or CRS (Common Reference String) model
[19]. In ASTACRYPT 2017, Malavolta et al. presented a generic ring signature
construction that has anonymity and unforgeability in the standard model [33].
In their scheme, a ring signature protocol can be divided into two components:
the re-randomizable key and the NIZK (Non-Interactive Zero-Knowledge) sys-
tem. A novel feature of this scheme is that one can modify its NIZK system
independently to obtain variants of the original scheme.

Bandwidth usage is one of the main targets for blockchain benchmarks,
which influences transaction processing performance of blockchain significantly.
To reduce bandwidth in blockchain, Groth et al. proposed a logarithmic-size ring
signature for blockchain cryptocurrency [15]. Sun et al. proposed an accumulator-
based transaction protocol for Monero to reduce transaction size [38]. These two
works are both in the ROM. In this work, to improve the efficiency, we design
a new assumption CL-KEA (Compact Linear Knowledge of Exponent Assump-
tion), then a compact NIZK argument of knowledge under this assumption is
proposed. With the remarkable properties of our compact NIZK, we build a
compact ring signature scheme in standard model. Compared with Malavolta et
al.’s scheme [33], the signature size of our scheme is smaller, and the verification
computation is more efficient.

2 Preliminaries

In this work, we use A to denote a security parameter, use negl(\) to denote
a negligible function in a security parameter A, and use [n] to denote a set
{1,...,n} for a positive integer n € N. We define y « S for sampling y from a
set S randomly.
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2.1 Bilinear Maps

Let g1 and g2 be generators of two cyclic groups (G1, G2) of large prime order p,
respectively. There exits a homomorphism function ¢ : Go — G; and a bilinear
map function e : G; X Go — G7 which holds:

— Non-degeneracy. e(g1,g2) # 1.

— Computability. All group operations in (G1, Gz, Gr), the homomorphism ¢
and the map e are efficiently computable.

~ Bilinearity. For all (a,b) € Z2 and (C, D) € G x G, e(C*, DY) = ¢(C, D)*?.

— Homomorphism. For all (D, E) € G3, ¢(D - E) = ¢(D) - ¢(E).

2.2 NIZK Arguments of Knowledge

Definition 1 (NIZK Arguments of Knowledge [14]). Let R be a relation
corresponding to a NP language L. NIZK arguments of knowledge have following
PPT algorithms:

(a,0) « G(1*): On input the security parameter X, this algorithm outputs a
trapdoor o and a common reference string 6.

m— P(0,w,s): On input a 0, a witness w and a statement s, where (w,s) € R,
this algorithm outputs a argument 7.

1/0 « V(0,m,s): On input a 0, a proof m and a statement s, this algorithm
outputs a bit b, which is 1 or 0.

m «— S(0,a,8): On input a 0, a trapdoor o and a statement s, this algorithm
outputs an argument .

(s,m,w) «— E(a,0): On input a trapdoor « and a 0, this algorithm outputs a
statement s, a argument ™ and a witness w.

Definition 2 (Perfect Completeness). For all A € N, (a,0) «— G(1*) and
(w,s) € R such that

Pr[(a, 0) — g(l/\),ﬂ — PO,w,s):1 V(0,7 s)] =1.

Definition 3 (Perfect Zero-Knowledge). For all A € N, (a,0) «— G(1*) and
(w,s) € R, there exists a simulator S such that

Pr[P(0,w,s) =S(0,a,s)] = 1.

Definition 4 (Computational Knowledge Soundness). For all A € N,
(a,0) «— G(1*), (w,s) € R and any PPT adversary A, there is an estractor
& that has full access to the adversary it holds that

(m,8) — A(0), (s, m,w) — Ela,0)

Pr t(w,s) €R

‘1 - V(G,w,s)] > 1 — negl(\).
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2.3 Ring Signature

Definition 5 (Ring Signature [6]). A ring signature protocol includes a triple
of PPT algorithms RSig=(Gen, Sig, Ver) as follows:

(vk, sk) < Gen(1*): On input the security parameter X, this algorithm outputs
a verification key vk and a signing key sk. Define the ring R = {vk;}icin)-

o «— Sig(R, sk,m): On input a ring R, a signing key sk and a message m, this
algorithm outputs a signature o.

