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Abstract. Record linkage (de-duplication or entity resolution) is the
process of merging noisy databases to remove duplicate entities. While
record linkage removes duplicate entities from such databases, the down-
stream task is any inferential, predictive, or post-linkage task on the
linked data. One goal of the downstream task is obtaining a larger ref-
erence data set, allowing one to perform more accurate statistical anal-
yses. In addition, there is inherent record linkage uncertainty passed to
the downstream task. Motivated by the above, we propose a generalized
Bayesian record linkage method and consider multiple regression analy-
sis as the downstream task. Records are linked via a random partition
model, which allows for a wide class to be considered. In addition, we
jointly model the record linkage and downstream task, which allows one
to account for the record linkage uncertainty exactly. Moreover, one is
able to generate a feedback propagation mechanism of the information
from the proposed Bayesian record linkage model into the downstream
task. This feedback effect is essential to eliminate potential biases that
can jeopardize resulting downstream task. We apply our methodology to
multiple linear regression, and illustrate empirically that the “feedback
effect” is able to improve the performance of record linkage.

1 Introduction

Record linkage (de-duplication or entity resolution) is the process of merging
noisy databases to remove duplicate entities. While record linkage removes dupli-
cate entities from such databases, the downstream task is any inferential, pre-
dictive or post-linkage task on the linked data. In this paper, we propose a
joint model for the record linkage and the downstream task of linear regression.
Our proposed model can link records over an arbitrary number of databases
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(lists or files). We assume there is duplication within each database, known as
“duplicate detection.” Our record linkage model can be expressed as a random
partition model, which leads to a large family of distributions. Next, we jointly
model the record linkage task and the downstream task (linear regression), which
allows for the exact propagation of the record linkage uncertainty into the down-
stream task. Crucially, this generates a feedback propagation mechanism from
the proposed Bayesian record linkage model into the downstream task of linear
regression. This feedback effect is essential to eliminate potential biases that can
jeopardize resulting inference in the downstream task. We apply our methodol-
ogy to multiple linear regression, and illustrate empirically that the “feedback
effect” is able to improve performance of record linkage.

1.1 Prior Work

Our work builds off [14,16–18], which all proposed Bayesian record linkage mod-
els well suited for categorical data. [18] modeled the fully observed records
through the “hit-and-miss” measurement error model [2]. One natural way to
handle record linkage uncertainty is via a joint model of the record linkage and
downstream task. [10] introduced a record linkage model for continuous data
based on a multivariate normal model with measurement error. Turning to just
record linkage tasks, [16,17] were the first to perform simultaneous record linkage
and de-duplication on multiple files by using the fully observed records, creating
a scalable record linkage algorithm. In similar work, de-duplication in a single
database framework was tackled from a Bayesian perspective in [14] by using
the information provided by the comparison data.

Related work regarding the record linkage and downstream task has been con-
sidered under specific assumptions. [9] assumed that the two databases represent
a permutation of the same database of units and proposed an estimator (LL)
of the regression coefficients which is unbiased, conditionally on the matching
probabilities provided by the record linkage task. [7] extended this approach to
handle more complex and realistic linkage scenarios and logistic regression prob-
lems. Generalizations of the LL estimator have been also provided by [8] using
estimating equations. In addition, [4] proposed to consider the probabilities of
being a match—provided by the record linkage algorithm—as an ingredient to
be used within a multiple imputation scenario. Finally, [5] proposed a Bayesian
method that jointly models the record linkage and the association between the
overlapping features in two different databases. The authors consider somewhat
simpler situation where the number of records to match in the two databases
is relatively small and relies upon a specific blocking criteria. In addition, one
potential limitation of the approach is the assumption of specific matching pat-
tern. For each single block of comparisons, all cases in the smaller database will
certainly appear in the other databases. We refer to [6] for details.

Section 2 introduces our Bayesian record linkage model, providing extensions
to priors on random partitions. Section 3 generalizes our record linkage method-
ology to the downstream task of linear regression. Section 4 provides experiments
for the record linkage task on synthetic data. We then provide three experiments
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on the joint record linkage and downstream task of linear regression on synthetic
data. Section 5 provides a discussion and extensions to future work.

2 Bayesian Record Linkage and Priors on Partitions

In this section, we introduce notation used through the paper, our Bayesian
record linkage model, and an alternative and more intuitive construction for the
prior on co-referent records, known as the linkage structure λ.

