
Interactive Verification of Distributed
Protocols Using Decidable Logic

Sharon Shoham(B)

Tel Aviv University, Tel Aviv, Israel
sharon.shoham@gmail.com

1 Extended Abstract

Distributed systems are becoming more and more pervasive in our lives, making
their correctness crucial. Unfortunately, distributed systems are notoriously hard
to get right and verify. Due to the infinite state space (e.g., unbounded number
of nodes and messages) and the complexity of the protocols used, verification of
such systems is both undecidable and hard in practice.

Numerous works have considered the problem of automatically verifying dis-
tributed and parameterized systems, e.g., [1,9,10,17,18,20,23,24,26,38]. Full
automation is extremely appealing. Unfortunately, automatic techniques are
bound to fail in some cases due to the undecidability of the problem. Some impose
restrictions on the verified systems (e.g., [26]), some may diverge (e.g., [24]) and
some may report false alarms (e.g., [2]). Moreover, such techniques often suf-
fer from scalability issues and from an unpredictable performance. As a result,
most efforts towards verifying real-world systems use relatively little automa-
tion [19,25,31].

In contrast, deductive verification approaches let a user annotate the verified
system with inductive invariants and pre/post specifications, and reduce the
verification problem to the problem of proving the validity of the corresponding
verification conditions. Tools for doing so vary in their expressiveness and level of
automation. Some (e.g., [6,12,13,22,33,34]) check the verification conditions by
decision procedures, but are limited in their expressivity. Others (e.g., [29]) use
undecidable logics and semi-decision procedures, e.g., as provided by satisfiabil-
ity modulo theories (SMT) solvers (e.g., Z3 [11], CVC4 [4], OpenSMT2 [21],
Yices [14]), or by first-order solvers (e.g., Vampire [40], iProver [27]). Tools
based on semi-decision procedures might fail to discharge the verification condi-
tions either by non-terminating or by yielding inconclusive answers. Similarly to
automatic verification approaches, they also suffer from an unpredictable per-
formance: They might work well on some programs, but diverge when a small
change is performed. This is sometimes referred to as a butterfly effect [30]. When
this happens, it is often extremely difficult to discover, let alone remedy, the root
cause of failure in the complex chain of reasoning produced by the algorithm.

Proof assistants such as Coq [5] and Isabelle/HOL [35] offer great expres-
sivity, but require the user to write the proof (possibly exploiting various tac-
tics), while mechanically validating every step in the proof. Verification using
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 77–85, 2018.
https://doi.org/10.1007/978-3-319-99725-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99725-4_7&domain=pdf


78 S. Shoham

proof assistants is extremely labor intensive and requires tremendous efforts
even by expert users (e.g., approx. 10 lines of proof were required per line of
code in [42,43]). Thus, it is hard to deploy this method to verify complicated
systems.

In summary, all of these approaches either (i) handle limited classes of sys-
tems, (ii) employ sound but incomplete automatic reasoning which reports too
many false alarms, (iii) use semi-algorithms that tend to be fragile, unpredictable
and often diverge, or (iv) require too much manual effort, relying on expertise
in logic and verification.

Approach. We propose to overcome the shortcomings of existing approaches
by using an interactive verification methodology that divides the verification
problem into tasks that are well suited for automation and can be solved by
decision procedures, and tasks that are best done by a human, and finds a
suitable mode of interaction between the human and the machine.

This methodology is based on the conjecture that users usually have high
level knowledge of the functionality of the code and interactions between dif-
ferent parts of the program. On the other hand, algorithmic techniques can be
effective in reasoning about corner cases missed by the user. The key to success
is to exploit these fortes when defining the roles of the user and the automated
analysis, and to provide the suitable interface between them.

“One thing all programmers have in common is that they enjoy working
with machines; so let’s keep them in the loop. Some tasks are best done
by machine, while others are best done by human insight; and a properly
designed system will find the right balance.” — D. Knuth

We argue that letting a user convey her intuition to an automated analysis,
and making sure that automation is restricted to decidable problems, will make
the verification process more efficient and predictable, and will allow to balance
between automation and expressivity.

