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Preface

Privacy in statistical databases is a discipline whose purpose is to provide solutions to
the tension between the social, political, economic, and corporate demand of accurate
information, and the legal and ethical obligation to protect the privacy of the various
parties involved. In particular, the need to enforce of the EU General Data Protection
Regulation (GDPR) in our world of big data has made this tension all the more
pressing. Stakeholders include the subjects, sometimes also known as the respondents
(the individuals and enterprises to which the data refer), the data controllers (those
organizations collecting, curating, and to some extent sharing or releasing the data),
and the users (the ones querying the database or the search engine, who would like their
queries to stay confidential). Beyond law and ethics, there are also practical reasons for
data controllers to invest in subject privacy: If individual subjects feel their privacy is
guaranteed, they are likely to provide more accurate responses. Data controller privacy
is primarily motivated by practical considerations: If an enterprise collects data at its
own expense and responsibility, it may wish to minimize leakage of those data to other
enterprises (even to those with whom joint data exploitation is planned). Finally, user
privacy results in increased user satisfaction, even if it may curtail the ability of the data
controller to profile users.

There are at least two traditions in statistical database privacy, both of which started
in the 1970s: The first one stems from official statistics, where the discipline is also
known as statistical disclosure control (SDC) or statistical disclosure limitation (SDL),
and the second one originates from computer science and database technology. In
official statistics, the basic concern is subject privacy. In computer science, the initial
motivation was also subject privacy but, from 2000 onwards, growing attention has
been devoted to controller privacy (privacy-preserving data mining) and user privacy
(private information retrieval). In the past few years, the interest and the achievements
of computer scientists in the topic have substantially increased, as reflected in the
contents of this volume. At the same time, the generalization of big data is challenging
privacy technologies in many ways: This volume also contains recent research aimed at
tackling some of these challenges.

Privacy in Statistical Databases 2018 (PSD 2018) was held under the sponsorship
of the UNESCO Chair in Data Privacy, which has been providing a stable umbrella for
the PSD biennial conference series since 2008. Previous PSD conferences were held in
various locations around the Mediterranean, and had their proceedings published by
Springer in the LNCS series: PSD 2016, Dubrovnik, LNCS 9867; PSD 2014, Eivissa,
LNCS 8744; PSD 2012, Palermo, LNCS 7556; PSD 2010, Corfu, LNCS 6344; PSD
2008, Istanbul, LNCS 5262; PSD 2006, the final conference of the Eurostat-funded
CENEX-SDC project, held in Rome, LNCS 4302; and PSD 2004, the final conference
of the European FP5 CASC project, held in Barcelona, LNCS 3050. The eight PSD
conferences held so far are a follow-up of a series of high-quality technical conferences
on SDC that started 18 years ago with Statistical Data Protection (SDP) 1998, held in



Lisbon in 1998 and with proceedings published by OPOCE, and continued with the
AMRADS project SDC Workshop, held in Luxemburg in 2001 and with proceedings
published by Springer in LNCS 2316.

The PSD 2018 Program Committee accepted for publication in this volume 23
papers out of 42 submissions. Furthermore, 11 of these submissions were reviewed for
short oral presentation at the conference. Papers came from 15 different countries in
four different continents. Each submitted paper received at least two reviews. The
revised versions of the 23 accepted papers in this volume are a fine blend of contri-
butions from official statistics and computer science. Topics covered include tabular
data protection, microdata and big data masking, synthetic data, record linkage, and
spatial and mobility data.

We are indebted to many people. First, to the Organizing Committee for making the
conference possible and especially to Jesús Manjón, who helped prepare these pro-
ceedings. In evaluating the papers, we were assisted by the Program Committee and by
Daniel Baena, Dimitrios Karapiperis, and José Antonio González Alastrué as external
reviewers. We also wish to thank all the authors of submitted papers and we apologize
for possible omissions.

Finally, we dedicate this volume to the memory of Prof. Stephen Fienberg, who was
a Program Committee member of all past editions of the PSD conference.

July 2018 Josep Domingo-Ferrer
Francisco Montes

VI Preface
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Symmetric vs Asymmetric Protection
Levels in SDC Methods for Tabular Data

Daniel Baena, Jordi Castro(B), and José A. González

Department of Statistics and Operations Research,
Universitat Politècnica de Catalunya, Jordi Girona 1–3,

08034 Barcelona, Catalonia, Spain
danibaena@gmail.com, {jordi.castro,jose.a.gonzalez}@upc.edu

Abstract. Protection levels on sensitive cells—which are key parame-
ters of any statistical disclosure control method for tabular data—are
related to the difficulty of any attacker to recompute a good estimation
of the true cell values. Those protection levels are two numbers (one
for the lower protection, the other for the upper protection) imposing a
safety interval around the cell value, that is, no attacker should be able
to recompute an estimate within such safety interval. In the symmet-
ric case the lower and upper protection levels are equal; otherwise they
are referred as asymmetric protection levels. In this work we empirically
study the effect of symmetry in protection levels for three protection
methods: cell suppression problem (CSP), controlled tabular adjustment
(CTA), and interval protection (IP). Since CSP and CTA are mixed inte-
ger linear optimization problems, it is seen that the symmetry (or not)
of protection levels affect to the CPU time needed to compute a solution.
For IP, a linear optimization problem, it is observed that the symmetry
heavily affects to the quality of the solution provided rather than to the
solution time.

Keywords: Statistical disclosure control · Tabular data
Cell suppression · Controlled tabular adjustment
Interval protection · Mixed integer linear optimization
Linear optimization

1 Introduction

The three statistical disclosure control methods for tabular data considered in
this work (namely: cell suppression problem (CSP) [5,10], controlled tabular
adjustment (CTA) [2,4,13], and interval protection (IP) [8,11]) belong to the
family of post-tabular data protection methods, which modify or suppress table
cells once the table have been built (in contrast to pre-tabular methods, which
change microdata files, and therefore, although being faster, may not guarantee

Supported by grant MTM2015-65362-R of the Spanish Ministry of Economy and
Competitiveness.

c© Springer Nature Switzerland AG 2018
J. Domingo-Ferrer and F. Montes (Eds.): PSD 2018, LNCS 11126, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-319-99771-1_1
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4 D. Baena et al.

table additivity if the true values of marginal or total cells want to be preserved).
More details can be found in the monograph [14] and the survey [6].

Each method protects sensitive cells in a different way. CSP removes sensitive
cells; other additional cells have also to be removed to avoid recomputing the
original value of sensitive cells. CSP results in a large and difficult mixed integer
linear problem, which can be solved optimally (using Benders decomposition
as done in [10]) or heuristically (e.g., using shortest paths for some hierarchical
tables as in [5]). IP (or partial cell suppression, which was its original name coined
in [11]) can be seen as a linear version of CSP, where cell values are replaced
by intervals containing the true value. IP, unlike CSP, is a linear optimization
problem, and therefore—at least theoretically—it can be solved in polynomial
time by efficient interior-point methods [17]. CTA replaces sensitive values by
safe values (i.e., outside the safety interval), thus forcing changes in other cells
to preserve the table additivity. CTA is also formulated as a mixed integer linear
optimization problem, which can be solved optimally by general purpose solvers
[9], or heuristically [2,13]. This work provides a formulation of CSP, CTA and
IP from the same set of parameters.

One of the key parameters for the optimization models for CSP, CTA and IP
are the lower and upper protection levels: these two numbers define a protection
interval around the cell value, such that no attacker should be able to obtain
an estimation of the true value within such interval. When the lower and upper
protection levels are equal, we have a symmetric interval around the true value;
otherwise we refer to the asymmetric case. A priori, asymmetric intervals could
benefit the solution of mixed integer linear optimization problems, such as CTA
and CSP. Indeed, some results along these lines were obtained in [9] for CTA
with quadratic objectives. Another objective of this work is to check if such
behaviour is observed for CTA and CSP in the solution of a set of hierarchical
tables.

For IP, being a linear optimization model, such symmetry is not expected
to provide faster executions. However, as it will be shown in the computational
results, the use of asymmetric protection levels is instrumental to avoid the
disclosure of the true cell values.

This short paper is organized as follows. Section 2 shows a formulation of CSP,
CTA and IP using a unified set of parameters. Section 3 reports and compares
the results obtained on a set of generated hierarchical instances, using symmetric
and asymmetric protection levels, for the three tabular data protection methods.

2 Formulation of CSP, CTA and IP for Tabular Data

The parameters that define any CSP, CTA or IP instance are:

– A general table, consisting of a set of n cells and a set of m linear relations
Aa = b, where A ∈ R

m×n is the matrix defining the table structure, a =
(a1, . . . , an)� ∈ R

n is the vector of cell values, and the right-hand side b ∈ R
m

is usually 0 if the table is additive.
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– Upper and lower bounds u ∈ R
n and l ∈ R

n for the cell values, which are
assumed to be known by any attacker: l ≤ a ≤ u (e.g., l = 0, u = +∞ for a
positive table).

– Vector of nonnegative weights w ∈ R
n, associated to either the cell sup-

pressions for CSP, the cell perturbations for CTA, or the width of interval
replacing cells for IP. That is, wi, i = 1, . . . , n measures the cost (or data
utility loss) associated to hiding the true value of cell i. If wi = 1 for all
i = 1, . . . , n, the same cost is given to any cell; if wi = 1/ai a relative cost is
considered depending on the cell values; other options are possible, such as,
for instance, wi = 1/

√
ai.

– Set S ⊆ {1, . . . , n} of sensitive cells, decided in advance by applying some
sensitivity rules.

– Lower and upper protection levels for each sensitive cell lpls and upls s ∈ S
(usually either a fraction of as or directly obtained from the sensitivity rules).
No sliding protection is considered, unlike in [10].

2.1 Formulation of Cell Suppression Problem (CSP)

CSP aims at finding a set C of complementary cells to be removed such that for
all s ∈ S

as ≤ as − lpls and as ≥ as + upls, (1)

as and as being defined as

as = min
x

xs

s. to Ax = b
li ≤ xi ≤ ui i ∈ S ∪ C
xi = ai i 	∈ S ∪ C

and

as = max
x

xs

s. to Ax = b
li ≤ xi ≤ ui i ∈ S ∪ C
xi = ai i 	∈ S ∪ C.

(2)

The classical model for CSP, originally formulated in [15], considers two sets of
variables: (1) yi ∈ {0, 1}, i = 1, . . . , n, is 1 if cell i has to be suppressed, and 0
otherwise; (2) two auxiliary vectors xl,s ∈ R

n and xu,s ∈ R
n, for all s ∈ S, to

impose as constraints that the solutions to problems (2) would satisfy (1). The
resulting model is

min
y,xl,s,xu,s

n∑

i=1

wiyi

s. to
Axl,s = 0

(li − ai)yi ≤ xl,s
i ≤ (ui − ai)yi i = 1, . . . , n

xl,s
s ≤ −lpls

Axu,s = 0
(li − ai)yi ≤ xu,s

i ≤ (ui − ai)yi i = 1, . . . , n
xu,s

s ≥ upls

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ s ∈ S

yi ∈ {0, 1} i = 1, . . . , n.

(3)
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When yi = 1, the inequality constraints of (3) with both right- and left-hand
sides impose bounds on the deviations xl,p

i and xu,p
i for cell i; these deviations

are prevented when yi = 0, that is, when the cell is published (non-suppressed).
Formulation (3) gives rise to a mixed integer linear optimization problem of n
binary variables, 2n|S| continuous variables, and 2(m + 2n + 1)|S| constraints.

2.2 Formulation of Controlled Tabular Adjustment (CTA)

Instead of suppressing cells, CTA computes an alternative safe table x: the closest
to a using some particular distance �(w) based on cell weights w. In this context
safe means that the values of sensitive cells are outside the protection interval
[as − lpls, as + upls] for all s ∈ S. The optimization problem to be solved is:

min
x

||x − a||�(w)

s. to Ax = b
l ≤ x ≤ u
xs ≤ as − lpls or xs ≥ as + upls s ∈ S.

(4)

Defining cell deviations z = x − a, lz = l − a and uz = u − a, (4) can be
reformulated as:

min
z

||z||�(w)

s. to Az = 0
lz ≤ z ≤ uz

zs ≤ −lpls or zs ≥ upls s ∈ S.

(5)

The “or” constraints of (5) can be modeled using binary variables ys ∈ {0, 1},
s ∈ S, such that ys = 1 if cell s is “upper protected” (i.e., zs ≥ upls), and
ys = 0 if it is “lower protected” (zs ≤ −lpls). For distance �1, the resulting
mixed integer linear optimization formulation is

min
z+,z−

n∑

i=1

wi(z+i + z−
i )

s. to A(z+ − z−) = 0
0 ≤ z+i ≤ uzi

i 	∈ S
0 ≤ z−

i ≤ −lzi
i 	∈ S

upliyi ≤ z+i ≤ uzi
yi i ∈ S

lpli(1 − yi) ≤ z−
i ≤ −lzi

(1 − yi) i ∈ S
yi ∈ {0, 1} i ∈ S.

(6)

where zi, i = 1, . . . , n, is split as zi = z+i −z−
i , such that |zi| = z+i +z−

i . Problem
(6) has |S| binary variables, 2n continuous variables and m + 4|S| constraints.

2.3 Formulation of Interval Protection (IP)

The purpose of IP is to replace cell values ai by feasible intervals [lbi, ubi], i =
1, . . . , n—where feasible means that li ≤ lbi and ubi ≤ ui, such that estimates of
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as, s ∈ S, computed by any attacker should be outside the protection interval
[as − lpls, as + upls]. This means—similarly to what is was done for CSP—that

as ≤ as − lpls and as ≥ as + upls, (7)

as and as being defined as

as = min
x

xs

s.to Ax = b
lbi ≤ xi ≤ ubi i = 1, . . . , n

and

as = max
x

xs

s.to Ax = b
lbi ≤ xi ≤ ubi i = 1, . . . , n.

(8)

Like in CSP, the previous problem can be formulated as a large-scale (linear
in that case, instead of mixed integer linear) optimization problem. For each
sensitive cell s ∈ S, two auxiliary vectors xl,s ∈ R

n and xu,s ∈ R
n are introduced

to impose, respectively, the lower and upper protection requirement of (7). The
resulting optimization problem is:

min
lb,ub

n∑

i=1

wi(ubi − lbi)

s.to

Axl,s = b

lbi ≤ xl,s
i ≤ ubi i = 1, . . . , n

xl,s
s ≤ as − lpls

Axu,s = b
lbi ≤ xu,s

i ≤ ubi i = 1, . . . , n
xu,s

s ≥ as + upls

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ s ∈ S

li ≤ lbi ≤ ai i = 1, . . . , n
ai ≤ ubi ≤ ui i = 1, . . . , n.

(9)

Problem (9) is very large, with 2n(|S| + 1) continuous variables and 2(m +
2n+1)|S| constraints. On the other hand, unlike CSP, it is linear (no binary, no
integer variables), and thus theoretically it can be efficiently solved in polynomial
time by general or by specialized interior-point algorithms. As far as we know,
no efficient implementation has been developed yet for IP, and there are only
some preliminary prototypes [8]. Some related heuristics for variations of this
problem were considered in [16].

3 Computational Experience

To study the effect of symmetric and asymmetric protection levels for CSP, CTA
and IP we generated a set of six hierarchical tables using the generator introduced
in [5]. Two versions of each table were considered: one with symmetric protection
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Table 1. Instances dimensions.

Instance n |S| m nnz

1 1444 135 171 2964

2 2544 237 303 5216

3 2108 196 243 4318

4 1444 216 152 2945

5 1488 220 173 3040

6 1411 209 168 2890

levels, the other with asymmetric ones. In the symmetric case a 20% of the cell
value was considered, while a 5% and 20% were used for respectively the lower and
upper protection levels for asymmetric instances. A priori bounds l and u were
0 and a large value, respectively (so they were always inactive). Table 1 reports
the number of cells, sensitive cells, table linear relations, and number of nonzero
entries of matrix A, for each instance. For CSP and CTA we used the efficient
(C++) implementations described in [1,7], respectively. For IP the prototype code
(a Benders decomposition implemented in AMPL [3,12]) of [8] was used.

Solution times for CSP and CTA appear in Table 2. Since the IP prototype
is quite inefficient, their times are not reported. The optimality gap (i.e., the
relative distance between the upper and lower bound of the optimization prob-
lem) required in both methods was 0.1%. Two symmetric tables exceeded the
one hour time limit for CSP, so the final gap reached (in brackets) is notably
higher than the required one. From Table 2, CTA is clearly more efficient for
asymmetric than for symmetric instances; this is consistent with the results of
[9], albeit they were for a quadratic version of CTA (i.e., using the �2 Euclidean
instead of the �1 distance in the objective function). For CSP the pattern is not
so definitive: asymmetric instances 4, 5 and, specially, 6 were slower than the
corresponding symmetric variants. However, for the two largest instances (2 and
3) the symmetric cases were clearly outperformed by the asymmetric ones.

Table 2. Computation times, in seconds.

CTA CSP

Instance Symm. Asymm. Symm. Asymm.

1 2.03 0.35 39.12 37.11

2 12.23 0.53 3600 (73%) 638.42

3 10.44 0.65 3600 (74%) 513.61

4 4.66 0.84 20.88 73.17

5 5.15 1.20 25.99 88.06

6 5.30 1.14 53.31 693.1
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As for IP, not being a mixed integer linear problem, we do not expect dif-
ferences in CPU times between symmetric and asymmetric instances (and, in
addition, we would need an efficient IP code to check them, which is not the
case). However we can perform a comparison between the quality of the inter-
vals obtained for symmetric and asymmetric variants. In this respect, we first
observed that most of the cells were not replaced by an interval, that is, lbi and
ubi were the same value. Table 3 shows the number and percentage of cells which
have been replaced in each instance by an interval, that is, one with different
endpoints lbi and ubi. About 9.3% of cells are sensitive in instances 1 to 3, so
one out of two interval-replaced cells is non-sensitive in the symmetric cases.
Instances 4 to 6, with higher proportion of sensitive cells (about 15%), show
lower rates of non-sensitive cells among all the interval-replaced cells. In all the
instances, the number of cells replaced by an interval increases slightly for the
asymmetric cases.

Table 3. Count and percentage of cells which have been replaced by an interval by IP.

Symmetric Asymmetric

Instance N. of cells (%) N. of cells (%)

1 263 18.2 309 21.4

2 471 18.5 529 20.8

3 403 19.1 451 21.4

4 334 23.1 387 26.8

5 377 25.3 412 27.7

6 360 25.5 401 28.4

The quality of the protection is given by its difficulty to disclose the original
cell values. In principle, an interval should be safe since any value inside it has
the same chance to be the value sought by the attacker. However, we (some-
how unexpectedly) found that an instance with symmetric protection levels is
far more vulnerable. Table 4 describes the proportion of cells that have been
replaced with an interval whose midpoint is exactly the original value (repre-
sented here by the zero value). The intervals have been standardized to have a
width of 100. The five classes represented are given by the midpoint position: for
instance, −50 means that the interval is [−100, 0], that is, the rightmost value
is equal to the original cell value; (−50, 0) means that the original cell value is
located somewhere strictly between the midpoint and the right endpoint. The
proportion of cells lying in the midpoint (0) is very large among the symmetric
cases, and represents a real risk of disclosure, since just taking the average of the
interval has many chances to guess the original cell value. On the other hand,
the proportion of such cases in instances with asymmetric protection levels is
negligible. Figure 1 compares a typical instance (number 3), showing graphically
the benefit of dealing with asymmetric protection levels. The other instances
studied exhibited a similar behaviour.
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Fig. 1. Instance number 3, showing standardized intervals in both symmetric and asym-
metric cases. The cells have been ranked in each case according to their interval (so
the position along the x-axis is usually different in the two plots).
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Table 4. Percentage distribution of intervals position.

Instance −50 (−50, 0) 0 (0, 50) 50

Symm. 1 2.7 5.7 87.1 4.6 0

2 4 6.4 85.4 4 0.2

3 4 9.4 77.9 6 2.7

4 4.2 6.6 80.8 6.6 1.8

5 6.4 7.4 77.5 6.9 1.9

6 4.7 8.1 76.9 8.3 1.7

Asymm. 1 5.8 3.9 2.9 60.8 26.2

2 2.3 4.5 2.3 59.2 31.4

3 3.1 8.9 1.1 59.2 27.7

4 1.6 4.4 2.1 68.7 23

5 3.6 5.8 1 67.7 21.6

6 2 6 3.5 67.3 20.9

4 Conclusions

From the computational results in the solution of a set of six hierarchical tables,
using efficient implementations of CSP and CTA, and a prototype code for IP,
we conclude:

– For the mixed integer linear problems CTA and CSP, symmetry of protection
levels has an impact on the solution time. For CTA this assertion was always
true: asymmetric instances were faster than symmetric ones. For CSP this
fact was not so conclusive: only for the largest instances tested asymmetry
provided faster executions.

– For IP asymmetric protection levels affected the quality of the solution, rather
than solution times. In general, symmetric protection levels provided very
poor intervals, and in most cases their midpoints disclosed the true cell value.
Therefore, the use of asymmetric protection levels in IP should be highly
recommended.

– Protection levels automatically provided by sensitivity rules are always sym-
metric: this practice should be reconsidered according to the results of this
work.

A similar analysis to that done for IP could be performed for the intervals
obtained by the auditing phase of the CSP; this is part of the future work to be
done.
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for Flexible Frequency Table Generators
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Abstract. Statistics Korea has disseminated census data through the
Statistical Geographic Information Service (SGIS) system. Users can eas-
ily access the system on a web-site and obtain frequencies on the map
for diverse size-of-area units according to their selection of variables. In
order to control the disclosure risk for frequency tables, we thoroughly
examined the Small Cell Adjustments (SCA) method to find the reasons
for disclosures: we then suggested the Bounded Small Cell Adjustments
(BSCA) procedure in this paper. From the analysis on the census data of
a Korean city of approximately 1.5 million people, we demonstrated the
efficiency of BSCA, which reduces information loss under B in most cells
while maintaining B-anonymity in all cells as intended in the SCA idea.
The B denotes the criterion value defining a small cell. Furthermore, we
have discussed the relationship between disclosure risk and information
loss by BSCA.

Keywords: Frequency table · Table generating system
Small cell adjustments · Information loss · Disclosure risk
Risk-utility map

1 Introduction

One important mission for national statistical offices is to help people conve-
niently access data and easily find useful information without privacy violations.
Recently, statistical agencies have tried to develop a web-based platform for
offering statistics in a more user-friendly way. From 2009, Statistics Korea has
managed a user-friendly interface, called the Statistical Geographic Information
Service (SGIS), in order to provide frequency tables mapped out with informa-
tion from several censuses.

For Statistical Disclosure Control (SDC) regarding tabular data, we have
many established methods or algorithms. The Small Cell Adjustment (SCA)
can be described as a semi-controlled rounding algorithm among post-tabular
methods [2]. The effects of SDC techniques for frequency tables are discussed
with suggestions regarding risk and information loss measures in [3]. However,
most methods have some drawbacks resulting in too much information loss, or
giving rise to disclosure accidents, or being hard to implement in a real system.
c© Springer Nature Switzerland AG 2018
J. Domingo-Ferrer and F. Montes (Eds.): PSD 2018, LNCS 11126, pp. 13–27, 2018.
https://doi.org/10.1007/978-3-319-99771-1_2
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In this paper, we suggest a practical SDC solution for a frequency table
generator. We call it Bounded Small Cell Adjustments (BSCA). The suggested
solution can achieve k-anonymity [4] for confidentiality. The value of k is equal
to B that is previously select to define a small cell by the agency. Moreover, the
BSCA controls information loss less than B in most situations. While developing
the procedure, we propose to change the paradigm for thinking about risk and
utility.

Section 2 explains the table structures in order to understand real platforms.
In Sect. 3, we show our findings on information loss and disclosure accidents
when we employ the existing SCA algorithms. Then we discuss the necessity
to reform the risk-utility frame, illustrate the BSCA procedure, and show the
analysis result for the census data of a Korean city of approximately 1.5 million
people in Sect. 4. A conclusion is shown in Sect. 5.

2 Table Structure in a Real System

In this paper, we analyze the census microdata of a Korean city in order to show
how the proposed algorithm works well. The data set consists of four variables,
which are gender G (2), age A (18), marital status M (5) and education level
E (8). The number in the parenthesis indicates the number of categories for
each variable. The largest area unit, the city, is denoted as Local Area 1 (LA1).
Smaller area units are denoted as LA2 and LA3, and the smallest area unit is
called an Output Area (OA). In our data, the city LA1 consists of 5 LA2s, 78
LA3s, and 2,506 OAs. The sizes of area units, which we measure by number of
individuals, are shown in Table 1. On average, each OA consists of about six
hundreds individuals.

Table 1. The size (the number of individuals) of area units

Area level OA LA3 LA2 LA1

Average 586 18,841 293,920 1,469,599

Range 58–4,125 2,578–47,734 200,371–491,320 1,469,599

Now, we can define the hierarchy between tables according to the number of
variables and the area level. Assume that the microdata set has N individuals,
P variables, and four area levels. We denote the true frequency table as T and
the masked table as T̃ . For example, T̃ vp

i.LA2 indicates that the masked frequency
table has p variables at the i-th LA2 unit. Table 2 shows all types of frequency
tables for P = 4. Note that Table 2 also treats all margins. For example, the
margins of T v4

OA can be found in T v3
OA or T v4

LA3. The details of the frequency table
are written in Appendix A with examples in Table 11.

T vP
OA should be obtained by aggregating the given microdata file. Others can

be produced from T vP
OA. Moreover, in order to run the system faster, we have

to use T vP
OA instead of microdata within the system. Therefore, if we apply a
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random technique only to T vP
OA and obtain other tables from T vP

OA already saved
in the system, then we can provide consistent frequencies through the system.
We call T vP

OA a full table.

Table 2. The types of true frequency tables for P = 4 variables

T OA LA3 LA2 LA1

p = 4 T v4
OA T v4

LA3 T v4
LA2 T v4

LA1

p = 3 T v3
OA T v3

LA3 T v3
LA2 T v3

LA1

p = 2 T v2
OA T v2

LA3 T v2
LA2 T v2

LA1

p = 1 T v1
OA T v1

LA3 T v1
LA2 T v1

LA1

On the other hand, we need to consider that users can aggregate the dissem-
inated tables for comparison. So we add ‘ag’ to the subscript(superscript) for
denoting aggregation according to area(variable) levels. For example, T̃ v4

LA3.ag at
a LA3 area unit is obtained from the tables T̃ v4

OA of the corresponding OA units.
Finally, we can discuss the properties for the table generating system. If there

exist some differences between T̃ and T̃ag (or T̃ ag), we say that the system does
not have additivity. The difference between T̃ and hidden true T can be called
Information Loss (IL). When small cells can be disclosed, we say that Disclosure
Risk (DR) is high. If the frequency of a specific cell could have different values,
the system does not have consistency. In order to disseminate T̃ efficiently, we
have to consider additivity, IL, DR and consistency within the system.

3 Small Cell Adjustments

In order to maintain confidentiality by achieving k-anonymity in tables, we have
employed the SCA method. Small cells, which have lower frequency values than
pre-defined criterion B, are regarded as high risk for disclosure. Zero cells (no
information), boundary and large cells (enough anonymity) are considered safe.
SCA is a semi-controlled rounding method since it changes only small cells into
zeros or boundary cells having frequency B in a probabilistic manner so that the
totality of the table is expected to be preserved. The SCA method can have two
versions of its algorithm in a real system. The first one is as follows:

(SCA Algorithm 1). Small cell adjustments controlled to OA totals

1. For given P variables, construct true full tables T vP
OA at each OA.

2. Adjust small cells in each table of T vP
OA, which apply a random rounding

technique to the frequency fk and obtain the masked frequency f̃k in tables
T̃ vP
OA. The random rounding with base B can be described as follows:

For b = 1, . . . , (B − 1),
fk = b −→ f̃k = 0 with probability (B − b)/B
fk = b −→ f̃k = B with probability b/B
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3. Obtain T̃ vp
LA by aggregating T̃ vP

OA (represented as →, ↓ or ↘ in Table 3)
where p = 1, . . . , P and LA = OA,LA3, LA2, LA1. The bold in Table 3 indi-
cates that frequencies are randomly rounded as described in Step 2. Since we
get T �= T̃ = T̃ ag = T̃ag, the additivity is achieved by SCA1.

Table 3. Two versions of SCA algorithm

SCA1 SCA2

T̃ OA LA3 LA2 LA1 OA LA3 LA2 LA1

p = 4 T̃
v4
OA → T̃ v4

LA3 → T̃ v4
LA2 → T̃ v4

LA1 T̃
v4
OA T̃

v4
LA3 T̃

v4
LA2 T̃

v4
LA1

p = 3 ↓ T̃ v3
OA ↘ T̃ v3

LA3 ↘ T̃ v3
LA2 ↘ T̃ v3

LA1 ↓ T̃ v3
OA ↓ T̃ v3

LA3 ↓ T̃ v3
LA2 ↓ T̃ v3

LA1

p = 2 ↓ T̃ v2
OA ↘ T̃ v2

LA3 ↘ T̃ v2
LA2 ↘ T̃ v2

LA1 ↓ T̃ v2
OA ↓ T̃ v2

LA3 ↓ T̃ v2
LA2 ↓ T̃ v2

LA1

p = 1 ↓ T̃ v1
OA ↘ T̃ v1

LA3 ↘ T̃ v1
LA2 ↘ T̃ v1

LA1 ↓ T̃ v1
OA ↓ T̃ v1

LA3 ↓ T̃ v1
LA2 ↓ T̃ v1

LA1

In the SCA procedure, the IL is intended to be in (−B,B) (= [−2, 2] for
B = 3). However, IL can not be controlled when the tables are aggregated.
Table 4 shows that unintended IL larger than B is obtained in many cells since
small ILs at OA are compounded.

Table 4. Distribution of absolute IL (|f̃ − f |) by SCA1

OA LA3

|IL| 0 1 2 3+ 0 1 2 3+

p = 4 93.6% 4.3% 2.1% 0.0% 73.0% 16.7% 8.1% 2.2%

p = 3 81.8% 10.4% 5.9% 1.8% 54.4% 18.9% 12.8% 13.9%

p = 2 55.7% 19.1% 12.8% 12.4% 28.5% 17.5% 14.2% 39.7%

p = 1 19.0% 19.2% 15.9% 45.9% 5.7% 10.2% 9.0% 75.1%

LA2 LA1

|IL| 0 1 2 3+ 0 1 2 3+

p = 4 50.1% 11.9% 10.3% 27.8% 41.1% 8.2% 7.7% 43.0%

p = 3 36.2% 9.4% 8.3% 46.2% 30.8% 5.0% 4.8% 59.4%

p = 2 17.4% 5.7% 6.1% 70.8% 15.8% 1.2% 2.1% 81.0%

p = 1 1.8% 1.2% 3.6% 93.3% 3.0% 0.0% 0.0% 97.0%

In order to reduce IL, we can try to modify the SCA procedure as follows:

(SCA Algorithm 2). Small cell adjustments controlled to LA totals

1. For the given P variables, make full tables T vP
LA at all area units.

2. Adjust small cells in each table of T vP
LA by a random rounding technique with

a base value B and obtain T̃ vP
LA.
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3. Obtain T̃ vp
LA by aggregating T̃ vP

LA (denoted as ↓ in Table 3). Note that we get
T �= T̃ = T̃ ag �= T̃ag.

It is reasonable to expect that SCA2 will reduce IL more than the SCA1
procedure. However, additivity is lost in the system. We might be able to explain
the broken additivity in the system as the action for privacy protection while
recommending users not to aggregate frequencies since we already provided all
frequencies. The more serious drawback of SCA2 is the possibility of disclosure
accidents.

Assume that a LA3 has six OAs with a frequency value of 1 for each specific
cell. Let us employ the procedure SCA2 with B = 3 and assume that the small
frequencies at the OA level are all changed into 3 accidentally. At LA3 level, the
true frequency value 6 in this cell is not smaller than 3, so it is not rounded and
the masked frequency is 6. Finally, users can conclude that each true value at
OA is 1 since they know that the candidates are {1, 2, 3} and that the sum of
the candidates is 6. Table 5 describes this disclosure example. The bold means
that the random rounding technique is applied to the frequencies.

Table 5. A disclosure example by SCA2

OA1 OA2 . . . OA6 LA3

f̃ 3 3 . . . 3 6

Candidates of f 1,2,3 1,2,3 . . . 1,2,3 6

Inferred f 1 1 . . . 1 6

Consequently, the SCA procedures can not be properly employed because of
the considerable IL or disclosure possibility of small cells. Therefore, we need
to find an alternative and efficient solution for the frequency table generating
system.

4 Bounded Small Cell Adjustments

Usually, we have put more stress on privacy than data utility. In a paper pub-
lished in PSD 2014, this priority was discussed as follows:
“A widely accepted paradigm is that protection has priority over utility. This
means that a minimum level of protection is a-priori decided and set in the opti-
mization problem through constraints. Then an output maximizing the utility
is searched among all solutions with an acceptable level of protection [1]”.

In this viewpoint, the paradigm that we have had so far for disseminating
tables can be described as follows:

1. First consider an acceptable level of disclosure risk and find a method
to reduce DR measures.
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2. Calculate IL using distance measures and select a masking method minimizing
IL among the ones satisfying DR criteria.

In this paper, we suggest a shift in thinking on this paradigm. Eventually,
we may derive the same conclusion by adopting a solution that minimizes IL
with an acceptable level of protection. However, a more efficient solution can be
found from putting the priority on IL reduction over DR control. Here is the
new paradigm, under which we have constructed an efficient algorithm in this
paper.

1. First consider the permissible level of IL. In a frequency table, IL values
are certain in {0, 1, 2, . . . , N}. When we employ the SCA technique, which
changes frequencies 1, 2, . . . , (B − 1) to 0 or B, we specify the permissible
level of IL as (B − 1). We therefore define max IL = (B − 1).

2. Next consider DR measures. In the SCA, the disclosure probability of a
masked small cell is 1/B, which means that the small cell achieves B-
anonymity or uncertainty. We have decided to employ k-anonymity as the
DR measure and have studied how to achieve anonymity in the algorithm.

Under this paradigm, we can connect IL and DR with B. The ideal relation-
ship between IL and DR can be defined by a rational function as follows:

y =
1

x + 1
, x = max IL, y = max DR.

Figure 1 illustrates the optimal risk-utility relationship. The right panel shows
the range of IL and DR if we can apply an ideal solution to the system for B = 3.
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Fig. 1. The optimal relationship between information loss and disclosure risk

Now we will propose a new algorithm named the Bounded Small Cell Adjust-
ments (BSCA). We will describe the notations first, and then discuss the main
ideas and the algorithm of the BSCA along with IL results in our data.
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4.1 Notations

Let LAL represent a lower-dimensional or larger area level, such as T vp
OA (p < P )

or T vp
LA (p ≤ P, LA = LA3, LA2, LA1), while let LAS be the level of full table

T vP
OA. Denote the number of full tables that belong to the ith LAL table as Ki.

Then, for a specific cell, the set of frequency values at LAS in the ith LAL table
can be represented by {fij : j = 1, . . . ,Ki}. Table 6 illustrates how the frequency
fi at the LAL level can be obtained from the frequencies {fij} in the full tables.

Table 6. Notations of frequencies according to hierarchy

LAS LAL

Id 1 . . . j . . . Ki i

Frequency fi1 . . . fij . . . fiKi fi

We can adjust risky small cells at LAS using the random rounding technique
with a base value B. Without loss of generality, we assume that there is no large
cell at the LAS level (fij ≤ B) in order to make the discussion simpler. The
large cells can just be added at the final step in any frequency calculation case.

4.2 Main Ideas

In order to construct a new, more efficient solution, we have considered two
main issues, first, how to reduce IL, and second, how to prevent unexpected
disclosures.

First, we suggest the use of a Fixed Grid Rule (FGR) when providing fre-
quency fi at LAL by adding up the corresponding small cells {fij} at LAS , so
that we can efficiently control IL. Note that FGR is applied when fi at LAL is
large (fi > B).

The idea of the FGR is simple. We divide integers with intervals and make
fixed grids with length of B. Then we can use a representative value for each
interval. When the frequency value fi is in the grid of [nB +1, nB +B], we can
assign the medium of the gird, which is nB + 1 + [B/2] for an odd integer B, to
f̃i. If so, then IL can be less than B/2. Meanwhile, all masked frequency values
can achieve B-anonymity since f̃i has B candidates. Figure 2 shows how FGR
works. For better illustration, we just use a plane instead of a line.

Conceptually, the FGR might be similar to microaggregation. The important
difference is that the grid is fixed and therefore the disseminated values are stable
for changes in data distribution. That is, microaggregation needs a process of
grouping neighbors so that a particular value can belong to different groups
according to changes in other values, whereas fixed grids do not allow such change
to that particular value. FGR is also very similar to conventional rounding except
that the representative values are different.
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Fig. 2. Fixed grid rule for B = 3

Secondly, we have to examine all information given to users by the system
since we want to avoid unexpected disclosure accidents. Users know the process
of SCA and also can observe how many boundary cells (f̃ij = B) are in the
disseminated tables at LAS . Let us denote the number of those boundary cells
(f̃ij = B) as ki. Then the information given to users for {fij} and fi can be
summarized as in Table 7.

Table 7. Users’ information for true frequencies

f̃ij # (cells)
∑

f̃ij fij fi =
∑

fij

0 Ki − ki kiB 0, . . . , (B − 1) [ki, ui]

B ki 1, . . . , B

Observation Observation Observation Conjecture Conjecture

ui = (Ki − ki)(B − 1) + kiB = Ki(B − 1) + ki

Users can infer that the smallest value of true frequency fi (=
∑

fij) can be
ki if all cells disseminated as B at LAS actually have true values of 1, while all
zero cells in the disseminated tables are actually zero. Users can guess that the
largest value of fi is (Ki − ki)(B − 1) + kiB if all cells disseminated as B have
a true value of B and the zero cells are all actually (B − 1). Finally, the set D
of candidates of true frequencies can be inferred as follows:

fi =
∑

fij ∈ [ki, (Ki − ki)(B − 1) + kiB] = [ki, ui] = D.

In Appendix B, there is a discussion on DR if we only use FGR or conventional
rounding for the dissemination of hierarchical frequency tables.

In conclusion, the disseminator has to consider the three constraints in
Table 8 in order to properly provide f̃i at the ith LAL. First, the masked fre-
quency can not be in (0, B) since we employed the SCA. Next, we want to control
IL under B as intended in the SCA. Lastly, for avoiding unexpected disclosures,
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we wish to prevent additional information leakage from the system. Therefore,
the candidates set C directly provided by the system, which is the gird given
to f̃i, should be included in D = [ki, ui], which is the interval derived from
the system. That is, the frequency fi has to achieve anonymity B despite the
information of D.

Table 8. Three constraints for masking frequencies at LAL level

Source Constraints on f̃i

SCA f̃i = 0 or f̃i ≥ B

IL control |f̃i − ∑
fij | < B

DR control f̃i ∈ C ⊂ D = [ki, ui]

4.3 The Algorithm

In order to decide f̃i, first we compare
∑

j f̃ij with fi =
∑

j fij . If IL is less than
B (|fi − ∑

j f̃ij | < B),
∑

j f̃ij satisfies the three constraints in Table 8 because
∑

j f̃ij = kiB. Therefore, we can directly use
∑

j f̃ij as f̃i for dissemination.
Note that |fi − ∑

j f̃ij | < B always holds when fi = 0 or Ki = 1.
For all cases of |fi−

∑
j f̃ij | ≥ B, we suggest two more steps for both reducing

IL and preventing disclosures. Step 1 is applying FGR in order to control IL.
For this, fi(=

∑
j fij) should be represented with mod of B as follows:

fi − 1 = aiB + bi, ai ∈ Z+, and bi ∈ {0, 1, 2, . . . , (B − 1)}. (1)

Note that we employ the mod function for fi−1 instead of fi in order to properly
apply the FGR to the frequency values as illustrated in Fig. 2. For example, if
B = 3, we would like to make a grid not for {3, 4, 5} but for {4, 5, 6}. Now we
choose f̃i − 1 = aiB + [B/2], which is the median integer on the corresponding
grid. Then IL can be controlled under B/2.

On the other hand, the grid C given to f̃i, which is the set of candidates offi-
cially provided by the system, is [f̃i−[B/2], f̃i+[B/2]]. Disclosures (or decreasing
anonymity) can happen if C exists out of the interval D = [ki, ui], which repre-
sents the information that users can learn from the system. That is, disclosures
can happen when f̃i − [B/2] < ki or ui < f̃i + [B/2].

The left panel in Fig. 3 shows the case of f̃i − [B/2] < ki, in which the
anonymity decreases. From the value of f̃i, users can learn that fi must be in
[aiB+1, aiB+B]. Users also have information that fi ≥ ki. Therefore, the set of
candidates for fi shrinks to [ki, aiB+B] from [aiB+1, aiB+B] and anonymity
decreases. The right one displays the case of ui < f̃i + [B/2]. In these two cases,
users can obtain additional information by analyzing the system.

In Step 2 controlling DR, for the case of f̃i − [B/2] < ki, we suggest adding
B to f̃i. For the case of ui < f̃i + [B/2], we propose to subtract B from f̃i in
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fi
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Fig. 3. Moving grid for maintaining anonymity

order to make anonymity more than B. Since the number of integers in D is
large enough, that is #(D) = (Ki − 1)(B − 1) +B ≥ B +B − 1 for Ki ≥ 2, the
moved grid can stay in D.

However, IL can increase up to [B/2]+(B−1) from [B/2] since fi is considered
to be in [f̃i−[B/2]−(B−1), f̃i+[B/2]+(B−1)] instead of [f̃i−[B/2], f̃i+[B/2]].
Note that Step 2 is unnecessary when f̃i − [B/2] = ki or ui = f̃i + [B/2] so that
IL does not increase up to [B/2] + B.

Through Step 2, these two disclosive cases causing C �⊂ D are selectively
processed with. The probability of these cases happening are very small since
most small frequencies have to be changed into zero (or B) at the same time.
Only in these rare disclosive situations does the IL increase while absolute IL in
most cells is still under B as intended in the SCA.

For example, assume that B = 3, {fij = 1, j = 1, 2, . . . , 6} and {f̃ij = 3, j =
1, 2, . . . , 6} by SCA, which is the same example in Table 5. After applying FGR in
Step 1, f̃i is decided as 5 and C = [4, 6]. Users know that fi should be in [ki, ui] =
[6, 18], so the set of candidates reduces to {6} and the anonymity decreases to
1 from 3. However, by Step 2, we add B = 3 to the result of Step 1 and obtain
f̃i = 8. The cell at LA3 achieves anonymity greater than B (= 3) since the set of
candidates by the BSCA is [f̃i − [B/2] − (B − 1), f̃i + [B/2] + (B − 1)] = [5, 11].
Users can be informed that the true frequency is mostly in {7, 8, 9} and rarely in
{5, 6, 7, 8, 9, 10, 11}. In fact, IL is 2, which is actually B − 1, in this case. Table 9
summarizes this example.

Finally, the algorithm can be summarized as follows:
(BSCA Procedure). Bounded small cell adjustments controlled to OA totals

1. For the given P variables, make full tables T vP
OA at each OA.

2. Adjust small cells in each table of T vP
OA by a random rounding technique

with a base value B and obtain T̃ vP
OA.

3. Construct T̃ vp
LA by aggregating T̃ vP

OA, that is f̃i =
∑

j f̃ij .
(Steps 1–3 are the same to SCA1.)
4. For the cells that |f̃i − fi| ≥ B (in which Ki ≥ 2),

A. When ai > 0, which means that fi is the frequency value of a large
cell,
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Table 9. Example of applying the BSCA algorithm (B = 3)

OA1 OA2 . . . OA6 LA3

f 1 1 . . . 1 6

SCA 3 3 . . . 3 18 or 6
(Step 1) FGR 3 3 . . . 3 5
candidates 1,2,3 1,2,3 . . . 1,2,3 [4, 6] ∩ [6, 18]

(Step 2) Moving Grid 3 3 . . . 3 8
candidates 1,2,3 1,2,3 . . . 1,2,3 [5, 11] ∩ [6, 18]

1© update f̃i = aiB + [B/2] + 1 by applying FGR to fi − 1 = aiB + bi.
2© if C �⊂ D, update f̃i in order to prevent information leakage as follows:

f̃i − [B/2] < ki −→ f̃i = f̃i + B

ui < f̃i + [B/2] −→ f̃i = f̃i − B

B. When ai = 0, which implies a small or a boundary cell,
1© Assign f̃i = B.
2© if C �⊂ D, update f̃i in order to prevent information leakage as follows:

1 < ki −→ f̃i = f̃i + [B/2]
ui < B −→ f̃i = f̃i − [B/2] (can not happen)

The only difference between SCA1 and BSCA is Step 4 in the above proce-
dure. Note that Step 4 does not deal with large cells among {fij} at LAS level.
The large cells at LAS are added to f̃i after the BSCA procedure. Therefore, the
final frequency can have any type of value because of large cells, even though
the small cell aggregation results by the BSCA procedure are usually given in a
form of aB + 1 + [B/2] that is the representative value of a grid.

We have applied the BSCA algorithm to our census microdata and con-
structed masked frequency tables. Table 10 shows the distribution of IL by
BSCA. In our data, the full table T v4

OA has 6.4% small cells. Since the random
rounding technique is only applied to the full table without any aggregation pro-
cess, 93.6% cells can have zero IL in T v4

OA. Absolute IL in most cells is smaller
than or equal to (B − 1)(= 2 for B = 3) as intended in SCA. Only in under 1%
of cells do the absolute IL values increase up to [B/2]+(B−1)(= 3, for B = 3).
On the other hand, the anonymity B(= 3) is guaranteed in all cells.

4.4 Comparison of SCA Algorithms on a Risk-Utility Map

Figure 4 shows the relationship between IL and DR according to SCA algorithms
on a risk-utility map. If we employ SCA2, DR can increase up to 1. IL can be
increased up to a considerable amount when constructing T̃ vp

LA from T̃ vP
LA for

p = 1, . . . , (P − 1). The shaded area in the left panel illustrates those increases.
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Table 10. Distribution of absolute IL (|f̃ − f |) by BSCA (B = 3)

OA LA3

|IL| 0 1 2 3 0 1 2 3

p = 4 93.6% 4.3% 2.1% 0.0% 73.2% 18.1% 8.4% 0.4%

p = 3 82.0% 11.5% 6.3% 0.2% 57.5% 28.8% 13.3% 0.4%

p = 2 58.2% 27.3% 14.0% 0.5% 39.7% 45.4% 14.7% 0.3%

p = 1 31.5% 51.8% 16.5% 0.2% 30.0% 61.0% 9.0% 0.0%

LA2 LA1

|IL| 0 1 2 3 0 1 2 3

p = 4 57.6% 31.7% 10.3% 0.4% 55.4% 36.8% 7.6% 0.1%

p = 3 50.7% 40.7% 8.4% 0.2% 49.6% 44.4% 5.8% 0.2%

p = 2 39.4% 55.1% 5.4% 0.1% 44.4% 53.3% 2.4% 0.0%

p = 1 34.6% 63.6% 1.8% 0.0% 39.4% 60.6% 0.0% 0.0%

However, BSCA can maintain anonymity, which means efficiently control DR,
as is planned in the SCA. BSCA additionally increases IL just by [B/2] in a very
few cells. For B = 3, the right panel in Fig. 4 shows that IL can increase only
up to (B − 1) + [B/2] = 3, which shows the conclusion in Table 10.
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Fig. 4. Comparison of SCA algorithms on RU map

5 Concluding Remarks

In this paper, we have proposed an alternative SDC solution for frequency table
generating systems. In Sect. 2, we introduced a data structure in order to deal
with diverse shapes of tables according to the number of variables and the levels
of area units. Then Sect. 3 has discussed the existing SCA procedures, which
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were originally designed to have a max IL of (B − 1) and a max DR of 1/B in
any single table, along with their large IL and DR in a real system.

In Sect. 4, we tried putting the priority on reduction of IL instead of DR.
Then we have examined how to reduce IL and maintain anonymity. In order
to reduce IL efficiently, we have suggested employing the fixed grid rule. For
preventing information leakage, we have studied the information given to users
and then proposed to selectively move one gird for the risky frequencies.

Through the proposed BSCA algorithm, we have found that IL in most cells
can be controlled less than or equal to (B − 1) while maintaining the anonymity
of B in all cells. When disseminating frequencies, we have only to announce the
ratio of cells whose IL increases up to (B − 1 + B/2). In our city example, the
ratio of IL over (B − 1) is under 1% for B = 3. In addition, zero cells can have
some uncertainty caused by the small cells, which occupy 6.4% of our data as
shown in Table 10.

In the future, we will apply the BSCA algorithm to another dataset in which
P is larger than 4 and the area units are a grid scale. Utility measures such
as correlation should also be checked. However, the BSCA algorithm would be
useful at least for publishing frequencies as descriptive statistics.

Appendix A

Multi-dimensional tables can be represented in a flattened form. Table 11 shows
a three-dimensional flattened frequency tables in our data. The categories of
each variable are listed from lexicographic ordering. We can represent any p-
dimensional frequency table of an area unit in this kind of flattened form. In
general, we have PCP = 1 table of T vP , PCP−1 tables of T v(P−1), . . . , PC1 = P
tables of T v1 and totally 2P − 1 tables at each area unit for P variables.

Table 11. Three dimensional flattened frequency tables, T v3

Case G A M Frequency Case G A E Frequency

1 1 1 1 f1,1,1 = f1 1 1 1 1 f1,1,1 = f1
. . . . . .

K = 180 2 18 5 f2,18,5 = fK K = 288 2 18 8 f2,18,8 = fK

Case G M E Frequency Case A M E Frequency

1 1 1 1 f1,1,1 = f1 1 1 1 1 f1,1,1 = f1
. . . . . .

K = 80 2 5 8 f2,5,8 = fK K = 720 18 5 8 f18,5,8 = fK
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Appendix B

Here, we would like to discuss how disclosures can occur by applying FGR only to
hierarchical tables. According to Eq. (1), frequencies having hierarchy is denoted
as

fj = ajB + bj + 1, j = 1, . . . ,K

f = aB + b + 1 =
K∑

j=1

ajB +
K∑

j=1

bj + K.

Note that a = [(f − 1)/B] and b ∈ {0, 1, . . . , B − 1}. We omit subscript i for
convenience. If we apply FGR to the frequencies at each hierarchical level, the
masked values are as follows with Q({b1, . . . , bK}) = [(

∑K
j=1 bj + K − 1)/B]:

f̃j = ajB + [B/2] + 1, j = 1, . . . ,K

f̃ = aB + [B/2] + 1 =
K∑

j=1

ajB + Q({b1, . . . , bK}) · B + [B/2] + 1,

From the masked frequencies {f̃j} and f̃ provided by the system, users can
directly obtain the information of

fj ∈ Cj = [ajB + 1, ajB + B]
f ∈ C = [aB + 1, aB + B]

On the other hand, from {f̃j}, users can also infer that the true f should be in
D = [

∑K
j=1 ajB + K,

∑K
j=1 ajB + KB].

Therefore, disclosures can happen (or anonymity can decrease) if C �⊂ D:

(1)
K∑

j=1

ajB + K > aB + 1 =
K∑

j=1

ajB + Q({b1, . . . , bK}) · B + 1 or

(2)
K∑

j=1

ajB + KB < aB + B =
K∑

j=1

ajB + Q({b1, . . . , bK}) · B + B.

An example can be found when {f1, f2} = {4, 4}, f = 8 and B = 3. Note that
(1) and (2) do not hold at the same time.

If we use FGR at each hierarchical level, we may not be able to avoid disclo-
sures. However, we use FGR once when we aggregate the small cells masked by
SCA in the full table and then have a moving grid step to avoid disclosures in
our algorithm.
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Abstract. In the development of so called “Confidentiality on the fly”
methodology building on random noise implemented with a cell key method, a
number of issues have to be addressed. First, there is the choice of the proba-
bility distributions for the noise. Of course parameter sets yielding a low loss of
information are desirable, but the disclosure risk avoidance potential of a
parametrization should also be taken into account. This requires benchmarking
of the risk avoidance potential of candidate settings.
Another issue is the communication of the potential effects of the noise on

published results. The paper looks at the effect noise may have on estimates
resulting from a division of two noisy counts.
Thirdly, a cell key method produces in the first place consistent, but non-

additive results which might be difficult to communicate. One is tempted to
restore additivity which – amongst other challenges – raises the issue of a
technical solution.

1 Introduction

The online tool Table Builder of the Australian Bureau of Statistics (ABS) which
allows users to define and download tables implements a disclosure control technique
on the basis of additive noise that is applied ‘on the fly’ while the output is generated
[9, 15]. A cell key technique ensures consistency of the output, i.e. the random noise
added to a specific cell is assigned as a “function” of the cell key. For logically identical
cells the noise will always be exactly the same, because cell keys are assigned con-
sistently. This method, sometimes referred to as “cell key method”, is one of the SDC
methods addressed in EU project “Open Source tools for perturbative confidentiality
methods”.

The present paper studies some aspects in the context of the cell key method.
A common issue with any perturbative SDC method for counts data is the reliability of
results computed as a ratio of noisy counts involving smaller counts. Some consider-
ations in this context will be the subject of Sect. 3.

The other two issues we look at in this paper are connected to the non-additivity of
methods like the cell key method: perturbed interior cells of a table or hypercube
generally do not add up exactly to the perturbed margins. Connected to any non-
additive SDC method there is always a certain risk of disclosure by differencing. This
risk should be taken into account when deciding on the noise parameters. When
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choosing noise parameters, we should be able to compute a measure of the differencing
risks to benchmark risk avoidance potentials of different candidate settings. In this
paper, we look for an efficient way of organizing a risk avoidance benchmarking, c.f.
Sect. 4.

While the disclosure risk problem of non-additivity can be limited by suitable
choice of noise parametrization, non-additivity may still be difficult to communicate to
users of the data. [9] suggested to restore additivity. Following up on earlier work
(c.f. [5]), Sect. 5 presents functionalities of a wrapper tool developed in R for control
and execution of the CTA package [3], used successfully to restore additivity without
manual intervention for a large set of small tables.

2 Recalling Issues of Noise Design for Protection of Counts
Data

In this paper we assume an additive noise method to be defined by a transition matrix
P (sometimes also referred to as “p-table”). Following a suggestion of [11], [14]
describes an algorithm utilizing the NLopt-package for non-linear optimization [13] to
compute transition matrices based on a maximum entropy approach1.

Restoring to the denotation of [10], P is the L x L transition matrix2 containing
conditional probabilities: pij ¼ P (perturbed cell value is j | original cell value is i),
where pi refers to the i th row-vector of matrix P. Let vi the column vector of the noise
which is added, if an original value of i is turned into a value of j. I.e. the jth entry of vi
is (j� i). As suggested in [9], the noise distributions resulting from the algorithm
described in [11] ensure that the perturbations take integer values and that the following
criteria hold:

1. the mean of the perturbation values is zero;
2. the perturbations have a fixed variance r2;
3. the perturbations will not produce negative cell values or positive cell values below

a specified threshold js; and
4. the absolute value of any perturbation is less than a specified integer value D.

When using the algorithm from [11] to compute a transition matrix (or p-table), we
must supply the parameters r2 and D, thus fixing the noise variance (typical choices are
between 0.8 and 3) and its maximum absolute value. In addition, we can require no
small, non-zero counts up to a certain threshold js to appear in the perturbed data (js :
= 2 prevents counts of 1 or 2 in the perturbed data, for example).

As explained in [11], for rows i from is := D + js + 1 onwards, it makes sense to
compute the row vector pi using the row vector pis of conditional probabilities for the

1 A first release of the R package “ptable” (Perturbation Table Generator) implementing the algorithm
is planned for end of 2018 and will be available at https://github.com/sdcTools/ptable.

2 As index j may take a value of zero (when a cell value is changed to zero), in the following we start
counting matrix and vector indices at 0, enumerating rows and columns of the L � L matrix by
0, 1, 2, …, L – 1. The number of rows and columns L, which we assume - without loss of generality
(w.l.g.) - to be the same, differs for different set ups.
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original count is and simply shift the set of non-zero entries i − is places to the right.
The algorithm therefore only computes the first is rows of P.

3 Ratios of Noisy Counts

So, the noise for the counts data has a fixed variance (identical for all counts) and the
noise distribution is identical for all counts from count is onwards. Unfortunately, these
nice statistical properties do not hold for estimates computed by dividing two perturbed
counts. The ratio R̂ of two noisy counts X̂ and Ŷ is an estimate of the true ratio
R :¼ X=Y which is only approximately unbiased (see Appendix A.1 for formal proof).
The conditional distribution (conditional on a particular realization X ¼ x for the
enumerator and Y ¼ y for the denominator of the ratio R) of the estimate R̂ and its
conditional variance and coefficient of variation (CV) strongly depend on the size of
counts X and Y. For illustration of what can happen, assume an extremely unfortunate
case with small original counts x ¼ 4 and y ¼ 4, i.e. R ¼ 100%. Assume further D ¼ 3
and a perturbation of U ¼ þD for the enumerator and V ¼ �D for the denominator3.
Then R̂ ¼ 700% – instead of the original 100%!

A positive point is: we can show that for large counts in the denominator (Y) the
conditional variance of R̂ tends to zero (see Appendix A.2). We can also show that the
conditional CV of the estimate tends to zero, when both counts are large, the
denominator Y and the enumerator X (c.f. Appendix A.3).

On the other hand, for small counts in either the denominator or the enumerator (or
both) the ratio estimate is relatively imprecise. See Table 4 in Appendix A.3 for
illustration. Assuming an illustrative but common noise distribution, the table presents
the CV of the estimate R̂ for a selection of counts x and y.

In particular, for large x, but small y, and also the other way round for large y, but
small x, the standard deviation of the estimate is quite high, at an order of magnitude of
about 0.1 R4 and should thus not be ignored by users.

Therefore, up to certain thresholds for the counts in enumerator and denominator, it
might be useful to compute and provide confidence intervals (or approximations
thereof) for the ratio estimates. This might be interesting especially for internal users
within an agency and avoid misinterpretations or release of data at too low level of
detail.

3.1 Interval for R̂

As the noise distributions for enumerator and denominator are discrete random dis-
tributions defined by the data provider, it is a straightforward exercise to compute the
(conditional) probability density function for the deviations R̂� R

�� �� given an obser-
vation x; yð Þ by computing the potential outcomes along with the respective

3 In this example we assume w.l.g. the case js := 0, i.e. all counts allowed in the perturbed data.
4 See the last line in Table 3 (Appendix A.1) for illustration of the case of large x. For formal evidence
see [6], A.1.4.
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probabilities. Cumulating the probabilities (after sorting them by size of R̂� R
�� ��) leads

to the cumulative distribution function which could be used to look up confidence
intervals. A simpler, rule-of-thumb like approach is to focus on an event with high
probability and to compute the maximum deviation on this event. To this end we use

b1 x; yð Þ :¼ max u;vð Þ2M xþ u
yþ v � x

y

��� ���, where M := k; lð Þ 2 �1; 0; 1f g2: kj j þ lj j � 1
n o

.

Looking up the entries pij in the transition matrix in row i ¼ is with the highest
probabilities, i.e. for j ¼ i� 1; i; iþ 1 we compute

P
k;lð Þ2M pi;iþ k pi;iþ l ¼ p2i;i þ

4pi;iþ 1pi;i, (because of the symmetry of non-zero entries in pis ) to obtain a lower bound
for the probability of R̂� R

�� ��� b1 x; yð Þ� �
. With the probabilities of the illustrative

example from Table 3 in the appendix the bound is above 60%. A slightly wider bound

is b2 x; yð Þ :¼ max u;vð Þ2 �1;0;1f g2
xþ u
yþ v � x

y

��� ���. The corresponding lower bound for the

probability of R̂� R
�� ��� b2 x; yð Þ� �

is then
P1

k¼�1

P1
j¼�1 pi;iþ j pi;iþ k ¼ p2i;i þ

4pi;iþ 1 pi;i þ 4pi;iþ 1 pi;i�1, and about 75% for the data from the numerical example.

4 Benchmarking Disclosure Risks of Different Parameter
Settings

As explained in Sect. 2, random noise is defined by its parameters, like f.i. the max-
imum deviation D. As mentioned in the introduction, there is always a certain risk of
disclosure by differencing connected to any non-additive SDC method like cell key
based noise. When deciding on the noise parameters, one should therefore take into
account the risk avoidance potential of a candidate set of parameters. In order to
compare, i.e. benchmark different candidate settings regarding risk avoidance, first of
all we need a method or tool to compute such risks. [11] suggests computation of
feasibility intervals (c.f. [12], 4.3.1) for the original counts. These are typically com-
puted by means of linear programming (LP) methods (see for example [8]). Solutions
are obtained for each cell of interest by minimizing and maximizing a variable rep-
resenting its cell value, subject to a set of constraints expressing the “logical” table
relations, and some a priori upper and lower bounds on unknown cell values. In our
scenario we assume all original non-zero cells to be “unknown”. Rather conservatively,
our scenario assumes the intruder to know the maximum noise deviation D leading to
an a priori lower and upper bound for each cell. As explained in [11], for practical
reasons, instead of an LP tool we rely on an implementation of the shuttle algorithm [2]
in SAS, even though in some situations we may underestimate the true risks (c.f. [11],
fn. 6). If the upper and the lower bound of a feasibility interval computed for a cell
coincide, we consider the cell as disclosable.

Secondly, we need a dataset suitable for observing the risks. If the strategy is to use
a fixed dataset and apply the risk assessment method to different noisy versions of this
dataset, depending on risk averseness of an agency, especially when we need to
compare low risk parameter settings, it may indeed take a major data set to observe a
significant number of disclosable cells, at least for the variants with the higher risk
avoidance potential, to get statistically valid results from the experiments. Setting up a
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suitable dataset for the experiments may thus require some effort. Once constructed,
using f.i. Census data and topic breakdowns5, one might be tempted to use it over and
over again, no matter to which data the noise is supposed to be applied to after all.

Here, we propose an alternative strategy. The goal is to observe comparable risk
indicators for different noise parameterizations also using data from collections much
smaller than a population census. The general idea is to “replace” extensiveness of the
test data set by concentrating on sparsely populated tables on one hand, and on some
randomization on the other hand. Regarding the latter, the idea is to randomize in two
ways, i.e. randomize (1) the data, and (2) the perturbation applied to the data. As further
research option, randomizing the variable breakdowns might also be interesting to look
at in future work.

A randomization of the data can be achieved by drawing subsamples from the
original (micro-)data. To obtain m different versions of our tables or hypercubes, we
draw m independent subsamples, construct the tests tables for each subsample and
compute the risk measure for each “realization” of the test tables. Using a low sampling
fraction in this step offers an additional advantage: it leads to less densely populated
tables and thus (in our experience, see Sect. 4.1) typically increases the share of cells
that will be disclosed by the method used to compute the risk measure6. We expect this
in turn to improve the stability of the comparison of parameter settings. Randomizing
the perturbation is straightforward for a stochastic method like random noise. To obtain
n perturbed versions of each table, we draw record keys for each microdata subsample
n times.

4.1 Test Application and Results

For demonstrating the suggested methods we basically use an extract from the synthetic
dataset used for the testing in [5] which corresponds to a particular NUTS37 area. To
this dataset we have added one more level of detail in the geography by “inventing” 7
small municipalities (the smallest with only 30 inhabitants) making up this synthetic
small region on NUTS3 level. The data set partly implements the definitions of EU
Census 2021 hypercube 9.28, i.e. a cross combination of the variable breakdowns SEX,
AGE.M, and YAE.H (Year of arrival in the country since 1980)9. For good reasons –
from SDC point of view – the geography of the original hypercube is defined only

5 In previous experiments we successfully used a data set involving about 30 million cells.
6 The drawn subsamples in our experiment have the following relative frequency distribution in
average: 45% zeroes, 17% small cell counts (i.e. 1s and 2s), 12% cell counts between 3 and 10 and
26% larger cell counts (i.e. >10).

7 The classification NUTS is a hierarchical system that is used to divide the territory of the EU into
smaller regions. The level NUTS3 represents the smallest territorial unit.

8 Details on the content of the hypercubes can be found in the Census 2021 draft implementing
regulation (c.f. [7]).

9 Some variables have more than one breakdown, each with different levels of detail. In the
terminology of the draft implementing regulation, ‘H’ identifies breakdowns with the highest level of
detail, ‘M’ identifies breakdowns with a medium level of detail, and ‘L’ identifies breakdowns with
the lowest level of detail and ‘N’ identifies the breakdown that refers to the national level.
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down to NUTS3, not including the municipality level. The breakdown of our extended
test hypercube is GEO.H x SEX x AGE.M x YAE.H. Exchanging GEO.M by GEO.H
increases disclosure risks tremendously and thus facilitates risk observation and
comparison. The synthetic area has a population of about 33,000 people, the hypercube
consists of about 20,000 cells (thus an extremely low mean cell size of 1.5 people) and
about 18,000 relations between interior and marginal cells.

Table 1 presents the results of an evaluation of the disclosure risk vs. information
loss (mean absolute deviation) for the synthetic hypercube for three variants of noise
with maximum deviation of D ¼ 1 vs. D ¼ 2 vs. D ¼ 5 and, for sake of comparison,
for four variants of deterministic rounding to, e.g. rounding bases 3, 5, 7 and 9.

The table presents the averaged simulation results10 of the rate of disclosed cells
and the absolute deviation between original and perturbed cells. Both measures are
computed (a) for all (original) non-zero counts, and (b) for only the cells with small
counts (i.e. 1’s, 2’s). Obviously, rounding to base 3 offers little protection only. For this
method, the algorithm discloses the table almost completely, especially the small
counts. Rounding to base 5 improves the rates to about 11% in general and 21% of the
small counts; rounding to bases 7 or 9 leads to further improvement at the expense of
increasing information loss. The rates of disclosed cells for the noise variant with
D ¼ 1 are also quite high and range between those of the rounding variants with base 3
and 5. Rates for D ¼ 2 tend to be higher than for rounding to base 7, but much lower
than for rounding to base 5. For the noise variant with D ¼ 5 no cases of disclosure
were observed11.

Notably, figures for the risk indicator obtained for just one “realization” of the noise
and one subsample would not be very reliable, as we observed after the randomization

Table 1. Benchmarking risk vs. utility - indicators for disclosure risk and information loss

(a) All original non-zero cells (b) Original small cells (1’s, 2’s)
Disclosed cells
(in %)

Mean absolute
deviation

Disclosed cells
(in %)

Mean absolute
deviation

Random noise
D = 1 62.51 0.60 82.10 0.60
D = 2 1.64 0.27 4.82 0.29
D = 5 0.00 1.15 0.00 1.33

Deterministic rounding
base 3 95.70 0.75 99.00 1.00
base 5 11.91 1.25 21.37 1.31
base 7 0.50 1.68 0.66 1.31
base 9 0.02 2.08 0.03 1.31

10 Both indicators presented are derived stepwise. First, a measure within each subsample is computed
by averaging over all n perturbed realizations. Finally, these m estimates of an indicator are
averaged to an overall result.

11 Besides the maximum deviation other specifics of a noise distribution affect both indicators.
However, the maximum deviation usually has the strongest impact on disclosure risk
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experiment where we replicated the perturbations n = 100 times for each of m = 10
subsamples drawn from the synthetic hypercube. Especially the different perturbations
within each subsample produce large deviations of the disclosure risk indicator. Within
the first subsample, for instance, we observe a mean disclosure rate of 63% for the
noise variant D = 1. The maximum rate is 78%, the minimum 44%, with a standard
deviation of 0.07.

Finally, since we may underestimate disclosure risks using the shuttle algorithm,
we compared for two of the noise variants the result of the shuttle algorithm to results
obtained using the LP based audit tool of s-Argus (c.f. [4]). For noise with D = 2 the
shuttle algorithm disclosed the same rate of 15.4% of the original non-zero counts
within a minute while the LP tool takes 90 min. For noise with D = 1, the shuttle
algorithm slightly underestimates the risk. The LP based tool discloses 69.12% percent
taking 8 h for the computation, the shuttle algorithm 68.53% within a minute.

5 A Tool to Restore Additivity

As seen in the previous section, the disclosure risk due to non-additivity of random
noise can be controlled by suitable parametrization. Non-additivity of this SDC method
may nevertheless be difficult to communicate. [5] has presented a variety of heuristics
how to use the CTA algorithm for restoring additivity to EU Census hypercubes after
an initial perturbation using the cell key method. Naturally, an approach like CTA
which “balances” the adjustments within the hypercube relations leads to much less
perturbation in hypercube margins than simple summation of the noisy lowest level
counts. Also not surprising was the result that information loss due to restoring
additivity is generally the smaller, the smaller the “instance” considered for adjustment.
[5] therefore recommended either not to restore additivity at all, or to restore additivity
to separate low level geographic area hypercubes.

In this paper we follow up on this recommendation. For testing we use a number of
small, municipality level one- and two-way tables without hierarchical structure12 from
the German Census 2011 standard publication for about 15% of the German munici-
palities with a very high share of small municipalities in the selection.

5.1 CTA Algorithm as Additivity Module

Leaning to the denotation of [3], a CTA instance is represented by (i) a set of cells yi;
i = 1,…,n, that satisfy m linear relations Ay = b (y being the vector of yi’s; matrix A and
vector b imposing the tabular constraints, expressing for example that the cell values of
some set of cells must be identical to the cell value of another (marginal) cell); (ii) a
lower and upper a priori bound for each cell i = 1,…,n, respectively li and ui. In
addition to that we can also define (iii) a set P = {i1, i2,…, ip} � {1,…,n} of indices of
“sensitive cells” and require (iv) for each sensitive cell i 2 P a lower and upper

12 We only consider links due to a common population total. In such cases we state tables as set of
linked tables in the problem setup.
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protection level, respectively lpli and upli, such that the adjusted values satisfy either
xi � yi + upli or xi � yi − lpli.

Given these settings, the purpose of CTA is to find the set of closest feasible
adjusted values xi; i = 1,…,n satisfying these conditions. This is expressed as the
following optimization problem (in terms of the deviations zi ¼: xi � yi and wi being a
vector of cell weights)13:

min
z

Pn
i¼1

wijzij
s:t: Az ¼ 0

li � zi � ui; i ¼ 1; . . .; n
zi � � lpli or zi � upli; i 2 P

ð1Þ

5.2 Problem Setup for the Use Case with Sensitive Cells

As explained in [5], in a context where non-zero counts up to js (viz., 1’s and 2’s) are
not allowed we need a strategy involving the following two phases.

Initial Phase: As in this context there will be no noisy cell values below js, no cells
need to be declared sensitive in CTA problems defined in the initial CTA phase (t = 1).

Some cells yð0Þi may nevertheless be adjusted to yð1Þi , where 0\yð1Þi � js.

Second Phase: For CTA execution with index t = 2, define as set of sensitive cells

P 2ð Þ :¼ i; 0\yð1Þi � js
n o

. For i 2 P 2ð Þ define protection levels lpli :¼ yð1Þi and

upli :¼ js þ 1� yð1Þi . Then, in a feasible solution yð2Þi [ js or y
ð2Þ
i ¼ 0 for all i 2 P 2ð Þ.

In order to avoid that some other cells (i 62 P 2ð Þ) are adjusted in this phase to yð2Þi ,

where 0\yð2Þi � js, we define special lower a priori bounds li\yð1Þi � js. For all zero-

cells, i.e. where yð1Þi ¼ 0, define upper a priori bounds ui = 0. To avoid infeasibility
problems we define those special a priori bounds only for cells not appearing as margin
cell in any of the relations defined by A.

5.3 A Stable Implementation

The aim of the work described here is a stable implementation executing the CTA
algorithm without manual intervention on large sets of small tables, guaranteeing a
fully feasible solution, in particular in the use case with sensitive cells. We also want
solutions where the maximum of the deviations zi is “as small as possible”, but if we
define very tight a priori bounds, CTA problems may turn out to be infeasible.
The CTA version of [3] offers many configuration options to enforce to a successful
execution (to some degree) even of a basically infeasible problem. Unfortunately, none
of them is universally ideal for every instance. With infeasible instances, in practice we
face the problem that the CTA algorithm may

13 For the exact mathematical statement and the linearity issue of the optimization problem see [3].
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a. not return any result since the given LP is considered infeasible,
b. return an additive solution still containing sensitive cell values, or
c. return a solution that is still not exactly additive.

In order to automate the procedure, we developed a wrapper algorithm in R that not
only applies CTA to a given instance, but automatically checks the output and takes
suitable measures, preparing a follow up execution of the instance if needed. To this
end, at first CTA is executed with the lower and upper bounds (li and ui) as initially
defined by the user, and the attainment of additivity as the procedures main objective.
The result is checked then for additivity as well as for the occurrence of sensitive cells
(non-zero counts up to js). If the result is additive and does not contain small counts, the
procedure ends. If, however, the result is additive but still does contain small counts,
the corresponding cells are set to sensitive and CTA is executed again on the new
instance, but this time with elimination of sensitive cell values as new main objective.
If the CTA algorithm did not return any result at all, the lower and upper bounds get
expanded and CTA will be executed again.

Since in the first step the main objective is set to the restoration of additivity,
theoretically case c. should not occur. However, due to certain specifications of the LP
in reality it did. Repeating the application with restoration of additivity as main
objective will of course not change the result. So in this case our algorithm falls back to
changing the main objective to the elimination of small counts. Even though this may
not lead to an accepted solution directly, it provides a new starting point for the next
iteration.

Now, if in a second execution of the CTA algorithm the main objective is set to
elimination of small counts, the new result might be non-additive again. In this case
CTA is run again with the attainment of additivity as main objective. While in some
cases this leads to a feasible solution, we can imagine that one might as well end up in
an infinite loop, where the same values are changed back and forth, alternating between
an additive solution or a solution without small counts. To solve this problem it turned
out to be useful to store a history of sensitive cells and the corresponding cell values, in
order to check if such a loop occurs. In this case an automatic manipulation of the
hypercube happens: If the cell value that jumps in and out of the sensitive domain came
from above the given threshold, it is set to zero, and if otherwise it was zero before it
jumped into the sensitive domain, its value is increased such that it is not sensitive
anymore. Subsequently CTA will be executed on the new data.

In case, however, this strategy still leads to an infinite loop, if a cell is set to an
unsafe value three times, we set it back to its initial value and set the parameter fixdir of
the CTA algorithm which fixes the direction of the cells perturbations to “no” in the
next call of CTA. While actually “no” is the default setting of the CTA algorithm, due
to better results in tests we regularly set fixdir to “random”. Since a change of this
parameter does alter the results returned by CTA, this way we can break from loops
that cannot be handled otherwise.

While testing this algorithm a further problem occurred. Due to specifications of an
instance it may happen that the CTA output is identical to its input. In this case our
algorithm extends the lower and upper bounds and the main objective is changed to
restoration of additivity, if it was set to elimination of small counts in the previous step
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and vice versa. If nevertheless the data still remain unchanged after three iterations, the
parameter fixdir of the CTA algorithm is set to “no” again in the next call of CTA.

5.4 Test Application and Results

The wrapper algorithm was tested using a collection of small, one- and two-way tables
without hierarchical structure14 from the German Census 2011 standard municipality
level publication. The test data originate from 1,585 municipalities with varying size
and a high share of small municipalities.

First, random noise was added to the data in a parametrization with js ¼ 2, i.e. the
perturbed data did not contain any 1’s and 2’s. When set to preserve this absence of
small counts, the recovery of additivity took the algorithm about two hours and ran
without complications. Alternatively we applied the algorithm without the condition
that no small counts should occur. This time it ran for only about 1.2 h.

Since naturally the original tables before perturbation were additive, it is not a
surprising result that the restoration of additivity decreased the number of modified
cells, as can be seen in Table 2. While also the mean absolute distance to the original
data decreases after restoring additivity one should not ignore that the maximum
absolute distance to the original data increased by a factor of (almost) two and that such
extreme deviations cannot be predicted or even controlled in advance.

Table 2. Restoring additivity - indicators for quality and performance

Random
noise
(non-additive)

Random noise after
CTA (considering
sensitive cells)

Random noise after CTA
(not considering sensitive
cells)

No. of cells
without
deviation

47.06% 47.99% 49.10%

Mean absolute
distancea

0.784 0.763 0.726

Cumulated
relative absolute
distancea

108,679 113,055 102,007

Maximum
absolute
distance

6 18 15

Mean number of
CTA runs per
table

– 2.44 1.00

aSee [1], Table 1 for definition of the indicator.

14 We however consider links due to a common population total in the problem setup.
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6 Summary and Conclusions

This paper has discussed three issues that should be considered when setting up a cell
key based random noise method for disclosure control of counts data “on the fly”. In
Sect. 3 (and the appendix) it has examined relevant characteristics of ratio estimates
computed by division of noisy counts: the conditional bias, variance, and CV. We have
seen that with sufficiently large denominator the estimate for the ratio of two counts
approximates unbiasedness, but the CV tends to zero only, if both, enumerator and
denominator are large. To communicate possible effects of the noise on a ratio of
counts, we have suggested an easy to calculate, simple kind of confidence interval.

In Sect. 4, the paper has stressed the importance of benchmarking disclosure risk
avoidance potential of different noise parameterizations before selecting a particular
parametrization for the noise. Aiming at the possibility to implement a reliable
benchmarking procedure able to observe and compare also lower risk potentials even
on the basis of relatively small datasets, the paper has looked into several options of
randomization, in particular to randomize the noise, and to subsample the data, and has
presented test results obtained with a SAS implementation of the shuttle algorithm [2]
as tool for the risk assessment.

Finally, in the context of the non-additivity issue of the cell key method, the paper
has explained some tricks implemented in a wrapper tool (in R) for the CTA package,
exploiting the configuration options of that package. The tool has been used success-
fully to run CTA – if necessary with iterations – on a large number of small, noisy
tables, making them additive while keeping the maximum of the deviation introduced
in this step as low as possible. The paper concentrates here purely on the aspect of
technical implementation. The question, if it is worthwhile to give up the consistency
property of the cell key method in exchange for additivity of some tabular outputs –
and which ones - is not discussed but needs further attention and research in the future.

Acknowledgements. The research leading to these results has partially received funding from
the EU project “Open Source tools for perturbative confidentiality methods” (Specific grant
agreement N° 2018.0108) under the Framework partnership agreement n° 11112.2014.005-
2014.533

Appendix

This appendix provides some evidence for the claims made in Sect. 3. In addition to the
denotation from Sect. 3 we define u and v the respective column vectors of possible
outcomes of the noise U added to X and V added to Y, i.e. u ¼ v ¼
ð�D;�Dþ 1; . . .;�1; 0; 1; . . .D� 1;DÞT and the noise distribution defined by row
vector pis of transition matrix P for both, U and V15. So for any count y; y� is denote py

15 To keep it simple, we do not consider ratios that involve very small counts below is here, ignoring
the distributions defined by the first rows of the matrix.
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the vector of non-zero elements of pis . The 2Dþ 1 entries of py define the probabilities
py;yþ vj for original count y to change into yþ vj.

Given noise distribution V, we also define two functions c1 and c2:

c1 yð Þ :¼ yE
1

yþV

� �
and ð2Þ

c2 yð Þ :¼ y2E
1

yþV

� �2

: ð3Þ

With e 2 R
2Dþ 1 a column vector of 1’s, we write yeþ vð Þ�1 for the vector with entries

1
yþ vj

� �
j¼1;::;2Dþ 1

, and get c1 yð Þ ¼ yE 1
yþV

� �
¼ y py y eþ vð Þ�1¼ y

P2Dþ 1
j¼1

py;yþ vj

yþ vjð Þ ¼

y
P2Dþ 1

j¼1
py;yþ vj

y 1þ vj
yð Þ ¼ py eþ 1

y v
� ��1

. For large y, obviously, eþ 1
y v approximates e. So,

in that case c1 yð Þ approximates pye ¼ 1, because py defines a discrete probability
distribution and hence its entries sum up to 1. With analog argument it is easy to see
that the same holds for c2 yð Þ. For illustration, Table 3 provides figures for c1 yð Þ and
c2 yð Þ, computed for some selected values of y.

A.1 Conditional Bias of the Estimate R̂

The Conditional Bias of R̂ is EðR̂� RjX ¼ x; Y ¼ yÞ. We write this as E xþU
yþV

� �
� x

y.

Because U and V are independent and identically distributed with E U ¼ E V ¼ 0 we
have

E R̂jX ¼ x; Y ¼ y
	 
 ¼ E

xþU
yþV

� �
¼ xE

1
yþV

� �
¼ x

y
c1ðyÞ; ð4Þ

because of (2). As shown above, c1ðyÞ tends to 1 for large y. Therefore the bias

E xþU
yþV

� �
� x

y ¼ x
y c1 yð Þ � x

y ¼ x
y c1 yð Þ � 1ð Þ approximates zero, which means R̂ is an

approximately (for large y) unbiased estimate of R.

Table 3. Illustrative example for c1 yð Þ, c2 yð Þ and c3 yð Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 yð Þ � c1 yð Þð Þ2

q
, for selected

values of y with py ¼ 0:009; 0:059; 0:182; 0:5; 0:182; 0:059; 0:009ð Þ (For large x, the standard
deviation of R̂ tends to c3 yð ÞR.)

y 4 5 9 10 20 50 100

c2 1.35 1.17 1.04 1.03 1.01 1.00 1.00
c1 1.09 1.08 1.01 1.01 1.00 1.00 1.00
c3 0.41 0.24 0.12 0.11 0.05 0.02 0.01
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A.2 Conditional Variance of the Estimate R̂

The conditional variance of the estimate R̂, i.e. is defined as Var R̂j X:Yð Þ	 
 ¼
E R̂� E R̂j X:Yð Þ	 
	 
2j X:Yð Þ
� �

¼ E R̂2j X:Yð Þ	 
� E R̂j X:Yð Þ	 
	 
2
. Conditioning on a

particular realization X ¼ x for the enumerator and Y ¼ y for the denominator of the
ratio R, we write

Var R̂j X:Yð Þ	 
 ¼ E
xþU
yþV

� �2

� E
xþU
yþV

� �� �2

: ð5Þ

Because U and V are independent and identically distributed with E U ¼ E V ¼ 0
and VarU ¼ Var V = r2, and with c1ðyÞ and c2 yð Þ according to (2) and (3), we have

E
xþU
yþV

� �2

¼ E xþUð Þ2E 1
yþV

� �2

¼ x2 þ r2

y2
c2 yð Þ; and

E
xþU
yþV

� �� �2

¼ E xþUð ÞE 1
yþV

� �� �2

¼ x � E 1
yþV

� �� �2

¼ x
y
� c1 yð Þ

� �2

:

So (5) is equal to Var R̂j X:Yð Þ	 
 ¼ x2 þ r2
y2 c2 yð Þ � x

y � c1 yð Þ
� �2

¼ x2
y2 c2 yð Þ�ð

c1 yð Þð Þ2Þþ r2
y2 c2 yð Þ, i.e. we have

Var R̂j X:Yð Þ	 
 ¼ x2

y2
c2 yð Þ � c1 yð Þð Þ2

� �
þ r2

y2
c2 yð Þ: ð6Þ

As shown above, both, c1 yð Þ and c2 yð Þ tend to 1 for large y. Hence, for large y,

Var R̂j X:Yð Þ	 

tends to zero. Obviously, we also have Var R̂j X:Yð Þ	 
 ¼

x2
y2 c2 yð Þ � c1 yð Þð Þ2

� �
þ r2

x2 c2 yð Þ
� �

which means that for large x, the standard deviation

of R̂ tends to R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 yð Þ � c1 yð Þð Þ2

q
. See the last line of Table 3 for illustration of the

effects.