2.1 Notation

Assume L databases (lists, data sets, or files) F1, F2 . . . , FL that consist of either
qualitative and/or categorical records, which are noisy due to the data collec-
tion process. Each record corresponds to an underlying latent entity (statistical
unit) of partially overlapping samples (or populations). In addition, assume all
databases have p overlapping features (fields). Assume L sets of records are
collected from a given population of size Npop where 1 ≤ Npop ≤ ∞ in the
same framework as [15,17]. As such, assign a label j′ (j′ = 1, . . . , Npop) to each
member of the population. Next, let ṽj′ = (ṽj′1, . . . , ṽj′p) be the vector of the p
categorical overlapping features for the population individual j′. Finally, denote
the entire set of population records by ṽ = (ṽ1, . . . , ṽNpop

).

2.2 Bayesian Record Linkage Model

Assume the set of population records ṽ is generated independently, for
j′ = 1, . . . , Npop, from a vector of independent categorical variables Ṽ =
(Ṽ1, . . . , Ṽ�, . . . , Ṽp) such that Ṽl ∈ {v� 1, . . . , v� M�

} and

P
(
Ṽ� = v� s

)
= θ� v� s

s = 1, . . . , M�, (1)

where M� is the number of categorical values for the �th feature. At the sample
level, assume that one does not observe the “true” population values due to
measurement errors. Thus, the observed records, which is a database of size
Ni, i = 1, . . . , L, consists of distorted versions of subsets of the vectors ṽj′ . Let
vij = (vij1, . . . , vijp) denote the observed values for the j-th record of the i-th
database, where i = 1, . . . , L and j = 1, . . . , Ni. Denote the observed records
(across the L databases) by v = (v11, . . . , v1N1 , . . . , vL1, . . . vLNL

). Next, let the
set of latent indicator variables λij ∈ {1, . . . , Npop} denote the unknown co-
reference (matching) pattern between the observed records v and the population
records ṽ, where λij = j′ indicates that the population record j′ generated
the observed record vij .1 In general, let λ = (λ11, . . . , λ1N1 , . . . , λL1, . . . , λLNL

)
denote the linkage structure.
1 The relation λij1 = λij2 , with j1 �= j2, implies that records j1 and j2 of the i-th

database represents are co-referent to the same population record. This is an instance
of duplicate-detection within the same database. When λi1j1 = λi2j2 , with i1 �= i2,
one has the usual record linkage framework with the same individual appearing in
two different databases.



300 R. C. Steorts et al.

Next, we formalize the distortion mechanism when the population records
are observed in the L databases using the hit-and-miss model [2]. Let Vij� be
the random variable that generates observed record vijl. Assume that Vijl ∈
{vl 1, . . . , vl M�

}, that is, Vij� has the same support of Ṽ�. Let δa,b = 1 if a = b
and δa,b = 0 if a �= b, which implies that

P (Vij� = v� s | λij , ṽ, α�) = (1 − α�)δṽλij�,v� s
+ α�θ� v� s

s = 1, . . . , M� (2)

for i = 1, . . . , L; j = 1, . . . , Ni; � = 1, . . . , p, where α� ∈ [0, 1] represents the
distortion probability for the �-th overlapping feature. Here, the true population
value is observed with probability 1−α�, and a different value is drawn from the
random variable Ṽ� generating the population values with probability α�. Finally,
assuming the conditional independence among all the overlapping features given
their respective unobserved population counterparts, one obtains

p(v | ṽ, λ, α) =
L∏

i=1

Ni∏

j=1

p∏

�=1

P (vijl | ṽ, λ, α) =
L∏

i=1

Ni∏

j=1

p∏

�=1

[(1 − α�)δṽλij�,vij�
+ α�θ� vij�

]. (3)

We assume that the distortion probabilities are exchangeable, that is

α�
iid∼ Beta(f, g), � = 1, . . . , p,

and we assume the probabilities θ� 1 . . . θ� M�
are considered known and equal to

the corresponding population frequencies. The model summarized by Eqs. (1)
and (3) can be viewed as a latent variable model where the unobserved pop-
ulation records ṽ generate the observed records v and α = (α1 . . . , αp) can be
viewed as the unknown model distortion parameter.

Remark: A convenient property of the hit-miss model is that one can integrate
out the unknown population values ṽ to directly obtain the distribution p(v|α, λ).
The resulting marginal distribution p(v|α, λ) is the product of within-cluster
distributions. To improve mixing, we use a Metropolis within Gibbs algorithm
to simulate from the joint posterior p(λ, α|v) (See AppendixA).

2.3 The Prior Distribution for λ

In this section, we propose a more intuitive and subjective construction of a prior
distribution on λ. Let z denote the random partition of the observed records deter-
mined by λ and let P denote the set containing all the possible partitions of the
N observed records. The distribution on the sample labels λ induces a distribu-
tion on P. Furthermore, matches and duplicates are completely specified given
the knowledge of the random partition z, which is invariant with respect to the
labelings of the partition blocks. Given this construction, one can directly focus
on the partition distribution of the observed records without linking the labels
distribution to a sample design and to a population size Npop, see for example,
[14]. One can effectively consider the distribution of λ as a prior distribution for
the latent linkage structure and concentrate only on its probabilistic properties.
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Both the interpretations of the role of λ (either as a consequence of the sampling
design or a model represented by partitions) may provide useful insights for a cor-
rect choice of its prior distribution. One difficult and related question in the record
linkage literature has been the subjective specification on the space of partitions.
A simple, alternative prior for the number of distinct entities k(z) can be obtained
looking at the following allocation rule for the record labels which is based on a
generalization of the Chinese Restaurant Process, namely the Pitman-Yor process
(PYP) ([3,13]). (See AppendixB for details).