An attempt at applying this methodology is implemented in Ivy [37]. In
this work, we developed an interactive procedure for verifying safety properties
of distributed protocols, where the verification conditions are expressed using
decidable logic, allowing to check their validity completely automatically with
decision procedures, and where the user’s creativity guides the construction of
the proper annotations. This is achieved by graphically displaying states that
violate the verification conditions and letting the user select the relevant parts of
the state according to which the annotations (inductive invariants) are updated.
We elaborate on this approach in the sequel. We start with some background.

Decidable reasoning in Ivy. Ivy is a verification system based on decidable logic.
Decidability greatly improves the predictability of proof automation, resulting in
a more practical verification approach. Furthermore, it facilitates an interactive
process, where the user may modify the invariants used for verification based on
counterexamples.



Interactive Verification of Distributed Protocols 79

Ivy supports several decidable fragments of first-order logic, of which [37]
uses the Effectively PRopositional fragment (EPR). EPR [39] is a fragment
of first-order logic where the vocabulary is restricted to constant and relation
symbols,1 and the quantifier prefix is restricted to ∃∗∀∗ in prenex normal form.2

Satisfiability of EPR formulas is decidable [32] and supported by existing SMT
solvers such as Z3 [11] and first-order logic provers such as iProver [27]. Moreover,
EPR has the finite-model property, which means that every satisfiable formula
has a finite model.

EPR is a relatively weak logic, but, perhaps surprisingly, it turns out to
be suitable for modeling and verifying interesting systems, including software
defined networks [3], heap manipulating programs [16,22], and, as we do in this
work, distributed protocols [36,37,41]. We refer the interested reader to the
aforementioned works for more details on modeling systems and their properties
using EPR.

Safety verification. Safety properties specify bad behaviors that should never be
encountered in any run of a system. An example of a bad behavior is the elec-
tion of more than one leader in a leader election protocol. Safety properties are
essential requirements that, when violated, might incur catastrophical outcomes.

One of the most useful techniques for proving safety of infinite-state sys-
tems already advocated by Floyd [15] is based on inductive invariants. Inductive
invariants are an adaptation of the mathematical concept of “induction hypothe-
sis” to the domain of programs. Technically, an inductive invariant I is a property
of the system that (i) holds initially (initiation), (ii) implies the safety property
(safety), and (iii) is preserved by every step of the system, namely if the system
makes a step from any configuration that satisfies I, it reaches a configuration
that satisfies I as well (consecution). If an inductive invariant exists, the system
is safe. Thus, safety verification reduces to inferring inductive invariants. Sim-
ilarly to mathematical proofs by induction, the most challenging and creative
task in deductive verification of safety properties is coming up with the inductive
invariants.

Example 1. As a concrete example, consider a simple distributed protocol for
leader election in a ring [8]. The protocol assumes a ring of unbounded size.
Every node has a unique ID with a total order on the IDs. Thus, electing a
leader can be done by a decentralized extrema-finding protocol. The protocol
works by sending messages in the ring in one direction: Each node announces
its ID to its immediate neighbor. A node only forwards messages with higher ID
than its own ID. When a node receives a message with its own ID, it declares
itself as a leader. The safety property of interest here is that no more than one
leader is elected. To verify the protocol means to verify that this property holds
in every instance of nodes that run the protocol.
1 It is straightforward to extend EPR to allow stratified function symbols, i.e., function

symbols that do not create cycles among sorts (e.g., if there is a function symbol
from sort A to sort B, then no function symbol from sort B to sort A is allowed).

