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Chapter 2
Drought Variability and Land Degradation 
in Central Asia: Assessment Using Remote 
Sensing Data and Drought Indices

Dildora Aralova, Jahan Kariyeva, Timur Khujanazarov, 
and Kristina Toderich

Abstract  The regional resilience of a landscape to climate change in water-scarce 
areas is one of the core environmental problems nowadays for Central Asian coun-
tries. Responses to increasing temperature and high evapotranspiration (ET0) 
regimes have contributed to biodiversity loss and altered vegetation dynamics and 
changed the land use and management in these landscapes. Extremely dry condi-
tions and droughts are recognized as an important factor that triggers land degrada-
tion in Central Asia. The aim of this study is to conduct attribution analysis to assess 
drought trends that are quantified using the Standardized Precipitation-
Evapotranspiration Index (SPEI) and effects of other biophysical factors on the 
region and at a country level. The kriging (geostatistics) method was utilized to 
predict the status of vegetation change trends and generalize additive smoothed 
parameters to provide response factors for changes of land cover status. Specific 
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objectives of the study were (a) to assess drought trends and their effects on cli-
mate–vegetation trends at the regional and local level; (b) identify the main affected 
regions among five countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, 
and Uzbekistan) and characterize their patterns for monitoring land tenures; and 
(c) define appropriate ecological risk zones, especially trends of spatial changes 
over time with drought trends. The simulated and predicted maps with kriging 
dependence terms indicated that the climate–vegetation-driven dataset will suffer 
substantial losses of vegetation health [normalized difference vegetation index 
(NDVI)] in precipitation-driven regions of Turkmenistan, Uzbekistan, and 
Tajikistan, and that these areas, especially, Ahal and Lebap Provinces in 
Turkmenistan, Kyzylorda in Kazakhstan, Karakalpakstan Autonomous Republic in 
Uzbekistan, and Gorno-Badakhsan Autonomous Region (GBAR) in Tajikistan, are 
very sensitive to droughts, which might alert us to the fragility of this ecosystem.

Keywords  Central Asia · Droughts · SPEI · NDVI-GIMMS3g · Precipitation · 
CRU-TS, kriging method

2.1  �Introduction

Approximately 75% of the land in Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, 
Turkmenistan, and Uzbekistan) is occupied by rangelands (Bedunah et al. 2006); 
the total area of pastures in Central Asia is 262 million hectares (ha) (Squires 2012). 
Sustainable management of rangelands is a key goal for Central Asian countries, 
and the main challenge today is to conserve and restore ecosystems that are vital to 
human well-being. The effects of shrinking the Aral Sea Basin (Toderich et  al. 
2013) coupled with the USSR (Soviet Union) collapse have caused changes in land 
use practices (Kariyeva 2011), such as uncontrolled grazing, which lead to saliniza-
tion and further deterioration of rangeland ecosystems (Aralova et al. 2016) in the 
region. During the USSR period, most of the agricultural policies were directed by 
the centralized government’s decisions, which contributed strongly to degradation 
of dryland areas. A longer drought events and subsequent soil salinization are threats 
that have major impacts on land cover and land use change (LCLUC) patterns in the 
agricultural zones of Central Asia. The anthropogenic impact of converting vast 
dryland areas to irrigated lands, coupled with the accelerated increase of average 
temperature (as drivers) and precipitation anomalies observed in past decades, has 
been changing LCLUC dynamics in those areas. According to Nicholson et  al. 
(1998) and Pickup (1998), drought has been considered to be a major factor in trig-
gering land degradation and increasing desertification categories. However, some 
studies have argued that drought cannot be a factor explaining degradation trends 
(Vicente-Serrano et al. 2015a, b).

Central Asian countries still attribute 10–25% of their gross domestic product 
(GDP) to agriculture (FAOstat 2015). Large areas of steppe rangelands are used as 
pastures for breeding cattle, where it is the main income source for the rural popula-
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tion; also, 20–50% of the total employment rate is acquired in the agricultural sector 
(FAOstat 2015). Agriculture remains is an important sector in the economy of 
Central Asia, contributing 5.2% of the GDP in Kazakhstan, 7.5% in Turkmenistan, 
18.5% in Uzbekistan, 20.8% in Kyrgyzstan, and 23.3% in Tajikistan (Abdullaev 
2014; Bobojonov and Aw-Hassan 2014). The financial capacity of most countries is 
not robust enough to allocate adequate funds for drought management and mitiga-
tion, or for large-scale relief operations in the agriculture sector, especially in the 
developing or least developed countries. However, a number of remote sensing–
based vegetation and drought indices have been developed for use in estimating 
vegetation status (such as the normalized difference vegetation index, NDVI) and 
degradation level, and Vegetation Drought Response Index (VegDRI) studies have 
begun to investigate the use for a drought-monitoring system in the United States 
(Wardlow et al. 2012a, b). The VegDRI targets the effects of drought on vegetation 
with applying general vegetation conditions (soil, elevation, etc.) and ratings of dry-
ness extended by applying climate-based drought indices. Different algorithms have 
been proposed in drought research (Paulik et al. 2014; Ciabatta et al. 2016; Musyimi 
2011; Kerr et  al. 2012), but these are generally based on the exploitation of the 
available datasets (satellite derived), and suitable implementation for Central Asian 
landscapes has not yet been done. Severe to extreme drought conditions are causing 
a serious issue in dryland ecosystems, and the effects of drought on vegetation pat-
terns in Central Asia were evident several times in the past two decades, and obser-
vations in various regions (Kariyeva and van Leuwen 2010) also affirmed these 
assumptions. In drylands, during a period with a high-temperature trend (June–
August), drought days will increase more than three times in most areas of Central 
Asia at the end of the twenty-first century (Touge et al. 2015). Therefore, contradic-
tory extremes (high rainfall ratings and hot temperature) are also negative influences 
on this landscape. As mentioned, there are still large gaps in managing or forecast-
ing with contributing/creating an early warning system in the region level. In Central 
Asia, approximately 80% of rural people are involved in the agricultural sector, and 
the landscape of this area is vulnerable to droughts. As well, as can be drawn from 
the episode years of 2000–2001, such droughts hit in all five countries, resulting in 
rainfall levels decreasing below average (approximately 60% to 40%); and river 
flows dropping by 35–40% from those in a normal period. According to the accounts 
of Mirzabaev et al. (2015), the cost of land degradation categorized between 2001 
and 2009 in Central Asia was estimated to be about $6 billion annually, as the result 
of rangeland degradation ($4.6 billion), followed by desertification ($0.8 billion), 
deforestation ($0.3 billion), and abandonment of croplands ($0.1 billion). As a 
result, most regions of the area were unable to manage disaster risks and to effec-
tively recover from disasters.