A.3 Coefficient of Variance (CV) of the Estimate R̂

The conditional CV of R̂ is defined as CV R̂jX;Y	 

:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var R̂j X:Yð Þð Þp
EðR̂jX;YÞ . With denotation

from above, and because of (4) and (6) we can write this as CV R̂jX; Y	 
 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

y2
c2 yð Þ� c1 yð Þð Þ2ð Þþ r2

y2
c2 yð Þ

q
x
yc1 yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 yð Þ� c1 yð Þð Þ2ð Þ

c1 yð Þð Þ2 þ r2
x2

c2 yð Þ
c1 yð Þð Þ2

r
, i.e.
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CV R̂jX; Y	 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 yð Þ
c1 yð Þð Þ2 1þ r2

x2

� �
� 1

s
: ð7Þ

As for large y, both, c1 yð Þ as well as c2 yð Þ tend to 1, from (7) we see that for large y,
CV R̂jX; Y	 


approximates r
x, thus tending to zero, if (and only if) both, y and x become

large.

References

1. Antal, L., Enderle, T., Giessing, S.: Statistical disclosure control methods for harmonised
protection of census data (2017). https://ec.europa.eu/eurostat/cros/system/files/methods_
for_protecting_census_data.pdf

2. Buzzigoli, L., Giusti, A.: An algorithm to calculate the lower and upperbounds of the
elements of an array given its marginals. In: Statistical Data Protection (SDP 1998)
Proceedings, pp. 131–147. Eurostat, Luxembourg ((1998)

3. Castro, J., Gonzalez, J.A., Baena, D., Jimenez, X.: User’s and programmer’s manual of the
RCTA package (v.2). Technical report DR 2013-06 (2013). http://www-eio.upc.es/*jcastro

4. De Wolf, P.-P., Hundepool, A., Giessing, S., Castro, J., Salazar, J.J.: t-ARGUS User’s
Manual (2014). http://neon.vb.cbs.nl/casc/Software/TauManualV4.1.pdf

5. Enderle, T., Giessing, S.: Testing CTA as additivity module for perturbed census 2021 EU
Hypercube Data. In: Joint UNECE/Eurostat Work Session on Statistical Data Confidential-
ity, Skopje, 20–22 September 2017 (2017). http://www.unece.org/fileadmin/DAM/stats/
documents/ece/ces/ge.46/2017/1_testing_cta.pdf

6. Enderle, T., Giessing, S., Tent, R.: Designing confidentiality on the fly methodology – some
aspects. Unpublished manuscript (2018)

7. Eurostat Unit F2: Commission implementing Regulation laying down rules for the
application of Regulation (EC) No 763/2008 of the European Parliament and of the Council
on population and housing censuses as regards the technical specifications of the topics and
of their breakdowns, Item 2 of the agenda. In: 30th Meeting of the European Statistical
System Committee, 28th September 2016, ESSC 2016/30/3/EN (2016)

8. Fischetti, M., Salazar-González, J.J.: Models and algorithms for optimizing cell suppression
problem in tabular data with linear constraints. J. Am. Stat. Assoc. 95, 916–928 (2000)

Table 4. Numerical example for CV R̂jX; Y	 

(in %) for selected combinations of x and y,

calculated with py ¼ 0:009; 0:059; 0:182; 0:5; 0:182; 0:059; 0:009ð Þ
y# x! 4 5 9 10 15 20 50 100

4 46 43 40 39 38 38 38 38
5 36 32 27 27 26 25 25 25
9 28 23 16 15 14 13 12 12
10 27 23 15 14 12 12 11 10
15 26 21 13 12 10 8 7 7
20 26 21 12 11 8 7 5 5
50 25 20 11 10 7 5 3 2
100 25 20 11 10 7 5 2 1

Designing Confidentiality on the Fly Methodology – Three Aspects 41

https://ec.europa.eu/eurostat/cros/system/files/methods_for_protecting_census_data.pdf
https://ec.europa.eu/eurostat/cros/system/files/methods_for_protecting_census_data.pdf
http://www-eio.upc.es/%7ejcastro
http://neon.vb.cbs.nl/casc/Software/TauManualV4.1.pdf
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/1_testing_cta.pdf
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/1_testing_cta.pdf


9. Fraser, B., Wooton, J.: A proposed method for confidentialising tabular output to protect
against differencing. In: Monographs of Official Statistics. Work Session on Statistical Data
Confidentiality, Eurostat-Office for Official Publications of the European Communities,
Luxembourg, pp. 299–302 (2006)

10. Giessing, S., Höhne, J.: Eliminating small cells from census counts tables: some
considerations on transition probabilities. In: Domingo-Ferrer, J., Magkos, E. (eds.) PSD
2010. LNCS, vol. 6344, pp. 52–65. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15838-4_5

11. Giessing, S.: Computational issues in the design of transition probabilities and disclosure
risk estimation for additive noise. In: Domingo-Ferrer, J., Pejić-Bach, M. (eds.) PSD 2016.
LNCS, vol. 9867, pp. 237–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45381-1_18

12. Hundepool, A., et al.: Statistical Disclosure Control. Wiley, Chichester (2012)
13. Johnson, S.G.: The NLopt nonlinear-optimization package (2015). http://ab-initio.mit.edu/

nlopt
14. Marley, J.K., Leaver, V.L.: A method for confidentialising user-defined tables: statistical

properties and a risk-utility analysis. In: Proceedings of 58th World Statistical Congress,
pp. 1072–1081 (2011)

15. Thompson, G., Broadfoot, S., Elazar, D.: Methodology for the automatic confidentialisation
of statistical outputs from remote servers at the Australian Bureau of Statistics. Paper
presented at the Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality,
Ottawa, 28–30 Oktober 2013 (2013). http://www.unece.org/fileadmin/DAM/stats/
documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf

42 T. Enderle et al.

http://dx.doi.org/10.1007/978-3-642-15838-4_5
http://dx.doi.org/10.1007/978-3-642-15838-4_5
http://dx.doi.org/10.1007/978-3-319-45381-1_18
http://dx.doi.org/10.1007/978-3-319-45381-1_18
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf


Protecting Census 2021 Origin-Destination
Data Using a Combination of Cell-Key

Perturbation and Suppression

Iain Dove(&), Christos Ntoumos, and Keith Spicer

Office for National Statistics, Titchfield PO15 5RR, UK
{iain.dove,Christos.ntoumos,Keith.spicer}@ons.gov.uk

Abstract. The UK Office for National Statistics (ONS) is intending to produce
outputs involving travel to and from different locations (origins and destinations)
in 2021, as they have done for previous Censuses. This data poses a particular
challenge for protecting against disclosure risk, as categorising respondents on
multiple geographical variables yields very sparse tables. This paper explores
the disclosure risk and data utility of one option for protecting this data:
applying cell-key perturbation (noise), and suppressing the remaining disclosive
values. It finds that these methods provide good protection for the data with
considerable loss of utility for outputs at low geographies. Whether this is an
acceptable approach will be determined by user feedback.

Keywords: Origin destination � Flow data � Cell-key perturbation
Suppression

1 Introduction

National Statistical Institutions (NSIs) have a duty to protect respondents’ information
from being learned by others. Responsible use of information, including protecting
against disclosures, is vital in protecting the reputation of any organisation and helping
maintain survey response rates amongst members of the public, as well as being an
administrative [8] and legal requirement (Data Protection Act) (1998 UK) [6], the
Statistics and Registration Services Act (2007 UK) [7] and General Data Protection
Regulation (2016 EU) [9]). This protection requirement leads to the disclosure control
paradigm, in which NSIs try to reduce the risk of disclosure within statistical outputs,
without compromising the utility of the data to researchers [3]. Origin-destination
(flow) data, which describe movements between two different locations poses a par-
ticular challenge, as the data are inherently very sparsely distributed.

One of the most frequently used flow data in the UK is known as ‘travel to work’
data, which details where respondents commute to and from, alongside other charac-
teristics. Origin-destination data is an important output used for informing transport
infrastructure policy, (traffic projections, potential public transport routes) population-
demographic projections (migration patterns), housing policy (second homes, migra-
tion by age groups) and others (Fig. 1).
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Nearby areas are much more likely to have larger flows than very distant areas.
These large flows are of interest to researchers as they describe the characteristics of
large groups of people. However, given a reasonable level of detail in the geography
variables, many of the flows across longer or even moderate distances will be small,
and potentially disclosive.

In the previous UK Census in 2011, restricting access was the main form of
protection used, with less detailed tables available publicly at high geographic levels,
and most outputs available under a licensed agreement whereby the user can access the
data providing they agree to certain conditions (they will not attempt to learn about
individuals, pass on the data to others etc.). Other more detailed outputs were acces-
sible only within in a secure environment, specifying that although users have full
access to the microdata within a secure location, all aggregated outputs or analysis need
to be checked before release. This approach provided sufficient protection to the data,
but access was difficult to obtain for some users. In particular, access was more readily
available for academics and researchers than for business users or members of the
public. ONS’ main aim for origin-destination outputs in 2021 is to improve in this
aspect by providing more publicly available data on origin destination, available to all
users.

2 Disclosure Control Methods

2.1 Targeted Record Swapping

In the UK, the main form of protection applied to census data is targeted record
swapping [4], where respondents (households) from different areas are swapped with
each other. Some households appear in a different area in the data, other than their true
location. All households have the potential to be swapped with another, introducing
uncertainty that potentially identified records or households may have been swapped,
and apparent identified data is false. Random swapping was applied in 2001 with all
households equally likely to be swapped. In 2011, swapping was targeted towards
more risky records, with households deemed at greater risk of identification more likely
to be selected for swapping (Fig. 2).

Fig. 1. Nearby areas often have large ‘flows’, which can be broken down by other variables
without disclosing information about individuals, though many distant areas have very small,
often disclosive flows
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Record swapping provides good overall protection, though is designed to protect
regular outputs rather than origin destination data. The targeting of risky records is
based on households at risk within regular outputs, which may be a different set of
households to those at risk in origin destination outputs. Because of the level of sparsity
found in origin-destination data, it is also necessary to consider the perception of
disclosure (the appearance of disclosure risk, even if protection has been applied),
which will be much higher than usual. The perception of individuals information being
disclosed can be damaging to potentially affected respondents, and affect the reputation
of ONS, irrespective of whether the information gained is true, so will be considered
here.

2.2 Cell-Key Perturbation

In Census 2021, ONS aims to provide more flexible outputs, give users more choice
about the detail they would like, make the data much more accessible through a simple
system, and provide the data more quickly than in previous censuses. This flexible
approach should lead to more tables being provided to users than in 2011, and
potentially a greater variety of detail or breakdowns. This increases the risk of dif-
ferencing (taking the difference between two similar tables which differ slightly in one
aspect to gain more information than the NSI had intended). For example, providing
data by two different breakdowns, 12–15 year olds and 11–15 year olds, independently
these data can be considered low risk, but when considered together (specifically the
difference between them) they could provide a disclosive level of detail on the char-
acteristics of 11 year olds.

Fig. 2. An illustration of targeted record swapping

Protecting Census 2021 Origin-Destination Data 45



To protect against differencing, low levels of noise can be applied to outputs. If
intruders attempt to difference two similar tables, the result will be the true values plus the
noise added to both tables. This noise should ideally be small enough to leave large counts
and analyses unaffected, whilst introducing uncertainty in any small counts obtained
through differencing. ONS is investigating the use of cell-key perturbation on outputs,
which involves the addition of noise in a pseudorandom mechanism (Fig. 3). This
method was first developed by the Australian Bureau of Statistics (ABS) [1, 2, 5]. Every
record is given a random ‘record key’. The sum of record keys of all records contained in a
cell determines the noise given to that cell. The record keys are permanently assigned, so
that repeated queries will receive the same noise. It also has the effect that a group of
records will receive the same noise, even if appearing within different tables.

2.3 Suppression

Very sparse tables lead to attribute disclosures (learning an attribute of an individual,
using a reasonable level of prior knowledge). Given the nature of these outputs, the size
of flows between geographies is considered to be a priority for users over the
accompanying characteristic information. To prevent disclosures, we can consider
suppressing the characteristic variable whilst maintaining basic information about the
flow.

Fig. 3. Illustration of the cell-key perturbation method, first developed by the Australian Bureau
of Statistics (ABS). Every record is assigned a random record key, after which the method is
deterministic, allowing a repeatable procedure using the same record keys. The noise or
perturbation applied to a cell is a function of the sum of the record keys of all records contained
within the cell, and the cell value (number of records in the cell). The perturbation lookup table
determines the perturbation value to apply to each cell, though most combinations are set to apply
noise of +0
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In Table 1, given knowledge of a respondent who lived in ‘Area A’ and worked in
‘Area C’, an intruder would learn that the individual must have travelled by car. The
same process could be easily repeated for any other variable as there will remain only
one respondent travelling from ‘Area A’ to ‘Area C’. After applying suppression,
Table 2 reveals that one person travelled from Area A to Area C, but no other infor-
mation, the intruder does not learn any new information about the individual. The
information revealed for flows from ‘Area B’ to ‘Area D’ is unaffected.

This disclosure risk can apply to large groups in the same way, e.g. if 10
respondents had travelled from ‘Area A’ to ‘Area C’, all of which used the same form
of transport the same information could still be learned by an intruder. Though, when
large groups of people have disclosures in this way, the information is often less
sensitive, and could be learned by an intruder by other means (they learn that an
individual travels by car not because they are identified in the output, but because a
large number of similar respondents travel in this way). Section 3 investigates the
impact on data utility of allowing disclosures on varying sizes of groups of respon-
dents, specifically suppressing disclosures on any size of group of respondents (known
as no threshold), suppressing group disclosures on fewer than 5 records (a group
disclosure threshold of 5), and suppressing disclosures on fewer than 3 records (a group
disclosure threshold of 3).

3 Application of Methods

3.1 Application of Perturbation

Using a combination of methods attempts to minimise the level of suppression nec-
essary, potentially allowing more detail in larger flows to be released. As the main form

Table 1. Illustration of the outputs before applying the suppression method

Area of residence Area of workplace Mode of transport Before suppression

Area A Area C Car 1
Area A Area C Bike 0
Area A Area C Walk 0
Area B Area D Car 5
Area B Area D Bike 2
Area B Area D Walk 0

Table 2. Illustration of the outputs after applying the suppression method

Area of residence Area of workplace Mode of transport After suppression

Area A Area C All 1
Area B Area D Car 5
Area B Area D Bike 2
Area B Area D Walk 0
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of protection for census data, record swapping will have been applied to the microdata
records before the production of origin-destination outputs.

The post-tabular methods described (perturbation and suppression) were applied on
a number of univariate origin-destination tables using 2011 Census data. These could,
in 2021, potentially be released publicly given this level of protection. The majority of
these tables were not publicly available for the previous census. The data covered 3
different types of “flow”, commuting flows to work, migrations flows from address one
year ago to current address, and flows from main address to a listed second address.
The data were aggregated at 4 different geographical levels, Local Authority (avg.
160,000 residents), Middle Super Output Area (MSOA, avg. 8000 residents), Wards
(avg. 6500 residents) and Output Area (OA, avg. 300 residents). A number of popular
characteristic variables were used: age, sex, marital status, ethnic group, religion,
country of birth, occupation, industry, economic activity, approximated social grade,
number of hours worked, method of travel, and distance travelled to work.

Note that these tables and results do not include zero cells. Origin destination tables
inclusive of zero cells would be unmanageably large, with the vast majority of cells
containing uninformative ‘empty flows’ from distant parts of the country.

As expected the vast majority of these tables consisted of very low counts across all
geographic levels (Fig. 4). For tables at Output Area level, 95% or more of non-empty
cells were value 1 or 2, an indicator of severe sparsity. Amongst higher geography
tables, such as Local Authority, between 30 and 60% of cells were size 1 or 2.

Fig. 4. Distribution of pre-perturbation cell values (excluding zeros). The majority of the table
cell values are 1 or 2. One observation is recorded for each table.
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Of all possible disclosures revealing information about the origin of a respondent,
their destination or the value of their characteristic variable, a large majority of the
disclosures were found to reveal the value of the characteristic variable (Fig. 5).
Intuitively this is a result of the origin and destination variables having many more
categories than the characteristic variable, even at higher geographies, respondents
were likely to be unique on origin and destination. For MSOA, Ward, and Local
Authority levels, these consistently accounted for more than 95% of disclosures. At
Output Area level, disclosures on origin or destination formed a larger proportion of
disclosures, but the characteristic variable still accounted for between 65 and 100%.

The focus of this paper from this point on will be disclosures on the characteristic
variable, for the following reasons:

1. For any level of geography, disclosures on the characteristic variable form the
majority of disclosures

2. The information in the characteristic variable is considered to be more sensitive than
geographic information, and less likely to be previously known by an intruder

3. Given the structure of origin-destination outputs, a disclosure on the characteristic
variable can lead more readily to other disclosures; one isolated flow from one
geography to another can be broken down to disclose any other characteristic
variable, an isolated flow from one geography by a characteristic variable can only
be broken down by other geographical information, which may already have been
disclosed.

Given these selected outputs, applying perturbation can be shown to not signifi-
cantly address this disclosure risk (Fig. 6):

Fig. 5. Proportion of disclosures that reveal characteristic information, rather than geographic
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Comparing the number of attribute disclosures before and after perturbation, very
little difference is found. Perturbation was intended to protect against disclosure by
differencing, rather than this type of attribute disclosure. It is clear that perturbation on
its own is not sufficient to protect the data, it tends to reduce the number of disclosures
by between 0 and 4%, though in Local Authority tables it often increases the number of
disclosures (produces more apparent disclosures than it protects).

The impact of perturbation was also observed across different types of origin-
destination table (commuting flows to work addresses, migrations from addresses one
year ago to current address, and flows from main address to a listed second address).
No significant relationship was found between type of flow table and the protection
provided by perturbation, all tables received very low levels of protection, between 1–
3% reduction.

It should be noted that a relatively low level of perturbation was used for this test
case, applying more noise could be used to provide more protection, along with the
associated further reduction in utility of the data. The level of perturbation that ONS
may apply to Census 2021 data has not been fixed.

Fig. 6. Reduction in number of attribute disclosures by geography, after applying perturbation
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3.2 Application of Suppression

Suppression directly protects against disclosures on the characteristic variable by
removing information deemed to have been disclosed. Given a threshold for a size of
group disclosures to allow, it guarantees that information is not learned on character-
istic variable (for groups smaller than the set threshold).

As with all forms of suppression, totals could be used to attempt to unpick the
protection, and estimate the true values. In this case this form of attack is prevented by
the perturbation. Consider flows within a large area, consisting of two small areas. It’s
possible that only one small area flow would be suppressed. Usually totals can be used
to ‘unpick’ the suppression, in this case perturbation adds uncertainty to this unpicking
(Table 3):

Using the perturbed counts provided, with the flows within the large area as the
totals, an intruder may estimate that the flow from small area 1 to small area 2 would be
–1, which is clearly incorrect. This estimate is the true flow from small area 1 to small
area 2 (1) plus noise added to the table. This prevention depends heavily on the
outcome of perturbation, but comfortably provides uncertainty around values found in
this way. The same mechanism applies to subsets of data broken down by other
characteristic variables. This is a considerable benefit of applying perturbation, as
secondary suppression can be difficult to implement and result in high utility loss.

Suppression provides strong protection against disclosure on the characteristic
variable, though the resulting impact on the utility of the data must be considered [3].
A good measure of lost utility would be the level of suppression applied. Though the
direct number of suppressions applied may be misleading, as larger flows could be
considered to contain more data than smaller flows, the percentage of records contained
in suppressed cells is also considered (Fig. 7).

The percentage of cells suppressed, against the percentage of records suppressed is
plotted, using different thresholds for minimum group size (no threshold, threshold of
5, or threshold of 3). Ideal observations for utility would be in the bottom left of the
graph, representing very few cells and very few records having been suppressed.
Observations towards the top right of the graph represent high levels of suppression/
utility loss.

Table 3. Uncertainty in unpicking values provided by perturbation

Origin Destination True count Perturbed count

Large area Large area 20 19
Small area 1 Small area 1 7 7
Small area 1 Small area 2 4 4
Small area 2 Small area 1 1 *
Small area 2 Small area 2 8 9
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A clear relationship between geography and suppression can be seen here, with
lower geographies having much higher rates of suppression required as expected. High
geography tables have much higher counts, and breakdowns are usually available with
few attribute disclosures requiring suppression. Low geographies can be very sparse
with up to 90% of cells resulting in disclosures. As is always the case, larger flows over
shorter distances tend to be safe, long distance flows tend to be disclosive but small,
and make up a small proportion of the table. Observations of MSOA and Ward (green
triangles ad blue squares) are very close to each other, a likely result of their very
similar size.

The association between proportion of cells and proportion of records suppressed
can also be seen to be positive, and relatively flat when using the lower thresholds for
disclosures, and higher geographies. Using a lower threshold reduces the necessary
suppression, which causes a considerable improvement in utility of the lower geog-
raphy tables (Output Area). Tables at Local Authority consistently have very few
records suppressed (average 6%), with MSOA and Ward quite varied, depending
heavily on the variables used.

Fig. 7. Suppression levels by geography
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Suppression rates by table type is also plotted (Fig. 8). Migration tables (denoted
by green triangles) consistently have lower level of records suppressed. This may be a
result of the many respondents who have not migrated, which are very unlikely to be
suppressed. Second address tables generally require more suppression than work tables,
but clearly size of geography areas used has a greater impact than the type of table,
observations are very clustered by geography and much more mixed by table type.

Perturbation has no overall effect on the univariate distributions as the method is
designed to be unbiased for each cell count. (Even if certain categories are all very low
counts whilst others are all very large, both categories will receive on average zero
noise). Suppression however may affect the distribution of the characteristic variable,
it’s possible that some categories will be suppressed more often others (small flows are
more likely to contain common categories on the characteristic variable, so overall the
more common categories are more likely to have values suppressed/removed). To
counteract this effect the overall univariate distributions will be released separately.
Researchers can use this information to adjust for the missingness when necessary.

Fig. 8. Suppression levels by table type (Color figure online)
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4 Conclusions

These two stages of disclosure control remove attribute disclosures on characteristic
variables, and prevent the unpicking of suppression using other unsuppressed values
and totals. Disclosures that reveal either origin or destination are not protected, as these
are considered more likely to be the private knowledge used by an intruder, rather than
the sensitive information to be found out. Additionally, the changes required to protect
against these scenarios would sacrifice more utility than other forms, for little gain in
protection. The ONS intends to provide the “flows” with no access restrictions (public)
as these cannot reveal information about individuals, other than detailed knowledge on
origin or destination location, given approximate knowledge of origin and destination.
These methods should allow ONS to provide more origin-destination data publicly, and
improve access to data for all users with minimum disclosure risk.

These methods provide good protection against disclosure risk, whilst directly
limiting the amount of data users receive. Suppression levels for the test data were very
low at Local Authority level and some of MSOA/Ward outputs. Suppression/utility
loss is considerably greater at low levels of geography, with some suggested tables
having more than 90% of cells, or 80% of records being suppressed. Whether this loss
in utility is an improvement from access restrictions used in 2011, and these protection
methods should be used in practice depends on its acceptability to researchers.

5 Next Steps

User research will ultimately decide whether this approach is deemed acceptable and is
implemented in 2021. The next focus of this research should be to gauge users views
on their needs for Origin-Destination data and whether this form of protection will be
sufficient for their research purposes.

It is also worth investigating the impact of using a mix of geographic levels, which
may significantly reduce the level of suppression needed, e.g. tabulating flows origi-
nating from relatively large areas (MSOA) but maintaining high level of detail in
destinations (Output Area), or vice versa. This could be greatly beneficial if one
geography is of much more interest to users than the other, this may allow more detail
to be kept in priority variables by sacrificing detail in low priority variables without an
increase in disclosure risk.
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Abstract. Generating synthetic data for the dissemination of individual infor-
mation in a privacy-preserving way is an approach that is often presented as
superior to other statistical disclosure control techniques. The reason for such
claim is straightforward at first glance: since all records disseminated are syn-
thetic and not actual observed values, no individual can reasonably claim to face
a privacy threat. Thus, and if the synthesizer used is good enough, synthetic data
will potentially always offer a high level of information with low disclosure risk
attached. Building on recent advances in the literature regarding the conceptu-
alization of an intruder, this paper aims at challenging this claim by reassessing
the privacy guarantees of synthetic data. Using the concept of a maximum-
knowledge intruder, we demonstrate that synthetic data can in fact be always
expressed as a re-arrangement of the original data and that, as a result, they may
lead to configurations where disclosure risk may be higher than for non-
synthetic disclosure control approaches. We illustrate the application of these
results by an empirical example.

Keywords: Statistical disclosure control � Synthetic data
Maximum-knowledge attacker

1 Introduction

Data on individual subjects are increasingly collected and exchanged. By their nature,
they provide a rich amount of information that can inform statistical and policy analysis
in a meaningful way. However, due to the legal obligations surrounding these data, this
wealth of information is often not fully exploited in order to protect the confidentiality
of respondents. In fact, such requirements shape the dissemination policy of microdata
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at national and international levels. The issue is how to ensure a sufficient level of data
protection to meet releasers’ concerns in terms of legal and ethical requirements, while
offering users a reasonable richness of information. Moreover, over the last decade the
role of microdata has changed from being the preserve of National Statistical Offices
and government departments to being a vital tool for a wide range of analysts trying to
understand both social and economic phenomena. As a result, more parties, often very
heterogeneous in their privacy and information requirements, are now involved in
microdata transactions. This has opened a new range of questions and pressing needs
about the privacy/information trade-off and the quest for best practices that can be both
useful to users but also respectful of respondents’ privacy.

Statistical disclosure control (SDC) research has a rich history in addressing those
issues, by providing the analytical apparatus through which the privacy/information
trade-off can be assessed and implemented. SDC consists in the set of tools that can
enhance the level of confidentiality of any data while preserving to a lesser or greater
extent their level of information (see [7] for an authoritative survey). Over the years, it
has burgeoned in many directions. In particular, techniques applicable to microdata,
which are the focus of this paper, offer a wide variety of tools to protect the confi-
dentiality of respondents while maximizing the information content of the data
released, for the benefits of society at large.

While generally considered as part of the SDC literature, the publication of syn-
thetic data is an appealing alternative to, but also a significant departure from, pure
SDC methods. The idea is simple: instead of disseminating an anonymized version of a
dataset, i.e. the original data altered by the application of an SDC method, some data
are instead created by drawing from a model fitted to the original data (hereafter called
a synthesizer). At first glance it is clear that, since all values are synthetic and none of
the individuals in the original data are included, disclosure risk must be practically non-
existent [14]. The original data are used to build the synthesizer, and thus the contri-
bution of an individual to a data set is not pointless but is in fact used only as an
informational basis. As a result, synthetic data seem to offer a clear and almost
definitive advantage compared to other SDC methods: it would seem that synthetic data
can be made as close as possible to the original data without any strong concern for
privacy, while for non-synthetic SDC methods similarity to original data must be
traded off against disclosure risk in a more stringent way (and hence utility is neces-
sarily limited).

However, further scrutiny appears to weaken the advantage offered by synthetic
data. For the sake of illustration, assume a dystopian society in possession of a perfect
synthesizer, i.e. one that is able to perfectly replicate the statistical information
observed over its population. In this case, an intruder using the synthetic data to
conduct his attack may be able to re-identify some individuals or learn some sensitive
information about them. From the point of view of the individuals, the fact that the
information gained by the intruder is synthetic does not change much the situation: the
right to privacy has been violated. While from a legal perspective this situation may not
be unlawful [19], from an ethical perspective this can be clearly qualified as a negative
outcome. Of course, in real life the perfect synthesizer does not exist. But the better the
job done by the data releaser to create the synthetic data, the closer can be an attacker to
gaining valuable information about some respondents in the original data. Thus, it can
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be reasonably argued that, ultimately, synthetic data are somehow subject to the same
kind of risk/information trade-off faced by non-synthetic SDC methods.

It is based on these considerations that the privacy guarantees of synthetic data need
to be explicitly considered. In [18], a privacy model to produce synthetic data with ex
ante privacy guarantees was proposed. Here, we take an ex post approach, as previ-
ously performed in e.g. [6, 12], but based on a new, encompassing definition of an
attacker, in order to reassess the privacy guarantees of synthetic data, regardless of how
they have been obtained. The definition of an attacker on individual data has always
been a thorny issue in the literature, not least because one must postulate how much
background knowledge the attacker has. As a result, a variety of scenarios can be
constructed, all based on ad hoc assumptions that may not comply with the views and
the constraints faced by the data releasers, and that will also remain very context-
specific. A recent proposal in the SDC literature has tried to circumvent these diffi-
culties by proposing the concept of a maximum-knowledge attacker [1]. This attacker
is based on a rather radical setting because he is entitled with the knowledge of both the
original and the anonymized data set. While this may appear as unrealistic at first
glance, such a scenario is conceptually powerful: any anonymized data set judged as
sufficiently safe in term of disclosure risk under this scenario will in fact be safe under
any kind of other possible scenario. As a result, this concept is a way to unify the
comparison of the various performances of SDC techniques by using a common
benchmark. It is also a way to ease the dissemination of individual data in the sense
that, if a data releaser agrees with the level of disclosure risk contained in his anon-
ymized data set under the maximum-knowledge attacker configuration, then he can be
reassured that the release will be safe whatever the malicious attempts that could take
place on his data.

Now, if the notion of a maximum-knowledge attacker seems valuable to gauge
non-synthetic SDC techniques, it seems fair to submit synthetic data to the same kind
of test. This is the purpose of this paper, structured as follows. Section 2 gives some
background concepts on synthetic data and the maximum-knowledge attacker model
needed later on. Section 3 characterizes the consequences of having some synthetic
data submitted to a maximum-knowledge attack, and subsequently derives some new
tools to assess their privacy guarantees. Section 4 presents some empirical results based
on these tools. Conclusions and future research directions are gathered in Sect. 5.

2 Background Concepts

2.1 Synthetic Data

Synthetic data rely on a principle that is by nature similar to the imputation of missing
values in a data set. The idea is to fit a model, called a synthesizer, to the original data;
then values are drawn from the synthesizer to replace original data rather than merely
imputing missing data. Three types of synthetic data can be distinguished [7]:

• Fully synthetic data: no original data are released and the values of all attributes
across all records are synthetic.
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• Partially synthetic data: across some if not all records, only sensitive attributes are
synthesized while for example quasi-identifiers are original values.

• Hybrid data: original and fully synthetic data are combined, and the resulting data
can be more or less similar to the original or fully synthetic data.

The above distinction will not have any consequences in what follows in this paper,
so we will use the term synthetic data indistinctively to point to any of the three types.
However, what is common to them is obviously the pivotal role of the synthesizer.
Generating synthetic data worth disseminating is work-intensive, not least because
creating a synthesizer that can replicate the intricate features of a micro data set
necessitates some time and an involved level of expertise. It is beyond the scope of this
paper to discuss the relative merits of the several approaches available to create a
synthesizer, as well as the criteria that can be used to gauge it (see [4] for an extensive
discussion), but a general principle is that the level of information offered by a synthetic
data set can be only as good as the quality of the underlying synthesizer used to
generate it. In this paper, we will simply assume that the data releaser did a good
enough job so that the resulting synthetic data are worth disseminating and being
analyzed by the users.

Regarding the practical characteristics of synthetic data, let us emphasize that they
do not always come under the same format than the original data. First of all, they do
not have to be of the same size, although having the same number of synthetic records
than the number of original records seems a natural choice. To the best of the authors’
knowledge, no firm guideline exists in the literature on this criterion (see however [13]
for an empirical discussion). Depending on the context, an argument can be made for
releasing synthetic data smaller than, same size as, or larger than the original data.
Given this, we will assume that the number of synthetic records is the same as the
original data. However, we will not restrict to the case of equal number of synthetic and
original records, as one of the appeals of synthetic data is that they can come under any
size. Specifically, we will outline below a pre-sampling procedure that can be applied
before undertaking the evaluation of the privacy guarantees of synthetic data; this will
in fact allow gauging synthetic data sets of any size.

A second difference with non-synthetic SDC methods is that synthetic data gen-
erally lead to the dissemination of several data sets, while for the former methods only
one set is released. This practice is motivated by the goal of capturing the different
designs of the original data [15]. Clearly, such a feature can quickly become cum-
bersome for the users (as well as for the releasers who need to generate the sets under
various design configurations) and thus has to balance cost and accuracy [13]. More-
over, in the case where the original data are numerical and approximately multivariate
normal, the sufficiency-based perturbation approach will perform at least as well as
synthetic data for the preservation of information, while at the same time necessitating
the release of only a single data set, which eases the tasks of the users [10].

Here again, no firm guideline exists on the right number of data sets to be released.
The original proposal of releasing multiple data sets postulates as a rule-of-thumb a
typical number between 3 and 10 [15], but later contributions outlined that this number
is in fact context-dependent and may vary according to the analytical needs of the user
and the properties of the employed synthesizer [13]. In this paper, we will assume that
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an arbitrary number M of synthetic data sets is released. As we will demonstrate, this
number will turn out to be critical for the privacy guarantees of synthetic data.

Finally, in the introduction of this paper we briefly touched upon the fact that
disclosure risk in fully synthetic data must always be by nature almost non-existent.
Such claim has been made at various occasions in the literature, e.g. [4, 5, 13, 14],
albeit it must be mentioned that: (i) this conclusion is less clear-cut for partially
synthetic or hybrid data [5, 7] (which by construction will contain some of the original
data), (ii) as far as pure synthetic data are concerned, some attempts to evaluate dis-
closure risk have also been previously proposed [6, 12]. In these last two cases
however, it is again generally assumed that the risk is very low. The recent advances in
the SDC literature on the notion of intruder cast a new light on this crucial feature of
synthetic data.

2.2 The Maximum-Knowledge Attacker Model

The issue of an attacker’s background knowledge has been recently pushed further in
the literature through the proposal of the maximum-knowledge attacker model [1, 9].
This model defines an attacker who knows both the original data set and its entire
corresponding anonymized version. This is a rather extreme configuration, unlikely to
be mirrored by concrete situations, but it remains however conceptually very insightful,
as an anonymized data set that can pass the test of such a situation will in fact be able to
pass any test. It also has the advantage of completely resolving the issue of which
background knowledge is to be assumed for operationalizing an attack on individual
data [9]. Moreover, this model has as a consequence that, while it legitimates an
exclusive focus on re-identification disclosure, it can be easily adapted to attribute
disclosure assessment by excluding from the maximum-knowledge background a
specific attribute [2]. In that case, the attacker’s objective is to learn about the specific
attribute’s values as precisely as possible. This possibility, of particular interest for
synthetic data, will be exploited in the empirical section of this paper.

The concept of a maximum-knowledge attacker is rooted in the known-plaintext
attack defined in cryptology. While other types of attack can be conceived, they carry
less meaning in the context of individual data [1]. A ciphertext-only attack, where only
the anonymized data set is available, is less realistic than a known-plaintext attack: the
attacker is likely to know at least a few original records or attributes, as part of his
background knowledge. Regarding chosen-plaintext or chosen ciphertext-attacks, they
are relevant only in the case in which the attacker can interact with the anonymization
procedure; this may occur when protecting the answers to interactive queries to an on-
line database, but it does not happen when releasing an anonymized data set. Note that
a maximum-knowledge attacker, observing both the original data set and its anon-
ymized version, has nothing to gain in terms of information. One can view his attempt
as being purely slanderous, trying to discredit the data releaser by revealing his
anonymization procedure.

Given the assumption that such a powerful person might exist, this leads to one
question: what is exactly the perspective of that intruder? In fact, the reply relies on the
record tracking numbers. Generally, and after having applied a non-synthetic SDC
technique, data releasers can track which anonymized record derives from which
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original record through a number that does not carry any information of any sort and is
unaffected by the anonymization procedure. Moreover, when the data are released, all
numbers can be modified or deleted. But these numbers, known for practical purposes
by the data releaser but not by the maximum-knowledge attacker, act in fact as a mask.
Contrary to the statement made in [16], record tracking numbers in fact set the limit of
the maximum-knowledge attacker. To make this clear, Table 1 illustrates the attacker’s
perspective on a toy example. In this example, the intruder has to retrieve the mapping
between records in X and records in Y. His task is equivalent to retrieving some
permutation structures. Note that permutation is in fact the overarching principle
governing non-synthetic SDC methods [1, 11, 16, 17]. In what follows, we will also
demonstrate that actually such principle applies to synthetic methods too.

Using synthetic data does have some implications for the maximum-knowledge
attacker model. For non-synthetic SDC methods, the releaser has the advantage over
the maximum-knowledge attacker of knowing the mapping between the tracking
numbers in X and Y. The releaser can use this knowledge for example to assess how an
individual has been protected; even the individual herself can verify her protection, if
she can identify her own record in the non-synthetic data set. But for synthetic methods
the mapping between original and synthetic records does not make much sense: a
synthetic record does not derive from any specific single original record. Thus, the
advantage of the releaser over the maximum-knowledge attacker vanishes: both are at
the same level of knowledge. The privacy risk in synthetic data is not tied to a mapping:
it is rather connected with knowing that synthetic records exist that are very close to
some original records. In fact, real and synthetic individuals are linked by information.
This can be assessed by a multivariate version of a rank-based record linkage procedure
that will be developed below.

3 Synthetic Data from the Maximum-Knowledge Attacker
Perspective

3.1 Multiple Reverse Mapping of Synthetic Data

We first start by observing that a synthetic data releaser can always transform the data
such that each attribute in each synthetic data set can be expressed as a permutation of

Table 1. Point of view of a maximum-knowledge attacker

ID X1 X2 X3 ID Y1 Y2 Y3

1 13 135 3707 8 160 3248
2 20 52 826 20 57 822
3 2 123 -1317 -1 122 248
4 15 165 2419 18 135 597
5 29 160 -1008 29 164 -1927

Original dataset X Anonymized dataset Y
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the original data. This procedure, called reverse mapping, has been recently proposed
in the literature for non-synthetic SDC methods [1, 11]. To the best of our knowledge,
this is the first time that it is developed for synthetic data.

Assume that a releaser generates m = 1, …, M synthetic data sets Ym ¼
Ym
1 ; . . .; Y

m
p

� �
based on an original data set X = (X1, …, Xp); denote by Xj =

(x1,j, …, xn,j) and Ym
j ¼ ym1;j; . . .; y

m
nm;j

� �
the values of attribute j = 1,…,p over n records

in the original data and nm records in the mth synthetic data set, respectively. No further
assumptions are made, except that the values of an attribute can always be ranked,
which is obvious in the case of numerical or categorical attributes, but also feasible in
the case of nominal ones [3].

In particular, the synthetic data sets need not be of the same size as the original data
set. However, in order to perform reverse mapping, we need to compare sets of the
same size. This issue can be fixed as follows: when the synthetic data have more
(resp. less) records than the original data, synthetic data can be randomly sub-sampled
(resp. super-sampled):

• When nm > n, a subset Qm of size n is randomly selected;
• When nm < n, a superset Qm of size n is created by randomly generating n − n′

additional records from the original n′ ones;
• When nm = n, the synthetic data are not modified and Qm = Ym.

Such a preliminary sampling procedure is viable provided that the original data set
is large enough for it to be analytically interesting and representative. In the remainder
of this paper, we will assume that nm ¼ n; 8m ¼ 1; . . .;M, keeping in mind that the
pre-sampling procedure can be eventually used to align the sizes of every synthetic data
sets with the size of the original data. The multiple reverse mapping of synthetic data is
then performed as follows:

Algorithm: multiple reverse mapping of synthetic data 
Require: original data set X, with attributes , for j=1,...,p 
Require: synthetic data sets , for m=1,..., M, where  has attributes 

, for j=1,...,p 
For m=1, ..., M do

For j=1,...,p do
For i=1,…,n do

  Compute k=Rank( )
  Set = x(k,j) (where x(k,j) is the value of  of rank k) 

  Next i
Let

Next j
 Let data set 
Next m
Return data sets
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The resulting reverse-mapped attribute j in the mth synthetic data set Zm
j expresses

Ym
j as a permutation of Xj. Since the point values of a synthetic attribute are unlikely to

be the same as the point values of the original data, particularly in the case of numerical
attributes, one must also add Em

j , the difference between Ym
j and Zm

j , to get an exact
recomposition of Ym

j as a function of Xj. Then, and since Zm
j is a permutation of Xj, it

always holds that (with Pmj denoting a permutation matrix):

Ym
j ¼ Pmj Xj þEm

j ; 8j ¼ 1; . . .; p and 8m ¼ 1; . . .;M ð1Þ

Equation (1) shows that, conceptually, a synthetic data set is functionally equiva-
lent to (i) permuting the original data; (ii) adding some noise to the permuted data. But,
since the noise added has to be necessarily small, as it cannot by construction alter
ranks, it does not offer protection of any sort against disclosure risk. In fact, it repre-
sents an information loss (as it modifies the marginal distributions of a data set) that is
not matched by a decrease in disclosure risk: if, for example, an attacker learns from a
data set that the income of an individual is 102 while in reality it is 100, privacy has
been violated in the same way as if the intruder was able to retrieve the exact value.
Thus, the imprecision due to the small noise is not relevant for privacy. But any
anonymization method, synthetic or not, must intuitively comply with the basic prin-
ciple that any information loss triggered by anonymization must have a counterpart in
terms of improved protection. Clearly, the small noise addition does not comply with
this principle and can thus be discarded. As a result, the anonymized version of a data
set always has an underlying structure that exactly preserves the marginal distributions
of the original data (as they are simply a permutation of the original ones), but alters the
relative ranks across attributes [15]. Stated otherwise, what ultimately brings protection
(and also information loss) are the changes in relationships between attributes.

At first glance, viewing synthetic data as a rank permutation may seem counter-
intuitive. After all, and as mentioned above, there is no mapping between the synthetic
records and the original records. However, the synthetic data set tries to mimic the
information in the original data set. In turn, this mimicked information can be
expressed as a function of the original data, but with a different rank structure. Thus, at
a fundamental level of functioning, a synthesizer can be viewed as a generator of
different permutation structures of the original data, or equivalently as a way to gen-
erate some permutation matrices for anonymization. The generation ofM synthetic data
sets is thus equivalent to the generation of M permutation matrices. As it has been
previously characterized in the literature that any non-synthetic SDC method is also
equivalent to the generation of specific permutation matrices [16, 17], the distinction
between synthetic and non-synthetic approaches to anonymization does not seem a
fundamental one. As a consequence, synthetic methods must undergo a disclosure risk
scrutiny just like their non-synthetic counterparts.

The ramifications of the above conclusion can further be grasped by recalling the
example of a perfect synthesizer. In that case, with a perfect mimic of the information,
all multivariate relationships must be exactly preserved. As a result, the permutation
matrix has to be the identity matrix (which is a particular case of a permutation matrix
where no permutation takes place) and the synthetic data set is the same as the original
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data set. More realistically, the better is a synthesizer, the closer to the identity matrix
will be each of the underlying permutation patterns contained in the multiple synthetic
data sets begin generated.

Finally, and while the scope of this paper is to investigate the privacy guarantee of
synthetic data, it must be noted that the results developed above have broader impli-
cations. A releaser could for example decide to release only reverse-mapped synthetic
data sets. This solution would not entail additional privacy risks as we saw, but will
always offer superior information quality due to the exact preservation of the marginal
distributions. Each synthetic data set will thus convey a different rank structure
according to the targeted design feature of the original data. Such a possibility is a path
for future research.

3.2 Multiple Rank-Based Record Linkage Attack

The multiple reverse mapping procedure can be easily engineered by the data releaser
because he has at his disposal both the original and the synthetic data sets, as in the case
of non-synthetic SDC techniques [11]. But as we have argued, in the case of synthetic
data, the releaser and the maximum-knowledge attacker are at the same level of
knowledge. Thus the attacker, who tries to perform the equivalent of a known-plaintext
attack in cryptography, can also reverse map each synthetic data set, eliminate the small
noise addition and ultimately be confronted with a collection of data sets that contain
only the original data but with different permutation structures. Here, a fundamental
departure from non-synthetic anonymization is that the attacker is entitled to several
attempts to perform his attack. For instance, if trying to learn say the level of income of
an individual, the attacker will try on the M data sets to retrieve the value. Intuitively,
one can then see that the question of privacy in synthetic data may be trickier than
previously thought: the attacker, by retrieving M values of income during his attack,
could be confused (if the values are very different), comforted (if the values are close),
or most likely be helped by narrowing the range of potential values. That is, it is in fact
possible that synthetic data may entail a higher degree of privacy risk than non-
synthetic anonymized data (in the latter type of data, only one anonymized data set is
typically released).

To mount the attack against synthetic data, the recently developed procedure of
rank-based record linkage [8] can be repeated M times. We consider this specific
linkage type better than other types (such as distance-based linkage or probabilistic
linkage), because, as outlined above, data anonymization can be basically described as
rank perturbation. Thus, rank-based record linkage appears to be the overarching
procedure for evaluating disclosure risk (see [17] for a detailed explanation).

Denote by O ¼ ðoijÞ and Sm ¼ smlj
� �

the rank matrices of the original data set and

of the mth synthetic data set, respectively1. The procedure of multiple rank-based record
linkage on synthetic data is as follows:

1 Using these notations, oij is the rank of attribute j in original record i and smlj is the rank of attribute
j in synthetic record l of the mth synthetic data set.
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Algorithm: multiple rank-based record linkage 
Require: rank matrix  of the original data 
Require: rank matrices  of the M synthetic data sets 
For m=1,..., M do

For i=1,…,n do
For l=1,…,n do

Compute
Next l 

 Linked index of i in  = 
 Next i 

Next m
Return linked indices of i in the M synthetic data sets 

This procedure is the multi-data set version of the procedure outlined in [8]. It
reports the M possible matches of an original record with the M synthetic data sets.
Several criteria can be selected, such as the sum or the minimum of rank differences. To
evaluate the privacy guarantees of non-synthetic methods, the criterion will generally
depend on the method, e.g. the sum for noise addition or the maximum for data
swapping [8]. In the context of synthetic data, this choice is less clear and several
criteria should ideally be considered.

4 Empirical Illustrations

The objective of this section is to illustrate the concepts of multiple reverse mapping of
synthetic data and multiple rank-based record linkage. The experiment is based,
without loss of generality, on a small data set of 20 observations and three attributes,
and proceeds as follows:

• The assumed original data set is generated by sampling N(50, 102), N(500, 502)
and N(2500, 2502) distributions, respectively. The correlation coefficient between
the first and the second attribute is 0.56, 0.25 between the first and the third, and
0.16 between the second and the third.

• M = 3 synthetic data sets are generated using a similar sampling procedure. The
synthetic data are directly generated with the same size as the original data, albeit
one can use the pre-sampling procedure developed above to eventually align the
sizes of the former with the size of the latter.

• For the sake of illustration, we consider three different levels of closeness to the
original data. As stated previously, the goal of this paper is not to discuss the issue
of how to generate a satisfying synthesizer. Rather, by using three different sets, we
try to account for the difficulty of generating a satisfying synthesizer:
– The first synthetic data set is very close to the original data (but does not

replicate them perfectly). It was sampled from the same normal distributions
from which the original data set was sampled. As a result, the joint relationships
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between the three attributes are slightly altered (the correlation coefficient
between the first and the second synthetic attribute is 0.52, 0.18 between the first
and the third and 0.21 between the second and the third).

– The second synthetic data set has also the joint relationships between the three
attributes slightly altered (the correlation coefficient between the first and the
second synthetic attribute is 0.44, 0.25 between the first and the third and 0.21
between the second and the third) but with also the properties of the marginal
distributions not exactly preserved, i.e. the attributes are sampled from N
(45, 82), N(450, 402) and N(2200, 2002) distributions, respectively.

– The third synthetic data set has its marginal distributions sampled from the same
as the second one. However, no particular effort is made to preserve the joint
relationships (the correlation coefficient between the first and the second syn-
thetic attribute is 0.17, 0.12 between the first and the third and 0.09 between the
second and the third).

Table 2 shows the multiple reverse-mapping procedure for the first attribute in the
three synthetic data sets2. It can be seen that each synthetic data set is expressed as a
permutation of the original data. As outlined in the last section, these versions do not
entail more disclosure risk than the first generated synthetic data sets, but offer an
improved level of information by exactly preserving marginal distributions.

Now, a maximum-knowledge attacker can exactly perform reverse mapping for all
attributes and can attempt to recreate the correct linkage. A releaser can also do the
same to gauge the privacy of his synthetic data sets before release. Of course, identity
disclosure may appear as a peculiar notion for synthetic data but it is still conceivable:
an attacker may try to identify which synthetic individuals are the most similar to real
individuals, i.e. trying to retrieve some clones. However, we believe that more inter-
esting in the context of synthetic data is attribute disclosure, i.e. when a confidential
information contained in the synthetic data sets can be revealed and will closely or
exactly correspond to the information of a real individual.

A maximum-knowledge attacker can conduct an attack on a specific attribute by
ignoring his knowledge of this attribute in the original data; this is part of the flexibility
offered by the maximum-knowledge attacker model (see above and also [2]). The
maximum-knowledge attacker can then use the multiple rank-based record linkage
procedure to see how well he can recreate the ranks of the ignored attribute; that would
simulate a partial-knowledge attacker who did not know the third original attribute and
wanted to guess it. Table 3 shows the result of such an attack when knowledge of the
third attribute of the original data set is ignored and the sum of rank differences
criterion is used to perform multiple rank-based record linkage on the first and second
attributes.

In this example, one can see that the outcome of an attack on synthetic data can
either create confusion to a partial-knowledge attacker, or on the contrary help him
narrow his knowledge of the attribute. Consider for example record no. 1 in the original
data, with a value of rank 2 for the third attribute. What the attacker gains as

2 The two other attributes are not shown here due to space constraints but their reverse-mapped
versions can be displayed in exactly the same way.
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information is wrong in each of the synthetic data sets, with a possible rank identified
as ranging between 8 and 11. In fact, in that case, having multiple sets consistently
orientates the partial-knowledge attacker in the wrong direction. The same is true for
several records, e.g. nos. 7, 15, 17. For these individuals, it can be reasonably argued
that synthetic data sets offer more privacy in the sense that they fool the attacker
consistently across all sets released.

Now consider records nos. 2 and 18. Respectively the third and first synthetic data
sets perfectly disclose the attribute values of these records. But because the other sets
lead into another direction, the partial-knowledge attacker is again confused. As a
result, synthetic data sets seem to provide here again better protection than non-
synthetic approaches for these records. However, the partial-knowledge attacker can
claim with reasonable confidence that the real value for record no. 2 is between ranks 4
and 18 of the original data and for record no. 18 between 3 and 7. That is, he can claim
that the eighteenth individual has a value for the third attribute comprised between
2298 and 2428. Clearly, he has gained some information from the synthetic data sets.

The information can be also narrowed for records where no exact attribute dis-
closure occurs across the three synthetic data sets in the first place. Consider for
example records nos. 4 and 20. For the former, the attacker can claim that the real value
is comprised between 2336 and 2737; for the latter, he can claim it is between 2298 and
2704.

Table 2. Example of multiple reverse mapping on synthetic data sets

Original data
set

Synthetic data set 1 Synthetic data set 2 Synthetic data set 3

ID X1 Rank
of X1

X1 Rank
of X1

Reverse-
mapped
X1

Small
noises

X1 Rank
of X1

Reverse-
mapped
X1

Small
noises

X1 Rank
of X1

Reverse-
mapped
X1

Small
noises

1 38 3 46 9 51 −5 33 2 37 −4 38 4 39 −1

2 66 19 36 1 31 5 54 19 66 −12 46 14 57 −11

3 56 12 43 5 41 2 50 16 63 −13 42 8 50 −8

4 53 11 59 14 57 2 37 6 45 −8 41 6 45 −4

5 31 1 41 4 39 2 43 13 56 −13 49 16 63 −14

6 63 16 61 16 63 −2 45 15 61 −16 49 17 63 −14

7 39 4 44 7 49 −5 33 3 38 −5 56 20 70 −14

8 63 17 56 13 56 0 41 11 53 −12 42 9 51 −9

9 51 9 76 20 70 6 40 9 51 −11 45 12 56 −11

10 56 13 49 10 51 −2 37 5 41 −4 53 19 66 −13

11 70 20 65 17 63 2 37 4 39 −2 42 7 49 −7

12 61 15 59 15 61 −2 43 12 56 −13 35 3 38 −3

13 41 5 40 3 38 2 32 1 31 1 44 11 53 −9

14 49 7 43 6 45 −2 51 17 63 −12 47 15 61 −14

15 51 10 53 12 56 −3 58 20 70 −12 28 1 31 −3

16 64 18 51 11 53 −2 39 8 50 −11 50 18 64 −14

17 45 6 66 18 64 2 45 14 57 −12 33 2 37 −4

18 57 14 44 8 50 −6 39 7 49 −10 42 10 51 −9

19 37 2 72 19 66 6 41 10 51 −10 40 5 41 −1

20 50 8 39 2 37 2 53 18 64 −11 46 13 56 −10
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Alternatively, assuming that the maximum-knowledge attacker now ignores his
knowledge of the first attribute in the original data leads to the similar presence of
edges in information (Table 4). For example, for records nos. 9 and 18 the knowledge
of the first attribute is narrowed to a significant extent.

While these examples are meant to be illustrative, they however tend to suggest that
synthetic data do not come always with low disclosure risk. Releasing multiple data
sets can in fact be viewed as an additional privacy threat. Even if by definition no real
individual is present in the synthetic data, some clones nonetheless are, and these
clones can be re-identified to learn some information about some real individuals.

Originally, the proposal of releasing multiple data sets aimed at enhancing the
quality of information offered by synthetic data. But, considering that such practice can
be undoubtedly cumbersome for the users and that the quality of information can in
some cases be made at least as good with a single data set [10], having multiple releases
seem also to entail some previously uncharacterized privacy risks that render this
practice questionable.

Table 3. Example of multiple rank-based record linkage: third attribute disclosure scenario

Original data set Multiple rank-based record
linkage: ranks identified by the
intruder for X3

ID X3 Rank of
X3

Synthetic
data set 1

Synthetic
data set 2

Synthetic
data set 3

1 2228 2 11 9 8
2 2299 4 12 18 4
3 2534 10 1 8 12,17
4 2526 9 5 17 11
5 2336 5 16 13 2
6 2598 13 19 19 3
7 2736 16 2 9 8
8 2557 11 12 3 10.9
9 2704 15 17,4,5 16 12,2
10 2513 8 5 17 13
11 2942 19 17 3 10
12 2737 17 18 7 3
13 2559 12 2 2 8
14 2809 18 8 16 16
15 2195 1 4.5 16 11
16 2655 14 6,19 11 4
17 2963 20 15 5 15
18 2298 3 3 7 7
19 2382 6 11 9 8
20 2428 7 15 15 3,14
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5 Conclusions and Future Work

Synthetic data is often perceived as having lower disclosure risk than other forms of
SDC methods. In this paper, we show that this may not always be the case. Despite the
fact that no real individuals are included in a data release, at least as far as fully
synthetic data are concerned, synthetic and real individuals remain however linked by
the information they convey. If an attacker is able to retrieve some information on real
individuals that happens to be correct, it ultimately does not matter that this information
is based on simulated data. Even if such a disclosure does not fall under the consid-
eration of any legislation on privacy, it can nonetheless be viewed as unethical insofar
as it affects real individuals.

The objective of this paper was thus to investigate the privacy guarantee of syn-
thetic data. Using recent advances in the literature on the definition of an attacker in
data anonymization, we confronted synthetic data to an attack by a maximum-
knowledge intruder. While conservative in its stance, this model has the merit to
establish a common benchmark to gauge the privacy guarantees of non-synthetic

Table 4. Example of multiple rank-based record linkage: first attribute disclosure scenario

Original data set Multiple rank-based record
linkage: ranks identified by the
intruder for X1

ID X1 Rank of
X1

Synthetic
data set 1

Synthetic
data set 2

Synthetic
data set 3

1 38 3 15,1 6 14
2 66 19 12 16,17 20
3 56 12 20 2,4 19,15
4 53 11 3,6 19 7,10
5 31 1 12,11 13 20
6 63 16 7 19,5 4,11
7 39 4 1,7,18 10 17
8 63 17 19 2,4 9
9 51 9 16 8 12
10 56 13 6 1,14 7,3
11 70 20 10 20 5
12 61 15 18 12,10 6
13 41 5 8,2 3 17,1
14 49 7 17 8 8
15 51 10 12 17 2
16 64 18 16 5 4
17 45 6 1 15 18
18 57 14 15 7 16
19 37 2 9 7 1,13
20 50 8 9,3,14 1,14 7,3,13
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anonymization methods. It thus seems only fair to consider synthetic data in the same
context. Actually, the maximum-knowledge attacker is the counterpart of the popular
and widely used notion of known-plaintext attack in cryptography.

We first presented an extension of a reverse-mapping procedure that can be per-
formed both by an attacker and a synthetic data releaser. Under a reasonable
assumption on the size of the synthetic data sets to be released, this procedure shows
that in fact any synthetic data set can always be expressed as a permutation of the
original data, in a way similar to non-synthetic SDC techniques. This result offers
applications beyond disclosure risk assessment. For one thing, it is always possible to
release synthetic data sets with the same privacy properties but with an improved level
of information, because the marginal distributions can be always preserved without
increasing risk. On the privacy front, reverse mapping leads to the consequence that the
distinction made in the literature between non-synthetic and synthetic data is not so
clear-cut. Thus, both approaches must be evaluated against the same privacy
challenges.

Next, we proposed an extension of the rank-based record linkage procedure that can
also be performed both by the attacker and the synthetic data releaser. In particular, the
latter can use it to assess the privacy guarantee of its synthetic data before release. This
procedure shows that the practice of releasing several synthetic data sets for a single
original data set entails privacy issues that do not arise in non-synthetic anonymization
(where typically only one anonymized data set is released). Indeed, the multiple
releases can lead to better privacy guarantees, by confusing the attacker, or facilitate
attribute disclosure by helping the attacker narrow the range of the possible values that
he is trying to retrieve. An empirical investigation in the last section illustrates those
issues. We believe that this has interesting consequences for synthetic data releases that
deserve further investigation.

The results presented in this paper are preliminary and illustrative. As future work,
we plan to: (i) investigate the theoretical and empirical conditions under which multiple
synthetic data sets can lead to more confusion than help for the attacker; (ii) assess the
possibility of considering synthesizers as tools to generate different permutation pat-
terns, which could offer some insights for non-synthetic anonymization techniques;
(iii) enlarge the scope of the experimental work by using various synthetic data sets,
and in particular assess the occurrence and the magnitude of range narrowing during an
attack.
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Abstract. We present a new synthesizer for categorical data based
on the Quasi-Multinomial distribution. Characteristics of the Quasi-
Multinomial distribution provide a tuning parameter, which allows a
Quasi-Multinomial synthesizer to control the balance of the utility and
the disclosure risks of synthetic data. We develop a Quasi-Multinomial
synthesizer based on a popular categorical data synthesizer, the Dirichlet
process mixtures of products of multinomial distributions. The general
sampling methods and algorithm of the Quasi-Multinomial synthesizer
are developed and presented. We illustrate its balance of the utility and
the disclosure risks by synthesizing a sample from the American Com-
munity Survey.

Keywords: Bayesian · Dirichlet process · Microdata
Quasi-Multinomial · Synthetic

1 Introduction

The synthetic data approach to data confidentiality has gained attention and
momentum in the past two decades. Based on the theory and applications
of multiple imputation methodology for missing data problems (Rubin 1987);
statistical models are first estimated from the original confidential data, and
then multiply-imputed synthetic data is generated to provide high utility, low
risks public microdata. Multiple synthetic datasets should be generated, and
appropriate combining rules have been developed to provide accurate point esti-
mates and variance estimates of parameters of interest. Refer to Reiter and
Raghunathan (2007); Drechsler (2011) for details of the combining rules.

More recently, nonparametric Bayesian models have been further developed
and turned into data synthesizers. Among them, the Dirichlet process mixtures
of products of multinomials (DPMPM) synthesizer is worth particular atten-
tion. The DPMPM consists of a set of flexible Bayesian latent class models
that have been developed to capture complex relationships among multivari-
ate unordered categorical variables (Dunson and Xing 2009). Hu et al. (2014)
implemented the DPMPM as a synthesizer on multivariate unordered categori-
cal data and demonstrated its balance between data utility and disclosure risks.
c© Springer Nature Switzerland AG 2018
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Drechsler and Hu (2017+) used the DPMPM synthesizer for generating par-
tially synthetic data with geocoding information. Other work on some version of
the DPMPM for synthesis include Manrique-Vallier and Reiter (2014), Hu et al.
(2018), Manrique-Vallier and Hu (2018). The DPMPM has also been proposed
as a multiple imputation engine for missing data problems when all variables
are categorical (Si and Reiter 2013; Akande et al. 2017; Murray 2018+; Akande
et al. 2017+).

While useful and promising, the characteristics of the utility and disclosure
risks tradeoff of the DPMPM synthesizer have not yet been a research focus.
The DPMPM synthesizer is based on the multinomial distribution, which has
no parameter to control the tradeoff. On the other hand, the Quasi-Multinomial
(QM) distribution of Consul and Mittal (1977) is a generalized multinomial
distribution with an additional parameter, which can be effectively tuned to
deliver a desired balance of utility and disclosure risks in the synthetic data
products that statistical agencies would produce, if we construct a synthesizer
based on the QM distribution.

In this paper, we focus on developing the QM-DPMPM synthesizer, and
comparing it with the DPMPM synthesizer. Section 2 introduces the QM dis-
tribution, discusses the sampling methods and proposes an algorithm based on
acceptance rejection sampling. The DPMPM and the QM-DPMPM synthesizers
are introduced in Sect. 3. Section 4 presents an illustrative application compar-
ing the two synthesizers, using a sample from the American Community Survey
(ACS). Discussions and future work are given in Sect. 5.

2 The Quasi-Multinomial Distribution

2.1 Introducing the Quasi-Multinomial Distribution

The Quasi-Multinomial distribution (type 2) is a generalized multinomial distri-
bution proposed by Consul and Mittal (1977). We define the QM distribution
by the following probability mass function (pmf):

p(y1, . . . , yF ) =
n!

y1! . . . yF !
1

(1 + nβ)n−1

F∏

f=1

πf (πf + yfβ)yf−1, (1)

where yf , f = 1, 2, . . . , F, is a nonnegative integer, and
∑F

f=1 yf = n. Similar
to the multinomial distribution, yf is regarded as the random frequency of the
fth cell given a total frequency n. We denote this parameterization of the QM
distribution in Eq. (1) by QM(π1, . . . , πF ;n, β).

We consider the parameter β in Eq. (1) as a nonnegative real number. While
this pmf is proper when β > −minf πf/n, we disallow negative β to avoid the
dependence of the parameter space on parameters themselves. This limitation is
necessary for theorems in Sect. 2.2; it also guarantees that the QM will always
increase the data protection.
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When β = 0, Eq. (1) reduces to the pmf of the multinomial distribution with
cell probabilities (π1, . . . , πF ), which we denote as Multinomial(π1, . . . , πF ;n). As
β increases, the variance of any univariate marginal frequency increases (Consul
and Mittal 1975).

Among the similarities of the QM distribution to the multinomial distribu-
tion, there are a few points worth mentioning. First, similar to the multinomial
distribution, the parameters πf ’s of Eq. (1) are nonnegative real number, and∑F

f=1 πf = 1. Hence πf of the QM distribution is referred to by a cell proba-
bility. Second, the expectation of the fth marginal frequency is nπf regardless
of β (Hoshino 2009). In other words, the fth sample relative frequency is the
unbiased estimator of the fth cell probability for all β.

Then we note that since the variance of any univariate marginal frequency
increases as β increases, the accuracy of the unbiased estimator of a cell proba-
bility can be limited by increasing β. This fact implies that replacing the multi-
nomial distribution with the QM distribution in the generation of synthetic
data facilitates to control the balance of the utility and the disclosure risk of
synthetic data while the unbiasedness remains to hold. We thus regard β as a
tuning parameter of the QM synthesizer determined by a statistical agency.

To sample from the QM distribution, we rely on a special case of it. When
F = 2, the QM distribution becomes the Quasi-Binomial (QB) distribution (type
2), proposed by Consul and Mittal (1975). We denote the QB distribution by
QB(π;n, β), with its pmf:

pQB(y) =
n!

y!(n − y)!
1

(1 + nβ)n−1
π(π+yβ)y−1(1−π)(1−π+(n−y)β)n−y−1, (2)

where y = 0, 1, . . . , n, 0 ≤ π ≤ 1, β ≥ 0.

2.2 The Decomposability of the Quasi-Multinomial Distribution

Sampling from the QM distribution can be decomposed into simpler sampling
of marginal variables. The characteristic nature of the QM distribution enables
two general methods of such decomposition. The first one is the conditional
distribution method (Devroye 1986). The second one is multi-stage sampling.

The first decomposition of sampling from the QM distribution exploits the
following general relationship:

(Y1, . . . , YF ) d= (Y1|Y2, . . . , YF ) . . . (YF−2|YF−1, YF )(YF−1|YF )YF , (3)

where “ d=” denotes equality in distribution.
The right hand side of (3) is the product of the conditional distributions of

univariate margins. An explicit formula of these distributions is given below on
the QM distribution:

Theorem 1. If (Y1, . . . , YF ) ∼ QM(π1, . . . , πF ;n, β) then (Yg|Yg+1 =
yg+1, . . . , YF = yF ) ∼ QB(πg/(1 − ∑F

f=g+1 πf );n − ∑F
f=g+1 yf , β) for g =

1, . . . , F .
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Theorem 1 reads that YF ∼ QB(πF ;n, β). It is widely known that Theorem 1
holds for the case of β = 0 or the multinomial distribution. Theorem1 follows
from Theorem 2 below.

Combining Eq. (3) and Theorem 1, we observe that sampling from the QM
distribution is accomplished by sequential sampling from the QB distribution.
By symmetry, Theorem 1 holds even after exchanging the indices of variables.
Therefore the resulting F dimensional sampling distribution of our procedure
does not depend on the order of single margins to sample.

These single margins should be ordered in sampling so that corresponding
cell probabilities are decreasing. This sequential sampling from larger cells is
known to be efficient on the multinomial distribution (Ho et al. 1979).

The second decomposition exploits another property that the conditional QM
distribution given the sum of partial frequencies is again QM:

Theorem 2. If (Y1, . . . , YF ) ∼ QM(π1, . . . , πF ;n, β) then for g = 1, . . . , F and
m = 0, . . . , n,

(Y1, . . . , Yg|
g∑

f=1

Yf = m) ∼ QM(π1/(
g∑

f=1

πf ), . . . , πg/(
g∑

f=1

πf );m,β). (4)

Theorem 2 can be shown by the fact that the QM distribution is closed under
the collapse of cells (Hoshino 2009). It is noteworthy that Theorem 2 holds after
exchanging the indices of variables as Theorem1 does.

Theorem 2 validates two-stage sampling from the QM distribution: The
first stage generates the aggregated frequency of m = Y1 + · · · + Yg ∼ QB
(
∑g

f=1 πf ;n, β); the second stage generates frequencies Y1, . . . , Yg given m, sub-
ject to Eq. (4). Then the resulting vector (Y1, . . . , YF ) ∼ QM(π1, . . . , πF ;n, β).
More generally a recursive argument validates multi-stage sampling from the
QM distribution.

This type of multi-stage sampling has been used for the multinomial distri-
bution to reduce computing time. For example, Malefaki and Iliopoulos (2007)
provide an empirical support to import stages, which might seem redundant. On
the QM distribution, we will see that multi-stage sampling can reduce computing
time because it lowers the rejection rate of acceptance rejection sampling.

We have shown that sampling from the QM distribution can be expressed as
the combination of sequential and multi-stage sampling from the QB distribu-
tion. Next, we discuss the method of sampling from the QB distribution.

2.3 Sampling from the Quasi-Binomial Distribution

To sample from the QB distribution, we prepare acceptance rejection sampling
(also called the rejection method by Devroye (1986)). The key element of accep-
tance rejection sampling is a “proposal” distribution, which should be close to
its “target” distribution and also easy to sample. We use the Beta-Binomial
mixture (BB) distribution as our proposal distribution.
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If p ∼ Beta(a1, a2) and Y | p ∼ Binomial(n, π) then Y is called BB(a1, a2;n)
distributed, with pmf

pBB(y) =
n!

y!(n − y)!
Γ (a·)

Γ (a· + n)
Γ (a1 + y)

Γ (a1)
Γ (a2 + n − y)

Γ (a2)
, y = 0, . . . , n. (5)

The same as the QB distribution, the BB distribution belongs to the family
of the Conditional Compound Poisson distributions (Hoshino 2009). Equaliz-
ing the canonical parameters of this family, the counterpart of BB(a1, a2;n) is
QB(a1/(a1 + a2);n, 1/(a1 + a2)), whose pmf is

pQB(y) =
n!

y!(n − y)!
1

a·(a· + n)n−1
a1(a1 + y)y−1a2(a2 + (n − y))n−y−1, (6)

where a· := a1 + a2, and y takes nonnegative integers from 0 to n.
We regard the case of a1 = a2 = 0 as improper, and this case is excluded

from our argument. If a1 = 0 and a2 > 0 then QB(a1/(a1 + a2);n, 1/(a1 + a2))
degenerates at 0, or it takes 0 with probability one. On the contrary if a2 = 0
and a1 > 0 then QB(a1/(a1 + a2);n, 1/(a1 + a2)) degenerates at n. Hence these
two cases do not need sampling, and they are also excluded from our argument
henceforward.

The ratio of Eqs. (5) to (6) is

pBB(y)
pQB(y)

=
Γ (a· + 1)Γ (a1 + y)Γ (a2 + n − y)(a· + n)n−1

Γ (a· + n)Γ (a1 + 1)Γ (a2 + 1)(a1 + y)y−1(a2 + (n − y))n−y−1
, (7)

and we are interested in the minimum of Eq. (7) with respect to y, which equals
the average acceptance rate of our acceptance rejection sampling. The proof of
the following Theorem3 is given in Appendix 1.

Theorem 3. Suppose that n is a positive integer, and a1, a2 are positive real
numbers. Denote the value of y that minimizes Eq. (7) by y∗. Then y∗ = n when
a1 < a2, and y∗ = 0 when a2 < a1. When a1 = a2, (7) is minimized at y = 0
and y = n.

By symmetry we only consider the case of a1 < a2, where the average accep-
tance rate is assured by Theorem 3 to be

min
y

pBB(y)
pQB(y)

=
pBB(n)
pQB(n)

=
Γ (a· + 1)Γ (a1 + n)
Γ (a· + n)Γ (a1 + 1)

(
a· + n

a1 + n

)n−1

=: r(a1, a2, n).

This rate converges to unity in the following sense:

Theorem 4. Suppose that n is a positive integer, and 0 < π < 1. Then

lim
a→∞ r(πa, (1 − π)a, n) = 1.
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The fact that both BB(a1, a2;n) and QB(a1/(a1 + a2);n, 1/(a1 + a2)) are
close to Binomial(n, a1/(a1 + a2)) when (a1 + a2) is large should suffice to prove
Theorem 4. Consequently, our acceptance rejection sampling can be very efficient
by taking β very close to 0 for fixed π and n.

On the other hand, one may be interested in the efficiency of our sampling
for fixed π and β when n is large. Actually, r(a1, a2, n) = O(n−a2) as n → ∞.
Therefore large n may cause inefficient sampling, but multi-stage sampling can
avoid this situation by repeating the division of samples into two groups of cells,
where the sum of cell probabilities should be close to 1/2 since it implies smaller
a2. Refer to Table 2 in Appendix 2 for the summary of average acceptance rates
r of our QB sampler.

Next we derive the acceptance rate of our sampling for a1 < a2 depending
on y:

pQB(y)
pBB(y)

pBB(n)
pQB(n)

=
Γ (a1 + n)Γ (a2 + 1)

Γ (a1+y)Γ (a2 + n − y)
(a1+y)y−1(a2 + n − y)n−y−1

(a1 + n)n−1
=: ρ(y).

(8)
Consequently our QB sampler is summarized in the following (note that

U(0, 1) is for the standard uniform distribution):

Algorithm 1 (Acceptance rejection sampling from the QB distri-
bution). The following procedure generates a sample from QB(a1/(a1 +
a2);n, 1/(a1 + a2)) for a positive integer n.

When 0 < a1 < a2,

1. Generate p ∼ Beta(a1, a2)
2. Generate y|p ∼ Binomial(n, p)
3. Generate u ∼ U(0, 1)
4. If u > ρ(y) then goto 1
5. Output y.

When 0 < a2 < a1,

1. Swap a2 and a1.
2. Generate p ∼ Beta(a1, a2)
3. Generate y|p ∼ Binomial(n, p)
4. Generate u ∼ U(0, 1)
5. If u > ρ(y) then goto 2
6. Output n − y.

3 The DPMPM and QM-DPMPM Synthesizers

3.1 The DPMPM Synthesizer

The DPMPM is a Bayesian version of latent class models. Consider a sample
X consists of n records, and each record has p unordered categorical variables.
The basic assumption of the DPMPM is that every record Xi = (Xi1, · · · ,Xip)
belongs to one of F underlying unobserved/latent classes. Given the latent class
assignment zi of record i, as in Eq. (10), each variable Xij independently follows
a multinomial distribution, as in Eq. (9). Note that dj is the number of categories
of variable j, and j = 1, · · · , p.

Xij | zi, θ
ind∼ Multinomial(θ(j)zi1

, . . . , θ
(j)
zidj

; 1) for all i, j (9)

zi | π ∼ Multinomial(π1, . . . , πF ; 1) for all i, (10)
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The DPMPM effectively clusters records with similar characteristics based
on all p variables. Relationships among these p categorical variables are induced
by integrating out the latent class assignment zi. To empower the DPMPM to
pick the effective number of occupied latent classes, the truncated stick-breaking
representation (Sethuraman 1994) is used as in Eq. (11) through Eq. (14),

πf = Vf

∏

l<f

(1 − Vl) for f = 1, . . . , F (11)

Vf
iid∼ Beta(1, α) for f = 1, . . . , F − 1, VF = 1 (12)

α ∼ Gamma(aα, bα) (13)

θ
(j)
f = (θ(j)f1 , . . . , θ

(j)
fdj

) ∼ Dirichlet(a(j)
1 , . . . , a

(j)
dj

). (14)

and a blocked Gibbs sampler is implemented for the Markov chain Monte Carlo
sampling procedure (Ishwaran and James 2001; Si and Reiter 2013; Hu et al.
2014; Drechsler and Hu 2017+; Manrique-Vallier and Hu 2018; Hu et al. 2018).

Let p0 be the number of variables to be synthesized. To generate one partially
synthetic dataset X∗

DPMPM using the DPMPM synthesizer, we first generate
sample values of (π, α, θs) from the posterior distribution (θs contains the sample
values of variables to be synthesized). Through a multinomial draw with the
samples of π, we can generate the vector of latent class assignments {zi, i =
1, · · · , n}, as in Eq. (10). Then through a multinomial draw with samples of
θs, we can generate synthetic variable {X∗

ij , i = 1, · · · , n, j = 1, · · · , p0}, as in
Eq. (9).

The sampling process above can also be described as the process of distribut-
ing records over different values of X. The probability of the ith record to take
the values of (xi1, xi2, · · · , xip0) is expressed as

∏p0
j=1 θ

(j)
zixij . We note that any

record in the same latent class f has the same probability of taking the values
of (x1, x2, · · · , xp0), which is p(x1, x2, · · · , xp0 ; f) =

∏p0
j=1 θ

(j)
fxj

.
Regarding (x1, x2, · · · , xp0) as the address of a cell in a p0 dimensional contin-

gency table, then p(x1, x2, · · · , xp0) gives the cell probability of the corresponding
cell. The total number of the cells is

∏p0
j=1 dj =: D, and the generation of one

record in the fth latent class is equivalent to one multinomial draw from D
cells with probabilities {p(x1, x2, · · · , xp0 ; f), xj = 1, 2, · · · , dj , j = 1, 2, . . . , p0}.
Abbreviating these probabilities as qd, d = 1, 2, · · · ,D, the DPMPM synthesizer
actually distributes individuals over D cells as

(nf1, nf2, . . . , nfD) ∼ Multinomial(q1, q2, · · · , qD;nf ), (15)

where nfd denotes the number of records in the fth latent class taking the values
of the dth cell, and nf is the total number of records in the fth latent class.

It is worthy of note that

(n1, n2, · · · , nF ) ∼ Multinomial(π1, π2, · · · , πF ;n). (16)

This additional view of the DPMPM leads to our QM-DPMPM synthesizer in
the next subsection.
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3.2 The QM-DPMPM Synthesizer

The QM-DPMPM synthesizer just replaces the multinomial draw in Eq. (15) of
the DPMPM with

(nf1, nf2, . . . , nfD) ∼ QM(q1, q2, · · · , qD;nf , β). (17)

Hence the QM-DPMPM obviously reduces to the DPMPM when β = 0. The
parameter β is subjectively selected to take the balance of utility and disclosure
risk of the synthetic data.

We provide a succinct overview of the QM-DPMPM synthesizer procedure.
First we generate sample values of (π, α, θs) from the posterior distribution based
on the DPMPM model. Through a multinomial draw with the samples of π,
we can multinomially distribute n individuals over F latent classes with cell
probabilities π = (π1, . . . , πF ), as in Eq. (16). Finally, we quasi-multinomially
distribute nf individuals over D cells, as in Eq. (17). Note that nfd is the number
of individuals in cell d of class f .

As we can see, the QM-DPMPM synthesizer generates counts of combina-
tions of synthesized variables. Once the count values of {nfd, f = 1, · · · , F, d =
1, · · · ,D} are drawn, a partially synthetic dataset X∗

QM−DPMPM,β is obtained
by duplicating the combinations of variables with nfd > 1, and keeping the com-
binations of variables with nfd = 1. Eventually, these synthesized combinations
are attached to the un-synthesized variables to produce the partially synthetic
dataset X∗

QM−DPMPM,β .

3.3 Notes on Implementation

The NPBayesImpute R package is used for the DPMPM implementation. After
the Markov chain Monte Carlo (MCMC) is converged, we generate X∗

DPMPM

and X∗
QM−DPMPM,β within the Gibbs sampler and save these synthetic datasets.

We repeat the above processes m > 1 times to obtain m synthetic datasets, using
approximately independent draws of parameters obtained at MCMC iterations
that are far apart.

4 Illustrative Application

We apply the DPMPM and QM-DPMPM synthesizers on a subset of a public
available 2012 American Community Survey (ACS) sample. A similar dataset
was used in Hu et al. (2014). We choose only p = 10 unordered categorical vari-
ables from the original p = 14 in Hu et al. (2014) because both the DPMPM
synthesizer and the QM-DPMPM synthesizer have been developed for unordered
categorical variables. To work with ordered categorical variables such as cate-
gorized age variables (levels: 1 = 18–29, 2 = 30–44, 3 = 45–59, 4 = 60+), methods
such as probit models are needed. The multinomial-based synthesizers cannot
incorporate the inherent order in those variables properly.
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Table 1. Variables in the ACS sample, taken from the 2012 ACS public use microdata
samples. PR stands for Puerto Rico. The Synthesized column records whether the
variable is synthesized (yes) or not (no). The Known column records whether the
variable is known to the intruder (yes) or not (no), for identification disclosure risks
evaluation

Variable Categories Synthesized Known

SEX 1 = male, 2= female Yes Yes

RACE 1 = White alone, 2= Black or African
American alone, 3 = American Indian alone,
4 = other, 5= two or more races, 6 = Asian
alone

Yes Yes

DIS 1 = has a disability, 2 = no disability Yes No

HICOV 1 = has health insurance coverage, 2= no
coverage

Yes No

HISP 1 = not Spanish, Hispanic, or Latino,
2 = Spanish, Hispanic, or Latino

Yes No

MAR 1 = married, 2= widowed, 3= divorced,
4 = separated, 5= never married

No Yes

MIG 1 = live in the same house (non movers),
2 = move to outside US and PR, 3 = move to
different house in US or PR

No Yes

LANX 1 = speaks another language, 2 = speaks
only English

No No

WAOB born in: 1 = US state, 2 = PR and US island
areas, oceania and at sea, 3= Latin
America, 4 = Asia, 5 = Europe, 6 = Africa,
7 = Northern America

No No

SCH 1 = has not attended school in the last 3
months, 2 = in public school or college,
3 = in private school or college or home
school

No No

Our sample has n = 10,000 records and p = 10 unordered categorical variables.
We synthesize 5 sensitive variables {SEX, RACE, DIS, HICOV, HISP}, and keep
the remaining 5 variables un-synthesized {MAR, LANX, WAOB, MIG, SCH}.
See Table 1 for the description and synthesis information of each variable.

We use the methods described in Sects. 3.1 and 3.2 to generate par-
tially synthetic data from the DPMPM and QM-DPMPM synthesizers, respec-
tively. For the QM-DPMPM synthesizer, we consider a sequence of 1000
values of β to assess its effect on the QM-DPMPM synthesizer (β ∈
{0.9991, 0.9981, · · · , 0.0011, 0.0001}).