1/0 « Ver(R,m,0): On input a ring R, a message m and a signature o, this
algorithm outputs a bit 1 which means the ring signature passes the verifica-
tion. Otherwise, output a bit 0.

A ring signature must satisfies Anonymity and Unforgeability as defined
in [6].
2.4 Programmable Hash Function

Definition 6 (Programmable Hash Function [17]). There are two algo-
rithms H= (HGen,HEval) in the programmable hash function as follows:

k « HGen(1*): On input the security parameter \, this algorithm generates a
public key k.

¢ < HEval(k,m): On input a public key k and a message m € {0,1}*, this
algorithm outputs a hash value c.

3 Overview of Malavolta et al.’s Scheme

In this section, we show an overview of Malavolta et al.’s scheme [33].

3.1 NIZK

Firstly, we recall the language L corresponding to disjunction of discrete loga-
rithm defined in [33] as follows:

L = {{Ai}ticn € GY : 3(a,i) : g7 = As}.

Then we recall the NIZK system of [33] as Fig. 1.

As we can see, this NIZK argument doesn’t need random oracles and the
security is mainly based on L-KEA (Linear Knowledge of Exponent Assumption).
We note that although there exists a common reference string in their NIZK, it
doesn’t mean their ring signatures need the CRS, we talk about it later.
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G(1") PO, w,s) V(o, 7, s)
o < Zyp parse 0 =T € G parse 0 =T € Go
0 < g5 w = (a, j) T ={Ti}icpm) € G3
output (a, 0) s ={Ai}icm) € GT {Qi}icn) € GT
Vi€ [n]\j: § = {Ai}ig[n] e GY?
ti < Zyp output 1 iff
T; < géi H T, =TA
Qi + (At i€[n]
Ty T ( H gty Vi € [n] :
€lnl\j e(Qi, g2) = e(Ai, To)
Qj + (17)
output ™ = {(Ti, Qi) }icn)

Fig. 1. NIZK for disjunctive statements in Malavolta et al.’s scheme [33]

3.2 Ring Signature

Then we show the generic ring signature constructions introduced by Malavolta
et al. as Fig.2. Their novel work is based on re-randomizable keys [12] and
the above NIZK arguments of knowledge. To make their ring signature scheme
independent with the CRS, they divide the CRS of NIZK into a part of each
verification key, achieving that the CRS of NIZK is not the CRS of ring signa-
ture. A potential feature of their ring signature is that the NIZK argument of
knowledge is a independent component, thus it can be modified with other valid
NIZK systems, such as [13,14].

An obvious deficiency of their ring signature scheme is the signature size. In
their scheme, a signature includes two proofs of NIZK arguments of knowledge
and each proof consists of 2n group points for a n-sized ring. Consequently, their
signature consists of (4n + 3) group points and an integer.

4 Our NIZK Arguments of Knowledge

We propose a new NIZK argument of knowledge to improve efficiencies of [33].
Our main idea is to compress the size of NIZK argument without changing
degrees of the polynomials in the security proof of assumption, thus the security
of new NIZK arguments of knowledge holds as before. We note that our NIZK is
secure based on CL-KEA, which is a variant of L-KEA.