A few analyses and studies provide for accurately quantifying drought trends and 
anomalies and finding relationships with vegetation pattern dynamics for these 
landscapes. Many researchers have analyzed vegetation sensitivity to climate trends 
(Propastin et  al. 2008; Kariyeva 2011) between precipitation episodes (Gessner 
et al. 2012).

2  Drought Variability and Land Degradation in Central Asia: Assessment Using…
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Drought indices such as the Standardized Precipitation Evapotranspiration Index 
(SPEI) allows drought severity to be compared through time and space, as it has 
estimated over a wide range of climates. A different scientific discipline enables 
detection, monitoring, and analysis of droughts and drought indices (Vicente-
Serrano et al. 2015a, b). In this chapter, various satellite-based datasets were used 
and evaluated under kriging methodology, with the aim to forecast upcoming warm-
ing regions or sensitive areas in upcoming drought years or vegetation health threats 
in the case of Central Asia. As examples, we selected Lebap (Turkmenistan), Navoi 
(Uzbekistan), Kyzylorda (Kazakhstan), the Gorno-Badakhshan Autonomous 
Region (GBAR; Tajikistan), Ulytau (Kazakhstan), and Naryn (Kyrgyzstan).

The SPEI was calculated with the Penman–Monteith method following the 
work of Vicente-Serrano et al. (2017) and linking-based practices for drought risk 
reduction. The kriging method might be able to evaluate and understand the 
strength of NDVI drought–climate relationships and further reducing or warning 
of disaster risks in Central Asia. Rangeland diversity in Central Asia remains one 
of the important tasks of the Central Asian countries, understanding past and cur-
rent conditions (Gintzburger et al. 2003) and forecasting future status. Also, it is 
important to provide measures for delay periods as reported by Udelhoven et al. 
(2009) and Gasparrini (2011), and to establish an adaptation mechanism for arid 
ecosystems. Especially between boundary countries and remote areas, adaptation 
strategies with action plans must be evaluated in various biodiversity loss areas of 
Central Asia.

2.2  �Materials and Methods

2.2.1  �Location

Central Asia includes a range of landscapes from mountains to steppes and deserts 
(Turkmenistan, Kazakhstan, and Uzbekistan) and is isolated by mountain ranges 
(Kyrgyzstan, Tajikistan) and the Caspian Sea (the borders with Turkmenistan, partly 
with Kazakhstan). The spatial extent of dryland rangelands in Central Asia is vast. 
The vegetation trends in this area (Fig. 2.1a) are mostly driven by precipitation and 
temperature dynamics; for example, warming temperature trends after spring lead 
to increasing NDVI values. As evaluated, non-cropland area is dominated by range-
lands and mostly used in the agricultural sector for short-term crop rotation 
(Fig. 2.1b). As described on the mapped part of Central Asia (Fig. 2.2), the annual 
ascending ratings of precipitation are highly distributed mostly throughout the 
mountainous zones of Central Asia (Tajikistan and part of Kyrgyzstan), and more 
precipitation occurs on the eastern side of the regions than on the other sides of 
Central Asia.

In general, the objectives of this research are to assess and identify possible 
decreasing vegetation trends with quantifying SPIE trends and may enable under-
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Fig. 2.1  Target area description: location of the middle zone of Asian continent (left) and climate 
classifications based on assumptions of Koeppen methodology (right). (a) Location of Central Asia 
and five neighbor countries and functional relationships with potential climate attributes in regions. 
Reference system: WGS84. Central Asian map with Köppen climate classification (right, down) 
with extraction permanent water attributes. (b) Central Asian Cropland Extent and Crop 
Dominance, modified after GFSAD1000 V0.0 Classes. Image resolution is aggregated to 500 m 
and projected to the Central Eurasian part from global cropland extent project. Accessed Google 
Earth Engine, May 2017 (Thenkabail et al. 2012)

standing the mechanism of land degradation in Central Asia or the regional scale of 
degradation within implementing various drivers, for example, Köppen classifica-
tion, land use dynamics, and land cover dynamics.

2.2.1.1  �Climatic Parameters and Description.

Precipitation in Central Asia Between 1982 and 2015

The analysis of spatial resolution observed by Gong et al. (2017) mentioned that 
high-value centers of precipitation appear in Kyrgyzstan, and then in Tajikistan. 
Our findings show similarity, the only exceptions being Turkmenistan, in that 
Turkmenistan has high precipitation accumulation ratings only for the eastern side. 
Accumulated high–moderate rating areas are the western part of Uzbekistan, the 
northern and northwestern part of Kazakhstan, and the northern part of 
Turkmenistan. Generally, the Central Asia precipitation trend has increased in 
some regions, especially in the month of May, 2015, in Kazakhstan; the opposite 
contradictions happened also in the southern areas such as Uzbekistan (eastern 
side) and Turkmenistan (northeastern side), where the precipitation trends were 
decreased from November months until February (trends are seen in Fig.  2.2). 
Accounting yearly values of precipitation also described that in that part of 
Kazakhstan, Kyrgyzstan and Uzbekistan have raised precipitation ratings for the 
year 2015. Even a peak of precipitation trends was seen in Kazakhstan in 2015, 
which was troubled with waterlogging in the north, and on the northwestern side of 

2  Drought Variability and Land Degradation in Central Asia: Assessment Using…



20

Kazakhstan. At the same time, the rate of ET0 is increased (not shown) and contin-
ued at least 90 days per year in these regions. In those periods, land surface precipi-
tation reached 0–10  mm/month. Results show that under climatic conditions in 
which low annual variability of precipitation predominates (Turkmenistan, 
Uzbekistan, part of Kazakhstan), the drought indices respond mainly as higher 
negative trends. Also, annually trends of precipitation is responding on high pro-
ductivity of the rainfed zones, and these areas are generally for Kazakhstan, 
Tajikistan, and Kyrgyzstan, where drought indices contributing positively on 
mostly estimated periods and as well as, some years also contributed as negative. 
These selected and targeted areas are dependent on rainfall rates. But, controversy 
also occurs. At the same time, in these areas the hottest period of summer was 

Fig. 2.2  Precipitation trends in the five countries estimated from the period 1982–2015 and illus-
trated yearly contributions (up side and down side) and monthly mapping of precipitation (in the 
middle) in Central Asia for the same period. All datasets based on CRU-TS 4 version
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observed, after heavy rainfall (in 2015). However, the temperature ratings estima-
tions are based on annual average calculations (Fig. 2.3), and, in fact, the sum of 
annual rainfall was greater than <500 mm/yearly; the environment or temperature 
is cooler in this country, similar to Tajikistan and Kyrgyzstan (Fig. 2.2).