We generate m = 20 synthetic datasets from the DPMPM synthesizer, and
m = 20 synthetic datasets from the QM-DPMPM synthesizer from one of the
1,000 β values (β ∈ {0.9991, · · · , 0.0001}). We evaluate the utility and identifica-
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tion disclosure risks of each set of m = 20 synthetic datasets. We then evaluate
and compare the utility and disclosure risks of X∗

QM−DPMPM,β for the range of
β to those of X∗

DPMPM .

4.1 Utility Evaluation

We first compare relative frequencies for various cross tabulations of all 10 vari-
ables in the original dataset and in the synthetic datasets. Specifically, we com-
pute the relative frequencies for all one-way tables, two-way tables, and three-way
tables. We then compare these relative frequencies in the original data to the
synthetic data. Our approach is a modified version of that in Hu et al. (2014);
Drechsler and Hu (2017+).

Figure 1 shows a clear trend of decreasing three-way deviation as β value
decreases from 0.9991 to .0001. Plots of one-way and two-way deviation also show
clear decreasing trends, and they are omitted for brevity. The shown trend is not
surprising. Recall that the parameter β in the QM-DPMPM synthesizer effec-
tively controls its similarity to the DPMPM synthesizer: larger β is associated
with the larger variance of any univariate marginal frequency, resulting larger
differences from the DPMPM synthesizer. Recall also that the QM-DPMPM
synthesizer with β = 0 is the same as the DPMPM synthesizer. Figure 1 indi-
cates that deviation-based utility of the QM-DPMPM synthesizer is higher when
β decreases and approaches 0, and should be the highest (equal to that of the
DPMPM synthesizer) when β = 0. The utility increases much more quickly when
β drops under 0.25.

Analysts are often interested in regression analyses using synthetic data. To
assess regression-based utility, we run logistic regression of disability status (DIS)
on a number of predictors: health insurance coverage (HICOV), migration status
(MIG), language use (LANX) and schooling (SCH). All predictors are treated as
categorical. To deal with the separation problem in logistic regression, we use the
logistf R package to fit a logistic regression model using Firth’s bias reduction
method (Firth 1993) to the original data, the DPMPM synthetic data, and the
QM-DPMPM synthetic data.

We obtain the point estimates and 95% confidence intervals from the original
and synthetic data and then make comparison to see how close the inferences
are (closer to the original means higher utility). For the DPMPM synthetic data
and the QM-DPMPM synthetic data, we obtain the point estimates and the 95%
confidence intervals by using the combining rules for inference based on partial
synthetic data (Reiter 2003; Drechsler 2011).

Using the results from the DPMPM synthetic data as a benchmark, we note
that while some coefficients are preserved reasonably well (e.g. Intercept, MIG-
3, LANX-2 and SCH-2), some differ to some degree (e.g. HICOV-2). However,
every 95% confidence interval based on the DPMPM synthetic data includes
the point estimate from the original data, indicating a reasonably high level of
utility. Table 3 in Appendix 3 contains the detailed results.

Figure 2 plots inferences of the logistic regression coefficient of predictor SCH-
2 based on the original data (the grey horizontal line), the DPMPM synthetic
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Fig. 1. Three-way table of utility of
QM synthesizer with 1000 β’s, from
0.9991 (ind. 1) to 0.0001 (ind. 1000).
The minimum, Q1, median, Q3, and
maximum of the utility of DPMPM
synthesizer are 251.38, 284.95, 298.05,
318.66, and 390.78 respectively, and
marked on the plot.
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Fig. 2. Utility based on logistic regres-
sion coefficient estimates and 95% con-
fidence intervals, for the SCH-2 pre-
dictor. Grey horizontal lines are val-
ues based on the original data; black
horizontal lines are values based on
the DPMPM synthetic data. β value
ranges from 0.9991 (ind. 1) to 0.0001
(ind. 1000).

data (the black horizontal line), and the QM-DPMPM synthetic data (from
0.9991 (ind. 1) to .0001 (ind. 1000)). Plots on the remaining 6 coefficients show
similar pattern, and are omitted for brevity. These results show that overall,
the larger the β value, the greater the distance between the inferences based on
the original data and those based on the QM-DPMPM synthetic data, indicating
less accuracy in the inferences. Moreover, as β decreases, QM-DPMPM inference
converges to DPMPM inference, showing the same trend of decreasing one-way,
two-way, and three-way deviation as β decreases.

4.2 Identification Disclosure Risks Evaluation

For partially synthetic data, both identification disclosure and attribute disclo-
sure risks possibly exist (Drechsler 2011; Hu 2018+). For illustrative purpose,
we consider the identification disclosure risks in our application. That is, we
evaluate the probability of identifying a record in the sample by matching with
available external information.

Our evaluation approach is a Bayesian probabilistic matching procedure
(Duncan and Lambert 1986, 1989; Lambert 1993; Fienberg et al. 1997; Reiter
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Fig. 3. Expected risk
of QM-DPMPM synthe-
sizer with 1000 β’s, from
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Fig. 4. True match rate
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Fig. 5. False match rate
of QM-DPMPM synthe-
sizer with 1000 β’s, from
0.9991 (ind. 1) to .0001
(ind. 1000).

2005; Drechsler and Reiter 2008; Reiter and Mitra 2009; Drechsler and Reiter
2010; Drechsler and Hu 2017+). This general evaluation procedure considers the
matching probability of a target vector t available to the intruder. This target
record t contains some un-synthesized variables that are available through exter-
nal files, denoted as tAus , and some other synthesized and available variables,
denoted as tAs . Therefore t = (tAus , tAs).

The identification disclosure risks evaluation aims at estimating the proba-
bility of the intruder being able to identify a record i with the available target
vector t, by using the knowledge of un-synthesized variables in tAus and guessing
the synthesized variables in tAs . In the end, three summaries of identification
disclosure probabilities are produced: (i) the expected match risk, an overall
summary of all target records being the true match among all records with
the highest match probability (similar to the measure proposed in Franconi and
Polettini (2004)); (ii) the true match rate, the percentage of true unique matches
among the target records; and (iii) the false match rate, the percentage of false
matches among unique matches (Reiter and Mitra 2009; Drechsler and Reiter
2010; Drechsler 2011 Drechsler and Hu 2017+; Hu 2018+).

In our application, we assume the intruder knows the sex, race, martial status
and migration status of all respondents through external files. Among these
variables in t, sex and race are synthesized, while marital status and migration
statues are un-synthesized. Therefore, tAus = {MAR, MIG} and tAs = {SEX,
RACE}. We treat all n = 10,000 records in the sample as target records. For each
of m = 20 synthetic datasets we calculate risk measures, and the five number
summary of these 20 risk values is plotted for each β in Figs. 3, 4 and 5. The five



The Quasi-Multinomial Synthesizer for Categorical Data 87

number summary is useful to evaluate the many scenarios of an intruder, who
may combine the information of multiple synthetic datasets in various ways.

Figure 3 shows that the expected risk is stable against the change of β, which
may seem opposite to our intuition. Nevertheless it reflects the fact that observed
true matches are few. Let X be the number of matched sample records to a target
record. The expected match risk increases by 1/X only when the target record
is truly matched among the X records. Hence the expected match risk is close
to zero when true matches are few. Then even the expectation of the expected
match risk is increasing as β → 0, it is hard to observe the increasing trend of
the realized expected match risk.

The stable discrepancy of the true match rates in Fig. 4 between the QM-
DPMPM and the DPMPM may look large, but this discrepancy is not large in
a stochastic sense. To see this fact, let us focus on the number of true unique
matches; in the case of DPMPM (β = 0) it ranges from 5 to 12, which are not
very far from 0 to 2 of β > 0.

To confirm the convergence of the true match rate of the QM-DPMPM to that
of the DPMPM, we need even smaller β, but we observe the clear convergence
of unique match counts of the QM-DPMPM to that of the DPMPM (a plot is
omitted for brevity).

5 Concluding Remarks

The properties of the QM distribution and its tuning parameter β have motivated
us to develop a QM-DPMPM synthesizer based on the DPMPM synthesizer.
We have seen that around β = 0, the utilities of the QM-DPMPM synthesizer
measured in Sect. 4.1 are very close to those of the DPMPM. On the other hand,
risk measures dealt with in Sect. 4.2 show various speeds of convergence as β → 0.
This difference implies that with only a slight loss of utility, a statistical agency
may be able to generate a much safer data set by employing the QM-DPMPM
synthesizer.

We believe the QM-DPMPM synthesizer is a promising method of generat-
ing synthetic categorical data that is worth further investigation. It would be
interesting to experiment with smaller β values and evaluate the utility-risks
tradeoff. Additionally, many other multinomial distribution based categorical
data synthesizers can be turned into a QM distribution based synthesizer with
desired utility-risks balance.

Appendix

Appendix 1

Proof of Theorem 3: By symmetry it suffices to show the case of a1 < a2. To
simplify our argument, write g(y; a) = Γ (a + y)/(Γ (a + 1)(a + y)y−1). Then
pBB(y)/pQB(y) = g(y; a1)g(n − y; a2)/g(n; a·). Hence pBB(y)/pQB(y) is mini-
mized when g(y; a1)g(n − y; a2) is minimized. Also we note that g(y; a)r(y; a) =
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g(y+1; a), where r(y; a) = (a+y)y/(a+y+1)y. Since r(0, a) = 1 and r(y, a) < 1
for y ≥ 1, g(y; a) is monotonically decreasing when y increases. Therefore to min-
imize g(y; a1)g(n−y; a2), we increase y1 or y2 one by one so that g(y1; a1)g(y2; a2)
is more reduced. Denote the ith step values by (y1, y2)i, i = 1, . . . , n. At each step
y1 increases by one if r(y1, a) ≤ r(y2, a) otherwise y2 increases by one. Actually
r(0, a1) = r(0, a2) = 1, but if 0 < a1 < a2 then r(1, a1) < r(1, a2). Hence we
begin with (y1, y2)1 = (1, 0). Observing

d log r(y, a)
dy

= log
(

1 − 1
a + y + 1

)
+

y

(a + y)(a + y + 1)

= − 1
a + y + 1

− 1
2
(

1
a + y + 1

)2 − · · · +
y

(a + y)(a + y + 1)
< 0,

we note that r(y, a) > r(y′, a) when y < y′. Therefore r(1, a2) > r(1, a1) >
r(i, a1) for i ≥ 2, which leads to (y1, y2)n = (n, 0). �	

Appendix 2

A summary of average acceptance rates r of our QB sampler proposed in Sect. 2.

Table 2. Average acceptance rates: r(0.1/β, 0.9/β, n)

n β

2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

101 0.13 0.06 0.03 0.02 0.03 0.06 0.14 0.29 0.50 0.69

102 0.00 0.00 0.01 0.07 0.26 0.51 0.71 0.84 0.92 0.96

103 0.12 0.34 0.59 0.77 0.87 0.94 0.97 0.98 0.99 1.00

104 0.81 0.90 0.95 0.97 0.99 0.99 1.00 1.00 1.00 1.00

105 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

106 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

107 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

108 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

109 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Appendix 3

The table contains detailed results of regression-based utility of the DPMPM
synthetic data in Sect. 4.
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Table 3. 95% confidence intervals of logistic regression coefficients based on the original
data and based on the m = 20 synthetic data generated by the DPMPM synthesizer.

Estimand Original data DPMPM (m = 20)

Estimate 95% CI q̄20 95% CI

Intercept 2.12 [1.86, 2.39] 2.27 [1.53, 3.01]

HICOV - 2 0.60 [0.43, 0.77] 0.14 [−0.41, 0.69]

MIG - 2 0.39 [−0.61, 1.39] 0.06 [−1.31, 1.43]

MIG - 3 0.04 [−0.12, 0.19] 0.06 [−0.50, 0.63]

LANX - 2 -0.87 [−1.14,−0.60] −0.96 [−1.71,−0.22]

SCH - 2 1.22 [0.94, 1.50] 1.14 [0.39, 1.90]

SCH - 3 1.63 [1.01, 2.25] 1.07 [0.07, 2.07]

Appendix 4

The Table 4 contains the minimum, first quartile, median, third quartile, and
maximum of the identification disclosure risks of the DPMPM synthesizer. They
are all marked as horizontal lines in Figs. 3, 4 and 5.

Table 4. Table of the minimum, first quartile (Q1), median, third quartile (Q3), and
maximum of the identification disclosure risks of the DPMPM synthesizer.

Summary Min Q1 Median Q3 Max

Expected risk 25.2011 29.1804 29.8434 31.4175 35.6882

True match rate 0.0005 0.0007 0.0008 0.0009 0.0012

False match rate 0.9070 0.9264 0.9352 0.9433 0.9583
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Abstract. Privacy protection of confidential data is a fundamental
problem faced by many government organizations and research centers.
It is further complicated when data have complex structures or variables
with highly skewed distributions. The statistical community addresses
general privacy concerns by introducing different techniques that aim
to decrease disclosure risk in released data while retaining their sta-
tistical properties. However, methods for complex data structures have
received insufficient attention. We propose producing synthetic data via
quantile regression to address privacy protection of heavy-tailed and het-
eroskedastic data. We address some shortcomings of the previously pro-
posed use of quantile regression as a synthesis method and extend the
work into cases where data have heavy tails or heteroskedastic errors.
Using a simulation study and two applications, we show that there are
settings where quantile regression performs as well as or better than other
commonly used synthesis methods on the basis of maintaining good data
utility while simultaneously decreasing disclosure risk.

1 Introduction

Statistical disclosure control (SDC) encompasses a group of privacy-preserving
techniques that introduce bias and variance in data in order to protect confiden-
tiality of individual records. Many different methods have been proposed, and
most involve some sort of perturbation. Traditional methods include the addition
of random noise, rank-swapping, and top or bottom coding [17]. SDC methods
are not equal in terms of the privacy protection or data utility they provide, and
improperly protected data are vulnerable to re-identification attacks [9].

Utilizing ideas from multiple imputation, synthetic data was proposed as
a privacy method to protect some or all variables in a data set [25,35]. Since
its introduction, synthetic data methodology has been extensively studied [4,
7,13,31,33], and several synthetic data products have been released (e.g., [1,
6,20,27]). However, when the original data have heavy-tailed distributions or
heteroskedastic errors, challenges remain from both the privacy-protection and
modeling perspectives.
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In the general statistics literature, quantile regression has been proposed as a
method that can alleviate some issues associated with heavy-tailed or censored
data. First proposed by Koenker and Bassett [22], quantile regression has been
extensively studied and applied to many scientific domains (e.g., ecology and
economics [14,42]). It is a flexible modeling approach in the sense that the entire
conditional distribution can be modeled and model assumptions are less restric-
tive when compared to least squares regression [10]. Quantile regression is an area
of active research: algorithmic improvements for coefficient estimation have been
developed [30], quantile-based techniques have been applied to other statistical
models (e.g., random forests [28]), Bayesian approaches have been proposed [43],
and strategies to alleviate monotonicity violations have been suggested [3,5,26].

Quantile regression has been also proposed as a synthetic data mechanism
by Huckett and Larsen [15,16]. Using visual plots and basic measures, Huckett
and Larsen [16] found that synthetic data generated via quantile regression pre-
serves marginal and conditional distributions well when compared to the original
data. However, they did not compare their synthesis with other commonly used
methods or thoroughly study its performance in the context of heavy-tailed or
heteroskedastic data. We revisit their methodology by addressing some open
questions pertaining to quantile selection and estimation, proposing quantile
regression as a privacy method for heavy-tailed and heteroskedastic applications,
and comparing it to other commonly used synthesis methods such as classifica-
tion and regression trees (CART).

The structure of the remainder of this paper is as follows. Section 2 discusses
some fundamentals of quantile regression. Section 3 briefly discusses synthetic
data methodology and defines the utility and risk measures we use. In Sect. 4,
we describe our proposed algorithm and illustrate its workings by way of a
simulation study. In Sect. 5, we present two applications to census and business
data. Finally, we end with conclusions and future work in Sect. 6.

2 Quantile Regression

Quantile regression is a flexible modeling technique in the sense that it can model
the entire conditional distribution of the response variable [22]. In contrast to
linear regression which models the conditional mean of the response distribution,
quantile regression models the τ th conditional quantile of the response, where τ
is any quantile ranging between zero and one.

More formally, quantile regression specifies a model of the form:

y = XT βτ + ετ , (1)

where X ∈ R
n×p is a matrix of covariates, βτ ∈ R

p×1 is a vector of coeffi-
cients, and ετ represents the corresponding error. Following the notation of [10],
estimation of βτ is solved by minimizing a weighted sum of absolute deviations:

β̂τ = argminβ

n∑

i=1

wτ (yi, ηiτ )|yi − ηiτ |, (2)
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where ηiτ = xT
i βτ and wτ (yi, ηiτ ) equals τ if yi > ηiτ , 1 − τ if yi < ηiτ , and 0

otherwise. This can be equivalently written using the so-called “check” function:

β̂τ = argminβ

n∑

i=1

ρτ (yi − ηiτ ), (3)

where ρτ (u) = u{τ − I(u < 0)}. Coefficient estimates can be solved using stan-
dard linear programming optimization techniques. Quantile regression is effi-
ciently implemented using several different optimization routines in the R pack-
age quantreg [21]. For our simulations, we used the Frisch-Newton algorithm
[30] from the quantreg package since it is computationally more efficient than
the other algorithms, and thus more suitable for our syntheses.

As mentioned, quantile regression is a more flexible modeling tool than stan-
dard linear regression. It is a distribution-free method as it does not require a
priori specification of a parametric distribution for the errors, for example, and
it is well suited to address “extreme” observations in terms of covariates. There
are no assumptions of homoskedasticity and common distribution of the errors
[10]. Instead, the main assumptions are that τ th quantile of the errors is zero and
the errors are independent [10]. In addition, there is an implicit assumption of
monotonicity. When estimating coefficients for multiple quantiles, the predicted
estimates must be ordered for a given value of the independent variables, i.e., for
a given set X, XT β0.25 ≤ XT β0.75. This is often violated in practice, especially
when the number of estimated quantiles is large [3]. Several methods have been
proposed to address this challenge [3,5,26].

Quantile regression has also been studied from a Bayesian perspective. In one
characterization, Bayesian quantile regression assumes that errors arise from an
asymmetric Laplace distribution (ALD), i.e., εiτ ∼ ALD(0, σ2, τ) [43]. If the
prior distribution on βτ is proportional to a constant, maximizing the resulting
posterior is equivalent to minimizing the weighted absolute deviations of (2) [10].
To ease computations, Kozumi and Kobayashi [23] recommend to reparameter-
ize the asymmetric Laplace distribution as a location-scale mixture of normal
distributions. This method is implemented in the R package bayesQR [2]. Full
implementation details are discussed in Sect. 4.

3 Synthetic Data Overview

3.1 General Methodology

Synthetic data methods use the original data to develop synthetic versions of
sensitive values. Closely related to work in multiple imputation, synthetic data
was proposed as a method to protect all or some observations that is variables in a
data set [25,35]. Many different models have been proposed as synthesis methods,
and definitions of utility and disclosure risk measures that can potentially be used
within this setting have been formalized [7,17].

Let X = (x1, .., xp) be an observed data set that has sensitive variables.
Note that any combination of variables and rows can be synthesized, including
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all variables and all rows. These are sometimes referred to as partial and full
syntheses, respectively [31].

Synthetic data aims to preserve and model the joint distribution
(f(x1, . . . , xp)) between these variables by modeling them as a series of con-
ditional distributions, i.e.,

f(x1, . . . , xp) = f(x1)f(x2|x1) . . . f(xp|x1, . . . , xp−1). (4)

The syntheses are typically conducted in a sequential manner. Any type of statis-
tical model can be used to capture the conditional distributions in (4), including
classification and regression trees (CART) [33], random forests [4], and kernel
density estimators [41]. Choice of model depends on both the data structure
and desired privacy levels. The R package synthpop contains functions to create
synthetic data using several different statistical models [29].

In practice, agencies have begun using synthetic data products to release
usable data sets to researchers with less stringent conditions or as public-use
data tabulations. In particular, the U.S. Census Bureau has released partially-
synthesized versions of the U.S. Census Bureau’s Longitudinal Business Data
(LBD) [20] and Survey of Income and Program Participation (SIPP) [1]. In gen-
eral, for confidential micro data, researchers must apply for access and travel
to one of a small number of secure data centers to use the data. In contrast,
the synthetic data products are available via a remote desktop application to
approved researchers. Synthetic data products are typically not used for final
analyses but instead are used to write code and develop models (exception being
OnTheMap [27] that releases synthetic data for direct analysis with no valida-
tion). Final analyses are conducted on the original data by agency employees,
compared to the synthetic results, and the findings undergo a disclosure pro-
cess before being released to the researcher. This type of process is sometimes
referred to as a gold-standard analysis [37]. Other statistical agencies have devel-
oped synthetic data products such as the Scottish Longitudinal Survey [36] and
the German IAB Establishment Data [6].

3.2 Utility Measures

Utility measures aim to quantify the degree of similarity between the original and
synthetic data. They can quantify overall similarity or analysis-specific similarity
between the original and synthetic data. Following [37], we refer to these metrics
as general and specific utility, respectively.

Specific utility typically measures agreement across a specific analysis or
group of analyses. Examples of specific utility measures include standardized
distances between summary statistics calculated on the original and synthetic
data or confidence interval overlap of estimated parameters [7,19].

General utility measures typically quantify distributional similarity (or diver-
gence) between the original and synthetic data. Basic measures are based on
empirical cumulative distribution functions (CDF) or Kullback-Leibler diver-
gence [17]. Measures based on propensity scores have also been proposed
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[19,37,40]. These measures are based on the idea that if the synthetic and orig-
inal data are similar, data set membership should be indistinguishable between
the two data sets. To quantify the general utility of synthetic data sets, we use a
propensity score-based metric, pMSE, with CART as the classification algorithm
(e.g., for more details see [40] and [37]). Since we assume that our synthetic data
have the same sample size as the original data, pMSE produces a value between
zero and 0.25. Ideal values are close to zero.

3.3 Risk Measures

In general, disclosure risk is categorized into two types [17]. Attribute disclosure
refers to an intruder learning the value of a confidential variable for a given indi-
vidual. Identity disclosure refers to an intruder matching a record with outside
information to learn the entity corresponding to that record.

Traditional measures of disclosure risk are dependent on the underlying data
structure and assumptions on intruder knowledge; in contrast to this is differen-
tial privacy (for a comprehensive review, see [8]) which we do not deal with in
this paper. Intuitively, observations that are similar to other observations should
have lower disclosure risk when compared to outlier observations. Separate mea-
sures have been developed for categorical, continuous, and combination data
(e.g., for a review of these measures see [7,17]). Business data typically have
many continuous variables with skewed distributions which warrant special risk
measures [17].

Foschi [11] and Ichim [18] develop measures of disclosure specifically for heav-
ily skewed business data. Foschi uses a robust finite Gaussian mixture model in
conjunction with hypothesis tests to determine if a given observation is consis-
tent with respect to one of the mixture distributions. Those observations unlikely
to belong to any mixture component are classified as at-risk. Ichim relies on a
density-based method relying on the local outlier factor (LOF). In this paper,
we adopt Ichim’s measure to compare disclosure risk across different synthetic
data methods we implement, including our proposed quantile regression based
synthesis.

4 Quantile Regression and Synthetic Data

Quantile regression as a synthetic data method has been previously introduced
by Huckett and Larson as a component of a multimethod approach that also
included hot deck imputation and rank-swapping [15,16]. They applied their
method to a subset from the American Community Survey (ACS) and an Iowa
tax database, and they explored the disclosure risk associated with quantile
regression as a synthesis method [24]. They studied utility of synthetic data
sets at a basic level by comparing empirical CDFs between the observed and
synthetic data and by comparing basic results from several regressions. However,
they failed to compare their method to other existing methods in the literature
and did not thoroughly study quantile regression in the context of heavy-tailed
or heteroskedastic data.
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Following the basic algorithm of Huckett and Larson [16], we propose and
implement an updated algorithm to produce a fully synthetic data as follows:

Algorithm 1. Data synthesis using quantile regression
Data: The original data set X = (x1, ..., xp)
Result: A synthetic data set Z = (z1, ..., zp)
for each i ∈ 2, .., p do

1a. Model xi|x1, ..., xi−1 using quantile regression for a large number
of quantiles;
for each j ∈ 1, ..., n do

2a. Randomly select a quantile and choose the model
corresponding to the quantile;
2b. From this model, generate zj,i for each observation from
zj,1, ..., zj,i−1 and return as synthetic data value for xj,i;

end
end

We introduce two novel ideas in Algorithm1 to provide more motivation for
quantile-based syntheses and ease of computations. First, in Step 2a, we follow
Huckett and Larson’s suggestion of sampling a random quantile, rather than all
quantiles. Huckett and Larson provided little motivation for their choice of quan-
tile. However, we suggest that the choice of random quantiles is closely linked to
the theories underlying the inverse transform method for pseudo-random sam-
pling (for a review, see [34]). This method generates random samples by inverting
the cumulative distribution function at values chosen randomly from a uniform
distribution. This link supports the choice of uniform random quantiles in Algo-
rithm1.

Even though the above approach addresses potential computational bottle-
necks, there could still be a large number of quantiles that would require indepen-
dent model fitting, that is a new estimated model for each chosen observation.
Although computation time is linear in the number of quantiles, a large num-
ber of observations could make the random quantile-based approach infeasible
in certain cases. To circumvent this, we also propose a binned approach as an
alternative to Step 2a. Here, we propose to split the set of quantiles, i.e., (0,1),
into a large number of bins, and compute the quantile regression estimates for
the midpoint quantile in each bin. Then, a bin is chosen at random instead of
a quantile in Step 2a. The model corresponding to that bin is used to obtain a
synthetic value for a given observation.

More specifically, in our simulations and applications, we use 250 bins. A
series of simulations showed that this number provided a good balance between
data utility and disclosure risk. All of our simulations and applications used
this binning technique. The set of quantiles is split into 250 bins—i.e. (0, 0.004],
(0.004, 0.008], . . . , (0.996, 1)—then coefficient estimates were calculated for the
midpoint of each bin—i.e., 0.002, 0.006, . . . , 0.998. Bins or, equivalently, quantiles
are chosen for each observation, and corresponding coefficient estimates are used
to generate synthetic data for that observation in Step 2b. Random bins were



98 M. Pistner et al.

selected using the runif command in base R, and quantile regression coefficients
were estimated using the Frisch-Newton algorithm from the rq function in the
quantreg R package.

The algorithm for Bayesian quantile regression-based synthetic data is similar
to Algorithm 1, where we use random bins but now we use the bayesQR R
package to estimate model coefficients using the Gibbs sampling approach of
[23]. We use a multivariate normal prior distribution with mean and variance
equal to least-squares regression estimates. Following [43], we use an inverse
Gamma distribution as the prior for variance.

We compare our quantile-based syntheses to CART-syntheses. This was moti-
vated by previous research suggesting that CART is a flexible synthesis tool that
results in syntheses with high utility [33]. We used the R package synthpop to
synthesize data with CART [29]. Several considerations for generating synthetic
data that are unique to each application were discovered. They will be discussed
in more detail in Sects. 5.1 and 5.2, but first we consider a set of simulations.

4.1 Simulations

We used two simulation studies to compare quantile regression to CART as syn-
thesis methods in terms of general utility and disclosure risk. We simulated data
for two different data structures, one with heavy-tails and the other with het-
eroskedastic errors, both of n = 5,000. Our simulation scheme is detailed in Table 1.

Table 1. Simulation schemes for heavy-tailed and heteroskedastic data sets.

Heavy-tailed Heteroskedastic errors

X1 ∼ exp(0.1) x1 ∼ N(0, 1)

X2|X1 = α0 + β0X1 + εi X2|X1 = α0 + β0X1 + (γ0 + γ1X1)εi

X3|X1, X2 = α1 + β1X1 + β2X2 + γi X3|X1, X2 = α1 + β1X1 + β2X2+

(γ2 + γ3X1 + γ4X2)τi

εi, γi ∼ exp(0.1) εi, τi ∼ N(0, 1)

(α0, α1, β0β1, β2) = (2, 5, 2, −2, 1) (α0, α1) = (2, 5)

(β0, β1, β2) = (2, −2, 1)

(γ0, γ1, γ2, γ3, γ4) = (1.5, 5, 1.5, 5, −6)

In total, 10 data sets were synthesized using our Algorithm1 with both the
frequentist and Bayesian quantile regression implementation, and CART via the
synthpop package which relieves on the party and rpart packages for categorical
and continuous variables, respectively [12,38]. 250 bins were used for the quantile
regression syntheses. As suggested by [43], a multivariate normal prior was used
for the coefficient estimates with mean and covariance equal standard linear
regression estimates, and an inverse gamma prior was used for variance. For
CART-based syntheses, the minimum number of observations per terminal node
was set to five.
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General utility and disclosure risk are calculated for each synthesis according
to the pMSE measure and Ichim’s method discussed in Sects. 3.2 and 3.3. Aver-
ages and standard errors of these measures are presented in Table 2. Under both
data structures, we found that quantile regression outperforms CART on the
basis of general utility, especially in the heteroskedastic setting. Bayesian quan-
tile regression did not offer the same results, and, due to significantly longer
computing time, we did not explore it further. In many additional simulations,
not reported here, we show consistently similar results.

Table 2. Mean and standard errors over utility score and disclosure risk for the sim-
ulated data sets over 10 repetitions. This utility measure captures overall similarity
between the original and synthetic data. Scores close to zero are optimal.

Method Heavy-tailed
utility

Heavy-tailed
risk

Heteroskedastic
utility

Heteroskedastic
risk

QR 0.05 (0.015) 1.56 (0.20) 0.10 (0.003) 12.25 (0.46)

Bayes QR 0.07 (0.010) 1.67 (0.10) 0.11 (0.002) 12.4 (0.77)

CART 0.06 (0.015) 2.49 (0.31) 0.12 (0.002) 13.0 (0.70)

5 Applications

In this section, we consider two applications to census and business data in order
to demonstrate the privacy-preserving and data utility potential of quantile-
based regression, with a special focus on data with heavy tails and heteroskedas-
tic errors1.

5.1 1901 Census of Scotland

Data. The 1901 Census of Scotland collected information on household struc-
tures for all heads of households in the country. We use a subset of the orig-
inal data (n = 82,851) [39]. For each head of household, individual data was
collected, including age, race, geographic location, working status, and marital
status. Additional variables were collected for total household size and the total
number of household members in each individual category, including children,
other relatives, servants, and boarders. These count variables had very heavy
tails. Some variables such as total household size and rooms per person in each
household are linear combinations of other variables (e.g., total household size
was the sum across each individual categories) and were excluded from synthesis.

For our application, we use 11 out of the 26 total variables. Three individual-
level attributes are used (sex, age, and marital status) and eight count-type
variables (i.e., counts of household members by type and total number of rooms
per house). See AppendixA for a summary of variables.
1 All code is available on our Github repository at https://github.com/labordynamics

institute/replication qr synthetic.

https://github.com/labordynamicsinstitute/replication_qr_synthetic
https://github.com/labordynamicsinstitute/replication_qr_synthetic
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Results. A total of ten syntheses are produced from the quantile-based regres-
sion and using CART. General utility is computed for each synthesis according
to the pMSE method discussed in Sect. 3.2. Quantile-based syntheses had a mean
utility of 0.015 (SE: 0.0005) whereas CART-based syntheses had a mean utility
of 0.002 (SE: 0.0003). In this setting, both methods lead to good utility based on
the pMSE, but CART clearly outperforms our proposed quantile-based synthe-
sis. This may be a result of CART treating the counts as categorical outcomes
instead of continuous. However, as we will see further below, CART actually
overfits the data leading to much higher disclosure risk.

We use several visual and empirical risk measures to assess the synthesis
products for these two methods. Simple plots of the tails of the different count
variables were created to compare the methods. An example plot in Fig. 1 shows
original data for the number of servants, and data generated via CART and
quantile regression. The graph is a snapshot of the right tail of the distribution
(anything greater than or equal to 5 counts in order to see the results in the tails
better). Figure 1 shows that data generated via CART closely matches the origi-
nal data counts in right tail of the distributions, which potentially increases risk
for these outlier observations. In terms of empirical risk measures, CART and
quantile-based syntheses again show similar measures. However, for quantile-
based syntheses, these risk measures are lower with a mean percentage of obser-
vations as risk of 12.8% (SE: 0.8%), whereas for CART-based syntheses, these
risk measures were higher with a mean of 13.2% (SE: 0.4%).

Fig. 1. Distribution of the tails of “Number of Servants” variable. Note that the syn-
thetic data generated via CART closely matches the original data counts in the tails.
This could increase disclosure risk.
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5.2 Synthetic Longitudinal Business Database

Data. The Longitudinal Business Database (LBD) represents a census of all
U.S.-based establishments. It contains payroll and employment information from
1976 to 2000 for over 21 million establishments. Since all establishments are
included, there is no privacy protection offered via sampling. It is only accessible
onsite at the secure Federal Statistical Research Data Centers in the United
States.

The Synthetic Longitudinal Business Database (SynLBD) is a synthetic ver-
sion of the LBD developed by researchers in conjunction with the U.S. Census
Bureau [20]. Access to the data is available on servers housed at Cornell Uni-
versity via a remote desktop [32]. Users must apply for access through the U.S.
Census Bureau. However, the process is much simpler when compared to access
to the restricted data itself.

There are several key differences in variables between LBD and SynLBD.
The LBD contains information on firm geography which was used to develop
the SynLBD, but the original variables are removed from the synthetic data.
Additionally, the Standard Industry Classification (SIC) code is available in full
form in the LBD. SIC codes are four digits in length. For the SynLBD, these
codes are truncated to the first three digits.

Several synthesis rules were used when constructing the SynLBD, as we dis-
cuss below. For a complete description of the synthesis process for the SynLBD,
see the supplementary material to [20]. For this application, we treated the syn-
thetic data as if it were the confidential data and created new synthetic data
from it. No confidential data were used in this application.2 For our synthesis,
we used constraints similar to [20] when constructing quantile-based syntheses.
We fit separate models for each SIC code, and within each SIC code, further
distinguish models for single-unit versus multi-unit establishments. We generate
synthetic versions for first year of unit establishment via a bootstrapped sample.
Conditional on the first year, we synthesize the last year of unit establishment
via quantile regression, i.e., Algorithm1. Next, we synthesize the multi-unit sta-
tus conditional on first year and last year of an establishment. Employment
and payroll variables are then synthesized, starting with employment for 1976.
All employment variables are synthesized sequentially through the last year of
data availability (2000), based on the first and last years of an establishment,
multi-unit status, and employment in the prior year. Finally, payroll data is
synthesized, based on first and last years of an establishment, multi-unit status,
contemporaneous employment and lagged payroll. Different models were fit for
continuing units (current year greater than first year) and births (current year
equal to birth year).3 100 bins were used in synthesizing the quantile-based data.
For CART-based replicates, the minimum number of terminal points per node
was set to five.
2 We are discussing applying the methodology to the confidential data for the purpose

of generating a new release of synthetic data.
3 Note that neither geography nor the full SIC code were used in the quantile regression

synthesis.
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Results. Because the data are synthesized separately for each SIC code, we
compute the general utility (pMSE ) and risk measures for each of set of data
by SIC code. A total of 5 synthetic data sets were created for each industry
code using each method. Means and standard errors across the simulations are
reported. Average utility difference between the two synthesis methods across
all SIC codes was 0.02 (SE: 0.029). Risk measures are for the percentage of
observations at risk according to the approach of [18]. For evaluation purposes,
the SynLBD is treated as the original data.

A summary of results for selected SIC codes is presented in Table 3. Our
results indicate that neither method strictly outperforms the other on the basis
of either utility or risk. Rather, dependent on the SIC code, one method may
outperform the other on the basis of utility, risk, or both, although the quantile-
based regression performs better for most SIC codes. For example, for SIC indus-
try 178, quantile regression-based syntheses outperform CART-based synthe-
ses in terms of both the utility and risk measures used. For SIC industry 829,
quantile-based syntheses have lower general utility scores, but it offers slightly
lower risk compared to the CART-based syntheses. Overall, given our current
analyses, there does not seem to be a consistent and obvious relationship as to
which method would outperform the other. However, it is clear that quantile
regression can yield synthetic data of higher quality when compared to CART
based on the risk and utility measures used.

Table 3. General utility and disclosure risk values for selected industries.

SIC code Sample size Utility QR Utility CART Risk QR Risk CART

178 10,975 0.067 (0.008) 0.095 (0.001) 5.73 (0.28) 6.55 (0.23)

239 27,396 0.052 (0.004) 0.053 (0.004) 4.91 (0.07) 6.20 (0.13)

328 3,069 0.079 (0.021) 0.112 (0.004) 7.08 (0.21) 8.21 (0.14)

354 27,411 0.050 (0.006) 0.065 (0.003) 6.08 (0.01) 7.82 (0.11)

473 20,193 0.061 (0.002) 0.064 (0.003) 6.12 (0.16) 7.08 (0.16)

511 49,370 0.074 (0.002) 0.037 (0.001) 4.06 (0.01) 4.98 (0.06)

542 39,670 0.049 (0.004) 0.042 (0.002) 3.83 (0.07) 4.87 (0.08)

703 19,624 0.076 (0.005) 0.076 (0.004) 7.11 (0.15) 8.86 (0.13)

829 45,709 0.051 (0.002) 0.028 (0.001) 3.89 (0.07) 4.84 (0.07)

865 11,691 0.050 (0.003) 0.062 (0.011) 7.88 (0.16) 11.66 (0.43)

Note: A total of 5 synthetic data sets were created for each industry code using
each method. Means and standard errors (in parentheses) across the simulations are
reported. Risk measures are for the percentage of observations at risk according to
the approach of [18].
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Since heavy-tailed variables were of particular interest, several graphical mea-
sures were used to examine the tails of selected distributions. Examples of such
graphs can be found in Fig. 2, where we plot the tials of total payroll variable for
year 2000 for two Standard Industry Codes (829-left plot and 865-right plot).
These graphs indicate that CART has a tendency to closely match the original
data in the tails of a distribution. This presents a clear potential for disclosure,
especially for outlier observations. In comparison, quantile regression-based syn-
theses are much more random in the tails. For example, SIC code 829 repre-
sents “Schools and Educational Services, Not Classified Elsewhere.” Examples of
these industries include driving, cooking, or personal development schools. Large
national chains are much more likely to be an outlier observation. In the case of
CART-based syntheses, the tails of payroll variables closely match the original
data. This could lead to higher risk for outlier observations. Quantile regres-
sion did not track the far extremes as carefully. However, further investigation
is needed to see if this has an effect on any specific analyses.

Fig. 2. Distribution of the tails of total payroll variable for 2000 for Standard Industry
Codes 829 (left) and 865 (right).

6 Discussion

We explored quantile regression as a synthesis method for heavy-tailed and het-
eroskedastic data. The reason for this is twofold: quantile regression can be
used to model the entire conditional distribution of a response variable and has
less restrictive assumptions compared to standard linear regression. Further, we
compared the utility and disclosure risk of the quantile-based method with a
CART-based synthesis.
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We applied our methods to a simulation study and two different data sets.
Our simulation results indicated that quantile regression can outperform CART
as a synthesis method on the basis of general utility when data have heavy tails
or heteroskedastic errors. Our applications showed support for this claim; for
certain data sets, quantile regression produced synthetic data with either higher
utility, lower risk, or both. Furthermore, density plot analyses indicated that
quantile regression methods may provide more privacy protection in the tails of
skewed that is heteroskedastic distributions. Observations in the tails are often
of high interest but are likely to have higher disclosure risk. More formal analyses
are needed to justify this claim, but our work points to promising use of quan-
tile regression for large-scale heavy-tailed data and those with heterosckedastic
errors.

We note several potential limitations to the proposed quantile-based meth-
ods. First, quantile regression estimates can be expensive to compute in practice.
With our analyses, quantile regression estimation was not found to be overly bur-
densome in its own right, but, in general, it lagged behind computation times
with a CART-based synthesis (e.g., about 8 min for quantile regression com-
pared to less than a minute for CART for one synthetic data set for the Scottish
Longitudinal Data example on a Windows computer with a 2.60 GHz processor
and 16 GB of RAM). Second, care is needed in order to specify a good (that
is correct) synthesis model of the conditional distributions for the quantiles;
this limitation, however, of specifying a good synthesis model is general to all
synthetic data methods.

There are several potential extensions that we plan to study further. First,
as discussed in Sect. 2, there is an implicit assumption of monotonicity when
estimating many quantiles. We are interested in understanding how would cor-
recting of these violations affect the quality of syntheses. Second, our applications
in Sects. 5.1 and 5.2 show that quantile regression may offer more protection in
the tails of the distributions compared to CART. We plan to study this protec-
tion more formally. This includes both studying potential effects on statistical
inference and investigating different risk methods related to outlier observations.
Third, we plan on developing synthetic versions of the original LBD data and
comparing our findings to the original data.
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A Supplementary Materials for 1901 Census of Scotland

There were a total of 82,851 observations in our extract. Of these observations,
20,303 were female and 62,548 were male. Additional statistics follow (Tables 4,
5 and Fig. 3).

Table 4. Summary statistics for continuous variables for extract of 1901 Census of
Scotland. Note that the count variables had very heavy tails.

Variable N Mean St. Dev. Min Max

Age 82,851 45.731 14.266 0.830 97.000

Number of Servants 82,851 0.048 0.369 0 12

Number of boarders 82,851 0.082 0.419 0 12

Number of lodgers 82,851 0.084 0.413 0 11

Number of Family 82,851 0.024 0.196 0 10

Number of relatives (age ≥ 15) 82,851 2.654 1.465 0 16

Number of relatives (age < 15) 82,851 1.385 1.750 0 19

Number relationship unknown 82,851 0.005 0.119 0 10

Table 5. Count of records by marital status.

Single 7,320

Widowed 15,821

Divorced 1

Married 55,288

Married - spouse absent 4,308

Not known 113
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Fig. 3. Density for the number of servants. Note: Most observations have a value of
zero.
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Abstract. There has been some confusion in recent years in which cir-
cumstances datasets generated using the synthetic data approach should
be considered fully synthetic and which estimator to use for obtaining
valid variance estimates based on the synthetic data. This paper aims at
providing some guidance to overcome this confusion. It offers a review of
the different approaches for generating synthetic datasets and discusses
their similarities and differences. It also presents the different variance
estimators that have been proposed for analyzing the synthetic data.
Based on two simulation studies the advantages and limitations of the
different estimators are discussed. The paper concludes with some gen-
eral recommendations how to judge which synthesis strategy and which
variance estimator is most suitable in which situation.

Keywords: Confidentiality · Multiple imputation · Fully synthetic
Variance estimation

1 Introduction

The synthetic data approach for data protection gained popularity over the last
decade as it offers a high level of data protection while ensuring good analyti-
cal properties in many circumstances. The approach replaces sensitive variables
and/or variables that pose a high risk of reidentification with synthetic values
drawn from a model fit to the original data. Two main approaches are generally
distinguished in the literature for generating synthetic data. The fully synthetic
approach, first proposed by Rubin [14] treats all units that did not participate
in the survey as missing data, multiply imputes those missing values to generate
synthetic populations and then disseminates synthetic samples from these popu-
lations. The partially synthetic approach proposed by Little [7] only synthesizes
sensitive records and/or records which have a risk of leading to identity disclo-
sure (i.e. records which are sample uniques based on some key variables in the
data). See [2] for a detailed review of the two approaches.

The naming of the two approaches seems intuitive, since by definition all
values are synthetic for the imputed nonparticipating units based on the fully
synthetic approach and the partially synthetic approach will keep the original
c© Springer Nature Switzerland AG 2018
J. Domingo-Ferrer and F. Montes (Eds.): PSD 2018, LNCS 11126, pp. 109–121, 2018.
https://doi.org/10.1007/978-3-319-99771-1_8
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values for all records which do not pose any risk of disclosure. However as first
pointed out by [1] there is nothing preventing us from using the partially syn-
thetic approach to replace all values in the data by synthetic values, also obtain-
ing a fully synthetic dataset. In fact, in several applications, in which researchers
claimed to generate fully synthetic data, the synthesis strategy actually followed
the approach proposed by Little, which is based on different methodology than
the approach proposed by Rubin. As was first shown in [1] the variance estima-
tor for fully synthetic data following Rubin’s proposal is not strictly valid, if the
data have been generated using the approach proposed by Little. On the other
hand, [8] proposed a new variance estimator, which can be used if Little’s app-
roach has been used to synthesize the entire dataset. The major attractiveness
of this estimator is that it can even be used, if only one synthetic data replicate
is generated. However, as will be illustrated below, this variance estimator is not
always appropriate, especially if Rubin’s approach has been used to generate the
synthetic data.

This paper aims to help overcome some of the confusion regarding fully
synthetic datasets. I will illustrate the methodological differences of the two
approaches and clarify, which variance estimator should be used in which situa-
tion.

The remainder of the paper is organized as follows: In Sect. 2 I review the
methodological details of the two approaches to data synthesis and provide
the formulae required to obtain valid inferences based on the two approaches.
Section 3 contains simulation studies which illustrate which estimator will give
valid inferences under which circumstances and highlight some of the advantages
and limitations of the different variance estimators. The paper concludes with
some general recommendations how to judge which synthesis strategy and which
variance estimator is most suitable in which situation.

2 Two Approaches to Data Synthesis

In this section, I review the two common synthesis approaches: full synthesis
as proposed by [7] and partial synthesis as proposed by [14]. I also present
the formulae required to obtain valid variance estimates based on the different
approaches. Note that the procedures for obtaining valid point estimates are
identical for both approaches. Simply compute the estimate of interest on all
synthetic datasets separately and get the final inference by averaging the different
estimates.

2.1 The Fully Synthetic Approach According to Rubin

In Rubin’s proposal the strong relationship to multiple imputation for missing
data is most obvious. In fact, Rubin considered the problem as a missing data
problem. He assumed that the data disseminating agency has information about
some variables X for the whole population, for example from the sampling frame,
and only the information from the survey respondents for the remaining variables
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Y and that the goal is to release a protected version of the variables contained
in Y . Let Yinc contain the n records included in the survey and Yexc be the
N − n records from the population which were not selected into the sample.
Fully synthetic datasets are generated in two steps: First, construct m synthetic
populations by imputing all the missing values in Y , i.e. by drawing Yexc m
times from the posterior predictive distribution f(Yexc|X,Yinc). Second, take
simple random samples from these populations and release them to the public.
In practice imputing the full population is not required. It suffices to take simple
random samples from X and impute the missing Y information only for these
cases.

Note that the term fully synthetic data is actually a misnomer for this app-
roach since synthetic records are generated only for the N −n records that were
not part of the original sample. Thus, it can happen that the released samples
from this population, comprising N −n synthetic records and n original records,
might still contain original values for Y . To avoid this problem, [9] suggest that
“the whole population can be generated based on the posterior predictive distri-
bution of “super” or “future” populations” ([9], p. 4), i.e. that synthetic values
are also generated for those records that were already included in the original
sample. However, as I will illustrate in Sect. 3, the inferential procedures devel-
oped by the authors are no longer strictly valid for finite population inference in
this case.

In practice, it is not strictly required that some variables X are available for
the full population. If X is empty, synthetic values could be generated by drawing
from f(Yexc|Yinc) directly. But for the inferential procedures to be valid, it would
still be necessary that only N − n records are synthesized and that the released
data contain random samples from the synthetic populations constructed by
merging the synthetic records with the original sample.

Before presenting the variance estimator for fully synthetic data developed
by [9], we need to introduce some additional notation: Let Q be the unknown
scalar parameter of interest, such as the population mean or the regression coeffi-
cient in a linear regression. Inferences for this parameter derived from the original
datasets usually are based on a point estimate q and an estimate for the variance
of q, u. Let q(i) and u(i) for i = 1, . . . , m be the point and variance estimates
for each of the m synthetic datasets. The following quantities are needed for
inferences for scalar Q:

q̄m =
m∑

i=1

q(i)/m, (1)

bm =
m∑

i=1

(q(i) − q̄m)2/(m − 1), (2)

ūm =
m∑

i=1

u(i)/m. (3)
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The analyst then can use q̄m to estimate Q and its variance can be estimated
using

Tf = (1 + m−1)bm − ūm. (4)

Note, that Tf can be negative. For that reason, [10] suggests a slightly modified
variance estimator that is always positive but conservative, T ∗

f = max(0, Tf ) +
δ(nsyn

n ūm), where δ = 1 if Tf < 0 and δ = 0 otherwise. Here, nsyn is the number
of observations in the released datasets sampled from the synthetic population.
An alternative approach which uses posterior simulation to estimate the vari-
ance of the point estimates is discussed in [15]. While computationally more
demanding, the approach offers the major advantage that the problem of neg-
ative variance estimates is avoided. Based on simulation studies [15] find that
using posterior simulation is superior to using Tf coupled with the ad-hoc fix
for negative variance estimates proposed in [10].

2.2 The Partially Synthetic Approach According to Little

With the approach proposed by Little only sensitive records and/or records that
could be used for re-identification are typically replaced with synthetic values.
Since some true values remain in the dataset the approach has been termed the
partially synthetic data approach. The approach offers some flexibility over the
fully synthetic data approach described above. The agency can decide which part
of the data needs to be synthesized. The synthesis can range from synthesizing
only some records for a single variable, for example all income values for indi-
viduals with an income above a given threshold, to synthesizing all variables,
basically mimicking the fully synthetic data approach. Note, however that the
general concept is different. In both approaches, the observed data are used to
construct a synthesis models based on f(Y |X), where X could potentially be
empty. However, with partial synthesis, synthetic data are generated by simply
drawing new values from the fitted model, potentially conditioning on the orig-
inal values in X for the sampled cases. With full synthesis, a new sample Xnew

is drawn first and synthetic data are generated by drawing from f(Y |Xnew).
Additionally, the original Y values are kept for all those records in Xnew which
were already included in the original sample. Furthermore, as [13] showed, the
first step of multiple imputation for nonresponse – drawing new values for the
parameters of the imputation model from their posterior distribution – is not
required for partial synthesis.

While q̄m is still the appropriate estimator for Q, the formula for estimating
the variance of q̄m based on partially synthetic data differs from the one for fully
synthetic data. As shown in [11] an unbiased variance estimator is given by:

Tp = ūm + m−1bm. (5)

This estimator is valid even if all records in the dataset are synthesized. Note
that once we synthesize all records in the data, the restriction that the sample
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size of the original data and of the synthetic data need to be the same no longer
applies (this restriction also does not apply if (sub)samples of the original data
are disseminated as proposed in [4] or [5]). [1] suggested an adjusted version of
the estimator if the sample sizes differ

Talt =
nsyn

norg
ūm + bm/m, (6)

where nsyn is the sample size of the synthetic data and norg is the sample size
of the original data.

In a recent paper [8] showed that the variance estimator could be further
simplified in this context:

Ts = (
nsyn

norg
+ 1/m)ūm. (7)

The authors also proposed a variant of the variance estimator which is valid
even if new parameters are drawn from their posterior distribution. It is given
by

Ts(PPD) = (
nsyn

norg
+ (1 + nsyn/norg)/m)ūm. (8)

This variance estimator (and its variant) is very attractive for two reasons:
First, since the variability of ūm is less than the variability of bm, Ts has less vari-
ability than Talt (which itself has less variability than Tf ). But more importantly,
since the variance estimator only depends on ūm, the variance can be estimated
even if only one synthetic dataset is released. This is attractive, because the risk
of disclosure generally increases with m [3,12] and thus some statistical agencies
decided to release only one implicate of their synthetic data [6]. In this situation
neither Tf nor Tp, nor Talt could be used since bm is not defined.

However, as one of the referees pointed out, neither Talt nor Ts would be
appropriate if the original data is a sample but the synthetic data cover the entire
population. As illustrated in [9], (1 + m−1)bm would be an unbiased estimate
for the variance in this setting. Given that ūm = 0 if the data cover the entire
population, only Tf would provide valid inferences; both Talt and Ts would be
biased. On the other hand, if both, the original and the synthetic data, cover the
entire population, only Tp (and Talt) would provide unbiased results, while Tf

would overestimate and Ts would underestimate the true variance. But beyond
these special cases it is important to note that Ts (and Talt) are only valid for
specific settings as I will illustrate in the next section.

3 Illustrative Simulation Studies

In this section, I present the results of two simulation studies. In the first sim-
ulation study X is empty, whereas the second simulation study assumes that
some variables are available for the entire population. For both simulations, I
use the same population consisting of N = 100,000 records comprising five vari-
ables, Y1, . . . , Y5, drawn from N(0, Σ), where Σ has variances equal to one and
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correlations ranging from 0.2 to 0.8. From this population, I repeatedly draw sim-
ple random samples using two different sampling rates ss = {1%; 20%}. These
samples represent the cases for which survey data are collected. In the first sim-
ulation, I assume that all five variables are only available for the sampled cases.
In the second simulation, I assume that X = {Y1, Y2}, that is Y1 and Y2 are
available for the full population. In both simulations, I evaluate two synthesis
strategies. With the first strategy, I follow Rubin’s approach that is, I generate
synthetic values only for those cases not included in the original sample. In the
first simulation this is achieved by explicitly imputing all the N − n cases in the
population and then taking simple random samples from these synthetic popu-
lations. In the second simulation, I draw new simple random samples of X first
and then synthesize Y3, . . . , Y5 only for those records that are not included in the
original sample. With the second strategy I follow Little’s approach replacing all
records by synthetic records. For each setup, I generate m = {5; 50} synthetic
datasets. Note that in the first simulation all five variables would be considered
survey variables and hence all five variables would be released. In the second sim-
ulation setup Y1 and Y2 are treated as variables from the sampling frame which
are neither synthesized nor released to the public (mimicking Rubin’s original
proposal).

To evaluate the impact of the different simulation designs on the different
variance estimators, I look at several estimates of potential interest: the esti-
mated variance for the means of Y3 and Y4, the conditional mean of Y5 given
Y3 > 0, and all regression coefficients in the regressions of Y5 on Y3 and Y4. All
simulations are repeated s = 5, 000 times and the size of the synthetic data is
always twice the size of the original data. Posterior draws of the parameters are
used in all synthesis models following Rubin’s original proposal. I also ran the
same simulations without posterior draws. Except for the expected undercov-
erage of Tf the general findings did not change and thus they are omitted for
brevity.

3.1 Simulation Results if No Variables are Available for the Entire
Population

Figures 1 and 2 contain the results for the simulation in which all variables are
synthesized and no variables are available for the population. Each boxplot in
each figure represents the ratio of estimated variance using the different vari-
ance estimators presented in the previous section divided by the true variance of
the point estimate across the 5,000 simulation runs. If the variance estimator is
unbiased, the boxplots should be centered around one. Tf and Ts represent the
variance estimators described in the previous section (note that I always drop
the subscript PPD for readability although the variance estimator appropriate
for this synthesis setup is used). The superscripts indicate the synthesis strategy.
R means that the synthetic data were generated following Rubin’s proposal, i.e.,
only those cases that were not included in the original sample are synthesized. L
means that the approach proposed by Little was used to generate the synthetic
data, i.e., all records are synthesized. The numbers above the boxplots are the
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Fig. 1. Ratio of the estimated variance of ˆ̄Y4 divided by the true variance of ˆ̄Y4 across
the 5,000 simulation runs for the two variance estimators for different synthesis designs.
If the estimated variance is unbiased, the boxplots should be centered around one
(indicated with a solid line).

true coverage rates (in percent) of 90% confidence intervals computed based on
the synthetic data, i.e. they represent the percentage of times the 90% confi-
dence intervals cover the true value from the population. For Tf t-distributions
with the appropriate degrees of freedom according to [9] are used to compute the
confidence intervals. For Ts the confidence intervals are based on normal approx-
imations. Note that while the boxplots are based on the formula for Tf given
above, the coverage rates for the fully synthetic variance estimate are based on
the adjusted formula which only uses ūm whenever Tf < 0, since the confidence
interval is not defined if Tf < 0.

Figure 1 contains the results for the mean of Y4. Similar results were obtained
for the mean of Y3 and all the regression coefficients from the linear regression
model. Thus, these results are excluded for brevity. Several points are note-
worthy. First, Ts always has substantially less variability than Tf . Second, for
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m = 5, Tf is negative in several simulation runs leading to coverage rates based
on the adjusted variance estimator that far exceed the nominal coverage rate
(note that the overcoverage could have potentially been avoided if posterior sim-
ulations would have been used as proposed in [15]). The figures also seem to
imply that there is a downward bias in Tf for m = 5. However, the solid lines
in the boxplots represent the median and not the mean. Given the skewness of
the estimated variances, the mean is larger than the median and the average
variance ratios for the different scenarios is 1.00 when ss = 1% and 0.98 when
ss = 20% for Rubin’s approach, i.e. the variance estimate is in fact unbiased.
However, we find substantial bias for Tf if the sampling rate is large and all
records are synthesized. The average of the variance ratio is 1.32 for m = 5
and 1.53 for m = 50. We do not see any bias if the sampling rate is small (the
average ratios are 1.00 and 1.01 for this scenario). This confirms that synthe-
sizing all records instead of only the non-sampled records to increase the level
of protection offered by Rubin’s approach as proposed in [9] is only valid if the
sampling rate is not too large. Small sampling rates are typical for household
surveys but the requirement might not be fulfilled for business surveys for which
large establishments are typically sampled with large probabilities of selection.

We also note that Ts is almost unbiased in all simulation designs, can never
be negative by design, and has much less variability than Tf . Only for m = 5 and
ss = 20% we notice a small undercoverage if Little’s approach is used for synthe-
sis due to an underestimation of the true variance. The average variance ratio
is 0.91. Given that the variance is also underestimated for Ȳ3 and all regression
coefficients in the linear regression with an average variance ratio of 0.94 across
all parameters, this small bias seems to be systematic. Interestingly, the variance
estimate is unbiased if the adjusted variance estimator as proposed in [1] is used.
The average variance ratio for Ȳ4 is 0.98 and the average across all parameters
is 1.02. Thus, it seems that the problem arises if ūm is used as an estimator for
the model uncertainty. However, the undercoverage is relatively small and only
occurs in rather extreme scenarios with a small number of synthetic datasets
and a large sampling rate. Thus, in general Ts should be preferred over Tf for
the parameters considered here.

Next, we consider the results for the conditional mean of Y5 given that Y3 > 0.
The results are presented in Fig. 2. The general findings for Tf are still the same
as in Fig. 1. Many of the estimates are negative if m = 5 leading to overcoverage
in the adjusted variance estimate. We also find that Tf is again substantially
biased if the sampling rate is large and all records are synthesized. Results are
always unbiased if the number of imputations is large enough and only those
records are synthesized that were not included in the original sample.

The findings for Ts are different. The variance is always overestimated leading
to coverage rates above the nominal coverage rate for all simulation setups. The
overcoverage is always higher if Rubin’s approach is used. The average variance
ratio varies between 1.23 and 1.26 for the different simulation runs, except for
the setup with m = 5 and a large sampling rate. For this setup the general
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Fig. 2. Ratio of the estimated variance of ˆ̄Y5|Y3 > 0 divided by the true variance of
ˆ̄Y5|Y3 > 0 across the 5,000 simulation runs for the two variance estimators for different
synthesis designs. If the estimated variance is unbiased, the boxplots should be centered
around one (indicated with a solid line).

underestimation of the variance found in Fig. 1 has a counter balancing effect
and thus the average variance ratio is 1.16.

The results seem to imply that if estimates based on subsets of the data are
considered, Tf should be preferred over Ts (unless the sampling rate is large
and Little’s approach was used to generate the data in which case none of the
variance estimators is valid).

3.2 Simulation Results if Some Variables are Available for the
Entire Population

Figure 3 contains the results for Ȳ4 for the simulation in which Y1 and Y2 are
available for the entire population and are used as explanatory variables when
synthesizing Y3 to Y5, but only Y3, Y4, and Y5 are released to the public. The
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Fig. 3. Ratio of the estimated variance of ˆ̄Y4 divided by the true variance of ˆ̄Y4 across
the 5,000 simulation runs for the two variance estimators for different synthesis designs.
If the estimated variance is unbiased, the boxplots should be centered around one
(indicated with a solid line).

results were similar for all other estimates considered in this simulation study and
thus are omitted for brevity. Note that this simulation design exactly matches
the setup in [14]. In this simulation the cases from the original sample are used
to estimate a model for f(Y3, Y4, Y5|Y1, Y2) using the sequential regression app-
roach. The fitted models are used to generate synthetic data by drawing from
f(Y3, Y4, Y5|Y new

1 , Y new
2 ) where Y new

1 , Y new
2 are the records contained in the new

sample drawn from the population. Again, only those cases not included in the
original sample are synthesized for Rubin’s approach, whereas all records are
synthesized if Little’s approach is used.

The results for Tf are essentially the same as in the setup in which no vari-
ables are available for the full population. For Ts the findings change. Now, the
estimate is always biased even for those estimates that are based on all records
such as Ȳ4 considered here. The average estimated variance is almost twice the
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variance of the true variance. The overestimation is not really surprising. The
synthetic sample size is twice the sample size of the original data and unlike
in the previous simulation the additional records contain additional information
since they consist of the original values for Y1 and Y2. This is not reflected in Ts

but it is reflected in Tf .
Thus, if some information is available for the full population and this infor-

mation is exploited when generating the synthetic data, it is mandatory to use
Tf and not Ts.

It might seem reasonable to abandon Rubin’s proposal in this situation and
only use the sampled cases of Y1, . . . , Y5 mimicking the approach of the previous
simulation study when generating synthetic data. After all, as discussed previ-
ously, Ts has some nice properties: it can never be negative, has less variability
than Tf , and can also be used if only one replicate is released.

However, we would throw away valuable information in this case, since the
observed values in Y1 and Y2 can be used to reduce the uncertainty in the point
estimates. For example, the true variance of ˆ̄Y4 across the 5,000 simulation runs
with m = 50 and ss = 1% is 1.03 ∗ 10−3 if the design of Sect. 3.1 is used,
that is, if only in the information from the sample is exploited for Y1 and Y2.
It reduces to 5.14 ∗ 10−4 if true values are used for the nsyn records for these
two variables. Thus, there are efficiency gains to be expected from using Rubin’s
proposal if variables are available for the full population. Obviously, the efficiency
increases, the larger the sample size of the synthetic sample and the higher the
correlation between the variables which are available for the full population and
the variables of interest. With Rubin’s approach it is possible in theory that the
estimate based on the synthetic data is more efficient, that is, has less variability,
than the estimate based on the original data. With the approach proposed by
Little this will never be possible no matter how large the size of synthetic data is.
Note that the adjustment factor nsyn/n in Ts always ensures that the adjusted
ūm term is approximately equal to the variance based on the original data. Thus
Ts always has to be larger than the variance in the original data. This is to be
expected since we can only use the information from the sample to generate our
synthetic data. With the approach of Rubin we can use additional information
beyond the sampled cases to improve the information contained in the estimates
of interest.

4 Conclusions

There has been some confusion lately, in which cases a synthetic dataset should
be labeled fully synthetic data and which variance estimator should be pre-
ferred. [8] even suggested to introduce new terminology to overcome this confu-
sion. They talk about complete and incomplete synthesis to distinguish whether
all records in Yobs are synthesized or not. They also show that their proposed vari-
ance estimator Ts is valid even if some unsynthesized variables X are available
as long as the analyst always conditions on these X variables in her inferences.
However, this is a very restrictive assumption. On the one hand, the X variables
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from the sampling frame might not even be released, as they might themselves
be sensitive or deemed irrelevant for the study. On the other hand, even if they
would be released, it seems unlikely that analysts would only be interested in
inferences conditional on these X variables. For example, if the users would be
interested in the marginal distribution of some of the variables or the uncon-
ditional relationship between some of the synthesized variables, the variance
estimator would give biased results as illustrated in the second simulation study.

Thus, I recommend that users always rely on the variance estimator Tp for
partially synthetic data whenever some records in the released data are not
synthesized. If all records are synthesized, agencies releasing the synthetic data
should additionally inform the users, whether the data were generated using
additional variables available for the full population or not. If yes, only Tf will
give valid results. If not, analysts might consider using Ts if inferences are based
on all records in the released sample. As pointed out previously using Ts offers
several advantages in this case: Ts will never be negative and will have less
variability than Tf . It will also be unbiased even if all records are synthesized
and the sampling rate is large. Furthermore, it will also be valid, if synthetic
data have been generated without drawing new parameters from their posterior
predictive distributions, which reduces the variance in the synthetic data and
also simplifies the synthesis. Finally, it can also be computed even if only one
replicate of the synthetic data is released.

However, Ts can only be used if the synthetic data comprise a sample and
not the entire population and the results from the simulation study indicate
that users should be careful when analyzing only subsets of the data. While Tf

still gave valid results for the conditional mean of Y5 (at least for sufficiently
large m), Ts showed a substantial positive bias. Whether such bias arises in all
situations in which only subsets of the data are analyzed and understanding the
reasons for the bias are interesting areas of future research.
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Abstract. Synthetic data generation has been proposed as a flexible
alternative to more traditional statistical disclosure control (SDC) meth-
ods for limiting disclosure risk. Synthetic data generation is functionally
distinct from standard SDC methods in that it breaks the link between
the data subjects and the data such that reidentification is no longer
meaningful. Therefore orthodox measures of disclosure risk assessment
- which are based on reidentification - are not applicable. Research into
developing disclosure assessment measures specifically for synthetic data
has been relatively limited. In this paper, we develop a method called
Differential Correct Attribution Probability (DCAP). Using DCAP, we
explore the effect of multiple imputation on the disclosure risk of syn-
thetic data.

Keywords: Synthetic data · Disclosure risk · CART

1 Introduction

With the increasing centrality of data in our lives, societies and economies, and
the drive for greater government transparency and release of open data, there
has been a concomitant increase in demand for public release microdata. How-
ever, many of the traditional SDC techniques still are subject to disclosure risks.
For example, Dinur and Nissim (2003) showed that additive noise (a common
SDC method) is not protective against certain kinds of attacks/adversaries and
Elliot et al. (2016) demonstrate that standard SDC controlled datasets are vul-
nerable to reidentification attacks using a jigsaw identification if released as open
data.

An alternative to traditional SDC techniques is the use of synthetic data.
The idea of synthetic data was first introduced by Rubin (1993), who proposed
treating each observed data point as if it were missing and imputing it condi-
tional on the other observed data points to produce a fully synthetic dataset.
As an alternative, Little (1993) introduced a method that would replace only
the sensitive variables in the observed data, to produce what is referred to as
c© Springer Nature Switzerland AG 2018
J. Domingo-Ferrer and F. Montes (Eds.): PSD 2018, LNCS 11126, pp. 122–137, 2018.
https://doi.org/10.1007/978-3-319-99771-1_9
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partially synthetic data. Since fully synthetic data does not contain any original
data, the disclosure of information from the synthetic data is less likely to occur.
Likewise for partially synthetic data, the sensitive values are synthesised, and
thus the risk of disclosure of sensitive information is lessened compared to the
original data.

Rubin’s initial proposal for producing synthetic data was based on multiple
imputation (MI) techniques using parametric modelling. Rubin originally devel-
oped multiple imputation in the 1970s as a solution to deal with missing data
by replacing missing values with multiple values, to account for the uncertainty
of the imputed values. Alternatively, synthetic data can be created using sin-
gle imputation (SI) wherein the uncertainty of a missing value is accounted for
by a different set of rules for variance estimation (Raab et al. 2016). Recent
research has examined non-parametric methods - including machine learning
techniques - which are better at capturing non-linear relationships (Drechsler and
Reiter 2011). These methods include classification and regression trees (CART)
(Reiter 2005), random forests (Caiola and Reiter 2010), bagging (Drechsler and
Reiter 2011), support vector machines (Drechsler 2010), and genetic algorithms
(Chen et al. 2016). In this paper we will be using synthetic data generated from
both traditional parametric modelling and from CART.

Synthetic data generation is still a relatively new method of data protection
and there has been a relative dearth of research into assessment of residual
disclosure risk. The way that it operates is functionally distinct from standard
SDC methods in that it breaks the link between the data subjects and the
output data in a way that SDC methods do not. Thus a common sense view
might posit that synthetic data are without disclosure risk since the data do
not represent real individuals. However, synthetic data may pose a disclosure
risk through the attributions or inferences that it allows. Therefore, orthodox
measures for disclosure risk which are based on the notion of re-identification are
not applicable for fully synthetic data. Research into measuring risk for synthetic
data has been limited to a few papers (notably Reiter and Mitra (2009); Reiter
et al. (2014)).

In this paper we will be developing and using a measure introduced pro-
cedurally by Elliot (2014) to capture the disclosure risk of multiply imputed
parametric and CART synthetic data. The remainder of this article is struc-
tured as follows: Sect. 2 presents an overview of disclosure risk with a focus on
disclosure risk for synthetic data. Section 3 discusses the dataset being used, how
the synthetic files are generated, and how we use DCAP. Section 4 presents the
results of our analyses and discusses the relationship between disclosure risk and
number of imputations, leading to our conclusion in Sect. 5.

2 Disclosure Risk

Data disclosure can occur in different forms. The most important forms are
re-identification and attribution. Re-identification occurs when an identity is
attached to a data unit, while attribution is when some attribute can be asso-
ciated with a population unit (eg. Elliot et al. 2016). For example, attribution
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might occur if some microdata reveal that all men age 65+ in a particular geo-
graphical area have prostate cancer. Therefore, a data intruder who lives in that
area would learn that their 65+ male neighbour has prostate cancer, which is
information that the survey was clearly not meant to disclose. Re-identification
and attribution frequently occur together but can occur separately. Some authors
also distinguish another type, inference attacks, wherein an attacker can infer
information at a high degree of confidence1. However, we would argue that the
distinction is somewhat arbitrary since all attributions involve some degree of
uncertainty. We instead define attributions as inferences that a population unit
has a certain characteristic and define a subclass of those attributions as cor-
rect attributions, wherein an intruder correctly identifies an attribute for a given
respondent. It follows that a well formed measure of attribution risk would cap-
ture the proportion of attributions that are correct.

With synthetic data, as Drechsler et al. (2008) write, “the intruder faces
the problem that he never knows (i) if the imputed values are anywhere near
the true values and (ii) if the target record is included in one of the different
synthetic samples2” (p. 1018). Following this reasoning, it is widely understood
that thinking of risk within synthetic data in terms of re-identification, which is
how many other SDC methods approach disclosure risk, is not meaningful and
therefore we must develop measures of attribution risk (see for example Reiter
and Mitra (2009)).

2.1 Disclosure Risk Measures for Synthetic Data

Unfortunately, the bulk of the SDC literature (for example: Winkler 2005;
Skinner and Elliot 2002; Elliot et al. 2002; Yancey et al. 2002; Fienberg and
Makov 1998; Kim and Winkler 1995, etc.) has focused on re-identification in
the form of record linkage, which is not meaningful for fully synthetic data. By
focusing their efforts on re-identification, they do not address disclosure risk that
occurs in the form of attribution without re-identification, such as that addressed
by Smith and Elliot (2008) and Machanavajjhala et al. (2007).

Previous methods for synthetic data risk estimation include Reiter et al.’s
(2014) Bayesian estimation approach and Reiter and Mitra’s (2009) matching
probability of partially synthetic data. Reiter and Mitra compare perceived match
risk, expected match risk, and true match risk. Reiter et al. assume that an intruder
seeks a Bayesian posterior distribution. In Reiter et al.’s framework, the intruder is
assumed to know all of the records but one. This scenario is very unlikely to occur
in the real world, and even the authors noted that it is a conservative estimate.
Essentially this is an approach that overestimates disclosure risk.

Differential Correct Attribution Probability (DCAP). Elliot (2014)
introduced an approach that combines the notion that one should measure attri-
bution risk as the probability of an attribution being correct and that one can
1 The level of confidence which is regarded as disclosive is a subjective judgement.
2 A synthetic dataset often contains multiple synthetic samples (m).
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then compare that probability to those obtained on the original data and against
some baseline. Here we develop this approach more formally and will refer to it
as the Differential Correct Attribution Probability (DCAP).

The underlying measure of DCAP is the correct attribution probability and
this has some similarity to Reiter and Mitra’s method. Both methods employ
a matching mechanism with the assumption that the intruder knows the true
values of a key consisting of non-target variables. However, the framing of the
two approaches is different. Given that Reiter and Mitra are matching using
partially synthetic data, when a match occurs amongst the statistical uniques3,
the intruder can be certain that the match occurring refers to the same record.
However, what is uncertain in the Reiter and Mitra method, is whether the
synthetic version of a target record is the same as that of the real target. While
in DCAP, since the matching is occurring with fully synthetic data, the matching
has considerably less certainty since the keys do not directly map onto one
another. In Reiter and Mitra’s method they are comparing assumed risk against
actual matches. While in DCAP the correct attribution rate for synthetic data is
compared to that of the original dataset and a baseline univariate distribution. In
the DCAP method one record can have multiple matches even with the original
dataset and therefore, it is merely a probability of attributing the correct target
variable to the key, since it is not only concerned with uniques and nor does it
assume verifiable matches, as in Reiter and Mitra’s scenario. In essence Reiter
and Mitra’s method is best for partially synthetic data, while DCAP is better
suited for fully synthetic data.

DCAP works on the assumption that the intruder knows the values of a set
of key variables for a given unit and is seeking to learn the specific value of a
target variable. Where the target variable is categorical4 the method works as
follows: We define do as the original data and Ko and To as vectors for the key
and target information

do = {Ko, To} (1)

Likewise, ds is the synthetic dataset.

ds = {Ks, Ts} (2)

The Correct Attribution Probability (CAP) for the record indexed j is the empir-
ical probability of its target variables given its key variables,

CAPo,j = Pr(To,j |Ko,j) =
∑n

i=1[To,i = To,j ,Ko,i = Ko,j ]∑n
i=1[Ko,i = Ko,j ]

(3)

where the square brackets are Iverson brackets and n is the number of records.

3 A statistically unique record is a record in the dataset, in which no other record in
the dataset has that particular combination of characteristics.

4 Elliot (2014) presents a variant where the target is continuous but we do not consider
that here.
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The CAP for record j based on a corresponding synthetic dataset ds is the same
empirical, conditional probability but derived from ds,

CAPs,j = Pr(To,j |Ko,j)s =
∑n

i=1[Ts,i = To,j ,Ks,i = Ko,j ]∑n
i=1[Ks,i = Ko,j ]

(4)

For any record in the original dataset for which there is no corresponding record
in the synthetic dataset with the same key variable values, the denominator in
Eq. 4 will be zero and the CAP is therefore undefined. In Sect. 3.3 we describe
two methods for dealing with this.

The baseline CAP for record j is the marginal probability of its target vari-
ables estimated from the original dataset,

CAPb,j = Pr(To,j) =
1
n

n∑

i=1

[To,i = To,j ] (5)

In principle, the baseline could be set to any level. However, the choice of
the univariate baseline in Eq. 5 as the default for the approach, is based on
the pragmatic assumption that the intruder will routinely know the univariate
distribution of a target variable for the population. Another way to look at this
is that a univariate distribution is often considered releasable into the public
domain; univariate distributions are frequently published as summary statistics,
and so a synthetic CAP score equal to or lower than the baseline CAP is likely
to be considered as a sufficiently low risk in most conceivable situations.5 On the
other hand if the synthetic CAP score is equal to the CAP score for the original
data that would imply that the synthetic data is as disclosive as the original
data and, therefore, the synthetic data generator is not sufficiently protecting
the data. The original data and baseline CAP scores therefore represent effective
operating bounds in which the risk associated with synthetic data is likely to
fall.

We propose addressing multiple imputations for DCAP by pooling the
matches from the multiple synthetic samples:

CAPm = Pr(T1 + ... + Tm = To|K1 + ... + Km = Ks) (6)

where m is indicative of the imputation. This is preferable to averaging because
we believe that an actual intruder would be viewing a synthetic dataset in its
entirety. This paper will address the following research questions:

1. How does using Multiple Imputation affect the CAP score?
2. How do statistical uniques affect the CAP score?
3. Do parametrically and CART generated data have similar CAP scores?
4. Is synthetic data differentially confidential?

5 It is worth noting that if the mean CAP score of the whole synthetic dataset is at
the baseline, that effectively means that the target is independent of the key which
may be indicative that the data have a utility issue.
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3 Empirical Demonstation of the DCAP Approach

3.1 Data Sources

Following Elliot (2014) we used the Living Costs and Food Survey (LCF) Office
for National Statistics (2016) as one of our test datasets. The LCF has many
characteristics that make it a good candidate as a test dataset. First, it has
a small size, which will allow for the dataset to be quickly synthesised. Addi-
tionally, the LCF has detailed information, making it vulnerable to disclosure.
Furthermore, since the LCF was used by Elliot (2014) this allows us to use his
keys and targets. We used the 2014 LCF, which consists of 5133 records. We used
the following variables: Government office region (GOR), household size, output
area classifier, tenure, economic position of reference person, dwelling type, num-
ber of workers, number of cars, and, internet in household (synthesised in that
order). We utilised three different versions of the LCF: (1) the original 2014 LCF;
(2) a CART generated 2014 LCF m = 10, and (3) a parametrically generated
2014 LCF m = 10. Our second test dataset is the British Social Attitudes Survey
(BSA) NatCen Social Research (2014). The 2014 BSA consists of 2878 records.
We used the following variables: GOR, higher education qualification, marital
status, age category, gender, social class, and household income. We will also
use three different versions of the BSA: (1) the original 2014 BSA; (2) a CART
generated 2014 BSA m = 10, and (3) a parametrically generated 2014 m = 10.

3.2 Creation of Synthetic Data Files

The synthetic data are generated using the r-package, synthpop version 1.3-0
(Nowok et al. 2016). Synthpop was used to generate both the parametric and
CART synthetic datasets. The parametric synthetic dataset was generated using
logistic regression and polytomous logistic regression, since all variables being
used are categorical. The missing data from the original LCF and BSA are left
unchanged in the synthesis process.

3.3 Parameters for the Experiments

Our key variables for the LCF are as follows: GOR, Output area classifier, tenure,
dwelling type, internet in household, and household size. The target variable is
economic position of reference person. The first four variables of the key and the
target variable are the same as in Elliot (2014). For the BSA the key variables
are: GOR, education qualification, marital status, age, gender, social class and
household income. The target variable is banded income. (Different key sizes for
the LCF are in AppendixA).

Treatment of Non-matches in the CAP Score. DCAP, like many previ-
ous disclosure risks measures, works on the basis of matching on key variables.
However, here we are not primarily concerned with the status of those matches
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but whether they lead to correct or incorrect attributions. The CAP score is
the proportion of matches leading to correct attributions out of total matches.
However, when measuring the CAP score for synthetic data, not every combi-
nation of keys from the original dataset will be present in the synthetic dataset.
Elliot presented two different resolutions for this issue: recording the CAP values
for the non-matches as zero or treating a non-match on the key as undefined,
whereby the record is discounted and does not count towards n. The basis for
assigning a zero is that a non-match has a zero probability of yielding a correct
attribution. However, the logic behind recording non-matches as undefined is
that an actual intruder is more likely to stop their attempt with a non-match.
Elliot (2014) found that treating non-matches as undefined leads to higher CAP
scores. In this paper we will be exploring CAP scores for both when non-matches
are recorded as zero and coded as undefined.

Different Intruder Scenarios. When originally proposed, the CAP score was
intended to be averaged across the whole dataset, however there is nothing intrin-
sic to DCAP that requires the use of the entire dataset. DCAP can be used for
a variety of different intruder scenarios. However, in all scenarios, it is assumed
that the intruder knows the information from the key for the original dataset
and that the target variable is unknown to the intruder.

We will be exploring DCAP in three different scenarios, one where the entire
dataset is in use, a second where the intruder is only interested in respondents
who are statistically unique for the key (this would make it equivalent to the
Reiter and Mitra method introduced earlier), and a third where only the special
uniques are considered. Informally, a statistical unique can occur by either chance
(random unique) or it can occur because of a rare combination of traits (special
unique). Special uniques are deemed more risky than random uniques; Elliot
et al. (2002) define an algorithm for scoring statistical uniques according to how
special they are.

To identify statistical uniques and special uniques, we used the Special
Uniques Detection Algorithm (SUDA) software (Elliot et al. 2002). For each
statistical unique, SUDA generated a score using the Data Intrusion Simulation
(DIS) method, which estimates the intruder confidence in a match leading to
correct inference (see Elliot et al. 2002, for more details). We used the records in
the top decile of scores generated by SUDA so as to examine the most risky of
records (the special uniques). For the LCF there were 1867 statistically unique
records and 251 special unique records, while for the BSA there were 2120 sta-
tistically unique records and 235 special unique records.

4 Results and Discussion

The CAP scores for the LCF dataset are shown in Table 16. It shows that for
the synthetic datasets all CAP scores are smaller than the CAP score for the
6 The different imputation levels (m) are nested, rather than independent synthetic

datasets.



DCAP for Synthetic Data 129

Table 1. Mean CAP scores for the original and synthetic LCF datasets for two methods
handling non-matches, two synthesis methods, three different intruder scenarios; full
set, statistical uniques, and special uniques and ten levels of multiple imputation.

Non-matches as zero Non-matches as undefined

Scenario Full set Statistical
uniques

Special
uniques

Full set Statistical
uniques

Special
uniques

Original 0.750 1 1 0.750 1 1

Baseline 0.266 0.255 0.226 0.266 0.255 0.226

CART

m = 1 0.334 0.180 0.074 0.498 0.548 0.549

2 0.393 0.273 0.110 0.503 0.554 0.530

3 0.416 0.324 0.154 0.501 0.549 0.568

4 0.435 0.361 0.162 0.505 0.545 0.535

5 0.443 0.380 0.176 0.502 0.537 0.525

6 0.448 0.388 0.192 0.501 0.532 0.525

7 0.453 0.397 0.212 0.500 0.524 0.522

8 0.459 0.411 0.218 0.502 0.529 0.507

9 0.463 0.421 0.242 0.502 0.529 0.523

10 0.465 0.427 0.242 0.502 0.528 0.519

Parametric

m = 1 0.296 0.138 0.0418 0.459 0.433 0.525

2 0.346 0.208 0.0531 0.460 0.433 0.430

3 0.364 0.251 0.0774 0.452 0.435 0.485

4 0.378 0.277 0.0817 0.450 0.434 0.437

5 0.388 0.295 0.0920 0.449 0.431 0.436

6 0.393 0.304 0.101 0.447 0.426 0.408

7 0.397 0.315 0.0987 0.445 0.427 0.393

8 0.403 0.324 0.108 0.447 0.428 0.394

9 0.406 0.328 0.115 0.446 0.424 0.384

10 0.420 0.355 0.142 0.455 0.437 0.410

original data. When the non-matches are coded as undefined all datasets have a
CAP that is larger than the baseline CAP, there is no substantial effect of the
number of imputations. The differences between the CAP scores for the three
scenarios (full set, statistical uniques, and special uniques) are inconsistent but
not large.

