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Abstract. Transition invariants are a popular technique for automated
termination analysis. A transition invariant is a covering of the transi-
tive closure of the transition relation of a program by a finite number of
well-founded relations. The covering is usually established by an induc-
tive proof using transition predicate abstraction. Such inductive termi-
nation proofs have the structure of a finite automaton. These automata,
which we call transition automata, offer a rich structure that has not
been exploited in previous publications. We establish a new connection
between transition automata and the size-change abstraction, which is
another widespread technique for automated termination analysis. In
particular, we are able to transfer recent results on automated complex-
ity analysis with the size-change abstraction to transition invariants.

1 Introduction

The last decade has seen considerable interest in automated techniques for
proving the termination of programs. Notably, the Terminator termination
analyzer [14] has been able to analyze device drivers with several thousand
lines of code. The analysis in [14] uses the termination criterion suggested by
Rybalchenko and Podelski in [25] (for a discussion of earlier work that implicitly
used the same principle we refer the reader to [6]): In order to show the well-
foundedness of a relation R, it is sufficient to find a finite number of well-founded
relations R1, . . . , Rk with

R+ ⊆ R1 ∪ · · · ∪ Rk (∗)

where R+ denotes the transitive closure of R.
An essential difficulty in using the above criterion lies in establishing the

condition (*), as reasoning about the transitive closure R+ usually requires
induction. For this reason, not only the above criterion but also an inductive
argument for establishing (*) was suggested in [25]. The inductive argument
was further developed in [26], where the use of transition predicate abstraction
(TPA) has been suggested for establishing condition (*). TPA is the basis for
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the termination analysis in Terminator. The starting point of our research are
the inductive termination proofs with TPA, which have the structure of finite
automata (as already observed in [26]). These automata, which we call tran-
sition automata, offer a rich structure that has not been exploited in previous
publications. It is precisely this automaton structure, which allows us to con-
nect inductive termination proofs with TPA to the size-change abstraction, and
transfer recent results on automated complexity analysis.

We contrast our approach with the fascinating line of work [6,30,32], which
aims at bounding the height of the relation R in terms of the height of the
relations R1, . . . , Rk. In order to derive such bounds, [6,30] replace Ramsey’s
theorem, which has been used to prove (*) in [25], by more fine-grained Ramsey-
like arguments. In this paper, we show that inductive termination proofs with
TPA do not need to rely on Ramsey’s theorem and can be analyzed solely by
automata-theoretic techniques.

Size-change abstraction (SCA), introduced by Ben-Amram, Lee and Jones
in [22], is another wide-spread technique for automated termination analysis.
SCA has been employed for the analysis of functional [22,23], logical [31] and
imperative [3,10] programs and term rewriting systems [9], and is implemented
in the industrial-strength systems ACL2 [23] and Isabelle [20]. Recently, SCA
has also been used for resource bound and complexity analysis of imperative
programs [34]. SCA is attractive because of several strong theoretical results
on termination analysis [22], complexity analysis [12,33] and the existence of
ranking functions [5,33]. The success of SCA has also inspired generalizations
to richer classes of constraints [4,5,7]. The connection between TPA and SCA
has been the subject of previous research [19], which contains first results but
does not exploit the automaton structure of inductive termination proofs. In this
paper, we make the following contributions:

Result 1: Our main result (Theorem 7) makes it possible to transfer recent
results on automated complexity analysis with the size-change abstraction [12]
to transition automata. In particular, we obtain a complete and effective char-
acterization of asymptotic complexity analysis with transition automata. This
result holds the potential for the design of new automated complexity analyzers,
for example, by extracting complexity bounds from the inductive termination
proofs computed by Terminator. We illustrate our result in the following. We
consider the programs P1 and P2 given by Examples 1 and 2 in Fig. 1. One
can model the transition relation of P1 by the predicate x′ = x − 1 ∧ y′ =
N ∨ x′ = x ∧ y′ = y − 1 and the transition relation of P2 by the predicate
x′ = x − 1 ∧ y′ = y ∨ x′ = x ∧ y′ = y − 1. The two relations R1 and R2 given by
the predicates x′ < x resp. y′ < y are a transition invariant for both programs;
we give an inductive proof which establishes condition (*) for both programs in
Sect. 3. For motivation of our results we state here the relation to [6]: With the
program invariant x ≤ N ∧ y ≤ N (which can be computed by standard tech-
niques such as Octagon analysis [24]), the result of [6] allows us to obtain the
quadratic bound O(N2) on the complexity of both programs from the transition
invariant given by the relations R1 and R2. However, this bound is imprecise for
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Example 1.
main(nat N) {

nat x = N; nat y = N;

while (x>0 ∧ y>0) {
if(?){ //transition a1

x--; y = N;