4.1 Complexity Assumptions

Assumption 1 (Compact Linear Knowledge of Exponent (CL-KEA)).
For all A € N, n € poly()\) and PPT adversaries A there is a PPT algorithm &4
with full access to A it holds that
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output (z, (g3, C, k))

Gen(1%) Sig(R, sk, m) Ver(R, m, o)

(o, ) ZZ parse R = {vki}icn) parse R = {vki}icn
C + g5 if B3 : vk = vk; vk; = (2, Ci, ks)
k < HGen(1*) output L o= (0,7 2")

parse vk = (z,C, k)
Uki = (Zi7 C»L', kz)

o' = (s,y,¢)
x = R||2'l|c||(m, R)

s,p,0) «— 72

(50,00 < 2y b<—V<HCi,x,7r>
2z 4z gh ;

a’  sk+p b =1if

¢ < HEval(k, m||R)°
z:= R||2'||c||(m, R)

e(y, vk - g3) = e(c, g2)
output (b=10" =1)

7[-(773 <H017(p55vl)7m

1
Y < ca'+s

o= (sy,c)
output (o, 7,2")

Fig. 2. Ring signature scheme in Malavolta et al.’s scheme [33]

Zie[n] Dlogg2 (T3) - D|°gg1 (Ai)
(Q {TZ,A }zé[n]) — A(pve 91792792) — D|Ogg1 (Q)
(a, PAT;, A; }ze[n]) — &alp e, 91,92,95) /\Hze m i = 93
AYi € [n ] g% # A;

Pr

< negl(\).

W.lo.g., we use O to represent the set of five oracles with the generic group model
from [7] and we randomly pick encoding functions (1,72, vyr) corresponding to
groups (G1, Gz, Gr) in the following.

Theorem 1. For all A € N, n € poly(A\) and PPT adversaries A with oracle
access to O there is a PPT extractor €4 with full access to A such that

Zze[n] 14
pp | (1(@): 12t m(ai) Yiepn) — Al (1), 72(1), 72(2)), /\Zie[n] ti
(a,71(q), {r2(t:), m az)}ze[n]) —&alp,m(1),72(1),72(2)) | =2
AYi € [n] :
a# a;

< negl(\).
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Proof. We construct an extractor £ as follows.

1. & initializes 3 lists (Wi, Wa, Wr).

2. & randomly picks s1 < {0,1}*, s « {0,1}* and s, < {0,1}*, then it adds
(1,51) to Wy, adds (1, s2) to Ws and adds (z,s,) to Wy. We note that the
entries of the lists can be denoted by (F, s), where F' is a generic polynomial
and s is a randomly picked string.

3. & simulates the queries of A to the oracle set O:

— On input 2 strings (s;, s;), € first retrieves F; and Fj; from lists Wy, W,
or Wr. Next it calculates Fy, = F; £ F; and outputs sy, if (Fj, sx) € W.
— On input 2 strings (s;,s;), € first retrieves F; and Fj from lists W, or
Ws. Next it calculates Fj, = F; - F; and outputs sy, if (F, sk) € Wr.
— On input a string s, £ first retrieves Fj, from list Ws. Next it outputs s;
if (Fk, Si) € W.
Whenever (Fy, s.) ¢ Ws, € randomly picks s}, < {0,1}*, adds (Fj, s},) to the
corresponding list J, and outputs s,.

4. At some time, £ receives a tuple (g, {ai,t; }ic[n)) from A.

5. For all i € [n], & retrieves F,, from list Wy, which corresponds to a;.

6. If some F,, is a constant (deg,(Fy,) = 0), £ returns F,,. Otherwise it aborts.

Whenever £ doesn’t abort, we denote the element that £ outputs by o, thus
~1(0) = a;. Then we prove this happens with negligible probability.
Our prove includes three lemmas, first we recall the lemma in [37]:

Lemma 1. Let F({x;}icm)) be a polynomial and deg(F) < d, p be the largest
prime dividing a integer n' and we randomly generate {x;}icim) < Zy it holds
that:

Pr[F({z;}icpm)) =0 mod n'] < ]%l

Lemma 1 provides any polynomials F' = 0 with deterministic maximum prob-
ability. As our extractor described above, we note that deg,(F;) < 1 and
deg,(F;) < 1, then deg,(Fy) < 2, where (Fj,s;) € Wi, (Fj,s;) € W, and
(Fk, Sk) € Wr.