2.2.2  �Classification of Targeted Area

As shown on Fig. 2.1a, three main categories apply in the south and southwestern 
parts of Central Asia (Table 2.1): the categories with letter “B” are classified as des-
ert zones and the main criteria for this category are MAP <5 × P1

threshold; obviously 
the Köppen categories are described as a high ET0 and zones of less precipitation 
(Fig. 2.1a) and occupy the south and southwestern parts (Turkmenistan, Uzbekistan, 
and in part the southwestern side of Kazakhstan) of Central Asia (see Fig. 2.1b). The 
“BWk” category is mostly contributed in Central Asia. Multidisciplinary analysis of 
climatic drivers that are modified by the Köppen classification provides a visual 
interpretation of vegetation–climate anomalies dynamics, especially in the targeted 
area, and offers a clear idea of the biotic and abiotic stresses that are the response to 
temporal vegetation syndrome (Fig. 2.1a).

Theoretically, we have modified the target area based on the climate gradient 
with Köppen classification to estimate the SPIE dataset (Table 2.1). For instance, in 
the category BWk and Csa are located the following regions: Lebap (Turkmenistan) 

1 Mean annual precipitation (70%) accumulated during winter period.

Fig. 2.3  Boxplot of annual average temperature in Central Asian countries based on monthly 
dataset CRU-TS ver.4 and generally for Central Asia
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Table 2.1  Köppen climate symbols and related criteria for Central Asia (modified after Peel et al. 
2007)

1st 2nd 3rd Description Regions Criteriaa

SPIE selected 
category

B Arid MAP < 10 × Pthreshold

W  � –Desert Uzb,Trk, MAP < 5 × Pthreshold

S  � –Steppe Kzk, Uzb, Trk MAP ≥ 5 × Pthreshold BSk-Ulytau, 
Naryn

h Hot Trk, Uzb MAT ≥ 18

k Cold Trk, Uzb, Kzk MAT < 18 BWk-Lebap, 
Navoi, GBAR

C Temperate Thot > 10 & 
0 < Tcold < 18

s  � –Dry summer Psdry < 40 & 
Psdry < Pwwet/3

w  � –Dry winter Pwdry < Pswet/10

f  � –Without dry 
season

Not (Cs) or (Cw)

a Hot summer Taj Thot ≥ 22 Csa-Lebap, Navoi
b  � –Warm summer Not (a) & Tmon10 ≥ 4

c  � –Cold summer Not (a or b) & 
1 ≤ Tmon10 < 4

D Cold Thot > 10 & 0 < Tcold ≤ 0
s  � –Dry summer Uzb, Taj, Krg, 

Kaz
Psdry < 40 & 
Psdry < Pwwet/3

w  � –Dry winter Pwdry < Pswet/10

f  � –Without dry 
season

Not (Ds) or (Dw)

a  �   –Hot summer Kaz, Krg Thot ≥ 22 Dsa-GBAR
b  �   –Warm 

summer
Krg Not (a) & Tmon10 ≥ 4

c  �   –Cold 
summer

Not (a, b or d)

d  �   –Very cold 
summer

Not (a or b) & 
Tcold < −38

aMAP mean annual precipitation, MAT mean annual temperature, Thot temperature of the hottest 
month, Tcold temperature of the coldest month, Tmon10 number of months where the temperature is 
above 10°, Pdry precipitation of the driest month, Psdry precipitation of the driest month in summer, 
Pwdry precipitation of the driest month in winter, Pswet precipitation of the wettest month in summer, 
Pwwet precipitation of the wettest month in winter, Pthreshold varies according to the following rules (if 
70% of MAP occurs in winter then Pthreshold = 2 × MAT; if 70% of MAP occurs in summer then 
Pthreshold = 2 × MAT + 28, otherwise Pthreshold = 2 × MAT + 14). Summer (winter) is defined as the 
warmer (cooler) 6-month period of ONDJFM and AMJJAS

D. Aralova et al.
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and Navoi (Uzbekistan); in BWk are Kyzylorda (Kazakhstan) and GBAR (Tajikistan); 
and in the BSk category are Ulytau (Kazakhstan), Naryn (Kyrgyzstan); all estimated 
by their past and ongoing occurrences.

2.2.2.1  �Datasets and Methods

To determine whether and how vegetation dynamics in Central Asian drylands are 
associated with climate patterns and NDVI, we used bimonthly 8-km GIMMS 
AVHRR data (1982–2015), and compared with time series data [CRU TS (v4.23)] 
for precipitation and temperature effects (1982–2015) during the selected period of 
time (Jones and Harris 2008) and calibrated with SPIE time series data (1982–
2017). In Table 2.2, a detailed explanation is provided for each dataset and resolu-
tion scales. However, correction of the forecasting (prediction map) was estimated 
for the period 1982–2015 because of the availability of the NDVI dataset for this 
period. Originally, some drivers have longer periods, such as SPIE (1950–2017) and 
CRU-TS (1901–2015). Environmental variables (temperature, precipitation, and 
NDVI; SPIE) have been analyzed with the geostatistics method: a detailed descrip-
tion is illustrated on the flowchart (Fig. 2.4).

Environmental variables are indicated as a certainty dataset because of the utili-
zation of various factors for estimation parameters and their dependency on each 
other. To account for surface biophysical properties of various habitats (Fig. 2.1a, b) 
and to assess the temporal movement dynamics of vegetation patterns in these cold 
desert and semi-desert ecosystems, we utilized a simple kriging methodology that 
was developed to classify further the vegetation index, which is identifying as index 
certainty associated factors (Prec/Temp/NDVI/SPIE) influencing the solid earth.