On the other-hand, when the non-matches are coded as zero, the full set,
statistical uniques, and special uniques have different CAP sizes, with the CAP
size becoming smaller as the records become riskier. Additionally, as m increases
the CAP score increases. We found for the full set that the CAP scores were larger
than the baseline CAP score. However, for the special uniques, the synthetic CAP
score was similar to or smaller than the baseline CAP scores, but as m increases
the synthetic CAP score becomes larger than the baseline CAP score.
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This relationship between the synthetic CAP scores and the baseline CAP
score is different than the findings of Elliot (2014), who found that the synthetic
and baseline had similar scores. This difference most likely stems from two fac-
tors: (1) Elliot was using a smaller key size. AppendixA shows that when smaller
keys are observed the difference between the synthetic CAP score, the original
CAP score, and baseline CAP score is less dramatic. (2) Elliot was only using
single imputation. As seen in Table 1 as m increases so does the CAP score,
hence a dataset that is only m = 1, would be less disclosive and therefore closer
to the baseline CAP score.

Additionally, when the non-matches are coded as zero, Table 1 shows that the
statistical unique CAP scores tend to be smaller than the full set CAP scores,
and the special unique scores are smaller than the statistical unique scores. This
trend is not so when the non-matches are undefined. The statistical uniques
and special uniques are actually a bit larger than the full set. This indicates
that while riskier records, as designated by the statistical uniques and special
uniques, are less likely to have a match, if they do have a match it is just as
likely to be correct as any other match.

Table 1 also shows that for the synthetic CAP scores the parametrically gen-
erated synthetic dataset had smaller CAP scores than the CART generated
synthetic dataset. This shows that - in this experiment at least - the parametri-
cally generated synthetic data has less risk than the CART generated synthetic
data.

4.1 CAP Scores Regressed on Number of Imputations

To explore the relationship between the CAP scores and the number of imputa-
tions (m), we put the CAP scores into a simple linear regression analysis where
y is the CAP score and m is a continuous variable, shown in Table 2. Table 2
shows that when the non-matches are coded as zero (Models 1–3) the number of
imputations (m) has a significant and positive effect. When the non-matches are
coded as undefined, the regression models show a different relationship. Table 2
shows that when the non-matches are coded as undefined, for the full set (Model
4), the relationship between m and the CAP score is not significant for CART,
but has a significant, if small, negative coefficient for the parametric synthetic
data. For model 5 when the data is parametric the relationship is not significant,
but has a small negative coefficient for the CART data. For the special uniques
(Model 6) there is not significant relationship between m and the CAP score.
The m coefficient for Models 4, 5 and 6, is, even when significant, considerably
smaller than the m coefficient for Models 1, 2, or 3.

When the non-matches are coded as CAP=0, m has a significant positive
effect on the CAP score, when non-matches are coded as undefined for the CAP
score there is essentially no effect. The increase when non-matches are zero, is
an artefact of the lower number of non-matches. With more synthetic samples,
non-matches are less likely to occur and this increases the CAP score. However,
when the non-matches are undefined there is no reason for the CAP score to
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Table 2. Simple linear regression of CAP score on the number of imputations - LCF

Term Non-matches as zero Non-matches as undefined

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Full set Statistical
uniques

Special
uniques

Full set Statistical
uniques

Special
uniques

CART Intercept 0.367*** 0.221*** 0.0809*** 0.501*** 0.548*** 0.552***

m 0.0117*** 0.0234*** 0.0177*** 5.64e-05 −0.00283* −0.00393

Parametric Intercept 0.367*** 0.169*** 0.0431*** 0.458*** 0.438*** 0.489***

m 0.0117*** 0.0186*** 0.00838*** −0.00141* −0.00165 −0.0114

*p< 0.05 **p< 0.01 ***p< 0.001

change in either direction, hence m has either a very small coefficient and mostly
non-significant coefficient.

4.2 Comparing the LCF CAP Scores to the BSA CAP Scores

The results for the BSA dataset mostly confirm the results from the exploratory
regression for the LCF. (The average CAP scores for the BSA can be found
in AppendixB). Table 3 is an exploratory regression analysis of the BSA CAP
scores. Like the LCF, when the non-matches are coded as zero (Models 1, 2, and
3) m has a significant positive relationship to the CAP score, showing that as
m increases the likelihood of a match increases. However, for the CAP scores
when the non-matches are excluded the BSA is different than the LCF. For
the full set (Model 4) for the parametric synthetic data m has a significant
negative coefficient. While for Model 5 the statistical uniques have significant m
coefficients Model 4 probably has a significant coefficient since the BSA has a
larger proportion of statistical uniques than the LCF (see Sect. 3.3) and therefore
Model 4 will look more similar to Model 5. Additionally, AppendixB shows that
like the LCF, for the BSA the CART CAP scores are larger than the parametric
CAP scores.

Table 3. Simple linear regression of CAP score on the number of imputations - BSA

Term Non-matches as zero Non-matches as undefined

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Full set Statistical
uniques

Special
uniques

Full set Statistical
Uniques

Special
uniques

CART Intercept 0.143*** 0.114*** 0.0109 0.302** 0.114*** 0.337***

m 0.0137*** 0.0157*** 0.0201*** 0.000517 0.0157*** 0.00908

Parametric Intercept 0.0615*** 0.0420*** 0.00335 0.177*** 0.169*** 0.220**

m 0.00641*** 0.00677*** 0.00445*** −0.00226** −0.00219* 0.00539

*p< 0.05 **p< 0.01 ***p< 0.001
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4.3 Is Synthetic Data Differentially Confidential?

Here we introduce the notion of differential confidentiality as an alternative
way to using the CAP score to the DCAP method described in Sect. 2.1. We
determine that a dataset is differentially confidential in respect of a given target
and key if on average there is no difference in the CAP score for a record whether
the record is in the original dataset or not.

To demonstrate this concept for synthetic data we partitioned the data into
two equal sized datasets and synthesised one (A) but not the other(B). We
then calculated the synthetic CAP score for both A and B. Table 4 shows that
synthetic data is not inherently differentially confidential, since if a record is
included in the synthesis model it has a higher average CAP score than were it
not included in the synthesis model. It is noteworthy that the differences between
the two sets are larger for the CART synthetic data than it is for the parametric
synthetic data. Also of note, for the t-tests 7, while all t-statistics for the CART
synthetic data were significant at the p< 0.001 level, for the parametric synthetic
data, the t-statistics were significant at the p< 0.05 level if they were significant
at all, which some were not. Furthermore, as m increases the CART synthetic
data becomes less differentially confidential, while that is not the case for the
parametrically generated synthetic data.

The reader may have noted a superficial similarity of this concept with dif-
ferential privacy. However, this is a post hoc test where as the former is a mecha-
nism for achieving a standard8. It is possible that a dataset could be differentially
private but not differentially confidential and vice versa.

4.4 Summary

With respect to DCAP the greater number of imputations, the more likely a
match is to occur. However the likelihood of said match leading to a correct
inference is not affected by the number of imputations, this picture can only
fully be seen by looking at both the CAP scores when non-matches are coded
as zero and undefined. In all instances the synthetic CAP score is lower than
that of the original, showing that the synthetic data does decrease the risk of
disclosure. While the disclosure risk is less than that of the original, it does not
satisfy differential confidentiality.

That being said, synthetic data does particularly decrease the disclosure risk
of special uniques, which are the most risky records in any microdata. The
special uniques had CAP scores at the same level or lower than the baseline
CAP, showing that the risk to special uniques from synthetic data is less than
releasing a univariate distribution. In all scenarios, the CART synthetic data
had a higher CAP score than the parametric synthetic data. This all suggests
that parametrically synthetic data has less disclosure risk than CART synthetic
data.
7 We used Welch’s T-Test DF = 5,131.
8 See for example Abowd and Vilhuber, 2008; Charest 2010 for uses of differential

privacy in the synthesizing mechanism.
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Table 4. Results of the differential confidentiality test for the LCF synthetic dataset-
with non-matches as zero.

Included in synthesis Not included in synthesis Difference T-test

CART

m = 1 0.295 0.207 0.0875 8.0987***

2 0.370 0.252 0.1181 10.835***

3 0.404 0.269 0.134 12.514***

4 0.426 0.282 0.144 13.553***

5 0.442 0.294 0.148 14.13***

6 0.455 0.300 0.155 14.85***

7 0.462 0.303 0.160 15.503***

8 0.473 0.312 0.161 15.691***

9 0.476 0.315 0.162 15.841***

10 0.481 0.319 0.161 15.871***

Parametric

m = 1 0.253 0.231 0.0215 2.0214*

2 0.318 0.289 0.0295 2.6972**

3 0.341 0.319 0.0216 1.9972*

4 0.361 0.339 0.0213 1.9825*

5 0.372 0.347 0.0248 2.3498*

6 0.376 0.350 0.0258 2.4819*

7 0.384 0.361 0.0234 2.271*

8 0.386 0.368 0.0186 1.8221

9 0.391 0.375 0.0156 1.5404

10 0.397 0.378 0.0185 1.8377

5 Conclusion

In this paper we have developed the methods introduced by Elliot (2014) for mea-
suring attribute disclosure risk in synthetic data. The CAP score appears to be
a simple but robust measure of attribute disclosure risk and the two approaches
to using that measure - DCAP and differential confidentiality - seem to pro-
vide some traction on the difficult problem of measuring attribute disclosure.
Indeed, we note that although these methods have been developed with a view
to measuring the disclosure risk for synthetic data, they could be used on any
structured datasets. Indeed, they might be useful for the calculation of the rela-
tive residual risk of different disclosure control and privacy protection methods.
In future work we hope to develop such a general comparative methodology.
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A An exploration into the CAP scores when smaller
sized keys are used or the LCF

Key 6: GOR, Output area classifier, tenure, dwelling type, internet in hh, house-
hold size
Key 5: GOR, Output area classifier, tenure, dwelling type, internet in hh
Key 4: GOR, Output area classifier, tenure, dwelling type
Key 3: GOR, Output area classifier, tenure (Table 5).

Table 5. Mean CAP scores for the original and synthetic LCF datasets for for two
methods of handling non-matches, two synthesis methods, three different key sizes,
three different intruder scenarios;and ten levels of multiple imputation.

Scenario Full set Statistical uniques Special uniques

File Key 5 Key 4 Key 3 Key 5 Key 4 Key 3 Key 5 Key 4 Key 3

Original 0.610 0.560 0.466 1 1 1 1 1 1

Baseline 0.266 0.266 0.266 0.244 0.248 0.239 0.242 0.246 0.239

Non-matches as zero

CART

m = 1 0.378 0.381 0.395 0.200 0.196 0.234 0.109 0.159 0.234

2 0.411 0.401 0.402 0.289 0.275 0.292 0.147 0.191 0.292

3 0.422 0.411 0.404 0.327 0.324 0.338 0.169 0.233 0.338

4 0.428 0.414 0.406 0.350 0.333 0.343 0.186 0.229 0.343

5 0.431 0.416 0.406 0.367 0.352 0.345 0.191 0.239 0.345

6 0.433 0.418 0.406 0.373 0.363 0.351 0.202 0.239 0.351

7 0.434 0.419 0.406 0.375 0.367 0.355 0.202 0.243 0.355

8 0.437 0.421 0.407 0.381 0.371 0.351 0.216 0.265 0.351

9 0.437 0.421 0.407 0.380 0.373 0.352 0.240 0.279 0.352

10 0.439 0.422 0.408 0.385 0.376 0.358 0.249 0.289 0.358

Parametric

m = 1 0.360 0.362 0.388 0.153 0.152 0.197 0.0727 0.0685 0.197

2 0.387 0.382 0.396 0.217 0.203 0.231 0.0720 0.0929 0.231

3 0.395 0.383 0.393 0.242 0.221 0.282 0.0988 0.147 0.282

4 0.400 0.388 0.395 0.263 0.238 0.288 0.0874 0.137 0.288

5 0.404 0.390 0.396 0.279 0.255 0.297 0.0908 0.151 0.297

6 0.405 0.391 0.395 0.290 0.267 0.307 0.124 0.162 0.307

7 0.406 0.392 0.395 0.297 0.279 0.302 0.146 0.193 0.302

8 0.406 0.392 0.395 0.296 0.274 0.289 0.166 0.206 0.289

9 0.408 0.392 0.394 0.309 0.278 0.289 0.188 0.234 0.289

10 0.415 0.398 0.396 0.328 0.306 0.308 0.214 0.278 0.308

Non-matches as undefined

CART

m = 1 0.444 0.421 0.404 0.466 0.441 0.432 0.632 0.702 0.432

2 0.448 0.422 0.405 0.478 0.437 0.358 0.523 0.518 0.358

3 0.449 0.425 0.406 0.471 0.44 0.376 0.476 0.502 0.376

4 0.450 0.427 0.406 0.469 0.441 0.365 0.445 0.458 0.365

5 0.449 0.427 0.407 0.472 0.445 0.364 0.428 0.455 0.364

6 0.449 0.427 0.407 0.467 0.443 0.370 0.436 0.436 0.370

7 0.449 0.427 0.407 0.460 0.440 0.371 0.419 0.425 0.371

8 0.450 0.428 0.407 0.457 0.431 0.360 0.417 0.427 0.360

9 0.449 0.427 0.407 0.449 0.425 0.358 0.433 0.427 0.358

10 0.449 0.428 0.408 0.448 0.425 0.361 0.441 0.434 0.361

(continued)
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Table 5. (continued)

Scenario Full set Statistical uniques Special uniques

File Key 5 Key 4 Key 3 Key 5 Key 4 Key 3 Key 5 Key 4 Key 3

Original 0.610 0.560 0.466 1 1 1 1 1 1

Baseline 0.266 0.266 0.266 0.244 0.248 0.239 0.242 0.246 0.239

Parametric

m = 1 0.428 0.405 0.397 0.373 0.324 0.318 0.471 0.338 0.318

2 0.429 0.406 0.400 0.373 0.320 0.287 0.377 0.325 0.287

3 0.425 0.400 0.395 0.372 0.309 0.320 0.402 0.398 0.320

4 0.424 0.401 0.396 0.374 0.312 0.314 0.332 0.319 0.314

5 0.425 0.400 0.396 0.376 0.315 0.310 0.322 0.334 0.310

6 0.423 0.399 0.396 0.376 0.318 0.318 0.367 0.325 0.318

7 0.422 0.399 0.395 0.375 0.323 0.310 0.382 0.330 0.310

8 0.421 0.398 0.395 0.365 0.312 0.293 0.381 0.327 0.293

9 0.421 0.398 0.395 0.370 0.314 0.294 0.414 0.352 0.294

10 0.425 0.402 0.396 0.382 0.333 0.308 0.429 0.390 0.308

B The average CAP scores for the BSA

(See Table 6).

Table 6. Mean CAP scores for the original and synthetic BSA datasets for two methods
handling non-matches, two synthesis methods, three different intruder scenarios; full
set, statistical uniques, and special uniques and ten levels of multiple imputation.

Scenario Non-matches as zero Non-matches as undefined

Full set Statistical

uniques

Special

uniques

Full set Statistical

uniques

Special

uniques

Original 0.876 1 1 0.876 1 1

Baseline 0.0853 0.0851 0.0869 0.0853 0.0851 0.0869

CART

m = 1 0.115 0.0871 0.0127 0.291 0.304 0.273

2 0.173 0.146 0.0503 0.311 0.329 0.370

3 0.196 0.172 0.0631 0.302 0.313 0.309

4 0.218 0.197 0.0971 0.306 0.316 0.362

5 0.230 0.211 0.130 0.307 0.316 0.424

6 0.238 0.221 0.149 0.304 0.312 0.417

7 0.248 0.233 0.160 0.308 0.316 0.409

8 0.251 0.238 0.173 0.306 0.314 0.419

9 0.257 0.246 0.187 0.307 0.315 0.414

10 0.259 0.248 0.190 0.305 0.312 0.407

Parametric

m = 1 0.0474 0.0309 0.00426 0.168 0.154 0.200

2 0.0716 0.0517 0.0128 0.168 0.159 0.273

3 0.0896 0.0701 0.0213 0.176 0.171 0.263

4 0.0998 0.0812 0.0241 0.173 0.170 0.258

5 0.101 0.0829 0.0241 0.161 0.156 0.227

6 0.106 0.0875 0.0281 0.161 0.153 0.220

7 0.111 0.0943 0.0338 0.163 0.156 0.240

8 0.113 0.0959 0.0380 0.159 0.151 0.255

9 0.114 0.0974 0.0416 0.155 0.148 0.271

10 0.115 0.100 0.0506 0.153 0.147 0.297
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Abstract. We propose a method for the release of differentially private
synthetic datasets. In many contexts, data contain sensitive values which
cannot be released in their original form in order to protect individuals’
privacy. Synthetic data is a protection method that releases alternative
values in place of the original ones, and differential privacy (DP) is a
formal guarantee for quantifying the privacy loss. We propose a method
that maximizes the distributional similarity of the synthetic data rel-
ative to the original data using a measure known as the pMSE, while
guaranteeing ε-DP. We relax common DP assumptions concerning the
distribution and boundedness of the original data. We prove theoretical
results for the privacy guarantee and provide simulations for the empir-
ical failure rate of the theoretical results under typical computational
limitations. We give simulations for the accuracy of linear regression
coefficients generated from the synthetic data compared with the accu-
racy of non-DP synthetic data and other DP methods. Additionally, our
theoretical results extend a prior result for the sensitivity of the Gini
Index to include continuous predictors.

Keywords: Differential privacy · Synthetic data · Classification trees

1 Introduction

In many contexts, researchers wish to gain access to data which are restricted
due to privacy concerns. While there are many proposed methods for allowing
researchers to fit models or receive query responses from the data, there are
other cases where either due to methodological familiarity or modeling flexi-
bility, researchers desire to have an entire dataset rather than a set of specific
queries. This paper proposes a method for releasing synthetic datasets under the
framework of ε-differential privacy, which formally quantifies and guarantees the
privacy loss from these releases.

Differential privacy (DP), originally proposed by Dwork et al. (2006), is a for-
mal method of quantifying the privacy loss related to any release of information
based on private data; for a more in-depth review see Dwork and Roth (2014),
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J. Domingo-Ferrer and F. Montes (Eds.): PSD 2018, LNCS 11126, pp. 138–159, 2018.
https://doi.org/10.1007/978-3-319-99771-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99771-1_10&domain=pdf


pMSE Mechanism 139

and for a non-technical primer see Nissim et al. (2017). Since its inception, DP
has spawned a large literature in computer science and some in statistics. It has
been explored in numerous contexts such as machine learning algorithms (e.g.,
Blum et al. (2005); Kasiviswanathan et al. (2011); Kifer et al. (2012), categorical
data (e.g., Barak et al. (2007); Li et al. (2010), dimension reduction (e.g., Chaud-
huri et al. (2012); Kapralov and Talwar (2013), performing statistical analysis
(e.g., Wasserman and Zhou (2010); Karwa and Slavković (2016), and streaming
data (e.g., Dwork et al. (2010), to name a few.

While DP is a rigorous risk measure, it has lacked flexible methods for mod-
eling and generating synthetic data. Non-differentially private synthetic data
methods (e.g., see Raghunathan et al. (2003); Reiter (2002, 2005); Drechsler
(2011); Raab et al. (2017)) while not offering provable privacy, provide good
tools for approximating accurate generative models reflecting the original data.
Our proposed method maintains the flexible modeling approach of synthetic
data methodology, and in addition maximizes a metric of distributional sim-
ilarity, the pMSE, between the released synthetic data and the original data,
subject to satisfying ε-DP. We also do not require one of the most common DP
assumptions concerning the input data, namely that it is bounded, and we do
not limit ourselves to only categorical or discrete data. We find that our method
produces good results in simulations, and it provides a new avenue for releasing
DP datasets for potentially a wide-range of applications.

Our specific contributions are: (1) the combination of the flexible synthetic
data modeling framework with the guarantee of ε-DP, (2) the relaxation of DP
assumptions concerning boundedness or discreteness of the input data, (3) the
embedding of a metric within our mechanism guaranteeing maximal distribu-
tional similarity between the synthetic and original data, and (4) a proof for
the sensitivity bound of the Gini Index for CART models in the presence of
continuous predictors (not just discrete).

The rest of the paper is organized as follows. Section 2 gives a review of
important results from differential privacy that we rely on and provides a review
of related methods to ours which we use for comparison in our simulation study.
Section 3 details our proposed methodology for sampling differentially private
data with maximal distributional similarity. Section 4 provides theoretical results
for the privacy guarantees of our algorithm. Section 5 shows simulations that
support our theoretical findings and provide an empirical estimate of the pri-
vacy loss under standard computational practices. Section 6 provides simulation
results for the comparison of the accuracy of linear regression coefficients calcu-
lated from our method and other DP methods. Section 7 details conclusions and
future considerations.

2 Differential Privacy Preliminaries

Differentially privacy is a formal framework for quantifying the disclosure risk
associated with the release of statistics or raw data derived from private input
data. The general concept relies on defining a randomized algorithm which has
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similar output probabilities regardless of the presence or absence of any given
record, as formalized in Definition 1. We replicate the definitions and theorems
here using notation assuming X ∈ R

n×q and θ ∈ R
k. X is an original data

matrix, and we wish to release instead a private version, Xs, with the same
dimension. θ is a vector of parameters corresponding to a chosen parameteric
model, which can be used to generate synthetic data that reflects the generative
distribution of X. Further restrictions may be placed on θ depending on the
parametric model.

Definition 1 (Dwork et al. (2006)). A randomized algorithm, M, is ε-
Differentially Private if for all S ⊆ Range(M) and for all X,X ′ such that
δ(X,X ′) = 1:

P (M(X ′) ∈ S)
P (M(X) ∈ S)

≤ exp(ε).

The privacy is controlled by the ε parameter, with values closer to zero offering
stronger privacy. Relaxations of ε-DP have been proposed to reframe the privacy
definition or to improve the statistical utility. A few examples are approximate
differential privacy (also known as (ε, δ)-DP, see Dwork et al. (2006)), probabilis-
tic differential privacy (Machanavajjhala et al. (2008)), on-average K-L privacy
(Wang et al. (2016)), or concentrated privacy (Dwork and Rothblum (2016);
Bun and Steinke (2016)). We do not cover these relaxtions further, since our
work relies on the stronger ε-DP.

A general example of an ε-DP mechanism, which produces private outputs, is
the Exponential Mechanism defined by McSherry and Talwar (2007); see Defini-
tion 2. For a given θ that we wish to release, this mechanism defines a distribution
from which private samples, θ̃i, can be made and released in place of the original
vector.

Definition 2 (McSherry and Talwar (2007)). The mechanism that releases
values with probability proportional to

exp

(
−ε u(X, θ)

2 Δu

)
,

where u(X, θ) is a quality function that assigns values to each possible output, θ,
satisfies ε-DP.1

Δu is the global sensitivity, and it is defined as the greatest possible change in
the u function for any two inputs, differing in one row. Note that some definitions
of DP use the addition or deletion of a row, but here we assume X and X ′ have
the same dimension. More formally:

1 We put the minus sign before the u function because our quality function decreases
for more desirable outputs.
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Definition 3 (Dwork et al. (2006)). For all X,X ′ such that δ(X,X ′) = 1,
the Global Sensitivity (GS) of a function u : Rn×q → R≥0 is defined as:

Δu = sup
θ

sup
δ(X,X′)=1

|u(X, θ) − u(X ′, θ)|

We also rely on two theorems, known as post-processing and sequential com-
position. The first, stated in Proposition 1, says that any function applied to
the output from a differentially private algorithm is also differentially private.
We use this to generate synthetic data based on private parameters, rather than
directly generating differentially private data.

Proposition 1 (Dwork et al. (2006); Nissim et al. (2007)). Let M be any
randomized algorithm, such that M(X) satisfies ε-differential privacy, and let g
be any function. g(M(X)) also satisfies ε-differential privacy.

Sequential composition, stated in Theorem 1, says that for multiple outputs
from a differentially private algorithm, one must compose the ε values for each
output to produce the overall privacy loss of the process. We need to compose the
privacy if we make multiple draws of private parameters from which we produce
multiple private synthetic datasets. We may want to release multiple synthetic
datasets for better accuracy of estimates based on the data. Estimates based
on multiple datasets are calculated using appropriate combining rules; see Raab
et al. [2017] for details.

Theorem 1 (McSherry (2009)). Suppose a randomized algorithm, Mj, satis-
fies εj-differential privacy for j = 1, ..., q. The sequence Mj(X) carried out on
the same X provides (Σj εj)-differential privacy.

These theorems and definitions lay the groundwork for our method. Next,
we give a brief overview of some related methods to ours which we use for
comparison in our simulations in Sect. 6.

2.1 Review of Related Methods

A number of different methods have been proposed for releasing differentially
private synthetic datasets, although only a few are focused on real-valued, n × q
matrices. Bowen and Liu (2016) proposed drawing data from a noisy Bayesian
Posterior Predictive Distribution (BPPD), and Wasserman and Zhou (2010) gen-
erate data from smooth histograms. Bowen and Liu (2016) provides a fairly com-
prehensive list of DP synthetic data methods. Many of these methods are limited
to specific data types, such as categorical data (e.g., Abowd and Vilhuber (2008);
Charest (2011)), or network data (e.g., Karwa et al. (2016, 2017)), or they are
computational infeasibile for data with a reasonable number of dimensions, such
as the Empirical CDF ( Wasserman and Zhou (2010)), NoiseFirst/StructureFirst
(Xu et al. (2013)), or the PrivBayes (Zhang et al. (2017)), though some recent
work has proposed ways to reduce the computation time and improve the accu-
racy (Li et al. (2018)).



142 J. Snoke and A. Slavković

The noisy BPPD method from Bowen and Liu (2016) is similar to ours in
the sense that focuses on drawing generative model parameters from a noisy
distribution and then using these private parameters generates private synthetic
data according to post-processing. In this case private parameters are drawn
from posterior distribution f(θ|s∗) where s is the Bayesian sufficient statistic
and s∗ is the statistic perturbed according to the Laplace mechanism (e.g., see
Dwork et al. (2006)). Bowen and Liu (2016) recommend drawing multiple sets
of private parameters and producing a synthetic dataset for each one, which
requires composing ε.

The smooth histogram method from Wasserman and Zhou (2010) works non-
parametrically by binning the data, using these bins to estimate a consistent
density function, and applying smoothing to the function which guarantees DP
before drawing new samples. The DP smooth histogram is defined as:

f̂∗
K(x) = (1 − λ)f̂K(x) + λΩ (1)

where K is the total number of bins, Ω =

(∏p
j=1(cj1 − cj0)

)−1

, λ ≥
K

K+n(eε/n−1)
, and f̂K(x) is a mean-squared consistent density histogram esti-

mator. This method does not need to generate multiple datasets since it is not
redrawing model parameters, and accordingly does not need to split ε across
multiple synthetic datasets.

However, both of these methods require bounded data. This can be seen
explicitly in the smooth histogram formulation where we assume the jth variable
has bounds [cj0, cj1]. We also need to assume bounds in order to create (and
sample from) a finite K bins. The boundedness assumption is less explicit in
the noisy BPPD method, but it comes into play when calculating the sensitivity
of the statistics. If the data were unbounded, the sensitivity could be infinite,
which would mean we have to sample the noise from a Laplace distribution with
infinite variance.

We want to avoid assuming bounds as it is problematic when it comes to
approximating the underlying generative distribution. Continuous data may be
naturally unbounded, and at best in many real data scenarios we do not know
what the bounds should be. If our bounds are too loose, we introduce more noise
than necessary through the privacy process, limiting our accuracy. On the other
hand, we introduce bias if we set the bounds too low because that truncates
the generative distribution below its true range. We further explore the effect of
these assumed bounds using a simulation study in Sect. 6.

Our method avoids the bounding problem by sampling from a distribution
that shrinks in probability as we move to the tails. We do not bound the sample
space, but we have low probability of sampling values which are far from the
truth. This allows us to produce private data that accurately reflects the natural
range of the data. We describe this further in Sect. 3.1.

Furthermore, the smooth histogram method suffers from computational lim-
itations as the number of variables increases, since it divides the data matrix
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into bins, the number of which grows O(pp). Our method has computational
limitations too, though of a different nature, which we discuss further in Sect. 3.
One nice aspect of the noisy BPPD method is that it is computationally fast.

Finally, our method improves over these methods by incorporating a measure
of distributional similarity on the resulting synthetic data. The noisy BPPD and
smooth histogram add noise to the generative model for the synthetic data. These
mechanisms concern only minimizing the noise added to the parameters, but
they guarantee nothing concerning the data generated using these parameters.
Our method on the other hand, finds the private parameters which can be used
to generate synthetic data that will maximize the distributional similarity with
respect to the original data. Regardless of the dataset, our method finds the best
private parameters for an assumed synthesizing model. Sections 3 and 4 give a
detailed explaination and theoretical results for our method.

3 Sampling Differentially Private Synthetic Data via the
pMSE Mechanism

We propose to release a DP synthetic data matrix, Xs, in place of the origi-
nal data X and with the same dimension, n × q. In practice it is infeasible to
sample a matrix of this size using the Exponential Mechanism. Instead, we sam-
ple private model parameters and then generate synthetic data based on these
noisy parameters. We know from the results on post-processing (Proposition 1)
that data generated based on these DP parameters are also DP. Based on the
exponential mechanism we draw DP samples using

f(θ) ∝ exp

(
−ε u(X, θ)

2Δu

)
, (2)

where ε is our privacy parameter, u(X, θ) is our quality (or utility) function, and
Δu is the sensitivity of the quality function. In practice we use a Markov chain
Monte Carlo (MCMC) with the Metropolis algorithm to generate samples from
this unnormalized density, since we do not know the value of the u function a
priori. Next we define our quality function and derive a bound on its sensitivity.

3.1 Defining the Quality Function Using the pMSE

We base our quality function on the pMSE statistic developed in Woo et al.
(2009) and Snoke et al. (2018):

pMSE =
1
N

ΣN
i=1(p̂i − 0.5)2,

where p̂i are predicted probabilities (i.e., propensity scores) from a chosen
classification algorithm. Algorithm1 gives the steps for calculating the pMSE
statistic. The pMSE is simply the mean-squared error of the predicted proba-
bilities from this classification task, and it is a metric to assess how well we are
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able to discern between datasets based on a classifier. If we are unable to discern,
the two datasets have high distributional similarity. A pMSE = 0 means every
p̂i = 0.5, and it implies the highest utility. There has been much work dedicated
to tuning models for out-of-sample prediction, but for our purposes we only use
the classifier to get estimates of the in-sample predicted probabilities.

Algorithm 1. General Method for Calculating the pMSE
1: stack the n rows of original data X and the n rows of masked data Xs to create

Xcomb with N = 2n rows
2: add an indicator variable, I, to Xcomb s.t. I = {1 : xcomb

i ∈ Xs}
3: fit a model to predict I using predictors Z = f(Xcomb)
4: find predicted probabilities of class 1, p̂i, for each row of Xcomb

5: obtain the pMSE = 1
N

ΣN
i=1(p̂i − 0.5)2

To make our quality function a function of θ, the vector of parameters we
wish to sample, we use the expected value of the pMSE given θ, i.e.,

u(X, θ) = E[pMSE(X,Xs
θ )|X, θ], (3)

where Xs ∼ g(θ). In practice we approximate this by generating l datasets for
a given set of parameters and calculate the average pMSE across each data set.
This approximation does not affect the privacy guarantee (as shown in the proof
for Theorem 2), but for accuracy l should be large enough to give satisfactory
results for estimating the expected value of u(X, θ).

As we mentioned before, this quality function makes no assumptions concern-
ing whether the original data are categorical, discrete, or continuous. Secondly,
because the pMSE is a function of the predicted probabilities, p̂, which are
bounded ∈ [0, 1], the pMSE is bounded ∈ [0, 0.25]. This is true regardless of the
range of the data, X, so we do not need to assume any kinds of bounds on the
data.

We refer to our method as the pMSE Mechanism, since we rely on the pMSE
for our quality function in the exponential mechanism. Algorithm2 outlines the
steps of the pMSE mechanism. The main assumption we need is that a reasonable
generative model for the data, g(θ), exists.

Algorithm 2. Sampling DP Synthetic Data via the pMSE Mechanism
Input: Original dataset: X, chosen value: ε, synthesis model: g(θ), quality function:

u(X, θ)
1: Sample l vectors {θ̃1, ..., θ̃l} from a density proportional to equation 2
2: For each θ̃i generate synthetic data set Xs

i ∼ g(θ̃i), giving l total synthetic datasets
{Xs

1 , ..., Xs
l } each with the same dimension as X

3: Releasing {Xs
1 , ..., Xs

l } satisfies (lε)-DP
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3.2 Estimating the pMSE using Classification and Regression Tree
(CART) Models

A key component to defining our quality function is the classification model
used to estimate the predicted probabilities, p̂, used in computing the pMSE.
We choose the classification trees (Breiman et al. (1984)) fit using the Gini
Index, for two primary reasons. First, we need a tight bound on the sensitivity
of u(X, θ). While other machine learning models have been shown to outperform
CART in many applications, we would have a far weaker bound on the sensitivity
and would need to add much more noise. Secondly, as was shown in Snoke et al.
(2018), CART models exhibit at least satisfactory performance in determining
the distributional similarity. Future work may prove desirable bounds on the
sensitivity of the pMSE when using stronger classifiers, in which case those
models should certainly be adopted.

We use the impurity function known as Gini Index from Breiman et al. (1984),
defined as:

GI = argmin ΣD+1
i=1 ai

(
1 − ai

mi

)
, (4)

where mi are the total number of observations in each node, ai are the number
of observations labeled 1 in each node, and D is the total number of nodes. In
practice these models are fit in a greedy manner for computational purposes.
The process is to make the first optimal split that minimizes the impurity for
two nodes, and then to make proceeding splits and adding additional nodes if
doing so continues to minimize the impurity according to a chosen cost function.
If computation is not a concern, it would also be possible for any fixed D to do
a full grid search to determine the optimal D splits that minimize the impurity
over D + 1 nodes. The difference between globally optimal and greedy trees
is important for our theoretical results. In our theoretical results in Sect. 4 we
prove the sensitivity bound when trees are fit based on the globally optimal Gini
Index, and in our simulations in Sect. 5 we perform an empirical examination of
how frequently the greedy fitting violates our theoretical results.

4 Theoretical Results for the Sensitivity Bound

In order to sample from the exponential mechanism, we need a bound on the
sensitivity of the quality function. The pMSE function is naturally bounded, but
in Theorem 2 we prove a much tighter bound.

Theorem 2. Given u(X, θ) = Eθ[pMSE(X,Xs
θ )|X, θ] where pMSE =

Σ2n
i=1

(p̂i−0.5)2

2n with p̂i estimated from a classification tree with optimal splits found
using the Gini Index. Then

Δu = sup
θ

sup
δ(X,X′)=1

|u(X, θ) − u(X ′, θ)| ≤ 1
n

,

where X,Xs
θ ∈ R

n×q.
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The proof, given in the Appendix, intuitively follows from the fact that we
can relate the pMSE to the Gini Index. We can then bound the change in Gini
Index given a change in one row of the input data due to the fact that we are
finding the global optimum. We will not suddenly do much better or much worse.
In fact, we can quantify exactly how much better or worse we can do, which leads
to the bound.

This bound is nice because it decreases with n, meaning the noise added
decreases as the number of observations increase. This bound matches the results
derived for the sensitivity of the Gini Index when assuming discrete predictors
from Friedman and Schuster (2010). Our proof shows that this bound remains
the same when using continuous predictors as well. The result in Friedman and
Schuster (2010) was used for performing classification under differential privacy,
rather than producing synthetic data, and we see our extension of the proof to
include continuous predictors as a useful side result of this paper.

It is important to note that this proof is for the theoretical case when we
can find the optimal partitioning for any number of nodes. The greedy method
can violate the bound because we can no longer control how much the Gini
Index can change after changing one row. If we violate the sensitivity bound,
the method will not guarantee exact ε-DP. While it would be possible to use our
method with a full grid search, computationally it is a poor idea. An alternative
could be to use adaptive composition, i.e., fit the CART models greedily but in
a way that satisfies DP. We could then compose the privacy between fitting the
CART model and sampling from the exponential distribution, which we explore
in future work.

5 Empirical Failure Rate of the Sensitivity Bound

These simulations show the empirical rate for which the greedy fitting violates
the bound. We can also view the maximum simulated value as an empirical
estimate of the sensitivity for this particular dataset, but we are more interested
in the failure rate. We generated datasets, X, with q = 2 and n = 5000. X1 ∼
N(2, 10) and X2 ∼ N(−2.5 + 0.5x1, 3), and we produced X ′ by taking X and
adding random Gaussian noise, N(0, 25), to each variable for one observation. We
then drew a synthetic dataset Xs with Xs

1 ∼ N(θ1, θ2) and Xs
2 ∼ N(θ3+θ4x

s
1, θ5)

where θi ∼ N(0, 10). We estimated the pMSE with respect to Xs for both X
and X ′ and calculated the difference. Recall the theoretical sensitivity bound is
1/n = 0.0002, and any values larger than this violate the bound. We repeated
this process 1,000,000 times each using CARTs of depths 1, 2, 5, and unlimited
for the pMSE model. For all trees we included a complexity parameter (cp)
requiring a certain percentage improvement in order to make an additional split.
This parameter is necessary in order to not produce trees that are fully saturated
(one terminal node per observation) when there is no depth limitation.

Figure 1 shows a sample of the simulated empirical sensitivity results. There
are four groupings, for the trees with different depths, and darker points denote
those violating the theoretical bound due to the greedy fitting algorithm. Table 1
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Table 1. Empirical failure rates of 1,000,000 simulations for the sensitivity bound
when using the greedy CART fitting algorithm for different tree sizes and different
complexity parameters.

Tree depth cp Percentage violating bound

Depth 1 0.01 0.0%

Depth 2 0.01 0.3%

Depth 5 0.01 0.6%

Depth unlimited 0.01 0.7%

Depth 1 0.001 0.0%

Depth 2 0.001 0.5%

Depth 5 0.001 2.0%

Depth unlimited 0.001 2.5%

gives the full result. Recall that violations of the bound are more likely to occur
when the greedy fitting makes globally non-optimal cuts. The percentage of
simulations which violate the bound increases with tree depth size, and in the
unlimited case for cp = 0.01 the empirical failure rate is ≤1%. As expected,
there are no results which violate the bound when only one split is made. This
confirms our theoretical results because with only one split, greedy is equivalent
to optimal, so the bound is never violated in simulation. The empirical sensitivity
also depends on the cp, so we ran simulations for two different values. A lower
cp will lead to larger trees (subject to depth constraints), which means we are
making more greedy splits and increasing the chance of violating the bound.

6 Empirical Evaluation of Differentially Private Linear
Regression

In order to assess the practical statistical utility of our method, we ran simula-
tions testing the accuracy of an estimated linear regression model. Our method
guarantees maximal distributional similarity of the synthetic data based on the
pMSE metric, but many researchers may be interested in more specific compar-
isons such as regression outputs.

We simulate datasets, X, in the same way as in Sects. 5 and 7. Using this
data, we regress X2 on X1 and get ordinary least squares (OLS) estimates of
the intercept (β̂0) and slope (β̂1) coefficients. We calculate the absolute differ-
ence between these estimates and the corresponding estimates we get by fitting
the same model with the differentially private methods, i.e., |β̂ − β̂priv|. Our
comparison methods are the noisy Bayesian method from Bowen and Liu (2016)
and the smooth histogram from Wasserman and Zhou (2010), both described in
Sect. 2.1. We also compare with methods that do not produce synthetic data
but produce DP regression estimates such as the Functional Mechanism of
Zhang et al. (2012) and Awan and Slavkovic (2018), considering L1 and L∞



148 J. Snoke and A. Slavković

Fig. 1. Random sample of 10,000 simulations for each tree depth. Values shown are
differences between u(X, θ) calculated with X and X ′. Darker points violate the theo-
retical bound. Cp = 1%.

mechanisms, respectively. Note that these methods require the data to be
bounded in the same way as the noisy Bayes and smooth histogram methods.
Finally we compare with estimates from non-DP synthetic data, sampled from
the unperturbed BPDD.

For the pMSE mechanism, we carry out the simulations using trees of depths
1, 2, 5, and unlimited with a cp = 0.01. We see that the utility significantly
improves as we move from depth 1 to 2 and from 2 to 5, but there is little change
from 5 to unlimited. This is likely because trees of depth 5 are large enough to
evaluate this dataset. The tree size is a potential tuning parameter for future
work using this method. Astute readers may have noticed that the unnormalized
distribution we propose for the pMSE mechanism does not necessarily exist,
since the probability in the tails remains very flat. To fix this, we add a very
flat prior, N(0, 100, 000), to each of our parameters when sampling. The flatness
does not affect the utility, but by adding it we ensure the probability in the tails
eventually goes to zero.

We run the mechanisms with values ε ∈ {0.25, 0.5, 1}. For the pMSE mech-
anism and the noisy BPDD we generate l = 10 private datasets each satisfying
(ε/l)-DP, and for the smooth histogram and functional mechanisms we produce
only one output satisfying ε-DP. This ensures all mechanisms satisfy the same
level of privacy. The non-DP synthetic data method does not guarantee any
privacy.
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Fig. 2. Lineplots showing the mean simulation results. X-axis indicates different values
of ε. Lines are also subdivided within methods by the tree depth and the bound.

For the noisy Bayes, smooth histogram, and functional mechanism methods,
we ran the simulations truncating the data at different assumed bounds. For
both variables, we set these bounds at two, four, five, or ten times the standard
deviation. Four or five can be thought of as roughly the appropriate bounds,
since this is Gaussian data and most observations will fall into those ranges.
Two was chosen to be a range that is too narrow and excludes part of the true
distribution, and ten was chosen for a looser bound. We see from the results that
the smaller bound achieves better results on the regression, even when it is more
narrow even than the truth. This is an artifact of the model we chose, and if
an even tighter bound was chosen it may have greater adverse effects. The loose
bound (10 times) performs quite poorly, since we must add much more noise.
Figure 2 visualizes the better performing results (limited only for readability).
Full results for all tree sizes and bounds are shown in Fig. 4 in the Appendix.

Overall our method outperforms the other two synthesis methods when using
trees of depth 5 or unlimited, regardless of the bounds chosen. Even trees of depth
2 perform roughly the same or better than the other methods. At lower values
of ε = 0.25 the performance starts to become noticeably worse, especially when
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compared to the smooth histogram method. Some of this may be due to our
method of approximating the distribution from which we sample private param-
eters, and results would likely be improved with better methods for approxi-
mating the sampling distribution. For deeper trees and larger ε, our method
performs almost as well as the functional mechanism. This is quite encouraging,
since that method focuses only on providing regression estimates rather than
entire synthetic datasets. For a slight decrease in utility our method provides an
entire synthetic dataset, which can be used to fit any number of models using our
synthetic data without changing the privacy guarantee, whereas the functional
mechanism would require further splitting of the privacy parameter to estimate
a different model.

These results show good performance, and further work should consider sim-
ulations with larger numbers of variables or a mixture of categorical and continu-
ous variables. We expect our method will only improve against the other methods
with more variables, since theoretically our method maximizes similarity on the
entire distribution.

7 Empirical Evaluation of the pMSE

We guarantee theoretical maximization of the pMSE for the differentially private
synthetic data produced from the pMSE mechanism, but as many practitioners
know empirical tests often look different from theory. To evaluate this, we ran
simulations to estimate the pMSE from datasets generated using our method,
two other DP synthesis methods, and a standard non-DP synthesis method.

We again simulate datasets, X, in the same way as in Sects. 5 and 6. For
each X we generated synthetic datasets Xs and then calculated the pMSE
using X and Xs. Our four synthesis methods were the pMSE mechanism, the
noisy Bayesian method from Bowen and Liu (2016), the smooth histogram from
Wasserman and Zhou (2010), and sampling from the non-differentially private
BPPD using fully conditional sequential models. We ran 2,500 simulations each
for five different values of ε ∈ {0.25, 0.5, 1, 2, 4}. For our method we used CART
trees with unlimited depth, and for the other two DP methods we assumed a
bound on the data of four times the standard deviation, which is roughly the
correct bound given that it is Gaussian data. Figure 3 shows the results for the
mean simulations results and Table 2 shows the full mean and variance of the
results.

As expected, the pMSE mechanism offers either the best or one of the best
values of the pMSE among the methods guaranteeing DP. The smooth histogram
method is fairly good as well offering comparable values at ε = 0.25 or ε = 4.
The noisy BPPD method on the other hand is bad, even at high levels of ε, so
should be used with caution.
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Fig. 3. Simulations results showing the mean pMSE calculated using synthetic pro-
ducing according to four different methods. pMSE is calculated from comparison with
original data, with values closer to 0 implying higher utility.

Table 2. Simulation results giving the mean and variance of the pMSE values calcu-
lated using four different synthesis methods and five different levels of ε.

ε Simulated values Non-DP pMSE Mech. DP Bayes Smooth hist

0.25 pMSE Mean 0.00660 0.09281 0.20509 0.08206

pMSE Var 8.681e−07 1.347e−03 3.079e−03 2.826e−05

0.5 pMSE Mean 0.00663 0.03610 0.17876 0.05398

pMSE Var 8.929e−07 8.020e−05 5.914e−03 1.809e−05

1 pMSE Mean 0.00661 0.02107 0.14372 0.03278

pMSE Var 8.342e−07 1.648e−05 8.579e−03 1.069e−05

2 pMSE Mean 0.00660 0.01459 0.11177 0.01892

pMSE Var 8.342e−07 1.648e−05 8.579e−03 1.069e−05

4 pMSE Mean 0.00660 0.01161 0.07919 0.01129

pMSE Var 8.671e−07 3.329e−06 9.087e−03 5.964e−06

We also see that the variance in the estimated pMSE values changes quite a
bit depending on the method and level of ε. Both the pMSE mechanism and the
smooth histogram show higher variances for either low (0.25) or high (4) values
of ε, while the noisy BPPD method increases in variance as ε increases. This
variance is something to keep in mind both in choosing a protection method
and in developing the practical implementation. We could likely improve our
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current implementation of the pMSE mechanism in order to better sample noisy
parameters and generate synthetic data with less variance in the resulting pMSE.
On the other hand, it should also be expected that the variance decreases some
as ε grows because we are adding less noise through the privacy mechanism.

Comparing the DP methods to the traditional synthetic data approach, we
see that the best method at ε = 4 produces an average pMSE roughly two times
that from the non-DP synthesis method, which is producing synthetic data from
the correct generative model. This is actually quite good considering we are
adding the strong guarantee of DP. Even for ε = 1 our method produces pMSE
values only roughly three times that of the non-DP synthetic data.

8 Conclusions and Future Work

The pMSE mechanism we propose provides a novel flexible method to pro-
duce high-quality synthetic datasets guaranteeing ε-DP. By sampling generative
model parameters from the exponential mechanism and using the pMSE as our
quality function, we produce synthetic data with maximal distributional similar-
ity to the original data. By using the pMSE, we ensure the sensitivity depends
neither on the dimension nor the range of the data, and the bound decreases as
we increase the sample size. This allows us to use this mechanism for continuous
data, and the amount of noise we add will not grow with the dimension (apart
from sampling from a more complex distribution).

Our simulations in Sects. 6 and 7 confirm that the pMSE mechanism gener-
ally performs as well or better than the other standard DP synthesis methods. In
the case of linear regression the pMSE mechanism even performs roughly as well
as methods that produce estimates of regression coefficients only rather than
entire synthetic datasets. In the case of the empirical pMSE, as expected our
method performs worse than non-DP synthetic data, but the utility cost seems
reasonable for the privacy gain.

The pMSE mechanism relies on defining an appropriate form for the genera-
tive distribution from which to draw synthetic values. It is possible to misspecify
this model, which would lead to poor utility. This is one drawback of the syn-
thetic approach as opposed to simply adding noise. Fortunately, this aspect has
been addressed in great detail in the synthetic data literature, so we feel that
finding an appropriate model is possible without too much difficulty.

Our primary limitation is the computational feasibility to ensure the theo-
retical sensitivity bound. From the empirical simulations we saw that the bound
does not always hold when using typical greedy fitting algorithms. Fitting the
models using the global optimum would ensure the theoretical bound and guar-
antee ε-DP. Proposals have been made to carry out machine learning using global
optimums, such as Bertsimas and Dunn (2017), so methods may exist to aid the
computation.
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An alternative implementation of our method would be to consider fitting the
CART models in a way that satisfies ε-DP and then composing this ε with that
from sampling from the pMSE mechanism. This is similar to the approach of Li et
al. (2018). This is desirable because we could use any standard CART software to
implement the method. Other future work could consider using different impurity
measures than the Gini Index, deriving measures of choosing the best tree size,
or best practices for sampling from the unnormalized density we get through the
exponential mechanism.
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10 Appendix: Proof of Theorem 4.1

Proof. We first show that using the expected value, and approximating it, can
be bounded above by the supremum across all possible datasets Xs generated
using θ.

Δu = sup
θ

sup
δ(X,X′)=1

|u(X, θ) − u(X ′, θ)| (5)

can be rewritten as

Δu = sup
θ

sup
δ(X,X′)=1

|Eθ[pMSE(X,Xs
θ )|X, θ] − Eθ[pMSE(X ′,Xs

θ )|X, θ]| (6)

where u(X, θ) = Eθ[pMSE(X,Xs
θ )|X, θ]. Since the absolute value is a convex

function, we can apply Jensen’s inequality and get

≤ sup
θ

sup
δ(X,X′)=1

Eθ[|pMSE(X,Xs
θ ) − pMSE(X ′,Xs

θ )||X, θ]. (7)

Then by taking the supremum over any data set Xs
θ , we obtain

≤ sup
Xs

θ

sup
δ(X,X′)=1

|pMSE(X,Xs
θ ) − pMSE(X ′,Xs

θ )|. (8)

This also bounds our approximation of the expected value that we propose to
use in practice, since the supremum is also greater than or equal to the sample
mean.

Now writing this explicitly in terms of the CART model, we get

sup
ai, mi, a′

i, m′
i

1
2n

∣∣∣∣∣ΣD+1
i=1 mi

( ai

mi
− 0.5

)2

− m′
i

( a′
i

m′
i

− 0.5
)2

∣∣∣∣∣ (9)
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where ai, mi, and D are defined as before, and a′
i and m′

i are the corresponding
values for the model fit using X ′. Expanding this we get

sup
ai, mi, a′

i, m′
i

1
2n

∣∣∣∣∣ΣD+1
i=1

( a2
i

mi
− ai − 0.25mi

)
−

(a′2
i

m′
i

− a′
i − 0.25m′

i

)∣∣∣∣∣ (10)

and we can cancel the third terms because ΣD+1
i=1 mi = ΣD+1

i=1 m′
i. When we

multiple by 2n, the remaining inside term is equivalent to the sensitivity of the
impurity, i.e.,

sup
ai, mi, a′

i, m′
i

∣∣∣∣∣GI(X,Xs,D) − GI(X ′,Xs,D)

∣∣∣∣∣ = ΔGI (11)

By bounding the impurity, we bound the pMSE. We can rewrite the above as∣∣∣∣∣min
D

GI(X,Xs,D) − min
D

GI(X ′,Xs,D)

∣∣∣∣∣ (12)

since the optimal CART model finds the minimum impurity across any D. The
greatest possible difference then is the difference between these two optimums.
And we can bound this above by

≤ sup
D

∣∣∣∣∣GI(X,Xs,D) − GI(X ′,Xs,D)

∣∣∣∣∣. (13)

Let Xcomb and X ′comb be the combined data matrices as described in Algo-
rithm1, including the 0, 1 outcome variable. Recall that only one record has
changed between Xcomb and X ′comb (total number of records staying fixed), and
it is labeled 0. We know that for a given D optimal split points producing D +1
nodes on Xcomb, there are ai records labeled 1 and m̃i total records in each bin,
such that ∃ j 
= k 
= l1 
= ... 
= lD−1 s.t. m̃j − mj = mk − m̃k = 1, m̃lv = mlv for
v = {1, ...,D−1}. In the same way, for a given D optimal split points producing
D + 1 nodes on X ′comb, there are a′

i records labeled 1 and m̃′
i total records in

each bin, such that ∃ j′ 
= k′ 
= l′1 
= ... 
= l′D−1 s.t. m̃′
j′ − m′

j′ = m′
k′ − m̃′

k′ =
1, m̃′

l′v
= m′

l′v
for v = {1, ...,D−1}. What this simply means is that after chang-

ing one record, the discrete counts in the nodes change by at most one in two of
the nodes and does not change in the other D − 1 nodes.

Due to the fact that the CART model produces the D splits that minimize
the impurity, we know both that

ΣD+1
i=1 a′

i

(
1 − a′

i

m′
i

)
≤ ΣD+1

i=1 ai

(
1 − ai

m̃i

)
(14)



pMSE Mechanism 155

and

ΣD+1
i=1 ai

(
1 − ai

mi

)
≤ ΣD+1

i=1 a′
i

(
1 − a′

i

m̃′
i

)
. (15)

The inequality (14) implies that after changing one record, if new split points
are chosen, the impurity must be equivalent or better than simply keeping the
previous splits and changing the counts. The inequality (15) implies that the
first split points chosen must be equivalent or better than using the new splits
with the changed counts. If this were not the case, the first split points would
have never been made in the first place. These lead to the final step.

Because we have an absolute value, we consider two cases.
Case 1: GI(X,Xs,D) ≥ GI(X ′,Xs,D)

sup
D

∣
∣
∣
∣
∣
Σ

D+1
i=1 ai

(

1 − ai

mi

)

− Σ
D+1
i=1 a

′
i

(

1 − a′
i

m′
i

)
∣
∣
∣
∣
∣

≤

sup
D

∣
∣
∣
∣
∣
Σ

D+1
i=1 a

′
i

(

1 − a′
i

m̃′
i

)

− Σ
D+1
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′
i

(

1 − a′
i

m′
i

)
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
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′
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(

1 −
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j′
m̃′

j′

)

− a
′
j′

(

1 −
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j′
m′

j′

)

+ a
′
k′

(

1 −
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k′
m̃′

k′

)

− a
′
k′

(

1 −
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m′
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)
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

a′2
j′ (m̃′

j′ − m′
j′ )

m̃′
j′ m′

j′
+

a′2
k′ (m̃′

k′ − m′
k′ )

m̃′
k′ m′

k′

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
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j′

m̃′
j′ m′

j′
−

a′2
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m̃′
k′ m′

k′

∣
∣
∣
∣
∣

≤ 2

(16)

The last step we know because ai ≤ mi, and n2

n(n−1) ≤ 2.
Case 2: GI(X ′,Xs,D) ≥ GI(X,Xs,D)

sup
D

∣
∣
∣
∣
∣
Σ

D+1
i=1 ai

(

1 − ai

mi

)

− Σ
D+1
i=1 a

′
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(
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∣
∣
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∣
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∣
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=

∣
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∣

a′2
j (m̃j − mj)

m̃jmj

+
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k (m̃k − mk)

m̃kmk

∣
∣
∣
∣
∣
=

∣
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∣

a′2
j

m̃jmj

− a′2
k

m̃kmk

∣
∣
∣
∣
∣

≤ 2 (17)

Finally, this gives us ΔGI ≤ 2 =⇒ ΔGI
2n = Δu ≤ 1

n .

11 Appendix: Full Simulation Results
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Fig. 4. Boxplots showing simulation results. The rows indicate the different coefficients,
and the columns indicate different values of ε. Boxplots are also subdivided within
methods by the tree depth (for the pMSE mechanism method) and the bound (for
others).
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Abstract. Data synthesis is a data confidentiality method which is
applied to microdata to prevent leakage of sensitive information about
respondents. Instead of publishing real data, data synthesis produces
an artificial dataset that does not contain the real records of respon-
dents. This, in particular, offers significant protection against reidenti-
fication attacks. However, effective data synthesis requires retention of
the key statistical properties of (and respecting the multiple utilities
of) the original data. In previous work, we demonstrated the value of
matrix genetic algorithms in data synthesis [4]. The current paper com-
pares three crossover methods within a matrix GA: parallelised (two-
point) crossover, matrix crossover, and parametric uniform crossover.
The crossover methods are applied to three different datasets and are
compared on the basis of how well they reproduce the relationships
between variables in the original datasets.

Keywords: Genetic algorithms · Data synthesis · Data privacy

1 Introduction

Published data are provided in many formats, although the underlying data are
often microdata collected from some population [5]. Confidentiality protection
techniques for microdata attempt to camouflage sensitive information in the
original data while retaining its statistical properties for analysts. Data synthesis
is a protection technique that produces a synthetic dataset that is designed to
preserve the same statistical properties as the original data and provide sufficient
variables to allow proper multivariate analyses [1].

The quality of synthetic data is strongly dependent on the design of the
synthetic data generator [7]. Properties that are not explicitly included in the
generator will not be present in the synthetic dataset (unless they are structurally
or statistically related to properties that are, and therefore emerge from the
synthesis process). Unforeseen analysis on fully synthetic data may therefore
lead to different results from the same analysis on the original data [8].
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In this paper we use Genetic Algorithms (GAs) to generate synthetic data.
GAs are iterative optimisation algorithms that simulate the process of natural
evolution. They comprise of three main operators: selection, crossover and muta-
tion. A group of candidate solutions are specified (the initial population). The
fitnesses of these candidates are calculated and a selection operator selects a
subset of the fitter candidates which are used to generate a new population. In
crossover some pairs of these selected candidates are combined (using a variety
of methods) to produce new candidate solutions. Some candidates are then sub-
jected to mutation – random changes that will produce changes in fitness. After
crossover and mutation we have the new population/generation. The process is
repeated a number of times in order to (hopefully) generate fitter solutions than
those in the initial population. Crossover and mutation rates can be varied from
one iteration to the next, and tuning of these parameters can greatly influence
performance.

GAs have been proposed as a potential method to protect respondents’ from
disclosures from published data. For example, Navarro-Arribas and Torra [9]
mentioned that data protection could be treated as an optimisation problem with
conflicting objectives and cite GAs as one approach to delivering this. Reasons for
using GAs to produce synthetic data are: (i) they are designed to solve problems
that have no observable solution space. The a priori knowledge required for
setting up the initial population is minimal. (ii) GAs are interruptible so do not
require complete a priori knowledge to set up objectives and, most crucially, (iii)
GAs work well at optimising across competing constraints and therefore could, if
well designed, have advantages over orthodox statistical model based synthesizers
in: ameliorating overfitting, generating emergent properties and accommodating
unforeseen analyses.

Matrix GAs are believed to capable of representing and solving more complex
problem structures than the more orthodox bitstring GAs [12–14]. Although GAs
have been used in various optimisation problems, the exploration of applications
for matrix GAs has been limited. However, given that microdata are essentially
matrices the production of synthetic microdata seems an obvious application. In
previous work we have evaluated the potential for matrix GAs with promising
initial results [3,4]. The current paper explores the performance of three different
crossover methods for matrix GAs in producing synthetic data. We consider
three datasets, with different data structures, and sampled from different survey
populations.

Note that in this initial phase of this research, we are concerned only with
optimising the utility of the synthesised data and not with the residual disclosure
risk. The rationale for this is twofold: (i) optimising the utility of a synthetic
dataset represents a difficult problem by itself and adding in the contrary con-
straint of disclosure control will introduce further complexity, and (ii) of the two
elements the utility problem is the more significant for synthetic data; if this
cannot be solved the efficiency of the risk optimisation will be irrelevant. Under-
standing the properties of the utility optimisation problem before introducing
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the complexity disclosure control as an objective is therefore the appropriate
research strategy.

1.1 Microdata and Contingency Tables

A microdata set for n cases and m variables is usually represented as an n by m
matrix indexed i ∈ {1, . . ., n} and j ∈ {1, . . .,m}. Here we use Y to denote and
original dataset and its synthetic version is denoted as X. X shares the same
structure as Y as illustrated in Fig. 1.

y11 y12 ... y1m
y21 y22 ... y2m
y31 y32 ... y3m
y41 y42 ... y4m

...
...

...
...

yn1 yn2 ... ynm

x11 x12 ... x1m

x21 x22 ... x2m

x31 x32 ... x3m

x41 x42 ... x4m

...
...

...
...

xn1 xn2 ... xnm

Fig. 1. Microdata Y and its synthetic version X

For categorical variables the same information can be encoded in a con-
tingency table, which captures the between-variate structure of the candidate.
Assume our variables take values in finite sets Ij so that I = ×

j∈[1..m]
Ij denotes

the possible configurations of the variables. Then a contingency table is an m-
dimensional table containing a count for each member of I. For example, if we
denote the jth column of a microdata set Y as Y:,j , then the 2-dimensional con-
tingency table constructed from distinct columns Y:,j and Y:,k is CT (Y:,j , Y:,k)
with entries nr,c is,

nr,c =
n∑

i=1

[Yi,j = (Ij)r ∧ Yi,k = (Ik)c] (1)

where the square brackets are Iverson brackets and the levels of Ij and Ik are
indexed r ∈ [1..|Ij |] and c ∈ [1..|Ik|] respectively.

1.2 Objectives

Respecting variable associations in the original data is an important aspect of
producing high quality synthetic data. Thus, objective functions are designed
based on the differences between synthetic (contingency) tables and original
tables in low dimensions. A measure of the difference between a pair of contin-
gency tables is the Jensen-Shannon distance DJS between their normalised (to
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sum to 1) counterparts1. Suppose P and Q are two discrete probability distri-
butions, then DJS(P ||Q) is given by:

DJS(P ||Q) = (
1
2
DKL(P ||M) +

1
2
DKL(Q||M))

1
2 (2)

where M = 1
2 (P + Q) and DKL is the well-known Kullback-Leibler divergence.

So our distance measure for a pair of 2-dimensional contingency tables is
defined as:

Δ(X,Y, {j, k}) = DJS(
1
n

CT (X:,j ,X:,k)|| 1
n

CT (Y:,j , Y:,k)) (3)

Our first objective function is the mean of these distances over all pairs of
variables:

F1(X,Y ) =
(

m

2

)−1 m−1∑

j=1

m∑

k=j+1

Δ(X,Y, {j, k}) (4)

Analogous measures are also considered for all 3-dimensional and all 4-
dimensional contingency tables. So our other two objectives are defined as:2

F2(X,Y ) =
(

m

3

)−1 ∑

S∈P3([1..m])

Δ(X,Y, S) (5)

F3(X,Y ) =
(

m

4

)−1 ∑

S∈P4([1..m])

Δ(X,Y, S) (6)

where Pk(Z) denotes the members of the powerset of Z of size K.
The fitness of each candidate is calculated by the Euclidean distance from

the synthetic to the original data in the space delineated by the three objective
functions. The fitness value is normalized to the range [0, 1] by dividing by

√
3.3

So our overall objective function is:

F =
√

3
−1√

(F1(X,Y )2 + F2(X,Y )2 + F3(X,Y )2 (7)

1 Regarding the choice of divergence measure. The Kullback-Leibler divergence cannot
be used directly because of the requirement for absolute continuity. Aside from that
constraint there was no prior compelling reason for picking any specific measure, and
there is no specific empirical work to guide us. The Jensen-Shannon distance was
chosen mainly on the basis that it is a true metric, unlike e.g. the Jensen-Shannon
divergence. The impact of using alternative measures is another area which future
research could explore.

2 Clearly this is not a complete set of possible objectives but these are probably
necessary to produce reasonable synthetic categorical data and provide sufficient
complexity for our crossover experiments.

3 So on this scale 0 is the best fitness possible and 1 is the worst.
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2 Crossover Methods

A crossover operator produces variation in a GA population. The operators
considered here will change a pair of individuals by swapping randomly selected
sub-matrices. In the case of uniform crossover these sub-matrices will necessarily
have dimension 1 × 1 and we will essentially be swapping individual elements of
the matrices.

The three crossover methods presented here have been used previously in
various application areas, but not usually compared and certainly not in the con-
text of synthetic data generation. Two of them use the mechanism of two-point
crossover where not all sub-matrices (or elements) have an equal probability of
being swapped (positional bias). The third operator, uniform crossover, does
not suffer from positional bias and is included in order to examine the impact
of positional bias on the effectiveness of matrix GA data synthesizers.

Parallelised Crossover. The design of parallelised crossover is based on a two-
point crossover method from linear GAs, which swaps the elements between two
randomly selected crossover points a and b between a pair of bitstrings. Since
solutions that GAs generate are operationally independent (in that a change in
one individual has no direct effect on another), crossover and mutation can be
parallelised [2]. Parallelised crossover occurs on a single variable and therefore
it is possible to have m sub-processors working separately on different variables
in the generator. The generator works by randomly choosing a sub-matrix from
within a single data column and swapping with the corresponding sub-matrix in
the paired candidate. Figure 2 illustrates parallelised crossover between a pair of
candidates X1 and X2:

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm

x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm

x1
11 x1

12 ... x1
1m

x2
21 x1

22 ... x1
2m

x1
31 x2

32 ... x2
3m

x1
41 x2

42 ... x2
4m

...
...

...
...

x1
n1 x1

n2 ... x2
nm

x2
11 x2

12 ... x2
1m

x1
21 x2

22 ... x2
2m

x2
31 x1

32 ... x1
3m

x2
41 x1

42 ... x1
4m

...
...

...
...

x2
n1 x2

n2 ... x1
nm

Fig. 2. X1 and X2 in parallelized crossover
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x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm

x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm

x2
11 x2

12 ... x1
1m

x2
21 x2

22 ... x1
2m

x2
31 x2

32 ... x1
3m

x2
41 x2

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nk

x1
11 x1

12 ... x2
1m

x1
21 x1

22 ... x2
2m

x1
31 x1

32 ... x2
3m

x1
41 x1

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm

Fig. 3. X1 and X2 in matrix crossover

Matrix Crossover. Matrix crossover was first proposed by Wallet et al. [14].
Unlike parallelised crossover, matrix crossover generates crossover points for the
rows as well as columns. Thus it swaps elements from a randomly generated
sub-matrix (as opposed to the column vectors swapped in parallelised crossover).
Figure 3 illustrates matrix crossover.

Parametric Uniform Crossover (PUC). In PUC, the probability of
crossover being applied to each element (1 × 1 sub-matrix) of the given can-
didate is determined by a user-specified parameter P0. Figure 4 illustrates PUC.

2.1 Positional Bias

Both parallelised crossover and matrix crossover are based on the idea of two-
point crossover. In parallelised crossover, the element with row index i will be
swapped if, and only if, one of the selection points has index not greater than
i while the other has index greater than i. Thus the swap probability is the
hypergeometric probability:

P (min (a, b) ≤ i < max (a, b)) = i(n − i + 1)
(

n + 1
2

)−1

(8)

where a and b are the indices of a pair of (distinct) randomly chosen crossover
points.

It is trivial to show that this is a montone increasing function of i where
i < n

2 and a monotone decreasing function of i where i > n
2 .
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x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm

x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm

x2
11 x1

12 ... x1
1m

x1
21 x2

22 ... x2
2m

x2
31 x1

32 ... x1
3m

x1
41 x1

42 ... x2
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm

x1
11 x2

12 ... x2
1m

x2
21 x1

22 ... x1
2m

x1
31 x2

32 ... x2
3m

x2
41 x2

42 ... x1
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm

Fig. 4. X1 and X2 in PUC

For matrix crossover we also select a pair of crossover points for the columns
and the probability of an element with index (i, j) being swapped is a product of
hypergeometric probabilities. PUC, on the other hand contains no positional bias
and it is therefore useful to provide us with an implicit evaluation of the effect
of positional bias on the optimising ability of the matrix GA data synthesizer.

3 Empirical Study

3.1 Design

The three crossover methods were compared using three datasets that were each
sampled from a different social survey. All three datasets contain 10 variables
and 1000 cases. Dataset 1 was sampled from the Crime Survey for England and
Wales, 2015–2016 [10] and has 10 binary variables. Dataset 2 was sampled from
European Union Statistics on Income and Living Conditions, 2009 [11]. It has 6
binary variables, 1 three-category variable and 3 four-category variables. Dataset
3 was sampled from the Citizenship Survey, 2010–2011 [6]. It contains 1000 cases
and 10 variables including 4 binary variables, 2 four-category variables, 2 six-
category variables, 1 nine-category variable and 1 eleven-category variable.

For each dataset there was a fixed initial population of 100 candidates that
was generated by independently sampling (with replacement) from the univariate
distributions of the original data (Table 1). Deterministic tournament selection4

was used to select candidates with tournament size t = 2.
4 In generalised tournament selection, candidates are randomly selected into tourna-

ments of size t (with or without replacement). The probability that a candidate wins
the tournament and enters crossover is given by p(1 − p)r where p is a parameter
(such that 1/t < p ≤ 1) and r is the rank of the candidate’s fitness within the
tournament. In deterministic tournament selection p is set to 1.
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Table 1. Fitness values of the initial population of each of the three test dataset

Fitness of fixed population (size = 100) for each data

Best fitness Mean s.d

Data 1 0.0734 0.0800 0.0034

Data 2 0.2176 0.2259 0.0031

Data 3 0.2544 0.2610 0.0027

Synthetic data were generated using GAs with two distinct crossover rates.
Matrix crossover used rates of 1.0 and 0.7. The corresponding crossover rates for
parallelised crossover and PUC were chosen so that the probability of swapping
individual elements was similar.

The synthetic data generator used a low mutation rate (pm = 0.01) to reduce
the noise in the final results.5 Candidates chosen for mutation had a randomly
selected sub-matrix swapped with data independently sampled from the original
univariate distributions.

For each set of parameters we generated 10 synthetic populations. Each such
trial was run for 100 generations.

3.2 Experimental Results

Table 2 shows the means and standard deviations of the fittest solutions in the
final (100th) populations. The rightmost column shows the fitness of the best
individual that was generated over the 10 trials.

The generator used the objective function in Eq. 7. The number of individ-
ual contingency tables compared depends on the number of variables and would
increase substantially if we extended the measure to, say, 5-dimensional tables.
Table 2 shows that the fitness of candidates for Dataset 1 is always closer to the
original data compared with the other two no matter which crossover operator
is used, followed by Dataset 2 and Dataset 3. This is monotonic with the com-
plexity of the data structures of the three datasets. This issue will need further
exploration to establish how the degree of complexity affects the viability of GA
generated synthesis.

The experimental results also indicate that positional bias does impact the
effectiveness of matrix GA generator. All the best means and individuals after
100 generations for the three datasets are generated by the synthesizer with the
PUC operator that has p0 = 0.3818. The second best mean and individuals are
generated by the same synthesizer with p0 = 0.1911.
5 Mutation is another important operator in GA that helps find more promising can-

didates from the solution space and reduces the risk of becoming caught in local
optima. However it can also reduce the fitness of a candidate. Here our focus is on
comparing crossover operators so we selected a low mutation rate to reduce the noise
in the final results. In future work will examine the relationship between the two
operators.
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Fig. 5. Box plots of final fitness values of the best individual for Dataset 1, 2 and 3 from
ten trials of matrix GA synthetic data generator using different crossover operators



GAs for Data Synthesis: A Comparison of 3 Crossover Methods 169

Table 2. Summary statistics from ten trials of matrix GA data synthesizers equipped
with three different operators: matrix crossover (MGA), parallelized crossover (PGA)
and PUC.

Crossover type Crossover rate Data Best fitness value Best individual

Mean s.d

MGA 1 Data 1 0.0564 0.0026 0.0517

Data 2 0.1887 0.0030 0.1818

Data 3 0.2319 0.0020 0.2281

0.7 Data 1 0.0579 0.0022 0.0541

Data 2 0.1958 0.0034 0.1889

Data 3 0.2375 0.0032 0.2340

PGA 0.5455 Data 1 0.0497 0.0022 0.0472

Data 2 0.1936 0.0038 0.1885

Data 3 0.2259 0.0019 0.2213

0.273 Data 1 0.0561 0.0015 0.0533

Data 2 0.1929 0.0041 0.1867

Data 3 0.2363 0.0025 0.2315

PUC 0.3818 Data 1 0.0393 0.0021 0.0362

Data 2 0.1450 0.0025 0.1408

Data 3 0.2060 0.0009 0.2048

0.1911 Data 1 0.0429 0.0022 0.0397

Data 2 0.1576 0.0038 0.1521

Data 3 0.2112 0.0020 0.2092

Moreover, there was a significant improvement on the initial population no
matter which crossover method was used. The increase of fitness (decrease in
distance from the original data) indicates that matrix GA is efficient in generat-
ing synthetic data with real-coded data or even more complex data structures.
Table 3 shows the mean improvement of the fitness of the population from the
beginning to the 100th generation over all trials.

Table 3. Mean fitness improvement over ten trials on the best fitness value of initial
population

On mean of the best fitness values over all trials

Data 1 0.0296

Data 2 0.0470

Data 3 0.0362
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4 Conclusions

Our experimental results indicate that PUC performs better than matrix and
parallelised crossover in producing synthetic data for all three datasets. This is
likely to be due to the lack of positional bias. Results also indicate that the
performance of matrix GA on synthetic data generation strongly depends on
the structure of data and the number of cases. For example, the optimisation
of Dataset 1 is the most effective because it has the simplest data structure
(containing only binary variables) compared to Dataset 2 and Dataset 3 (Fig. 5).

Beyond the issue of positional bias, the overall performance for all three
crossover operators in producing synthetic data is reasonable. All approaches
significantly improved the fitness of the 100 candidates from the initial popula-
tion over 100 generations.

Our future research will focus on testing the effectiveness and practicality of
the matrix GA generator by introducing adaptive crossover rates, more objec-
tives and larger datasets. A key element missing from these initial experiments
has been the assessment of disclosure risk. As outlined in the introduction, this
was a rational approach to isolate the difficult problem of optimising utility. How-
ever, a full GA data synthesiser should incorporate risk. Therefore, in future work
we will bring measures of disclosure risk into the GA framework. In many ways
this is when the GA approach will come into its own. The risk utility trade-off
is usually dealt with as a two step-process and optimising both within a single
framework is likely to be more efficient.

Overall, these initial experiments using matrix GA generators to generate
synthetic data show that matrix GA is of interest for the problem of data syn-
thesis and for solving problems with higher-dimensional and complex structures
in general.
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43007 Tarragona, Catalonia, Spain

{josep.domingo,rafael.mulero,jordi.soria}@urv.cat

Abstract. We explore a setting in which a number of subjects want to
compute on their pooled data while keeping the statistical confidential-
ity of their input. Statistical confidentiality is different from the cryp-
tographic confidentiality guaranteed by cryptographic multiparty secure
computation: whereas in the latter nothing is disclosed about the input,
in statistical input confidentiality a noise-added version of the input is
disclosed, which allows more flexible computations. We propose a proto-
col based on local anonymization via randomized response, whereby the
empirical distribution of the data of the subjects is approximated. From
that distribution, most statistical calculations can be approximated as
well. Regarding the accuracy of the approximation, ceteris paribus it
improves with the number of subjects. Large dimensionality (that is, a
large number of attributes) decreases accuracy and we propose a strategy
to mitigate the dimensionality problem. We show how to characterize the
privacy guarantee for each subject in terms of differential privacy. Exper-
imental work is reported on the attained accuracy as a function of the
number of respondents, number of attributes and randomized response
parameters.

Keywords: Multiparty anonymous computation
Randomized response · Local anonymization · Big data · Privacy

1 Introduction

There are several situations in which a number of distrusting parties wish to
collaborate at evaluating functions that take as inputs private data from each
party, in such a way that the privacy of those inputs is preserved. Two different
notions of input privacy are conceivable:

– Cryptographic input confidentiality. The input of each party should not be
disclosed to the other parties.

c© Springer Nature Switzerland AG 2018
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– Statistical input confidentiality. A noise-added version of the input of each
party is disclosed.

Multiparty computation with cryptographic input confidentiality can be eas-
ily motivated with the following example. Each of a set of companies has collected
experimental data at some cost and possibly under privacy pledge to its respon-
dents/customers/patients. Thus, no company wishes to share its data set with
any other company (as data have costed money and are industrial property). At
the same time, feeling that better conclusions could be drawn from their pooled
data sets than from a single data set, companies would like to engage in joint
computation on their pooled data. If no third party trusted by all companies is
available (that can receive all data sets in confidence, perform the computations
on the pooled data and return the results to all companies), this scenario is
handled with secure multiparty computation [1,3,12].

The problem of multiparty computation in the above cryptographic sense is
that a different protocol is needed for each type of required computation. This
hampers exploratory analysis, which is more and more important in our big data
world. Multiparty computation with statistical input confidentiality can be far
more flexible at the cost of providing somewhat weaker input confidentiality.
Virtually any statistical computation can be performed without requiring spe-
cific protocols. Furthermore, the set of collaborating parties can be much larger
than in cryptographic multiparty computation: there can be as many parties as
respondents in a data set, with each party holding just her own record.

Contribution and Plan of This Paper. In this paper, we propose an app-
roach for multiparty computation with statistical input confidentiality based
on randomized response [2,6,11]. Specifically, local anonymization via random-
ized response is used by the collaborating subjects to approximate the empirical
distribution of their pooled data. From that distribution, most statistical calcu-
lations can be approximated as well. Furthermore, we show how to characterize
the privacy guarantee for each subject in terms of differential privacy.

Section 2 gives background on randomized response. In Sect. 3, we describe
the proposed approach for multiparty computation with statistical input confi-
dentiality based on randomized response. In Sect. 4 we propose solutions to mit-
igate the curse of dimensionality, that is, the decreasing accuracy of the approx-
imated empirical distribution as the number of attributes increases. Section 5
establishes the privacy guarantees for subjects. Experimental work is reported
in Sect. 6. Finally, conclusions and future research directions are gathered in
Sect. 7.

2 Background on Randomized Response

Randomized response [6,11] is a mechanism that respondents to a survey can
use to protect their privacy when asked about the value of sensitive attribute
(e.g. did you take drugs last month?). The interesting point is that the data
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collector can still estimate from the randomized responses the proportion of
each of the possible true answers of the respondents. Randomized response is
closely related to post-randomization (PRAM). They differ on who performs the
randomization [8]: whereas in randomized response it is the respondent before
delivering her response, in PRAM it is the data controller after collecting all
responses (hence the name post-randomization).

Let us denote by X the attribute containing the answer to the sensitive ques-
tion. If X can take r possible values, then the randomized response Y reported
by the respondent instead of X follows a r × r matrix of probabilities

P =

⎛
⎜⎝

p11 · · · p1r

...
...

...
pr1 · · · prr

⎞
⎟⎠ (1)

where puv = Pr(Y = v|X = u), for u, v ∈ {1, . . . , r} denotes the probability that
the randomized response is v when the respondent’s true attribute value is u.

Let π1, . . . , πr be the proportions of respondents whose true values fall in
each of the r categories of X and let λv =

∑r
u=1 puvπu for v = 1, . . . , r, be the

probability of the reported value Y being v. If we define λ = (λ1, . . . , λr)T and
π = (π1, . . . , πr)T , it holds that λ = PT π. Furthermore, if λ̂ is the vector of
sample proportions corresponding to λ and P is nonsingular, in Chap. 3.3 of [2]
it is proven that an unbiased estimator π can be computed as

π̂ = (PT )−1λ̂ (2)

and they also provide an unbiased estimator of the dispersion matrix. In partic-
ular, the larger the off-diagonal probability mass in P, the more dispersion (and
the more respondent protection).

3 Randomized Response to Achieve Multiparty
Computation With Statistical Input Confidentiality

Assume n subjects i = 1, . . . n each holding one record xi = (xi1, . . . , xim)
containing the values for m attributes. These subjects want to engage in secure
multiparty computation with statistical input confidentiality on the data set
X = {x1, . . . ,xn} that would be formed by their respective records. Statistical
input confidentiality means that no subject wants to disclose her true record to
the other subjects, even if she is ready to disclose a randomized version of it.

A possible way is for subjects to approximate the empirical distribution of
X via randomized response. Once they have a reasonably good approximation
of that distribution, most statistical calculations on X can be approximately
computed based on the data set’s approximate empirical distribution.

A first naive solution is for each subject i to separately deal with each
attribute value xij for j = 1, . . . , m via randomized response. If the j-th attribute
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Aj can take rj different values, then an rj ×rj probability matrix Pj (see Expres-
sion (1)) can be used for each subject to report a randomized value yij for Aj

instead of her true value xij .
As mentioned in Sect. 2, this would allow all subjects to approximate the

marginal empirical distribution πj = (πj
1, . . . , π

j
rj

) of each attribute Aj as

π̂j = ((Pj)T )−1λ̂j

where λj = (Pj)T πj .
The problem is that approximating the marginal empirical distributions of

attributes does not yield an approximation of the joint empirical distribution of
X.

To approximate the joint distribution of X via randomized response, subjects
must report their randomized response for the value of A1 × A2 × . . . × Am and
proceed as above.

Once the empirical distribution of X has been approximated, the approxima-
tion can be made public and any subjects can perform statistical computations
on it. At the same time, all subjects have preserved the confidentiality of their
inputs.

However, this only works well if the number of subjects n is much larger than
the number of possible values of the above Cartesian product, that is

n � |A1| × |A2| × . . . × |Am|. (3)

Otherwise, many elements of the Cartesian product are likely to have zero fre-
quency in the empirical distribution of the reported values. Such a reported
sparse distribution is unlikely to constitute a good approximation of the true
empirical distribution of X.