Lemma 2. For all (F,,,Sq;) € W1 and (Fy,, st;) € Wa it holds that:
Pr[degL(th) =1A deg.L(Faz) = 1} < negl()‘)

Proof. Let F, be a polynomial such that (Fy,s,) € W, thus deg,(F,) < 1.
If we assume Fy = } ;1 [t - Fa,, it is obvious that for all i € [n] either
Fy, or F,, must be a constant. For some random z « Z,, it is required that

F’I(z) = Zze[n] Fta‘, (‘T) ' Fa'i, (‘I)
By Lemma 1 we know that:

Pr[Fy(z) = ) Fy () - Fo, () = 0] <

i€[n]

"=
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where % is negligible. It follows that

Pi{F, — Y0 Fy B 0] <

i€[n]

S

Then we conclude that
Pr[deg, (F;,) =0V deg,(F,,) = 0] > €(})

where € is a non-negligible function. O
Here we note that deg, (F},) = deg, (F,,) = 0 doesn’t contradict our theorem.

Lemma 3. For all (Fy,,s,) € Wa:
Pr[Vi € [n] : deg, (F},) = 0] < negl(\).
Proof. We assume that for all i € [n]:
Pr{¥i € [n] : deg, (Fy,) = 0] > e(\).

As we argued that ;) Fi,(z) = w, it is required that
Pr[) " Fy(z) —x=0] > €())
i€[n]

where 3, (,,) Fi, () is some random constant. Obviously this contradicts Lemma
1. Thus we conclude that there exits at least one 4 such that deg, (Fy,) = 0.

O
By Lemmas 2 and 3 we show that there exits an :
Pr(deg, (F;,) = 1 Adeg,(Fy,) = 0] < negl()\)
which follows that the extractor £ returns o with negligible probability. a

4.2 Our Construction

Then we propose a new NIZK argument of knowledge. Our scheme is described
in Fig.3. The biggest improvement we make is to sum all (); to obtain one
element @ in the process of proving, and then we replace @Q; with @ to reduce
the size of argument. At the same time, the smaller argument size yields less
pairing computations in the verification process. Thus our construction saves
almost half of storage space of signature and reduces almost half of pairing
computations. When n is large, the effect of this improvement is obvious.

Theorem 2. The scheme in Fig. 3 has perfect zero-knowledge.

Proof. We construct a simulator S(6, a, s) to prove perfect zero-knowledge as
follows:
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G(1%) P8, w, s) V(b,m,s)
o Zyp parse 0 =T € Go parse 0 =T € Go
0+ g5 w = (a,j) 7= {Ti}icn) € G
output (6, @) s ={Ai}tiem) € GY QeG
Vi € [n]\j : s = {Ai}ie[n] € Gt
ti < Zp output 1 iff
T, + g4 [[7=7n
Qi+ (At i€ln]
71 (] o) H e(Ai, Th) = e(Q, 92)
e[nl\i weln]
Qj + #(T7)
=] @
i€ln]
output ™ = (Q, {Ti}ie[n])

Fig. 3. NIZK for disjunctive statements.

1. & parses the common reference string 6 as T' € G5 and parses a statement s
as {Ai}ie[n] e GT.
2. S randomly picks a j — [n] and {t;}icpp; — Zp~', it computes {T; =
(92)% Yiepy and {Qi = (Ai)" Ficpupj-
3. § computes
T

Tj=—=——"=
Hie[n]\j 92

J

_ A% Ziemng b
Qj - Aj

Q:HQi-

i1€[n]
4. S outputs (Q,{Ti}ic[n))-

As this simulation is efficient, we note that {Ti}ie[n] is picked identically to P

and Q =[], eln] A?log‘“ (Ti). It shows that the scheme has perfect zero-knowledge.