3 The Downstream Task of Linear Regression

In this section, we propose record linkage methodology for the downstream task
of linear regression. Consider the model Ỹ =

∑p
l=1 X̃lβl + ε for the population

units, where the goal is to estimate the regression coefficients β = (β1, . . . , βp)t.
We observe Y and X = (X1, . . . , Xp), where X represents a noisy measure-
ment of the true covariates X̃ = (X̃1, . . . X̃p) and Y is a random copy of the
corresponding population variable Ỹ .

To better illustrate our approach, we consider two scenarios. In the first
scenario—the complete regression scenario—each database reports a set of
overlapping features, the response variable, and the covariates. Let yij and
xij = (xij1 . . . , xijp) denote the observed values for the j-th unit of the i-th
database, where i = 1, . . . , L and j = 1, . . . , Ni. In addition, let (y, x) denote the
entire set of regression data observed across the L databases. In the complete
scenario, there is not a bias problem concerning the estimation of the β coeffi-
cients. In the second scenario—the broken regression scenario—we assume that
the overlapping features are observed in each database, the response variable is
observed in only the first database, and specific subsets of covariates are observed
in the other databases. In this situation, let (y, x) denote the observation y1j ,
where j = 1, . . . , N1 and xij , where i = 2, . . . , L and j = 1, . . . , Ni. Note that xij

represents only a fixed subset of the values xij1 . . . xijp for j = 1, . . . , Ni. Here,
there is a bias issue regarding estimating the β coefficients.2

3.1 Simple Linear Regression

In this section, we consider linear regression and the two scenarios mentioned
above with a single covariate X. First, consider the complete regression scenario.
Let X̃j′ be the true value of observation X corresponding to the records of cluster
Cj′ . Now consider a cluster Cj′ = {(i, j)} with one record. Given the true value of
X̃j′ = x̃j′ and membership to cluster Cj′ , we assume that the response variable
Yij follows a standard normal regression model with covariate x̃j′ , where the
observed value for the covariate Xij is normal with mean x̃j′ and Yij and Xij

are independent. That is,

2 In both scenarios, we assume that the covariates have zero mean and the regression
model does not have an intercept.
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[
Yij

Xij

]
| X̃j′ = x̃j′ ∼ N2

[(
β 0
0 1

) [
x̃j′

x̃j′

]
,

(
σ2

y|x̃ 0
0 σ2

x|x̃

)]
. (4)

We assume that X̃j′ ∼ N(0, σ2
x̃), which allows one to integrate Xj′ via Eq. 4.

In fact, setting Zij = (Yij ,Xij)
′, one can easily show that conditionally on the

event {(i, j) ∈ Cj′}, it follows that

Zij ∼ N2

[(
0
0

)
, σ2

x̃

(
β2 β
β 1

)
+

(
σ2

y|x̃ 0
0 σ2

x|x̃

)]
. (5)

For ease of notation, let In denote the n × n identity matrix, 0n denote the
n-vector of zero; 1n denote a vector of all 1’s, and Jn = 1n1′

n. Next, set

B =
(

β2 β
β 1

)
and Σ =

(
σ2

y|x̃ 0
0 σ2

x|x̃

)
.

Consider a cluster Cj′ = {(i1, j1), (i2, j2)} with two records. The two pairs Zi1j1

and Zi2j2 are random vectors, both depending on the same “true” value X̃j′ .
Let ⊗ be the Kronecker product. Conditionally on X̃j′ = x̃j′ and on the cluster
membership, we replicate the model for a cluster with one record by assuming
that Zi1j1 and Zi2j2 are two independent bivariate normal random variables with
joint distribution

N4

[(
I2 ⊗

(
β 0
0 1

))
(14x̃j′) , I2 ⊗ Σ

]
. (6)

Then the marginal distribution of (Zi1j1 , Zi2j2)
′ is

(
Zi1j1

Zi2j2

)
∼ N4

(
04, I2 ⊗ Σ + σ2

x̃J2 ⊗ B
)
.

This argument can be extended to any cluster size. When card(Cj′) = n, the
marginal distribution of Z = (Zi1j1 , . . . , Zinjn

) is again multivariate normal:
Z ∼ N2n

(
02n, In ⊗ Σ + σ2

x̃Jn ⊗ B
)
.