Table 2.2  Summary of input datasets for parameterizing methodology of kriging

Data Indices
Temporal 
scale

Time span 
(extracted)a

Spatial 
scale Data source

NDVI Vegetation Bimonthly 1982–2015 8 km AVHRR-GIMMS 
(NDVI 3g)

SPIE Drought Monthly 1982–
2015/1950–2017

0.5 × 0.50 SPIEbase

Average 
temperature

Climate Monthly 1901–
2015/1982–2015

0.5 × 0.50 CRU-TS (ver. 4)

Average 
precipitation

Climate Monthly 1901–
2015/1982–2015

0.5 × 0.50 CRU-TS (ver. 4)

aFor simulation data, and for kriging methodology it has been extracted years between 1982 and 
2015, originality data available or occupied past (before 1982) and present (after 2011) periods
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2.2.2.2  �Climatic Variables

The CRU time series (0.5 × 0.5 degree) grid datasets were extracted for 1982–2015 
to assess month-by-month variation for climate/precipitation on a larger scale 
(Harris et al. 2014). Mapping climatic and precipitation data need to consider that 
some gaps are available during/after 1982–1991; it is clear that after collapse of the 
USSR some stations have ceased their missions, affecting the quantity of data. 
Climate data visualized over this time show quite high temperatures (since 1982–
1992), which later becomes stabilized (after 2000).

2.2.2.3  �A Drought Index: The Standardized Precipitation-
Evapotranspiration Index (SPEI)

The SPEI is a multiscalar drought index based on climatic data and estimated based 
on the CRU-TS dataset. The SPEI-drought monitor offers near real-time informa-
tion about drought conditions at the global scale, with a 0.5° spatial resolution and 
a monthly time resolution. Available to be downloaded on the following https://cli-
matedataguide.ucar.edu/data-type/climate-indices/drought/spei, the SPEI is 
obtained from the monthly climatic water balance [precipitation minus reference 
evapotranspiration, ET

0−( ) ], which is adjusted using a three-parameter log-logistic 
distribution. The values are accumulated at various time scales and converted to 
standard deviations with respect to average values (Vicente-Serrano et al. 2015a, b). 
The calibration period for the SPEI is January 1950 to December 2017 (last access: 
March 2018). For long-term analysis and calculation of selected target zone (Central 
Asia) habitats, we have scaled with a 1-month period with the same available cali-
bration time (1950–2017) and as requested a robust understanding of the interrela-
tions of the drought rankings in Central Asia (Fig. 2.5b). Determining the onset and 
duration of drought conditions with respect to normal conditions in a variety of 
natural and managed systems such as crops is best suited for drought monitoring 
and early warning purposes. Within this purpose, we have explored five countries 

Fig. 2.4  Flowchart represents the steps of composing datasets and data processing for target area 
explored among Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan

D. Aralova et al.
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separately to visualize SPIE ratings for the past 70 years, within this purpose to be 
able compare with NDVI values (1982–2015). The process is determined by apply-
ing R programming language (within “spie” dataset) and this set of function (data-
set) computing SPIE dataset (Beguería et  al. 2014) and following the classical 
approximation as estimated and updated by Abramowitz and Stegun (1965).

	
SPEI = −

+ +
+ + +

W
C C W C W

d W d W d W
0 1 2

2

1 2
2

3
31
,
	

(2.1)

Fig. 2.5  Main drought episodes in Uzbekistan for Navoi region as occurred by SPIE dataset: 
monthly and annually distributions of drought (a) and 4 years cycling the drought trends (b). (a) 
SPIE_1: monthly and SPIE_12: annual dataset for Uzbekistan (Jan 1950–Dec 2017). (b) SPIE_48: 
counting and averaging for each 4 years
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where

	
W P P= − ( ) ≤2 0 5ln .for

	
(2.2)

and P is the probability of exceeding a determined d value, P = 1 − F(x).
If P > 0.5, then P is replaced by 1 − P and the sign of the resultant SPEI is 

reversed (Vicente-Serrano et  al. 2010). The constants are C0  =  2.515517, 
C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308. 
The equations are cited at http://spei.csic.es/home.html and upgraded by Vicente 
(Vicente-Serrano et al. 2010). An R package is available for calculating the SPEI 
from user-selected input data using either the Thornthwaite, Penman-Monteith, or 
Hargreaves methods. For mapping, we have used the SPIEbase with based on 
NetCDF format, what was upgraded after the CRU-TS dataset.

2.2.2.4  �Vegetation Indices: Normalized Difference Vegetation Index 
(NDVI)

In the framework, datasets from the Global Inventory Monitoring and Modeling 
System (GIMMS) project are carefully assembled from different AVHRR sensors 
and account for various deleterious effects, such as calibration loss, orbital drift, and 
volcanic eruptions (Tucker and Pinzon 2013). Bimonthly with 8-km resolution 
GIMMS AVHRR-NDVI3g data (1982–2015) were utilized to analyze NDVI (veg-
etation) status for Central Asia. The vegetation models were developed and gener-
ated subsequently with using climatic variables [temperature (average) and 
precipitation (average)] and drought index (SPIE) and NDVI, respectively, in the 
same period for kriging methodology approaches.

2.2.2.5  �Probalistic Methods to Predict and Monitor Further Status 
of Landscapes (Kriging)

The assessment based on application of satellite images (NDVI 3g) with certainty 
datasets (Precmonthly/Tempmonthly/SPIEmonthly) was developed on the base requirements 
of geostatistics to provide probability of further status within prediction of negative 
patterns or land degradation areas in Central Asia. Within this aim, we have used the 
kriging method with variograms to detect degradation categories, and calculated 
several environmental variable parameters for better understanding of forthcoming 
years conditions resulting from scarcity/limitations of water resources and fast land 
triggering issues. A major factor also is a warming temperature that influenced mis-
management basins (abiotic factors) by the overuse of its tributary rivers. More 
accuracy was found when we utilized geostatistical methodology for a large dataset 
(the territory of Central Asia is ~4,002,900 km2). Another method using Empirical 
Bayesian Kriging (EBK) is more suitable, and also this methodology is reliable for 

D. Aralova et al.
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Fig. 2.6  SPIE-based mapping of drought episodes in Kazakhstan (1950–2017)

interpolation of the target area. This methodology provides greater accuracy for 
estimating forest or cropland status (areas with a high greenness index), but for 
drylands low to moderate vegetation values are better simulated with the kriging 
(simple and ordinary) method (see results on Figs. 2.6 and 2.7). The predicted map 
with the kriging dependence terms visualized more realistic means to classify veg-
etation patterns (low values of NDVI) and particularly with application of SPIE 
datasets. A probalistic method is required to provide information on prediction 
uncertainty limits and the choice of interpolators to statistical ones.