O
Theorem 3. The scheme in Fig. 3 has computational knowledge soundness.

Proof. We construct an extractor £ to prove computational knowledge soundness
as follows:

E(a,0). This extractor runs the adversaries A on the 6 and receives (s =
{Aitiem), ™ = (Q,{Ti}). As we defined above, £ has full access to A to obtain
(s,m,w). For all i € [n], it outputs (a,i) when A; = gf.
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We note that if [[,¢(,, 7 = T = g5 and Dlog,, (Q) = >, Dlog,,(T}) -
Dlog,, (4;), the extraction is successful. As CL-KEA we described above, it hap-
pens with e(A). O

5 Compact Ring Signature

In this section, we present a compact ring signature scheme based on our pro-
posed NIZK arguments of knowledge. Before introducing our ring signature
scheme, we first recall the corresponding language described in [33].

({ki}ie[n]a ¢, {Zi}ie[n]a Z/’m) G/Gi\‘n—i_l X G;H_l X {07 1}* :
A(p, 6,14) : z— = g% A ¢ = HEval(k;, m)°

7

This language can be separated into two sub-languages as follows:

({zi}iem),#') € G -

!

£ = | (kidiep,com) € G4t x {0,137
2T 3(6,4) : ¢ = HEval(k;,m)° [~

We note that £ essentially includes two NIZK arguments of knowledge for dis-
junctive discrete logarithms (j—/, p) and (c,d) as above. It is easy to see the first
language £; works well with their NIZK arguments of knowledge. However we
have no idea for the second one, in their scheme the set {HEval(k;, m)°}icpn; is
not public to all and not generated. To make it compatible we make some small

changes such that:

Ll . ({ki}ie[n]acv m)le Gi\n X GZ X {Oa 1}* :
2 3(5.1) : HEval(k;, m) =cb

First we change the witness from (4, 1) to (%, 1), thus the corresponding disjunc-
tive discrete logarithm becomes (HEval(k;, m), %) Then we change the range of
hash function from G; to Go. From these two changes, it is easy to show that
both £4 and £ can work well with their NIZK arguments of knowledge, same
to ours. More details about this feature are shown in Figs.4 and 5.

Formally, we combine £ and £} as follows:

({kz}ze[n]a {Zi}ie[n]yf,, C, m)/ c G{\n X Gg+2 X {O, 1}* .
3(p, g,i) : z— = ¢ AHEval(k;, m) = ¢*

(2

/
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5.1 Scheme Description

Based on primitives, our ring signature RSig = (Gen,Sig,Ver) includes three algo-
rithms as follows:

Gen(1*): on input a security parameter A, this algorithm randomly picks x « Ly,
B < Z, and generates k by calling HGen(1*). It calculates z = g and C' = gg,
outputs (sk,vk), where vk = (z,k,C) is a verification key and sk = z is a
signing key.

Sig(R, skj,m): on input R = {vk; }ic[n], a signing key sk; and a message m, this
algorithm randomly picks (s, p,d) «— ZE’” generates a re-randomizable signing
key sk§ = sk; + p and corresponding re-randomizable verification key zg =
zj - g7, computes ¢; = ¢(HEval(k;, m||R)) € G, ¢ = HEval(kj,m||R)° € G
and y = ¢+ . This algorithm proves two statements as follows:

— Prove a statement (R, z’) by calling P (Hie[n] Ci, (R, 7), (p,j)) as Fig.4
and outputs 7.
- Call P (HiE["} Ci, (R, ¢, 0), (%,j)) to prove a statement (R, ¢;) as Fig.4
and outputs ms.
As a result, this algorithm outputs o = (1,72, ¢, y, s, 2’).

Verify(R,m,0): on input a ring R = {vk;}ic[,), @ message m and a signature
o, compute ¢; = ¢(HEval(k;, m||R)) € G;. First this algorithm verifies two
statements as follows:

— Verify a statement (R,z’) by calling V (H
and outputs b;.