4 Mitigating the Curse of Dimensionality

If Constraint (3) does not hold, there are two alternatives:

1. Attempt to partition the set of attributes into clusters C1, . . . , Cl, for some l,
such that

l⋃
i=1

Ci = {A1, . . . , Am}

Ci ∩ Cj = ∅ for i �= j, and the attributes within each cluster are highly
dependent/correlated and the attributes belonging to different clusters are
weakly dependent or even independent. In this way, only the joint distribu-
tion of attributes within each cluster needs to be approximated. Therefore,
Constraint (3) is relaxed to

n � max
i

∏
Aj∈Ci

|Aj |, (4)
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which is easier to satisfy. Furthermore, if within a cluster two or more
attributes are very highly correlated, only one of them needs to be taken
into account in the joint distribution approximation, with the rest being
re-computed based on the approximated representative attribute. This may
reduce the size of attribute clusters even more, and hence the bound on the
right-hand side of Inequality (4).

2. If the above attribute clustering is not feasible (because all pairs of attributes
are significantly dependent/correlated), an alternative solution is to coarsen
the values of attributes A1, . . . , Am, in such a way to reduce the right-hand
side of Inequality (3). This obviously will reduce the accuracy of the approx-
imation to the empirical distribution. Hence, it should be only used as a
fallback solution.

We now describe in more detail attribute clustering:

1. Compute an approximation of all bivariate empirical distributions, by using
randomized response on the Cartesian product Ai × Aj , for all pairs (Ai, Aj)
of attributes.

2. Construct a complete graph such that:
(a) Nodes are attributes A1, . . . , Am.
(b) The edge between each pair of attributes Ai and Aj is labeled with a

measure of independence between Ai and Aj .
3. Cluster attributes according to their distances in the graph. A possibility is

to use the power iteration clustering (PIC) algorithm [7].

The specific measure of independence to be used must take into account the
type of the attributes, as follows. If Ai and Aj are numerical and/or ordinal, we
can take as a measure of independence

1/|rij |, (5)

where rij is Pearson’s correlation coefficient between Ai and Aj .
If one of Ai and Aj is nominal (without an order relationship between its

possible values) and the other is nominal or ordinal, we can take as a measure
of independence

1/Vij , (6)

where Vij is Cramér’s V statistic [4], that gives a value between 0 and 1, with
0 meaning complete independence between Ai and Aj and 1 meaning complete
dependence. Cramér’s Vij is computed as

Vij =

√
χ2

ij/n

min(ci − 1, cj − 1)
,

where ci is the number of categories of Ai, cj is the number of categories of Aj , n
is the total number of subjects/records and χ2

ij is the chi-squared independence
statistic defined as

χ2
ij =

ci∑
a=1

cj∑
b=1

(oij
ab − eij

ab)
2

f j
ab

, (7)
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with oij
ab the observed frequency of the combination (Ai = a,Aj = b) and eij

ab the
expected frequency of that combination under the independence assumption for
Ai and Aj . This expected frequency is computed as

eij
ab =

ni
anj

b

n
,

where ni
a and nj

b are, respectively, the number of subjects who have reported
Ai = a and Aj = b.

Finally, if one of Ai, Aj is nominal and the other is numerical, the latter
must be discretized, for example by rounding or by replacing values by intervals.
After that, the contingency table between Ai and Aj can be constructed, and
the measure of independence given by Expression (6) can be computed.

Since the denominators in Expressions (5) and (6) are bounded in [0, 1], the
outputs of both expressions are comparable when trying to cluster the nodes in
the graph.

5 Privacy Guarantees

The confidentiality guarantee given by randomized response results from the
fact that each individual may misrepresent her data by randomly drawing from
a previously fixed distribution. Thus, given the individual’s randomized response,
we are uncertain about what her true response would have been.

In spite of the previous intrinsic guarantee of randomized response, given the
popularity of differential privacy, it may be interesting to analyze the privacy
guarantees of randomized response in terms of differential privacy.

A randomized query function κ gives ε-differential privacy [5] if, for all data
sets D1, D2 such that one can be obtained from the other by modifying a single
record, and all S ⊂ Range(κ), it holds

Pr(κ(D1) ∈ S) ≤ exp(ε) × Pr(κ(D2) ∈ S. (8)

In plain words, the presence or absence of any single record is not noticeable
(up to exp(ε)) when seeing the outcome of the query. Hence, this outcome can
be disclosed without impairing the privacy of any of the potential respondents
whose records might be in the data set. A usual mechanism to satisfy Inequality
(8) is to add noise to the true outcome of the query, in order to obtain an outcome
of κ that is a noise-added version of the true outcome. The smaller ε, the more
noise is needed to make queries on D1 and D2 indistinguishable up to exp(ε).

In [9,10], a connection between randomized response and differential privacy
is established: randomized response is ε-differentially private if

eε ≥ max
v=1,...,r

maxu=1,...,r puv

minu=1,...,r puv
. (9)

The rationale is that the values in each column v (v ∈ {1, . . . , r}) of matrix P
correspond to the probabilities of the reported value being Y = v, given that
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the true value is X = u for u ∈ {1, . . . , r}. Differential privacy requires that the
maximum ratio between the probabilities in a column be bounded by eε, so that
the influence of the true value X on the reported value Y is limited. Thus, the
reported value can be released with limited disclosure of the true value.

6 Empirical Results

Randomized response is usually performed independently for each attribute. As
a result, marginal distributions are well preserved but multivariate distributions
are not (see Sect. 3). If the aim is to preserve the joint distribution of all attributes
A1, . . . , Am, we should perform a single randomized response over A1× . . .×Am.
However, this is usually unfeasible due to the curse of dimensionality explained
at the end of Sect. 3.

In this section we empirically evaluate the technique proposed to solve the
previous difficulties, which is based on clustering attributes in several groups (so
that attributes in different groups have low correlation) and running randomized
response independently for each of the groups.

6.1 Dataset

Experiments are based on the Adult dataset. This is a data set with over 32,500
records and a combination of numerical and categorical attributes. For the exper-
iments, we only take categorical attributes into account. These attributes are:
Work-class (with 9 categories), Education (with 16 categories), Marital-status
(with 7 categories), Occupation (with 15 categories), Relationship (with 6 cate-
gories), Race (with 5 categories), Sex (with 2 categories), Native-country (with
42 categories) and Income (with 2 categories).

6.2 Methodology

In the test dataset there are 76,204,800 possible combinations of attribute val-
ues. This makes the clustering approach to randomized response (see Sect. 4)
indispensable to get useful results.

We clustered attributes using the PIC algorithm with k = 3. The graph was
constructed following the procedure described in Sect. 4. That is, for each pair
of attributes:

– we obtained randomized responses on the Cartesian product of the two
attributes, and

– the distance between the nodes corresponding to these attributes was com-
puted as 1/V , where V is Cramer’s V statistic computed over the randomized
data.
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To avoid having to manually build the randomized response matrix for a
Cartesian product (which would be burdensome because there are potentially
many categories), we automatically build the matrix as follows:

– The probability of the cells in the main diagonal is set to a fixed value p ∈
[0, 1].

– The probability of the off-diagonal cells is set to be inversely proportional to
the number of attribute changes that the cell accounts for:

puv = (1 − p)
duv∑
k duk

,

where duv is the inverse of the number of attributes whose values differ
between u and v.

It would seem that, to compute
∑

k duk, we need to loop through each of the
possible combinations of attribute values and do the sum. This is not necessary,
because we can compute that sum by just considering the number of attributes
whose categories change between u and k:

∑
k

duk =
∑

a1∈{1,...,r}
(|Aa1 | − 1)

+
1
2

∑
1≤a1<a2≤m

(|Aa1 | − 1)(|Aa2 | − 1)

. . .

+
1
m

∑
1≤a1<...<am≤m

(|Aa1 | − 1) . . . (|Aam
| − 1), (10)

where the first sum on the right-hand side of Expression (10) corresponds to
changes of a single attribute (for each category a1, we count the number |Aa1 |−1
of alternative categories of the attribute Aa1 to which a1 belongs); the second
sum corresponds to the changes of two attributes and uses the same notation;
and so on. We can rewrite Expression (10) in a more compact way as:

∑
k

duk =
r∑

w=1

1
r

∑
1≤a1<...<aw≤m

(|Aa1 | − 1) . . . (|Aaw
| − 1). (11)

Notice that Eq. (11) does not depend on u. This means that, the value of∑
k duk is constant across all u; thus, we only need to do this computation once.

6.3 Risk Evaluation

Table 1 shows the levels ε1, ε2 and ε3 of differential privacy attained in each of
the three clusters for p = 0.9, p = 0.8, and p = 0.7, respectively. The overall
level of differential privacy is the sum ε = ε1 + ε2 + ε3, that is, the sum of levels
across the three clusters. Note that the composition of clusters changed when p
changed.
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Table 1. Cluster evaluation results

p = 0.9
Cluster Attributes Epsilon

C1 2 7.309
C2 2 7.735
C3 5 11.975

p = 0.8
Cluster Attributes Epsilon

C1 4 11.844
C2 2 5.171
C3 3 6.234

p = 0.7
Cluster Attributes Epsilon

C1 3 7.337
C2 3 8.569
C3 3 5.695

The overall ε decreases when p decreases, which means that privacy increases
as p decreases. This was to be expected: the less probability mass in the diagonal
of the randomized response matrix, the more privacy. It must be pointed out here
that the randomized response matrix was not designed with differential privacy
in mind; that is, we did not seek to minimize Eq. (9). Seeking such minimization
would yield yet smaller ε, but would probably impinge on utility.

6.4 Utility Evaluation

We measured the utility of the generated randomized dataset by measuring
the difference in the number of records for combinations of attribute values
between the original dataset (X) and the randomized dataset (Y ). In particular,

Fig. 1. Relative errors in randomized response for p = 0.9
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we computed the difference for all combinations of values of two attributes. If
ai ∈ Ai and aj ∈ Aj are attribute values, we computed the relative error as:

eij =
Xaiaj

− Yaiaj

Xaiaj

× 100,

where Xaiaj
and Yaiaj

are the number of records with attribute values ai and
aj in the original dataset and in the randomized dataset.

Figures 1, 2 and 3 show the values of eaiaj
when randomized response was

run with parameter p equal to 0.9, 0.8 and 0.7, respectively. Both, in the x-axis
and in the y-axis, we represent all possible attribute values; that is, in each
axis we represent the set {a : a ∈ Ai, 1 ≤ i ≤ N}. In the intersection between
column ai and row aj , we represent eij . From the histograms, we observe that
for higher values of p the difference between the original and the randomized
dataset is smaller. The light gray squares on the bottom-left top-right diagonal
of the histogram represent the cases in which both attribute values are categories
of the same attribute (which are impossible combinations, as we are interested
in combinations of values of two attributes).

Fig. 2. Relative errors in randomized response for p = 0.8
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Fig. 3. Relative errors in randomized response for p = 0.7

7 Conclusions and Future Research

We have proposed a methodology to perform computations on a dataset that
offers statistical input confidentiality. Each respondent can keep her input (true
answer) confidential by giving to the data collector a reported answer via ran-
domized reponse. Doing so still allows the data collector to approximate the
empirical distribution of the pooled true answers of the set of respondents. After
that, statistical computations can be performed on the approximated distribu-
tion.

Randomized response is only feasible when the number of possible categories
is small compared to the number of records. For this reason, this technique is
usually applied on an attribute-by-attribute basis. However, separately dealing
with each attribute does not allow approximating the joint empirical distribution
of the data. In this work, we have proposed a way to overcome this issue. We
cluster attributes so that attributes in different clusters are independent (or
nearly so) from each other. In this way, we can perform randomized response
independently for each cluster without severely impairing the approximation of
the joint empirical distribution.

We have experimentally validated the proposed methodology on a standard
data set. In the experimental section, we have also described how to automat-
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ically construct a randomized response matrix that is based on the number of
categories that are altered in the randomization process.

As future research, we plan to develop a new clustering procedure that
requires less information (the current procedure needs users to run randomized
response for each pair of attributes to measure the dependency between them).
We will also investigate a quantification of the privacy guarantees that does not
depend on differential privacy.
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Abstract. Data sets that are subject to Statistical Disclosure Limita-
tion (SDL) often have many variables of different types that need to be
altered for disclosure limitation. To produce a good quality public data
set, the data protector needs to account for the relationships between
the variables. Hence, ideally SDL methods should not be univariate,
that is, treating each variable independently of others, but multivari-
ate, handling many variables at the same time. However, if a data set
has many variables, as most government survey data do, the task of
developing and implementing a multivariate approach for SDL becomes
difficult. In this paper we propose a pre-masking data processing proce-
dure which consists of clustering the variables of high dimensional data
sets, so that different groups of variables can be masked independently,
thus reducing the complexity of SDL. We consider different hierarchical
clustering methods, including our version of hierarchical clustering algo-
rithm, that we call K-Link, and outline how the data protector can define
an appropriate number of clusters for these methods. We implemented
and applied these methods to two genuine multivariate data sets. The
results of the experiments show that K-Link has a potential to solve
this problem efficiently. The success of the method, however, depends
on the correlation structure of the data. For the data sets where most
of the variables are correlated, clustering of variables and subsequent
independent application of SDL methods to different clusters may lead
to attenuated correlation in the masked data, even for efficient cluster-
ing methods. Thereby, the proposed approach is a trade-off between the
computational complexity of multivariate SDL methods and data utility
loss due to independent treatment of different clusters by SDL methods.
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1 Introduction

Data sets that are released to the public by the data collecting organizations
often contain many variables of different types. For example, U.S. government
surveys such as the National Health Interview Survey, the Behavioral Risk Factor
Surveillance System, the Current Population Survey and American Community
Survey are high dimensional. Data collecting organizations have an obligation
by law to protect the privacy and confidentiality of responses provided by indi-
viduals or enterprises. This is usually accomplished by altering—we use the
term masking—the original data before release, for example, by aggregating
categorical values, swapping data values for selected records, or adding noise
to numerical values. See [10,11] for more details. Data can also be synthesized,
however, to do so one needs to come up with a good data generation model
which is a complex task. As the dimensionality of the data increases, model
estimation becomes more and more difficult. In case of the big governmental
surveys mentioned above, model estimation can become extremely difficult and
time consuming. Finding the best strategy for joint masking of many variables
at a time is not a straightforward task either. Whatever approach for SDL is
chosen, the organizations that disseminate the data strive to release data prod-
ucts with high utility - a goal competing with confidentiality protection, because
any data alteration done to thwart identification will negatively impact at least
some statistical properties of the data.

In this paper we propose a pre-masking procedure of clustering the variables
into groups with the objective of increasing the separation between the groups
as much as possible. Separation is viewed in terms of how related the variables
in different groups are and we want to make the variables in different groups
as unrelated as possible, so that SDL can be applied independently to different
clusters with minimal loss of data utility.

1.1 Contribution and Plan of the Paper

The main contribution of the paper is a pre-masking procedure of clustering
variables in the data set that can help government agencies reduce the complexity
of SDL methods. In Sect. 2 we describe our clustering approach. We propose a
variant of hierarchical clustering method, that we call K-Link, which can serve
this purpose. In Sect. 3 we present numerical experiments with genuine data sets.
Our results show that K-Link compares favorably to other hierarchical clustering
methods. Concluding remarks are given in Sect. 4.

2 Clustering of Variables for Disclosure Limitation

In order to design any clustering procedure, first it is necessary to define mea-
sures of proximity of the objects being clustered. In case of clustering variables
these are the measures of similarity/dissimilarity between the variables which
are often based on some form of correlation [2,5,18]. Different types of variables
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require different metrics. For quantitative variables some function of the corre-
lation coefficients may be used while for categorical variables many association
measures exists, such as χ2, Jaccard, Rand and others. When there are both
types of variables in the data, a metric that can be computed for both types of
variables is necessary. Similar to [2] we will use squared canonical correlation as
such a metric. It can be computed as a first eigenvalue of the product X ′Y Y ′X
for two data matrices Xn×d1 and Yn×d2 for which min(n, d1, d2) = d1. As shown
in [2] this metric is equivalent to a squared Pearson correlation for two quantita-
tive variables. In the case of one quantitative X and one categorical variable Y , it
is a correlation ratio. For the case of two categorical variables squared canonical
correlation does not correspond to any well known association measure, but nev-
ertheless, it can be interpreted geometrically according to [2]: the closer to one it
is, the closer are the two linear subspaces spanned by the matrices representing
these categorical variables, which means that the two qualitative variables bring
similar information.

Hence, the dissimilarity matrix of variables is created as a lower triangu-
lar matrix DM with elements DM [i, j] = 1 − r[i, j] where r[i, j] is a squared
canonical correlation between variables xi and xj .

Once the dissimilarity matrix is established a clustering method that fits our
goals can be chosen. In [2] a hierarchical clustering method suited for clustering
variables based on homogeneity criteria is proposed. In the sequel we will refer to
this method as Homclust. Homogeneity of a cluster is calculated for this method
as the sum of squared canonical correlations between each variable of the cluster
and the central synthetic variable of that cluster. Such a synthetic variable of
the cluster is defined as a quantitative variable “most linked” to other variables
in the cluster and computed as the first principal component of the variables
in the cluster. The goal of this method is to produce the most homogeneous
clusters, so that the variables within the cluster are strongly related to each
other. However, in our case when the purpose of clustering the variables is to
find groups of variables to which SDL can be applied independently with minimal
loss of correlation in the masked data, the objective will be different: the variables
in different groups should be as uncorrelated as possible, so that independent
masking of different groups of variables would not lead to significant correlation
loss comparative to joint masking of all the variables at the same time. On the
other hand, from a utility prospective it is not problematic if some, but not all,
variables in the same group have little association. Indeed, if the multivariate
SDL method preserves correlation structure, application of such method to the
cluster of variables in the original data will produce masked cluster with similar
associations, strong or week. Thereby, our goal is not necessarily to produce
homogenous clusters, that is, clusters with highly correlated variables, but to
maximize the separation between the clusters. Because the method described
in [2] is focused on the homogeneity and not the separation, the clusters in
the resulting partition may not be very far apart, so the variables assigned to
different clusters may still be highly correlated. This will be demonstrated in
Sect. 3. Hence, the methods based on the dissimilarities between the variables
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in different clusters may better suite our goals then the methods based on the
proximities within the clusters such as Homclust or k-means. We will call such
methods tentatively “separation clustering methods”.

One type of such methods is divisive or “top down” hierarchical cluster-
ing. This approach starts with all the objects in one cluster and at each subse-
quent step, the largest available cluster is split into two clusters until finally all
clusters comprise of single objects. One of the well known divisive methods is
Diana(DIvisive ANAlysis) [12] implemented in R [3] as well as in other packages.
Diana starts from finding a data point that has the highest average dissimilarity
to all other objects. This object initiates a new cluster, that is called a splinter
group. Then remaining objects are assigned either to the splinter group or to the
complementary group based on average distance to the objects in these groups.
Splitting clusters continues until all the objects end up in different clusters.

Contrary to divisive clustering, the agglomerative hierarchical approach
starts with every object being a separate cluster and at each iteration the closest
clusters are merged together building clustering hierarchy until all the objects
end up in the same cluster. Some simple examples of such methods are Single-
Link, Complete-Link, Average (see [6] and references therein). These algorithms
differ in the way how they define distance between clusters. For example, for
Single-Link it’s a distance between the two closest objects in the respective clus-
ters. Distances between the clusters increase from iteration to iteration, so for
Single-Link the separation is guaranteed to increase as one goes up the dendro-
gram tree. For Complete-Link method the distance between clusters is defined as
the distance between the two farthest points in the respective clusters. In some
sense Complete-Link method is complementary to the Single-Link method. For
Average method it is measured as an average of pairwise distances of all points
between two clusters.

The difference in definition of distances between the clusters may have sig-
nificant effect on the form, size and, especially on the separation between the
clusters, as it can be seen in Fig. 1 of the Appendix. In particular, Single-Link
may be the best choice if the goal is to achieve good separation between the
clusters. Indeed, in the case of Single-Link two clusters S and L for which the
gap between the closest points i ∈ L and j ∈ S is the smallest are joined at each
iteration. Thus, unlike Complete-Link or Average, Single-Link will not create a
partition where the gap between the borders of the clusters is smaller than the
gap between the points of the same cluster (see Fig. 1 in Appendix).

However, the shortest distance between points i ∈ L and j ∈ S may not
always be a good measure of a gap between two clusters. Points i and j can be
relatively close to each other but far away from the rest of the points in their
respective clusters, so with the exception of these two points the gap between L
and S may be larger than it is assessed by Single-Link. To mitigate this issue we
propose a simple modification of Single-Link : we measure the distance between
clusters L and S as an average of k shortest distances between points in L and
S. We call such a distance k-distance. This approach is in some way ‘midway’
between Single-Link and Average clustering method. The Average takes the
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average of pairwise distances of all the points between two clusters which may
be big simply because two clusters are spread out, while the actual gap between
the clusters may be small. Therefore, Single-Link may be ‘too little’ while the
Average may be ‘too much’. Since we want to focus on the gap between two
clusters, it makes sense to concentrate on the few points that are close to the
boundary. We call this intermediate approach K-Link.

Once the hierarchy of clusters is built we need to cut the dendrogram at
some height to obtain an actual partition. In our clustering application, cutting
height and the number of clusters may be determined based on the data protector
preferences for the maximal utility loss due to independent masking of clusters.
Indeed, the vertical axis of the dendrogram is a measure of closeness between the
clusters. In other words, cutting the dendrogram at a particular height h sets up
a lower bound on the distance between pairs of clusters in the partition which,
in turn, corresponds to the upper bound on the allowed correlation between
different clusters. Correlation between the variables in different clusters may be
attenuated or lost after the SDL method is applied independently to different
clusters. Thus, the data protector can set up an upper bound on maximal loss
of correlation by choosing the acceptable value of h. The exact interpretation
of h may differ for different clustering methods as it is based on the definition
of a distance between the clusters. For example, for the Single-Link method
this is a maximal correlation between two variables in different clusters. For K-
Link method, h is an average of a few largest correlations that can be observed
between the variables in different clusters, and so on. However, for all of the
methods it is essentially a summary of the observed correlation between the
variables in different clusters.

It should be noted that for K-Link, cutting the dendrogram at a particular
height may in some rare cases lead to several solutions, that is, several clustering
partitions with different number of clusters. This might happen because the
sequence of k-distances is not strictly monotone as in Single-Link, although,
there is a clear overall increasing trend. In particular, the k-distance may slightly
decrease from one iteration to another which results in merging of next closest
clusters slightly lower in the dendrogram tree.

We would also like to note, that one of the reasons why in this paper we
haven’t considered such algorithms as k-means, k-medoids or some model-based
clustering algorithms, such as [7], is due to the fact that all these methods require
the number of clusters as an input parameter. To successfully apply these algo-
rithms, one often needs to compare many clustering partitions corresponding to
different numbers of clusters. Another reason, is that many of these algorithms,
by design specifically target the homogeneity of clusters. For example, k-means
minimizes the sum of squares within the cluster on each iteration, and, thus, may
create a partition with poor separation between the clusters. We believe, that the
approach outlined above for the hierarchical agglomerative clustering methods
allows for a more straightforward way of determining the number of clusters. It
is important to mention that this approach produces clusters of variables that
are a suitable input for the subsequent use of SDL methods.
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3 Numerical Experiments

We applied our approach for clustering the variables to two real multivariate data
sets. One of them is the National Health Interview Survey 2015 fourth quarter
sample adult component public file [16]. In the sequel we will refer to it as NHIS.
This is a public use file that has already undergone disclosure limitation. It has
6213 records. For our experiments we selected 86 variables of different types,
continuous and categorical. The summary description is given in the Appendix.
When the correlations were computed for NHIS data, sampling weights and
design structure were taken into account.

Our second data set was downloaded from the UCI Machine Learning Reposi-
tory [4]. This is a sample drawn from the Public Use Microdata Samples (PUMS)
person 1990 US Census file. We will refer to this file as Census in the paper. It
has 68 categorical variables and about 2.5 million records. Full description of the
variables can be found in [1].

We applied Diana, Single-Link, Average, Complete-Link, Homclust as well as
our K-Link method to these data sets.

In order to assess and compare the quality of partitions obtained by different
methods we need to choose appropriate clustering criterion. Because clustering
of variables is the first step and application of SDL to clustered data is the sec-
ond step, ideally the clustering criterion should be in concordance with the SDL
procedure in order to produce masked data with good utility. In regard to data
utility, we want to note that the clustering procedure and subsequent indepen-
dent application of SDL methods to different clusters will not have any effect
on univariate statistics of the masked data. These statistics will depend only on
the properties of SDL method applied to the variables. Furthermore, clustering
does not affect any relationships between the variables that belong to the same
cluster. The only influence clustering may have is on the relationships between
the variables that belong to different clusters. The worst case scenario or the
worst output corresponds to the case when all the correlations between the vari-
ables that belong to different clusters are lost in the masked data because of the
independent application of SDL methods to these clusters. That is why we base
the assessment criterion on the separation between the clusters, which measures
correlation between the variables in different clusters - the correlation which
can be lost in the worst case scenario. The smaller the correlation between the
variables in different clusters - the better the output from the utility prospective.

Many clustering criteria were proposed in the literature, some examples are
[8,13–15]. Many of them, however, are focused on the compactness of the clusters.
However, as we mentioned above, compactness of the clusters is not an impor-
tant quality for masking or synthesis of the variables in the clusters, however,
separation between the clusters is. Several separation indexes were proposed in
the literature. For example, [9] mentions an index that is computed as the ratio
of the shortest distance between two clusters S and L (computed as the shortest
distance between two points i ∈ S and j ∈ L) and the maximal cluster diameter
in the partition. A similar metric was proposed in [17], in particular, the gap
between two clusters is divided by the total spread of both clusters. However,
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the spread of a cluster or it’s diameter is a measure of cluster compactness. It
was incorporated in the aforementioned separation indexes in order to give pref-
erence to the partitions with compact and well separated clusters, which makes
sense if the ultimate goal of clustering is to detect the “true” cluster structure of
the data. However, when diameters of clusters increase, such separation indexes
become smaller indicating that the quality of the partition becomes worse. But
for the purpose of masking clustered data such a partition is not worse than
a partition with compact clusters if the gap between the clusters is the same.
Therefore, we will include only the separation component into our clustering
criterion, but not the spread. Thus, the separation criterion that we will use to
compare different methods is as follows: first, separation between any two clus-
ters S,L is computed as an average of the smallest s distances/dissimilarities
d(i, j) between the elements i ∈ L and j ∈ S. Next, minimum of separations
between all pairs of clusters in a partition is found.

The elements, located in different clusters at shortest distances from each
other essentially represent the boarders of these two clusters and s can be thought
as a parameter of “thickness” of the boarder. In general, s is data dependent
and can be set to different values, for example, s can be equal approximately to
the 5th percentile of the number of distances between the elements in different
clusters i ∈ S and j ∈ L. One of the topics of our future research is to investigate
further the best ways of defining s. For simplicity, in our experiments we set s to
be equal to 5 for all the pairs of clusters with 5 or more pairwise distances between
the elements in different clusters. For the most populated pairs of clusters, 5 is
approximately a 5th percentile of the number of distances between the pairs of
clusters for our data sets. For the pairs of small clusters, for which there are
less than 5 distances between the variables in different clusters, we consider all
the distances. Further in the text when we refer to the distance between two
clusters, we mean average of the s shortest distances between the variables in
different clusters.

Table 1 shows the results of the comparison of Diana, Single-Link, Average,
Complete-Link, Homclust and K-Link methods which were applied to NHIS
data. For K-Link method we experimented with different values of the parameter
k. The best results in terms of separation were obtained for k = 3 and we present
these results in Table 1.

The minimal distance between any two clusters in the partition for each
of the methods does not give a full picture of the partition. We get a more
realistic impression of the composition of the partition by considering several
closest distances between pairs of clusters, not just the shortest one. In Table 1
we listed distances between 10 closest pairs of clusters for 3-Link, Single-Link,
Complete-Link, Average, Homclust and K-Link. Column 3-Link-10 denotes 3-
Link method where the size of the cluster was enforced not to exceed a predefined
limit, in this case, 10 variables per cluster. This method will be discussed later
in the paper.
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For all the methods we partitioned the data into 25 clusters which corre-
sponds to cutting the dendrograms approximately at height 0.8, so that the
maximum correlation loss between two clusters does not exceed 0.2.

Results for the Census data are shown in Table 2. Parameters were set the
same as for the NHIS data. Both tables show similar patterns in terms of relative
closeness between the clusters for different methods.

Table 1. NHIS data set: minimal separation between the clusters for 3-Link, 3-Link-
10, Single-Link, Complete-Link, Average, Homclust and Diana. Min1,Min2 · · ·Min10

are the distances between the ten closest pairs of clusters.

3-Link 3-link-10 Single-Link Complete-Link Average Homclust Diana

Min1 0.8190 0.7501 0.7901 0.5734 0.7501 0.5717 0.6923

Min2 0.8245 0.7583 0.7955 0.6321 0.7583 0.6128 0.7411

Min3 0.8282 0.7701 0.8196 0.7501 0.7701 0.6764 0.7600

Min4 0.8302 0.7802 0.8243 0.7599 0.7792 0.7432 0.7681

Min5 0.8351 0.7900 0.8261 0.7701 0.7891 0.7523 0.7809

Min6 0.8431 0.7925 0.8267 0.7735 0.7925 0.7606 0.7834

Min7 0.8525 0.8001 0.8299 0.7810 0.8001 0.7783 0.7845

Min8 0.8590 0.8019 0.8307 0.7880 0.8019 0.7801 0.7881

Min9 0.8635 0.8038 0.8341 0.7903 0.8025 0.7834 0.7916

Min10 0.8691 0.8200 0.8408 0.7999 0.8154 0.7999 0.8032

As it can be seen from Tables 1 and 2, 3-Link has the largest separation for
all ten closest pairs of clusters. It is followed by Single-Link and then by Aver-
age. Consistently worse are Diana and Complete-Link. The worst separation
among the methods that have no limits on the cluster size is observed for Hom-
clust which agrees with our assumption that the algorithms based on clusters’
homogeneity, which groups the most correlated variables in the same clusters,
may not be appropriate for those cases when the objective is to create maximal
separation, or minimal correlation, between the variables in different clusters.

Moreover, it is worth noting that we were not able to apply Homclust to the
Census data set, which has 2.5 million records. The implementation of Homclust
provided in package “ClustOfVar” [2] by its authors was not able to handle data
set of this size. Thus, poor scalability is an additional issue of the Homclust
method.

The entries in Tables 1 and 2 are the averages over the shortest s distances
between two clusters. We also compared the actual correlations between the
variables in different clusters. We observed that some of the variables which were
placed in different clusters by Complete-Link, Homclust and Diana were very
close in terms of correlation. For example, for the NHIS data set, the shortest
distance between the variables in the two closest clusters is 0.81 for K-Link, 0.78
for Single-Link, 0.70 for Average, however, they are about 0.1 for Complete-Link
and Homclust and 2.33E − 16 for Diana. The same was true for the next closest
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Table 2. Census data set: minimal separation between the clusters for 3-Link, 3-Link-
15, 3-Link-25, 3-Link-28, Single-Link, Complete-Link, Average, Homclust and Diana.
Min1,Min2 · · ·Min10 are the distances between the ten closest pairs of clusters.

3-Link 3-Link15 3-Link-25 3-Link-28 Single-Link Complete-Link Average Diana

m1 0.5587 0.0228 0.1463 0.1883 0.2443 0.1967 0.1883 0.0000

m2 0.5914 0.0716 0.1883 0.2503 0.2503 0.2503 0.2503 0.1883

m3 0.5982 0.1883 0.4110 0.2790 0.2790 0.2790 0.2790 0.2790

m4 0.6250 0.3892 0.5914 0.4110 0.3314 0.4110 0.4110 0.3825

m5 0.6331 0.4110 0.6250 0.5210 0.4400 0.5148 0.5210 0.4731

m6 0.6351 0.5210 0.6392 0.5971 0.5587 0.5725 0.5971 0.5085

m7 0.6443 0.6405 0.6443 0.6392 0.5657 0.5971 0.6392 0.5631

m8 0.6627 0.7034 0.7034 0.6405 0.5971 0.6104 0.6405 0.5710

m9 0.6853 0.7050 0.7067 0.6740 0.6019 0.6378 0.6740 0.5971

m10 0.7034 0.7067 0.7080 0.7067 0.6351 0.6578 0.7067 0.6579

pair of clusters as well, that is, the actual distances between the variables were
considerably smaller for Diana, Complete-Link and Homclust comparative to
K-Link and Single-Link. A similar pattern was observed for the Census data.

Regarding partitions obtained by the applications of the clustering methods
mentioned above, we observed that Single-Link and K-Link may lead to a par-
tition where one of the clusters contains many (or a majority) of the variables
and a number of small clusters with one or two variables, while for methods that
lead to more compact and homogenous clusters such as Complete-Link, Average,
Diana and Homclust, the largest cluster has less variables and overall partition
is slightly more balanced. For example, when we partitioned the NHIS data into
25 clusters, the largest cluster contains 9 variables for Diana, 11 for Average and
11 variables for Complete-Link. However, for Single-Link and 3-Link the largest
clusters contain 50 and 58 variables respectively. In the case of Census data the
largest cluster contains 14 variables for Diana, 28 variables for Complete-Link,
Average, but 38 variables for K-Link and 35 for Single-Link.

Since the main reason of clustering the variables here is to reduce the com-
plexity of joint masking or joint synthesis, clustering partitions with one or few
very big clusters may not serve the main purpose very well. That is why we imple-
mented a modification of K-Link method that incorporates an upper bound on
the cluster size: as soon as the cluster size reaches n variables, the cluster cannot
“accept” any new members. We will refer to this modification as k-Link-n fur-
ther in the text. Another possibility to solve a “big cluster” problem is to split
the biggest cluster in two or three smaller ones. There is, however, no guarantee
that the obtained partition would not result in one big and another small cluster
again. Moreover, incorporation of the restriction n during the merging process,
as opposed to cutting the biggest cluster after clustering hierarchy is complete,
may lead to better results because the variables that cannot join the cluster any
longer that reached the maximum number of variables, can still join any other
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cluster which is closest to it. This will occur in the earlier stages of clusters
formation, that is, as soon as the limit n was reached for the big cluster. Par-
titioning the biggest cluster in two or three after the dendrogram was finished,
would limit the possibilities of grouping the variables only with those that are
part of this cluster while all other clusters remain unchanged, which may not be
the best solution.

For NHIS data K-Link with the limit of n = 10 variables per cluster still
compares reasonably well with other methods that do not have restrictions. It is
the second method after Single-Link. Recall, however, that Single-Link creates
a cluster of 50 variables, while 3-Link-10 has only 10. Performance of 3-Link-10
is very similar now to Average, for which the largest cluster in the partition has
10 variables as well.

For the Census data, enforcing the limit on cluster size had a larger effect on
the separation between the clusters than for NHIS data. In fact, in the Census
data there is a big group of correlated variables. Thus, Single-Link, Average,
Complete-Link form a big cluster in their corresponding partitions. The size of
the largest cluster varies from 28 to 38 variables among these methods. Thus,
by enforcing the limits on the cluster size for K-Link we inevitably reduced the
separation between the clusters in the obtained partition. Columns 3-Link-15,
3-Link-25 and 3-Link-28 of Table 2 show the separation for 3-Link with limits
n = 15, 25 and 28. It can be seen that separation is not very good especially for
the lower values of n.

It is important to observe that, it is not possible to enforce n till the top of
the dendrogram. Our implementation of k-Link-n reports the minimal number
of clusters when n can still be enforced. After that, to complete the hierarchy,
clustering process continues as in the original version without restriction until
the dendrogram is complete.

We conclude that clustering of variables can help reduce the complexity of
SDL methods. However, there is a trade-off between complexity reduction and
data utility, which depends on the correlation structure of the original data.

4 Concluding Remarks and Future Work

In this paper we propose a pre-masking clustering procedure that can be used
by data publishing organizations that release data sets with many attributes of
different types, such as big government surveys. Joint masking of data sets with
many variables may be complicated and computationally involved. To reduce
the complexity of the problem we outline a procedure of grouping variables into
clusters in such a way that data utility loss due to independent application
of SDL methods to these groups is limited. An upper bound on utility loss
can be set up by the data protector. The value of this bound determines the
parameters of the clustering procedure. Furthermore, we present a hierarchical
clustering method, that we call K-Link, that can be suitable for the purpose of
subsequent independent application of SDL to these clusters of variables. In our
experiments K-Link compares favorably with a number of existing hierarchical
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agglomerative and divisive clustering methods. In our future research we plan to
consider a wider range of clustering methods that may be used for this purpose.

It is worth mentioning that we focus on the correlation-based utility loss due
to clustering. In the future research we plan to expand the study of utility loss
by considering other types of associations between the variables in the masked
data.

In this paper we do not specify, neither do we focus on any particular SDL
method as we believe that in general our clustering approach for variables should
help to reduce complexity of any multivariate SDL method which preservers cor-
relation structure of the data. As we mentioned earlier in the paper, it may be
particularly beneficial for synthetic methods. Clustering of variables can also be
helpful for developing multivariate analogs of some commonly used univariate
SDL procedures, for example top-coding. Extreme values of some continuous
variables are often top coded. For example, weight, height or income can be top-
coded. However, if the upper bound of top-coded variable is determined indepen-
dently from other variables, protection may be inadequate for different groups of
individuals. For example, assume that the data protector sets the upper bound
for weight to be equal to 300 pounds for all the respondents. However, a female
respondent with such a top-coded weight whose race/ethnicity is Asian is more
extreme as opposed to respondent with the same weight who is male Caucasian.
So, ideally top-coding should be multivariate. While grouping race/ethnicity,
gender, weight, height together may seem intuitive, there may be other, much
less obvious combinations of variables especially in big survey data sets with
hundreds of variables. Clustering of variables can clearly be helpful for finding
such groups. Development of multivariate top-coding preceded by clustering of
variables is an interesting topic for future research.
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Appendix

Part A: Different Partitions Obtained by Single-Link , Average ,
Complete-Link and Diana
Figure 1 illustrates how differences in definition of distance between the clusters
for Single-Link, Average, Complete-Link and Diana may influence the form and
separation between the clusters. For this data set Single-Link was able to capture
the structure of the data and created the most separated clusters. Separation
between the clusters for partitions obtained by Complete-Link, Average and
Diana is poor. These methods cut the vertical cluster in two or three parts very
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close to each other. On the other hand, a distant group of four point to the right
of vertical cluster is merged with it.
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Fig. 1. Partitions in three clusters (nc = 3) for Single-Link, Complete-Link,Average
and Diana for an artificial data set of points with coordinates (x, y).

Part B: Summary Description of NHIS Variables
The NHIS data set contains 86 variables. The variables are the respondents’
answers to the questions in the following categories: health conditions, men-
tal and emotional health, health behavior, affordability and accessibility of
health care services, health insurance options, food availability and accessibility,
employment status, income and education. The group of health related variables
include presence or absence of asthma, diabetes, bronchitis, other pulmonary dis-
eases and high blood pressure. Health behavior group of variables are the answers
to the questions about cigarette smoking, alcohol use, leisure-time physical activ-
ity and exercising. Mental and emotional health variables are the answers about
feeling hopeless, nervous, restless and fidgety, and also feeling worthless and sad.
NHIS file also includes height, weight, body mass index of the respondents as
well as demographic variables, such as race, age, marital status and region.

Most of the categorical variables are binary (Yes or No answers). There are
also few continuous variables in the file, for example, age, weight, height and
BMI.
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Abstract. The Statistics Bureau of Japan currently creates and provides
anonymized microdata for six surveys. Anonymized microdata from the Pop-
ulation Census of Japan are created using non-perturbative methods such as
recoding, top coding, and record deletion as well as the perturbative method of
swapping.
This paper analyzes several types of anonymized microdata created based on

individual data from the Population Census, and explores the potential of using
perturbative methods such as swapping and PRAM to create anonymized
microdata from Japanese Census Data. Results suggest that perturbative meth-
ods can increase data quality, but should be selected according to the properties
of the microdata that are to be anonymized. Perturbative methods have the
potential to help further enhance statistical methodologies in Japan.
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1 Introduction

In recent years, the “statistical revolution” has attracted attention in Japan, as com-
bining official statistical data with private-sector big data and government records can
further the use of evidence-based policy making (EBPM). The “Basic Plan Concerning
the Development of Official Statistics” was enacted in March 2018, and details future
measures for the provision and use of survey data and other data sources. The “sta-
tistical revolution” has increased the focus on creating and providing official statistical
data in Japan, and started a debate on the possibility of providing multiple types of
official statistical microdata, including public use files.

Currently, the Statistics Bureau of the Ministry of Internal Affairs and Communi-
cation creates and provides anonymized microdata for six surveys: the Housing and
Land Survey, the National Survey of Family Income and Expenditure, the Employment
Status Survey, the Survey on Time Use and Leisure Activities (Surveys A and B), the
Labor Force Survey, and the Population Census. Anonymized microdata from the
Japanese Population Census are (1) available for the years 2000–2005; (2) classified by
prefecture, with cities having populations over 500,000 broken out; (3) data covers 1%
of the total population, and is extracted in sets of households; (4) only one type of
anonymized microdata is created and provided; and (5) data is anonymized using non-
perturbative methods such as recoding, top coding, and record deletion as well as the
perturbative method of swapping.

The practical application of anonymized microdata from the Population Census
requires methods of anonymization that are effective also in cases of special uniques
(e.g., when a cell of the results at the nationwide level has value one), which reflects the
growing need for anonymized microdata for small regions. This situation merits further
investigation into the use of perturbative methods for anonymizing microdata.

Existing research on creating anonymized microdata (i.e., microdata to which
anonymization methods have been applied) has evaluated data swapping and the
merging of categories in recoding and top coding for individual data from the Popu-
lation Census (see [11–13]). Further improvements in anonymized microdata can be
achieved by further exploring perturbation while taking into account confidentiality,
and investigating the usability of anonymized microdata to which perturbation has been
applied.

This paper aims to examine the potential of perturbative methods to create anon-
ymized microdata based on individual data records from the Population Census, and to
compare the effectiveness of perturbative methods including data swapping and
PRAM.

2 The Methodology of Data Swapping

Studies on the potential of data swapping as a method to limit disclosure of microdata
via anonymization include those by [3, 8, 16, 17, 18]. Takemura [19] and [9, 10, 14]
have conducted empirical research on the effectiveness of data swapping specifically
for Japanese microdata. The U.S. Census Bureau has developed n-cycle swapping and
conducted empirical research on this method [4].
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As part of this research, an empirical study of data swapping – including record
swapping between different geographical areas – was conducted using data from the
2010 Population Census of Japan. Three sets of census data, each containing a different
number of records, were used as test data. The data sets were created from data on more
than 50,000 residents of a specific Japanese prefecture. Data were grouped by distinct
geographic areas, with about 10,000 records from one area (Data A), about 20,000
from a different area (Data B), and about 20,000 from an area different from either of
these (Data C).

Data swapping was conducted as follows. First, population uniques were identified
for every combination of patterns for the following key variables:

Type and tenure of dwelling (8 categories)
Sex (2 categories)
Marital status (4 categories)
Nationality (2 categories)
Type of (work) activity (8 categories)
Employment status (8 categories)
Age (114 categories)
Industry (21 categories)
Occupation (12 categories).

Second, records that can be uniquely represented by any combination of the nine
key variables were selected as target records for data swapping. To determine the
degree of priority for data swapping, cross tabulation was conducted for all combi-
nations of key variables. The number of times a specific record corresponded to a
unique cell was counted for each combination of cross tabulations, and this score was
added to each record in the test data. Records for which the score was high were
classified as “risky” records and assigned a higher priority for data swapping [7].

Third, targeted data swapping was performed for records with a score of 1 or
higher. Targeted data swapping was performed for records that corresponded to the top
p% (with the value of p set between 0 and 25 in this study) of the group and in order of
descending score. Random data swapping was performed for records that corresponded
to the p% of the group and with data selected randomly.

Fourth, the distances between each target record and all donor file records were
calculated using the above nine key variables, and the nearest donor file record was
swapped for each target record. In case of multiple records with identical distances, the
donor file record was selected randomly from among equidistant records.

3 The Methodology of Post Randomization

The post randomization method (PRAM) was first proposed by [15]. In official statistics,
PRAM has been used as a method for controlling statistical disclosure. A detailed
description and empirical study of PRAM appears in [5, 6]. Similar approaches have
been studied in the context of privacy-preserving data mining by [1, 2].
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PRAM consists of two procedures: perturbation and reconstruction. Perturbation
changes values according to a transition probability matrix, while reconstruction esti-
mates the distribution of the original data from the perturbed one.

3.1 Perturbation

Let the original data be microdata in which each row and column represent single
individual and attribute, respectively, and V be the set of all possible attribute values.
Perturbation changes values according to a transition probability matrix A. The tran-
sition probability matrix contains the probabilities at which each value in a private
microdata will be changed into another (not necessarily distinct) value. Au;v denotes the
probability of u 2 V being changed into v 2 V. For example, Amale;female means the
probability of “male” becoming “female”.

Retention–replacement perturbation [2] is a specific instance of the perturbation.
This is also known as “fully filled matrices with equal off-diagonal element” [6]. In the
retention-replacement perturbation, a value is retained with retention probability q. If
the value is unretained, it is replaced with a value chosen uniformly at random from the
attribute domain (including the original value). Therefore, transition probability matrix
A is defined as Av;v0 ¼ qþ 1�q

Vj j if v ¼ v0 and Av;v0 ¼ 1�q
Vj j otherwise for v; v

0 2 V ¸ where

Vj j denotes the cardinality of V.

3.2 Reconstruction

The statistics of the original microdata can be estimated from a perturbed microdata and
the retention probability matrix. Kooiman et al. [15] and [1] proposed reconstruction
methods for estimating the cross tabulation of the original microdata from a released
(i.e., perturbed) one. Retention–replacement perturbation results in cross tabulation
values being close to those for a uniform distribution, so the original cross tabulation
values are estimated in those methods by increasing gaps among the values of the cross
tabulation.

Although reconstruction can improve the accuracy of cross tabulation, we did not
use reconstruction in this research due to the difficulty of managing decimals. If we had
employed reconstruction, we would have perturbed and reconstructed a microdata with
every attribute iteratively. In each iteration, we would have had to obtain an inter-
mediate microdata from (reconstructed) cross tabulation, where some attributes were
perturbed and reconstructed but the others were not. Since the reconstructed cross
tabulation could have contained decimals, it would have been difficult to convert the
cross tabulation into the corresponding microdata. A naïve solution to manage the
decimal would have been to round up/down each value, but this would have caused a
change in the number of records. Even when rounding up/down while maintaining the
number of records, it would have caused the change of the distribution of non-
perturbed attributes. Therefore, reconstruction was not applied as part of this research.
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4 Comparative Analysis of Perturbative Methods Applied
to Japanese Microdata

This research focused on perturbed records created by random data swapping or
application of PRAM to the original records. Specifically, we measured the distance
among each of the perturbed records using the following variables and searched for the
records with the nearest distance.

Sex (2 categories)
Age in bins of 5 years (16 categories)
Marital status (2 categories)
Nationality (2 categories)
Type of (work) activity (2 categories)
Employment status (2 categories)
Industry major category (3 categories)
Occupation major category (3 categories)
Type of dwelling (2 categories)
Dwelling building type (2 categories)
Number of floors in building (2 categories)
Floor on which household lives (2 categories)
Total floor area (2 categories)
Means of transport used (Variable with 9 patterns and 2 categories for each
variable)
Region (3 categories) (in cases where region is also included among key variables).

If a record can be linked to the original record with a 1-to-1 relation, then this
relation is called a “true match”. When a 1-to-many relation is possible, the relation is
not treated as a “true match”. In this research, the proportion of “true matches” that
occurred among all records was called the “true match rate”.

First, we examined the relation between perturbative methods and the true match
rate. Figure 1 shows the relation between the swapping rate and the true match rate for
random data swapping. Figure 2 shows the relation between transition probability and
the true match ratio for PRAM. PRAM was applied to three variables: age in bins of 5
years, industry, and occupation. The results show that for random data swapping, the
true match rate decreases as the swapping rate increases. Figure 1 shows that the true
match rate decreases almost linearly as the swapping rate increases to 25%. For PRAM,
the true match rate similarly decreases as the transition probability increases. The true
match rate decreases almost linearly as the transition probability increases to 25%.

Next, we compared information loss between random data swapping and PRAM.
The differences in information loss were measured by focusing on the same level of
true match rate (the true match rate was set to three patterns of approximately 60%,
55%, and 50%). For this, swapping rates were set to approximately 2%, 6%, and 9%
for the true match rates of 60%, 55%, and 50%, respectively. Retention probabilities for
PRAM, applied based on age, industry, and occupation, were set at 95%, 85%, and
75%, respectively, for the above three true match rates.
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Cross tabulation was performed for each key variable against the other key vari-
ables, and the total values were calculated by dividing the difference in the frequencies
in the cross tabulations between the original data and the perturbed data by the number
of cells. This allowed calculating the magnitude of information loss.

Appendix Table 1 shows the information loss when a cross tabulation was created.
While PRAM resulted in a larger information loss for three variables (age in bins of 5
years, industry, and occupation) that are subject to PRAM at the same true match rate,
for the other variables the information loss in for swapping was comparatively large.
Figure 3 contains a comparison between random data swapping and PRAM in terms of
the relation between true match rate and total information loss. The figure illustrates
that the overall information loss for PRAM increases as the true match rate decreases.

Next, we focused on the univariate frequency distribution of the original data and the
frequency distribution of the perturbed data. We compared the absolute value of the
difference between relative frequencies for both swapping and PRAM at true match rates
of around 60%, 55%, and 50%. Appendix Table 2 contains a comparison of the true
match rate between PRAM and swapping. Focusing on the absolute value of the dif-
ference in frequency distribution for the three variables used in the PRAM perturbation,
it is clear that the difference in the frequency distribution with PRAM is larger than the
difference in the frequency distribution with swapping at the same true match rate.

This indicates that there is room for investigating which variables to use in PRAM
and what proportion of PRAM and swapping should be applied in order for key
variables to remain confidential and reduce the number of special uniques.

Next, we compared information loss for targeted data swapping and random data
swapping for the same true match rate and considering two cases: applying PRAM to
three variables (age in bins of 5 years, industry, and occupation) and applying PRAM

Fig. 3. Relationship between true match rate and information loss (excluding means of transport
used)
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to only two variables (age in bins of 5 years and nationality). Figure 4 shows the
relationship between true match rate and information loss for perturbed data using
random data swapping, targeted data swapping and PRAM. As swapping was limited
to unique records, the information loss for swapping decreased slightly.

This analysis shows that while information loss for PRAM with three variables was
comparatively large (as described earlier), information loss was comparatively small
for PRAM with only two variables. This result indicates that anonymized microdata
with high usability can be created using PRAM when the variables to which PRAM is
applied are carefully selected.

The above discussion is based on the assumption that “true matches” do not occur
in records replaced by swapping, since the swapped records are replaced with records
from another region. In the following discussion, the assumed strategy of intruders (i.e.,
those seeking to identify individual records) is changed, and it is assumed that there is a
possibility of identification through external information possessed by the intruder even
if a record is replaced with a record from another region through swapping. In this case,
region information is among the key variables that an intruder can use to identify an
individual, and we compared the effectiveness of swapping and PRAM depending on
the level of importance the intruder gives to region information as a key variable to
identify a specific person.

Specifically, we examined the effectiveness of swapping and PRAM by setting the
following two intruder strategies:

(1) The intruder has partial information about a particular individual who resides in
region A, and searches for that person among the perturbed data for region A.

(2) The intruder has partial information about a particular individual who resides in
region A, and searches for that person among not only region A but also region B
that was selected for data swapping.

Fig. 4. Relationship between true match rate and information loss
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We examined the relation between the proportion of individuals that an intruder can
identify and the information loss for three cases: targeted data swapping (T), random
data swapping (R), and targeted data swapping with PRAM applied to age in bins of 5
years and nationality (P). Swapping was applied to records that are unique for the nine
variables and arbitrary combinations thereof. PRAM was applied only to “particularly
dangerous” records that are unique for only 1 variable or 2 variables (the proportion of
“particularly dangerous” records was calculated as 4.0% in region A).

Figure 5 shows the results for swapping applied with a region information
weighting of 1000 and for intruder type (1). The results indicate that it is not possible to
find any true matches if the region information is changed by swapping. Figure 6
shows the results for swapping applied with a region information weighting of 0.5 and
intruder type (2). Results show the cases where an intruder who assumes that swapping
is performed between region A and region B can attempt to identify an individual by
targeting both region A and region B.

The two figures suggest the following:
Since type (1) intruders look only at perturbed data in region A, they are unable to

identify records that have been replaced with those from another region by swapping.
As a result, the decrease in true match rate as the swapping rate increases is compar-
atively large, which indicates that swapping is more effective.

Since type (2) intruders look at the perturbed data of both region A and the
swapping region for region A (i.e. region B), they are able to identify records that have
been replaced by swapping, and swapping is less effective.

Therefore, PRAM is much stronger against type (2) intruders than against type
(1) intruders.

The true match rate can be decreased by using PRAM against type (2) intruders.
This effect is the same as the decrease in true match rate obtained by performing 2–3%
targeted data swapping at the point where 2–3% PRAM is used.

Although the effectiveness of random data swapping and targeted data swapping
are virtually the same against type (1) intruders, targeted data swapping is weak against
type (2) intruders. This is because it is easy to create true matches based on uniqueness
even if a relatively unique record is moved to another region.

Next, we looked at the case where the number of swapping regions is increased from
one to two. Specifically, replacement was performed with the most similar record among
the combination regions B and C. This was expected to have the following opposing
effects:

(A) Since the intruder can treat the target record as being “somewhere among the 3
regions”, then since the weighting by differences between region information is
reduced and the effectiveness of changing region information by swapping is
reduced, attacks on swapped records will succeed more easily.

(B) Since the intruder needs to find the target record from among a larger number of
records, attacks will succeed less easily.

A comparison of Figs. 6 and 7 shows the following: The true match rate increases
when swapping is applied to two regions. This suggests a higher possibility that
hypothesis (A) applies rather than hypothesis (B), when the intruder recognizes that
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swapping is conducted with two or more regions then other key variables are more
effective than region information for identifying an individual.

Although in the case of swapping with two regions the number of records to search
increases, avoiding true matches was difficult for relatively unique records.
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Therefore, even when swapping was performed with two regions, a slightly
stronger effect of decreasing the true match rate was found with PRAM.

5 Conclusion

This paper examines the potential of anonymizing microdata through perturbative
methods, and focuses on swapping and PRAM as methods to create anonymized
microdata from Japanese Population Census data. We examined the effectiveness of
perturbative methods by comparing information loss from swapping and PRAM after
setting the same confidentiality criteria and using the true match rate. We found that
highly useful perturbed data can be created if the variables to which PRAM is applied
are chosen carefully.

The results of this research show that even when records are replaced through
swapping, individual identification is still possible depending on the strategy of the
intruder. In such cases, it is possible to ensure both confidentiality and usability of data
by effectively applying both swapping and PRAM.

Future work on perturbative methods such as swapping and PRAM is needed to
explore the properties of the microdata, and thereby enhance statistical methodologies
in Japan.

Note
The opinions expressed in this paper do not necessarily reflect those of organizations to
which the authors belong or those of the Statistics Bureau of Japan or the National
Statistics Center.
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Appendix

(See Appendix Tables 1 and 2)

Table 1. Information loss with each variable as the pivot
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Table 2. Comparison of original data and perturbed data with PRAM and swapping
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Abstract. The bulk of methods in statistical disclosure control primarily deal
with individual data from a cross-sectional perspective, i.e. data where indi-
viduals are observed at one single point in time. However, nowadays longitu-
dinal data, i.e. individuals observed over multiple periods, are increasingly
collected. Such data enhance undoubtedly the possibility of statistical analysis
compared to cross-sectional data, but also come with some additional layers of
information that have to remain practically useful in a privacy-preserving way.
Building on the recently proposed permutation paradigm as an overarching
approach to data anonymization, this paper establishes a general framework for
the formulation of longitudinal data anonymization and proposes some universal
metrics for the assessment of disclosure risk and information loss. We illustrate
the application of these new tools using an empirical example.

Keywords: Statistical disclosure control � Longitudinal data
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1 Introduction

Data on individual subjects are increasingly collected and exchanged. By their nature,
they provide a rich amount of information that can inform statistical and policy analysis
in a meaningful way. However, due to the legal obligations surrounding these data, this
wealth of information is often not fully exploited in order to protect the confidentiality
of respondents. In fact, such requirements shape the dissemination policy of micro data
at national and international levels. The issue is how to ensure a sufficient level of data
protection to meet releasers’ concerns in terms of legal and ethical requirements, while
offering to users a reasonable richness of information. Moreover, over the last decade
the role of micro data has changed from being the preserve of National Statistical
Offices and government departments to being a vital tool for a wide range of analysts
trying to understand both social and economic phenomena. As a result, more parties,
often very heterogeneous in their privacy and information requirements, are now
involved in micro data transactions. This has opened a new range of questions and
pressing needs about the privacy/information trade-off and the quest for best practices
that can be both useful to users but also respectful of respondents’ privacy.
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Statistical disclosure control (SDC) research has a rich history in addressing those
issues, by providing the analytical apparatus through which the privacy/information
trade-off can be assessed and implemented. SDC consists in the set of tools that can
enhance the level of confidentiality of any data while preserving to a lesser or greater
extent its level of information (see [5] for an authoritative survey). Over the years, it
has burgeoned in many directions. In particular, techniques applicable to micro data,
which are the focus of this paper, offer a wide variety of tools to protect the confi-
dentiality of respondents while maximizing the information content of the data
released, for the benefits of society at large.

There are several types of individual data that can be published in a privacy–
preserving way for fulfilling analysis needs, e.g. relational data, transaction data,
sequence data, trajectory data, and graph data… These data types differ in structure,
properties and the information they contain about individuals. The dissemination of any
specific type entails its own privacy risks and information preservation requirements,
which should ideally be considered by the SDC approach selected to perform
anonymization. Among these different types, longitudinal data are of particular interest
in many areas, e.g. economics, medical research, sociology, finance, marketing… A
dataset is longitudinal if it contains information on the same variables of interest about
an individual at several points in time. For example, the information collected in
clinical trials to evaluate the impact of treatments, or the dynamic of an individual’s
income, is longitudinal data. They are built from the pooling of observations on a cross-
section of individuals over several time periods, achieved by surveying a number of
individuals and following them over time.

However, despite the fact that the SDC literature offer a wide variety of tools suited
to different contexts and data types [4], there have been very few attempts to deal with
the challenges posed by longitudinal data. To the best of the author knowledge, only
one approach, formulated in the context of medical data and based on global sup-
pression and generalization, has been proposed so far [8]. Hence, the objective of this
paper is to contribute in filling this gap by proposing a general framework and some
associated metrics of disclosure risk and information loss tailored to the specific
challenges posed by longitudinal data anonymization, notably by building on the
recently proposed permutation paradigm as an overarching approach to data
anonymization [2].

The rest of this paper is structured as follows. Section 2 gives some background
concepts on longitudinal data and the permutation paradigm in data anonymization
needed later on. Section 3 proposes a new framework for conceptualizing longitudinal
data anonymization and then proposes some universal measures of disclosure risk and
information loss applicable to such data. Section 4 presents some empirical results.
Conclusions and future research directions are gathered in Sect. 5.
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2 Background Concepts

2.1 Longitudinal Data

Longitudinal data are repeated observations of the same respondents that are published
at different points in time and are ubiquitous in a wide range of fields: medicine, public
health, education, business, economics, psychology, biology, and more. Economists
generally refer to it as panel data. They vary from cross-sectional data, i.e. where
individuals are observed at a single point in time, and from time-series data, i.e. where
one single entity is observed along generally a long time-span, in the sense that the
defining feature of longitudinal data is that the multiple observations within several
individuals can be ordered across time. Longitudinal surveys generally use calendar
time, months or years, as the dimension separating observations on the same subject.
Although the notion of time in longitudinal data can be quite intricate [9], in this paper
we will focus on repeatedly measured attributes that can be ordered along a line to
describe the sequence of measurement.

Compared to cross-sectional data, longitudinal data provide some clear advantages
as they are generally more informative. Cross-sectional distributions that look relatively
stable can in fact hide a multitude of changes that can only be captured if the same set
of individuals is followed over time. For example, spells of unemployment, job turn-
over, residential and income mobility are better studied with longitudinal data. Lon-
gitudinal data are also well suited to study states durations, e.g. disease, unemployment
and poverty, and if the time dimension is long enough, they can shed light on the speed
of adjustments to medical treatments or policy changes. For instance, in measuring
unemployment, cross-sectional data can estimate what proportion of the population is
unemployed at a point in time. Repeated cross-sections can show how this proportion
changes over time. But only longitudinal data can estimate what proportion of those
who are unemployed in one period can remain unemployed in another period.

However, longitudinal data can be potentially plagued by several problems, the
main specific one being attrition. While nonresponse from individuals is a standard
issue in cross-sectional data, it is a more serious problem in longitudinal data because
different periods of the data can be subject to varying rates of nonresponse from
individuals. This issue generally leads to what is called an unbalanced longitudinal data
set, i.e. not every individual is observed every year, while in the case of a balanced data
set all individuals are observed at all periods. While the former case may appear as
more realistic, it remains however barely considered in practice and unbalanced data
are generally made de facto balanced by not considering as relevant information
individuals not observed across all periods. For example, econometric analysis tech-
niques are much easier to implement and more developed on balanced than unbalanced
data [10]. In this paper, we will assume that the longitudinal data set to be anonymized
is balanced, albeit anonymization on unbalanced data remains a path for future
research.

Now, it is clear that the anonymization of longitudinal data poses some specific
challenges. While it is beyond the scope of the present paper to investigate exhaustively
the possible forms of an attacker’s background knowledge specific to longitudinal data,
we can outline the main ones. Indeed, such knowledge may be thought of with its own
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characteristics compared to other types of data, and in particular cross-sectional data,
and thus will carry specific privacy challenges. For example, an adversary may know
that someone has transitioned from unemployment to employment between two time
periods. Thus, while the employment status can be considered as a quasi-identifier in
cross-sectional data, the change in employment status over time is also in itself a quasi-
identifier in longitudinal data and can be used as additional background knowledge for
the attacker.

Along the same line, changes in confidential attributes, such as salary, can also be
viewed as a quasi-identifier: an attacker may for example not know the salary of an
individual at two periods, but may know that it has increased significantly between the
two and can use that information to conduct the attack. Thus, the individual may
consider as a privacy risk the fact that someone can learn about his salary variation,
even if his salaries at the two time periods are not disclosed, e.g. the two salary values
have been masked enough to avoid attribute disclosure but the masked values can still
go up over time, providing insights for the intruder. Thus, longitudinal data generally
enlarge privacy threats.

Now, this widening is also a widening of information specific to longitudinal data.
This is in fact what make them specifically valuable in the first place and must be
preserved to a lesser or greater extent for the dissemination of longitudinal data to be
useful. The trade-off between privacy and information is thus very direct in longitudinal
data: the information on the dynamics of several variables at the individual level is
valuable but is also problematic from a privacy perspective. The metrics developed
later in this paper for the measures of disclosure risk and information loss in the context
of longitudinal data will rely on such direct link.

2.2 The Permutation Paradigm in Data Anonymization

The permutation paradigm is a recent contribution in the literature that proposed a
general functional equivalence based on permutations to describe any data masking
method (see [2, 6] and its subsequent development in [7]). It starts from the observation
that any anonymized data set can be viewed as a permutation of the original data plus a
non-rank perturbative noise addition. Thus, it establishes that all masking methods can
be thought of in terms of a single ingredient, i.e. permutation. This result clearly has far
reaching conceptual and practical consequences, in the sense that it provides a single
and easily understandable reading key, independent of the model parameters, the risk
measures or the specific characteristics of the data, to interpret the utility/protection
outcome of an anonymization procedure.

To illustrate this equivalence, we use a toy example which consists (without loss of
generality) of five records and three attributes X = (X1, X2, X3) generated by sampling
N(10, 102), N(100, 402) and N(1000, 20002) distributions, respectively. Noise is then
added to obtain Y = (Y1, Y2, Y3), the three anonymized version of the attributes, from
N(0, 52), N(0, 202) and N(0, 10002) distributions, respectively. One can see that the
masking procedure generates a permutation of the records of the original data
(Table 1).
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Now, as long as the attributes’ values of a data set can be ranked, which is obvious
in the case of numerical and categorical ordinal attributes, but also feasible in the case
of nominal ones [3], it is always possible to derive a data set Z that contains the
attributes X1, X2 and X3, but ordered according to the ranks of Y1, Y2 and Y3,
respectively, i.e. in Table 1 re-ordering (X1, X2, X3) according to (Y1R, Y2R, Y3R). This
can be done following the post-masking reverse procedure outlined in [6]. Finally, the
masked data Y can be fully reconstituted by adding small noises (E1, E2, E3) (small in
the sense that they cannot re-rank Z while they can still be large in absolute values) to
each observation in each attribute (Table 2).

Table 1. Illustration of the permutation paradigm

X1 X2 X3 Y1 Y2 Y3

13 135 3707 8 160 3248
20 52 826 20 57 822
2 123 -1317 -1 122 248
15 165 2419 18 135 597
29 160 -1008 29 164 -1927

X1R X2R X3R Y1R Y2R Y3R

4 3 1 4 2 1
2 5 3 2 5 2
5 4 5 5 4 4
3 1 2 3 3 3
1 2 4 1 1 5

Original dataset X Masked dataset Y

Rank of the original attribute Rank of the masked attribute

Table 2. Equivalence in anonymization: post-masking reverse mapping plus noise addition

X1 X2 X3 Z1 Z2 Z3

13 135 3707 13 160 3707
20 52 826 20 52 2419
2 123 -1317 2 123 -1008
15 165 2419 15 135 826
29 160 -1008 29 165 -1317

E1 E2 E3 Y1 Y2 Y3

-5 0 -459 8 160 3248
0 5 -1597 20 57 822
-3 0 1256 -1 122 248
2 0 -229 18 135 597
0 -1 -610 29 164 -1927

Original dataset X Reverse mapped dataset Z

Noise E Masked dataset Y(=Z+E)
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By construction, Z has the same marginal distribution as X, which is an appealing
property. Moreover, under a maximum-knowledge intruder model of disclosure risk
evaluation, the small noise addition turns out to be irrelevant [2]: re-identification via
record linkage can only come from permutation, as by construction noise addition
cannot alter ranks. Reverse mapping thus establishes permutation as the overarching
principle of data anonymization, allowing the functioning of any method to be viewed
as the outcome of a permutation of the original data, independently of how the method
operates. This functional equivalence leads to the following proposition (see [7] for the
original and full proposal):

Proposition 1: For a dataset X with n records and p attributes (X1,..,Xp), its
anonymized version Y can always be written, regardless of the anonymization methods
used, as:

Y ¼ P1X1; . . .;PpXp
� �þE ð1Þ

where P1 ¼ AT
1D1A1; ::;Pp ¼ AT

pDpAp is a set of p permutation matrices and E is a
matrix of small noises. A1,..,Ap is a set of p permutation matrices that sort the attributes
in increasing order, AT

1 ; ::;A
T
p a set of p permutation matrices that put back the

attribute in the original order, and D1,..,Dp is a set of permutation matrices for
anonymizing the data.

This proposition characterizes permutation matrices as an encompassing tool for
data anonymization: the analytical framework of anonymization mechanisms can in
fact be viewed as functionally equivalent to a set of permutation matrices. Proceeding
attribute by attribute, each is first permuted to appear in increasing order, then the key is
injected, and finally it is re-ordered back to its original form by applying the inverse of
the first step (which in the case of a permutation matrix is simply its transpose). Clearly,
this formalizes the common basis of comparison for different mechanisms that the
permutation paradigm originally proposed. Whatever the differences in the natures of
the methods to be compared and the distributional features of the original data, the
methods can fundamentally always be viewed as the application of different permu-
tation matrices to the original data, but independently of them.

3 A General, Permutation-Based Approach to Longitudinal
Data Anonymization

3.1 Backward Mapping of Attributes in Longitudinal Data

We first start by an observation on the relationship between two attributes follow-up
over time and over the same set of individuals, i.e. data are balanced, as assumed
above. In fact, and while the context and the goal are different, one attribute observed
during two periods t and t + 1 can also always be reverse mapped in a way to express
the attribute in t + 1 as a function of itself in t. This approach, general in its scope, will
lead to a simple characterization of the essential information and privacy risks
specifically contained in longitudinal data. It can be noted that this is equivalent to
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considering time as an anonymization method, where the attribute in t + 1 is the
anonymized version of the attribute in t.

By definition, to be followed-up over time, an attribute must keep the same form
and definition, e.g. if it is categorical in t it must remain categorical in t + 1 and track
the same categories; if it is numerical in t it must remain numerical in t + 1 and capture
the same variable. Let denote by Xj;t ¼ x1;j;t; . . . ; xn;j;t

� �
the values taken by attribute j

in t and Xj;tþ 1 ¼ x1;j;tþ 1; . . . ; xn;j;tþ 1
� �

its values taken in t + 1. As said above, n is
assumed to remain constant between t and t + 1. Note that no assumption is made on
the nature of the attribute j apart that it can always be ranked: it can be numerical,
categorical or nominal1. The knowledge of Xj;t and Xj;tþ 1 allows expressing the later as
a function of the former by disentangling the nature of information in longitudinal data,
using the following algorithm:

The resulting backward mapped attribute Zj;t expresses Xj;tþ 1 as a permutation of
Xj;t. Because the values of the attribute may change over time, particularly in the case
of numerical attribute, one must also add Ej;t;tþ 1, the difference between Xj;tþ 1 and Zj;t,
to get an exact recomposition of Xj;tþ 1 as a function of Xj;t. Then, and because Zj;t is a
permutation of Xj;t, it always hold that (with QT ;j denoting a permutation matrix):

Xj;tþ 1 ¼ QT ;jXj;t þEj;t;tþ 1 with QT ;j ¼ CT
T ;jKT ;jCT ;j ð2Þ

It must be noted that the backward mapping procedure used here is analytically
similar to the reverse mapping procedure developed in [6] (and outlined above), but
serves a completely different purpose. In fact, it does not deal with anonymization but
allows characterizing the two types of temporal information available in longitudinal
data.

Indeed, Eq. (2) disentangles the effect of time over an attribute, leading to two
entities. First, time modifies an attribute by changing the ranks of the individuals in a
distribution. Because Zj;t is a permutation of Xj;t, the change of ranks through time can
always be captured by the permutation matrix QT ;j (or more precisely by the temporal
key KT ;j, as CT ;j and its inverse just re-order the data as in Eq. (1)). In fact, and
following Proposition 1, this means that the main feature of longitudinal data can

1 For this last case, it can also be ranked using semantic distance metrics (see above).
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always be represented by the same entities used to express any anonymization method.
As will be apparent below, this will turn out to be convenient for thinking about
longitudinal data anonymization in a very general way.

The second type of information produced by time is what can be qualified as
residual trajectories, i.e. changes in the attribute’s values within two ranks, and is
captured by Ej;t;tþ 1. Such information is contextual in nature. For a categorical attri-
bute, Ej;t;tþ 1 will be by definition null. In the case of a numerical attribute, it will
capture the effect of time on an attribute not due to rank changes. For example, if the
salary of an individual moves from rank 4 to rank 7 in the salary distribution, then his
residual trajectory will be such that his salary will still be contained between the values
(also altered) of ranks 6 and 8. By nature this information is less relevant than the
permutation patterns contained in QT ;j: the major effect of time is rank changes.
However, it cannot be entirely discarded: if for instance the salaries in an economy
grow at the same pace for everyone between two periods and no rank changes occur2,
this overall increase can only be seized by Ej;t;tþ 1. Thus, Ej;t;tþ 1 will notably capture
how the entire distribution shifts through time, while QT ;j will always capture how
individuals move within the distribution over time.

3.2 The Effect of Anonymization on Temporal Information

Now, following Proposition 1 and using Eq. (1), the anonymized versions of Xj;t and
Xj;tþ 1, denoted respectively by XA

j;t and XA
j;tþ 1, can always be written, whatever the

anonymization methods considered for the two periods, as:

XA
j;t ¼ Pj;tXj;t þEj;t ð3Þ

XA
j;tþ 1 ¼ Pj;tþ 1Xj;tþ 1 þEj;tþ 1 ð4Þ

where Pj;t and Pj;tþ 1 are, following the permutation paradigm, the matrices used to
describe the core functioning of the anonymization method used for the attribute
observed in t and t + 1 respectively, and Ej;t and Ej;tþ 1 are the eventual matrices of
small noises.

From an information perspective, it is clear that Eq. (2) has to remain exactly
conserved for the specific temporal information conveyed by the longitudinal data to
stay untouched. Now, by substituting (2) in (4), using the expression of Xj;t in (3) as a
function of its anonymized version and keeping in mind that the inverse of a permu-
tation matrix is its transpose, one gets after rearrangements:

XA
j;tþ 1 ¼ Pj;tþ 1QT ;jP

0
j;tX

A
j;t þ Pj;tþ 1 Ej;t;tþ 1 � QT ;jP

0
j;tEj;t

� �
þEj;tþ 1

h i
ð5Þ

As a result, if the two anonymization methods used in t and t + 1 don’t alter
temporal information, it must hold, by comparison of (2) and (5), that:

2 In that case PT ;j will be the identity matrix.
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Pj;tþ 1QT ;jP
0
j;t ¼ PT ;j ð6Þ

Pj;tþ 1 Ej;t;tþ 1 � QT ;jP
0
j;tEj;t

� �
þEj;tþ 1 ¼ Ej;t;tþ 1 ð7Þ

Equations (6) and (7) describe how the two anonymization methods in t and t + 1
must be related to preserve the temporal information. First, the principal source tem-
poral of information QT ;j appears to be encased by the two permutation matrices of
each method. Thus, for QT ;j to remain unaltered in the anonymized version of the data
set, we see by (6) that the product of the anonymizing permutation matrix used in t + 1,
the permutation matrix capturing the effect of time, and the transpose of the
anonymizing permutation matrix used in t, must be equal to the permutation matrix
capturing the effect of time itself (note that because it is a product of matrices the terms
cannot be rearranged conveniently).

Second, using the fact that small noises turn out to be irrelevant to describe the core
functioning of an anonymization method [2], we can simplify Eq. (7), which becomes:

Pj;tþ 1Ej;t;tþ 1 ¼ Ej;t;tþ 1 ð8Þ

Thus, for the residual trajectories to be preserved Pj;tþ 1 must be the identity matrix,
i.e. no anonymization at all must take place on the attribute in period t + 1. Therefore,
for Eq. (6) to be verified then Pj;t must also be the identity matrix, i.e. no
anonymization at all must also take place in period t. This rather pointless and unsafe
setting can be ignored given the fact that residual trajectories do not constitute the bulk
of the relevant longitudinal information. In the remainder of this paper, we will thus
focus on Eq. (6) and its implication for longitudinal data anonymization.

3.3 Universal Measures of Disclosure Risk and Information Loss
for Longitudinal Data Anonymization

What precedes outlined a general way to conceive longitudinal data anonymization. It
can be applied to any kind of attributes and characterizes that, compared to cross-
sectional data, longitudinal data offer an essential but specific feature, i.e. the trans-
position matrix QT ;j describing the effect of time on one attribute. This matrix contains
the main source of information that must be preserved somehow but which at the same
time entails some privacy risks. Thus, and as stated above, the flip side of disclosure
risk in longitudinal data is information. A data user will esteem the fact of knowing
how the attributes’ values of some individuals change over time, but a data releaser
may worry that such information could contribute to the knowledge of an intruder and
being operationalized for re-identification. As a result, any modification of QT ;j will
decrease disclosure risk but will also induce some information losses. The
information/privacy trade-off is thus of a very direct kind in longitudinal data.

For data anonymization to take place Eq. (6) can never hold in practice. The
question is thus more about how Pj;tþ 1QT ;jP0

j;t will depart from QT ;j. Bearing in mind
that the result of the product of some permutation matrices is always a permutation
matrix, this question can be assessed by the fact that the encasing of QT ;j by Pj;tþ 1 and
P0
j;t will lead to a different pattern of rank changes over time.
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Now, using the procedure developed in [7] in the case of cross-sectional data,
assume the two following permutation matrices:

P1 ¼

0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0

0
BBBB@

1
CCCCA P2 ¼

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

0
BBBB@

1
CCCCA

It can be easily retrieved from these matrices some vectors of rank displacement r1
and r2, i.e. vectors measuring the amount of rank shifting that a permutation matrix
contains3. To build r1 and r2 one can count, columns by columns of P1 and P2, how
many times the 1 s have been moved, using the identity matrix as a starting point
(which is a particular case of a permutation matrix with no permutation applied), then
assigning a negative (resp. positive) sign if the 1 has been moved up (resp. down). As a
result, one gets:

r1 ¼

3
e
e
1
�4

0
BBBB@

1
CCCCA r2 ¼

e
2
2
�2
�2

0
BBBB@

1
CCCCA

In the context of data anonymization, these vectors can be used to evaluate how
anonymization has permuted individuals, and in particular by how far in terms of rank
[7]. In the context of the backward mapping procedure developed above, such vector
derived from PT ;j will characterize how and by how far time has permuted individuals.
Consequently, measuring disclosure risk and information loss in longitudinal data
anonymization can be conceived as measuring the differences between the rank shifting
induced by Pj;tþ 1QT ;jP0

j;t and the rank shifting induced by QT ;j. It remains now to
determine the aggregative structure for measurement.

A natural choice for gauging r1 and r2 is for example to take their Euclidean norms
and adopting the rule that the higher the norm, the lower the disclosure risk (as the
larger will be the permutation distances contained in the vectors). But other cases are
possible. In general, any L(p)-norm is acceptable: for example, the ∞-norm (or Che-
byshev distance) is also a valid candidate. This variety of choice to evaluate vectors
generally depends on the problem at hand, as one will select a L(p)-norm adapted to the
meaning of the object that is meant to be quantified. However, we argue that in the
context of longitudinal data, such choice can be given an intuitive interpretation in term
of disclosure risk and information loss, but in a way that appears to be different than
from cross-sectional data [7].

3 To avoid some unnecessary technical difficulties, in what follows zero values in these vectors will be
assigned, without loss of generality, a infinitesimally small value e > 0.
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As mentioned, disclosure risk and information loss are tightly linked in longitudinal
data. For instance, assume that between t and t + 1 an individual moved 4 ranks up in
the distribution, i.e. in the rank displacement vectors derived from PT ;j this individual is
assigned +4. Assume also that after anonymization of the attribute in t and t + 1 the
same individual is characterized by having moved 5 ranks up, i.e. in the rank dis-
placement vectors derived from Pj;tþ 1QT ;jP0

j;t, this individual is assigned +5.
Anonymization has altered information but in a small way, as the individual is now
characterized by a move between t and t + 1 close to his ex-ante anonymization move.
However, it implies that this individual is not equipped with sufficient protection
against disclosure risk, because his move in the anonymized data is very close to his
move in the original data, and such closeness can still lead to a privacy threat by
enlarging, albeit now imperfectly, the background knowledge of an intruder.

Now, assume that the same individual is, after anonymization, characterized by
having moved 100 ranks up. Here anonymization has altered information in a major
way as the individual is now characterized by a move between t and t + 1 quite
dissimilar to his real, ex-ante anonymization move. But it implies also that this indi-
vidual is now equipped with sufficient protection against disclosure risk, as his move in
the anonymized data is far from his move in the original data. Such dissimilarity can
now only poorly enlarged the background knowledge of an intruder, if not fool him.

As a result, small differences between the rank shifting vectors derived from
Pj;tþ 1QT ;jP0

j;t and PT ;j mean high disclosure risk and low information loss for the
anonymization of longitudinal data, while large differences mean low disclosure risk
and high information loss. Thus, the values in the vector of differences between the
rank shifting vectors retrieved from Pj;tþ 1QT ;jP0

j;t and PT ;j will account both for dis-
closure risk and information loss. How to evaluate this vector of differences leads to the
following proposition:

Proposition 2: Denote by rT ;j and rA;j the rank shifting vectors retrieved from QT ;j

and Pj;tþ 1QT ;jP0
j;t respectively, and by rT ;A;j;i ¼ rT ;j � rA;j ¼ ðrT ;A;j;1; . . .; rT ;A;j;n) the

vector of differences between rT ;j and rA;j over the n individuals for which the attribute j
is available in t and t + 1. The following aggregative structure:

J að Þ ¼
1
n

Pn
i¼1

abs rT ;A;j;i
� �� �a� �1

a

for a 6¼ 0

Qn
i¼1

abs rT ;A;j;i
� �� �1

n for a ¼ 0

8>>><
>>>:

forms a class of both disclosure risk and information loss measures for the evaluation
of longitudinal data anonymization.

Proposition 2 makes use of a power mean for aggregating of the components of
rT ;A;j;i, with the parameter a acting as a zooming lens. The arithmetic mean becomes a
special case (a = 1) of J að Þ, which forms a dividing line by computing the average
level of the rank changes differences between the original data and the anonymized
data. From this benchmark, the more a decreases, the more emphasis is given to the
smallest rank changes. In fact, J 0ð Þ is the geometric mean and J �1ð Þ the harmonic

A General Framework and Metrics for Longitudinal Data Anonymization 225



mean and the more a approaches −∞, the more J að Þ converges towards the smallest
rank change in rT ;A;j;i. As a result, for a given rT ;A;j;i and a′ < a, we have J a0ð Þ � J að Þ:
the lower is a, the stronger is the emphasis on the smallest rank changes between the
original data and the anonymized data.

Conversely, from the arithmetic mean J 1ð Þ; the more a increases, the more
emphasis is given to the largest rank changes. And through the same reasoning as
above, the more a approaches +∞, the more J að Þ converges towards the largest rank
change in rT ;A;j;i. Note also that J 2ð Þ and J þ1ð Þ are respectively the Euclidean norm
and the Chebyshev distance up to the factor

ffiffiffi
na

p
.

J að Þ aims at measuring the extent of dissimilarity that anonymization introduced on
temporal information, with a capturing the different emphasis on the rank changes. It is
a measure very general in its scope as it encompasses different measures already quite
popular in the anonymization literature [5]. It makes also use of the fact that data
anonymization methods all boil down to applying permutation patterns, which greatly
simplifies evaluation [7]. When using current methods, protection against disclosure
risk and information loss occur at the intersection of two features: the appropriateness
and the parametrization of the method selected, and the distributional properties of the
data to be anonymized. But, when data anonymization is viewed as permutation, then
only the alteration of ranks matters. This is why Proposition 2 inherits the universal
properties of similar measures of disclosure risk and information loss developed in the
context of cross-sectional data [7], by making abstraction of the interplay between the
distributional features of the data and the analytics of the methods. As a result, it can in
fact by applied to any kind of longitudinal data and for the ex-post evaluation of any
anonymization methods applied on any attribute followed over time.