2 In particular, EPR does not allow the use of arithmetic operations.



80 S. Shoham

In this example, the safety property itself is not inductive. For example, in a
configuration where one leader is already elected but there is a pending message
to some other node with its own ID, the property will be violated in the next
step, hence violating the consecution requirement. Such a configuration is not
reachable from the initial configuration of the protocol (where no leader is elected
and no message is pending), but the safety property itself is not strong enough
to exclude it. In order to exclude the counterexample to induction and make
the candidate invariant inductive, it needs to be strengthened by adding (1) a
conjecture saying that a message can reach a node with the same ID only if this
ID is maximal — this conjecture will exclude the scenario described above, (2) a
conjecture saying that the leader has the highest ID, and (3) a conjecture saying
that messages cannot bypass nodes with higher IDs.

Verification conditions. We express protocols using a transition relation formula,
denoted Tr(V,V ′), where V is the vocabulary V used to describe the protocol’s
state, and V ′ is its copy used to represent the post-state of a transition. Initial
state conditions, safety properties and inductive invariants are also specified
via formulas, Init(V), P(V) and Inv(V), respectively, over V. Checking whether
Inv satisfies initiation, consecution and safety, then corresponds to checking the
validity of the following verification conditions:

initiation Init(V) → Inv(V)
safety Inv(V) → P(V)
consecution Inv(V) ∧ Tr(V,V ′) → Inv(V ′)

which in turn corresponds to checking the unsatisfiability of the following for-
mulas that encode violations of the requirements:

violation of initiation Init(V) ∧ ¬Inv(V)
violation of safety Inv(V) ∧ ¬P(V)
violation of consecution Inv(V) ∧ Tr(V,V ′) ∧ ¬Inv(V ′)

If Tr , Init and ¬P are EPR formulas and Inv is universally quantified, then
these formulas fall into the decidable EPR fragment. Indeed, this is the case
in the leader election example. If one of the formulas is satisfiable (i.e., the
corresponding requirement does not hold), then a finite satisfying model exists
(due to EPR’s finite model property). For example, if consecution is violated,
then a finite counterexample to induction is found – a state that satisfies Inv
but has an outgoing transition to a state that violates it.

Inference of universally quantified inductive invariants via interactive generaliza-
tion. In [37], we propose an interactive technique for inferring inductive invari-
ants in the form of universally quantified formulas that is able to discover the
inductive invariant of Example 1. The approach, implemented in Ivy, is based
on iterative strengthening.

Iterative strengthening starts from a candidate inductive invariant, e.g.,
the safety property, and strengthens it iteratively until it becomes inductive.



Interactive Verification of Distributed Protocols 81

Strengthening in Ivy is based on counterexamples to induction: a counterex-
ample to induction s is excluded by conjoining the candidate invariant with a
new conjecture that generalizes s into a set of excluded states. Generalization
is crucial for the success of the approach. First, the conjecture obtained by gen-
eralization must not exclude any reachable state (otherwise, it would not be
an invariant). In addition, it needs to be provable by induction with the given
language of inductive invariants (otherwise, no further strengthening would turn
the invariant into one that is also inductive). Finding a good generalization is
extremely difficult to automate, and is a key reason for failure of many automatic
techniques.

Therefore, Ivy uses an interactive generalization process, where the user con-
trols the generalization, but is assisted by the tool. Ivy interacts with the user
based on a graphical representation of concrete counterexamples to induction,
taking advantage of the finite-model property of EPR formulas, as well as of the
model-theoretic notion of a diagram.

The diagram [7] of a finite state (first-order structure) s, denoted Diag(s),
is an existentially quantified cube (conjunction of literals) that is satisfied by
a state s′ if and only if s′ contains s as a substructure (where a substructure
of s′ is a structure obtained by restricting the domain of s′ to some subset
and projecting all interpretations to the remaining elements in the domain).
As such, the negation of the diagram of s is a universally quantified clause that
“excludes” s as well as any structure that contains it as a substructure, providing
a natural generalization scheme. Additional generalization can be obtained by
omitting from Diag(s) some of the literals describing s (equivalently, omitting
some “features” from s). These observations were used in [24] as part of an
automatic invariant inference algorithm.