}
else { //transition a2

y--;

} } }

Example 2.
main(nat N) {

nat x = N; nat y = N;

while (x>0 ∧ y>0) {
if(?){ //transition a1

x--;

}
else { //transition a2

y--;

} } }

Fig. 1. The ? in the condition represents non-deterministic choice.

P2, which has linear complexity. There is no hope in improving the bound for P2,
because the result of [6] just relies on R1 and R2. In this paper, we demonstrate
that the inductive termination proof offers more structure. We show that just by
analyzing the automaton structure of the proof we can deduce the linear bound
O(N) for P2.

Result 2: Following [26] we examine a first termination criterion based on the
universality of transition automata and show that the universality of the tran-
sition automaton implies the termination of the program under analysis (Theo-
rem 2). We then show that transition automata admit a more general termina-
tion criterion based on the definition of an associated Büchi-automaton (Theo-
rems 1 and 3). This more general termination criterion has the advantage that
fewer predicates are needed for the termination proof (Example 7). We finally
show that this new criterion is in fact the most general termination criterion
admitted by transition automata (Theorem4).

Result 3: We connect transition automata to the size-change abstraction in
Sect. 6. In particular, we show how to transfer several results from the size-
change abstraction to transition automata, demonstrating that techniques from
SCA are applicable for the analysis of inductive termination proofs with transi-
tion predicate abstraction. This is of fundamental interest for understanding the
relationship of both termination principles, because transition invariants have
been suggested in [25] as a generalization of size-change termination proofs (and
indeed later work has formally established that every size-change termination
proof can be mimicked by a transition invariant termination proof [19]).

Organization of the Paper. Section 2 gives the basic definitions. Section 3 reviews
transition predicate abstraction as introduced in [26]. Section 4 introduces tran-
sition automata and gives termination criteria. Section 5 reviews the size-change
abstraction. Section 6 defines ‘canonical’ programs for transition automata
and transfers results from the size-change abstraction to transition automata.
Section 7 concludes.
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2 Basic Definitions

We use ◦ to denote the usual product of relations, i.e., given two relations
B1, B2 ⊆ A×A we define B1◦B2 = {(a1, a3) | there is an a2 ∈ A with (a1, a2) ∈
B1 and (a2, a3) ∈ B2}. Let B ⊆ A × A be a relation. B is well-founded if there
is no infinite sequence of states a1a2 · · · with (ai, ai+1) ∈ B for all i. The tran-
sitive closure of B is defined by B+ =

⋃
i≥1 Bi, where B0 = {(a, a) | a ∈ A},

Bi+1 = Bi ◦ B. Let B ⊆ A × A be a well-founded relation. For every ele-
ment a ∈ A we inductively define its ordinal height ‖a‖B by setting ‖a‖B =
sup(a,b)∈B ‖b‖B + 1, where sup over the empty set evaluates to 0. We note that
‖·‖B is well-defined because B is well-founded. We define the ordinal height of
relation B as ‖B‖ = supa∈A ‖a‖B + 1.

2.1 Automata

A finite automaton A = 〈Q,Σ, δ, ι, F 〉 consists of a finite set of states, a finite
alphabet Σ, a transition relation δ : Σ → 2Q×Q, an initial state ι ∈ Q, and a
set of final states F ⊆ Q. Automaton A is deterministic if for every τ ∈ Q and
a ∈ Σ there is at most one τ ′ ∈ Q such that (τ, τ ′) ∈ δ(a). We also write τ

a−→ τ ′

for (τ, τ ′) ∈ δ(a). We extend the transition relation to words and define δ(w) =
δ(a1) ◦ · · · ◦ δ(al) for every w = a1 · · · al ∈ Σ∗. A run of A is a finite sequence
r = ι

a1−→ τ1
a2−→ τ2 · · · al−→ τl. r is accepting if τl ∈ F . Automaton A accepts a

finite word w ∈ Σ∗ if there is an accepting run r = ι
a1−→ τ1

a2−→ τ2 · · · al−→ τl such
that w = a1 · · · al. We denote by L(A) = {w ∈ Σ∗ | A accepts w} the language
of words accepted by A. Automaton A is universal if L(A) = Σ∗.