Next, consider the broken regression scenario. In this case, when some infor-
mation is missing—either the covariate in the first database or the response vari-
able in some of the other databases—one can easily marginalize over the missing
variables by using standard properties of multivariate normal distribution. Let
(y, x)C′

j
= ((yij , xij) : λij = j′) denote the set of regression observations, which

conditionally on λ, correspond to the j′-th population unit. For example, for a
cluster Cj′ = {(1, j)} with one record in the first database, we denote this as
(y, x)C′

j
= y1j . Using the marginal density of Yij in Eq. 5, we can write the like-

lihood, conditional on λ, as p((y, x)C′
j
|λ, β, σ2

y|x̃, σ2
x|x̃). Similarily, suppose Cj′ =

{(i, j)} with i > 1, then (y, x)C′
j

= xij and the likelihood is given by marginal
density of Xij . Next, consider a cluster Cj′ = {(1, j1), (i2, j2)} with a record in
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the first database and the other record in a different database, i.e. i2 > 1. It
follows that (y, x)C′

j
= (y1j1 , xi2j2) and the corresponding likelihood is found by

marginalizing over the missing values X1j1 , Y2j2 in Eq. 6, where we obtain the
joint density in Eq. 5. Finally, it follows that the likelihood function (as a func-
tion of λ, β, σ2

y|x̃, σ2
x|x̃) for both the complete and broken regression scenarios can

be generally written as p(y, x|λ, β, σ2
x|x̃, σ2

y|x̃) =
∏Npop

j′=1 p((y, x)C′
j
|β, σ2

x|x̃, σ2
y|x̃).3

In order to handle the record linkage and downstream regression task simul-
taneously, we assume conditional independence on λ between the overlapping
features in the record linkage model and the set of variables in the downstream
task of linear regression. Assuming conditional independence, we find

p(λ, β, α, σ2
y|x̃, σ2

x|x̃|v, x, y) ∝ p(v|λ, α)p(y, x|λ, β, σ2
y|x̃, σ2

x|x̃)

× p(λ)p(α)p(β, σ2
y|x̃, σ2

x|x̃). (7)

The first factor is related to the record linkage process, and second factor
is related to the downstream task of linear regression, and the other factors
represent the prior distributions. We assume independent diffuse priors for
β, σ2

y|x̃, σ2
x|x̃. To update the appropriate regression parameters β, σ2

y|x̃, σ2
x|x̃, we

use the Metropolis-Hastings algorithm in AppendixA. Using the factorization
of the posterior in Eq. (7), the proposed method can be generalized to any sta-
tistical model.

3.2 Multiple Linear Regression

We extend the downstream task to that of multiple regression, first considering
the complete regression scenario. Let Cj′ denote a cluster of size n, YCj′ denote
a vector with n observations of the response variable in this cluster, and XCj′
denote the n×p matrix with the values of the p covariates observed in the cluster
units. Let [Y X]Cj′ denote the vector of n(p+1) elements with the n rows of the
matrix (YCj′ ,XCj′ ) vertically stacked and let X̃j′ denote the vector containing
the true values of the p covariates. Equation 4 can be generalized assuming that

[Y X]Cj′ | X̃j′ ∼ Nn(p+1)

[(
In×n ⊗

(
βt 0t

p

0p×p Ip×p

))(
12n ⊗ X̃

)
, In×n ⊗

(
σ2

y|x̃ 0

0 Σx|x̃

)]
,

where

12n ⊗ X̃ ∼ N2np

(
02np, (1n1t

n) ⊗
(

Σx̃ Σx̃

Σx̃ Σx̃

))
.

This way the marginal distribution of [Y X]Cj′ is n(p + 1)-variate normal with
zero mean and covariance matrix(

In×n ⊗
(

βt 0t
p

0p×p Ip×p

)) (
(1n1t

n) ⊗
(

Σx̃ Σx̃

Σx̃ Σx̃

)) (
In×n ⊗

(
βt 0t

p

0p×p Ip×p

))t

+
(

In×n ⊗
(

σ2
y|x̃ 0
0 Σx|x̃

))
,

3 We assume that population units j′ that do not have an observed cluster size con-
tribute to the likelihood with a factor equal to 1.
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which simplifies into

(1n1t
n) ⊗

(
βtΣx̃β βtΣx̃

Σx̃βt Σx̃

)
+ In×n ⊗

(
σ2

y|x̃ 0
0 Σx|x̃

)
.

The likelihood provided by the multiple regression model is the product of the
factors p([Y X]Cj′ = [y, x]C′

j
|β, σ2y|x̃, Σx|x̃) for the observed clusters. The same

considerations from linear regression regarding modeling the prior and the com-
putational aspects apply to multiple linear regression. Note the major difference
is in the marginalization pattern in the broken regression scenario. In fact, for a
cluster joining records across more than one database, we may need to integrate
out the covariate values missing in the databases that share a cluster.