2.3  �Results

We are intending to demonstrate the SPIE dataset as responsible for loss of energy 
in the balance (vegetation patterns) resulting from an outgoing high ET0 in the dry-
lands of CA. On the open rangelands, incoming high radiation is the source of high 
ET0 ratings. Centrally, Turkmenistan and Uzbekistan, and partly Tajikistan (west-
ern), and farthest in Kazakhstan (southern side), this is a main source of losing a 
high energy balance from vegetation patterns.

2  Drought Variability and Land Degradation in Central Asia: Assessment Using…
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Fig. 2.7  Main drought episodes in Kazakhstan for Ulytau and Kyzylorda regions occurred by 
SPIE dataset (a, b) monthly and annual distributions of drought and (c, d) 4 years cycling of 
drought trends. (a) SPIE_1: Monthly and SPIE_12: annually dataset for Ulytau district, Kazakhstan 
(Jan 1950–Dec 2017). (b) SPIE_1: Monthly and SPIE_12: annually dataset for Kyzylorda, 
Kazakhstan (Jan 1950–Dec 2017). (c) SPIE_48: counting and averaging for each 4 years in case of 
Ulatau, Kazakhstan. (d) SPIE_48: counting and averaging for each 4 years in case of Kyzylorda, 
Kazakhstan

2.3.1  �Long-Term Trends of SPIE Data (1950–2017) 
for Selected Areas

Mapping and determining monthly trends, annually drought variability (1950–
2017) and multiplicative year (each 4 years) of trends (1950–2017) was found in 
targeted areas with positive and negative trends of SPIE (ratings between 2 and −2). 
Drought categories were derived based on Charusombat and Niyogi (2011) and 
modified after Ta et al. (2018) (listed in Table 2.3). Inserted shapes of the mapping 
part indicated alterations in the selected regions (green is normal, red is negative). 
Trends modified and updated on the database SPIEbase 2, and observation, show 
evidence that a drought is triggering the land degradation process, and that long-
term drought is stressful for crops, explaining the major degradation trends 
(Figs. 2.5, 2.8, 2.9, 2.10, and 2.11).
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The main drought episodes occurred in the late 1950s, and unfavorable occasions 
were observed in late 2010 for all five countries within six regions. For the time 
series dataset we have added extra basic requirements for better understanding the 
anomaly in decades of time (Y coordinate values reached ≥−1 and ≥−2, which 
means a serious drought period of years or month in the region, and 0 trends mean 
no changes during the annual period), and the mapping part is inserted with shapes 
where time series are analyzed on pixel-based coordinate data (Figs. 2.4, 2.12, 2.13, 
2.14, and 2.15). We are quickly able to see a high drought period for each 4 years 
(Figs. 2.4, 2.12, 2.13, 2.14, and 2.15, right side, with trends); 48 SPIE datasets were 
analyzed, demonstrating the averaging drought value for each 4 years based on 
average values.

Table 2.3  Standardized 
Precipitation-
Evapotranspiration Index 
(SPEI) category for 
estimation of drought variety

Drought ranking SPIE category

Extreme drought SPEI ≤ −2.0
Severe drought −1.99 < SPEI < −1.5
Moderate drought −1.49 < SPEI ≤ −1.0
Mild drought −0.99 < SPEI ≤ −0.5
Non-drought SPEI ≥ −0

Fig. 2.8  SPIE-based mapping of drought episodes in Turkmenistan (1950–2017)
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2.3.1.1  �Uzbekistan

Drought is a common occasion in Central Asia, especially for the parts of 
Turkmenistan and Uzbekistan, and is more influenced by climate or landscape dis-
tributions. for the part of Uzbekistan, the Navoi region was selected (coordinates 
40°25′–65°25′), located in the middle zone of the country. Originally, the area was 
classified as cold desert zone (BWk, Koeppen classification), and drought frequency 
is the usual issue on this area because of high temperature and low precipitation. 
However, how frequently drought is observed in this area is demonstrated in 

Fig. 2.9  Main drought episodes in Turkmenistan for Lebap region as occurred by SPIE dataset: 
monthly and annual distributions of drought (a) and 4 years cycling of drought trends (b). (a) 
SPIE_1: Monthly and SPIE_12: annually dataset for Lebap region, Kazakhstan (Jan 1950–Dec 
2017). (b) SPIE_48: counting and averaging for each 4 years in case of Lebap, Turkmenistan
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Fig. 2.16, and for each 4 years it possible to observe strong droughts that correspond 
to above >−2 (Fig. 2.16).

Based on annual data, the strongest droughts were observed in the middle 1960s 
and the early 1970s. In past decades, during the 2000s, 2009 was recorded as the 
strongest one (Fig. 2.4a, left side). The importance of this selected point is related 
to estimating regions that are not a source to water basins and to get an idea about 
drought occurrences for areas far away from water resources. Based on vegetation 
classification, it is classified as Artemisia spp., a shrubland zone and therefore our 
first point (Navoi region) classified as being the desert type of vegetation (Fig. 2.1b).

2.3.1.2  �Kazakhstan

Almost 70 years observation (1950–2017) estimated the strong droughts in Ulytau, 
and the last years negatively with further negative trends for Kyzylorda region 
(Fig. 2.12), whereas the mapping part shows that the northern part illustrated a posi-
tive scale (low drought) and the middle of the country a moderate level (values) of 
drought (Fig. 2.8). The difference between Ulytau and Kyzylorda is related to an 
accumulation on minimum values of drought indices, such as strongest or peak of 
drought (max >−2) observed in the Kyzylorda region (see mean values with minus), 

Fig. 2.10  SPIE-based mapping of drought episodes in Tajikistan (1982–2015)
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Fig. 2.11  SPIE based mapping of drought episodes in Tajikistan (1982–2015). The selected point 
located on the GBAR region, the area where covered partly with mountains. The main drought 
episodes in Tajikistan for Lebap region occurred by SPIE dataset, (a) monthly and annually distri-
butions of drought and (b) 4 years cycling the drought trends. (a) SPIE_1: Monthly and SPIE_12: 
annually dataset for GBAR region, Tajikistan (Jan 1950–Dec 2017). (b) SPIE_48: counting and 
averaging for each 4 years in case of GBAR, Tajikistan

D. Aralova et al.



33

while frequently a positive median among null (no droughts) in Ulytau occurred 
with greater frequency.