A Büchi automaton A = 〈Q,Σ, δ, ι〉 consists of a finite set of states, a finite
alphabet Σ, a transition relation δ : Σ → 2Q×{≥,>}×Q, and an initial state
ι ∈ Q. We also write τ

a−→
d

τ ′ for (τ, d, τ ′) ∈ δ(a). A run of A is an infinite

sequence r = ι
a1−→
d1

τ1
a2−→
d2

τ2 · · · . r is accepting if di = > for infinitely many i.

Automaton A accepts an infinite word w ∈ Σω if there is an accepting run
r = ι

a1−→
d1

τ1
a2−→
d2

τ2 · · · such that w = a1a2 · · · . We denote by L(A) = {w ∈
Σω | A accepts w} the language accepted by A. Automaton A is universal if
L(A) = Σω.

Remark. We use this slightly unusual presentation of automata in order to conve-
niently represent the connection between automata and the size-change abstrac-
tion later on. In particular, this connection is the reason for using the symbols
{≥, >} instead of {0, 1} for (non-)accepting transitions.

2.2 Programs

A program P = 〈St , I , Σ, ρ〉 consists of a set of states St , a set of initial states
I ⊆ St , a finite set of transitions Σ, and a labeling function ρ : Σ → 2St×St ,
which maps every transition a ∈ Σ to a transition relation ρ(a) ⊆ St × St .
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We extend the labeling function ρ to finite words over Σ and set ρ(π) = ρ(a1) ◦
ρ(a2)◦ · · · ◦ρ(al) for a finite word π = a1a2 · · · al. A computation of P is a (finite
or infinite) sequence s1

a1−→ s2
a2−→ · · · such that s1 ∈ I and (si, si+1) ∈ ρ(ai) for

all i. Program P terminates if there is no infinite computation of P . A relation
T ⊆ St × St is a transition invariant for P if (

⋃
a∈Σ ρ(a))+ ⊆ T . For a finite

computation s1
a1−→ s2

a2−→ · · · sl+1 we call l the length of the computation.

Automaton A1

ι τ1

τ2

a1

a2

a1, a2

a2

a1

Automaton A2

ι τ1

τ2

a1

a2

a1, a2

a1, a2

Automaton A3

ι τ1

τ2

a1

a2

a1, a2

a2

Fig. 2. Pictures of proof structures/transition automata.

Variables and Predicates. A common program model is to consider some finite
set of variables Var and define the set of states St = Var → α as the mappings
from Var to some domain α. Sets of states can then be described by predicates
over Var and transition relations by predicates over Var ∪ Var ′, where Var ′

denotes the set of primed versions of the variables in Var . Given a predicate p
over Var , we write σ |= p for σ ∈ St if p is true when each variable x ∈ Var
is replaced by σ(x); given a predicate p over Var ∪ Var ′, we write σ, ς |= p for
σ, ς ∈ St if p is true when each variable x ∈ Var is replaced by σ(x) and each
variable x′ ∈ Var ′ is replaced by ς(x). Given a set of predicates Pred over Var ,
we write Rel(Pred) = {σ ∈ St | σ |= p for all p ∈ Pred} for the states which
satisfy all predicates in Pred . Given a set of predicates Pred over Var ∪ Var ′,
we write Rel(Pred) = {(σ, ς) ∈ St × St | σ, ς |= p for all p ∈ Pred} for the pairs
of states which satisfy all predicates in Pred . We will also write Relα(Pred) in
case we want to highlight the domain α.

Example 3. We now express the two programs from Fig. 1 in the above notation.
For both programs, we consider the set of variables Var = {x, y} and treat N
as a symbolic constant. We choose the domain α = ω according to the type nat
of x and y. For both programs we model each branch of the if-statement as one
transition. We set Pi = 〈{x, y} → α,Relα({x = N, y = N}), {a1, a2}, ρi〉, for
i = 1, 2, where we define the labeling functions ρi using C = {x > 0, y > 0}:

ρ1(a1)=Relα(C ∪ {x′ = x − 1, y′ =N}), ρ1(a2)=Relα(C ∪ {x′ =x, y′ = y − 1}),
ρ2(a1)=Relα(C ∪ {x′ = x − 1, y′ =y}), ρ2(a2)=Relα(C ∪ {x′ = x, y′ = y − 1}),
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3 Transition Predicate Abstraction

In this section, we review the definitions and results from [26] in order to motivate
our generalizations in Sect. 4. The development in [26] also considers fairness
requirements, which are not relevant for this paper and therefore left out.