4 Experiments

To investigate the performance of our proposed methodology we consider the
RLdata500 data set from the RecordLinkage package in R. This synthetic
data set consists of 500 records, each comprising first and last name and full
date of birth. We modify this data set to consider two databases, where each
database contains 250 records, respectively, with duplicates in and across the
two databases. To consider the case without duplicate detection, we modify the
original RLdata500 such that it has no duplicate records within each of the two
databases. Without duplicate detection is a special case of our general method-
ology (see Appendix C). We provide experiments for both record linkage and the
downstream task.

4.1 Record Linkage with and Without Duplicate-Detection

We provide two record linkage experiments—one with duplicate detection and
one without duplicate detection. In Figs. 1 and 2, we report the prior and the
posterior for k(z) and the performance of the record linkage procedure measured
in terms of the posteriors of the false negative rates (FNR) and the false discovery
rates (FDR). (For a review of FNR and FDR, see [1,15]).

Figure 1 (with duplicate detection) illustrates that the resulting posteriors of
k(z) appears robust to the choices of θ and σ (first row). We observe similar
behavior for the posteriors of FNR and FDR (second and third rows). Figure 2
illustrates that as we vary the PYP parameters, the posterior of T is weakly
dependent on their values. The two database framework without duplicate detec-
tion leads, a posteriori, to similar FNR (second row) and lower FDR (third row)
compared to the previous case. (See AppendixD for the PYP parameter set-
tings).

4.2 Regression Experiments

We consider three regression experiments on the RLdata500 data set. In Experi-
ment I, we consider the complete regression scenario in a single database frame-
work with duplicate detection. In Experiment II, we consider the broken regres-
sion scenario with record linkage and duplicate detection. In Experiment III, we
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Fig. 1. Prior and posteriors for k(z) (first row), FNR posteriors (second row), FDR
posteriors (third row) for the RLdata500 data set.
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Fig. 2. Prior and posteriors for t (first row), FNR posteriors (second row), FDR pos-
teriors (third row) for the RLdata500 data set assuming a two database record linkage
framework without duplicate-detection.

consider the broken multiple regression scenario in a two database framework
without duplicate detection. (See AppendixE for details).

Figure 3 gives the results of Experiment I. The posteriors of (β, σy|x̃, σx|x̃)
from our joint modeling approach (first row, solid lines) do not show remarkable
differences when compared to their true counterpart (first row, dotted lines),
which were obtained by fitting the regression model conditional on the true
value of λ. The similarity between the posteriors is mainly due to the large
concentration of λ around the true pattern of duplications. The mode of the
posterior of the number of distinct entities is exactly the true value (450), where
the FNR and FDR are considerably smaller with respect to case without the y
and x columns. Hence, the effect of considering the information provided by the
regression model has improved the record linkage process.

Figure 4 gives the results of Experiment II. The posteriors (first row, solid
lines) of (β, σy|x̃, σx|x̃) are similar to the corresponding true posteriors (first row,
dashed lines). We report the posteriors obtained by fixing λ equal to the point
estimate provided by the hit-and-miss model applied to the categorical variables
alone (first row, dotted lines). The posteriors of β and σ2

y|x̃ obtained with the
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Fig. 3. Experiment I. Upper panels: prior (dotdash lines) and posterior of β, σy|x̃, σx|x̃
with the joint record linkage and regression model (solid lines) and the true linkage
structure (dotted lines). Lower panels: posterior for k(z), FNR and FDR.

plug-in approach are strongly biased for the presence of false matches which, on
the other hand, are not affecting the posterior of σx|x̃. This distribution depends
on the 13 duplicated entities with two copies of x which are correctly accounted
for in the plug-in approach. To better illustrate the causes of the distortion in
the estimation of the regression parameters, the right panel on the top row shows
all the (x, y) pairs resulting from the plug-in approach. The solid black circles
represent the true matches, and the empty red circles represent the false matches,
with independent y and x values. We report the corresponding regression lines,
where the three false matches are lowering the β estimate and increasing the σy|x̃
estimate. Further analysis reveals that the posterior for k(z) (second row) with
the integrated hit-miss and regression model is less concentrated with respect to
the first experiment but it is more concentrated with respect to the single hit-
miss model. We reduce the FDR, leaving the FNR almost unchanged. We coin
this the feedback effect of the regression from the downstream task. For example,
if we consider a false link, the posterior probability of being a match will typically
be down-weighted by the low likelihood arising from the regression part of the
model. Hence, in addition to centering the estimates of the regression coefficient
β, the joint regression-hit miss model improves record linkage performance.