4 Experimental Investigation

The objective of this section is to illustrate the use and effectiveness of the universal
measures of disclosure risk and information loss developed above. The experimental
data set used is one attribute of the Census data set, observed over 1080 individuals.
This data set has been used many times in the literature to evaluate the properties of
anonymization techniques in terms of disclosure risk and information loss [1].

The experiment is the following, assuming that the attribute from the original data
is considered observed in period t:

i. Time scenario 1: Given that in period t the attribute is closely distributed as a
normal law, we randomly generated the attribute for t + 1 from a normal law with
the same standard error than in t but with a mean of 2% more, assuming that
overall the attribute’s value has increased.

ii. Time scenario 2: We randomly generated some growth rates for each individual,
constrained between −20% and 20%.

iii. Anonymization methods: for each time scenario, the attribute in t has been
anonymized using additive noise with a standard deviation equal to 50% of the
standard error of the original values in t. For the attribute in t + 1, we considered
two versions: noise addition with half of the standard error in t + 1 or the same
standard error than in t + 1.
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iv. We then computed rT ;A;j;i, the values in the vector of differences between the rank
shifting vectors derived from Pj;tþ 1QT ;jP0

j;t and QT ;j, for each time scenario and
anonymization procedures.

v. Finally, from these values we computed J að Þ for a quasi-continuum of a
parameters, that is by increments of 0.01. The results are displayed directly under
the form of curves with the a parameters on the x-axis and the value of J að Þ on the
y-axis.

In this experiment, the purpose of having two time scenario aims at setting different
longitudinal data configurations. In the first, the movements of individuals between t
and t + 1 are of larger magnitudes in terms of rank changes, while it is the reverse in
the second. This can be seen by the in Fig. 1, which are the curves derived from
applying power means under the same range of a to abs rT ;j

� �
, i.e. the absolute values of

the rank shifting vector derived from QT ;j. These curves show how time has moved
individuals between t and t + 1 and are a display of the essential time information
contained in the longitudinal data, following the backward mapping procedure. In fact,
for both curves a large chunk of individuals kept the same ranks between t and t + 1, as
both curves flat out at zero for a around −0.5. However, in the first time scenario the
average level of rank changes (i.e. for a = 1) is higher than for the second time
scenario. When the focus is made on large rank changes (i.e. for a > 1), scenario 1 also
shows far greater magnitudes of rank changes.

The effect of anonymization on longitudinal information can be seen in Figs. 2 and
3. The curves displayed are the outcomes of anonymization on both disclosure risk and
information4. Indeed, individual trajectories through the attribute space (that can
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Fig. 1. Temporal information: time rank changes

4 To avoid confusion, it must be noted that despite similar profiles Fig. 1 and Figs. 2 and 3 cannot
directly be compared. In particular, the individuals with no time rank change in Fig. 1 are not
necessarily the same than in Figs. 2 and 3: in the latter, individuals contributing to the flat portion of
the curves at zero may have moved through time, but anonymization in t and t + 1 in fact didn’t alter
their moves.
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overall be appraised by a permutation matrix), represent the essential source of
information brought by longitudinal data, but are also a specific source of disclosure
risk. Thus, a curve close to the x-axis means that anonymization didn’t alter time rank
changes: disclosure risk is high but information loss is low. Conversely, a curve far
above the x-axis means that time rank changes have been substantially distorted:
disclosure risk is low but information loss is high.

One alternative way to consider this is viewing Figs. 2 and 3 as two panels taking
a = 1 as a dividing line: on the left one is looking at disclosure risk first (by focusing
on measures according relatively more weight to less altered time rank changes but thus
with less information loss), while on the right one is looking at information first (by
focusing on measures according relatively more weight to more altered time rank
changes but thus with less risk of disclosure).
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Fig. 2. Disclosure risk and information loss: time scenario 1

0

50

100

150

200

250

300

350

400

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

Similar noise addition in t and t+1 Dissimilar noise addition in t and t+1

Fig. 3. Disclosure risk and information loss: time scenario 2
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It appears that anonymization, when performed in a similar way between t and
t + 1, appears to lead to less information loss and low protection against disclosure
risk. This a rather intuitive finding. When the attribute is anonymized with noise
addition set as half of the standard error of the original data in t and t + 1, the resulting
curves are consistently lower than when the attribute in t + 1 has been anonymized
with the same standard error (Figs. 2 and 3). Thus, it is clear that the dissimilarity in
anonymization methods or parametrization through time will lead to better protection
(but more information loss) of longitudinal data. However, and whatever the dissim-
ilarity in methods, a large chunk of individuals is left with their time rank changes
unmodified: across time scenario and anonymization methods, all curves are beating
flat when crossing the geometric mean (i.e. for a = 0) and below.

Finally, the dissimilarity in anonymization methods delivers the same outcomes
whatever the time scenario considered. In Fig. 2, time rank changes are altered in close
ways whether half or the same standard error of the original data is used to generate
noise in t + 1. This is also the case in Fig. 3, albeit the differences are larger for the
second time scenario when one is putting relatively more weight to largest disruption in
time rank changes. We believe this issue deserves further scrutiny.

5 Conclusions and Future Work

The objective of this paper was to investigate longitudinal data anonymization. We first
presented a backward mapping procedure that allows expressing any kind of attribute
observed in t + 1 as a function of its values in t, i.e. by considering time as an
anonymization procedure. Obviously, this procedure has nothing to do with
anonymization per se but allows viewing the supplementary information contained in
longitudinal data, in particular compared to cross-sectional data, mainly as a permu-
tation matrix. Thus, given the recently established insights of the permutation-based
paradigm in data anonymization, which describes the outcomes of any anonymization
methods performed on any type of data as permutation, the backward mapping pro-
cedure appears to analytically align the specificities of longitudinal data with the
overarching tool of data anonymization.

From this general view on longitudinal data, we then characterized the effect of
anonymization on temporal information: anonymization of an attribute over two
periods always appears to encase temporal information, leading to a specific alteration
of time rank changes. This alteration can be then evaluated using a class of universal
disclosure risk and information loss, two outcomes that are tightly linked in longitu-
dinal data. This paper established such measures using a power-mean based
aggregative structure, as recently proposed in the case of cross-sectional data, and
provided some illustrations.

Meant to be very general in its scope, we hope that this framework for longitudinal
data anonymization will allow to foster a research question that has so far been
overlooked in the statistical disclosure control literature. As additional future work, we
plan to: (i) extend this framework to more than two time periods through a general-
ization of the backward mapping procedure and of the measures of disclosure risk and
information loss proposed; (ii) enlarge the scope of the experimental work, notably by
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using longitudinal data and testing a variety of anonymization methods at different time
periods beyond the noise-based ones considered in this paper; (iii) provide a deeper
assessment of the notion of disclosure risk in longitudinal data anonymization, and in
particular how disclosure risk from time-variant attributes relates and combines with
disclosure risk steaming from time-invariant attributes, as generally longitudinal data
sets contain these both kind of attributes.
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Abstract. Data privacy is an issue of increasing importance for big data
mining, especially for micro-level data. A popular approach to protecting
the such is perturbation. Therefore, techniques used to recover the sta-
tistical information of the original data from the perturbed data become
indispensable in data mining.

This paper reviews and exams the existing techniques for estimat-
ing (alternatively, reconstructing) the density function of the original
data based on the data perturbed using the additive/multiplicative noise
method. Our studies show that the techniques developed for noise-added
data cannot replace the techniques for noise-multiplied data, though the
two types of masked data could be mutually converted through data
transformation. This conclusion might attract data providers’ attention.

Keywords: Confidential data · Masked data
Multiplicative noise method · Additive noise method

1 Introduction

Data privacy seeks to simultaneously achieve two goals: useful statistical infer-
ence for micro-level data about the individuals in the population of interest,
while protecting the micro-data themselves from disclosure. Stochastically per-
turbing the microdata achieves the latter, but requires techniques that can take
this perturbation into account.

This study considers two types of data masking schemes: additive and mul-
tiplicative. We define them here. Let X be a univariate continuous sensitive
random variable and the original data {xi}n

i=1 are independent realisations of
X. The noise random variable C is independent of X, used to protect the val-
ues of X through data masking schemes. The random variable C can work as
an additive noise or a multiplicative noise, depending on the data provider. We
assume that the density function of C and of the masked data are publicly
available.

c© Springer Nature Switzerland AG 2018
J. Domingo-Ferrer and F. Montes (Eds.): PSD 2018, LNCS 11126, pp. 231–246, 2018.
https://doi.org/10.1007/978-3-319-99771-1_16
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Noise-Added (Data) Masking Scheme. Simulate a sample {ci}n
i=1 from C

and add ci to xi, i = 1, . . . , n, respectively. The dataset {x∗
i = xi + ci}n

i=1 is
called the noise-added dataset of {xi}n

i=1. For x∗
i to be an unbiased estimator of

xi, i = 1, · · · , n, this scheme requires that E(C) = 0.

Noise-Multiplied (Data) Masking Scheme. Simulate a sample {ci}n
i=1 from

C and multiply xi by ci, i = 1, . . . , n, respectively. The dataset {x∗
i = xici}n

i=1 is
called the noise-multiplied dataset of {xi}n

i=1. For x∗
i to be an unbiased estimator

of xi, i = 1, . . . , n, this scheme requires that E(C) = 1. It usually also requires
that C is a positive random variable.

The probability density function of a continuous random variable X can
uniquely describe the statistical information of the random variable. Developing
methods for estimating1 the density function of X based on masked data is one
of the approaches for recovering the statistical information of the original data.

To our best knowledge, the four papers, [1–4], are the first to independently
introduce the four fundamental methods for estimating the density function of
the original data based on masked data, respectively. [5] introduced a computa-
tional algorithm and built an R package MaskDensity14 for implementing the
method of [4]. Later, [6] proposed another computational algorithm for improv-
ing MaskDensity14. [7] followed the technique of [1], and used an iterative app-
roach for estimating the joint density function of the original data based on
noise-added data. [8] developed a computational method for estimating the joint
density function of the original data based on noise-multiplied data by combining
the method of [4] and the Nataf [8, for example] method. Currently, the existing
techniques for estimating the joint density function are developed on the top of
the techniques of [1–4], respectively.

Protecting the original data by additive noise was introduced in the litera-
ture slightly earlier than by multiplicative noise [9–12]. The multiplicative noise
method could be an appropriate method for perturbing observations in the busi-
ness data as it offers uniform protection, in terms of the coefficient of variation
of the noise, to all values in the data set [10,13,14].

In this paper, we review the techniques of [1–4]. The techniques of [1,2] are
widely cited in the literature, developed for noise-added data. Bringing the data
providers’ attention in using these two methods, we point out some weakness of
the techniques in this paper and also point out that sometimes the method of [4]
can perform better.

The rest of the paper proceeds as follows. In Sect. 2, we briefly introduce
the existing techniques for estimating the density function of the original data
based on masked data. We use simulation studies to show the limitations of each
method. In Sect. 3, we apply the techniques to simulation data and compare
their performance. The conclusion is in Sect. 4.

1 Some literature uses the term reconstructing. We will use them interchangeably in
this paper.
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2 Reviewing Existing Techniques of Estimating Density
Function Based on Masked Data

2.1 Techniques Associated with Noise-Added Data

The AS2000 Approach. [1] proposed an iterative algorithm in the process
of reconstructing the density function of X based on noise-added data {x∗

i }.
Based on the Bayes’ theorem, for each x in the range of X,

EX∗
[
fX|X∗(x|X∗)

]
= EX∗

[
fC(X∗ − x)fX(x)

fX∗(X∗)

]
= fX(x), (1)

where fX|X∗ is the conditional density function of X given X∗ and the notation
“EX∗” denotes the expectation on the probability space of X∗.

The sample mean of a random variable is an unbiased estimator of the expec-
tation of the random variable. From (1), for each x in the range of X,

f̂X(x) =
1
n

n∑

i=1

fC(x∗
i − x)fX(x)
fX∗(x∗

i )
=

1
n

n∑

i=1

fC(x∗
i − x)fX(x)

∫ ∞
−∞ fC(x∗

i − z)fX(z)dz
(2)

is an unbiased estimator of fX(x). Given this fact, [1] conducted an approach
for reconstructing the density function of X based on noise-added data.

Noting that the unknown density function fX also appears on the right-hand-
side of (2), [1] suggested the following algorithm for estimating fX :

1. Initialise f0
X := Unif(a, b), for a and b plausible range of X.

2. Initialise j := 0.
3. f j+1

X (x) := 1
n

∑n
i=1

fC(x∗
i −x)fj

X(x)
∫ ∞

−∞ fC(x∗
i −z)fj

X(z)dz
.

4. j := j + 1.
5. Repeat from Step 3 to convergence.

[1] presented examples to demonstrate the algorithm proposed. In the exam-
ples of [1], the sequences of the functions {f j

X} were convergent, and the limits
were close to the density functions of the associated underlying original data.
But they did not formally prove whether the iterative process of the algorithm
proposed is always convergent. Define a mapping

H(g)(x) =
∫ ∞

−∞

[
fC(x∗ − x)g(x)

∫ ∞
−∞ fC(x∗ − z)g(z)dz

]

fX∗(x∗)dx∗, x ∈ R,

which maps a density function g from the density functions space G to a density
function H(g) in the same space. Equation (1) indicates that the density func-
tion fX is a fixed-point in the density function space G under the mapping H.
Density function fX is not necessarily a unique fixed-point under the mapping
H in general. The convergence of the iterative process is an open question for the
approach. This issue was not investigated in [1]. [2] commented the AS2000 App-
roach that the approach might not converge. Even if it converges, the sequence of
the reconstructed density functions does not necessarily converge to the density
function of the original data.
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Table 1. The probability distributions of the original data and the additive noise

Scenario PDF of X PDF of C SNR

I N(3, 5) Unif(−10, 10) 0.75

II Gamma(shape = 1.5, rate = 0.5) Unif(−10, 10) 0.18

III Gamma(shape = 1.5, rate = 0.5) N(0, 10) 0.06

Example 1. We implemented the AS2000 Approach in R and applied it to eight
sets of simulated data. Some of them have symmetrical distribution, and some of
them do not. The additive noise used to mask the data is uniformly distributed
or normally distributed, or mixture distributed. In the interest of space, we only
report three simulation studies. We list the information of the distributions of
the original data and the additive noises in the studies in Table 1 (SNR is a
measurement for disclosure risk, discussed in the KEtal2003 Approach later).

The size of each dataset is 1000. Denote by {ai}50i=1 the positions which divide
the interval [min{xj} − 2 s.d.(X),max{xj} + 2 s.d.(X)] into 49 equal length
subintervals. In the iterative process of the AS2000 Approach, the difference
between the currently reconstructed density function with the previous one are
evaluated through the differences of the two functions at positions {ai}50i=1. In
the R program we developed, we set the maximum number of iterations to 200.
The iteration process will be stopped if the number of iterations exceeds 200 or if∑50

i=0[f
j
X(ai)−f j+1

X (ai)]2/50 < 0.000001. The numbers of iterations of Scenario I
–III discussed in Table 1 are 7, 11 and 9, respectively. The plots of the sequences
of reconstructed density functions for each dataset are presented in Figs. 1.

The original data of Scenario I are symmetrically distributed. The data in
Scenarios II and III are the same, which are asymmetrically distributed. We
use two types of distribution of additive noise to mask the data of Scenarios II
and III, respectively. Our experience on the AS2000 Approach shows that if
the original data are symmetrically distributed, the output of the reconstructed
density function is more likely acceptable (see the output for Scenario I). It
might need caution for the reconstructed density function if the original data are
asymmetrically distributed (see the outputs for Scenarios II and III). Sometimes,
the reconstructed density function does not capture the character of the density
function of the original data. Our simulation studies also show that the variance
of the additive noise might have less impact on the estimated density function.
However, the distribution of the additive noise has a significant impact on the
estimated density function (see Scenarios II and III). In the algorithm of the
AS2000 Approach, using a uniform density function as the initial density function
in the iterative process might be inappropriate for some data.

The AA2001 Approach. [2] introduced an EM reconstruction algorithm
(the AA2001 Approach for short), for reconstructing the density function of the
original data based on noise-added data.
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Fig. 1. Solid line: the density function of X; dash line: the reconstructed density func-
tion given by the AS2000 Approach. The result of Scenario I is on the left panel. On
the right one, the reconstructed density function with a lower peak is the result of
Scenario III. The other is the result of Scenario II.

Assume that the density function fX is an analytic function. Then, fX can
be well approximated by a sequence of step functions {fX;θ;K}K=1,2,···, where

fX;θ;K(x) =
K∑

i=1

θiIΩi
(x), x ∈ R, θ = (θ1, · · · , θK) ∈ Θ. (3)

and Ω1, · · · , ΩK are mutually exclusive intervals, partitioning the range ΩX of X
into K intervals. Θ is a K-dimensional parameter space; IΩi

(x) = 1 if x ∈ Ωi and
0 otherwise; there is a restriction on θ = (θ1, · · · , θK) where

∑K
i=1 θim(Ωi) = 1

and m(Ωi) is the length of the interval Ωi. In theory, the larger the K is and
the finer the partition is, the closer the function fX;θ;K will be to the density
function fX . Once the value of K is decided, the issue of estimating fX becomes
the issue of estimating (θ1, · · · , θK). [2] introduced the EM method to estimate
(θ1, · · · , θK) based on the noise-added data {x∗

j}N
j=1. The EM reconstruction

algorithm of the AA2001 Approach consists of the following steps:

1. Initialise θ
(0)
i = 1/K, i = 1, 2, · · · ,K; k = 0.

2. Update θ as follows: for each i = 1, 2, · · · ,K, θ
(k+1)
i = ψi({x∗

j}N
j=1; θ

(k))/
(miN), and

ψi({x∗
j}N

j=1; θ
(k)) = θ

(k−1)
i

N∑

j=1

∫
(C∈x∗

j −Ωi)
fC(c)dc

fX∗;θ(k−1)(x∗
j )

where mi = m(Ωi); c ∈ x∗
j − Ωi if zi − c ∈ Ωi, and fX∗;θ(k−1)(x∗

j ) =
∑K

l=1 θ
(k−1)
l P (C ∈ x∗

j − Ωl).
3. k = k + 1.
4. If termination criterion not met, then return to Step 2.

The termination criterion for the algorithm is based on how much θ(k)

had changed since the last iteration. The sequence of estimates {θ(k) =
(θ(k)1 , · · · , θ

(k)
K )} is called the sequence of EM estimates.
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We implemented the AA2001 Approach in R. In our implementation, Ωis for
i = 2, . . . ,K − 1 have equal length, whereas the lengths of Ω1 and ΩK may be
different, because Ω1 and ΩK may need to include −∞ and ∞, respectively. The
iterative process is stopped if the number of iteration in the process is greater

than 1000 or
√∑K

i=1(θ
(k−1)
i − θ

(k)
i )2 < α, where α is the termination criterion.

Example 2. Simulate {xi}1000i=1 and {ci}1000i=1 from X = 2 + Gamma(shape =
2, scale = 0.2) and C = Unif(min = 3,max = 6), respectively, and obtain
two sets of data. We also study these two datasets in Example 5, in Sect. 3.

In this example, we take data {log xi + mean(log(C))} to be the origi-
nal data, a sample from X ′ = log(X) + mean(log(C)). We use the sample
{log(ci) − mean(log(C))} of the additive noise C ′ = log(C) − mean(log(C))
to mask the original data. Then, we apply the AA2001 Approach to the masked
data {log xi + log ci} = {[log xi + mean(log(C))] + [log ci − mean(log(C))]}. In
the AA2001 Approach, the values of K and α need to be decided beforehand.
We independently apply the approach to the same set of masked data by using
different combinations pair values of K and α, where K = 17, 18, 19, and 20, and
α = 0.001, 0.01 and 0.1. We only report the plot of the density function of the
original data and the plots of the reconstructed density function given by the
AA2001 Approach with K = 20 and α = 0.001 and 0.1 (Fig. 2). The iterations
in the estimating process are 1000 and 16 for α = 0.001 and 0.1, respectively.
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Fig. 2. The density function of the original data is in solid line. Reconstructed density
function is in step-line. On the left panel, K = 20 and α = 0.1. On the right panel,
K = 20 and α = 0.001.

Example 3. We apply the AA2001 Approach to the set of masked data of Sce-
nario III discussed in Example 1. We set Ω1 = (−∞,min{xi} − 2 s.d.(X))
and ΩK = (max{xi} + 2 s.d.(X),∞) in the AA2001 Approach. We con-
sider different combinations of K and α, where K = 10, 20, 30, 40, 50, 60 and
α = 0.0001, 0.001, 0.01, 0.1 in applying the AA2001 Approach. Here, we only
report the plots of the reconstructed density functions given by the AA2001
Approach when K = 60, α = 0.1 and 0.0001 (Fig. 3).
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Fig. 3. The density function of the original data is in solid line. Reconstructed density
function is in step-line. On the left panel, K = 60 and α = 0.1. On the right panel,
K = 60 and α = 0.0001.

In theory, once K and the intervals {Ωi}K
i=1 are determined, the ML estimate

θ̂ML of the θ = (θ1, · · · , θK) in (3) can be uniquely determined. [2] proved that
the sequence of EM estimates would converge to θ̂ML. [2] also claimed that, by
choosing K large enough, fX;θ;K can approximate fX with arbitrary precision.
Our experience shows that the declaration is not correct. In fact, the larger the K
is, the more parameters need to be estimated and the more sampling variation
affects the reconstructed density function. The reconstructed density function
is unlikely close to the density function of the original data if the termination
criterion α used in the approach is big. However, our simulation studies show
that sometimes using a smaller value of the termination criterion α in the app-
roach does not necessarily lead to an accurately estimated density function. We
demonstrate these evidence in Examples 2 and 3. In Example 2, when α is large,
the approach gives a more accurate density estimation. It becomes different in
Example 3. Our experience shows that, with an appropriate pairing of K and α,
the AA2001 Approach works well for symmetrically distributed data. However,
the approach might not work well for skewed data sometimes (See Examples 2
and 3).

The KEtal2003 Approach. [3] introduced the random matrix-based spectral
filtering technique for estimating the values of the original data based on noise-
added data (the KEtal2003 Approach for short). If the percentage of the values
of the original data which can be correctly estimated from the noise-added data
is high, the estimated density function of the original data can be reconstructed
by using these accurately predicted values of the original data.

One can conclude that, if the density function of a set of original data can be
successfully estimated by using the KEtal2003 Approach, it will mean that the
noise-added data do not protect the values of the original data well. From the
aspect of protecting data, the data provider should prevent the KEtal2003 App-
roach being successfully used in estimating the density function of the original
data.
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We do not give the detailed description of the KEtal2003 Approach here.
However, we are interested in one result reported by [3]. Their experiences on
the KEtal2003 Approach show that the estimations of the values of the original
data will become too erroneous if

SNR =
(Variance of Actual Data)
(Additive Noise Variance)

falls below 1. It means that SNR can be employed as one of the measurements
of the predictive disclosure risk for data masked by additive noise. Before letting
the noise-added data be available to the public, the data provider must make
sure the value of SNR � 1.

Experience shows that, if the density function of the original data is symmet-
ric, both the AS2000 Approach and the AA2001 Approach could be methods for
estimating the density function of the original data based on noise-added data.
One caution in using the AS2000 Approach is that the sequence of the recon-
structed density functions might not converge, and even if the sequence is con-
vergent, it might not converge to the actual density function of the original data.
Using the uniform distribution density function as an initial density function in
the AS2000 Approach might be not appropriate for some data. The difficulty in
using the AA2001 Approach is about the choice of the values of K and α. It is
a challenge to identify an appropriate pair (K,α) without the density function
the original data as the reference.

2.2 Techniques Associated with Noise-Multiplied Data

The L2014 Approach. [15] showed that, if X is bounded by [a, b], fX can be
well approximated by

fX,K(x) =
2

b − a

K∑

k=0

λkPk

(
2x − (a + b)

b − a

)
=

K∑

k=0

ak(x, a, b)μX(k)

if the upper order of moments K is appropriate. Where x ∈ the range of X,
μX(k) = E(Xk), Pk(x) is a Legendre polynomial of degree k and λk is function
of {μX(k − 2i)}Floor[k/2]

i=0 .
Data {ci}n′

i=1 is a sample of the multiplicative noise C, where n′ � n. This
sample is not the same one used to mask the original data {xi}n

i=1. Thus, the
values of {xi}n

i=1 cannot be obtained from {x∗
i }n

i=1 and {ci}n′
i=1 by dividing. [4]

introduced the sample-moment-based density approximate (the L2014 Approach
in short) for estimating the density function of the original data {xi}n

i=1 based on
noise-multiplied data {x∗

i }n
i=1. Under the L2014 Approach, the estimated density

function of X has the following expression

fX,K|{{x∗
i }n

1 ,{ci}n′
1 }(x) =

K∑

k=0

ak(x, a, b)
(X∗)k

Ck
, x ∈ R, (4)
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where (X∗)k =
∑n

i=1(x
∗
i )

k/n; Ck =
∑n′

i=1(ci)k/n′; a and b are min{xi} and
max{xi}, respectively; K is the optimal upper order of moments such that
fX,K|{{x∗

i }n
1 ,{ci}n′

1 } is the best estimated density function of the original data,
subject to the information of {x∗

i } and {ci}.
The L2014 Approach is a theoretical approach for estimating the density

function of the original data. To implement the approach in practice, without
the original density function as the reference, determining the value of K is a
critical issue. It is not the case that, the larger the value of K is, the closer the
function fX,K|{{x∗

i }n
1 ,{ci}n′

1 } to the original density function. Therefore, develop-
ing an algorithm for implementing the approach in practice is a challenge.

R package MaskDensity14. [5] introduced an algorithm for determining the
value of K in the L2014 Approach. They adopted the algorithm to an R package
MaskDensity14. For convenience, we refer this computational approach as the
MaskDensity14 Approach.

The algorithm for determining the value of K consists of the following steps:

1. Set an initial upper order of moment, K = 1 and a maximum upper order
of moment to be tested. The maximum upper order of moment set in
MaskDensity14 is 100.

2. Independently simulate a sample {ci}n
i=1 from C and obtain the smoothing

function fX,K|{x∗
i ,ci}n

i=1
.

3. Simulate a sample {x′
j}n

i=1 from fX,K|{x∗
i ,ci}n

i=1
.

4. Independently simulate a second sample {c′
j}n

i=1 from C. Mask {x′
j}n

j=1 by
using this new sample of noise and yield a new masked dataset {x′∗

j }n
j=1.

5. Sort {x′∗
j }n

j=1 and {x∗
i }n

i=1, respectively. Evaluate the correlation Cor(K)
between the two sorted datasets. Keep track of the optimum upper order of
moment such that Cor(Kopt) = maxk≤K Cor(k).

6. Update K to K+1 and return to (2) if K+1 ≤ 100. Stop when Cor(K) drops
below a threshold taken as Cor(K) < 1 − 10[1 − Cor(Kopt)] or K + 1 > 100.

7. Report Kopt as the optimum upper order of moment used.

Examples in [5], as well as our experience of using MaskDensity14, indicate
that the software performans well in practice, but can be further improved. We
note that Step 4 in the algorithm involves a sampling process. The randomness of
the sampling will cause the randomness of the estimated density function. There-
fore, repeatedly applying MaskDensity14 to the same set of noise-multiplied data
will yield different estimated density functions, though most of them are mimic
each other. [4] showed that fX,K|{x∗

i ,ci}n
i=1

(x) is an approximately unbiased esti-
mator of fX,K(x) for each x ∈ the range of X. If the randomness becomes an
issue, to reduce the impact of the randomness in estimating the density function,
it suggests that repeatedly apply MaskDensity14 to the same set masked data
and obtain a sequence of estimated density functions of the original data. Then,
use the functional mean of the sequence of estimated density functions as the
final estimated density function of the original data. The suggestion works well
in practice, but sometimes the process might be cumbersome.
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The B-M L2014 Approach. [6,16] proposed a different algorithm, the com-
putational Bayesian approach, for determining the optimal upper order moment
K in the L2014 Approach. We call the computational Bayesian approach for
implementing the L2014 Approach the Bayes-Moment L2014 Approach (the B-
M L2014 Approach for short).

We assume that the multiplicative noise C is a positive random variable and
bounded by the real numbers c0 and c1, where 0 < c0 < c1.

Adopt the notation in the L2014 Approach above. Denote

fX∗,K(x∗) =
∫ c1

c0

1
c
fC(c)fX,K(

x∗

c
)dc, x∗ ∈ the range of X∗, (5)

and

fX∗,K|{x∗
i ,c̃}n

1
(x∗) =

∫ c1

c0

1
c
fC(c)fX,K|{x∗

i ,c̃}n
1
(
x∗

c
)dc, (6)

where x∗ ∈ the range of X∗.
[4] proved and demonstrated that fX,K|{x∗

i ,c̃i} can be a good estimation of
fX subject to K is appropriate. From (5) and (6), it concludes that fX∗,K|{x∗

i ,c̃i}
can be a good estimation of fX∗ , subject to K is appropriate. The necessary
condition that fX,K|{x∗

i ,ci} is a good approximation of fX is that fX∗,K|{x∗
i ,c̃i} is

a good approximation of fX∗ . Based on this logic, [6] proposed a new algorithm
for determining the appropriate value K in the L2014 Approach. The algorithm
consists of the steps described below.

1. Set an initial upper order of moment, K = 1 and a maximum upper order of
moment to be tested. The maximum upper order of moment set is set by 100;

2. Decide NS , the number of positions in the interval [min{x∗
i },max{x∗

i }].
Denote positions as z0 = min{x∗

i } < z1 < · · · < zNS
< zNS+1 = max{x∗

i }
such that zi − zi−1 = �zi are all equal, i = 1, 2, · · · , (NS + 1).

3. Evaluate

S(K) =
NS+1∑

j=1

[
fX∗(zj) − fX∗,K|{x∗

i ,c̃i}n
1
(zj)

]2 �zj

at the positions {zj}NS+1
j=0 . Keep the track of the optimum upper order of

moment Kopt such that S(Kopt) = mink≤K S(k).
4. Update K to K +1 and return to (3) if K +1 ≤ 100. Stop when S(K) jumps

beyond a threshold taken as S(K) > 100 × S(Kopt) or K + 1 > 100. To save
the computational time, based on our experience, we use this criterion as a
threshold for determining the optimal value of K.

5. Report Kopt as the optimum upper order of moment used.

No randomisation process is involved in the process of determining the opti-
mum upper order of moment in the B-M L2014 Approach. The closeness of fX∗

and fX∗,K|{x∗
i ,c̃i} is evaluated at the positions {zj}NS+1

j=0 . The estimated density



Reviewing Methods for Estimating Density Function Based Masked Data 241

function yielded by the B-M L2014 Approach is unique, subject to the noise-
multiplied data, the distribution of the multiplicative noise, the number NS and
the threshold set in the algorithm. The larger the number NS is, the more costly
the approach will be.

Simulation Studies for the MaskDensity14 and the B-M L2014 App-
roach. In this subsection, we apply MaskDensity14 and the B-M L2014 App-
roach to real-life data. We use two ways to evaluate if a set of noise-multiplied
data can provide a reasonable level of protection on the set of the original data.
The first way is to visually check the scatter plot of the original data X against
the noise-multiplied data X∗ and to evaluate the correlation coefficient of the
original data and the noise-multiplied data. No visually observed function rela-
tionship between X and X∗ and having a lower value of correlation coefficient
between X and X∗ (for instance, the values <0.9) are the necessary condi-
tions to ensure that the noise-multiplied data X∗ provides a reasonable level
of protection on data X [17]. The second way is to check whether the value of
SNR = Var(log(X))/Var(log(C)) is much less than 12.

Example 4. The United States Census dataset [18] contains 54 numerical vari-
ables arising from the extraction process. In this example, we consider the vari-
able AFNLWGT. The number of observations of AFNLWGT is 1080. The
values of observations of AFNLWGT are very large. If the noise-multiplied
masking scheme is applied to AFNLWGT, the values of masked observations
will become too large to be analysed. Therefore, we consider log(AFNLWGT)
in this study. The smoothed density function of log(AFNLWGT) presents in
Fig. 4.
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Fig. 4. On the left panel, the plots of density function of log(AFNLWGT) (black
line) and its estimated density function (dash line)given by the B-M L2014 Approach.
On the right panel, the plots of density function of log(AFNLWGT) (black line) and
the estimated density functions given by MaskDensity14.

The distribution of log(AFNLWGT) is skewed to the left. Our experience
shows that a skewed multiplicative noise might provide more protection for data
2 See the discussion of the KEtal2003 Approach.
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with skewed distribution. In this example, we use the multiplicative noise with
Beta(6, 1) distribution to mask log(AFNLWGT)3.

The scatter plot (not presented in the paper) shows that overall the
observations of log(AFNLWGT) can be well protected by the noise-
multiplied data. This fact is also conformed by other two measure-
ments, the correlation coefficient 0.2727083 of the set of the observations
log(AFNLWGT) and its noise-multiplied data, and the value of SNR =
Var(log(AFNLWGT))/Var(log(Beta(6, 1))) = 0.08357918.

We applied the B-M L2014 Approach to the noise-multiplied data. The range
of the noise multiplied data is [3.462, 12.89]. For such short range, the NS used is
NS = 50. The plot of the estimated density function was presented in Fig. 4. We
also independently applied MaskDensity14 to the same set of noise-multiplied
data. The plots of the estimated density functions were also presented in Fig. 4.
As we expected, the outputs of MaskDensity14 are not stable, though most of
the plots of the estimated density functions are close to each other.

In the following study, we only focus on the estimated density function
given by the B-M L2014 Approach. We can see the estimated density func-
tion is not entirely close to the density function of log(AFNLWGT). We are
interested whether the estimated density function provides the data user with
the basic statistical information of log(AFNLWGT). We simulated a sample
of size 1000 from the estimated density function. The summary statistics of
log(AFNLWGT) and the simulation are reported in Table 2, respectively. The
outputs of the summary statistics are close to each other and indicate that the
B-M L2014 Approach can successfully retrieve the basic statistical information
of the original data from the masked data.

Table 2. The summary statistics of log(AFNLWGT) and its estimated density func-
tion.

Distribution Min 1st Qu Median Mean 3rd Qu Max

True 9.515 11.750 12.100 12.040 12.390 13.440

Estimated 9.577 11.690 12.140 12.070 12.510 13.150

In summary, the L2014 Approach gives a theoretical approach for estimat-
ing the density function of the original data based on noise-multiplied data.
MaskDensity14 and the B-M L2014 Approach are computational methods for
implementing the L2014 Approach.

To identify the the optimal upper order moment K, the B-M Approach
requires the process of evaluating the difference between fX∗,K|{x∗

i ,c̃} and fX∗ at
positions {zj}. The more the positions are used in the evaluation, the higher the

3 Other multiplicative noise distributions might be considered. Identifying a best mul-
tiplicative noise for masking the underlying data in terms of minimising the level of
values disclosure risk and minimising the original data utility loss subject for future
work.
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computational cost the process will be. Fortunately, it is not necessary to use
too many positions in the evaluation when the function fX∗ is not volatile. The
B-M L2014 Approach is more computationally costed than MaskDensity14, but
provides a stable inference outcome.

MaskDensity14 has its advantages. Running MaskDensity14 is less com-
putationally expensive. The data user can apply the MaskDensity14 to the
underlying masked data and quickly obtain preliminary information on the esti-
mated density function of the original data. If the randomness of the outputs of
MaskDensity14 is an issue, the B-M L2014 Approach is an alternative approach.
The data user can also use the output of the MaskDensity14 as a reference for
determining the number of positions of {zi} used in the B-M L2014 Approach.

3 Comparing Techniques for Noise-Multiplied Data and
the Techniques for Noise-Added Data

Statistical information of the original data can be recovered from the noise-
multiplied data in one of two ways. One way is to apply MaskDensity14 or the
B-M L2014 Approach to noise-multiplied data directly. Another is to apply the
AS2000 Approach or the AA2001 Approach to the log-transformation of the
data if it is well defined. It is of interest whether the first manner is better in
terms of retrieving more statistical information from the original data.

In this section, we use an example to demonstrate that MaskDensity14 and
the B-M L2014 Approach can sometimes outperform the AS2000 Approach and
the AA2001 Approach in retrieving the statistical information in the original
data. MaskDensity14 and the B-M L2014 Approach are the same technique but
with a different algorithm. Therefore, we only consider the B-M L2014 Approach
in this section.

Example 5. Consider the same {xi} and {ci} as that in Example 2. In this exam-
ple, we denote Dataorig = {xi} the original data and Datamult = {x∗

i } = {xici}
the noise-multiplied data of Dataorig. The correlation coefficient of X and
X∗ = XC is 0.451025. The plot of X vs. X∗ is presented in Fig. 5.
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Fig. 5. On the left panel, the plot X vs X∗, where X is masked by the noise-multiplied
data masking scheme. On the right panel, the plot log(X) vs log(X∗).
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The plot of X against X∗ and the value of the correlation coefficient indicate
that the original data are well protected by the multiplicative noise C at a
reasonable level. By taking the log-transformation on the noise-multiplied data,
we can obtain the type of noise-added data for the data log(Dataorig) of log(X).
The value of SNR = Var(log(X))/Var(log(C)) given by the type of noise-added
data is 0.2632817. It means that the values of the log(X) cannot be accurately
estimated by using the KEtal2003 Approach, so do the values of X. In addition,
the plot of log(Datamult) vs log(Dataorig) (Fig. 5) also shows that log(X) are also
well protected by the additive noise log(C).

When we apply the B-M L2014 Approach to the noise-multiplied data
Datamult, the number NS used is 50. Figure 6 gives the plot of the density func-
tion of X and the plot of the estimated density function provided by the B-M
L2014 Approach. The curve of the estimated density function mimics the curve
of the density function of the original data.
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Fig. 6. On left panel, the plots of the density function of X (in black line) and the
estimated density function (in dash line) given by the B-M L2014 Approach. On the
right panel, the plots of the density function of the X ′ (solid line) and the estimated
density function (dash line) given by the AS2000 Approach.

Recall that both the AS2000 Approach and the AA2001 Approach are
designed for noise-added data where the associate additive noise has mean 0.
To retrieve the statistical information of log(X) based noise-multiplied data
by using the AS2000 Approach or the AA2001 Approach, we introduce a
new variable X ′ = log(X) + mean(log(C)) and a new additive noise C ′ =
log(C) − mean(log(C)) (See Example 2). With this new defined additive noise,
we apply the AS2000 Approach or the AA2001 Approach to log(Datamult).
The statistical information of log(Dataorig) can be obtained from that of
log(Dataorig)+mean(log(C)) as mean(log(C)) is publicly available. The detailed
discussion on the application of the AA2001 Approach to the data is in Exam-
ple 2. Using K = 20 and the value of criterion α greater than 0.01, the AA2001
Approach cannot produce a reasonable reconstructed density function. Using
K = 20 and the α is around 0.1, the skewness of X ′ is captured by the recon-
structed density function. Choosing a correct pair (K,α) is an issue in the app-
roach. The estimated density function of X ′ given by the AS2000 Approach is
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presented in Fig. 6. Visually speaking, the reconstructed density function is not
a reasonable estimation of the density function of X ′.

Comparing the outputs of the estimated density functions given by three
approaches, respectively, the B-M L2014 Approach performs better.

4 Summary, Conclusion and Future Work

We have reviewed five existing approaches for estimating the density function of
the original data based on masked data. Among them, the KEtal2003 Approach
is not practical in terms of predictive disclosure risk. However, the concept of
SNR is useful for evaluating the disclosure of noise-added data and the noise-
multiplied data.

All of the algorithms, the AS2000, the AA2001, MaskDensity14, and the
B-M L2014 Approaches alike are useful for big data mining with confidentiality.
They give the public an opportunity to explore the statistical information of
confidential microdata without exposing confidential information. Our studies
show that the mathematical theories and computational algorithms used to sup-
port the algorithms are different and have different limitations. Even though this
paper gives an example where the B-M L2014 Approach can more successfully
estimate the density function of the original data than the AS2000 Approach
and the AA2001 Approach, none of the methods dominates the others.

All techniques reviewed here are designed for univariate numerical data.
Methods for estimating the mass function for categorical data and the joint
density function for multivariate data is an important direction for future work.
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Abstract. Perturbing sensitive data is one of the standard ways of
protecting confidential data. The multiplicative noise method is one
of these data perturbation methods and this method has attracted
researchers’ attention in the recent decade. However, values close to zero
in datasets cannot be well protected by using the multiplicative noise
method directly. This paper proposes a method for safeguarding the val-
ues close to zero through noise-multiplied shifted data. We demonstrate
that those values can be reasonably protected through noise-multiplied
data by following the approach proposed in this paper. This paper also
indicates that the density function of the original data can be reason-
ably reconstructed from the noise-multiplied shifted data by using the
software MaskDensity14 or MaskDensityBM.

Keywords: Confidential data · Masked data
Multiplicative noise method

1 Introduction

In order to make business microdata available to the public for data analysis,
whilst still preserving adequate data privacy, releasing anonymized data to the
public is commonly used in practice. In the recent decade, the multiplicative noise
method, one of the anonymizing data techniques, has attracted researchers’ atten-
tion [1–8]. More references can be found from review articles and books [9–11].

The multiplicative noise method offers uniform protection, in terms of the
coefficient of variance of noise, to all observations [2,12,13]. The method is
suitable for perturbing micro business data and economic modelling of income
data [2,13]. However, when the literature says the method offers uniform protec-
tion to all observations, obviously, zeros and values close to zero are not under
consideration. Zeros cannot be protected if the multiplicative noise is applied
to the zeros directly. Data collected from real-life activities commonly contain
zeros or values close to zero. Protecting those values without compromising too
much data utility becomes an issue for the multiplicative noise method.

c© Springer Nature Switzerland AG 2018
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This paper proposes the data-shifting approach for protecting zeros and val-
ues close to zero under the multiplicative noise method. We have described and
implemented this idea of applying the data-shifting approach with our research
in recent years [6,8,14]. However, we as well as other literature have not system-
atically presented any discussion on this issue. Therefore, we would like to raise
this issue in this paper.

Under the data-shifting approach, the sensitive micro data (including zeros)
are protected through the noise-multiplied shifted data. With the software devel-
oped recently for reconstructing the density function of the original data based
on noise-multiplied data, we demonstrate that the statistical information of the
original data can be retrieved from the noise-multiplied shifted data and an
appropriate balance between data protection and data utility can be achieved.

The rest of this paper is constructed as follows. We propose the data-shifting
approach in Sect. 2. In Sect. 2, we also introduce the commonly used measure-
ment of value disclosure risk for noise-multiplied data. In principle, any random
variable with any probability distribution can work as a multiplicative noise.
Our experience shows that applying multiplicative noise with mixture distribu-
tions have been more advantageous in protecting the original data. In Sect. 3, we
focus on the multiplicative noise with mixture uniform distributions. We discuss
how to identify a multiplicative noise from the family of mixture uniform distri-
butions by taking into account the commonly used measurements on disclosure
risk. In Sect. 4, we briefly introduce the techniques for retrieving the statistical
information of the original data from noise-multiplied shifted data. Using sim-
ulation studies, we demonstrate in Sect. 5 that the data-shifting approach can
be beneficial in protecting values close to zero and the data-shifting approach
does not significantly affect the output of retrieving the statistical information
of the original data from noise-multiplied shifted data. The last section gives a
summary of our paper.

2 Protecting Values Close to Zero and the Measurements
of Value Disclosure Risk

Denote X a univariate continuous sensitive random variable and {xi}ni=1 a set
of realisations of X. The random variable C, namely the multiplicative noise,
is used to protect the values of X through the multiplicative noise method. C
is independent of X. The noise-multiplied data of {xi} are generated in the
following way. Simulate a sample {ci}ni=1 from C and multiply xi by ci, i =
1, . . . , n, respectively. The dataset {x∗

i = xici}ni=1 is called the noise-multiplied
dataset of {xi}ni=1. To ensure x∗

i to be an unbiased estimator of xi, i = 1, . . . , n,
it requires that E(C) = 1. It usually also requires that C be a positive random
variable.

The values close to zero in {xi}ni=1 might be in the following two scenarios.

Case 1. All the values appear near one of the tails of the distribution of {xi}.
Case 2. All the values do not appear near the tails of the distribution of {xi}.
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We propose a data-shifting approach for protecting the values close to zero
in {xi} as follows.

Step 1. Construct a new data set {x̃i} from {xi} by shifting {xi} by a constant
a0, i.e. {x̃i} = {xi + a0}.
Step 2. Apply the multiplicative noise C to {x̃i}, instead of {xi}, and obtain
the noise-multiplied shifted data {x̃∗

i } of {xi}.

For Case 1, the values close to zero appear near one of the tails of the dis-
tribution of {xi}. The data provider can quickly identify a shifting parameter
a0 for the data-shifting approach such that all the data in the new dataset
{x̃i} = {xi + a0} are significantly different from zero. For Case 1, the absolute
value of a0 is less likely to be large. The issue of protecting the values close to
zero then becomes the issue of protecting the values significantly different from
zero.

The data-shifting approach can also be applied to Case 2, but more issues
need to be considered. Without loss of generality, we can assume that the values
of {xi} are bounded within a finite interval [−a, b], with a, b > 0. Thus, there is
a real number a0 > a such that the shifted data {xi+a0} contain no zeros. Since
the zeros of the dataset {xi} are not on or near the tails of the distribution of
{xi}, the shifting parameter a0 could be big if a is big. Protecting the values of
the original data is not the only consideration in the process of data perturbation.
The data provider also wishes the statistical information of the original data can
be retrieved from the masked data. Our experience shows that, for {xi} and
C with different probability distributions, the value of a0 will affect the level
of data protection in different ways. Data shifted by a big a0 might lead to a
certain level of data information loss after the multiplicative noise C masks the
shifted data. If in the dataset {xi}, there is a significant gap between the subset
with values significantly different from zero and the subset with values close to
zero, it is not necessary to shift all the values in {xi} by a0 > a. Therefore, the
way of deciding a shifting parameter is case depended. Generally speaking, it is
difficult to give a general regulation for determining the shifting parameter in
Case 2.

In this paper, we explore the impact of the variance of C and the value of
a0 on disclosure risk. In simulation studies, we only give examples where the
value of the shifting parameter is not extremely big. The study carried out in
this paper can be used as a reference for complex cases.

There is not a universal quantitative criterion for evaluating the value dis-
closure risk under the multiplicative noise method. Different contents of data
require different levels of protection on the values of the data. Furthermore, the
data provider usually does not know what external information is available for
intruders in attacking the underlying data. It is impossible to set a universal
quantitative criterion for evaluating the value disclosure risk. Therefore, in this
paper, we only consider the following commonly used measurements in assessing
the level of protection on the original data provided by the noise-multiplied data.

Without loss of generality, we always assume that E(C) = 1. Denote X∗ =
XC where X is a sensitive variable and protected by C through the multiplicative
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noise method. In this paper, we consider the following three measurements for
evaluating if a multiplicative noise C can provide reasonable level protection
to X.

Measurement 1. For a small value δ > 0, the noise C should ensure that

P

(∣∣∣∣X − X∗

X

∣∣∣∣ < δ

∣∣∣∣ X = x

)
= P (|C − 1| < δ)

cannot be too close to 1. The smaller the probability, the more protection the
noise C will provide to the original data (See [6,15]).
Measurement 2. To protect the value of the original data through X∗, we
require that

V ar(X − X∗)
V ar(X)

cannot be too close to 0. The larger the ratio is, the more protection X∗ will
provide to X ([10,16–18]).
Measurement 3. The multiplicative noise C needs to be such as to ensure that
the correlation coefficient of X and X∗ is less than 0.9. The details discussion
see [19]. The plot {xi} vs. {x∗

i } can visually show whether the linear correlation
between X and X∗ is significant.

There is no standard to evaluate how small the probability in Measurement
1. should be. However, if C is mixture distributed as shown in Sect. 4, the prob-
ability defined in Measurement 1 can be equal to zero. There is no standard
to evaluate how large the ratio in Measurement 2 should be. There is also no
standard to assess how small the cor(X,X∗) in Measurement 3 should be. In
one word, there are no quantitative standards in practice for the criteria above.
The data provider needs to combine the information of the measurements and
the nature of the underlying data to make his own decision. In this paper, for
Measurement 1, we let δ = 0.05 and we require

P

(∣∣∣∣X − X∗

X

∣∣∣∣ < δ

∣∣∣∣ X = x

)
= P (|C − 1| < δ) = 0.

For Measurement 3, we require cor(X,X∗) < 0.8. We will show Measurement 3
and Measurement 2 are related. Thereby, once the standard for Measurement 3
is given, the standard for Measurement 2 will be determined.

Apparently, choosing a multiplicative noise for an underlying dataset also
needs to be done in conjunction with the issue of utility loss control. However,
we only focus on the value disclosure risk in this section.

Denote X̃ = X + a and X̃∗ = X̃C = (X + a)C. We study the impact of
the shifting parameter a and the variance of C on disclosure risk based on the
measurements described above.

Since

P

(∣∣∣∣∣
X̃ − X̃C

X̃

∣∣∣∣∣ < δ

∣∣∣∣∣ X̃ = x̃

)
= P (|C − 1| < δ),
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the shifting parameter gives no impact on the probability defined in Measurement
1. The measurement is only related to the distribution of C. To ensure the
probability is as small as possible, the multiplicative noise C should not have
mass within the interval [1 − δ, 1 + δ].

In Measurement 2,

V ar(X̃ − X̃∗) = V ar[X̃(1 − C)] = E[X̃2(C − 1)2] − [E(X̃)]2[E(1 − C)]2

= V ar(C){V ar(X) + [E(X) + a]2}.

Therefore,

V ar(X̃ − X̃∗)
V ar(X̃)

=
V ar(C){V ar(X) + [E(X) + a]2}

V ar(X)

= V ar(C)
(

1 +
[E(X) + a]2

V ar(X)

)
. (1)

Equation (1) gives the ratio of the variance of the difference between the
original variable and its masked variable to the variance of the original variable.
The larger the ratio is, the better the average level of protection the original data
will receive. The ratio is an increasing function of V ar(C) and a. The larger the
values of V ar(C) and a are, the more the noise is added to the original data.
Logically, to control information loss, the values of V ar(C) and a cannot be
unlimitedly increased.

By noting that

Cov(X̃, X̃∗) = E(X̃X̃∗) − E(X̃)E(X̃∗)
= E[(X + a)2]E(C) − [E(X + a)]2(EC)2 = V ar(X + a) = V ar(X)

and

V ar(X̃∗) = E[(X + a)2]V ar(C) + V ar(X + a) = E[(X + a)2]V ar(C) + V ar(X),

the correlation coefficient of X̃ and X̃∗ can be calculated as follows

ρ(X̃, X̃∗) = Cov(X̃,X̃∗)√
V ar(X̃)V ar(X̃∗)

= V ar(X)√
V ar(X)[E[(X+a)2]V ar(C)+V ar(X)]

= 1√
1+V ar(C)

E[(X+a)2]
V ar(X)

= 1√
1+

V ar(X̃−X̃∗)
V ar(X̃)

.

(2)

The left-hand-side of (2) is the output of Measurement 3 and the denominator
of the right-hand-side of (2) is related to the output of Measurement 2. It turns
out that Measurement 2 and Measurement 3 are related. [19] empirically showed
that the level of the value disclosure risk is unacceptable if ρ(X̃, X̃∗) ≥ 0.9. It is
therefore equivalent to claim that it is unacceptable if V ar(X̃−X̃∗)

V ar(X̃)
< (1/0.9)2 −

1 = 0.2345679.
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3 Mixture Uniformly Distributed Multiplicative Noise

Any multiplicative noise C with mean equal to 1 and no mass in the interval
[1 − δ, 1 + δ] can ensure that the probability in Measurement 1 is 0. However,
to ensure that the level of disclosure risk, evaluated by Measurement 2 and
Measurement 3 are acceptable, the data provider needs to search for an appro-
priate multiplicative noise from a wide range of random variables space through
a tedious testing process. Our experience shows that a multiplicative noise with
probability distribution from the family of mixture uniform distributions is more
likely to be an appropriate multiplicative noise in practice. To simplify the dis-
cussion in this paper, we restrict the probability distribution of C to the family
of mixture uniform distributions,

fC(.; b1, b2, b01, b02, p) = pUnif(1−b1, 1−b01)+(1−p)Unif(1+b02, 1+b2) (3)

where 0 < p < 1, δ ≤ b01, b02 < 1, both b1 and b2 are positive, and b1 < 1. To
make sure E(C) = 1, the values of the parameters b1, b2, b01, b02, p cannot be
independently determined.

To further simplify the study in this paper, we only consider the following
scenario where b01 = b02, p = 0.5 and b1 = b2, i.e.

fC(.; b1, b2, b01, b02, p) = 0.5Unif(1 − b1, 1 − b01) + 0.5Unif(1 + b01, 1 + b1). (4)

Regarding the level of protection of the original data and the level of control
of the loss of the utility of the original data, the shifting parameter a and V ar(C)
play essential roles in the multiplicative noise method. When ρ(X̃, X̃∗) is fixed,
a and V ar(C) cannot be independently chosen. We first derive ρ(X̃, X̃∗) and
V ar(C) in terms of the shifting parameter a.

From (2), we have

ρ = ρ(X̃, X̃∗) =
1√

1 + V ar(C)E[(X+a)2]
V ar(X)

therefore,

1
ρ2

= 1 + V ar(C)
E(X2) + 2aE(X) + a2

V ar(X)

V ar(C) =
1/ρ2 − 1

1 + [E(X)+a]2

V ar(X)

. (5)

For the multiplicative noise C, we have E(C) = 1 and

V ar(C) = E(C2) − [E(C)]2 = 0.5E(U2
1 ) + 0.5E(U2

2 ) − 1
= 0.5[V ar(U1) + (EU1)2 + V ar(U2) + (EU2)2] − 1

= 1
3 (b21 + b1b01 + b201)

(6)



Protecting Values Close to Zero 253

If we choose b01 = 0.05 or slightly greater than 0.05, say 0.055, the multiplicative
noise C will ensure the probability in Measurement 1, P (|C − 1| < 0.05) = 0.
From (6), we can use the value V ar(C) to determine the value of b1, i.e.

b1 =
{

−b01 +
√

b201 − 4[b201 − 3V ar(C)]
}

/2,

as b1 needs to be positive. Thus, once the value V ar(C) is determined, the
distribution of C is determined.

The values of E(X) and V ar(X) are determined by the underlying original
data, while the data provider determines the value of ρ. Given E(X), V ar(X)
and ρ, Eq. (5) shows the relationship between V ar(C) and a. Based on the noise-
multiplied data only, [19] proved that the data user could establish a linear
regression model for modeling the relationship between the values of the original
data and the values of the masked data. Given the value of the masked data,
the data user can use the model to predict the value of the original data. [19]
showed that the higher the value of ρ is, the more accurate the prediction will
be. Therefore, the data provider needs to keep the value of ρ as low as possible.
Our experience shows that ρ should be under 0.9 [19].

Thereby, we can follow the steps below to identify an appropriate multiplica-
tive noise C for the underlying data {xi}:

(1) Identify a real number a0 such that there are no zeros in the set of shifted
data {xi + a0}.

(2) Given E(X), V ar(X) and ρ, identify the value V ar(C) from (5).
(3) Decide b01 ≥ 0.05, and obtain b1 from (6).

Then, a probability distribution of C can be identified from the distribution
family (4).

4 Retrieving the Statistical Information from
Noise-Multiplied Shifted Data

Once the set of the noise-multiplied shifted data {x̃∗
i = (xi + a0)ci} is formed,

the remaining issue is about retrieving the statistical information of {xi} from
the data {x̃∗

i = (xi + a0)ci}. The discussion on evaluating utility preservation or
utility loss can be found from the literature, [2,20–22] and references therein.

Suggested by the literature, one manner used to evaluate the utility of the
original data, retrieved from the masked data is to check whether the moments of
the original data can either be preserved or can be accurately estimated based on
the masked data. People pay more attention to the k-moments in the evaluation,
k ≤ 4. The relationship between the moments of X and the moments of X̃ =
X + a0 can be derived as follows:

E(X) = E(X̃) − a0

E(Xk) = E(X̃k) −
k−1∑
i=0

(
k
i

)
ak−i
0 E(Xi)
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k = 1, 2, · · · . If the shifting parameter a0 and the moments information of the
multiplicative noise C are publicly available, the kth moment of X̃ can be eval-
uated as follows

E(X̃k) =
E[(X̃∗)k]
E(Ck)

,

through the moments of X̃∗ and the moments of C, so is the kth moment of
X, k = 1, 2, · · · . Theoretically, the processes of data shifting and data masking
would not cause loss to the information of the moments of the original data.

Consequently, replacing the theoretical value of the moments with the asso-
ciated sample moments, the moments of the original data can be reasonably
estimated if the sample size of the data is big. Therefore, retrieving the informa-
tion of the moments of the original data from the noise-multiplied shifted data
is feasible.

Another method, the sample-moment-based density approximant [8], can be
beneficial in retrieving the statistical information of the original data. The tech-
nique is employed for reconstructing the density function of the original data
based noise-multiplied data. The summary statistics of the original data can be
estimated through the summary statistics of the sample drawn from the recon-
structed density function. Two software MaskDensity14 and MaskDensityBM1

are developed for implementing the sample-moment-based density approxi-
mant [23–25]. Both softwares have the same power in implementing the method
of the sample-moment-based density approximant. The inference results pro-
duced by MaskDensityBM are more stable. For details see [24,25].

In the next section, we use MaskDensityBM to retrieve the statistical infor-
mation of the original data based on noise-multiplied shifted data. The process
of reconstructing the density function of the original data consists of two steps.
(i) Apply MaskDensityBM to the noise-multiplied shifted data and obtain the
reconstructed density function f̂X̃ for {x̃i} = {xi + a0}. (ii) Shift f̂X̃ by a0 and
obtaining the reconstructed density function f̂X . We evaluate the level of utility
loss by visually comparing the actual density function of the original data and
its reconstructed density function. Also, we evaluate the level of utility loss by
comparing the absolute difference of the summary statistics of the sample from
the reconstructed density function with the summary statistics of the original
data.

From [8], the density function of X̃ can be reasonably approached by the
sample-moment-based density approximant fX̃,K|{x̃∗

i },{c′
i}, subject to the infor-

mation of {x̃∗
i }, {c′

i} and K, where {x̃∗
i } is the noise-multiplied data of {x̃i}; {c′

i}
is a sample from the multiplicative noise C and {c′

i} is different from the sample
which was used to mask {x̃i}; and K is the optimal upper order of moments
used in the sample-moment-based density approximant. Identifying the value of
K without using the information of the original data directly is a challenge.

1 Software MaskDensityBM is available on request.
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For reading convenience, we briefly introduce the logic of the algorithm used
in MaskDensityBM in determining the K and the computational treatment
adopted in the software.

Assume that the multiplicative noise C is a positive random variable and
bounded by real numbers c00 and c01, where 0 < c00 < c01. Based on the Bayes’
theorem,

fX̃∗(x̃∗) =
∫ c01

c00

1
c
fC(c)fX̃(

x̃∗

c
)dc x̃∗ ∈ the range of X̃∗ (7)

Denote

fX̃∗,K|{x̃∗
i },{c′

i}(x
∗) =

∫ c01

c00

1
c
fC(c)fX̃,K|{x∗

i },{c′
i}(

x∗

c
)dc

≈
NC∑
j=0

1
cj

fC(cj)fX̃,K|{x∗
i },{c′

i}(
x∗

cj
)�cj (8)

where c0 = c00 and cNC = c01. From (7) and (8), we can conclude that the
necessary condition that fX̃,K|{x∗

i },{c′
i} is a good approximation of fX̃ is that

fX̃∗,K|{x̃∗
i },{c′

i} is a good approximation of fX̃∗ . Therefore, the optimal upper
order K should be the K such that

S(K) =
NS+1∑
j=1

[
fX̃∗(zj) − fX̃∗,K|{x̃∗

i },{c′
i}(zj)

]2
�zj

takes a small value, where z0 = min{x̃∗
i } < z1 < · · · < zNS

< zNS+1 = max{x̃∗
i }.

The details of the algorithm used in MaskDensityBM can be found from [24,25].
Therefore, applying MaskDensityBM to the noise-multiplied shifted data, the

data user needs to decide two integers Ns and NC for the evaluation process.
In the simulation studies of next section, we set Ns = 50 and NC = 100.

5 Simulation Studies

In this section, we use two examples to show the application of the data-shifting
method in protecting the values of the original data and display the fact that
the statistical information of the original data can still be reasonably retrieved
from the masked shifted data.

Example 1. The original data is a sample {xi}1000i=1 drawn from N(0, 2). The
multiplicative noise C has density function

fC = 0.5Unif(1 − b1, 0.95) + 0.5Unif(1.05, 1 + b1).

We need to identify a multiplicative noise C with an appropriate b1 in terms
of what the level of values protection and the amount of utility loss are under
control. Figure 1 gives the plot of V ar(C) against a for each ρ fixed. Those pairs
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Fig. 1. The plot of V ar(C) vs a. The lower curve corresponding to ρ = 0.9. The
subsequent curves move up corresponding to the ρ with increment by 0.1.

(a, V ar(C)), which lead to ρ less than 0.9, can be visually identified from the
plot. The larger the value V ar(C) is, the more perturbation the multiplicative
noise C will add to the original data. Regarding the protection of the values of
the original data, we should not consider a noise with small variance.

Table 1 gives the summary statistics of {xi}. Assume that all the values close
to zero are sensitive. Given min{xi} = −3.974, we shift all the original data by
a0 = 5. Thus, the new data dataset {xi + 5} does not contain any zeros. If we
require that ρ = 0.5, it means we wish to control the correlation coefficient of
the original shifted data and their masked data is at most 0.5. With the decision
of a0 = 5, ρ = 0.5 and b01 = 0.055, we use (5) to obtain V ar(C) = 0.2189947.
This is a theoretical value. Then, we use (6) to determine b1, which is 0.7876061.
Thus, the distribution of the multiplicative noise C is determined.

We, then simulate a sample {ci}1000i=1 from the multiplicative noise C and use
this sample to mask the shifted original data {xi + a0}. The noise-multiplied
shifted data can be generated by MaskDensityBM. The software produces a
set of masked data for {xi + a0}, whilst creating a binary file containing the
information of the multiplicative noise for data users (details see [23]).

Figure 2 shows the plot of the original data vs. their masked data. Compar-
ing the plot of the original data vs. the noise-multiplied data and the plot of
the original data vs. the noise-multiplied shifted data, we find that the data-
shifting approach does improve the level of protection on the values. Under the
condition that the data provider accepted ρ = 0.5, this multiplicative noise C
meets the requirement of Measurement 1–Measurement 3. The sample correla-
tion coefficient of {xi + 5, (xi + 5)ci} and the sample variance {ci} are 0.49774
and 0.2189947, respectively. They are not the same as their theoretical values,
but close enough.
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So far we only check the level of value disclosure risk. We also need to evaluate
utility loss. We can obtain the reconstructed density function of the original data
from the noise-multiplied shifted data by using MaskDensityBM. Then, assess
information loss by comparing the difference between the plot of the density
function of the original data and the plot of the constructed density function.

The plots of the density function of {xi} and reconstructed density function
are presented in Fig. 3. The reconstructed density function mimics the density
function of the original data. We also report the summary statistic of the original
data and the summary statistics of a sample simulated from the reconstructed
density function in Table 1. They are not the same in values but reasonably
close to each other. We also independently used C to mask the set of original
data 50 times and obtained 50 sets of noise-multiplied shifted data. Then, used
MaskDensityBM to obtain the estimated density functions from the sets of noise-
multiplied shifted data, respectively. Consequently, we obtained 50 outputs of
the summary statistics from the reconstructed density functions. Table 1 reports
the results across the 50 independent simulations. The result is impressive.
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Fig. 2. The left panel is the plot of {xi} vs {xici}, where V ar(C) = 0.22. The right
panel is the plot of {xi + a0} vs {(xi + a0)ci}, where a0 = 5 and V ar(C) = 0.22.

Example 2. The original data {xi}1000i=1 were simulated from the mixture
0.3Normal(2, 12) + 0.7Normal(6, 1.52).

The summary statistics of {xi} are listed in Table 2. The minimum value
of this sample is −0.6609. In this example, we shifted {xi} by a0 = 2 and the
multiplicative noise C has mixture uniform distributions with b01 = b02 = 0.055,
b1 = b2 = 0.5076463. The parameters of b1 and b2 are determined from (6)
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Fig. 3. The density function of the original data is in the long-dash line and the recon-
structed density function is in the short-dash line.

Table 1. The summary statistics of the original data and the summary statistics of
the sample simulated from the reconstructed density function

Data Min. 1st Qu. Median Mean 3rd Qu. Max.

X −3.97400 −0.88860 0.01302 0.02281 0.93990 4.58400

New X −3.438000 −0.992900 0.070510 0.003341 0.953900 3.997000

Mean (sd.) −3.671526
(0.2738277)

−0.9170799
(0.1189605)

0.03433718
(0.1097246)

0.05415493
(0.07476287)

1.007943
(0.09784875)

4.204396
(0.2562243)

by setting ρ = 0.7. The plot of {xi} vs {xici} is presented at the left panel
in Fig. 4, which clearly indicates that values of {xi} in the neighbourhood of
zero cannot be well protected by C. However, the shifted data are reasonably
protected through the multiplicative noise C (the right panel in Fig. 4).

We applied MaskDensityBM to the noise-multiplied shifted data. The recon-
structed density function of the original data is presented in Fig. 5, and it mim-
ics the density function of the original data. We simulated a sample, denoted
SimuX with the size of 1000 from the reconstructed density function. The sum-
mary statistics of SimuX is listed in Table 2, the values of the statistics are close
to those given by the original data, respectively.

Both Examples 1 and 2 demonstrate that we can identify a multiplicative
noise C and a shifting-parameter a0 for protecting values close to zero in the
original data by using the data-shifting approach. The existing techniques for
estimating the density function of the original data is beneficial in retrieving the
statistical information of the original data from their shifted masked data.
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Fig. 4. The left panel is the plot of {xi} vs {xici}. The right panel is the plot of
{xi + a0} vs {(xi + a0)ci}.
Table 2. The summary statistics of the original data and the summary statistics of
the sample simulated from the reconstructed density function.

Data Min. 1st Qu. Median Mean 3rd Qu. Max.

X −0.6609 2.9100 5.1380 4.7850 6.4890 10.0400

SimuX −0.5981 3.1910 5.2850 4.9010 6.5410 9.9540
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Fig. 5. The plots of the density function of the original data (in bold dash line) and
reconstructed density function of the original data (in thin dash line).
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6 Summary

Directly employing the multiplicative noise method to protect values close to
zero might not be efficient. This paper proposes a solution for protecting the
values close to zero under the scheme of the multiplicative noise, namely the
data-shifting method. The principle idea of the method is to generate noise-
multiplied shifted data and use the noise-multiplied shifted data to protect the
original data.

To allow data users to retrieve the statistical information of the original
data by using the method proposed in this paper, the shifting-parameter a0 and
the knowledge of the sample moments of the multiplicative noise C, need to be
available to the public. However, if C is selected by using the three measurements
addressed in Sect. 2, the level of identification/prediction disclosure risk can be
controlled, even if a0 and the information of the sample moments of C are
available to the public.

The two values, the variance of C and the shifting-parameter a0, have a
significant impact on the level of protection provided by the noise-multiplied
shifted data to the original data. The values cannot be independently determined
and are associated with ρ(X̃, X̃∗) (See (2)). To ensure the statistical information
of the original data can be reasonably retrieved from the noise-multiplied shifted
data, the value of ρ(X̃, X̃∗) cannot be set as small as we wish. Therefore, it needs
a balance between the level of value protection and utility loss control and the
balance can be achieved through choosing the appropriate values of the variance
of C and the shifting-parameter a0.

There is no general regulation for choosing the variance of C and the shifting-
parameter a0 in the data-shifting method. The probability distribution of the
original data and the distribution of C have an impact on the performance of the
variance of C and the shifting-parameter a0 in protecting the original data. To
simplify the study, we restrict the distributions of the multiplicative noise C to
the family of mixture uniform distributions in this paper. The mixture uniform
distributions involves four parameters (b1, b2, b01 and b02). There are at least two
degrees of freedom in determining these parameters in the data-shifting method.
We only work on a simple scenario where b1 = b2 and b01 = b02 = 0.055 in this
paper. The study carried out in this paper can be used as a reference for the
study of complex cases.

This paper demonstrates that the values close to zero in the original data can
be well protected by using the multiplicative noise method in conjunction with
the data-shifting approach. With the existing technique of reconstructing density
function, the statistical information of the original data could be reasonably
retrieved from noise-multiplied shifted data.

The utility loss for data analysis which involves more than one variable is a
significant issue. The discussion could be complicated. We do not address it in
this paper but will consider it in our future work.
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Abstract. This paper assesses the usefulness of a proposed multi-
plicative perturbation method by contrasting the statistical efficiency
achieved in point hypothesis testing of simple proportions with that of
the differentially private aggregated Laplace mechanism. This efficiency
is evaluated by obtaining an analytical expression that determines the
sample size required for protected data to retain a given significance level
and power.
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1 Introduction

Information sharing and data transparency is an essential component of mod-
ern day research. Especially within the area of health and medicine, clinical
trial transparency through clinical trial registries and public sharing of results
and information has become ever more prevalent. ClinicalTrials.gov is currently
the largest registry in the world and grants public access to information pro-
vided by more than 78,900 trials sponsored by government agencies and privacy
industries [26]. This proliferation of information, although likely to foster new
advances through collaboration of research, may lead to the trust and privacy of
participants being compromised. Individuals often only agree to actively partic-
ipate in trials and surveys after receiving assurances that the information they
provide will not be made available in a form in which their identity can be
ascertained [7,8,29]. Consequently, the recent demand for statistical protection
methodologies has considerably increased.

A range of data protection methods have been proposed and applied in prac-
tice [3,6,10,14,19,20,24,28,29] (and references therein). These methodologies
usually relate to the protection of all or part of the private data and involve
masking either the observations or statistics that are produced within the data
set. Applying conventional statistical analysis to protected data, information
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pertaining to individual observations of the data should be unobtainable, how-
ever general statistical inference must be possible and maintain a reasonable
level of accuracy. The balance between protection and utility is a decision ulti-
mately made by the data agency and the way in which this tradeoff is performed
is highly dependent on the data protection method implemented. Two types of
data protection methods are considered in this paper: the (ε-)differential pri-
vacy method by means of the aggregated Laplace mechanism [6,26] and the
multiplicative noise method i.e. applying a multiplicative perturbation to each
observation of the data [9,10,14].

Differential privacy refers to a privacy protection standard that ensures no
single observation is identifiable based on a response to any single query [6]. The
privacy preservation standard of differential privacy can be achieved through
varying statistical mechanisms [4,6,18,25,27] (and references therein). These
mechanisms are usually categorised as methods which aggregate data and release
a perturbed output or methods that alter individual observations and release pro-
tected micro data. The advantage of achieving protected micro data is that
it enables the data user to perform more extensive analysis than that envisaged
by the data issuer whereas releasing only aggregations of data, provides limita-
tions to the extent in which the data can be analysed. Within the differential
privacy framework for categorical variables, mechanisms which output micro
data include random swapping, randomised response and other post randomi-
sation probability mechanisms [23]. However, these methods are not commonly
used in practiced as the standard of privacy required is at too great a cost to
data utility. Perturbed aggregated output mechanisms include the Laplace noise
mechanism and the exponential noise mechanism [4,6,18,26].

The multiplicative noise method is a data masking scheme that is used for
data protection through observational perturbation and has attracted statisti-
cians’ attention in the recent decade. Protecting the value of the individual obser-
vation are necessary in many scenarios. For instance, in clinical decision making
and hypothesis testing, data needs to be collected from patients/volunteers who
participate in clinic trials. If the data collector is an untrusted third party, the
patients/volunteers may not willingly let the data collector access the true val-
ues of their information. Another example of the importance of protected micro
data can be found when considering a smart metering system, which as discussed
in [1], requires perturbation from the individual household smart meter reading
before the data is sent to the supplier for the data end user.

A description of the traditional multiplicative noise method is provided by
[10]. The definition of the multiplicative noise method applied in this paper is the
general notion of masking some Bernoulli distributed observation by multiplying
the observation by some independent random noise (see Sect. 3).

The noise multiplied micro data can be analysed in order to recover statisti-
cal information of various attributes [10,11] and can also be utilised in the estima-
tion of parameters in linear regression [9,14]. Currently, many non-conventional
statistical data analysis methods, based on noise multiplied data, have been
developed [9,11,13–15,19,22]. Through the use of noise multiplied micro data,
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data users have more opportunities to perform meaningful statistical inference
on the published information without the need to send various aggregated data
requests to the data agency, as may be the case with the Laplace noise mecha-
nism.

Differential privacy is a privacy model that offers a priori levels of privacy pro-
tection on the data (according to the ε parameter), whereas the privacy achieved
by the multiplicative noise is statistically evaluated a posteriori. Furthermore,
the multiplicative noise method belongs to an approach of statistical disclosure
control (SDC) related to analytical validity, whereas as discussed in [2], differ-
ential privacy focuses mainly on formal privacy guarantees.

The example of [26] applying the ε-differential privacy to statistical hypoth-
esis testing inspires our curiosity in comparing these two methods. This paper
investigates whether there are any advantages in applying the multiplicative
noise method to the same type of statistical problem concerned in [26].

Hypothesis testing is a valued statistical tool by which scientists and
researchers apply statistical evidence to test and support hypotheses. Typically,
this process involves determining whether or not there is sufficient evidence to
reject a null hypothesis. Whilst designing an experiment in order to conduct an
appropriate hypothesis test, it is critical to ensure the test performed achieves
statistical significance and sufficient statistical power. A considerable amount
of literature has been developed for determining the sample size required to
achieve the required significance level and statistical power when considering
unprotected data. However, these methods fail to properly account for the vari-
ation introduced into protected data that has in some way been perturbed or
masked. Furthermore, the sample size required of data protected by various pri-
vacy preservation techniques to maintain sufficient statistical significance and
power, also provides a metric by which comparison of the statistical efficiency of
these methods can be performed.

Considering only simple proportion data in a simple hypothesis test, this
paper assesses the extent to which required sample size is altered across the two
privacy protection techniques. Applying the concept and result derived by [26]
for the ε-differentially private aggregated Laplace mechanism (referred to in
this paper as the differential privacy method), to the multiplicative noise
masking scheme, further inference can then be made about the comparative effi-
ciencies of these methods. This paper acknowledges the differences in the inherit
nature of the privacy protection offered by these techniques and refers to the
limitations of each, whilst referencing protection measures that evaluate certain
aspects of protection strength. Ultimately, this study provides statisticians and
data agencies with advice and examples for informed assessment of the balance
between information loss, disclosure risk and the costs of data collection offered
by these techniques, given that a decision can be made about the preferred data
analysis practice.

This paper is constructed as follows. Section 2 briefly reviews the ε-differential
privacy method and gives the sample size adjustment under the ε-differential pri-
vacy method. The multiplicative noise method is introduced in Sect. 3. The pre-
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knowledge on the multiplicative noise data masking scheme is briefly described in
this section. The sample size adjustment based on noise multiplied data is derived
in Sect. 3. A study of comparison between the multiplicative noise method and
the ε-differential privacy method is presented in Sect. 3. The final section gives
the conclusion of this paper.

2 Sample Size Determination Under Differential Privacy
Framework: Classical Hypothesis Testing with a Single
Proportion

For reading convenience, we briefly introduce the formula of sample size deter-
mination under the differential privacy approach [26].

Let X be Bernoulli(p) distributed and consider the following hypothesis test:

Ho : p = po versus Ha : p = po + δ, δ > 0. (1)

Denote {x1, x2, · · · , xN} as a random sample of X, i.e. a set of original data.
The sample size N required to ensure the detection of a significant difference,
subject to a certain level of significance α and power 1−β of the hypothesis test
is given by:

No = (z1−α/2 + z1−β)2σ2/δ2. (2)

where σ2 = p̄(1 − p̄); p̄ = po + δ/2; z1−α/2 and z1−β are critical values from
the standard normal distribution, and the statistic p̂ = 1

N

∑N
i=1 xi is a sufficient

statistic of p (see [26]). That is, the necessary condition to ensure the efficiency
of the test is N ≥ N0.

If the observations {xi}N
i=1 are confidential, the data set cannot be issued to

the public. In some circumstances, the data agency might also feel uncomfortable
in releasing the value of p̂.

[26] suggested using the differentially private aggregated Laplace mechanism
to protect the original data. Under the differential privacy framework, the orig-
inal data is concealed from the data user. The value of p̂ is perturbed by adding
a Laplace noise L(

√
2/(εNp)) (i.e. an observation from the Laplace distribution

with mean 0 and standard deviation
√

2/(εNp)). Only the perturbed value is
issued to the public and hence the data user must apply the perturbed p̂ in the
hypothesis testing. The parameter ε > 0 in the added noise L(

√
2/(εNp)) is a

measure of the information leakage. The smaller the ε is, the more the noise will
be added to p̂. The Np > No is used to determine the sufficient size of the sample
required by the differential privacy approach. It will ensure that the hypothesis
test has the same level of efficiency produced by the sample {x1, · · · , xNo

} [26].
The size Np is determined as follows:

Np = NoK = No

(
1
2

+
1
2

√

1 +
8δ2

ε2(z1−α/2 + z1−β)2σ4

)

. (3)
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That is, the size of the sample should have at least Np if the original data is
going to be protected through the differential privacy approach with the same
level of statistical efficiency with respect to the hypothesis test (1).

3 The Multiplicative Noise Method and Sample Size
Determination

The multiplicative noise data masking scheme which requires a random noise
C to protect the confidential data set {x1, x2, · · · , xN}. The random noise C
is independent of X, with mean E(C) �= 0 and known variance V ar(C). The
protected data set is denoted as {x∗

1, x
∗
2, . . . , x

∗
N} where x∗

i = xici and c1, · · · , cN

is a random sample of C. The noise multiplied data (or masked data) can be
considered as a sample of X∗ = XC. The noise multiplied data set can then be
released to the public for external analysis as sensitive observations are obscured
by the random noise. It is not necessary to force E(C) = 1. If the values of E(C)
is released to the public or somehow available to be used in the analysis, using
C to mask X is equivalent to using C/E(C) to mask X. In this study, we always
force E(C) = 1.

It can be shown that, given X = x, X̂ = X∗/E(C) is an unbiased estimator
of x. The original data is protected through the noise multiplied data. The
probability distribution of the noise C has a direct impact on the level of the
protection. Lin and Wise [14] introduce a measurement R(δe) for evaluating the
level of data protection ([12] proposed a similar measurement.). The measure
R(δe) is defined as follows, for any x �= 0,

Pr

(∣
∣
∣
∣
∣

X̂ − X

X

∣
∣
∣
∣
∣
< δe|X = x

)

= FC(E(C)(1 + δe)) − FC(E(C)(1 − δe))

where FC(·) is the cumulative distribution function of C. The measurement
depicts the probability of relative difference between X and it’s corresponding
unbiased estimator X̂ less than δe. The probability given by a smaller value δe,
say 0.05 is of particular interest. Checking the correlation coefficient of X and
X∗ is also necessary [16]. These measurements enable us to determine which dis-
tributions of the multiplicative noise may offer better protection on the original
data and how the mean and variance of the noise variable affects the protection.

With an appropriate multiplicative noise C, the multiplicative noise data
masking scheme will provide a reasonable level protection on the original data.
However, the standard masking scheme described above will not provide value
protection for x = 0. The issue of protecting the values “0” will be considered
in next subsection.

3.1 Sample Size Determination Under the Multiplicative
Noise Framework: Classical Hypothesis Testing with Single
Proportion

Consider the sample x1, x2, . . . , xN , the values of the data given by N inde-
pendent subjects, and the same hypothesis test described in Sect. 2. Recall
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p̂ = x̄ = 1
N

∑N
i=1 xi is the estimator of μX = p. We consider the following

scenario where each subject is required to send noise-multiplied datum to a data
collector. In a general situation, firstly, the data collector sends the informa-
tion of the probability distribution of the multiplicative noise C to each subject.
After receiving the information of the probability distribution of C, each subject
independently simulates a value c from C and yields noise-multiplied value xc
to the data collector. However, for the x1, x2, . . . , xN considered in this paper,
the situation is slightly different. The observation xi, i = 1, · · · , N , takes values
“0” or “1”, and the multiplicative noise method does not protect “0”. Therefore,
for the type of data considered in this paper, the process of generating noise-
multiplied data need to be modified. Here is the suggestion for the modification.
Instead of only sending the information of the probability distribution of the
multiplicative noise C to each subjects, the data collector also needs to send
out a positive real number a. After received the information, each subject can
generate the noise-multiplied data as follows: x∗ = (x+a)c and send the masked
data to the data collector.

In this paper, we will consider the noise-multiplied data in the form x∗ =
(x + a)c, where a is a shift parameter and c a sample value from the underlying
multiplicative noise. We show how the sample size is determined when the noise-
multiplied data are in the format x∗ = (x + a)c. In Sect. 3.2.2, we use examples
to explain how to determine the shifting value a in terms of reducing the value
of disclosure risk.