Abstract-Transition Programs. We fix some program P = 〈St , I , Σ, ρ〉. We split
up the definition of abstract-transition programs (see Definition 3 of [26]) into
two parts: proof structures and proof labelings. A proof structure is a finite
automaton A = 〈Q,Σ, δ, ι, 〉, where δ(a) ⊆ Q × (Q \ {ι}) for all a ∈ Σ. For
the moment, we ignore the acceptance condition; we will use it later on. A proof
labeling rel : Q → 2St×St maps every state τ ∈ Q of a proof structure to a
transition relation rel(τ) ⊆ St × St . A proof labeling is inductive if

rel(ι) = IdSt , and
rel(τ) ◦ ρ(a) ⊆ rel(τ ′), for all (τ, τ ′) ∈ δ(a) and for all a ∈ Σ,

where IdSt is the identity relation over St . An abstract-transition program P# =
(A, rel) is a pair of a proof structure A and an inductive proof labeling.

Abstract-transition program are constructed from a fixed finite set of transi-
tion predicates that describe transition relations (see Sect. 4 of [26]). The result-
ing abstract-transition programs have the following properties:

– (P1) The proof structure is a deterministic automaton (see Sect. 5.1 of [26]).
– (P2) For every word a1a2 · · · an with ρ(a1a2 · · · an) �= ∅ there is a run ι

a1−→
τ1

a2−→ τ2 · · · an−−→ τn of A (see Lemma 1 from [26]).
– (P3) Every state τ ∈ Q \ {ι} is reachable from ι (the reader can check that

the abstraction algorithm of [26] starts from the initial state ι and adds only
states which are reachable from ι).

We now state the core theorem of [26]; for illustration purposes, we also state
its proof, which is based on condition (*), in the notation of this paper:

Theorem 1 (Theorem1 of [26]). Let P# = (A, rel) be an abstract program
with property (P2). Then,

⋃
τ∈Q\{ι} rel(τ) is a transition invariant for P . If

rel(τ) is well-founded for every state τ ∈ Q \ {ι}, then P terminates.

Proof. For the first claim, we consider some (s, s′) ∈ ρ(a1a2 · · · an) for some
word a1a2 · · · an with n ≥ 1. By property (P2) we have that there is a run
ι

a1−→ τ1
a2−→ τ2 · · · an−−→ τn of A. By the definition of an inductive proof labeling

we have ρ(a1a2 · · · an) ⊆ rel(τn). Thus, we get that (s, s′) ∈ rel(τn). Hence,
we get (

⋃
a∈Σ ρ(a))+ ⊆ ⋃

τ∈Q\{ι} rel(τ). The second claim then directly follows
from the first claim based on condition (*). ��
Example 4. We will define an abstract-transition program for P1. Let A1 be the
proof structure from Fig. 2. Let rel1 be the proof labeling defined by rel1(τ1) =
Relα({x′ < x}) and rel1(τ2) = Relα({x′ = x, y′ < y}), where α = ω. It is easy



Inductive Termination Proofs with Transition Invariants 429

to verify that rel1 is inductive. Hence, P#
1 = (A1, rel1) is an abstract-transition

program. Moreover, rel1(τ1) and rel1(τ2) are well-founded due to the predicates
x′ < x and y′ < y. The abstraction algorithm of [26] precisely computes P#

1

when called with the set of predicates Pred = {x′ < x, x′ = x, y′ < y}.

Example 5. We will define an abstract-transition program for P2. Let A2 be the
proof structure from Fig. 2. Let rel2 be the proof labeling defined by rel2(τ1) =
Relα({x′ < x}) and rel2(τ2) = Relα({y′ < y}), where α = ω. It is easy to verify
that rel2 is inductive. Hence, P#

2 = (A2, rel2) is an abstract-transition program.
Moreover, rel2(τ1) and rel2(τ2) are well-founded due to the predicates x′ < x

and y′ < y. The abstraction algorithm of [26] precisely computes P#
2 when called

with the set of predicates Pred = {x′ < x, y′ < y}.