2.3.1.3  �Turkmenistan

The main drought episodes in Turkmenistan occurred in the past decades; also, 
SPIE_48 for the Lebap region (Fig. 2.13a); Fig. 2.13b illustrates that among 4 years 
calculations the strongest one is between 2013 and 2017.On the monthly dataset, 
the strongest or extreme strong drought values are illustrated between 2015 and 
2017 (Fig. 2.13b).

2.3.1.4  �Tajikistan

In this area, the last years are categorized mostly with strong drought trends that 
reached SPIE >−4 in some months of 2010–2017 (Fig. 2.14a, b), whereas in further 
upcoming years for the GBAR region might be also observed no drought trends as 
counted by linearity forecasting (Fig. 2.14c). The strongest SPIE >−3 is observed in 

Fig. 2.12  SPIE-based mapping of drought episodes in Kyrgyzstan (1982–2015)
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Fig. 2.13  The main drought episodes in Kyrgyzstan for Naryn region occurred by SPIE dataset, 
(a) monthly and annually distributions of drought and (b) 4 years cycling the drought trends. (a) 
SPIE_1: Monthly and SPIE_12: annually dataset for Naryn region, Kyrgyzstan (Jan 1950–Dec 
2017). (b) SPIE_48: counting and averaging for each 4 years in case of Naryn, Kyrgyzstan
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Fig. 2.14  Annual drought trends in Central Asia (1950–2017) and linear prediction to 2020. (a) 
Annual drought trends in Uzbekistan (1950–2017) and linear prediction to 2020. (b) Annual 
drought trends in Kyrgyzstan (1950–2017) and linear prediction to 2020. (c) Annual drought 
trends in Tajikistan (1950–2017) and linear prediction to 2020. (d) Annual drought trends in 
Turkmenistan (1950–2017) and linear prediction to 2020. (e) Annual drought trends in Ulytau, 
Kazakhstan (1950–2017) and linear prediction to 2020. (f) Annual drought trends in Kyzylorda, 
Kazakhstan (1950–2017) and linear prediction to 2020

the 2000s, while annually is mostly on positive level (Fig. 2.14d, e). According to 
4-year estimations, the period of 2010 was also a moderate drought period 
(Fig. 2.14f).

2.3.1.5  �Kyrgyzstan

In this area, past years show mostly strong drought trends, and it is estimated that it 
reached SPIE >−3  in some months after 2010 (Fig.  2.15); for further upcoming 
years for the Naryn region, drought trends might be also observed (as SPIE >−1) as 
counted by linearity forecasting (Fig. 2.17b). Results indicated that negative trends 
of drought severity index (red color) are related to low accumulation of NDVI val-
ues, and a positive drought index included high or moderate values of NDVI, as in 
Central Asia, where high values of NDVI ranged between 0.35 and 0.50. Kyrgyzstan 
is dominant with high values of NDVI, and no drought according to drought map-
ping (Fig. 2.11), and mostly positive trends of drought severity index indicated in 
Naryn region (except for 2015).
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Fig. 2.15  Scatterplot and boxplot analysis for drought residuals in five areas of Central Asia. On 
the column level: 1 Uzbekistan, 2 Kazakhstan, 3 Kyrgyzstan, 4 Turkmenistan, 5 Tajikistan
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This is a preliminary conclusion of results, and all highlights are a complexity of 
drought activity processes to describe generally.

2.3.2  �Summary About Droughts for Central Asia

On the basis of the results, each country has observed a very extreme drought period 
at least two times during the observation period (1950–2017); occasionally, it is not 
similar for each country in addition to region. However, mostly the strongest drought 
was observed for 2010 in all countries. These phenomena, which vary with time, 
related to develop a particular span of time. As demonstrated results and drought 
coefficients, the negligible condition is observed in Lebap (Turkmenistan) and 
Ulytau (Kazakhstan) regions. Based on observed results, the SPEI is a good indica-
tor to predict further drought anomalies or alternatively to be able develop crop 
failure or less productive zones under a statistical approach (Table 2.4).

2.3.3  �Statistical Description of Annual Trend Analysis 
of Droughts and Their Residuals

The selected method outputs describes the results of drought on annual trends based 
on monthly dataset. The seasonal fluctuations in a time series can be contrasted with 
cyclical patterns (see on top) (Tables 2.5, 2.6, and 2.7). To handle seasonality with 
amplitude and phase are a linear regression for drought trends and calculated with 

Fig. 2.16  Mapping annual SPIE dataset for Uzbekistan based on available period (1950–2017)
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Fig. 2.17  Mapping prediction standard error on base kriging results (prediction made on the basis 
of regression equation). Results indicated similarity of SPIE index with Köppen classification (a, 
b) and average annual NDVI values (c) and prediction map with simple kriging method (d). (a) 
Drought indices of SPEI (1982–2015) and identified similarity Köppen classification. (b) NDVI 
values (1982–2015) determined on the high evaporation zones with low vegetation values. (c) 
Prediction map for changes of vegetation indices in Central Asia. A high loss of vegetation indices 
is indicated in the southern territories and occupied Turkmenistan, Tajikistan, and Uzbekistan. Red 
color is modified as early drought detection zones

Table 2.4  Basic statistical description monthly available SPIE dataset in the part of Uzbekistan 
(1957–2017)

Minimum 1st quarter Median Mean 3rd quarter Maximum
−2.17 −0.83 −0.01 −0.05 0.65 2.42

Table 2.5  Basic statistical description of monthly available SPIE dataset in the part of Uzbekistan 
(1957–2017)