Figure 5 gives the results of the Experiment III. The joint model gives poste-
riors similar to the true ones while the plug-in approach gives biased estimates
and larger variability (first row, left upper panels). The presence of false matches
in the plug-in approach gives a positive bias in estimating the variance σy|x̃ and
affects the posterior of the measurement error parameters (first row, right upper
panels). The posteriors of σx1|x̃ and σx2|x̃ (not reported) both with the joint
model and the true λ are essentially equal to the prior, while the plug-in poste-
rior is concentrated on larger values. Under such conditions, even with the true
linkage structure, we do not have any useful information for estimating the mea-
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Fig. 4. Experiment II. Left upper panels: prior (dotdash lines) and posterior of
β, σy|x̃, σx|x̃ with the joint record linkage and regression model (solid lines), the true
linkage structure (dotted lines) and the plug-in approach (dashed lines). Right upper
panel: estimated regression line and (x, y) pairs with the joint model (solid line and
full circles) and the plug-in approach (dashed line and empty circles) Lower panels:
posterior for k(z), FNR and FDR.
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Fig. 5. Experiment III. Same caption as Fig. 3.

surement error variances due to the lack of duplicated x values. Thus, while the
joint model correctly does not contrast the information provided by the prior,
the presence of false matches creates (y, x) pairs that could be also explained by
a larger measurement error of the covariates. We observe that the joint model-
ing of the record linkage and regression data improves the matching process as
noted by the higher concentration of k(z) (second row, left lower panel) around
the true value of 450 and the lower FNRs and FDRs (second row, right lower
panels) with respect to results obtained with the hit-and-miss model only.
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5 Discussion

We have made three major contributions in this paper. First, we have proposed
a Bayesian record linkage model investigating the role that prior partition mod-
els may have on the matching process. Second, we have proposed a generalized
framework for record linkage and regression that accounts for the record link-
age error exactly. Using our methodology, one is able to generate a feedback
mechanism of the information provided by the working statistical model on
the record linkage process. This feedback mechanism is essential to eliminate
potential biases that can jeopardize the resulting post-linkage inference. Third,
we illustrate our record linkage and multiple regression methodology on many
experiments involving a synthetic data set, where improvements are gained in
terms of standard record linkage evaluation metrics.

Acknowledgments. Steorts was supported by NSF-1652431 and NSF-1534412. Tan-
credi and Liseo were supported by Ministero dell’ Istruzione dell’ Universita e della
Ricerca, Italia PRIN 2015.

Appendix

A Metropolis Algorithm

We provide our Metropolis-within-Gibbs algorithm that allows direct simula-
tion from the joint posterior. Let λ(−ij) be the vector λ with the element λij

removed and let Cj′ \ (ij) be the set of all the observed records with record (ij)
removed, which conditionally on λ, refer to the population individual j′ The full
conditional distribution of λij is

p(λij = q|λ(−ij), α, v) ∝
Npop∏
j′=1

p(VCj′ = vCj′ |α, λ) p(λij = q|λ(−ij))

∝
Npop∏
j′=1

p(VCj′ = vCj′ |α, λ)
p(VCj′\(ij)

= vCj′\(ij)|α, λ)
p(λij = q|λ(−ij)) (8)

∝ p(VCq
= vCq

|α, λ)
p(VCq\(ij) = vCq\(ij)|α, λ)

p(λij = q|λ(−ij)), (9)

where q = 1, . . . Npop. In Eq. 8, set λij = q, which implies that Cj′ = Cj′\ij

∀j′ �= q. It follows that
p(vCj′ |α, λ)

p(vCj′\ij |α, λ)
= 1 ∀j′ �= q. When the population

entity q represents an already existing cluster given λ−(ij), the above ratio can
also be written as
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p(VCq
= vCq

|α, λ)
p(VCq\(ij) = vCq\(ij)|α, λ)

=
p∏

l=1

⎡
⎣αlθl vijl

+ (1 − αl)

∏
(ih,jh)∈Cq\(ij)

(
(1 − αl)δvihjhl,vijl

+ αlθlvihjhl

)

p(VCq\(ij) l = vCq\(ij) l|α, λ)

⎤
⎦ .

When the label q identifies a new cluster, the following simplification is possible:

p(VCq
= vCq

|α, λ)
p(VCq\(ij) = vCq\(ij)|α, λ)

=
p∏

l=1

θl,vijl
.