Remark. The above proof of Theorem 1 only relies on property (P2). However,
properties (P1) and (P3) explain the requirement that every non-initial state
needs to be labelled by a well-founded relation: by (P3) every state τ ∈ Q \ {ι}
is reachable by some word a1a2 · · · an; by (P1) the word a1a2 · · · an necessarily
reaches τ ; hence, τ needs to be labelled by some well-founded relation. In this
paper, we will generalize Theorem 1 of [26] to non-deterministic proof structures;
for such proof structures it will make sense to also consider proof labelings where
not every state is labelled by some well-founded relation.

Remark. We further note that we can w.l.o.g. strengthen property (P2) to prop-
erty (P2’): For every word a1a2 · · · an there is a run ι

a1−→ τ1
a2−→ τ2 · · · an−−→ τn of

A. We show the following: Let P# = (A, rel) be an abstract-transition program
with property (P2). Then we can extend P# to some abstract-transition pro-
gram (A′, rel ′) with property (P2’). Further, if rel(τ) is well-founded for every
non-initial state τ , then rel ′(τ) is well-founded for every non-initial state τ .

We extend A to A′ by adding a sink state τ∅, which has self-loops for every
a ∈ Σ; for every state τ and a ∈ Σ we add an a-transition from τ to τ∅ if τ does
not have a a-successor. We extend rel to rel ′ by setting rel ′(τ∅) = ∅. It is easy to
see that (P1)–(P3) ensure that rel ′ is inductive and that (A′, rel ′) has property
(P2’). Further rel ′(τ∅) = ∅ is well-founded; hence, the second claims holds.

Invariants. An invariant for a program P = 〈St , I , Σ, ρ〉 is a set Inv ⊆ St such
that (1) I ⊆ Inv and (2) {σ ∈ St | there is a σ′ ∈ Inv with (σ′, σ) ∈ ρ(a)} ⊆ Inv
for all a ∈ Σ. For example, Inv = Relα({x ≤ N, y ≤ N}) is an invariant
for P1 and P2. Invariants can be used to strengthen the transition relations of
a program by restricting the transition relations to states from the invariant:
Given an invariant Inv for P we define Pstrengthen = 〈St , I , Σ, ρstrengthen〉, where
ρstrengthen(a) = ρ(a) ∩ (Inv × Inv) for all a ∈ Σ. Clearly, P and Pstrengthen

have the same computations. However, working with Pstrengthen for termination
resp. complexity analysis is often beneficial because of the restricted transition
relations. Indeed, strengthening the transition relation is often necessary to find
a termination proof. For example, the Terminator termination analyzer [14]
alternates between strengthening the transition relation and constructing a tran-
sition invariant. Similarly, complexity analyzers from the literature commonly
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employ invariant analysis as a subroutine either before or during the analy-
sis [1,2,16–18,29,34]. The problem of computing invariants is orthogonal to the
development in this paper. In our examples on complexity analysis we assume
that appropriate invariants – such as Inv = Relα({x ≤ N, y ≤ N}) for P1 and
P2 – can be computed by standard techniques such as Octagon analysis [24].

4 Transition Abstraction

In this section, we take another view on the result of [26] that we presented in
the last section. On the one hand we aim at generalizing the termination analysis
of [26] to non-deterministic proof structures. On the other hand we do not only
want to reason about a single proof labeling but all possible proof labelings; to
this end we will define a minimal inductive proof labeling. We fix a program
P = 〈St , I , Σ, ρ〉 for the rest of this section.

A transition automaton A = 〈Q,Σ, δ, ι, F 〉 is a finite automaton, where
δ(a) ⊆ Q × (Q \ {ι}) for all a ∈ Σ and F ⊆ Q \ {ι}. We point out that a
transition automaton is a proof structure with final states.

Let A = 〈Q,Σ, δ, ι, F 〉 be a transition automaton. We define a proof label-
ing relmin : Q → 2St×St which precisely follows the structure of A: We set
relmin(ι) = IdSt , and for each τ ∈ Q \ {ι} we set

relmin(τ) =
⋃

word π with (ι,τ)∈δ(π)

ρ(π),

i.e., relmin(τ) is the union of the transition relations along all words with a run
from the initial state to τ .