Cy, (R, Z/),ﬂ'l) as Fig.5

i1€[n]

P (i Coo (B, (60,)) P (T O (B3, (5.9))

T:HCiEGQ TIHC‘;GGQ
i€[n] i€[n]
Vi € [n]\j : Vi € [n]\j :
ti +— Zp t; Zp
T; « ggi T; < b
Qi (2)" Qi + ()"
=i T (] ™
T[] ™7 3 :
e\ iIG[n]\j
Qj «— d)(ij) Qj — ¢(Tjé)

1€[n]

output 71 = (Q, {Ti}iem)) output 2 = (@ {Ti}ietn)

Fig. 4. Proving of NIZK arguments of knowledge.
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% (Hie[n] Ci7 (R7 Z’)7 71'1) % (Hle[n] CZ', (R, Ci, C)’7T2>
output 1 iff output 1 iff
HTi:HCiA HTZ:HCZ/\
i€n] ’ i€ln] i€[n] i€[n]
II e=. 1) =e(@.02) [T etci. ) = e(@0)
i€[n] i€[n)
where where
!
II =1 I e
ic[n) Zi i€[n]
ba| ! = ; ti . . .
= II o,y =™ =TT etco) -e(es, 1)
i€[n] i€[n]\j ,
skt sk! —sk; = o)ie(d. TP
= T etor,g0) ¥ =5 ce(qi =, 1) .ﬂ\,e(“"’) (e 17
1 ni\jg
i€[n]\j .
- H 6(91792)(Sk okt 'e(gl,TjSk 7Skj) N 61[1\ e(ci', ) - e(Qj 0)
K2 ni\J
i€[n]\j
= e i c)-e .7 s
= I e@ig2)- @5 0) [H\ (Qir0) - e(@s,¢)
1 ni\J7
i€[n]\j
=e(Q,c
= H e(Qi, g2) (@ 0)
i€[n]
= e(Q792)

Fig. 5. Verification of NIZK arguments of knowledge.

— Verify a statement (R, ¢;) by calling V (Hie[n] Ci, (R, ci,c),m) as Fig. 5
and outputs bs.
Then if e(2’ - ¢5,y) = e(g1,¢) Aby = 1 Aby = 1 it returns 1. Otherwise it
returns 0.

5.2 Scheme Analysis

The Anonymity and Unforgeability of this kind of ring signature have been
proven in [33], we don’t show details again. We compare Malavolta et al.’s scheme
and ours in Table 1.

As shown in the table, both L-KEA and CL-KEA are secure in the generic
group model, thus the improvements are not at the expense of security. On the
other hand, we do not change the sizes of signing key and verification key. Our
main contribution is that we reduce almost half of the signature size and half of
pairing computations in verification, when n is large.
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Table 1. Comparisons between Malavolta et al.’s scheme[33] and ours

Ring signature [33] Ours

Model Standard Standard
Anonymity v v

Unforgeability v v

Assumption ¢-SDH + L-KEA ¢-SDH + CL-KEA
Ring size poly(A) poly(A)

Signing key size Ly Ly

Verification key size A+2)G A+ 2)G

Signature size 4-n+3)G+2Zy (2-n+5)G+7Z,
Signing computations (4-n+3)E+nH (4-n+3)E+nH
Verification computations | (4-n+2)P+E+nH|(2-n+4)P+E+nH

Here we denote an exponentiation computation by E, a bilinear pairing
computation by P and a hash function computation by H.