Ulytau
Minimum 1st quarter Median Mean 3rd quarter Maximum
−2.415740 −0.731258 0.000685 0.015693 0.748020 2.764420
Kyzylorda
Minimum 1st quarter Median Mean 3rd quarter Maximum
−2.78183 −0.73523 −0.04258 −0.02281 0.66500 3.15759
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decomposition method from time series analysis series. As we have seen, for the six 
cases (selected target areas), the annual trend values ranged between −2 and 2 (as 
minus “drought,” with plus “low drought”). Based on residuals and forecasting in 
further drought status (Fig.  2.17) illustrates that only in the Ulytau region, 
Kazakhstan will have less drought, or positive trends will have affirmed it. Other 
resting areas are shown with negative trends (descending line); especially, 
Turkmenistan (Lebap) and Kazakhstan (Kyzylorda) will be stronger than other 
areas. Other statically available data for residuals is illustrated in Tables 2.8 and 2.9. 
The following residual analysis of annual drought trends is based on the monthly 
dataset accounted for each region (Table 2.9) and the following abbreviations mean-
ing the value: for example, for Uzbekistan, minimum (Min): Min  = −0.76; first 
quartile (1Q):1Q  =  −0.23; Median (Med): Med  =  −0.02; Third Quartile 
(3Q):3Q = 0.19; and Maximum (Max): Max = 0.98.

2.3.4  �Resilience of Ecosystem and an Assessment 
of the Consequences of Current Factors for Vegetation 
Trends

Drought-persistent periods are various and dependent on annual rainfall data, and 
the following nonsmoothing parameters are developed for irregular patterns of pre-
cipitation and drought trends. Obviously, temperature raising trends are affected on 
Central Asian drylands and our preliminary studies has proved that land degradation 
is directly linked to Central Asian habitats. Using a semi-variogram as a model, new 
data are unconditionally simulated at each of the input locations in the subset; in the 
case of the large number of datasets are plotted together and measured for predic-
tion. The indicator prediction values are calculated using the semi-variogram mod-
eled from the binary (0–1) data, the creation dataset based on indicator 
transformations of original data (Prec/Temp/NDVI/SPIE).

Cross-validation sequentially omits a point and calculates indicator prediction 
values for each dataset. The simulating semi-variogram (Fig. 2.18a) with the cer-

Table 2.6  Basic Statistical description monthly available SPIE dataset in the part of Uzbekistan 
(1957–2017)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

−3.89508 −0.77346 −0.07035 −0.01224 0.76384 2.99554 1

Table 2.7  Basic statistical description monthly available SPIE dataset in the part of Uzbekistan 
(1957–2017)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

−4.89750 −0.87012 −0.07526 −0.15617 0.61815 2.64364 2
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tainty associated (Prec/Temp/NDVI/SPIE) dataset is constructed by calculating half 
the average squared difference of the values of all pairs (NDVI vs. Prec, SPIE vs. 
Temp) of measurements at locations separated by a given distance h (h*10−1) and 
plotted as y (y*10−2) against the separation distance h (Fig.  2.18a). In reality, it 
means the uncertainty prediction after measuring level 0.636 is various or diffused 
and a randomly occupied measured distance (Fig. 2.18b). Because of the accumula-
tion of low vegetation as sparse vegetation, after 0.636 it was hard to predict after 
this level and variations of the dataset are occasionally diffused. An inserted shape 
indicates dominant values for these zones that are tightly accumulated and less 
extending (more stabilized) in both sides between planks.

Table 2.9  Summary for residual analysis of monthly drought values and outputs between trends 
and seasonality

Country Min 1Q Median 3Q Max

Uzbekistan (Navoi) −0.75964 −0.23210 −0.02444 0.19754 0.98208
Kazakhstan (Ulatau) −0.88626 −0.28184 0.01544 0.27061 0.87385
Kyrgyzstan (Naryn) −1.76631 −0.36260 0.02083 0.39100 2.18888
Turkmenistan (Lebap) −1.1657 −0.2658 0.0114 0.2616 0.9576
Tajikistan (GBAR) −1.85109 −0.30753 −0.03922 0.34162 1.61468

Fig. 2.18  Mapping prediction standard error on base kriging results (prediction made on the basis 
of regression equation)
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The number of lags 12 monthly, lag size >12 for datasets, defines the weights that 
determine the contribution of each observed data point to the prediction of new 
values at unsampled locations. The selected number 12 is indicated as monthly con-
tributions and their delay effects. This is an effective way to acquire vegetation cov-
ers because they are time consuming, and curvature (Fig. 2.18a) effects to lags are 
very small and averaged datasets (blue crosses) are nonsignificant to the semi-
variogram. As illustrated in Fig. 2.18a, the semi-variogram is estimated from data to 
make optimal prediction among various distances (dataset as frequently diffusion 
from estimated blue line) and nonlinear correlation observed between SPIE and 
precipitation. Interpreting predictions with the semi-variogram provides a better 
understanding of possible dependency dataset to each others and the generalized 
outputs. However, the model makes an enormous difference if the function is to be 
used for prediction (Fig. 2.7). For instance, as illustrated in Fig. 2.18a, the accumu-
lation of NDVI values on the beginning of the curvature line shows positively, and 
more or less correlation is available between pairs 0.05, 0.20, and 1 between values. 
This is a nice example of the distinction between statistical significance and the 
scientific importance of the dataset. The curvature is highly significant and given a 
high variance in y, the effect of curvature is less effective, just a few distance (mea-
sured x) periods is effectively correlated. The curvature has to pass to the averaged 
dataset. In the case of the curvature model, no information on non-linearity other 
than that contained within data, then parsimony suggests that errors will be smaller 
using the simpler, linear model prediction (Fig. 2.17). We have applied a simple 
kriging standard error map (Fig. 2.6c) to receive fewer errors within applying cer-
tain datasets for the prediction status of patterns (loss and gain productivity) and 
resilience areas of Central Asia. Both models (Figs. 2.6 and 2.7) are equally good at 
describing the data (r2 = 0.76) (the power law model) and y = 0.96 * x + 0.80, but 
extrapolation beyond the range of the data is always fraught with difficulties.

Explored relationships between temporal changes of SPIE events (1982–2015) 
and NDVI spatial patterns (1982–2015) for the arid and semi-arid zones of Central 
Asia (Fig.  2.6a, b) and linear relationships between varies: y  =  0.96  *  x  +  0.80 
(Figs. 2.6 and 2.7); also linear/positive relationship observed between periods of 
precipitation anomalies and high evapotranspiration (Preclow /SPEImax ), as observed 
regionally drought periods in Central Asia. The positive relationship means that 
SPIE is getting a peak period (plus ratings) and, the lowest ratings of precipitation 
is accumulated on same time.