Note that the posterior p(λ, α|v) is invariant with respect to the cluster labels and
that we are only interested in the cluster composition. Thus, we can avoid sim-
ulating the entire population label distribution, and instead set q ∈ {1, . . . , N}
(since there can be at most N clusters) and update λij with the following:

q(λij = q) =

⎧
⎪⎨

⎪⎩

p(VCq
=vCq

|α,λ)

p(VCq\(ij)=vCq\(ij)|α,λ) p(λij = q|λ(−ij)) if q labels an observed cluster

∏p
j=1 θl,vijl

p(λij = new|λ(−ij))/(N − k(−ij)) if q labels a new cluster
(10)

for i = 1, . . . , L, j = 1, . . . , Ni, where k(−ij) is the number of clusters without
the label λij . This way of updating the cluster assignment is standard when the
CRP is used for a prior on the cluster assignments. In addition, the marginal
likelihood of the cluster observations is known or can be easily calculated using
a recursive formula, see for example [11,12].

To adapt the algorithm to the two different prior distribution of λ, note that,
when q labels an observed cluster, the use of a uniform prior on λ implies that

p(λij = q|λ−(ij)) = 1/Npop and p(λij = new|λ−(ij)) = (Npop − k−(ij))/Npop.

With the PYP prior, the above mentioned probabilities are, respectively,

p(λij = q|λ−(ij)) = (nq − σ)/(N − 1 + ϑ) p(λij = new|λ−(ij)) = (k−(ij)σ + ϑ)/(N − 1 + ϑ)

where nq here denotes the size of the cluster Cq without the entity λij . Finally,
when a uniform prior on the partition space is considered, one has

p(λij = q|λ−(ij)) ∝ 1/(Npop)k(−ij) and p(λij = new|λ−(ij)) ∝ (Npop − k−(ij))/(Npop)k(−ij)+1
.

Finally, full conditional distributions of the components of α have a computa-
tionally manageable form using a recursive formula. In fact, assuming a standard
Beta prior on each αl, one obtains

p(αl|λ, v, α−l) ∝
N∏

j′=1

p(VCj′ l = vCj′ l|αl)α
p−1
l (1 − αl)q−1,

and a straightforward Metropolis step can be easily implemented.
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B Construction of PYP Priors

We now briefly describe adapting the PYP prior to our L database framework.
Assume the first j records of the i-th database and all the records of the first
i− 1 databases are classified into ki,j clusters identified by the population labels
j′
1, . . . , j

′
ki,j

with sizes n1, n2, . . . , nki,j
respectively. Also, let Ni,j =

∑i−1
l=1 Nl + j

denote the total number of these records. Next, the label of the record λi,j+1

identifies a new cluster with probability

P (λi,j+1 = “new”|λ1,1, . . . , λi,j) =
ki,jσ + ϑ

Ni,j + ϑ
,

where (ϑ, σ) are two parameters whose admissible values are σ ∈ [0, 1) with
ϑ > −σ or σ < 0 with θ = m|σ| for some positive integer m. Moreover, λi,j+1

will assume an already observed label j′
g identifying a cluster with size ng with

probability

P
(
λi,j+1 = j′

g|λ1,1, . . . , λi1,j1

)
=

ng − σ

Ni,j + ϑ
g = 1, . . . , ki,j .

The above updating rule induces a prior on the set of the possible partitions of
all the N records which can be written as [13]

P (z(λ) = z) =
(ϑ + σ)k−1,σ

(ϑ + 1)N−1,1

k∏
g=1

(1 − σ)ng−1,1,

where {n1, . . . , nk} are the cluster sizes of the partition z and xr,s = x(x +
s) · · · (x+(r−1)s). It can also be proved [13] that, under this prior, the expected
value of k(z) is

E(k(z)) =
N∑

i=1

(ϑ + σ)(i−1)↑
(ϑ + 1)(i−1)↑

=
ϑ

σ

[
(ϑ + σ)N↑

ϑN↑
− 1

]

and the variance is

V ar(k(z)) =
ϑ(ϑ + σ)

σ2

(ϑ + 2σ)N↑
ϑN↑

− ϑ2

σ2

(
(ϑ + σ)N↑

ϑN↑

)2

− ϑ

σ

(ϑ + σ)N↑
ϑN↑

with xs↑ = Γ (x + s)/Γ (x). For more details, we refer to [19].
The above equations can be used for prior elicitation by fixing ϑ and σ in

order to have E(k(z)) equal to a rough prior guess for the number of clusters
and a specific amount of prior variability for k(z). Moreover, in evaluating the
asymptotic properties, [13] observes that as N → ∞, E(k(z)) becomes infinite
for non negative values of σ; on the other hand, if σ is negative, k(z) is equal
almost surely to m which thus takes the role of the size Npop in a finite population
framework.
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C Record Linkage Without Duplicate-Detection

We now consider record linkage of two databases without duplicate-detection.
To consider this case, we simply modify the prior distribution on the λ’s such
that λij1 �= λij2 ∀j1 �= j2 and for i = 1, 2. In this case, clusters consist of at most
two elements so that the distribution of the observed records v, conditional on λ
and α, can be calculated analytically without exploiting the recursive formula.