A transformation of the random sample {x1, x2, · · · , xN} to {y1, y2, . . . , yN}
given by yi = xi + a for some fixed constant a > 0 is performed. Consequently
the hypothesis test can be expressed in terms of Y as:

H0 : μY = p0 + a vs Ha : μY = p0 + a + δ. (4)

It is now Y which is protected with the multiplicative noise method with
Y ∗ = CY . Using the central limit theorem, we know that as N gets larger,

Y ∗ − E(Y ∗)
√

V ar(Y ∗)/N
→ N(0, 1),

where Y ∗ =
∑N

i=1 y∗
i /N =

∑N
i=1(yici)/N . We use (Y ∗ − E(Y ∗))/

√
V ar(Y ∗)/N

as a test statistic for determining the significance and power of the above test.
Following the same argument used by [26] in deriving Np under the differential
privacy approach, we can determine the sample size Nm required for the noise
multiplied data such that the hypothesis testing based on the noise multiplied
data maintains the significance level α and power 1 − β. The size Nm can be
identified and solved from the following equation

E(C)(p0 + a) + z1−α/2σY ∗/
√

Nm = E(C)(p0 + a + δ) − z1−βσY ∗/
√

Nm (5)

where σ2
Y ∗ = V ar(Y ∗) = E(C2)V ar(Y ) + [E(Y )]2V ar(C). Following the same

argument in [26], the E(Y ) and V ar(Y ) in (5) are replaced by p̄+a and p̄(1− p̄),
where p̄ = p0 + δ/2. Hence,
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Nm =

{
V ar(C)

[
p̄2 + 2ap̄ + a2 + p̄(1 − p̄)

]
+ [E(C)]2p̄(1 − p̄)

}
(z1−α/2 + z1−β)2

[E(C)]2δ2

= No
V ar(C)(p̄ + 2ap̄ + a2) + [E(C)]2p̄(1 − p̄)

p̄(1 − p̄)[E(C)]2
> No. (6)

3.2 The Multiplicative Noise Method vs. The Differential Privacy
Method

The multiplicative noise method and the differential privacy method under con-
sideration are two different data protection approaches. The differential privacy
method discussed in this paper protects the original data by issuing perturbed
sufficient statistics or estimates whereas the multiplicative noise method releases
the masked data (micro data).

In this section, we investigate the multiplicative noise method vs. the differen-
tial privacy approach (proposed in [26]) as well as addressing necessary matters
pertaining to the effective use of the multiplicative noise method. This investiga-
tion is performed by considering four key aspects: (i) the necessary condition for
ensuring a smaller size of sample required for the hypothesis; (ii) determination
of the shift parameter a; (iii) the protection strategy for sensitive observations
and (iv) the protection level on individual entries of the original data set.

The Necessary Condition for Ensuring a Smaller Size of Sample
Required for the Hypothesis. The size of the sample required for effective
hypothesis testing has a direct impact on the cost and outcome of the research.
It is an area of great concern for the data agency in identifying an appropriate
multiplicative noise which maintains a consistent level statistical efficiency with
respect to hypothesis testing. In this subsection, it is shown that with appro-
priate restrictions on the variance of the multiplicative noise, greater efficiency
(smaller sample size required) can be obtained compared to that of the differen-
tially privacy approach.

Comparing (3) and (6), we obtain Nm < Np if the variance of the multiplica-
tive noise C meets the following condition

V ar(C) <
p̄(1 − p̄)[E(C)]2

p̄ + 2ap̄ + a2

(

−1 +
1
2

+
1
2

√

1 +
8δ2

ε2p̄2(1 − p̄)2(z1−α/2 + z1−β)2

)

=
p̄(1 − p̄)[E(C)]2

p̄ + 2ap̄ + a2
(−1 +

Np

No
)

=
p̄(1 − p̄)[E(C)]2

No(p̄ + 2ap̄ + a2)
(Np − No) = UBV, (7)

where UBV is the abbreviation of “the Upper Boundary of Variance”. That is,
with the same levels of significance and power of the test, the size of the sample
required by the multiplicative noise approach can be less than that required by
the differential privacy approach if V ar(C) meets the condition in (7).
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Determination of the Shift Parameter a. Without loss of generality, we
assume the mean of the noise C is 1. From (7), the upper boundary of V ar(C)
is associated with the shift parameter a. As the value of a increases, the value of
UBV will decrease. Given E(C) = 1, if V ar(C) is very close to 0, then the value
of y∗ = c(x + a) will be close to the value of y = x + a. Given the fact that a is
publicly accessible, the original value x will receive a high level of disclosure risk.
As the value of a decreases toward 0, the value of UBV will increase. The range
of [0, UBV ] will tend to be wider. This will provide the data agency with a wider
range of choice in selecting the possible value of V ar(C) during the construction
of the multiplicative noise C to meet (7). However, if the value of a is too small
and close to 0, then the difference of x and x + a is negligible. Especially, when
x = 0, the masked value (0 + a)c might be very close to 0 and the masking
scheme could fail to provide sufficient protection for the x.

To investigate the relationship between a, Nm and V ar(C), we carry out the
following simulation study and show how to determine a and V ar(C) in practice
such that Nm is less than Np and the disclosure risk is under control.

Example 1. Consider the hypothesis test

H0 : μ = p0 = 0.65 vs Ha : μ = p0 + δ = p0 + 0.05 = 0.85, (8)

and the level of significance and power of the test are chosen to be α = 0.05 and
1−β = 0.9 respectively. Let {xi} be a sample drawn from a population under H0

and let {yi = xi+a} be the shifted data. The multiplicative noise C is constructed
as I(W=0)X1 +I(W=1)X2, where I is an indicator function; W ∼ Bernoulli(0.5);
X1 ∼ N(1−√

0.7 × σ2
C , 0.3×σ2

C) and X2 ∼ N(1+
√

0.7 × σ2
C , 0.3×σ2

C), where
X1 and X2 are independent. Thus, E(C) = 1 and V ar(C) = σ2

C .
The value UBV given by (7) is varied as a increases from 0.1 to 2. For each

a fixed, to ensure Nm < Np = 255.15, we can assign any value to σ2
C as long as

the value is between 0 and UBV. To simplify our study, we set V ar(C) = σ2
C =

UBV −0.02 in this example. For each a, the values of V ar(C), Nm, R(0.05) and
the sample correlation coefficient of the shifted original data and their unbiased
masked data are reported in Table 1.

From Table 1, all measures of R(0.05) are reasonably small whereas the sam-
ple correlation coefficients are around 0.5. Both these measures are key tools
used to try and assess the level of protection offered by the multiplicative noise
method and in practice, it is preferable that this correlation coefficient is closer
to zero as this lessons the likelihood that a data intruder can predict the individ-
ual entries in the original data set. However, since X is a categorical variable and
the value of V ar(C) is bounded by UBV, the correlation coefficient cannot be as
small as perhaps desired. Although considering this study only has two different
values a and 1+a, the information provided by the correlation coefficient might
be of little help in the estimation of the individual entries of the shifted data
based on their masked data. Consequently it is imperative that the plot of the
masked data vs. the shifted data is reviewed to ensure adequate protection has



Efficiency and Sample Size Determination of Protected Data 271

Table 1. The report of V ar(C), Nm, R(0.05) and the sample correlation coefficient of
the shifted original data and their unbiased masked data where Np = 255.15.

a σ2
C Nm R(0.05) Cor. a σ2

C Nm R(0.05) Cor.

0.1 0.8412 250.37 0.02478 0.508 1.1 0.1971 236.19 0.05156 0.516

0.2 0.6991 249.43 0.02720 0.515 1.2 0.1764 234.19 0.05456 0.492

0.3 0.5876 248.38 0.02968 0.522 1.3 0.1586 232.09 0.05762 0.520

0.4 0.4991 247.22 0.03222 0.492 1.4 0.1430 229.89 0.06076 0.477

0.5 0.4279 245.96 0.03482 0.471 1.5 0.1293 227.57 0.06397 0.513

0.6 0.3700 244.60 0.03748 0.495 1.6 0.1173 225.15 0.06726 0.516

0.7 0.3223 243.12 0.04018 0.476 1.7 0.1066 222.64 0.07065 0.462

0.8 0.2826 241.55 0.04294 0.549 1.8 0.0972 220.01 0.07413 0.491

0.9 0.2494 239.87 0.04576 0.552 1.9 0.0887 217.28 0.07771 0.548

1.0 0.2212 238.08 0.04863 0.527 2.0 0.0811 214.44 0.08140 0.534

been provided. This plot, demonstrated by Fig. 1, portrays the mapping between
the masked and original data and provides a clear indication as to the level of
protection offered.
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Fig. 1. The plots of shifted masked data vs the original shifted data i.e. Y ∗ vs Y
applying the shift and variances values outlined in Example 1 and Table 1. The original
data has been randomly sampled from the Bernoulli distribution with p = 0.65.

Considering the outputs given by a = 0.5, 1.4 and 1.7 from Fig. 1 as an
example. In both cases, a = 0.5 and a = 1.4 achieve correlation coefficients
around 0.47. However, Fig. 1 clearly shows that, when a = 0.5, all the masked
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Y = 0 + a appear in a close neighborhood of 0.5 and the masked Y = 1 + a
widely spread across 0 to 4 providing a relatively narrow overlap. The wider the
overlap interval is, the more the individuals of masked Y = 1 + a and Y = 0 + a
take similar values within the same range. Thus, the data intruder will have
less chance of obtaining a correct estimate when choosing between X = 0 and
X = 1. The plots indicate that using a = 1.4 or a = 1.7 to shift the values of
the original data, will provide a greater level of protection to the original data
than that obtained using a = 0.5.

In this simulation study, Fig. 1 shows that Y ∗ will take values less than 1.1,
2.5 and 3 roughly corresponding to a = 0.5, a = 1.4 and a = 1.7, respectively, if
the original entry takes value 0. For convenience, we call 1.1, 2.5 and 3 the upper
critical values (denoted by UCa) of the masked shifted data corresponding to
the values of a = 0.5, 1.4 and 1.7, respectively. The value of UCa is varied and
related to the original data and the noise sample. Once the original data were
masked and issued to the public, the value of UCa is fixed. Considering the worst
case scenario, if the data intruder knows the real probability P (X = 1) = 0.65,
the probability distribution of C and the value of UCa, the data user should
be able to work out the probability of Y ∗ greater than UCa. These calculations
have been reported the probability in Table 2.

Table 2. The Probability of Y ∗ greater than the critical value UCa.

P (Y ∗ > UCa)

UCa = 1.1, a = 0.5 0.3976808

UCa = 2.5, a = 1.4 0.3106577

UCa = 3, a = 1.7 0.2713907

The original data entries with masked value greater than UCa receive no
protection in this example. Table 2 shows, only 60% of the original data are
protected under different levels if the data agency uses a = 0.5 to shift the
original data. If the data agency uses a = 1.4 or 1.7, the percentage will be
increased to 70 or more.

The Protection Strategy for Sensitive Observations. Example 1 clearly
shows that selecting an appropriate shift parameter a is critical. An appropriate
a can enable more data to be protected. However, even using the shift parameter
a = 1.4 or 1.7, around 30% of the total number of the original data could not be
protected if the data intruder was able to access the information of P (X = 1),
probability distribution C and UCa. This notion raises a considerable problem
when assessing the effectiveness of the multiplicative noise method in protecting
categorical data. If all the entries with X = 1 are sensitive, the failure to protect
a proportion of the data set would be a serious problem even if the percentage
of the number of X = 1 having masked values greater than UCa is only 5%.
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The differentially private approach being considered does not encounter this
issue as it releases perturbed aggregated data. Even if the data system is an
enquirer system, the aggregated differential privacy approach can ensure that
a minimum standard of privacy is maintained on all observations. However, in
the event that not all observations are sensitive, this enforced standard could
be considered excessive and offers considerable utility sacrifices for the purpose
of unnecessary privacy protection. Thereby, the important issue is about the
protection strategy for sensitive observations.

To protect the participants, all the ID information in a confidential data set
has to be removed before the data set is released to the public. If an issued
data set contains only one variable X and this variable is a categorical variable
(taking values 1 or 0), the data set has no confidentiality issue if no other extra
information can be used to link the values of X with the removed ID information.

An entry of the categorical variable X becomes sensitive when a relation-
ship between the value of the entry and other additional information can be
established, as the ID of the entry can be identified through relationships with
other variables. In this scenario, a published data set usually involves X and
other variables, and it is through the risk of linkage that the values of X can
be considered as sensitive. In this situation the risk of linkage on a particular
entry of X would vary from observation to observation and hence it may not be
necessary to impose a set level of protection on all observations. It is through
this framework lens that one may suggest that the multiplicative noise method
may be a possible alternative to current differential privacy methods.

Due to the randomness of noise simulation, strategies must be developed
that ensure that the entries with less protection are not sensitive. Assume that
only a few entries with X = 1 are sensitive in the original data. Consider the
scenario that, after shifted and masked, some of the sensitive entries have the
masked values greater than the critical value, the value UCa discussed in pre-
vious subsection. We suggest the following additional strategy to protect those
entries. The data agency can swap the masked values of these sensitive entries
with other masked values of X = 1. Those entries of X = 1 need to meet at
least two conditions (i) the original entries are not sensitive and (ii) the masked
values are much less than UCa. With such swapping treatment, the conclusion
of hypothesis testing will not be affected, as the original values of the swapped
data are the same and hence calculations of the statistics would remain unaf-
fected. This treatment also does not affect any data analysis pertaining to the
noise multiplied data given by other variables if the original data set involves
other attributes. It is because that, under the multiplicative noise method, X
and other attributes (if there are any) are independently masked by independent
multiplicative noises which usually have different probability distributions. Due
to page limit, we do not provide further details discussion in this paper.

The Protection Level on Individual Entries in the Original Data
Set. Although differentially private micro data mechanisms exist, the sta-
tistical usefulness of these methods is relatively small compared to that of
the approaches considered in this paper. For example considering the Warner
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randomised response mechanism [29] which has been shown to be differentially
private, in order to obtain micro data with an information leakage parame-
ter ε = 0.1 the randomisation parameter must be approximately 0.475 which
implies that nearly every second observation needs to be randomised in some
form or another. Applying the same hypothesis test as previously outlined,
the required sample size for the randomised response mechanism is given by
N0

[
1 + eε

(1−eε)p(1−p)

]
and hence under the same parameters outlined in Exam-

ple 1 would require a sample size of approximately 26,296 around 103 times
larger than that of the aggregated Laplace mechanism used by [26] with the
same information leakage parameter.

Whereas for data masked by the multiplicative noise method, the statistical
utility of this method can be set to rival that of the Laplace mechanism and apply
a reasonable level of protection. Although each original observation may face a
certain level of disclosure risk, by choosing an appropriate multiplicative noise to
mask the underlying data and applying additional appropriate data protection
strategies to the masked data, the agency might be able to control the level of
disclosure risk. The key advantage of the multiplicative noise method is that the
issued noise multiplied data has more application in data analysis [9,14,15,22].

The differential privacy method and the multiplicative noise method are two
very different data protection approaches and hence it is not particularly fair to
determine a winner when comparing the two methods purely based on the prob-
ability of identifying the values of the original individual observations or on the
limitations of applying the protected the data. However, when assessing which
method may be more appropriate to use in a particular setting it is important
to compare the protection the two methods offers to individual entries of the
original data set, if the comparison is possible.

As described, the differential privacy approach considered in this paper does
not release any information related to the individual entries of the original data
set. However, if the data agency allows the data user queries for the sample means
of any subsets of the original data set, the data user might be able to catch some
information on each individual entries of the original data set. Assume that this
scenario is held. Following the design of the differential privacy, the data agency
will allow to provide the data user with disturbed sample means of the subsets
of entries. The sample mean of a subset entries is perturbed by the additive
Laplace(

√
2/(εNp)) noise.

Assume that the data user receives the following protected information1

1
Np

Np∑

i=1

xi + e0 and
1

Np

∑

i�=j

xi + ej ,

j = 1, 2, · · · , Np, where {e0, e1, · · · , eNp
} is a random sample from the

Laplace(
√

2/(εNp)) noise. After algebra, the data user can obtain the perturbed
individual entry x∗

j of the original data and express it in the following way

1 When Np is larger, there is no significant difference between 1/(Np − 1) and 1/Np.
To simplify the calculation, we use 1/Np instead of 1/(Np − 1).
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x∗
j = Np(

1
Np

Np∑

i=1

xi + e0 − 1
Np

∑

i�=j

xi − ej) = xj + Np(e0 − ej),

j = 1, 2, · · · , Np. The x∗
j is the unbiased estimator of xj , given xj . Denote L∗

X =
X +Np(e1− e2), i.e. X masked by the additive noise Np(e1− e2), where e1 and
e2 are i.i.d random variables with Laplace(

√
2/(εNp)) distribution. In terms of

attacking the value of the original data, the data intruder might be interested
in the following probability

P (X = 0|L∗
X is observed) and P (X = 1|L∗

X is observed).

Using the data in Example 1, we found that knowing the noise added data
gives no advantage in predicting any particular individual entries in the original
data set. This is the key advantage of the differential privacy approach.
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Fig. 2. The plots of P (X = 0|y∗ < Y ∗ < y∗ + 0.2) (in dash line) and P (X = 1|y∗ <
Y ∗ < y∗ + 0.2) (in solid line), with shift parameters a = 0.5, 1.4, 1.7 and fixed variance
σ2
c = 0.4279 and p = 0.65. The probability distribution of the multiplicative noise C is

the same as that defined in Example 1.

The protection level the multiplicative noise method provided to each entry is
varied. The variance can be controlled if the data agency so chooses by forsaking
some of the statistical efficiency. The plots in Fig. 2 show the variation of P (X =
0|y∗ < Y ∗ < y∗+0.2) and P (X = 1|y∗ < Y ∗ < y∗+0.2) is bounded between 0.65
and 0.45, respectively, when the variance of the noise is fixed at σ2

c = 0.4279 and
the shift values are altered by 0.5, 1.4, and 1.7. The variation of the protection
is minimised comparing to the variation when σ2

c = 0.143 or 0.1066. (The plots
for these case are omitted from this paper.)

Therefore the multiplicative noise method, although not achieving the stan-
dard level of protection offered by the differential privacy approach, is tailorable
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to the needs of the data agency and is much more accessible for analysis. More-
over, by adopting various strategies to protect sensitive observations, the mul-
tiplicative noise method can still provide the individual entries of the original
data set with a reasonable level of protection.

4 Conclusion

In this paper, we have looked at two differing schemes that can be used to provide
privacy protection for participants in clinical trials, surveys or scientific studies.

This paper ultimately deduces that it is possible to obtain a micro data
based protection method (the multiplicative noise method) that provides a rea-
sonable level of protection when compared to that of the aggregated Laplace
mechanism. However, an appropriate choice of the distribution of the multi-
plicative noise, as well as appropriate choices for the mean, variance and shift
parameters are all needed to be made and subsequent diagnostics performed in
order to ensure that this level of protection is satisfactory.

Systematically comparing protection methods allows the data agency to make
informed decisions about the type and level of protection and statistical utility
especially when it is necessary to obtain reduced data collection costs i.e. smaller
sample sizes. The study focuses on the hypothesis test of a simple proportion.
The same conclusion of the study can be applied to composite hypothesis test-
ing. Carrying out the comparison between the approach discussed in this paper
with other types of differential privacy settings, as well as other hypothesis test
settings will also be one of our next research topics.
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Abstract. When multiplicative noises are used to perturb a set of orig-
inal data, the data provider needs to ensure that the original values are
not likely to be learned by data intruders from the noise-multiplied data.
Different attacking strategies for unveiling the original values have been
recognised in the literature, and the data provider needs to ensure that
the noise-multiplied data is protected against these attacking strategies
by selecting an appropriate noise generating variable. However, there are
many potential attacking strategies, which makes the quantification of
the protection level of a noise candidate difficult. In this paper, we argue
that, to quantify the protection level a noise candidate offers to the orig-
inal data against an attacking strategy, the data provider might look at
the average value disclosure risk it produces. Correspondingly, we pro-
pose an optimal estimator which maximizes the average value disclosure
risk. As a result, the data provider could use the maximized average value
disclosure risk as a single measure for quantifying the protection level a
noise candidate offers to the original data. The measure could help the
data provider with the process of noise generating variable selection in
practice.

Keywords: Multiplicative noise masking · Value disclosure risk
Attacking strategy · Statistical disclosure control

1 Introduction

Data can be released to the public either as microdata or as tabular summaries.
Microdata contains information of data respondents across several attributes,
such as personal income and property tax. Releasing microdata provides data
users with a wider range of statistical analysis than tabular data, but has higher
risks of identity and value disclosure. To balance these two conflicting aspects,
methods of statistical disclosure control (SDC) are introduced and studied. Many
SDC manners, including data perturbation, rank swapping, data shuffling, etc.,
are employed to produce protected microdata for public use, ensuring that the
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released microdata preserves particular statistical properties of the original data
as well as meet the requirement of disclosure risk control set by the data agency
(see Fuller (1993), Burridge (2003), Muralidhar and Sarathy (2006), Oganian
(2011), Ruiz (2011) and reference therein). This paper regards evaluating value
disclosure risk of applying noise multiplication masking scheme to a set of posi-
tive and continuous data.

The noise multiplication masking scheme perturbs each original observation
by multiplying it with a random noise term generated from a noise generating
variable C. The data provider releases the noise-multiplied data together with
the density function of the noise generating variable fC to the public. Method-
ologies for analysing noise-multiplied data have been developed by taking into
account the information of fC such that population parameter estimates could
be recovered from the noise-multiplied data (Nayak et al. 2011; Sinha et al. 2011;
Lin and Wise 2012; Klein et al. 2014). Using multiplicative noises has been advo-
cated by many researchers. Multiplicative noises provide uniform protections, in
terms of the coefficient of variation of the noises, to all sensitive observations
(Nayak et al. 2011). The masking mechanism is easy to implement in practice
and a balanced utility-risk tradeoff is achieved by selecting an appropriate noise
generating variable from a pool of noise candidates, which is referred to as “tun-
ing mechanism” in Klein et al. (2014). The masking method has been used in
practice by the U.S. Energy Information Administration and the U.S. Bureau of
Census (Kim and Jeong 2008).

Disclosure risk could be classified as identification disclosure risk and value
disclosure risk (Melville and McQuaid 2012). Value disclosure occurs if a tar-
get original value is reasonably inferred by a data intruder using an attacking
strategy, leading to data confidentiality breach. To understand value disclosure
risks associated with the masking scheme, some intrusion attacking strategies
have been modelled in the literature with the assumption that data intrud-
ers have no prior knowledge about the original data. For instance, Klein et al.
(2014) considered the scenario where in a microdata, the response variable of
a generalised linear model is masked by multiplicative noises while explanatory
variables are unmasked. The authors showed that a data intruder may use the
predicted value based on the generalised regression model to estimate a target
original value. Another two attacking estimators, namely “unbiased attacking
estimator” (Nayak et al. 2011; Lin and Wise 2012) and “correlation-attack esti-
mator” (Ma et al. 2018), will be reviewed in Sect. 5. For an original observation
to be masked by a noise candidate C, its value disclosure risk against an attack-
ing strategy could either be quantified in terms of a confidence interval (Nayak
et al. 2011; Agrawal and Srikant 2000), or in terms of a probability. Under prob-
abilistic value disclosure risk measure, the value disclosure risk is the probability
that its value is disclosed by the attacking strategy. Probabilistic disclosure risk
measure has been used in practice by the Australian Bureau of Statistics (Chip-
perfield et al. 2018). In this paper, we use probabilistic disclosure risk measure
for quantifying value disclosure risks.
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Because the data provider has no control over which attacking strategy a data
intruder might use, an ideal noise generating variable should provide enough pro-
tection to each original observation against all attacking strategies. This is the
requirement of the worst-case differential privacy (DP), which means that no
private information would be revealed even if an adversary knows all informa-
tion about the data except the private information. The data provider might
say that a noise candidate provides enough protection to the original data if for
any original observation, the maximum value disclosure risk against any attack-
ing strategy is below a threshold value. However, it is difficult to find such a
noise candidate. We will show in the simulation study that, even if assuming
adversaries has no prior knowledge, a noise candidate which protects one obser-
vation well against an attacking strategy might not protect another observation
against the attacking strategy adequately. Alternatively, the data provider might
look at the average value disclosure risk for quantifying the protection level of a
noise candidate offers to the original data against an attacking strategy, which
is the mean of the value disclosure risks of all original observations against the
attacking strategy. For large-sized data, the average value disclosure risk pro-
vides a rough idea about the proportion of original observations which could be
disclosed by the attacking strategy in a set of noise-multiplied data. The data
provider might want the proportion to be below an acceptable level, especially
if all observations might be identified or targeted. Under this setting, the data
provider might say that a noise candidate offers enough protection to the original
data if the average value disclosure risks against several attacking strategies are
all below a threshold level simultaneously.

We consider the following setting in this paper: To attack an original obser-
vation yi, the data intruder uses an attacking estimator g(Y ∗

i ), where Y ∗
i = yiC

and g(Y ∗
i ) is a function of Y ∗

i . We will show in Sect. 5, there are many attack-
ing estimators, either discussed in the literature or not, satisfy this setting. We
also assume the data provider uses the average value disclosure risk to quantify
the protection level of a noise candidate offers to the original data against an
attacking strategy. We will illustrate in the simulation study that a noise candi-
date which protects the original data well against one attacking estimator might
not protect against another attacking estimator well. Therefore, in practice, to
evaluate the protection level of a noise candidate, the data provider might need
to evaluate value disclosure risks against several attacking estimators. This is
a complicated job for the data provider. In this paper, we derive an attacking
estimator, namely the optimal estimator, which maximizes the average value
disclosure risk. Therefore, for a noise candidate, instead of measuring its value
disclosure risks against several attacking estimators which are functions of Y ∗

i ,
the data provider could simply measure the average value disclosure risk against
the optimal estimator to understand the protection level the noise candidate
yields to the original data. The data provider could use this single measure for
noise generating variable selection in practice. We note that other attacking
estimators which are not functions of Y ∗

i exist, such as the attacking estimator
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introduced in Klein et al. (2014). These cases are not considered in this paper
and could be considered in the future.

In the literature, some distributions have been proposed as good noisy dis-
tributions because they offer strong protections against the unbiased estimator
for any set of original data. Those distributions include bi-modal normal distri-
bution (Lin and Wise 2012), truncated triangular distribution (Kim and Jeong
2008) and mixture of uniforms distribution (Klein et al. 2014). We will show in
the simulation study that these distributions might not provide good protections
to the original data according to our protection level quantification measure.

This paper is organised as follows: Sect. 2 overviews methods for analysing
noise-multiplied data and introduces an overall utility loss measure we adopt in
this paper. Section 3 introduces the probabilistic value disclosure risk measure
and the optimal estimator. Section 4 introduces methods for evaluating value dis-
closure risks against the optimal estimator. Section 5 provides three discussions.
Section 6 presents a simulation study. Section 7 concludes the paper.

2 Analysing Noise-Multiplied Data and Data Utility Loss

For univariate data, the noise multiplication masking method works as follow:
Suppose a set of original data y = {yi}n

i=1 are independent realizations from
Y . To mask y, the data provider chooses a noise generating variable C with
E(C) = 1. Y and C are independent. A set of noise terms c = {ci}n

i=1 are inde-
pendently drawn from C and multiplied with y to produce the noise-multiplied
data y∗ = {y∗

i }n
i=1 = {yici}n

i=1. {y∗
i }n

i=1 could be treated as independent realiza-
tions from Y ∗, where Y ∗ = Y C. The data provider releases y∗ together with the
density function of noise fC to the public. We assume both Y and C are positive
and continuous, and n is large.

For convenience, in this paper we discuss data utility loss in terms of param-
eter estimates of Y only. Methods for recovering parameter estimates of Y from
y∗ have been developed in the literature. Nayak et al. (2011) showed that, unbi-
ased moments estimates of Y could be easily recovered from y∗. Sinha et al.
(2011) proposed a Bayesian approach for estimating quantiles of Y from y∗.
However, the method requires a data user to have prior knowledge about the
distribution of Y . Another way of recovering quantiles is to estimate fY using
a reconstruction algorithm (Agrawal and Aggarwal 2001; Lin 2014). Lin (2014)
showed that a sample-moment-based density reconstruction algorithm could be
used for estimating fY based on y∗ and fC . Consequently, data users could
obtain estimates of the quantiles of Y from the reconstructed density estimate,
which is denoted as f̂Y . Numerical examples in Lin (2014) and Lin and Fielding
(2015) showed that accurate quantile estimates could be obtained in this way. In
summary, estimates of moments and quantiles of Y could be recovered from y∗,
given fC . For obtaining regression coefficients estimates from noise-multiplied
datasets, see Lin and Wise (2012) and Klein et al. (2014).

When recovering a parameter estimate from noise-multiplied data, the recov-
ered estimate is less accurate than the one data users would obtain by analysing
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the original data. Overall data utility loss is an aggregate measure of loss of
accuracies across several parameters. There is no unique way to measure overall
data utility loss. In the literature, the way of measuring overall data utility loss
varies according to different data masking scenarios as well as which parameters
estimates could be recovered from the masked data. See Domingo-Ferrer and
Torra (2001); Shlomo (2010) and Yancey et al. (2002) for several overall utility
loss measures.

In this paper, we note the following: 1. for large-sized sample, moments esti-
mates of Y are normally recovered accurately regardless of the distribution of C;
2. under the reconstruction algorithm approach, the accuracies of the quantile
estimates of Y depend on the accuracy of the reconstructed density estimate
f̂Y . Unlike moments estimates, the accuracy of f̂Y is largely affected by the
distribution of C. (See results in Agrawal and Aggarwal (2001)). Therefore, in
this paper we adopt the overall data utility loss measure proposed in Agrawal
and Aggarwal (2001). The authors defined the overall data utility loss measure
according to how much do the reconstructed density estimates and the original
density function overlap. Mathematically, the overall data utility loss is defined
as:

UL(fY , C) =
1
2
E[

∫ ∞

−∞
|fY (y) − f̂Y,C(y)|dy],

where f̂Y,C(y) is the reconstructed density function of fY based on the data
masked by C. UL(fY , C) is bounded between 0 and 1, with 0 indicates no utility
loss. This utility loss measure is similar to the pMSE which could be seen as a
loss measure for synthetic data (Snoke et al. 2018). A low UL(fY , C) value
means that many parameter estimates of Y could be accurately recovered from
the noise-multiplied data if C is the noise generating variable. We note that
functionals of the distribution might be estimated directly better than by going
through a density estimator (Bickel and Ritov 2003). In this paper we do not
pursue this discussion.

3 Probabilistic Disclosure Risk Measure and the Optimal
Estimator

In this section we introduce the probabilistic value disclosure risk measure
against a particular attacking estimator. We also introduce the optimal esti-
mator which maximizes the average value disclosure risk.

For the purpose of recovering the value of a continuous original datum from
its noise-multiplied datum, it is tough to guess the exact value of the original
datum, and it is not necessary to achieve it. Using an Acceptance Rule to decide
if an estimate ỹi can be accepted as a correct guessing of the original value yi

is sufficient. Using acceptance rule to define value disclosure is adopted by the
Australian Bureau of Statistics for tabulated business data (Chipperfield et al.
2018). Following Lin and Wise (2012) and Klein et al. (2014), we adopt the
following definition of value disclosure:
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Suppose a data intruder uses ỹi as an estimate of the original value yi. The
expression of ỹi is determined by his own attacking strategy and in this paper we
assume ỹi = g(y∗

i ). To classify the ỹi as a valid estimate of yi, it is sufficient for
ỹi to be reasonably close to yi. Disclosure of yi occurs if ỹi satisfies | ỹi−yi

yi
| ≤ δ,

where δ is the acceptance rule defined in Lin and Wise (2012) and is a small
positive number. For instance, for a positive observation yi, if we set δ = 0.05,
we say that ỹi discloses yi if 0.95yi ≤ ỹi ≤ 1.05yi. The value of δ is determined
by the data provider.

In this paper we assume the original data is only subject to attacking esti-
mators which are functions of Y ∗

i . Following Klein et al. (2014); Lin and Wise
(2012), the probabilistic value disclosure risk measure for evaluating the disclo-
sure risk of yi against an attacking estimator Ỹi takes the following form:

R(Ỹi, δ|Yi = yi) = P (
|Ỹi − Yi|

Yi
< δ|Yi = yi),

where Ỹi = g(Y ∗
i ), Y ∗

i = CYi.
The data provider balances utility-risk tradeoff by selecting an appropriate

noise generating variable from a set of noise candidates. As we argued in the
introduction, in this paper we assume the data provider uses the average value
disclosure risk {R(Ỹi, δ|Yi = yi)}n

i=1 =
∑n

i=1 R(Ỹi,δ|Yi=yi)

n to quantify the protec-
tion level a noise candidate C offers to the original data against the attacking
estimator Ỹi. As the data provider has no control over which attacking strategy
a data intruder might use to attack the original data, therefore, to assess the
protection level of a noise candidate, the data provider might need to evaluate
the average value disclosure risks against many potential attacking estimators.
A noise candidate is qualified for masking the original data if the average value
disclosure risks are below a certain level simultaneously. To facilitate the process,
we propose an “optimal estimator” which maximizes the average probabilistic
value disclosure risk. The optimal estimator takes the following form:

Zopt
i = argmaxg(Y ∗

i )

∫ g(Y ∗
i )

(1−δ)

g(Y ∗
i

)
(1+δ)

fYi|Y ∗
i
(y)dy, (1)

where fY is the density function of Y , Y ∗
i = YiC and fYi|Y ∗

i
(y) = 1

y fC(Y ∗
i

y )fYi
(y).

The derivation of Zopt
i is given in Appendix. Correspondingly, the value disclo-

sure risk of yi against the optimal estimator Zopt
i is defined as

Ropt(yi, C, δ) = P (|Z
opt
i − Yi

Yi
| < δ|Yi = yi)

The average value disclosure risk of using C to mask the original data against
the optimal estimator is Roverall(C). That is:

Roverall(C) =
∑n

i=1 Ropt(yi, C, δ)
n
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We propose that the data provider measures Roverall(C) to quantify the
level of protection a noise candidate C offers to the original data. If Roverall(C)
is below an acceptable level, then C offers enough protection to the original data
against any other estimators which are functions of Y ∗

i . We note that when yi

is subject to other forms of attacks which are not sole functions of Y ∗
i , such as

the one proposed in Klein et al. (2014), the data provider might need to use
Roverall(C) in conjunction with other corresponding average value disclosure
risk measures to quantify the protection level of C. In this paper we assume the
original data is only subject to attacking estimators which are functions of Y ∗

i .

4 Finding Ropt(yi, δ)

In this section we discuss how the data provider could find Ropt(yi, C, δ) in
practice.

Case 1: fY is known. If fY is known to the data provider then the mathe-
matical expression of Zopt

i might be derived analytically. Suppose Q(y) is the
antiderivative of 1

y fC(Y ∗
i

y )fYi
(y), then

H(Zopt
i ) =

∫ Z
opt
i

1−δ

Z
opt
i

δ+1

1
y
fC(

Y ∗
i

y
)fYi

(y)dy = Q(
Zopt

i

1 − δ
) − Q(

Zopt
i

δ + 1
)

To find the argument Zopt
i where H(Zopt

i ) is maximized, we take derivative
of H(Zopt

i ) to yield:

dH(Zopt
i )

dZopt
i

=
1

Zopt
i

fC(
Y ∗

i (1 − δ)
Zopt

i

)fY (
Zopt

i

1 − δ
) − 1

Zopt
i

fC(
Y ∗

i (δ + 1)
Zopt

i

)fY (
Zopt

i

1 + δ
)

We set dH(Z
opt
i )

dZ
opt
i

= 0 to find Zopt
i . As an example, if Y ∼ LN(μ1, σ

2
1), C ∼ LN

(μ2, σ
2
2), we can show that Zopt

i = exp(
(σ2

1+σ2
2)ln[(1+δ)(1−δ)]+2σ2

1ln(yiC)−2σ2
1μ2+2σ2

2μ1
2(σ2

1+σ2
2)

).

Correspondingly, we could obtain Ropt(yi, C, δ) for each yi if the expression of Zopt
i

is available.

Case 2: fY is unknown. In practice, the data provider may only have a set of
original data {yi}n

i=1 available without knowing the true underlying distribution
of Y . To find Ropt(yi, C, δ) in this case, the data provider might need to estimate
the density function fY . For instance, the data provider might obtain a kernel
density estimate KY based on {yi}n

i=1, and replace fY |Y ∗
i

by 1
y fC(Y ∗

i

y )KY (y) in
Eq. (1) to approximate Zopt

i , and then approximate Ropt(yi, C, δ) for each yi.
The data provider might have different strategies to approximate

Ropt(yi, C, δ). In the simulation study, we assume Y is bounded between [a, b]
and C is bounded between [c, d], where a and b are the minimum and max-
imum of the original data. Therefore, we note that Y ∗ is bounded between
[ac, bd]. We adopt the following strategy to approximate Ropt(yi, C, δ): 1. We
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generating n1 multiple copies of y∗
i , where y∗

i ∼ yiC. Denote them as {y∗
il}n1

l=1;
2. We note that the support of fY |Y ∗ is [max(a, Y ∗

d ),min(b, Y ∗
c )]. Therefore,

for each y∗
il, we take n2 points between [max(a,

y∗
il

d ),min(b, y∗
il

c )] with equal
increment Q. Denote the points as {hv}n2

v=1; 3. For each hv, we attempt to

estimate
∫ hv

(1−δ)
hv

(1+δ)
fY |Y ∗

i
(y)dy. Because Y is bounded between [a, b], therefore

hv

(1+δ) cannot be lower than a and hv

(1−δ) cannot be greater than b. There-

fore
∫ hv

(1−δ)
hv

(1+δ)
fY |Y ∗

i
(y)dy =

∫ min(b, hv
(1−δ) )

max(a, hv
(1+δ) )

fY |Y ∗
i
(y)dy. To estimate this integral,

we take n3 points between max(a, hv

(1+δ) ) and min(b, hv

(1−δ) ) with equal incre-
ment Δ. Let mj = max(a, hv

(1+δ) ) + (j − 1)Δ. We approximate the integral by

Ihv
=

∑n3
j=1

1
mj

fC( y∗
il

mj
)KY (mj)Δ. As a result, for {hv}n2

v=1, we obtain a corre-

sponding set {Ihv
}n2

v=1; 4. We let zopt
i,y∗

il
= argmaxhv

{Ihv
}n2

v=1. Then zopt
i,y∗

il
is the

optimal estimate of yi given y∗
il; 5. We repeat the above process for each y∗

il,
l = 1, 2, · · · , n1. As a result, we obtain {zopt

i,y∗
il
}n1

l=1; 6. We count the number of

zopt
i,y∗

il
such that zopt

i,y∗
il

∈ [yi(1 − δ), yi(1 + δ)]. Denote the number as n4; 7. We
estimate Ropt(yi, C, δ) by n4/n1.

We use the above steps for estimating Ropt(yi, C, δ) in the simulation study.
We note that the above steps is a naive and might not be the most efficient way
for estimating Ropt(yi, C, δ). However, they are sufficient for illustration purpose
of this paper.

5 Discussion

In this section we discuss the optimal estimator and other possible attacking esti-
mators mainly from data intruders’ point of view. For illustration, we introduce
another three attacking estimators for estimating an original value yi. The three
attacking estimators will also be used for illustration purpose in the simulation:

Unbiased estimator: Nayak et al. (2011) showed that Y ∗
i = CYi is an unbiased

estimator of yi as E(Y ∗
i |Yi = yi) = yi. Therefore, Y ∗

i is the unbiased estimator
for yi.

Correlation-attack estimator: Ma et al. (2018) showed that when the population
correlation between Y and Y ∗ is high, then a simple linear model might be
adequate to explain the relationship between the two variables. As a result, the
correlation-attack estimator Ŷi takes the following form: Ŷi = (1 − ρ2Y Y ∗)μY +
ρ2Y Y ∗Y ∗

i , where ρ2Y Y ∗ is the population correlation between Y and Y ∗, μY is the
population mean of Y . These two quantities could be estimated directly from
the noise-multiplied data y∗.

Maximum a posteriori (MAP) estimator: This estimator is not discussed in
the literature. The MAP estimator is simply the mode of fYi|Y ∗

i
(y), where

fYi|Y ∗
i
(y) = 1

y fC(Y ∗
i

y )fYi
(y). Denote the estimator as Zi, then Zi =

argmaxyfYi|Y ∗
i
(y).
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Discussion 1: Interpretation of zopt
i from the data intruder’s point of

view
Given y∗

i , a realization of Zopt
i takes the following form:

zopt
i = argmaxg(y∗

i )

∫ g(y∗
i )

(1−δ)

g(y∗
i
)

(1+δ)

fY |Y ∗
i =y∗

i
(y)dy = argmaxg(y∗

i )

∫ g(y∗
i )

(1−δ)

g(y∗
i
)

(1+δ)

1

y
fC(

y∗
i

y
)fY (y)dy.

From the data intruder’s point of view, suppose the data intruder has no
prior knowledge of yi and assumes that yi ∼ Yi. Given y∗

i , suppose the data
intruder uses an estimate g(y∗

i ) to attack yi, then the probability that g(y∗
i )

discloses yi could be expressed as

P (|g(y∗
i ) − Yi

Yi
| < δ|Y ∗

i = y∗
i ) = P (

g(y∗
i )

1 + δ
< Yi <

g(y∗
i )

1 − δ
|Y ∗

i = y∗
i ).

The expression of zopt
i means that zopt

i maximizes the above posterior prob-
ability of disclosing yi. Therefore, if the data intruder wants to maximize the
posterior probability of disclosing yi, the data intruder may use zopt

i to attack yi.
To find zopt

i , the data intruder needs information of fC(y∗
i

y ) and fY (y).

Because fC and y∗
i are public knowledge, the data intruder knows fC(y∗

i

y ). How-
ever, fY (y) is unknown and needs to be estimated. The data intruder could
estimate fY by using the reconstruction algorithm we mentioned in Sect. 2. As a
result, the data intruder could obtain an approximated value of zopt

i by replacing
fY (y) by f̂Y (y) in the expression of zopt

i .

Discussion 2: Estimator selection from the data intruder’s point of
view
To attack yi, the data intruder might use any of the four estimators Y ∗

i , Ŷi, Zopt
i

and Zi. For the data provider, it could use the corresponding value disclosure
risk measures to tell which attacking estimator is more effective for attacking yi.
For instance, in the simulation study, we can show that if yi is around 185000,
then it has a value disclosure risk of 1 against the optimal estimator if C1 is
used to mask the original data. Therefore, the data provider knows that if the
optimal estimator is used to attack the corresponding noise-multiplied value y∗

i ,
it will lead to value disclosure. However, the data intruder might not know that
the optimal estimator will surely lead to value disclosure of y∗

i .
To attack y∗

i , the data intruder might come up with his own rule for deter-
mining which attacking estimator to use to disclose yi. For instance, the data
intruder might use the correlation-attack estimator if the estimated sample cor-
relation between the noise-multiplied data and the original data is very high.
Alternatively, as we argued in Discussion 1, Zopt

i maximizes the data intruder’s
posterior probability of disclosing yi. If the probability is used as a decision rule,
then the data intruder will use the optimal estimator to attack yi. Discussion on
how to choose between the correlation-attack estimator and the unbiased estima-
tor based on mean squared errors can be found in Ma et al. (2018). Regardless,
the decision rule used by a data intruder does not necessarily lead to the best



288 Y. Ma et al.

choice of estimator for attacking yi. Therefore, the data provider might be less
worried about those original values which suffer very high disclosure risks against
an attacking estimator when evaluating the protection level of a noise candidate
C, especially if the corresponding records have low identity disclosure risks.

Discussion 3: Value disclosure risk measure and the worst-case DP
Ideally when releasing noise-multiplied data to the public, the worst-case differ-
ential privacy (DP) could be achieved. In that way, no private information could
be revealed even if an adversary knows all information about the data except the
private information. This requirement could be achieved in some statistical lim-
itation methods, such as ε-differential private synthetic data (Snoke et al. 2018).
Our value disclosure risk measure aims to ensure a sufficient level of uncertainty
when a data intruder with no prior knowledge attacks the noise-multiplied data,
but it does not guarantee the worst-case DP. Releasing data which satisfy the
worst-case DP might render a high loss of data utility and therefore might not be
considered by a statistical agency. How to generate noise-multiplied data which
achieves the worst-case DP while maintaining enough data utility requires future
study.

6 Simulation Study

In this section we present a simulation study using real-life data. We consider
several noise candidates. The main purpose of the simulation study is to illus-
trate several points which we mentioned in this paper. Following Klein et al.
(2014), we use the public use data from the 2000 Current Population Survey
(CPS) March supplement. The entire data set contains household, family, and
individual records. As extreme income values are normally considered sensitive
and need to be protected, we consider the top 5% household income val-
ues under household income attribute as the original data. The original data
contains 2533 positive observations ranging from 140000 to 768742. We denote
the original data as {yi}2533i=1 . We set the acceptance rule δ = 0.1 throughout this
section. We consider the following four noise candidates: C1 ∼ I1U1+(1−I1)U2,
where P (I1 = 0) = P (I1 = 1) = 0.5, U1 ∼ U(0.5, 0.9) and U2 ∼ U(1.1, 1.5);
C2 ∼ I2U3+(1−I2)U4, where P (I2 = 0) = P (I2 = 1) = 0.5, U3 ∼ U(0.3, 0.9) and
U4 ∼ U(1.1, 1.7); C3 ∼ U(1−0.5

√
93/75, 1+0.5

√
93/75); C4 ∼ U(0.245, 1.755).

Among the four noise candidates, C1 and C3 have the same variance. Similarly
for C2 and C4. C1 and C2 represent those types of noise candidate which have
been advocated by researchers as they offer strong protections against the unbi-
ased estimator.

We first measured the value disclosure risks of each yi against each of the
four attacking estimators. To find Ropt(yi, C, 0.1), we obtained a kernel density
estimate KY based on the original data by using the function ‘density()’ with
default parameters in R. We computed the average value disclosure risks against
each attacking estimator. The results are given in Table 1. To comment on the
table, we see that C1 and C2 provide very good protection to the original data
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against the unbiased estimator because the corresponding average value disclo-
sure risks are 0. However, comparing C1 with C3 (with the same variance), we
see that C3 protects the original data better against the other three estimators
than C1. Similarly story can be seen when we compare C2 and C4. The result
shows that a noise candidate which protects the original data well against one
attacking estimator may not provides sufficient protection against other estima-
tors. The result may also suggest that, those noise candidates represented by
C1 and C2 which have been advocated by some researchers might not provide
better protections than other noise candidates.

Denote Rcor(yi, C, 0.1) as the value disclosure risk of yi against the
correlation-attack estimator if C is used to mask yi. We provide value disclosure
risks {Rcor(yi, C1, 0.1)}2533i=1 against the original data {yi}2533i=1 plot in Fig. 1(a),
and we provide {Ropt(yi, C1, 0.1)}2533i=1 against {yi}2533i=1 plot in Fig. 1(b). We also
provide similar plots under the case of C3 in Fig. 2. We see that, for an attacking
strategy, a noise candidate might not be able to protect all observations. For
instance, we see in Fig. 1(b) that some observations have value disclosure risks
of 1 against the optimal estimator. We also see that, a noise candidate which
protects an original observation well against one attacking estimator might not
protect it well against another estimator. For instance, we see in Fig. 2(b) that
observations around 200000 only have value disclosure risks of around 0.2 against
the optimal estimator. However, the corresponding value disclosure risks against
the correlation-attack estimator are above 0.3. The story is reversed for obser-
vations greater than 500000. While an ideal noise candidate should protects all
observations against all attacking strategies, these two figures showed that it is
difficult to find such a noise candidate. Therefore, using average value disclo-
sure risk to quantify the level of protection of a noise candidate to the original
data against an attacking estimator, and ensure that the average disclosure risk
is below a certain level seems to be a reasonable criteria for noise generating
variable selection.

For each of the noise candidates, we computed the level of overall utility
loss. To compute this value, take C1 for instance, we firstly produced q copies
of noise-multiplied data using C1. For the i-th copy of noise-multiplied data, we
used an R-package MaskDensity14 (Lin and Fielding 2015) to implement the
sample-moment-based density reconstruction algorithm in R, and we obtained
a copy of the reconstructed density function f̂ i

Y,C1
. Therefore, we obtained

Table 1. The average value disclosure risks against each attacking estimator

Noise Unbiased
estimator

Correlation-attack
estimator

MAP
estimator

Optimal
estimator

C1 0 0.357 0.543 0.628

C2 0 0.307 0.508 0.567

C3 0.179 0.327 0.501 0.547

C4 0.124 0.301 0.484 0.519
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(a) {Rcor(yi, C1, 0.1)}2533i=1 against income values
plot

(b) {Ropt(yi, C1, 0.1)}2533i=1 against income values
plot

Fig. 1. Value disclosure risks against income values plots for C1.

(a) {Rcor(yi, C3, 0.1)}2533i=1 against income values
plot

(b) {Ropt(yi, C3, 0.1)}2533i=1 against income values
plot

Fig. 2. Value disclosure risks against income values plots for C3.

(a) KY and f̂Y,C plots for C1 (b) KY and f̂Y,C plots for C3

Fig. 3. Kernel density estimate against the reconstructed density estimates for C1

and C3. The solid lines are density plots of the original data. The dashed lines are
reconstructed density plots.

q copies of the reconstructed density function. We estimated UL(fY , C1) by
1
2q

∑q
i=1

∫ ∞
−∞ |KY (y) − f̂ i

Y,C1
(y)|dy, where KY is the kernel density estimate of

Y . Denote f̂Y,C(y) =
∑q

i=1 f̂ i
Y,C/q. Figure 3 provides f̂Y,C(y) and KY (y) plots

for illustrating the accuracies of the reconstructed density functions. The over-
all utility losses for the four noise candidates are 0.190, 0.209, 0.230 and 0.204
respectively. Except C4, we see that there is a trade-off between Roverall(C) (last
column of Table 1) and the overall utility loss. We see that C1 offers the lowest
level of overall utility loss but the worst protection to the original data, while
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C3 offers a better protection at the expense of a higher amount of utility loss.
The data provider could choose a noise candidate which achieves the desired
utility-risk tradeoff for masking the original data.

In this simulation, we see from Table 1 that Roverall(C4) = 0.519, meaning
that it offers the highest level of protection to the original data among the four
noise candidates. To find a noise candidate with better protection, it can be
shown that if C ∼ LN(−0.144, 0.5362) truncated between 0 and 5 is consid-
ered, then Roverall(C) is only 0.424, which provides a better protection than
C4. In practice the data provider could decide its own threshold level such that
Roverall(C) needs to be below the threshold level in order for C to be considered.

7 Conclusion

In this paper we propose a measure for quantifying the protection level a noise
candidate C for noise multiplication masking scheme. To attack the original data
from its noise-multiplied version, the data intruder might adopt different attack-
ing strategies. From the data provider’s perspective, we argue that to quantify
the protection level of a noise candidate against a particular attacking strategy,
the data provider might look at the average value disclosure risk. We propose an
optimal attacking estimator which maximizes the average value disclosure risk,
and the corresponding maximized average value disclosure risk is the measure
for quantifying the protection level a noise candidate C offers to the original
data. As a result, the data provider could use this single measure instead of
using multiple value disclosure risk measures for noise generating variable selec-
tion in practice. We note that in this paper we assume an attacking estimator
is a function of the noise-multiplied variable. Relaxing this assumption for more
generalised results requires future study.
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tralian Government Research Training Program Scholarship.

Appendix

In this section we show how zopt
i is derived. Suppose for a set of original data

{yi}n
i=1, the following probabilistic disclosure risk measure to be used by the

data provider.

P (
|Ỹi − Yi|

Yi
< δ) = P (

|Ỹ − Y |
Y

< δ), i = 1, · · · , n

In the following we assume Y > 0, C > 0, Ỹ = g(Y ∗), where Y ∗ = CY . We
observe that the disclosure risk of an observation y is given as:

P (
|g(Y ∗) − Y |

Y
< δ|Y = y) =

∫ ∞

0

I(
g(y∗)
1 + δ

< y <
g(y∗)
1 − δ

)fY ∗|Y (y∗|Y = y)dy∗
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Therefore P ( |g(Y ∗)−Y |
Y < δ|Y ) is a function of random variable Y .

The average disclosure risk for the original data is

Roverall =
∑n

i=1 P ( |g(Y ∗)−Y |
Y < δ|Y = yi)

n

Suppose EY (P ( |g(Y ∗)−Y |
Y < δ|Y )) exists, therefore we have

Roverall
P→ EY (P (

|g(Y ∗) − Y |
Y

< δ|Y ))

as n → ∞.
The objective is to find an expression of g(Y ∗) which maximizes Roverall as

n → ∞. Because {Y ∗|Y = y} = yC, therefore fY ∗|Y (y∗|Y = y) = 1
y fC(y∗

y ). We
observe the following:

EY (P (
|g(Y ∗)− Y |

Y
< δ|Y )) =

∫ ∞

0

∫ ∞

0
I(

g(y∗)
1 + δ

< y <
g(y∗)
1− δ

)fY ∗|Y =y(y
∗)dy∗fY (y)dy

=

∫ ∞

0

∫ ∞

0
I(

g(y∗)
1 + δ

< y <
g(y∗)
1− δ

)
1

y
fC(

y∗

y
)fY (y)dydy∗

=

∫ ∞

0
fY ∗ (y∗)

∫ ∞

0
I(

g(y∗)
1 + δ

< y <
g(y∗)
1− δ

)fY |Y ∗=y∗ (y)dydy∗

=

∫ ∞

0
fY ∗ (y∗)

∫ g(y∗)
(1−δ)

g(y∗)
(1+δ)

fY |Y ∗=y∗ (y)dydy∗

(2)

Therefore, EY (P ( |g(Y ∗)−Y |
Y < δ|Y )) is maximized if

∫ g(y∗)
(1−δ)

g(y∗)
(1+δ)

fY |Y ∗=y∗(y)dy is

maximized. The form of g(y∗) which maximizes
∫ g(y∗)

(1−δ)
g(y∗)
(1+δ)

fY |Y ∗=y∗(y)dy is zopt =

argmaxg(y∗)
∫ g(y∗)

(1−δ)
g(y∗)
(1+δ)

fY |Y ∗=y∗(y)dy. Therefore, the optimal estimator Zopt takes

the following form

Zopt = argmaxg(Y ∗)

∫ g(Y ∗)
(1−δ)

g(Y ∗)
(1+δ)

fY |Y ∗(y)dy
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Abstract. Record linkage (de-duplication or entity resolution) is the
process of merging noisy databases to remove duplicate entities. While
record linkage removes duplicate entities from such databases, the down-
stream task is any inferential, predictive, or post-linkage task on the
linked data. One goal of the downstream task is obtaining a larger ref-
erence data set, allowing one to perform more accurate statistical anal-
yses. In addition, there is inherent record linkage uncertainty passed to
the downstream task. Motivated by the above, we propose a generalized
Bayesian record linkage method and consider multiple regression analy-
sis as the downstream task. Records are linked via a random partition
model, which allows for a wide class to be considered. In addition, we
jointly model the record linkage and downstream task, which allows one
to account for the record linkage uncertainty exactly. Moreover, one is
able to generate a feedback propagation mechanism of the information
from the proposed Bayesian record linkage model into the downstream
task. This feedback effect is essential to eliminate potential biases that
can jeopardize resulting downstream task. We apply our methodology to
multiple linear regression, and illustrate empirically that the “feedback
effect” is able to improve the performance of record linkage.

1 Introduction

Record linkage (de-duplication or entity resolution) is the process of merging
noisy databases to remove duplicate entities. While record linkage removes dupli-
cate entities from such databases, the downstream task is any inferential, pre-
dictive or post-linkage task on the linked data. In this paper, we propose a
joint model for the record linkage and the downstream task of linear regression.
Our proposed model can link records over an arbitrary number of databases
c© Springer Nature Switzerland AG 2018
J. Domingo-Ferrer and F. Montes (Eds.): PSD 2018, LNCS 11126, pp. 297–313, 2018.
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(lists or files). We assume there is duplication within each database, known as
“duplicate detection.” Our record linkage model can be expressed as a random
partition model, which leads to a large family of distributions. Next, we jointly
model the record linkage task and the downstream task (linear regression), which
allows for the exact propagation of the record linkage uncertainty into the down-
stream task. Crucially, this generates a feedback propagation mechanism from
the proposed Bayesian record linkage model into the downstream task of linear
regression. This feedback effect is essential to eliminate potential biases that can
jeopardize resulting inference in the downstream task. We apply our methodol-
ogy to multiple linear regression, and illustrate empirically that the “feedback
effect” is able to improve performance of record linkage.

1.1 Prior Work

Our work builds off [14,16–18], which all proposed Bayesian record linkage mod-
els well suited for categorical data. [18] modeled the fully observed records
through the “hit-and-miss” measurement error model [2]. One natural way to
handle record linkage uncertainty is via a joint model of the record linkage and
downstream task. [10] introduced a record linkage model for continuous data
based on a multivariate normal model with measurement error. Turning to just
record linkage tasks, [16,17] were the first to perform simultaneous record linkage
and de-duplication on multiple files by using the fully observed records, creating
a scalable record linkage algorithm. In similar work, de-duplication in a single
database framework was tackled from a Bayesian perspective in [14] by using
the information provided by the comparison data.

Related work regarding the record linkage and downstream task has been con-
sidered under specific assumptions. [9] assumed that the two databases represent
a permutation of the same database of units and proposed an estimator (LL)
of the regression coefficients which is unbiased, conditionally on the matching
probabilities provided by the record linkage task. [7] extended this approach to
handle more complex and realistic linkage scenarios and logistic regression prob-
lems. Generalizations of the LL estimator have been also provided by [8] using
estimating equations. In addition, [4] proposed to consider the probabilities of
being a match—provided by the record linkage algorithm—as an ingredient to
be used within a multiple imputation scenario. Finally, [5] proposed a Bayesian
method that jointly models the record linkage and the association between the
overlapping features in two different databases. The authors consider somewhat
simpler situation where the number of records to match in the two databases
is relatively small and relies upon a specific blocking criteria. In addition, one
potential limitation of the approach is the assumption of specific matching pat-
tern. For each single block of comparisons, all cases in the smaller database will
certainly appear in the other databases. We refer to [6] for details.

Section 2 introduces our Bayesian record linkage model, providing extensions
to priors on random partitions. Section 3 generalizes our record linkage method-
ology to the downstream task of linear regression. Section 4 provides experiments
for the record linkage task on synthetic data. We then provide three experiments
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on the joint record linkage and downstream task of linear regression on synthetic
data. Section 5 provides a discussion and extensions to future work.

2 Bayesian Record Linkage and Priors on Partitions

In this section, we introduce notation used through the paper, our Bayesian
record linkage model, and an alternative and more intuitive construction for the
prior on co-referent records, known as the linkage structure λ.

2.1 Notation

Assume L databases (lists, data sets, or files) F1, F2 . . . , FL that consist of either
qualitative and/or categorical records, which are noisy due to the data collec-
tion process. Each record corresponds to an underlying latent entity (statistical
unit) of partially overlapping samples (or populations). In addition, assume all
databases have p overlapping features (fields). Assume L sets of records are
collected from a given population of size Npop where 1 ≤ Npop ≤ ∞ in the
same framework as [15,17]. As such, assign a label j′ (j′ = 1, . . . , Npop) to each
member of the population. Next, let ṽj′ = (ṽj′1, . . . , ṽj′p) be the vector of the p
categorical overlapping features for the population individual j′. Finally, denote
the entire set of population records by ṽ = (ṽ1, . . . , ṽNpop

).

2.2 Bayesian Record Linkage Model

Assume the set of population records ṽ is generated independently, for
j′ = 1, . . . , Npop, from a vector of independent categorical variables Ṽ =
(Ṽ1, . . . , Ṽ�, . . . , Ṽp) such that Ṽl ∈ {v� 1, . . . , v� M�

} and

P
(
Ṽ� = v� s

)
= θ� v� s

s = 1, . . . , M�, (1)

where M� is the number of categorical values for the �th feature. At the sample
level, assume that one does not observe the “true” population values due to
measurement errors. Thus, the observed records, which is a database of size
Ni, i = 1, . . . , L, consists of distorted versions of subsets of the vectors ṽj′ . Let
vij = (vij1, . . . , vijp) denote the observed values for the j-th record of the i-th
database, where i = 1, . . . , L and j = 1, . . . , Ni. Denote the observed records
(across the L databases) by v = (v11, . . . , v1N1 , . . . , vL1, . . . vLNL

). Next, let the
set of latent indicator variables λij ∈ {1, . . . , Npop} denote the unknown co-
reference (matching) pattern between the observed records v and the population
records ṽ, where λij = j′ indicates that the population record j′ generated
the observed record vij .1 In general, let λ = (λ11, . . . , λ1N1 , . . . , λL1, . . . , λLNL

)
denote the linkage structure.
1 The relation λij1 = λij2 , with j1 �= j2, implies that records j1 and j2 of the i-th

database represents are co-referent to the same population record. This is an instance
of duplicate-detection within the same database. When λi1j1 = λi2j2 , with i1 �= i2,
one has the usual record linkage framework with the same individual appearing in
two different databases.
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Next, we formalize the distortion mechanism when the population records
are observed in the L databases using the hit-and-miss model [2]. Let Vij� be
the random variable that generates observed record vijl. Assume that Vijl ∈
{vl 1, . . . , vl M�

}, that is, Vij� has the same support of Ṽ�. Let δa,b = 1 if a = b
and δa,b = 0 if a �= b, which implies that

P (Vij� = v� s | λij , ṽ, α�) = (1 − α�)δṽλij�,v� s
+ α�θ� v� s

s = 1, . . . , M� (2)

for i = 1, . . . , L; j = 1, . . . , Ni; � = 1, . . . , p, where α� ∈ [0, 1] represents the
distortion probability for the �-th overlapping feature. Here, the true population
value is observed with probability 1−α�, and a different value is drawn from the
random variable Ṽ� generating the population values with probability α�. Finally,
assuming the conditional independence among all the overlapping features given
their respective unobserved population counterparts, one obtains

p(v | ṽ, λ, α) =
L∏

i=1

Ni∏

j=1

p∏

�=1

P (vijl | ṽ, λ, α) =
L∏

i=1

Ni∏

j=1

p∏

�=1

[(1 − α�)δṽλij�,vij�
+ α�θ� vij�

]. (3)

We assume that the distortion probabilities are exchangeable, that is

α�
iid∼ Beta(f, g), � = 1, . . . , p,

and we assume the probabilities θ� 1 . . . θ� M�
are considered known and equal to

the corresponding population frequencies. The model summarized by Eqs. (1)
and (3) can be viewed as a latent variable model where the unobserved pop-
ulation records ṽ generate the observed records v and α = (α1 . . . , αp) can be
viewed as the unknown model distortion parameter.

Remark: A convenient property of the hit-miss model is that one can integrate
out the unknown population values ṽ to directly obtain the distribution p(v|α, λ).
The resulting marginal distribution p(v|α, λ) is the product of within-cluster
distributions. To improve mixing, we use a Metropolis within Gibbs algorithm
to simulate from the joint posterior p(λ, α|v) (See AppendixA).

2.3 The Prior Distribution for λ

In this section, we propose a more intuitive and subjective construction of a prior
distribution on λ. Let z denote the random partition of the observed records deter-
mined by λ and let P denote the set containing all the possible partitions of the
N observed records. The distribution on the sample labels λ induces a distribu-
tion on P. Furthermore, matches and duplicates are completely specified given
the knowledge of the random partition z, which is invariant with respect to the
labelings of the partition blocks. Given this construction, one can directly focus
on the partition distribution of the observed records without linking the labels
distribution to a sample design and to a population size Npop, see for example,
[14]. One can effectively consider the distribution of λ as a prior distribution for
the latent linkage structure and concentrate only on its probabilistic properties.



Generalized Bayesian Record Linkage and Regression 301

Both the interpretations of the role of λ (either as a consequence of the sampling
design or a model represented by partitions) may provide useful insights for a cor-
rect choice of its prior distribution. One difficult and related question in the record
linkage literature has been the subjective specification on the space of partitions.
A simple, alternative prior for the number of distinct entities k(z) can be obtained
looking at the following allocation rule for the record labels which is based on a
generalization of the Chinese Restaurant Process, namely the Pitman-Yor process
(PYP) ([3,13]). (See AppendixB for details).

3 The Downstream Task of Linear Regression

In this section, we propose record linkage methodology for the downstream task
of linear regression. Consider the model Ỹ =

∑p
l=1 X̃lβl + ε for the population

units, where the goal is to estimate the regression coefficients β = (β1, . . . , βp)t.
We observe Y and X = (X1, . . . , Xp), where X represents a noisy measure-
ment of the true covariates X̃ = (X̃1, . . . X̃p) and Y is a random copy of the
corresponding population variable Ỹ .

To better illustrate our approach, we consider two scenarios. In the first
scenario—the complete regression scenario—each database reports a set of
overlapping features, the response variable, and the covariates. Let yij and
xij = (xij1 . . . , xijp) denote the observed values for the j-th unit of the i-th
database, where i = 1, . . . , L and j = 1, . . . , Ni. In addition, let (y, x) denote the
entire set of regression data observed across the L databases. In the complete
scenario, there is not a bias problem concerning the estimation of the β coeffi-
cients. In the second scenario—the broken regression scenario—we assume that
the overlapping features are observed in each database, the response variable is
observed in only the first database, and specific subsets of covariates are observed
in the other databases. In this situation, let (y, x) denote the observation y1j ,
where j = 1, . . . , N1 and xij , where i = 2, . . . , L and j = 1, . . . , Ni. Note that xij

represents only a fixed subset of the values xij1 . . . xijp for j = 1, . . . , Ni. Here,
there is a bias issue regarding estimating the β coefficients.2

3.1 Simple Linear Regression

In this section, we consider linear regression and the two scenarios mentioned
above with a single covariate X. First, consider the complete regression scenario.
Let X̃j′ be the true value of observation X corresponding to the records of cluster
Cj′ . Now consider a cluster Cj′ = {(i, j)} with one record. Given the true value of
X̃j′ = x̃j′ and membership to cluster Cj′ , we assume that the response variable
Yij follows a standard normal regression model with covariate x̃j′ , where the
observed value for the covariate Xij is normal with mean x̃j′ and Yij and Xij

are independent. That is,

2 In both scenarios, we assume that the covariates have zero mean and the regression
model does not have an intercept.
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[
Yij

Xij

]
| X̃j′ = x̃j′ ∼ N2

[(
β 0
0 1

) [
x̃j′

x̃j′

]
,

(
σ2

y|x̃ 0
0 σ2

x|x̃

)]
. (4)

We assume that X̃j′ ∼ N(0, σ2
x̃), which allows one to integrate Xj′ via Eq. 4.

In fact, setting Zij = (Yij ,Xij)
′, one can easily show that conditionally on the

event {(i, j) ∈ Cj′}, it follows that

Zij ∼ N2

[(
0
0

)
, σ2

x̃

(
β2 β
β 1

)
+

(
σ2

y|x̃ 0
0 σ2

x|x̃

)]
. (5)

For ease of notation, let In denote the n × n identity matrix, 0n denote the
n-vector of zero; 1n denote a vector of all 1’s, and Jn = 1n1′

n. Next, set

B =
(

β2 β
β 1

)
and Σ =

(
σ2

y|x̃ 0
0 σ2

x|x̃

)
.

Consider a cluster Cj′ = {(i1, j1), (i2, j2)} with two records. The two pairs Zi1j1

and Zi2j2 are random vectors, both depending on the same “true” value X̃j′ .
Let ⊗ be the Kronecker product. Conditionally on X̃j′ = x̃j′ and on the cluster
membership, we replicate the model for a cluster with one record by assuming
that Zi1j1 and Zi2j2 are two independent bivariate normal random variables with
joint distribution

N4

[(
I2 ⊗

(
β 0
0 1

))
(14x̃j′) , I2 ⊗ Σ

]
. (6)

Then the marginal distribution of (Zi1j1 , Zi2j2)
′ is

(
Zi1j1

Zi2j2

)
∼ N4

(
04, I2 ⊗ Σ + σ2

x̃J2 ⊗ B
)
.

This argument can be extended to any cluster size. When card(Cj′) = n, the
marginal distribution of Z = (Zi1j1 , . . . , Zinjn

) is again multivariate normal:
Z ∼ N2n

(
02n, In ⊗ Σ + σ2

x̃Jn ⊗ B
)
.

Next, consider the broken regression scenario. In this case, when some infor-
mation is missing—either the covariate in the first database or the response vari-
able in some of the other databases—one can easily marginalize over the missing
variables by using standard properties of multivariate normal distribution. Let
(y, x)C′

j
= ((yij , xij) : λij = j′) denote the set of regression observations, which

conditionally on λ, correspond to the j′-th population unit. For example, for a
cluster Cj′ = {(1, j)} with one record in the first database, we denote this as
(y, x)C′

j
= y1j . Using the marginal density of Yij in Eq. 5, we can write the like-

lihood, conditional on λ, as p((y, x)C′
j
|λ, β, σ2

y|x̃, σ2
x|x̃). Similarily, suppose Cj′ =

{(i, j)} with i > 1, then (y, x)C′
j

= xij and the likelihood is given by marginal
density of Xij . Next, consider a cluster Cj′ = {(1, j1), (i2, j2)} with a record in
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the first database and the other record in a different database, i.e. i2 > 1. It
follows that (y, x)C′

j
= (y1j1 , xi2j2) and the corresponding likelihood is found by

marginalizing over the missing values X1j1 , Y2j2 in Eq. 6, where we obtain the
joint density in Eq. 5. Finally, it follows that the likelihood function (as a func-
tion of λ, β, σ2

y|x̃, σ2
x|x̃) for both the complete and broken regression scenarios can

be generally written as p(y, x|λ, β, σ2
x|x̃, σ2

y|x̃) =
∏Npop

j′=1 p((y, x)C′
j
|β, σ2

x|x̃, σ2
y|x̃).3

In order to handle the record linkage and downstream regression task simul-
taneously, we assume conditional independence on λ between the overlapping
features in the record linkage model and the set of variables in the downstream
task of linear regression. Assuming conditional independence, we find

p(λ, β, α, σ2
y|x̃, σ2

x|x̃|v, x, y) ∝ p(v|λ, α)p(y, x|λ, β, σ2
y|x̃, σ2

x|x̃)

× p(λ)p(α)p(β, σ2
y|x̃, σ2

x|x̃). (7)

The first factor is related to the record linkage process, and second factor
is related to the downstream task of linear regression, and the other factors
represent the prior distributions. We assume independent diffuse priors for
β, σ2

y|x̃, σ2
x|x̃. To update the appropriate regression parameters β, σ2

y|x̃, σ2
x|x̃, we

use the Metropolis-Hastings algorithm in AppendixA. Using the factorization
of the posterior in Eq. (7), the proposed method can be generalized to any sta-
tistical model.

3.2 Multiple Linear Regression

We extend the downstream task to that of multiple regression, first considering
the complete regression scenario. Let Cj′ denote a cluster of size n, YCj′ denote
a vector with n observations of the response variable in this cluster, and XCj′
denote the n×p matrix with the values of the p covariates observed in the cluster
units. Let [Y X]Cj′ denote the vector of n(p+1) elements with the n rows of the
matrix (YCj′ ,XCj′ ) vertically stacked and let X̃j′ denote the vector containing
the true values of the p covariates. Equation 4 can be generalized assuming that

[Y X]Cj′ | X̃j′ ∼ Nn(p+1)

[(
In×n ⊗

(
βt 0t

p

0p×p Ip×p

))(
12n ⊗ X̃

)
, In×n ⊗

(
σ2

y|x̃ 0

0 Σx|x̃

)]
,

where

12n ⊗ X̃ ∼ N2np

(
02np, (1n1t

n) ⊗
(

Σx̃ Σx̃

Σx̃ Σx̃

))
.

This way the marginal distribution of [Y X]Cj′ is n(p + 1)-variate normal with
zero mean and covariance matrix(

In×n ⊗
(

βt 0t
p

0p×p Ip×p

)) (
(1n1t

n) ⊗
(

Σx̃ Σx̃

Σx̃ Σx̃

)) (
In×n ⊗

(
βt 0t

p

0p×p Ip×p

))t

+
(

In×n ⊗
(

σ2
y|x̃ 0
0 Σx|x̃

))
,

3 We assume that population units j′ that do not have an observed cluster size con-
tribute to the likelihood with a factor equal to 1.
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which simplifies into

(1n1t
n) ⊗

(
βtΣx̃β βtΣx̃

Σx̃βt Σx̃

)
+ In×n ⊗

(
σ2

y|x̃ 0
0 Σx|x̃

)
.

The likelihood provided by the multiple regression model is the product of the
factors p([Y X]Cj′ = [y, x]C′

j
|β, σ2y|x̃, Σx|x̃) for the observed clusters. The same

considerations from linear regression regarding modeling the prior and the com-
putational aspects apply to multiple linear regression. Note the major difference
is in the marginalization pattern in the broken regression scenario. In fact, for a
cluster joining records across more than one database, we may need to integrate
out the covariate values missing in the databases that share a cluster.

4 Experiments

To investigate the performance of our proposed methodology we consider the
RLdata500 data set from the RecordLinkage package in R. This synthetic
data set consists of 500 records, each comprising first and last name and full
date of birth. We modify this data set to consider two databases, where each
database contains 250 records, respectively, with duplicates in and across the
two databases. To consider the case without duplicate detection, we modify the
original RLdata500 such that it has no duplicate records within each of the two
databases. Without duplicate detection is a special case of our general method-
ology (see Appendix C). We provide experiments for both record linkage and the
downstream task.

4.1 Record Linkage with and Without Duplicate-Detection

We provide two record linkage experiments—one with duplicate detection and
one without duplicate detection. In Figs. 1 and 2, we report the prior and the
posterior for k(z) and the performance of the record linkage procedure measured
in terms of the posteriors of the false negative rates (FNR) and the false discovery
rates (FDR). (For a review of FNR and FDR, see [1,15]).

Figure 1 (with duplicate detection) illustrates that the resulting posteriors of
k(z) appears robust to the choices of θ and σ (first row). We observe similar
behavior for the posteriors of FNR and FDR (second and third rows). Figure 2
illustrates that as we vary the PYP parameters, the posterior of T is weakly
dependent on their values. The two database framework without duplicate detec-
tion leads, a posteriori, to similar FNR (second row) and lower FDR (third row)
compared to the previous case. (See AppendixD for the PYP parameter set-
tings).

4.2 Regression Experiments

We consider three regression experiments on the RLdata500 data set. In Experi-
ment I, we consider the complete regression scenario in a single database frame-
work with duplicate detection. In Experiment II, we consider the broken regres-
sion scenario with record linkage and duplicate detection. In Experiment III, we
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Fig. 1. Prior and posteriors for k(z) (first row), FNR posteriors (second row), FDR
posteriors (third row) for the RLdata500 data set.
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Fig. 2. Prior and posteriors for t (first row), FNR posteriors (second row), FDR pos-
teriors (third row) for the RLdata500 data set assuming a two database record linkage
framework without duplicate-detection.

consider the broken multiple regression scenario in a two database framework
without duplicate detection. (See AppendixE for details).

Figure 3 gives the results of Experiment I. The posteriors of (β, σy|x̃, σx|x̃)
from our joint modeling approach (first row, solid lines) do not show remarkable
differences when compared to their true counterpart (first row, dotted lines),
which were obtained by fitting the regression model conditional on the true
value of λ. The similarity between the posteriors is mainly due to the large
concentration of λ around the true pattern of duplications. The mode of the
posterior of the number of distinct entities is exactly the true value (450), where
the FNR and FDR are considerably smaller with respect to case without the y
and x columns. Hence, the effect of considering the information provided by the
regression model has improved the record linkage process.

Figure 4 gives the results of Experiment II. The posteriors (first row, solid
lines) of (β, σy|x̃, σx|x̃) are similar to the corresponding true posteriors (first row,
dashed lines). We report the posteriors obtained by fixing λ equal to the point
estimate provided by the hit-and-miss model applied to the categorical variables
alone (first row, dotted lines). The posteriors of β and σ2

y|x̃ obtained with the
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Fig. 3. Experiment I. Upper panels: prior (dotdash lines) and posterior of β, σy|x̃, σx|x̃
with the joint record linkage and regression model (solid lines) and the true linkage
structure (dotted lines). Lower panels: posterior for k(z), FNR and FDR.

plug-in approach are strongly biased for the presence of false matches which, on
the other hand, are not affecting the posterior of σx|x̃. This distribution depends
on the 13 duplicated entities with two copies of x which are correctly accounted
for in the plug-in approach. To better illustrate the causes of the distortion in
the estimation of the regression parameters, the right panel on the top row shows
all the (x, y) pairs resulting from the plug-in approach. The solid black circles
represent the true matches, and the empty red circles represent the false matches,
with independent y and x values. We report the corresponding regression lines,
where the three false matches are lowering the β estimate and increasing the σy|x̃
estimate. Further analysis reveals that the posterior for k(z) (second row) with
the integrated hit-miss and regression model is less concentrated with respect to
the first experiment but it is more concentrated with respect to the single hit-
miss model. We reduce the FDR, leaving the FNR almost unchanged. We coin
this the feedback effect of the regression from the downstream task. For example,
if we consider a false link, the posterior probability of being a match will typically
be down-weighted by the low likelihood arising from the regression part of the
model. Hence, in addition to centering the estimates of the regression coefficient
β, the joint regression-hit miss model improves record linkage performance.

Figure 5 gives the results of the Experiment III. The joint model gives poste-
riors similar to the true ones while the plug-in approach gives biased estimates
and larger variability (first row, left upper panels). The presence of false matches
in the plug-in approach gives a positive bias in estimating the variance σy|x̃ and
affects the posterior of the measurement error parameters (first row, right upper
panels). The posteriors of σx1|x̃ and σx2|x̃ (not reported) both with the joint
model and the true λ are essentially equal to the prior, while the plug-in poste-
rior is concentrated on larger values. Under such conditions, even with the true
linkage structure, we do not have any useful information for estimating the mea-
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Fig. 4. Experiment II. Left upper panels: prior (dotdash lines) and posterior of
β, σy|x̃, σx|x̃ with the joint record linkage and regression model (solid lines), the true
linkage structure (dotted lines) and the plug-in approach (dashed lines). Right upper
panel: estimated regression line and (x, y) pairs with the joint model (solid line and
full circles) and the plug-in approach (dashed line and empty circles) Lower panels:
posterior for k(z), FNR and FDR.
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Fig. 5. Experiment III. Same caption as Fig. 3.

surement error variances due to the lack of duplicated x values. Thus, while the
joint model correctly does not contrast the information provided by the prior,
the presence of false matches creates (y, x) pairs that could be also explained by
a larger measurement error of the covariates. We observe that the joint model-
ing of the record linkage and regression data improves the matching process as
noted by the higher concentration of k(z) (second row, left lower panel) around
the true value of 450 and the lower FNRs and FDRs (second row, right lower
panels) with respect to results obtained with the hit-and-miss model only.
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5 Discussion

We have made three major contributions in this paper. First, we have proposed
a Bayesian record linkage model investigating the role that prior partition mod-
els may have on the matching process. Second, we have proposed a generalized
framework for record linkage and regression that accounts for the record link-
age error exactly. Using our methodology, one is able to generate a feedback
mechanism of the information provided by the working statistical model on
the record linkage process. This feedback mechanism is essential to eliminate
potential biases that can jeopardize the resulting post-linkage inference. Third,
we illustrate our record linkage and multiple regression methodology on many
experiments involving a synthetic data set, where improvements are gained in
terms of standard record linkage evaluation metrics.

Acknowledgments. Steorts was supported by NSF-1652431 and NSF-1534412. Tan-
credi and Liseo were supported by Ministero dell’ Istruzione dell’ Universita e della
Ricerca, Italia PRIN 2015.

Appendix

A Metropolis Algorithm

We provide our Metropolis-within-Gibbs algorithm that allows direct simula-
tion from the joint posterior. Let λ(−ij) be the vector λ with the element λij

removed and let Cj′ \ (ij) be the set of all the observed records with record (ij)
removed, which conditionally on λ, refer to the population individual j′ The full
conditional distribution of λij is

p(λij = q|λ(−ij), α, v) ∝
Npop∏
j′=1

p(VCj′ = vCj′ |α, λ) p(λij = q|λ(−ij))

∝
Npop∏
j′=1

p(VCj′ = vCj′ |α, λ)
p(VCj′\(ij)

= vCj′\(ij)|α, λ)
p(λij = q|λ(−ij)) (8)

∝ p(VCq
= vCq

|α, λ)
p(VCq\(ij) = vCq\(ij)|α, λ)

p(λij = q|λ(−ij)), (9)

where q = 1, . . . Npop. In Eq. 8, set λij = q, which implies that Cj′ = Cj′\ij

∀j′ �= q. It follows that
p(vCj′ |α, λ)

p(vCj′\ij |α, λ)
= 1 ∀j′ �= q. When the population

entity q represents an already existing cluster given λ−(ij), the above ratio can
also be written as
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p(VCq
= vCq

|α, λ)
p(VCq\(ij) = vCq\(ij)|α, λ)

=
p∏

l=1

⎡
⎣αlθl vijl

+ (1 − αl)

∏
(ih,jh)∈Cq\(ij)

(
(1 − αl)δvihjhl,vijl

+ αlθlvihjhl

)

p(VCq\(ij) l = vCq\(ij) l|α, λ)

⎤
⎦ .

When the label q identifies a new cluster, the following simplification is possible:

p(VCq
= vCq

|α, λ)
p(VCq\(ij) = vCq\(ij)|α, λ)

=
p∏

l=1

θl,vijl
.

Note that the posterior p(λ, α|v) is invariant with respect to the cluster labels and
that we are only interested in the cluster composition. Thus, we can avoid sim-
ulating the entire population label distribution, and instead set q ∈ {1, . . . , N}
(since there can be at most N clusters) and update λij with the following:

q(λij = q) =

⎧
⎪⎨

⎪⎩

p(VCq
=vCq

|α,λ)

p(VCq\(ij)=vCq\(ij)|α,λ) p(λij = q|λ(−ij)) if q labels an observed cluster

∏p
j=1 θl,vijl

p(λij = new|λ(−ij))/(N − k(−ij)) if q labels a new cluster
(10)

for i = 1, . . . , L, j = 1, . . . , Ni, where k(−ij) is the number of clusters without
the label λij . This way of updating the cluster assignment is standard when the
CRP is used for a prior on the cluster assignments. In addition, the marginal
likelihood of the cluster observations is known or can be easily calculated using
a recursive formula, see for example [11,12].

To adapt the algorithm to the two different prior distribution of λ, note that,
when q labels an observed cluster, the use of a uniform prior on λ implies that

p(λij = q|λ−(ij)) = 1/Npop and p(λij = new|λ−(ij)) = (Npop − k−(ij))/Npop.