Ivy uses the diagram as a means to alternate between counterexamples to
induction (which are natural for the user to look at) and universally quanti-
fied clauses that exclude them. Namely, when the consecution check fails, the
user is presented with a minimal finite counterexample to induction, displayed
graphically. The user responds by determining whether the counterexample to
induction is reachable. If it is, then the inductive invariant is too strong and needs
to weakened. If it is not reachable, the invariant can be strengthened to exclude
it. In the latter case, the user hides some of the features of the counterexample
to induction (e.g., the interpretation of some relation symbol) that she judges
to be irrelevant to unreachability (i.e., such that the state remains unreachable
with any valuation of these features). In this way, she uses her intuition to focus
on the part of the state that really needs to be excluded. The feature selection is
performed via a graphical interface. Ivy then computes the diagram of the gen-
eralized state, and transforms it into a universally quantified clause (conjecture)
that excludes the generalized state and all the states that extend it. It offers the
user several additional checks, such as bounded model checking to help verify
that the new conjecture does not exclude any reachable state, and additional
generalization via interpolation based on the bounded model checking check. All
of these checks are implemented using decision procedures (relying on EPR’s



82 S. Shoham

decidability). In this way, the user controls the generalization process, and is
assisted by predictable automation.

Ivy was successfully used to infer invariants for several distributed protocols
which are beyond reach of automatic verification algorithms, demonstrating the
effectiveness of EPR and the interaction based on counterexamples to induction.
Moreover, under the assumption that the user identifies the “correct” features,
we are able to bound the complexity of the approach by means of the size of a
target invariant.

We note that while the interactive generalization technique is restricted to
generating universally quantified inductive invariants, Ivy’s graphical interface
is useful also in cases where the inductive invariant is more complex. In such
cases, Ivy provides counterexamples to induction, and updating the inductive
invariant to eliminate them is done entirely by the user. This approach has also
proven itself most effective, e.g., in verifying the Paxos consensus protocol [28]
and several of its variants [36].

Conclusion. We propose a verification methodology that aims to balance
between automation, expressivity and predictability by properly dividing the
verification task between the human and the machine. Ivy realizes this method-
ology by letting the tool check inductiveness of a given candidate inductive
invariant using decidable logic, and letting the user update the inductive invari-
ant based on graphically displayed counterexamples to induction. For universally
quantified inductive invariants, the latter is also done interactively via a process
of interactive generalization. It is left to future work to investigate these ideas
with respect to other logics, other inference algorithms (more sophisticated than
iterative strengthening), and other interaction modes.

Acknowledgement. This publication is part of a project that has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No [759102-SVIS]). The research
was partially supported by Len Blavatnik and the Blavatnik Family foundation, the
Blavatnik Interdisciplinary Cyber Research Center, Tel Aviv University, and the United
States-Israel Binational Science Foundation (BSF) grants No. 2016260 and 2012259.

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L.: Parameterized verification through view
abstraction. STTT 18(5), 495–516 (2016)

2. Alpernas, K., Manevich, R., Panda, A., Sagiv, M., Shenker, S., Shoham, S., Velner,
Y.: Abstract interpretation of stateful networks. In: Static Analysis Symposium
(SAS) (2018)

3. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: Vericon: towards verifying controller programs in software-
defined networks. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014, Edinburgh, UK, 9–11 June 2014, pp.
282–293 (2014)



Interactive Verification of Distributed Protocols 83

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004)

6. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, pp. 167–182. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33386-6 14

7. Chang, C., Keisler, H.: Model Theory. Studies in Logic and the Foundations of
Mathematics. Elsevier Science, New York (1990)

8. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)

9. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 55

10. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zäıdi, F.: Invariants for finite
instances and beyond. In: Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, 20–23 October 2013, pp. 61–68 (2013)

11. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
12. Drăgoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A logic-based

framework for verifying consensus algorithms. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 161–181. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54013-4 10