6 Conclusion

In this work, first we propose a new NIZK argument of knowledge. With its
good properties, a compact ring signature scheme is constructed in the stan-
dard model. Compared with the Malavolta et al.’s scheme [33], our construction
reduces the signature size and pairing computations in verification process. We
believe this improvement will reduce bandwidth cost in blockchain in the future.
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Abstract. To provide a search functionality for encrypted data, pub-
lic key encryption with keyword search (PEKS) has been widely recog-
nized. In actual usage, a PEKS scheme should be employed with a PKE
scheme since PEKS itself does not support the decryption of data. Since
a naive composition of a PEKS ciphertext and a PKE ciphertext does
not provide CCA security, several attempts have been made to integrate
PEKS and PKE in a joint CCA manner (PEKS/PKE for short). In this
paper, we further extend these works by integrating secure-channel free
PEKS (SCF-PEKS) and PKE, which we call SCF-PEKS/PKE, where
no secure channel is required to send trapdoors. We give a formal secu-
rity definition of SCF-PEKS/PKE in a joint CCA manner, and pro-
pose a generic construction of SCF-PEKS/PKE based on anonymous
identity-based encryption, tag-based encryption, and one-time signature.
We also strengthen the current consistency definition according to the
secure-channel free property, and show that our construction is strongly
consistent if the underlying IBE provides unrestricted strong collision-
freeness which is defined in this paper. Finally, we show that such an
IBE scheme can be constructed by employing the Abdalla et al. trans-
formations (TCC 2010/JoC 2018).

Keywords: PEKS - Integration of PEKS and PKE
Secure-channel free - Joint CCA security

1 Introduction

Integration of Searchable Encryption and Public Key Encryption:
Public key encryption with keyword search (PEKS) [6] has been widely recog-
nized as a cryptographic primitive providing a search functionality for encrypted
data. Briefly, a trapdoor ¢, is generated with respect to a keyword w, and one
can search a ciphertext of w by using t,,. As defined by Abdalla et al. [1], PEKS
should provide (wrong keyword) consistency and keyword privacy. Briefly, the
former guarantees that for two distinct keywords w and ', a ciphertext of w
© Springer Nature Switzerland AG 2018
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is not searched by t,/. The latter guarantees that no information of keyword is
revealed from the ciphertext. Abdalla et al. [1] gave a generic construction of
PEKS from anonymous identity-based encryption (IBE), e.g., [7,11,23].

In actual usage, PEKS should be employed with a PKE scheme since PEKS
itself does not support the decryption of data. For example, assume that an
e-mail is required to be encrypted. Then, a sender encrypts the mail header or
title using a PEKS scheme, and encrypts the mail body using a PKE scheme
whose public key is managed by the receiver. Then, a mail gateway can forward
the encrypted e-mail by using PEKS, and the receiver can decrypt the cipher-
text using their own secret key of the PKE scheme. From now on, we denote
the integrated PEKS and PKE as PEKS/PKE as in [30]. As a naive composi-
tion, for a PEKS ciphertext Cpgks and a PKE ciphertext Cpkg, a ciphertext of
PEKS/PKE is described as its concatenation Cpgks||Crke.

Although indistinguishability against chosen ciphertext attack (IND-CCA)
is widely recognized as a standard security definition of PKE, obviously, the
naive composition does not provide CCA security even if the underlying PKE
scheme is CCA secure. For example, the challenge ciphertext Cigys||Cpye can be
modified such as Cpexs||Chge where Cpeks # Cppgs, and one can send it to the
decryption oracle. This was pointed out by Baek et al. [4] who gave a definition of
joint CCA security for PEKS/PKE. Later, Zhang and Imai [30] pointed out that
Baek et al.’s definition does not consider keyword privacy. They gave a formal
definition of PEKS/PKE that captures both data privacy and keyword privacy,
and proposed a generic construction of PEKS/PKE. Abdalla et al. [2,3] fur-
ther pointed out that there is a room for improvement in the Zhang-Imai model
since an adversary is not allowed to access the test oracle in the model. Chen et
al. [12] further considered the trapdoor oracle, and proposed a generic construc-
tion of PEKS/PKE from (hierarchical) IBE schemes. As concrete constructions,
Buccafurri et al. [9] and 