With the PYP prior, the above mentioned probabilities are, respectively,

p(λij = q|λ−(ij)) = (nq − σ)/(N − 1 + ϑ) p(λij = new|λ−(ij)) = (k−(ij)σ + ϑ)/(N − 1 + ϑ)

where nq here denotes the size of the cluster Cq without the entity λij . Finally,
when a uniform prior on the partition space is considered, one has

p(λij = q|λ−(ij)) ∝ 1/(Npop)k(−ij) and p(λij = new|λ−(ij)) ∝ (Npop − k−(ij))/(Npop)k(−ij)+1
.

Finally, full conditional distributions of the components of α have a computa-
tionally manageable form using a recursive formula. In fact, assuming a standard
Beta prior on each αl, one obtains

p(αl|λ, v, α−l) ∝
N∏

j′=1

p(VCj′ l = vCj′ l|αl)α
p−1
l (1 − αl)q−1,

and a straightforward Metropolis step can be easily implemented.
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B Construction of PYP Priors

We now briefly describe adapting the PYP prior to our L database framework.
Assume the first j records of the i-th database and all the records of the first
i− 1 databases are classified into ki,j clusters identified by the population labels
j′
1, . . . , j

′
ki,j

with sizes n1, n2, . . . , nki,j
respectively. Also, let Ni,j =

∑i−1
l=1 Nl + j

denote the total number of these records. Next, the label of the record λi,j+1

identifies a new cluster with probability

P (λi,j+1 = “new”|λ1,1, . . . , λi,j) =
ki,jσ + ϑ

Ni,j + ϑ
,

where (ϑ, σ) are two parameters whose admissible values are σ ∈ [0, 1) with
ϑ > −σ or σ < 0 with θ = m|σ| for some positive integer m. Moreover, λi,j+1

will assume an already observed label j′
g identifying a cluster with size ng with

probability

P
(
λi,j+1 = j′

g|λ1,1, . . . , λi1,j1

)
=

ng − σ

Ni,j + ϑ
g = 1, . . . , ki,j .

The above updating rule induces a prior on the set of the possible partitions of
all the N records which can be written as [13]

P (z(λ) = z) =
(ϑ + σ)k−1,σ

(ϑ + 1)N−1,1

k∏
g=1

(1 − σ)ng−1,1,

where {n1, . . . , nk} are the cluster sizes of the partition z and xr,s = x(x +
s) · · · (x+(r−1)s). It can also be proved [13] that, under this prior, the expected
value of k(z) is

E(k(z)) =
N∑

i=1

(ϑ + σ)(i−1)↑
(ϑ + 1)(i−1)↑

=
ϑ

σ

[
(ϑ + σ)N↑

ϑN↑
− 1

]

and the variance is

V ar(k(z)) =
ϑ(ϑ + σ)

σ2

(ϑ + 2σ)N↑
ϑN↑

− ϑ2

σ2

(
(ϑ + σ)N↑

ϑN↑

)2

− ϑ

σ

(ϑ + σ)N↑
ϑN↑

with xs↑ = Γ (x + s)/Γ (x). For more details, we refer to [19].
The above equations can be used for prior elicitation by fixing ϑ and σ in

order to have E(k(z)) equal to a rough prior guess for the number of clusters
and a specific amount of prior variability for k(z). Moreover, in evaluating the
asymptotic properties, [13] observes that as N → ∞, E(k(z)) becomes infinite
for non negative values of σ; on the other hand, if σ is negative, k(z) is equal
almost surely to m which thus takes the role of the size Npop in a finite population
framework.
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C Record Linkage Without Duplicate-Detection

We now consider record linkage of two databases without duplicate-detection.
To consider this case, we simply modify the prior distribution on the λ’s such
that λij1 �= λij2 ∀j1 �= j2 and for i = 1, 2. In this case, clusters consist of at most
two elements so that the distribution of the observed records v, conditional on λ
and α, can be calculated analytically without exploiting the recursive formula.

If a uniform prior on the label space is assumed, the above conditioning is
equivalent to assuming that the two databases are two simple random samples
with replacement from a population of Npop units. This is the same situation
described in [18], where Npop is assumed unknown. Assume that T denotes the
number of common units between the two databases; then k(z) is equal to N1 +
N2 − T , where T follows a hypergeometric distribution

P (T = t) =

(
N1
t

)(
Npop−N1

N2−t

)
(
Npop

N2

) , max{0, N1 + N2 − Npop} ≤ t ≤ min{N1, N2}.

From a computational perspective, the conditioning of the uniform prior does
not imply substantial changes. In fact if a PYP prior is assumed, the standard
record linkage framework can be tackled by imposing that λ1j = j for j =
1, . . . , N1 and that the units of the second database may only join a cluster
composed by a single unit of the first database or create a new cluster, that is

p(λ2 j+1 = q|λ11 . . . , λ2 j) =

⎧
⎪⎨

⎪⎩

1−σ
k2j−j(1−σ+ϑ)

if q ≤ N1 and nq = 1

0 if q ≤ N1 and nq = 2
0 if q > N1 and nq = 1,

j = 0, 1 . . . , N2 − 1

and

p(λ2 j+1 = new|λ11 . . . , λ2 j) =
k2jσ + ϑ

k2j − j(1 − σ) + ϑ
j = 0, 1 . . . , N2 − 1

where k20 = N1 and k2j is the number of distinct elements considering the first
database and the first j elements of the second database. Finally, notice that

p(λ21, . . . , λ2N2 |λ11, . . . , λ1N1) =
(1 − σ)N−k2N2

∏k2N2
l=N1+1(σ(l − 1) + ϑ)∏N2

l=1(k2 l−1 − (l − 1)(1 − σ) + ϑ)

(N − k2N2)!

N !
.

This implies that the λ’s are no longer exchangeable. This problem, although
interesting from a theoretical perspective, does not cause computational issues.

The conditional prior probabilities for the Gibbs step updating of λ2j to be
used from Eq. (10) are

p(λ2j = q|λ−(2j)) ∝
⎧
⎨
⎩

(1 − σ) if q ≤ N1 and nq = 1
0 if q ≤ N1 and nq = 2
0 if q > N1 and nq = 1,

and

p(λ2j = new|λ−(2j)) ∝ (k−(2j)σ + ϑ)
N2−1∏
l=j

[
k2l − l(1 − σ) + ϑ

k2l + 1 − l(1 − σ) + ϑ

]
.
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D Record Linkage Experiment

We provide the parameter settings for the record linkage experiments. For the
case with duplicate detection, we considered the effect of the PYP prior for
λ with (θ, σ) = (0.4,0.98), (2,0.975), (10,0.965). These prior distributions have
a common prior mean of k(z) almost equal to 450; however, their respective
variance are quite different. For the case of no duplicate detection, we consider
the effect of the constrained PYP prior for λ with (θ, σ) = (1, 0.6), (1, 0.725),
and (1, 0.86). These values of the hyper-parameters (θ, σ) produce prior means
for the number of matches equal to 75, 50 and 25.

E Regression Experiments

We elaborate on our three regression experiments. In the first experiment, we
modify the data set by adding two columns with the pairs y and x generated
from the model in Sect. 3.1, conditional on the true λ structure. For clusters with
two records we simulate a single true value x̃ of the covariate from a normal
distribution with zero mean and variance equal to σ2

x̃ = 9. Then, conditionally
on x̃, we generate two independent draws x from a normal distribution with
mean x̃ and variance σ2

x|x̃ = 0.01 and two corresponding independent draws y

from a normal distribution with mean βx̃ with β = 3 and variance σ2
y|x̃ = 4.

Instead, the records without duplication are augmented with a single pair (y, x)
that is generated conditionally on a single value x̃ following the same model of
the duplicated records.

In the second experiment, we use the modified RL500 data set that consists
of two databases. We then remove y from the second databases and x from the
first database. Given the 50 entities with duplication, 28 belong to both the
databases reporting the y variable on the first database and the x variable on
the second database. Moreover, 9 entities only belong to first database with 2
duplicate records of y, and 13 entities only belong to the second database with
2 copies of x. In addition, we assume the same priors as in the first experiment.

In the third experiment, we modify the RL500 data set by generating data
from a regression model with two covariates, where we assume β1 = 2 and
β2 = 4, σ2

y|x̃ = 4 and a diagonal covariance matrix Σx|x̃ with elements σ2
x1|x̃ =

σ2
x2|x̃ = 0.01. We then split this data set into two databases of size 250, and then

remove y from the second database and remove the two covariates from the first
database. To mimic the case of record linkage without duplicate detection we
arrange the two databases so that they share 50 entities without duplications
within each databases.
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Abstract. Entity resolution seeks to merge databases as to remove
duplicate entries where unique identifiers are typically unknown. We
review modern blocking approaches for entity resolution, focusing on
those based upon locality sensitive hashing (LSH). First, we introduce k-
means locality sensitive hashing (KLSH), which is based upon the infor-
mation retrieval literature and clusters similar records into blocks using
a vector-space representation and projections. Second, we introduce a
subquadratic variant of LSH to the literature, known as Densified One
Permutation Hashing (DOPH). Third, we propose a weighted variant of
DOPH. We illustrate each method on an application to a subset of the
ongoing Syrian conflict, giving a discussion of each method.

1 Introduction

A commonly encountered problem in statistics, computer science, and machine
learning is merging noisy data sets that contain duplicated entities, which is
known as entity resolution (record linkage or de-duplication). Entity resolution
tasks are intrinsically difficult because they are quadratic in computational com-
plexity. In addition, for such tasks to be accurate, one often seeks models that
are robust to model-misspecification and also have low error rates (precision and
recall). These criteria are both difficult to satisfy, and have been at the core of
entity resolution research [3,8,9,26].

One way of approaching the computational complexity barrier is by parti-
tioning records into “blocks” and treating records in different blocks as non-co-
referent a priori [3,8]. There are several techniques for constructing a blocking
partition. The most basic method picks certain fields (e.g., geography, or gender
and year of birth) and places records in the same block if and only if they agree
on all such fields. This amounts to an a priori judgment that these fields are
error-free. This is known as traditional blocking, and is a deterministic scheme.
Unlike traditional blocking, probabilistic schemes such as locality sensitive hash-
ing (LSH) use all the fields of a record, and can be adjusted to ensure that blocks
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https://doi.org/10.1007/978-3-319-99771-1_21
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are manageably small. For example, [25] introduced data structures for sorting
and fast approximate nearest-neighbor look-up within blocks produced by LSH.

This approach is fast and has high recall (true positive rate), but suffers from
low precision (too many false positives). In addition, this approach is called pri-
vate if, after the blocking is performed, all candidate records pairs are compared
and classified into matches/non-matches using computationally intensive “pri-
vate” comparison and classification techniques, e.g., see [4].

LSH has been recently proposed as a way of blocking for entity resolution,
where one place similar records into bins or blocks. LSH methods are defined
by a type of similarity and a type of dimension reduction [1]. Recently, [24] pro-
posed clustering-based blocking schemes — k-means locality sensitive hashing
(KLSH), which is based upon the information retrieval literature and clusters
similar records into blocks using a vector-space representation and projections.
(While KLSH had been used before within the information retrieval literature,
this is the first known instance of its application to entity resolution [13]). [24]
showed that KLSH gave improvements over popular methods in the literature
such as traditional blocking, canopies [12], and k-nearest neighbors clustering.
In addition, [21] showed that minwise hashing based approaches are superior
to random projection based approaches when the data is very sparse and fea-
ture poor. Furthermore, computational improvements can be gained by using the
recently proposed densification scheme known as densified one permutation hash-
ing (DOPH) [21,22]. Specifically, the authors proposed an efficient substitute for
minwise hashing, which only requires one permutation (or one hash function) for
generating many different hash values needed for indexing. In short, the algo-
rithm is linear (or constant) in the tuning parameters, making this algorithm
very computationally efficient.

In this paper, we review traditional blocking methods that are determinis-
tic, and describe why such methods are not practical. We then review scalable
LSH methods for blocking. Specifically, we give two recent approaches an meth-
ods from above that are scalable to large entity resolution data sets – KLSH
and DOPH. Since both methods are known to work well on toy examples, we
illustrate both algorithms on a real data set taken from a subset of the Syrian
conflict, which is likely to be more realistic of industrial sized data sets. We
illustrate evaluation metrics of all methods and the computational run time.

2 Blocking Methods

Blocking is a computational tool used in entity resolution that allows one to
place similar records into blocks or partitions using either a deterministic or
probabilistic mechanism. We first review traditional blocking methods, and then
review probabilistic blocking methods. We propose two probabilistic blocking
methods for large scale blocking methods based upon LSH.
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2.1 Traditional Blocking

Traditional blocking requires domain knowledge to pick out highly reliable, if
not error-free, fields for blocking. While traditional blocking is intuitive and
easy to implement, it has at least four drawbacks. The first one is that the
resulting blocks may still be so large that linkage within them is computationally
impractical. The second is that because blocks only consider selected fields, much
time may be wasted comparing records which happen to agree on those fields
but are otherwise radically different. The third is due to the fact that traditional
blocking methods are by nature deterministic, and thus, must be changed for
each application at hand. The fourth is that a deterministic method cannot be
guaranteed to be private. Given that traditional blocking is impractical for many
reasons, we refer readers to [24], and we focus instead on probabilistic types of
blocking, namely variants LSH.

2.2 Variants of Locality Sensitive Hashing

In this section, we first provide terminology, known as shingling, that is essential
for using LSH for blocking. Next, we describe how can one produce blocks using
k-means LSH (KLSH). Then we introduce the notation of LSH, and the linear
variant—Densified One Permutation Hashing (DOPH). Finally, we propose a
weighted variant of DOPH (weighted DOPH).

2.3 Shingling

In entity resolution tasks, each record can be represented as a string of textual
information. It is often convenient to represent each record instead by a “bag”,
“shingle” (or “multi-set”) of length-k contiguous sub-strings that it contains. In
this paper, we use a k-shingle (k-gram or k-token) based approach to transform
the records, and our representation of each record is a set, which consists of all
the k-contiguous characters occurring in record string.

As an illustration, for the record BAKER, TED, we separate it into a 2-gram
representation. The resulting set is the following:

BA, AK, KE, ER, ER, TE, ED.

For example, consider Sammy, Smith, whose 2-gram set representation is

SA, AM, MM, MY, MS, SM, MI, IT, TH.

We now have two records that have been transformed into a 2-gram representa-
tion. Thus, for every record (string) we obtain a set ⊂ U , where the universe U
is the set of all possible k-contiguous characters.
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2.4 KLSH

We explore a simple random projection method, KLSH, where the similarity
between records is measured using the inner product of a bag-of-shingled vec-
tors that are weighted by their inverse document frequency. We first construct a
k-shingle of a record by replacing the record by a bag (or multi-set) of length-k
contiguous sub-strings that it contains. After the shingles are created, the dimen-
sionality of the bag-of-shingled vectors is then reduced using random projections
and by clustering the low-dimensional projected vectors via the k-means algo-
rithm. That is, the mean number of records per cluster is controlled by n/c,
where n is the total number of records and c is the number of block-clusters.

2.5 Locality Sensitive Hashing

We now turn to LSH, which is used in computer science and database engineering
as a way of rapidly finding approximate nearest neighbors [5,10]. Specifically,
the variant of LSH that we utilize is scalable to large databases, and allows for
similarity based sampling of entities in a subquadratic amount of time.

In LSH, a hash function is defined as y = h(x), where y is the hash code
and h(·) the hash function. A hash table is a data structure that is composed
of buckets (not to be confused with blocks), each of which is indexed by a hash
code. Each reference item (record) x is placed into a bucket h(x).

More precisely, LSH is a family of function that map vectors to a discrete set,
namely, h : RD → {1, 2, · · · ,M}, where M is in finite range. Given this family
of functions, similar points (records) are likely to have the same hash value
compared to dissimilar points (records). The notion of similarity is specified
by comparing two vectors of points (records), x and y. We will denote a general
notion of similarity by SIM(x, y). In this paper, we only require a relaxed version
LSH, and we define this below. For a complete review of LSH, we refer to [19].
Formally, a LSH is defined by the following definition below:

Definition 1 (Locality Sensitive Hashing (LSH)). Let x1, x2, y1, y2 ∈ R
D

and suppose h is chosen uniformly from a family H. Given a similarity metric,
SIM(x, y), H is locality sensitive if SIM(x1, x2) ≥ Sim(y2, y3) then PrH(h(x1) =
h(x2)) ≥ PrH(h(y1) = h(y2)), where PrH is the probability over the uniform
sampling of h.

2.5.1 Minhashing
One of the most popular forms of LSH is minhashing [1], which has two key
properties—a type of similarity and a type of dimension reduction. The type of
similarity used is the Jaccard similarity and the type of dimension reduction is
known as the minwise hash, which we now define.

Let {0, 1}D denote the set of all binary D dimensional vectors, while R
D

refers to the set of all D dimensional vectors (of records). Note that records
can be represented as a binary vector (or set) representation via a shingling
representation More specifically, given two record sets (or equivalently binary



318 R. C. Steorts and A. Shrivastava

vectors) x, y ∈ {0, 1}D, the Jaccard similarity between x, y ∈ {0, 1}D is J =
|x ∩ y|
|x ∪ y| , where | · | is the cardinality of the set.

More specifically, the minwise hashing family applies a random permutation
π, on the given set S, and stores only the minimum value after the permutation
mapping, known as the minhash. Formally, the minhash is defined as hmin

π (S) =
min(π(S)), where h(·) is a hash function.

Given two sets S1 and S2, it can be easily shown that

Prπ(hmin
π (S1) = hmin

π (S2)) =
|S1 ∩ S2|
|S1 ∪ S2| , (1)

where the probability is over uniform sampling of π. It follows from Eq. 1 that
minhashing is a LSH family for the Jaccard similarity.1

2.6 DOPH

In this section, we introduce the linear variant of LSH, known as DOPH. Let
K be the number of hash functions and let L be the number of hash tables.
A (K,L) parameterized blocking scheme requires K × L hash computations
per record. For a single record, this requires storing and processing hundreds
(or even thousands) of very large permutations. This in turn requires hundreds
or thousands of passes over each record. Thus, traditional minwise hashing is
prohibitively expensive for large or moderately sized data sets. In order to cross-
validate the optimal (K,L) tuning parameters, we need multiple independent
runs of the (K,L) parameterized blocking scheme. This expensive computation
is a major computational concern. To avoid this computational issue, we can use
one permutation of the hash function, where k = K × L minhashes are made in
one single pass over the data [21,22].

Due to sparsity of data vectors (from shingling), empty blocks (in the hash
tables) are possible and destroy LSH’s essential property [19]. To restore this,
we rotate the values of non-empty buckets and assign a number to each of the
empty buckets. Our KL hashed values are simply the final assigned values in
each of the KL buckets. The final values were shown to satisfy Eq. 1, for any
S1, S2, as shown in [21,22].

2.7 Weighted DOPH

Minhashing, however, only uses the binary information and ignores the weights
(or values) of the components, which is important for entity resolution problems
due to the unbalanced nature of the data (small amount of duplicate records).
This is the reason why we observe slightly better performance for synthetic data
1 In this paper, we utilize a shingling based approach, and thus, our representation of

each record is likely to be very sparse. Moreover, [23] showed that minhashing based
approaches are superior compared to random projection based approaches for very
sparse data sets.
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of LSH methods used in [24], one of which is based upon random projections. To
explore this more broadly, we examine the power of minwise hashing for entity
resolution, a situation where the data is quite unbalanced, while simultaneously
utilizing the weighting of various components.

Suppose now x, y are non-negative vectors. For our problem, we are only
interested in non-negative vectors because shingle based representations are
always non-negative. We utilize the generalization of Jaccard similarity for real
valued vectors in R

D, Unlike the minhash, this variant is sensitive to the weights
of the components, and is defined as

Jw =
∑

i min{xi, yi}∑
i max{xi, yi} = 1 − ‖x − y‖1∑

i max{xi, yi} , (2)

where || · ||1 represents the �1 norm. Consistent weighted sampling [2,6,7,11] is
used for hashing the weighted Jaccard similarity Jw. In our application to the
subset of the Syrian dataset, we find minhash and weighted minhash give similar
error rates, which can be seen in Sect. 4.

With DOPH, the traditional minwise hashing scheme is linear or constant
in the tuning parameters. For the weighted version of minhashing, we propose a
different way of generating hash values for weighted Jaccard similarity, similar
to that of [2,6]. As a result, we obtain the fast and practical one pass hashing
scheme for generating many different hash values with weights, analogous to
DOPH for the unweighted case. Overall, we require only one scan of the record
and only one permutation.

Given any two vectors x, y ∈ R
D as the shingling representation, we seek hash

functions h(·), such that the collision probability between two hash functions is
small. More specifically, this means that

Pr(h(x) = h(y)) =
∑

i min{xi, yi}∑
i max{xi, yi} . (3)

Let δ be a quantity such that all components of any vector xi = Ix
i δ for some

integer Ix
i .2 Let the maximum possible component xi for any record be x and

let M be an integer such that xi = Mδ. Thus, δ and M always exist for finitely
bounded data sets over floating points.

Consider the transformation T : RD → {0, 1}M×D, where for T (x) we expand
each component xi = Iδ to M dimensions and with the first I dimensions have
value 1 and the rest value 0.

Observe that for vectors x and y, T (x) and T (y) are binary vectors and

|T (x) ∩ T (y)|
|T (x) ∪ T (y)| =

∑
i min{Ix

i , Iy
i }

∑
i max{Ix

i , Iy
i }

=
∑

i min{Ix
i , Iy

i }δ
∑

i max{Ix
i , Iy

i }δ
=

∑
i min{xi, yi}∑
i max{xi, yi} (4)

2 The assumption holds when dealing with floating point numbers for small enough δ.
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In other words, the usual resemblance (or Jaccard similarity) between the trans-
formed T (x) and T (y) is precisely the weighted Jaccard similarity between x
and y that we are interested in. Thus, we can simply use the DOPH method
of [21,22] on T (x) to get an efficient LSH scheme for weighted Jaccard similarity
defined by Eq. 4. The complexity here is O(KL +

∑
i Ii) for generating k hash

values, a factor improvement over O(k
∑

i Ii) without the densified scheme.
Often Ii is quite large (when shingling) and

∑
i Ii is large as well. When

∑
i Ii

is large, [6] give simple and accurate approximate hashes for weighted Jaccard
similarity. They divide all components xi by a reasonably big constant so that
xi ≤ 1 for all records x. After this normalization, since xi ≥ 0, for every x, we
generate another bag of word xS by sampling each xi with probability xi ≤ 1.
Then xS is a set (or binary vector) and for any two records x and y, the resemblance
between xS and yS sampled in this manner is a very accurate approximation of the
weighted Jaccard similarity between x and y. After applying the DOPH scheme
to the shingled records, we generate k different hash values of each record in time
O(KL + d), where d is the number of shingles contained in each record. This is a
vast improvement over O(KL +

∑
i Ii). Algorithm 1 summarizes our method for

generating k different minhashes needed for blocking.

Algorithm 1. Fast KL hashes
Data: record x,
Result: KL hash values for blocking
xS = φ;
forall the xi > 0 do

xS ∪ i with probability proportional to xi;
end
return KL densified one permutation hashes (DOPH) of xS

3 Evaluation Metrics

We evaluate each of our hashing methods below using recall and reduction ratio
(RR). The recall measures how many of the actual true matching record pairs
have been correctly classified as matches. There are four possible classifications.
First, record pairs can be linked under both the truth and under the estimate,
which we refer to as correct links (CL). Second, record pairs can be linked under
the truth but not linked under the estimate, which are called false negatives
(FN). Third, record pairs can be not linked under the truth but linked under the
estimate, which are called false positives (FP). Fourth and finally, record pairs
can be not linked under the truth and also not linked under the estimate, which
we refer to as correct non-links (CNL). The vast majority of record pairs are
classified as correct non-links in most practical settings. Then the true number
links is CL + FN, while the estimated number of links is CL + FP. The usual
definitions of false negative rate and false positive rate are
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FNR =
FN

CL+FN
, FDR =

FP
CL+FP

,

where by convention we take FDR = 0 if its numerator and denominator are
both zero, i.e., if there are no estimated links. The recall is defined to be

recall = 1 − FNR.

The precision is defined to be3

precision = 1 − FDR.

The reduction ratio (RR) is defined as

RR = 1 − sM + sN
nM + nN

,

where nM and nN are the total of matched and non-matched records and the
number of true matched and true non-matched candidate record pairs generated
by an indexing technique is denoted with sM + sN ≤ nM + nN. The RR pro-
vides information about how many candidate record pairs were generated by an
indexing technique compared to all possible record pairs, without assessing the
quality of these candidate record pairs. We also evaluate the methods using the
precision, where precision calculates the proportion of how many of the classified
matches (true positives + false positives) have been correctly classified as true
matches (true positives). It thus measures how precise a classifier is in classifying
true matches. This measure is useful if we wish to use hashing based approaches
for entity resolution, however, as we show, we are not able to achieve both a
high precision and recall (see Sect. 4). It’s most important for a blocking method
to have a high RR and recall because the entity resolution task can correct for
potential problems that are represented with a low precision. On the other hand,
the error summarized by the recall cannot be improved by an entity resolution
task.

4 Application

We test the two blocking approaches on a subset of the ongoing Syrian conflict,
where via the Human Rights Data Analysis Group (HRDAG), we have access
to four databases from the Syrian conflict which cover roughly the same period,
namely March 2011 – April 2014. In this section, we apply LSH based methods
to the subset of the Syrian dataset. (We do not consider any methods in the
literature that performed worse than KLSH in terms of RR and recall. See
[20] for further details and experiments on traditional and other probabilistic
blocking schemes.)
3 Note that the precision for a blocking procedure is not expected to be high since we

are only placing similar pair in the same block (not fully running an entity resolution
procedure or de-duplication procedure, which would try and maximize both the recall
and the precision).
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4.1 The Syrian Data

The four data sources consist of the Violation Documentation Centre (VDC),
Syrian Center for Statistics and Research (CSR-SY), Syrian Network for Human
Rights (SNHR), and Syria Shuhada website (SS). Each database lists a different
number of recorded victims killed in the Syrian conflict, along with available
identifying information including full Arabic name, date of death, death location,
and gender. Since the above information is collected indirectly, such as through
friends and religious leaders, or traditional media resources, it comes with many
challenges. For example, the data set contains natural biases, spelling errors,
missing values in addition to duplication of those killed in the conflict. The
ambiguities in Arabic names make the situation more challenging as there can
be a large textual difference between the full and short names in Arabic. Such
ambiguities and lack of additional information make blocking on this data set
considerably challenging [18]. Owing to the significance of the problem, HRDAG
has provided labels for a large subset of the data set. More specifically, five
different human experts from the HRDAG manually reviewed pairs of records in
the four data sets, classifying them as matches if referred to the same entity and
non-matches otherwise. (More information regarding the Syrian data set can be
found in Appendix A).

4.2 KLSH Applied to Syrian Data

We first apply KLSH to the subset of the Syrian data set, which greatly contrasts
the empirical studies shown in [24]. The parameters to be set for KLSH are the
number of random projections (p) and the number of clusters to output (k).
Using this k-means approach to blocking, the mean number of records within a
cluster can be fixed.

Figure 1 (left panel) displays the results of KLSH clustering applied on the
subset of the Syrian database, where we plot the recall versus the total number
of blocks. We set the number of random projections to be p = 20 and allow the
shingles to vary from k = 1, 2, 3, 4. This figure shows that a 1-shingle always
achieves the highest recall. We notice that using a 1-shingle, a block size of 100,
the recall is 0.60, meaning that 40% of the time the same two records are split
across blocks.

4.3 DOPH Applied to Syrian Data

Due to the poor results achieved by KLSH for the Syrian data set, we apply
minhashing using both the unweighted and weighted DOPH algorithm to the
full Syrian database using shingles 2—5. We illustrate that regardless of the
number of shingles used, the recall and RR are close to 1 as illustrated in Fig. 2.
Furthermore, using unweighted DOPH, we see that a shingle of three overall is
most stable in having a recall and RR close to 0.99 as illustrated in Fig. 3. Using
weighted DOPH, we see that a shingle of two or three overall is most stable in
having a recall and RR close to 0.99. In terms of computational run time, we



Probabilistic Blocking with an Application to the Syrian Conflict 323

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total Number of Blocks

R
ec

al
l

k=4
k=3
k=2
k=1

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total Number of Blocks

R
ec

al
l

Fig. 1. Left: KLSH on subset of Syria database (20,000 records) using p = 20. Right:
KLSH on entire Syrian database using p = 20 and k = 1. One can see that the recall
is very poor compared with previous approaches applied using KLSH, and thus, the
method is not suitable for blocking on this particular data set.
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Fig. 2. For shingles 2–5, we plot the RR versus the recall. Overall, we see the best
behavior for a shingle of 3, where the RR and recall can be reached at 0.98 and 1,
respectively. We allow L and K to vary on a grid here. L varies from 100–1000 by steps
of 100 and K takes values 15, 18, 20, 23, 25, 28, 30, 32, 35.
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Fig. 3. For shingles 2–5, we plot the RR versus the recall. Overall, we see the best
behavior for a shingle of 2 or 3, where the RR and recall can be reached at 0.98 and
1, respectively. We allow L and K to vary on a grid here. L varies from 100–1000 by
steps of 100 and K takes values 15, 18, 20, 23, 25, 28, 30, 32, 35.

note that each individual run takes 10 min on the full Syrian dataset and 100 GB
of RAM. We contrast this with the other blocking runs that on 20,000 records
from Syria take many hours or 1–2 days (or a week) and return a recall and RR
that is unacceptable for entity resolution tasks.

5 Discussion

We have reviewed two modern approaches for blocking, namely KLSH and
DOPH and applied both to a subset of the Syrian conflict. We find that while
KLSH has been able to handle data sets with low noise and distortions, it is not
able to achieve a high recall on the Syrian data set, and thus, is not a suitable for
entity resoultion for data sets that have similar levels of noise as in the Syrian
data set. On the other hand, DOPH performs well given the sparsity and noisy
levels on the observed data at hand, and appears to be an excellent, stable, and
scalable choice for the blocking step in an entity resolution task. This merits
further investigations with scalable variants of LSH for entity resolution tasks.



Probabilistic Blocking with an Application to the Syrian Conflict 325

Acknowledgments. We would like to thank HRDAG for providing the data and
for helpful conversations. We would also like to thank Stephen E. Fienberg and Lars
Vilhuber for making this collaboration possible. Steorts’s work is supported by NSF-
1652431 and NSF-1534412. Shrivastava’s work is supported by NSF-1652131 and NSF-
1718478. This work is representative of the author’s alone and not of the funding
organizations.

A Syrian Data Set

In this section, we provide a more detailed description about the Syrian data set.
As already mentioned, via collaboration with the Human Rights Data Analysis
Group (HRDAG), we have access to four databases. They come from the Vio-
lation Documentation Centre (VDC), Syrian Center for Statistics and Research
(CSR-SY), Syrian Network for Human Rights (SNHR), and Syria Shuhada web-
site (SS). Each database lists each victim killed in the Syrian conflict, along with
identifying information about each person (see [17] for further details).

Data collection by these organizations is carried out in a variety of ways.
Three of the groups (VDC, CSR-SY, and SNHR) have trusted networks on the
ground in Syria. These networks collect as much information as possible about
the victims. For example, information is collected through direct community
contacts. Sometimes information comes from a victim’s friends or family mem-
bers. Other times, information comes from religious leaders, hospitals, or morgue
records. These networks also verify information collected via social and tradi-
tional media sources. The fourth source, SS, aggregates records from multiple
other sources, including NGOs and social and traditional media sources (see
http://syrianshuhada.com/ for information about specific sources).

These lists, despite being products of extremely careful, systematic data col-
lection, are not probabilistic samples [14–16,18]. Thus, these lists cannot be
assumed to represent the underlying population of all victims of conflict vio-
lence. Records collected by each source are subject to biases, stemming from a
number of potential causes, including a group’s relationship within a community,
resource availability, and the current security situation.

A.1 Syrian Handmatched Data Set

We describe how HRDAG’s training data on the Syrian data set was created,
which we use in our paper.

First, all documented deaths recorded by any of the documentation groups
were concatenated together into a single list. From this list, records were broadly
grouped according to governorate and year. In other words, all killings recorded
in Homs in 2011 were examined as a group, looking for records with similar
names and dates.

Next, several experts review these “blocks”, sometimes organized as pairs for
comparison and other times organized as entire spreadsheets for review. These
experts determine whether pairs or groups of records refer to the same individ-
ual victim or not. Pairs or groups of records determined to refer to the same

http://syrianshuhada.com/
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individual are assigned to the same “match group.” All of the records contribut-
ing to a single “match group” are then combined into a single record. This new
single record is then again examined as a pair or group with other records, in an
iterative process.

For example, two records with the same name, date, and location may be
identified as referring to the same individual, and combined into a single record.
In a second review process, it may be found that record also matches the name
and location, but not date, of a third record. The third record may list a date
one week later than the two initial records, but still be determined to refer to
the same individual. In this second pass, information from this third record will
also be included in the single combined record.

When records are combined, the most precise information available from
each of the individual records is kept. If some records contain contradictory
information (for example, if records A and B record the victim as age 19 and
record C records age 20) the most frequently reported information is used (in this
case, age 19). If the same number of records report each piece of contradictory
information, a value from the contradictory set is randomly selected.

Three of the experts are native Arabic speakers; they review records with
the original Arabic content. Two of the experts review records translated into
English. These five experts review overlapping sets of records, meaning that some
records are evaluated by two, three, four, or all five of the experts. This makes it
possible to check the consistency of the reviewers, to ensure that they are each
reaching comparable decisions regarding whether two (or more) records refer to
the same individual or not.

After an initial round of clustering, subsets of these combined records were then
re-examined to identify previously missed groups of records that refer to the same
individual, particularly across years (e.g., records with dates of death 2011/12/31
and 2012/01/01 might refer to the same individual) and governorates (e.g., records
with neighboring locations of death might refer to the same individual).
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Abstract. Mobility data mining can improve decision making, from
planning transports in metropolitan areas to localizing services in towns.
However, unrestricted access to such data may reveal sensible locations
and pose safety risks if the data is associated to a specific moving individ-
ual. This is one of the many reasons to consider trajectory anonymiza-
tion.

Some anonymization methods rely on grouping individual registers
on a database and publishing summaries in such a way that individual
information is protected inside the group. Other approaches consist of
adding noise, such as differential privacy, in a way that the presence of
an individual cannot be inferred from the data.

In this paper, we present a perturbative anonymization method based
on swapping segments for trajectory data (SwapMob). It preserves the
aggregate information of the spatial database and at the same time, pro-
vides anonymity to the individuals.

We have performed tests on a set of GPS trajectories of 10,357 taxis
during the period of Feb. 2 to Feb. 8, 2008, within Beijing. We show
that home addresses and POIs of specific individuals cannot be inferred
after anonymizing them with SwapMob, and remark that the aggregate
mobility data is preserved without changes, such as the average length
of trajectories or the number of cars and their directions on any given
zone at a specific time.

1 Introduction

With the pervasive use of smartphones and the location techniques such as GPS,
GSM and RFID, the opportunities to deliver content depending on current user
location have increased. Location Based Services (LBS) provide considerable
advantages such as allowing users to benefit from live location-based information
for transportation, recommendations of places of interest, or even the opportu-
nity to meet friends in nearby locations. Such location-based data can be useful
also for intelligent transportation systems, in which vehicles may serve as sensors
for collecting information about traffic jams, weather, and road conditions.
c© The Author(s) 2018
J. Domingo-Ferrer and F. Montes (Eds.): PSD 2018, LNCS 11126, pp. 331–346, 2018.
https://doi.org/10.1007/978-3-319-99771-1_22
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However, revealing users’ locations may have some privacy risks. If the data
is linked to the real identities it may reveal personal preferences (e.g., sexual,
political or religious orientation), or it may be used for inferring habits and
know the time when a person is at home or away. To avoid such inconveniences,
a variety of anonymization techniques have been developed to hide the identity
of the user or her exact location, e.g., [26].

Moreover, as Giannotti et al. mention in [10], big data (in particular trajec-
tory data) may be used to understand human behavior through the discovery of
individual social profiles, by the analysis of collective behaviors, spreading epi-
demics, social contagion, and to study the evolution of sentiment and opinion;
however, trusted networks and privacy-aware social mining must be pursued and
methods for protection and anonymization for such data must be developed to
enforce the data subjects’ rights and promote their participation.

2 Related Work

Different solutions have been proposed for anonymizing trajectories in data pub-
lishing. Abul et al. [1], propose the (k, δ)-anonymity model, which consists on
publishing a cylindrical volume of radius δ that contains the trajectory of at
least k moving objects. Note that this idea is an extension of the concept of
k-anonymity for databases [22].

Terrovitis and Mamoulis [27] consider a discrete spatial domain, e.g., spatial
information is given in terms of addresses in a city map. Hence, the user tra-
jectories are expressed as sequences of POIs. They present the use case of the
RFID cards from the Octopus1 company in Hong Kong, which collects the trans-
action history of its customers. The company may want to publish sequences of
transactions by the same person as trajectories, for extracting movement and
behavioral patterns. However, if a given user, Alice, uses her card to pay at differ-
ent convenience stores that belong to the same chain (e.g., convenience stores),
that company may reidentify Alice if her sequence of purchases is unique in the
published trajectory database.

A similar approach in [18] is obtained by transforming sequences by adding,
deleting, or substituting some points of the trajectory, while preserving also
frequent sequential patterns [2] obtained by mining the anonymized data.

In [13,14], Hoh et al. discuss the use of mobility data for transportation
planning and traffic monitoring applications to provide drivers with feedback
on road and traffic conditions. For modelling the threats to privacy in such
datasets, they assume that an adversary does not have information about which
subset of samples belongs to a single user, however by using multi-target tracking
algorithms [19] subsequent location samples may be linked to an individual that
is periodically reporting his anonymized location information.

In [13] they consider the attack of deducing home locations of users by lever-
aging clustering heuristics used together with the decrease of speed reported by

1 http://www.octopuscards.com/.

http://www.octopuscards.com/
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GPS sensors. Then, propose data suppression techniques by changing the sam-
pling rate (e.g., from 1 min to 2, 4 and 10) for protecting from such inferences.

In [14], in order to prevent adversaries from tracking complete individual
paths, they propose an algorithm that perturbs slightly the trajectories of differ-
ent individuals (to make them closer) in such a way that the adversary may not
be able to follow which segment of the path corresponds to which user by using
multi-target tracking algorithms. This is done with a constraint on the Quality
of Service, which is expressed as the mean location error between the actual and
the observed locations. They argue that adequate levels of privacy can only be
obtained if the density of users is sufficiently high.

This is closely related to [3] in which Mix Zones are introduced, these are
spatial areas on which users’ location is not accessible, hence when users are
simultaneously present on a mix zone, their pseudonyms are changed. This pro-
cedure is performed to difficult the linkage of the incoming and outgoing path
segments to the same specific user.

They design a model for location privacy protection that aims to preserve
the advantages of location aware services while hiding their identities from the
applications that receive the users’ locations. The existence of a trusted middle-
ware system (or sensing infrastructure) is assumed and the applications register
their interest in a geographic space with the middleware, such space is called
application zone. Examples of such application zones are hospitals, universities
or supermarket complexes, in general it could be any open or closed space.

The regions in which applications cannot trace user movements are called
mix zones, and the borders between a mix zone and an application zone are
called boundary lines. Applications do not receive traceable user identities, they
receive pseudonyms that allow communication between them. Such communi-
cation passes through the trusted intermediary and the pseudonyms of users
change when they enter a mixed zone.

In order to measure location privacy, Beresford and Stajano [4] define the
anonymity set as the group of people visiting the mix zone during the same
time period. However, as the boundary and time when a user exits a mix zone
is strongly correlated to the boundary and time when the user enters it, such
information may be exploited by an attacker, therefore they use the informa-
tion theoretic metric that Serjantov and Danezis [24] proposed for anonymous
communications which considers the varying probabilities of users sending and
receiving messages through a network of mix nodes.

This is modeled in [4] as a movement matrix in which they record the fre-
quency of ingress and egress points to the mix zone at several times. Then, a
bipartite weighted graph is defined in which vertices model ingress and egress
pseudonyms and edge weights model the probability that two pseudonyms rep-
resent the same underlying person. Therefore, a maximal cost perfect matching
of these graphs represents the most probable mapping among incoming and out-
going pseudonyms.
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However, since the solution to many restricted matching problems (such as
this one) is NP-hard [25], Beresford and Stajano [4] describe a method for achiev-
ing partial solutions.

An approach that does not consider middleware to obtain location privacy is
proposed in Chap. 9 from [11]. It consists of a system with an untrusted server
and clients communicating in a P2P network for privacy preserving trajectory
collection. The aim of their data collection solution is to preserve anonymity
in any set of data being stored, transmitted or collected in the system. This
is achieved by means of k-anonymization and swapping. Briefly, the protocol
consists of the clients recording their private trajectories, cloaking them among
k similar trajectories and exchanging parts of those trajectories with other clients
in the P2P network. However, the final step (the data reporting stage) clients
send anonymous partial trajectories to the server, that have been generated
in such a way that the server can filter all the synthetic trajectory data that
has been generated for cloaking during the process, and recover the original
trajectory.

One of the advantages of performing trajectory anonymization on the user
side, as in [20], is that the anonymization process is no longer centralized. Thus
data subjects gain control, transparency and more security for their data.

For a brief overview of privacy protection techniques and a discussion of
k-anoymity and differential privacy models in different frameworks, cf. [21].

In [7], a differential privacy model for transit data publication is considered,
using data from the Société de Transport de Montréal (STM). The data are
modeled as sequential data in a prefix tree that represents all the sequences
by grouping the sequences with the same prefix into the same branch. Their
algorithm takes a raw sequential dataset D, a privacy budget ε, a user specified
height of the prefix tree h and a location taxonomy tree T , and returns a sanitized
dataset D̃ satisfying ε-differential privacy. For measuring utility, in the STM case,
sanitized data are mainly used to perform two data mining tasks, count query
and frequent sequential pattern mining [2].

Other ε-differentially private mechanism for publishing trajectories called
SDD (Sampling Distance and Direction) can be found in [15]. They focus on
ship trajectories with known starting point and terminal point. And consider
that two trajectories T and T ′ with the same number of positions are adjacent if
they differ at exactly one position excluding the starting point and the terminal
point.

In [28], a differentially private algorithm for location privacy is proposed,
following a discussion on the (in)applicability of differential privacy in a variety of
settings, such as [6,16]. Their algorithm considers temporal correlations modeled
as a Markov chain and proposes the “δ-location set” to include all probable
locations (where the user might appear). The authors argue that, to protect the
true location, it is enough to hide it in the δ-location set in which any pairs of
locations are not distinguishable. However, they leave the problem of protecting
the entire trace of released locations as future work.
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In this paper, we present an anonymization method considering that the data
are dynamic, the rate at which the information is collected is not constant, and
the databases are being generated as the data is received.

3 Proposed Method: SwapMob

We propose a method for anonymization of mobility data by swapping trajec-
tories, which works in a similar way as the mix zones but in a non-restricted
space.

Our algorithm (SwapMob) simulates an online P2P system for exchanging
segments of trajectories. That is, when two users are near they interchange their
partial trajectories, see Sect. 3.1. In this way, all users’ trajectories are mixed
incrementally, and the moving users keep generating segments of trajectories
that are being swapped. In the end, each trajectory retrieved is made of small
segments of trajectories of different individuals, who have met during the day,
as depicted in Fig. 1. Hence, the relation between data subjects and their data is
obfuscated while keeping a precise aggregated data, such as the number of users
in each place at each time and the locations that have been visited by different
anonymous users.

We formalize our method after a brief explanation of previous definitions and
assumptions.

3.1 Definitions

We assume that we have a database in which the i-th observation is a tuple (IDi,
lati, longi, ti) that consists of the individual’s identifier (IDi), the latitude (lati),
longitude (longi) and timestamp (ti).

Then, the trajectory Tx of an individual x will consist of all the observations
with identifier x ordered by their timestamps ti. These can be represented as
Tx = (x1, x2, . . . , xm) if there are m observations for individual x.

We say that two individuals meet or their trajectories cross (on points xi and
yj) if they have been co-located. We denote this by xi ≈ yj . Note that being co-
located depends on thresholds for proximity (χ) and time (τ), since the sampling
rate of positions is not regular nor constant. Moreover two persons cannot be in
the exact same place at the same time.

We define a matching as a maximal subset of pairs of elements of a set.
We denote by Sw(T ) the resulting trajectory after all swaps have been

applied to T . Next, we define the following two primitives for our algorithm:
generate random matching and swap.

1. Swap: Given two trajectories Tx = (x1, . . . , xi, xi+1, . . .) and Ty = (y1, . . . , yj ,
yj+1, . . .) that meet in points xi and yj , a swap of Tx with Ty at points
xi and yj results in Sw(Tx) = (y1, . . . , yj , xi+1, . . .) and Sw(Ty) = (x1, . . . ,
xi, yj+1, . . .).
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(a) Original trajectories (b) After first swap (c) After second swap

Fig. 1. Three trajectories before and after swapping (Color figure online)

2. Generate random matching:
Given a set of elements S = s1, s2, . . . , sm, we generate a random matching
by making pairs of the first m/2 with the following m/2 numbers, followed
by a random permutation of all numbers m.

Note that, in case that the number of elements m is odd, to generate a
matching we must leave out one element and that all possible random matchings
can be generated following our procedure.

Crossing Paths and Swapping. We propose a model such that two peers get
in contact (meet) if they have been co-located on a similar timestamp depending
on parameters of proximity χ and time τ .

Next, we simulate SwapMob protocol by swapping the users IDs when the
users have passed close enough. We calculate the set of users that get in contact
in a given time interval, and choose a random matching among them when they
are even and a matching of all but one, when they are odd. Here, the swapping
is carried out in a pairwise manner, but it could be done as a permutation such
as in [4].

Note that changing pseudonyms (IDs) is equivalent to swapping the partial
trajectories.

In Fig. 1, we present an example of three simple trajectories crossing
Tr, Tg, Tb. We assume that they are moving from left to right and upwards,
Tr = (r1, r2, r3), Tg = (g1, g2, g3, g4) and Tb = (b1, b2, b3, b4). Note that we are
also assuming that the blue trajectory meets the red trajectory first (b2 ≈ r2)
and then the green trajectory (b3 ≈ g2). In this tiny example, we can see how
the iterative swaps preserve parts of the trajectory intact, but at the end each
trajectory has parts of many others, such as the green one which ends having a
segment of the blue trajectory, a segment of the red and a segment of its original
trajectory Sw(Tg) = (r1, r2, b3, g3, g4).

3.2 SwapMob Anonymizer

We follow a similar architecture to the one in [13] in which a Trusted Third Party
(TTP ) knows the vehicles identities but can not access sensor information (such
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Algorithm 1. Offline algorithm for swapping trajectories
Input: Trajectory Database. Thresholds for time τ and proximity χ.
Output: Swapped trajectories identifiers Sw(Ti).
Partition the timestamps t =

⋃
τj in intervals of length τ

for each pair of registers i, j in interval τj do
if dist(li, lj) < χ then

add i, j to close records list (possible swaps) Sτj at the given time
interval.

end

end
generate random matching with possible swaps in Sτj

order all swaps in
⋃

Sτj by timestamp
for each pair i ≈ j in

⋃
Sτj do

swap Ti with Tj

end
return Swapped trajectories Sw(Ti)

as position and speed); and a Service Provider (SP ) knows the sensor measures
but not the identities. Further, the SP calculates which records are close to each
other without knowing to which individual they belong and communicates them
to the TTP (in this case SwapMob anonymizer) such that it can swap their
identities without knowing at which location they were.

This is achieved in the following way (See Fig. 2):

1. Users communicate with SwapMob, sending their sensor data (M) encrypted
with the public key (KSP ) of SP . SwapMob keeps the number of register (i),
which user has sent it (ui), its current pseudonym (IDi), the timestamp (ti)
and the encrypted sensor data E(Mi,KSP ), which includes their encrypted
location (li).

2. SwapMob sends the vector (i, ti, E(Mi,KSP )) to the SP , who decrypts
E(Mi,KSP ) and keeps a buffer of data on interval τj that contains all times-
tamps between timestamp tj and tj+1 and has length τ , that is τj = {t : tj <
t < tj+1}.

3. SP sends the set Sτj of registers that were at distance less than the predefined
threshold χ during the interval of time τj back to SwapMob, more formally
Sτj = {i, i′ : d(li, li′) < χ and ti, ti′ ∈ τj}. SwapMob calculates the swaps and
stores the users and swapped IDs list, that is, for every record i SwapMob
keeps the corresponding swapped id Sw(IDi) and the user (ui) to which such
pseudonym corresponds.

4. Finally, every given period of time which could be daily, weekly or monthly,
SwapMob reports the list of (i, Sw(IDi)) to SP .

The authentication data integrity of the communications can be guaranteed with
a hash-based message authentication code.

In this way, SP obtains the measures of all sensors M in real-time (Step
2), and at the end of the day also gets the anonymized trajectories of the users
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Fig. 2. Architecture of our system

that generated them (Step 4). Even, though SP knows which records belong to
Sτj (Step 3), SP does not know to which other record they have been swapped
during period τj , and by the iterative swappings it gets even harder to associate
them to a specific user.

At the same time, SwapMob only knows the users, the timestamps at which
they have crossed, and the reported trajectories are already anonymized by
SwapMob (Step 4).

Our system, can be applied for the use case proposed in [3], by defining a
set of swap zones (similar to the mix zones) and adding the restriction that the
swapping cannot be performed outside such places. Then, the spatio-temporal
trajectories of users between such swap zones could be monitored in an anony-
mous and precise way.

However, there will still be some differences. Namely, the swap zone that we
consider is the entire application zone, whereas in [3] a user entering a mix zone
can be distinguished from another user emerging from the same zone if the size
of the mix zone is too large.

This same argument justifies that the distance and time parameters, χ and
τ must not be too large either in our algorithm, otherwise swapping could not
be credible.

3.3 Protecting Against Reidentification

It is well known that de-identification does not necessarily means anonymization.
The same attributes that are used for extracting knowledge, may be used for
pointing to a specific individual, and uniquely relating his/her data to her real
identity.

Other notions of privacy are defined depending on the context, which may
be of statistical databases [9], networks [33], or geo-located data.

By identifying the POIs of an individual, it is possible to infer his habits (e.g.,
does sport, travels a lot), the locations that he visits frequently (may be related
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to political or religious beliefs) or even related to health (clinics, hospitals). This
may also be used to infer his schedule, predict his future locations, and learn
his past locations and possibly his personal relations by observing frequent or
periodic co-location. Moreover, such habits and locations can be easily used to
reidentify the individuals behind the data. As it has been proven on previous
anonymity studies on anonymity of home/work location.

Regarding this topic, Golle and Partridge studied in [12] workers who revealed
their home and work location with noise or rounding on the order of a city
block, a kilometer or tens of kilometers (census block, census tract, or county)
and showed that the sizes of the anonymity set were respectively 1, 21 and
34,980. That is, when the data granularity was on the order of a census block,
the individuals were uniquely identifiable, and for granularities on the order of
census track or county, they were protected within sets of size 21 or 34,980. In
[31], Zang and Bolot inferred the top N locations of a user from call records
and correlated such information with publicly-available side information such as
census data. Then, they showed that the top 2 locations likely correspond to
home and work location and that the anonymity sets are drastically reduced if
an attacker infers them.

Therefore, for protecting the individuals against reidentification, is crucial to
protect their home addresses and POIs, to provide them with minimum guaran-
tees of keeping them anonymous. Swapped data may not allow for following a
specific individual and his whereabouts, and thus, this will not permit person-
alization or individual classification, which are ways of protecting their privacy.

A different approach regarding the possibility of reidentification and the
(im)possibility of protection, is in [17], where they measure the uniqueness of
human mobility traces depending on their resolution and the available out-
side information, assuming that an adversary knows p random spatio-temporal
points. Then, they coarsen such data spatially and temporally to find a formula
for uniqueness depending on such parameters.

We argue that SwapMob preserves anonymity by dissociating the segments
of trajectories from the subject that generated them.

An attacker may know several spatio-temporal points of an individual that
uniquely identify him. However, to link a register in the anonymized database to
such an individual, the points known by the attacker must belong to the same
trajectory after swapping. In most cases, the attacker will not learn the entire
trajectory information since the published trajectory is made of segments from
many different individuals. Of course, when publishing the trajectories, it should
be noted that they have been generated by SwapMob, and the anonymization
may be reversed if the SwapMob Anonymizer and the Service Provider (see
Fig. 2) share their information for guaranteeing accountability.

3.4 Utility of Swapped Data

In this paper we are assuming that the interest of using data anonymized by
SwapMob is for making mobility maps and predictions that may be useful
for intelligent transportation systems and for planning in a city. As Hoh and
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Gruteser proposed in [14], pre-specified vehicles could periodically send their
locations, speeds, road temperatures, windshield wiper status and other infor-
mation to the traffic monitoring facility. These statistics can provide information
on the traffic jams, average travel time or the quality of specific roads, and can
be used for traffic light scheduling and road design.

Furthermore, the sensors do not necessarily have to be attached to vehicles,
they could be carried on mobile phones, and the utility of using the individuals
for sensing is preserved, since all their sensor data, including all their movements
and timestamps (in aggregate) are kept intact by SwapMob.

In [5], a real-time urban monitoring platform and its application to the City
of Rome was presented, they used a wireless sensor network to acquire real-time
traffic noise from different spots, GPS traces of locations from 43 taxis and 7268
buses, and voice and data traffic served by each of the base transceiver stations
from a telecom company in the urban area of Rome. These are few examples of
sensor that could be carried by individuals, anonymized and transmitted to a
service provider via SwapMob.

Another example is the offline mining in [29] representing the knowledge from
taxi-drivers as a landmark graph could be done with SwapMob anonymized data.
A landmark is defined as a road segment that has been frequently traversed
by taxis, and a directed edge connecting two landmarks represents the frequent
transition of taxis between the two landmarks. This graph is then used for traffic
prediction and for providing a personalized routing service.

In general, lossless maps of flows in the city can be obtained by using Swap-
Mob at several aggregation levels and for different timestamps.

4 Empirical Evaluation

We tested our algorithm on the T-drive dataset [29,30] which contains the GPS
trajectories of 10,357 taxis during the period of Feb. 2 to Feb. 8, 2008 within
Beijing. The total number of points in this dataset is about 15 million and the
total distance of the trajectories reaches to 9 million km. It is important to note
that not all taxis appear every day and not all report their positions at the
same interval. The average sampling interval is about 177 s and 623 m. Each line
contains the following data: taxi id, date time, longitude, latitude.

4.1 Reidentification by POIs and Home Location

Recall that our main privacy motivations are to protect locations related to
people’s habits and also the association of the trajectories to specific individuals.

We show in the next subsections how to infer points of interest of an indi-
vidual such as his home location. Then, we show that such locations cannot be
inferred after applying SwapMob to the data.
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Inferring Points of Interest and Home Location. In [32], if an individual
remains at less than 200 m from a given point during at least 20 min, then it is
considered a stay point (or point of interest) thus the two thresholds used for
detecting them are time τ = 20 and distance χ = 200.

In general, for obtaining points of interest, we discretize the space in square
cells of 111.32 m (or 0.001 decimal degrees) and count which are the most pop-
ulated cells for each individual, considering that the most populated one should
contain the home location.

This is similar to [8] that discretize the world into 25 by 25 km cells and
define the home location as the average position of check-ins in the cell with the
most check-ins, see also [23].

In [3], Beresford and Stajano tested this kind of attack on real location data
from the Active Bat, consisting in following the trajectory of a pseudonym to a
“home” location (in this case the user’s desk in the office) and successfully de-
anonymize all the users by correlating where does any given pseudonym spend
most of its time and who spends more time than anyone else at any given desk.

We validated this assumption empirically by looking at the distribution of
timestamps for such set of locations, which is greater than 5% and increases
consistently from 20 h until 6 h where it reaches its peak and decreases below
5% around 10 h, see Fig. 3. Also, if we assume that those with more than 5%
of relative frequency, are the correct home locations, we obtain that the correct
home locations amount for 83.7% of the total, a very similar percentage to the
one obtained in [8] by manual inspection which was 85% accuracy.
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Fig. 3. Frequency histogram of hours at deduced home locations, as a percentage of
total number of measurements for each hour.

Home Locations After Swapping. We validated the results of our anony-
mization technique by trying to infer users home locations after swapping. Con-
sidering that the home location is the most relevant POI, we can argue that
these experiments prove that not only home locations will be protected by our
method, but all POIs.
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For carrying out the swapping process, we assumed that two taxis were co-
located if they passed at distance at most 111 m approximately (χ = 0.001) in a
1-min interval (τ = 60). Note that this is about 6 and 3 times less the average
sampling interval for distance and time in the dataset.

We found out that the inferred location after swapping was always different
from the real one, for all except for the 51 trajectories that did not swapped.
However, we inspected some of them and observed that they didn’t swapped
probably due to the fact that they are outside Beijing, as we can see in Fig. 4.

Fig. 4. Some trajectories that did not swapped

4.2 Reidentification by Linkage

In this section we simulate an adversary who knows exact locations and times-
tamps, and tries to reidentify a trajectory in the dataset. We also show that the
anonymized trajectories do not always intersect the original ones. This means
that, even in the case that the adversary can link the data points that he knows,
he may not learn the entire original trajectory.

In Fig. 5a we represent the empirical cumulative distribution function of the
intersection between original and anonymized trajectories, and in Fig. 5b the
percentage of each trajectory disclosed depending on how many exact spatio-
temporal points an adversary knows.

Figure 5a shows that 84% of all the anonymized trajectories intersect in less
than 1/4 their corresponding original trajectory, 68% in less than 1/10 and
28% in less than 1/100. Figure 5b shows that adversaries knowing as many as
10 precise spatio-temporal points, are still not able to reidentify 58% of the
population, and even when they are able to find the corresponding anonymized
trajectory to the one that they are attacking, they will not learn more than 50%
of the original trajectory in 95% of the cases. This is in contrast to the results
on [17], in which 4 spatio-temporal points are enough to uniquely characterize
95% of the traces, and the traces considered the most difficult to identify can be
characterized with 11 points.
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5 Conclusions

We have defined and tested a novel algorithm for real-time mobility data
anonymization that consists on swapping trajectory segments. In contrast to
the k-anonymity or differential privacy models for trajectory anonymization, the
proposed method does not modify the data, but its association to specific indi-
viduals, and it is performed on real time, without the need of having the entire
dataset. The proposed protocol tackles both identity and location privacy, and
our data model can be adapted to protect either single trajectory positions, as
they lose the relation to the individual who has generated the data, or the whole
trajectories, since they are mixed among many different peers.

We show that is not possible to infer correctly the home locations after the
anonymization and, also, that an adversary who knows exact points of the tra-
jectory is not able to use them for reidentification, because in most cases they
no longer correspond to the anonymized trajectory. And, even in the improb-
able case that the adversary correctly relates the anonymized trajectory with
the original, we have shown that he cannot infer the entire trajectory but just a
small part of it.

We have simulated our protocol with an offline algorithm, although, the
protocol could be run in real time in which data is transmitted by user devices to
our anonymizer that communicates and collaborates with a server. By changing
the anonymizer for a group protocol, the protocol could provide security against
collusion between the service provider and the anonymizer.

It must be pointed out that swapping cannot be carried out when an indi-
vidual does not cross anyone in her path. Hence, the proposed technique will
not anonymize the individuals who do not cross anyone in their daily activity.
However, it is not very common for an individual to spend too much time with-
out meeting someone or going out from home. Moreover, such individuals can
be kept outside the database without compromising its utility. The use case con-
sidered is for obtaining aggregate mobility data and exact count queries, which
neither k-anonymity or differential privacy can provide.
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Nevertheless, this comes at the cost of modifying the trajectories and possibly
losing individual trajectory mining utility. Future work directions to solve this
issue are to add the restriction of non-swapping streets or non-swapping zones for
improving the utility to better preserve entire trajectories inside a given street
or zone.
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Abstract. A plotted spatial distribution of a variable is an interesting
type of statistical output favored by many users. Examples include the
spatial distribution of people that make use of child care, of the amount
of electricity used by businesses or of the exhaust of certain gasses by
industry. However, a spatial distribution plot may be exploited to link
information to a single unit of interest. Traditional disclosure control
methods and disclosure risk measures can not readily be applied to this
type of maps. In previous papers [5,6] we discussed plotting the distri-
bution of a dichotomous variable on a cartographic map. In the present
paper we focus on plotting a continuous variable and derive a suitable
risk measure, that not only detects unsafe areas, but also contains a
recipe to repair them. We apply the risk measure to the spatial distri-
bution of the energy consumption of enterprises to test and describe its
properties.

Keywords: Cartographic map · Disclosure risk · Spatial distribution
Continuous variable

1 Introduction

The use of spatial mapping of (statistical) information is becoming more popular
with the increasing availability of easy tools to produce cartographic plots. Since
humans often are visually oriented, spatial mapping helps in understanding data.
Indeed, often policy makers are using and asking for maps to explore which places
in their cities need special attention with regard to their domain of interest.

In our previous papers [5,6] we concentrated on plotting spatial distributions
of dichotomous variables. We effectively plotted the probability of occurrence of
a phenomenon such as making use of youth care. We defined disclosure risk
measures as well as utility measures for that specific situation, translating the
traditional measures for frequency count tables to measures as function of areas
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or locations. The utility was defined in terms of hot-spots, reflecting the intended
use by policy makers. A nice example of the use of hot-spots is e.g., described
in [1].

Spatial mapping can obviously be used to display the spatial distribution of
a numeric variable such as the mean energy consumption per enterprise. Such
maps can be very useful tools for policymakers. See e.g., http://www.esru.strath.
ac.uk/EandE/Web sites/12-13/SmartCities/index.html where a project is pre-
sented that aims to make use of Geographical Information Systems (GIS) map-
ping techniques to analyse the spatial and temporal distribution of energy con-
sumption throughout a manageable area of Glasgow in support of a range of
possible decision-makers, to identify opportunities for future energy networks.

National statistical offices also provide a lot of regional and spatial infor-
mation that can be visualized on a map. Regarding energy consumption statis-
tics, Statistics Netherlands e.g. produces figures on energy consumption that
are used on http://www.nationaleenergieatlas.nl/kaarten, a site about national
issues concerning energy (consumption of electricity and gas, location of solar
systems, windmills, etc.).

In this paper we use the term ‘map’ in the sense of a cartographic map
or at least of a map that can relate physical locations to units in the (target)
population. We will describe a disclosure risk measure as a function of area for
the situation of displaying a numerical variable on a map. That measure will be
based on the traditional measures for magnitude tables (see e.g., Chap. 4 of [4]).

Applying disclosure control techniques to publications of statistics, is a trade
off between reducing the disclosure risk and maximizing utility, see e.g., [3,4]. In
the current paper we mainly focus on the disclosure risk aspects. We will only
briefly mention some aspects of utility.

We apply the proposed spatial disclosure risk measure to real-life data on
energy consumption. To estimate the spatial distribution of energy consumption,
we make use of a ‘simple’ estimator (mean energy consumption on predefined
grid cells) and of a kernel density type estimator. For kernel density type esti-
mators, information and applications can be found in e.g., [2,7,8]. We show how
the disclosure risk measure evolves with changing the zoom level of the spatial
mapping.

2 How to View Map-Data

Plotting a distribution on a (cartographic) map can be done in different ways.
A traditional way of plotting spatial data is by making use of predefined admin-
istrative regions or a predefined gridding. One typically calculates the average
value of a variable of interest for each region and colors the region area with
a corresponding color in the map. This results in a so-called choropleth, with
colored regions, as an example see left hand side of Fig. 1.

The mean values for the regions can be regarded as cell-values in a table and
thus the ‘standard’ risk measures like a p%-rule can be used to identify ‘risky’
cells, i.e., ‘risky’ regions. To deal with such ‘risky’ regions, one would typically

http://www.esru.strath.ac.uk/EandE/Web_sites/12-13/SmartCities/index.html
http://www.esru.strath.ac.uk/EandE/Web_sites/12-13/SmartCities/index.html
http://www.nationaleenergieatlas.nl/kaarten
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Fig. 1. Losing information when zooming in, due to disclosure risk Source: http://
www.nationaleenergieatlas.nl/kaarten

suppress such a region (i.e., not color that region) or merge regions into larger
areas that do no longer violate the p%-rule.

A disadvantage of this method is that each region gets a uniform color. I.e.,
whenever there are sub-regions that contain quite different values, they are not
visible, unless zooming is allowed, sensible and available. Allowed in the sense
that disclosure issues are not too restrictive (hence e.g., showing nothing at
large zoom-factors, see e.g., Fig. 1), sensible in the sense that the administra-
tive regions can be subdivided into nested, smaller administrative regions and
available in the sense that for each zoom-level the average should have been
computed beforehand. To overcome some of the just mentioned disadvantages,
alternatively one can construct a kernel-type estimator of the spatial distribution
of the variable of interest.

In the current paper we focus on the spatial distribution of a continuous vari-
able, that is continuous in its value, not in its spatial distribution. In practice the
locations of the target population units are discrete. Our method uses a spatial
density estimator which suggests that the spatial distribution is continuous: each
location on the map has a ‘value’ for the variable. This should increase usability,
as displaying a spatial density can be seen as a middle ground between a coarse
choropleth and a sparse and noisy location plot.

2.1 Spatial Distribution

We will restrict ourselves to spatial distributions defined on R
2. It is convenient

to write the (target) population as U = {r1, . . . , rN} with ri = (xi, yi) the rep-
resentation of element i of the population by its coordinates (xi, yi). I.e., U is a
set of points in R

2. This reflects the notion that the location is an identifying
variable. In official statistics, the ri often coincides with the locations of the
target population of houses or of enterprises. Assume furthermore that we have
measurements on each location ri of phenomenon g, e.g. energy consumption,
and denote these measurements by g1, . . . , gN . We construct a continuous func-
tion g(r) : R

2 → R being a spatial distribution, representing the value of g at any

http://www.nationaleenergieatlas.nl/kaarten
http://www.nationaleenergieatlas.nl/kaarten
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location r. It is an continuous approximation of the discrete spatial distribution
of the underlying, finite, population.

Let A denote an area, defined to be a subset of R
2. An area can be anything

from administrative regions to a set of points: A can be a building, a street, a
municipality, a grid square, a county, a general polygon or a collection thereof.

For an area A we define the total amount of g (e.g. energy consumption) as

G(A) =
∫

A
g(r) dr

From this we can derive the mean g per area A

Ḡa(A) = G(A)
/

||A|| (1)

where ||A|| denotes the size of area A. Alternatively we can derive the mean g
per unit in area A as

Ḡu(A) = G(A)
/ N∑

i=1

1(ri ∈ A) (2)

where 1(B) equals 1 if B is true and 0 if B is false. Note that in these definitions
we tacitly assume that the denominators in (1) and (2) are positive. In case a
denominator is zero, the mean would be ‘undefined’.

Using administrative areas in Eq. (2) would coincide with the ideas behind
the more traditional way of plotting distributions as described in the beginning
of this section. However, we now can more generally derive the mean g for any
region on a map.

Zooming. An attractive feature of plotting spatial distributions is the ability to
zoom in on specific areas. One usually starts with an overview impression of the
spatial distribution by looking at a larger region (e.g., country level) and then
zoom in on specific regions with special characteristics (e.g., neighborhoods).
For this feature, there are (at least) two ways of dealing with the displayed
spatial distribution. In the first place one could calculate/estimate the spatial
distribution at a certain zoom-level and keep the thus obtained values fixed when
zooming into lower level regions. A second possibility is to calculate the spatial
distribution for several zoom-levels: when zooming into lower level regions, more
detailed estimates could be calculated.

A disadvantage of the first option is that one has to decide at which zoom
level the spatial distribution will be calculated. The second option feels more
natural, especially when the mean energy consumption is plotted: zooming in to
more detailed regions assumes one is interested in more detailed mean values as
well. However, this could obviously conflict with the idea of protecting individual
units. Thus fixing a maximum zoom level would be a first requirement for the
second option.
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2.2 Disclosure Risk

The recent discussion about the Strava fitness app1 shows that the location of
a population unit could sometimes be considered sensitive information: plotting
the spatial distribution of ‘running’ people revealed the ‘secret’ location or shape
of military compounds. In the current paper however we will restrict ourselves
to the situation where location is ‘only’ an identifying variable.

Disclosure risk is related to individual units, whereas a spatial distribution
is a function of location. This means we have to make a link between the spatial
distribution and the risk measure. To simplify the discussion, we assume that
the full population is observed.

Disclosure Scenarios. If we want to assess disclosure risk, we first need to
specify possible disclosure risk scenarios. In case we plot a distribution of a
variable on a map, several aspects play a role:

– The location of a population unit is very identifying.
– The possibility to zoom in on a map makes it easy to pinpoint the exact

location of a population unit.
– The value of the variable at a certain location may be sensitive information.
– The spatial characteristics of the target population (e.g., where to find densely

or sparsely populated regions) implies how identifiable a population unit is.

Based on those aspects, we have the following disclosure scenario in mind:

Definition 1. Basic disclosure scenario for plots of spatial distributions
An attacker first locates ‘hot-spots’: regions of high value of the spatial distri-
bution. He then zooms in at that region until he can recognize/locate individual
units from the population. Finally, he links the value of the spatial distribution
to those individual units.

Two subscenarios can be distinguished: in case the attacker is not a popu-
lation unit with a location in the hot-spot of interest, he is called an external
attacker. In case the attacker is a population unit inside the hot-spot of interest,
he is called an internal attacker. In the latter case the internal attacker can
use information on his own contribution to derive more accurate information on
another unit in the hot-spot compared to an external attacker. �

Risk Measure. In the traditional approach, each administrative region is
regarded as a table cell and thus a p%-rule can be applied to each adminis-
trative region. In case of a continuous spatial distribution, it makes no sense to
consider each individual location as a table cell. By representing the units in the
population by their locations ri, we have no area related to each individual unit.

Indeed, there appear to be no ‘natural’ areas to be checked for a concentration
rule like the p%-rule. Note that ‘natural’ areas of two distinct units could be
1 See e.g., http://www.abc.net.au/news/science/2018-01-29/strava-heat-map-shows-
military-bases-and-supply-routes/9369490.

http://www.abc.net.au/news/science/2018-01-29/strava-heat-map-shows-military-bases-and-supply-routes/9369490
http://www.abc.net.au/news/science/2018-01-29/strava-heat-map-shows-military-bases-and-supply-routes/9369490
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overlapping or actually coincide. In practice, the ‘natural’ region could be taken
within a predefined set of regions or within unions of smallest allowable grid
cells.

For a region A we calculate the total value G(A) of variable g. As concentra-
tion rule for that area, we check for each unit in area A whether its value can be
estimated within p% of its true value using G(A), either by another unit in A (if
there is an internal attacker) or by a unit not in A (an external attacker). In case
A contains only a single unit, this leads to the requirement that the integrated
distribution over A should be more than p% away from the true value of that
single contribution. In case there are two or more observation in area A, we treat
A to be a table cell and apply the p%-rule to that area. Summarizing, we define
the following concentration based risk measure

RC(A; p) =

⎧⎪⎨
⎪⎩

0, if A ∩ U = Ø (3a)
(1 + p/100)gi1 − G(A), if A ∩ U = {ri1} (3b)
(1 + p/100)gi1 + gi2 − G(A), otherwise (3c)

with gi1 = max(gi : ri ∈ A) (i.e., the largest value in area A) and gi2 = max(gi :
ri ∈ A and ri �= ri1) (i.e., the second largest value in area A) and say that an
area is not safe to be published if RC(A; p) > 0. Cases (3b) and (3c) refer to the
situations where the attacker is external or internal to the area A respectively.

Traditionally when publishing mean values on administrative areas, (some
form of) group disclosure is discussed: whenever the variation of the individual
values in the area is small, the mean value is a good estimate of each individual
contribution. For an attacker to be able to use that notion, he should have some
idea about the variation of the values over the area. In case of e.g., the value of
apartments in flats, this may be easy to determine. In case of energy consumption
this may be less easy. In the current paper we will not further address the group
disclosure issue.

Properties of the Risk Measure. The definition of risk measure is obviously
meaningful in case G(A) =

∑
i:ri∈A gi. Indeed, in that case it coincides with the

p%-rule applied to a table cell defined by area A. However, in case the spatial
distribution is estimated using a 2-dimensional kernel density estimator (kde,
see e.g., [5]), in practice we could get one of the strange situations that

Ĝkde(A) < gi1 or Ĝkde(A) > 0 while A ∩ U = ∅

and the risk measure (3) does not make sense. It could be an option to use a
kernel density estimator for the values of individual contributions as well, e.g.,
use an estimated ĝi1 , but that may pose other anomalies as we will show in
Sect. 3.

Note that, in theory, for each individual unit j we could find an area A∗
j

such that the total energy consumption over that area is within p% of its true
contribution gj . However, for an attacker it would be impossible to find that
area without knowing the true value beforehand.
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Risk Measure in Practice. The risk measure in (3) is defined for any arbitrary
area A. Ideally the risk should be calculated using the ‘natural’ area that relates
to an individual unit of the (target) population. In practice, it turns out to be
difficult to define or derive such a ‘natural’ area. Therefore it is appropriate to
use a predefined set of areas to be checked for disclosure: a set of grid cells,
unions of grid cells or other ‘logical’ areas (e.g., the area of the building where
the business in question resides).

In case an area turns out to be unsafe according to the risk measure, one
has to adjust the way the information is plotted on the map. It is now no longer
necessary to ‘suppress’ the spatial distribution over that area: we adjust the
value of the spatial distribution such that the integration over A is more than
p% away from the value of that single contribution. This can be viewed as an
analogue to adding noise to the table cell representing area A. Essential in this
approach is that the area A is indeed a ‘logical’ or ‘natural’ area.

Hence, a practical approach would be that the risk measure RC(A; p) is to be
calculated for each area in a predefined set of areas and (the parameters of) the
estimator should be adjusted such that the risk measure would be non-positive
for all areas in that set.

3 Use Case: Energy Consumption of ‘Westland’

3.1 Data Set

To test the defined disclosure risk RC(A; p), we apply it to a data set describ-
ing the energy consumption of enterprises. Note that the energy consumption
of dwellings also is an interesting variable, which seemingly could be analyzed
and presented in the same spatial distribution, but it is wise to treat dwellings
and enterprises as different populations. First of all, the energy consumption
levels are very different, so the consumption of dwellings is barely visible when
plotted on the same scale as enterprises. Secondly, the spatial density of the loca-
tion of dwellings is much higher then that of enterprises, resulting in different
requirements for spatial resolution.

In this example we will restrict our map to a small part of the Netherlands
called ‘Westland’ in which many commercial greenhouses are situated as well as
some enterprises in the Rotterdam industrial area. We will look at the spatial
distribution of mean electricity consumption per enterprise. The data set con-
tains the undisclosed micro-data of the electricity consumption of enterprises.
Furthermore, a published aggregated data set is available in which disclosure con-
trol methods have been applied using a p%-rule on the zip-code’s (postcode’s)
most detailed level.

Figure 2 shows the map visualization for the published data. The map is attrac-
tive but the spatial distribution is difficult to spot, because the data is aggregated
per zip-code and the colorization is done per building. This visualization stresses
the building density and not so much the distribution of the mean energy con-
sumption. For example in the lower left part of Fig. 2 the high mean energy con-
sumption is barely visible, because of the low spatial density of enterprises.
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Fig. 2. Published mean energy consumption of enterprise (per zip-code) Source: http://
www.nationaleenergieatlas.nl/kaarten

3.2 Visualizing Mean Electricity Consumption

Spatial distributions are typically visualized using so called heat maps. Heat
maps are well known to the general public, because they are often used to display
precipitation or temperature zones in weather forecasts.

A heatmap has several important visual features:

– It has a resolution or cell size, restricting its spatial granularity at which
details are shown.

– It uses a sequential color scale that is used to map the value at each location
to a color. Such a color scale is designed to be perceived monotonic, i.e. a
higher value has a ‘higher’ color. For this data set, we use a logarithmic color
scale since energy consumption appears to be a log-normal phenomenon.

– It may provide a smoothed version of reality in which spatial distribution is
presented continuous: in stead of restricting the display of values to the exact
location of spatial objects, it may color the surrounding area, comparable to
how regional statistics are cartographically displayed.

A naive approach to visualizing spatial distribution and producing a heat map is
to maximize resolution and to skip spatial smoothing. Figure 3 plots the original
data, plus three increasingly smoothed versions in the same (5-step-color) scale
to make them comparable. It furthermore shows that spatial patterns often are
more apparent when smoothing is used. This is similar to how uni-variate density
estimators work: they tend to reduce statistical noise and reveal the underlying
distribution. Moreover, maximizing resolution is at odds with disclosure risk as
we will see now.

http://www.nationaleenergieatlas.nl/kaarten
http://www.nationaleenergieatlas.nl/kaarten
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Fig. 3. Spatial distribution with increasing smoothing on data defined at 200m× 200m
blocks (The legend has been removed in these examples to prevent disclosure of sensitive
values): (a) without smoothing; (b)–(d) kde estimator with increasing bandwidth from
100m to 400m.

Effect of Resolution on RC. Resolution is both important for visualization
as well as for the disclosure risk. The more detail, the more utility, but also
the higher the risk of being disclosed. Since rectangular grids are used to create
heatmaps we will calculate RC(Ai; p) for each grid cell Ai. We assess RC for
the example data set on rectangular grids of various cell sizes and calculate the
percentage of unsafe cells relative to the number of non-empty cells, to see its
dependency on cell size (resolution).
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Fig. 4. Percentage of unsafe grid cells per cell size (resolution): (a) external attacker
scenario; (b) internal attacker scenario.

Figure 4 shows that a detailed resolution (100 m to 200 m) makes many grid
cells unsafe, which is sensible since this level of detail approaches the area of an
enterprise: many grid cells contain in that case one or two enterprises, making
both disclosure (sub)scenarios successful. When the cell size increases, most cells
are safe. Figure 4a shows the percentage of unsafe grid cells when the external
attacker scenario is applied for three different values of p: 5, 10 and 15. In Fig. 4b
the corresponding lines for the internal attacker scenario are higher, since this
scenario places extra restrictions on the risk measure. For example it enforces
that a grid cell has to contain at least three enterprises to make it possible to
be considered safe.

Effect of Smoothing on RC. As reasoned in [5], spatial smoothing has dis-
closure control properties: it creates values that are smoothed versions of the
observed values and makes pinpointing the location of individual values more dif-
ficult. To assess the effect of smoothing on disclosure risk RC(Ai; p), the same area
Ai is used as in the rectangular grid, but a different estimated risk R̂C,h(Ai; p)
is used:

R̂C,h(A; p) =

⎧⎪⎪⎨
⎪⎪⎩

0, if A ∩ U = Ø (4a)

(1 + p/100)ĝi1,h − Ĝh(A), if A ∩ U = {ri1} (4b)

(1 + p/100)ĝi1,h + ĝi2,h − Ĝh(A), otherwise (4c)

with Ĝh(A), ĝi1,h and ĝi2,h kernel density estimators with bandwidth h for G(A),
gi1 and gi2 respectively. Fixing p at a constant value (e.g. 5), the dependency
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of R̂C,h(Ai; p) on h can be assessed by calculating the percentage of unsafe grid
cells as function of h. Figure 5a shows the effect for various cell sizes of increasing
bandwidth h (100 m–1500 m) for the external attacker scenario. The horizontal
dashed line shows the percentage of zip-code areas (PC6 = postal code at most
detailed level) that is considered unsafe according to the p% rule. For cell size
200 m and more, smoothing indeed decreases disclosure risk and allows publish-
ing a (much) higher percentage of grid cells than the percentage of published zip
codes in the current practice of Statistics Netherlands. The internal attacker sce-
nario in Fig. 5b is interesting: for cell size 200 m and more, smoothing decreases
disclosure risk, although a lot slower than in the external attacker scenario, but
for cell size of 100 m, the risk increases with h. This may partially be the effect of
using an estimated disclosure risk, including estimates of the largest and second
largest individual contributions instead of the true values.
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Fig. 5. Percentage of unsafe grid cells per bandwidth (smoothness): (a) external
attacker scenario; (b) internal attacker scenario.

4 Discussion and Future Work

In this paper we derive and describe a disclosure risk measure RC(A; p) for dis-
playing continuous data on cartographic maps. The risk measure is a function of
an area A. Ideally, the risk measure is calculated for a set of ‘natural’ areas. With
‘natural’ area we indicate an area that is logically connected with an individual
unit in the population. This could be the area of the building where a business
resides or the land that is associated with a farm. To simplify the procedure we
did not choose a ‘natural’ area, but assessed the risk measure for rectangular
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grids. We plotted the mean energy consumption per enterprise on the grid with-
out smoothing as well as with different levels of smoothing using a 2-dimensional
kernel density estimator.

The first observation we make is that smoothing often helps in finding and
understanding spatial patterns. Moreover, smoothing in itself provides some dis-
closure protection by smearing out the energy consumption over a (larger) neigh-
borhood of each business.

As discussed in Sect. 2.2 the disclosure risk measure might show strange
behavior when using a kernel density estimator: the estimated total energy con-
sumption of area A may be smaller than the largest contribution to that area
or there may be a positive total energy consumption even in case there is no
business present in that area. Trying to avoid this problem, we estimated the
individual energy contributions using a kernel density estimator as well.

Starting with small grid cells of 100 m× 100 m, we found that a large num-
ber of those grid cells contain no business at all and almost no grid cell contains
three or more businesses. Using estimated individual contributions in the risk
measure, the number of unsafe grid cells increased with increasing bandwidth
when considering the scenario with an internal attacker. This feels counter intu-
itive.

A possible explanation is that by using separate estimates for the largest and
second largest contributor in a grid cell, the ordering might change: the estimate
for the second largest contribution might be larger than the estimate for the
largest contribution. Unfortunately we did not have time to develop estimates
of individual contributions taking the ordering into account.

Increasing percentage of unsafe cells for 100 m × 100 m blocks suggests that
this resolution does not reflect the ‘natural’ areas of businesses: it seems to be
too detailed.

As future work we will go into more detail on remarks we made about adjust-
ing the kernel density estimator such that the plot is directly safe for all ‘natural’
areas. We will discuss how to define ‘natural’ areas and show how to adjust the
kernel type estimator.
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