We now state the central definition of this section:

Definition 1 (Transition Abstraction). A transition automaton A is a tran-
sition abstraction of program P if relmin(τ) is well-founded for each τ ∈ F .

The notion of transition automata is motivated by Theorem2, which extends
the termination criterion of [26] to non-deterministic proof structures. Proposi-
tion 3 below states that Theorem 2 indeed is an extension of Theorem 1 of [26].

Theorem 2. Let A be a transition automaton that is a transition abstraction
of program P . If A is universal, then P terminates.

Proof (Sketch). The theorem can be proved in the same way as Theorem 1 of [26]
whose proof we presented in Sect. 3 based on an application of condition (*); we
will later give a proof purely based on automata-theoretic techniques. ��

We first show that relmin is the minimal inductive proof labeling:

Proposition 1. relmin is inductive.

Proof. We consider some (τ, τ ′) ∈ δ(a). We consider some word π with (ι, τ) ∈
δ(π). Then, πa is a word with (ι, τ ′) ∈ δ(πa). Hence, ρ(πa) ⊆ relmin(τ ′). Because
this holds for all such words π, we get relmin(τ) ◦ ρ(a) ⊆ relmin(τ ′). ��
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Proposition 2. Let rel : Q → 2St×St be some inductive proof labeling. Then,
relmin(τ) ⊆ rel(τ) for all τ ∈ Q.

Proof. We note that relmin(ι) = rel(ι) = IdSt . We will show that for all non-
empty words π that (ι, τ) ∈ δ(π) implies ρ(π) ⊆ rel(τ). The proof proceeds
by induction on the length of the word. For the induction start, we consider
a word π = a consisting of a single letter: Because rel is inductive, we have
ρ(a) = IdSt ◦ ρ(a) = rel(ι) ◦ ρ(a) ⊆ rel(τ) for all (ι, τ) ∈ δ(a). For the induction
step, we consider a word π = π′a with non-empty π′: We fix some (ι, τ) ∈
δ(π′a). There is some (τ, τ ′) ∈ δ(a) with (τ ′, τ) ∈ δ(a) and (ι, τ ′) ∈ δ(π′). By
induction assumption we have ρ(π′) ⊆ rel(τ ′). Because rel is inductive, we have
rel(τ ′) ◦ ρ(a) ⊆ rel(τ). Thus, ρ(π′a) = ρ(π′) ◦ ρ(a) ⊆ rel(τ). ��

With Proposition 2 we are now able to relate transition automata to the
abstract-transition programs presented in the last section:

Proposition 3. Let A = 〈Q,Σ, δ, ι, 〉 be a proof structure with property (P2’).
Let rel be an inductive proof labeling such that rel(τ) is well-founded for every
state τ ∈ Q \ {ι}. With the set of final states F = Q \ {ι}, the proof structure A
is a transition abstraction of program P ; further, A is universal.

Proof. By Proposition 2 we have relmin(τ) ⊆ rel(τ) for all τ ∈ Q. Hence, A is a
transition automaton. By property (P2’), the automaton A has a run for every
word; with F = Q \ {ι} each such run is accepting. Hence, A is universal. ��

Example 6. In Examples 4 and 5 we have argued that P#
1 = (A1, rel1) and P#

2 =
(A2, rel2) are abstract-transition programs for P1 resp. P2. We now consider
A1 and A2 as transition automata, defining the final states by F = {τ1, τ2}.
By Proposition 3, A1 and A2 are transition abstractions for P1 resp. P2 and
Theorem 2 can be applied.

We now define a transition automaton for program P1 that is different from
the transition automaton A1 considered in Example 6:

Example 7. Let A3 be the automaton from Fig. 2 with the set of final states
F = {τ1, τ2}. We now argue that the transition automaton A3 is a transition
abstraction of P1. In order to reason about the well-foundedness of relmin(τ1) and
relmin(τ2), which are required by the definition of transition abstraction, we make
use of Proposition 2 as a proof principle: it is sufficient to define an inductive
proof labeling rel3 and argue that rel3(τ1) and rel3(τ2) are well-founded.