Generally, drought ratings continues more than 90 days, prolongation droughts 
and more than 90 days associated with raising temperature ratings. In contrast, the 
main drought episodes were identified by the SPEI (Fig. 2.7) and NDVI values that 
illustrated vegetation accumulation ratings (0.02–0.43) (Fig. 2.7), when SPIE had 
evaporated under following indices: 0.06–0.41; The further anomalies scenarios 
regarding on datasets (Fig. 2.7), quantity of samples are equal to 1863 (as dots) and 
indicated linear regression when applied four certainty datasets (Prec/Temp/NDVI/
SPIE). Moreover, if temperature increased progressively by 2° or 4 °C on the global 
level, the reinforcement of drought severity is associated with higher water demand 
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by potential evapotranspiration (Vicente-Serrano et al. 2015a, b). The similarity or 
progressive rise in temperature is already estimated in Turkmenistan, then in 
Uzbekistan and Kazakhstan.

2.3.5  �Ongoing Process and Early Drought Detection 
with the Kriging Method

This research assessed the vegetation dynamics in Central Asian drylands to deter-
mine which associated anthropogenic pressures are versus climate anomalies. 
During high ET0 is expected to continuous of decreasing levels of water resources, 
as shown in Fig. 2.17c, the rating of the negative vegetation values (Fig. 2.17) with 
high transpiration is forecast across the borders of Turkmenistan and Uzbekistan, 
Uzbekistan and Tajikistan, and Kyrgyzstan and small areas of Kazakhstan around 
the Kyzylkum Desert. The background of the prediction map (Fig. 2.17) illustrates 
improper low vegetation values in the southwestern part of the area (red color); it 
might be a landscape pattern these areas mostly under desert zones and vegetation 
patterns or coverage is frequently sparse.

Large-scale datasets are used to assess and measure relationships between global 
climate patterns and regional-scale vegetation responses to support land and water 
use and management in this drought-prone region with prediction map/trend. The 
prediction map (Fig. 2.18) illustrates a more complex situation for resiliency; among 
five countries only Kazakhstan and Kyrgyzstan are more resilient in this ongoing 
scenario, with projections suggesting losses in areas of Turkmenistan, Uzbekistan, 
Tajikistan, and partly Kyrgyzstan, and same time potential gains (increasing more 
greenness) in Kazakhstan lands. It is more important to see that a vast area of range-
land/grasslands are stabilizing or restoring in part of Kazakhstan. However, it is a 
vast country and on the regional or local level, we may find diverse problems related 
to anthropogenic effect or the climate change issue. A right example is that for 
Kyzylorda region; after rice paddying and high evapotranspiration in atmosphere, 
huge agricultural zones have been converted on saline and abandoned areas.

Some main affected areas among regions in Central Asia and mapping were 
identified with standard error for detection of change values or prediction standard 
errors (Fig. 2.17) quantify the uncertainty for each location in the surface that we 
created and developed criteria to illustrate vegetation loss areas. A simple rule of 
thumb is that 95% of the time, the true value of the surface will be within the inter-
val formed by the predicted value. Appropriate phytoindicators for modifying and 
designing different ecological zones, especially trends of spatial changes of vegeta-
tion cover over time trends which are associated with climate patterns, assessed a 
better understanding vegetation movement dynamics and their mechanisms. Within 
prediction standard error surface that locations (five countries) near sample points 
generally have lower error and more accuracy for receiving further status of vegeta-
tion (Fig. 2.18).
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On the basis of criteria to develop appropriate phytoindicators with fragile zones 
as lesser resilience of climate anomalies (regions of the country) are the following:

Turkmenistan: Balkan (I), Taschauz (II),
Uzbekistan: Ferghana (III), Namangan (IV), Navoi (V), Syrdaryo (VI), 

Karakalpakstan (VII), Khorezm(VIII)
Tajikistan: Khodjand (IX)
Kyrgyzstan: Batken (X), Naryn (XI),
Kazakhstan: Mangghystau (XII), Kyzylorda (XIII)
To resilience of this occasions or as a potential winner (Kazakhstan and partly 

Kyrgyzstan) and losers (Turkmenistan, Uzbekistan, and Tajikistan). This assump-
tion will have to undertake proactive adaptation tools to reduce early drought dam-
age for loser category countries. On the basis of results, we are able to forecast that 
two regions of Central Asia are detected as high potential risk zones: Turkmenistan 
and Tajikistan. Also, more than half the area of Uzbekistan is also indicated as same 
status.

2.4  �Conclusion

The rising occurrence of drought events and following soil salinization are serious 
threats that have major impacts on land use and land cover (LULC) change patterns 
in agricultural zones of Central Asia. This research demonstrates that it is possible 
to estimate based on satellite image sources and effectively disseminate an early 
warning of disaster risk zones for upcoming months or years. For developing coun-
tries, there is increased awareness of the loss of biodiversity caused by abiotic 
stresses, especially drought events observed and characterized as a higher influence 
by agricultural sectors. Therefore, the drought is an occasional issue in Central Asia, 
and the minimum values have not reached the positive values, which means drought 
trends will be observed as longer or shorter term in all selected countries and 
regions. The strongest drought in past years was observed in Lebap (SPIE > −3) and 
in Naryn (SPIE > −3), also in GBAR region (SPIE > −2), while this region is 
famous with mountain ecosystems. Based on median values (Fig. 2.17, left side) in 
Central Asia drought or drought anomalies are observed usually in targeted areas 
(based on minus values). For selected areas, at least two times of peak drought peri-
ods were estimated, mostly in Turkmenistan, and after that in Uzbekistan. In gen-
eral, arid and semi-arid regions particularly have high evaporation loss ratings, and 
therefore, high ET0 ratings were observed, where the water supply is most limited 
and very valuable. Performance of utilization of satellite images within drought 
indexes gives affordable and visual information for current and past condition to 
analyze and develop information systems for early drought detection. Arid zones 
are prone to frequent seasonal droughts, and complex terrain that both hinders 
ground and satellite-based remote sensing is an applicability of conventional sub-
grid process to make parametrizations for detection of early drought anomalies with 
developing indicator approaches.
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