If a uniform prior on the label space is assumed, the above conditioning is
equivalent to assuming that the two databases are two simple random samples
with replacement from a population of Npop units. This is the same situation
described in [18], where Npop is assumed unknown. Assume that T denotes the
number of common units between the two databases; then k(z) is equal to N1 +
N2 − T , where T follows a hypergeometric distribution

P (T = t) =

(
N1
t

)(
Npop−N1

N2−t

)
(
Npop

N2

) , max{0, N1 + N2 − Npop} ≤ t ≤ min{N1, N2}.

From a computational perspective, the conditioning of the uniform prior does
not imply substantial changes. In fact if a PYP prior is assumed, the standard
record linkage framework can be tackled by imposing that λ1j = j for j =
1, . . . , N1 and that the units of the second database may only join a cluster
composed by a single unit of the first database or create a new cluster, that is

p(λ2 j+1 = q|λ11 . . . , λ2 j) =

⎧
⎪⎨

⎪⎩

1−σ
k2j−j(1−σ+ϑ)

if q ≤ N1 and nq = 1

0 if q ≤ N1 and nq = 2
0 if q > N1 and nq = 1,

j = 0, 1 . . . , N2 − 1

and

p(λ2 j+1 = new|λ11 . . . , λ2 j) =
k2jσ + ϑ

k2j − j(1 − σ) + ϑ
j = 0, 1 . . . , N2 − 1

where k20 = N1 and k2j is the number of distinct elements considering the first
database and the first j elements of the second database. Finally, notice that

p(λ21, . . . , λ2N2 |λ11, . . . , λ1N1) =
(1 − σ)N−k2N2

∏k2N2
l=N1+1(σ(l − 1) + ϑ)∏N2

l=1(k2 l−1 − (l − 1)(1 − σ) + ϑ)

(N − k2N2)!

N !
.

This implies that the λ’s are no longer exchangeable. This problem, although
interesting from a theoretical perspective, does not cause computational issues.

The conditional prior probabilities for the Gibbs step updating of λ2j to be
used from Eq. (10) are

p(λ2j = q|λ−(2j)) ∝
⎧
⎨
⎩

(1 − σ) if q ≤ N1 and nq = 1
0 if q ≤ N1 and nq = 2
0 if q > N1 and nq = 1,

and

p(λ2j = new|λ−(2j)) ∝ (k−(2j)σ + ϑ)
N2−1∏
l=j

[
k2l − l(1 − σ) + ϑ

k2l + 1 − l(1 − σ) + ϑ

]
.
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D Record Linkage Experiment

We provide the parameter settings for the record linkage experiments. For the
case with duplicate detection, we considered the effect of the PYP prior for
λ with (θ, σ) = (0.4,0.98), (2,0.975), (10,0.965). These prior distributions have
a common prior mean of k(z) almost equal to 450; however, their respective
variance are quite different. For the case of no duplicate detection, we consider
the effect of the constrained PYP prior for λ with (θ, σ) = (1, 0.6), (1, 0.725),
and (1, 0.86). These values of the hyper-parameters (θ, σ) produce prior means
for the number of matches equal to 75, 50 and 25.

E Regression Experiments

We elaborate on our three regression experiments. In the first experiment, we
modify the data set by adding two columns with the pairs y and x generated
from the model in Sect. 3.1, conditional on the true λ structure. For clusters with
two records we simulate a single true value x̃ of the covariate from a normal
distribution with zero mean and variance equal to σ2

x̃ = 9. Then, conditionally
on x̃, we generate two independent draws x from a normal distribution with
mean x̃ and variance σ2

x|x̃ = 0.01 and two corresponding independent draws y

from a normal distribution with mean βx̃ with β = 3 and variance σ2
y|x̃ = 4.

Instead, the records without duplication are augmented with a single pair (y, x)
that is generated conditionally on a single value x̃ following the same model of
the duplicated records.

In the second experiment, we use the modified RL500 data set that consists
of two databases. We then remove y from the second databases and x from the
first database. Given the 50 entities with duplication, 28 belong to both the
databases reporting the y variable on the first database and the x variable on
the second database. Moreover, 9 entities only belong to first database with 2
duplicate records of y, and 13 entities only belong to the second database with
2 copies of x. In addition, we assume the same priors as in the first experiment.

In the third experiment, we modify the RL500 data set by generating data
from a regression model with two covariates, where we assume β1 = 2 and
β2 = 4, σ2

y|x̃ = 4 and a diagonal covariance matrix Σx|x̃ with elements σ2
x1|x̃ =

σ2
x2|x̃ = 0.01. We then split this data set into two databases of size 250, and then

remove y from the second database and remove the two covariates from the first
database. To mimic the case of record linkage without duplicate detection we
arrange the two databases so that they share 50 entities without duplications
within each databases.
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