13. Dragoi, C., Henzinger, T.A., Zufferey, D.: Psync: a partially synchronous language
for fault-tolerant distributed algorithms. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, 20–22 January 2016, pp. 400–415 (2016)

14. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer-Aided Verification
(CAV 2014), vol. 8559. LNCS, pp. 737–744. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-319-08867-9 49

15. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposium on
Applied Mathematics, vol. 32 (1967)

16. Frumkin, A., Feldman, Y.M.Y., Lhoták, O., Padon, O., Sagiv, M., Shoham, S.:
Property directed reachability for proving absence of concurrent modification
errors. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp.
209–227. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0 12

17. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 3

18. Gurfinkel, A., Shoham, S., Meshman, Y.: SMT-based verification of parameter-
ized systems. In: ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (2016, to appear)

19. Hawblitzel, C., et al.: Ironfleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP, pp.
1–17 (2015)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-33386-6_14
https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/978-3-642-54013-4_10
https://doi.org/10.1007/978-3-642-54013-4_10
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-52234-0_12
https://doi.org/10.1007/978-3-642-14203-1_3


84 S. Shoham

20. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating
timed systems. In: Proceedings First Workshop on Horn Clauses for Verification
and Synthesis, HCVS 2014, Vienna, Austria, 17 July 2014, pp. 39–52 (2014)

21. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: an SMT
solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.)
SAT 2016. LNCS, vol. 9710, pp. 547–553. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40970-2 35

22. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 756–772. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 53

23. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6 55

24. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. J. ACM,
64(1):7:1–7:33 (2017)

25. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an operating-system Kernel. Commun.
ACM 53(6), 107–115 (2010)

26. Konnov, I.V., Lazic, M., Veith, H., Widder, J.: A short counterexample property
for safety and liveness verification of fault-tolerant distributed algorithms. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, 18–20 January 2017, pp. 719–734 (2017)

27. Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic
(system description). In: Automated Reasoning, 4th International Joint Confer-
ence, IJCAR 2008, Sydney, Australia, 12–15 August 2008, Proceedings, pp. 292–
298 (2008)

28. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

29. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355,
pp. 348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17511-4 20

30. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
361–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 20

31. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

32. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

33. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 43–59. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7 8

34. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: Proceedings
of the 2001 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Snowbird, Utah, USA, 20–22 June 2001, pp. 221–231
(2001)

https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-642-39799-8_53
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/978-3-642-23702-7_8


Interactive Verification of Distributed Protocols 85

35. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer, Heidelberg (2002)

36. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning
about distributed protocols. Proc. ACM Program. Lang. PACMPL, 1(OOPSLA),
108:1–108:31 (2017)

37. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, 13–17 June 2016, pp. 614–630 (2016)

38. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: Tools and Algorithms for the Construction and Analysis of Systems,
7th International Conference, TACAS 2001 Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy, 2–6
April 2001, Proceedings, pp. 82–97 (2001)

39. Ramsey, F.: On a problem in formal logic. Proc. London Math. Soc. 30, 264–286
(1930)

40. Sharygina, N., Veith, H. (eds.) Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, 13–19 July 2013, Proceedings.
LNCS, vol. 8044. Springer, Heidelberg (2013)

41. Taube, M., et al.: Modularity for decidability of deductive verification with applica-
tions to distributed systems. In: Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2018, Philadel-
phia, PA, USA, 18–22 June 2018, pp. 662–677 (2018)

42. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.E.: Verdi: a framework for implementing and formally verifying distributed
systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, 15–17 June 2015, pp.
357–368 (2015)

43. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.: Plan-
ning for change in a formal verification of the raft consensus protocol. In: Proceed-
ings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs,
Saint Petersburg, FL, USA, 20–22 January 2016, pp. 154–165 (2016)


	Interactive Verification of Distributed Protocols Using Decidable Logic
	1 Extended Abstract
	References