We define rel3 by setting rel3(τ1) = Relα({x′ < x}) and rel3(τ2) =
Relα({y′ < y}) with α = ω. It is easy to verify that rel3 is inductive. More-
over, rel3(τ1) and rel3(τ2) are well-founded due to the predicates x′ < x and
y′ < y. We conclude that A3 is a transition abstraction of P1. We observe that
automaton A3 (resp. A′

3) is not universal, and Theorem2 cannot be applied.

Remark. We relate A3 to the abstraction algorithm of [26]. We extend A3 to the
automaton A′

3 by adding a non-final state τtrue ; we add an a1-transition from τ2
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to τtrue and self-loops to τtrue for a1 and a2. We set rel3(τtrue) = Relα({true}) =
St ×St (note that St ×St is not well-founded). The abstraction algorithm of [26]
will exactly compute the abstract-transition program P#

3 = (A′
3, rel3) when

called with the set of predicates Pred = {x′ < x, y′ < y}; we work with automa-
ton A3 instead of A′

3 because it has one state less and is easier to represent.

Remark. In the next subsection, we will establish the more general criterion of
factor-termination, which is satisfied by automaton A3 (resp. A′

3). Hence, we
obtain a new termination proof for the program P1, which has the advantage
to use fewer predicates than the termination proof in Example 4: we contrast
the set of predicates Pred = {x′ < x, y′ < y} used in Example 7 with the set
Pred = {x′ < x, x′ = x, y′ < y} used in Example 4.

4.1 Factor Termination

In this section, we introduce the criterion of factor-termination. We first intro-
duce the criterion and then argue that factor-termination is a more general
termination criterion than universality. Finally, we state that factor-termination
is in fact the most general termination criterion based on transition abstraction.

The intuition behind the criterion of factor-termination is as follows: Given a
transition automaton A = 〈Q,Σ, δ, ι, F 〉, we directly use the well-foundedness of
the relations relmin(τ), for final state τ ∈ F . We check for every infinite word π ∈
Σω if there is a τ ∈ F and a factorization π = π0π1π2 · · · into finite words πi such
that A has a run from ι to τ on πi for all i ≥ 1. Such a factorization implies that
there cannot be an infinite sequence of states s1s2 . . . with (si, si+1) ∈ δ(πi) ⊆
relmin(τ) because this would contradict the well-foundedness of relmin(τ).

We implement the above idea with Büchi-automata. We fix some transition
automaton A = 〈Q,Σ, δ, ι, F 〉 for which we will define a Büchi-automaton F(A),
which is composed of Büchi-automata Aτ , for every τ ∈ F , and an additional
initial state κ. F(A) can non-deterministically wait in κ a finite amount of time
before moving to one of the automata Aτ . Each Aτ checks for a factorization
with regard to τ ∈ F . We first formally define the automata Aτ and then F(A).

We start with an intuition for the construction of Aτ . We take a copy of A
where all copied transitions are non-accepting. We obtain Aτ by adding addi-
tional accepting transitions that allow the automaton Aτ to move back to the
initial state whenever it could move to τ . The additional transitions allow Aτ

to guess the beginning of a new factor; the Büchi-condition guarantees that an
accepting run factorizes an infinite word into infinitely many finite words.

Formally, we define Aτ = 〈Q × {τ}, Σ, δτ , (ι, τ)〉, where for all a ∈ Σ we set

δτ (a)= {((τ ′, τ),≥, (τ ′′, τ)) | (τ ′, τ ′′)∈ δ(a)} ∪ {((τ ′, τ), >, (ι, τ)) | (τ ′, τ)∈ δ(a)}.

We state the main property of the automata Aτ :

Proposition 4. Aτ accepts π ∈ Σω iff there is a factorization π = π1π2 · · ·
into finite words πi such that A has a run from ι to τ on πi for all i.
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Proof. Let r be an accepting run of Aτ on π. Hence, we can factor π = π1π2 · · ·
into finite words πi such that the accepting transitions of r exactly correspond
to the last letters of the words πi. We observe that the only accepting transitions
are of shape ((τ ′, τ), >, (ι, τ)) for (τ ′, τ) ∈ δ(a) (we denote this condition by (#)).
Further, automaton Aτ mimics A on the non-accepting transitions. Hence, on
each word πi the run r mimics a run of A except for the last transition; however,
the condition (#) guarantees that A can move to τ with the last letter of πi. ��

The factorization automaton is the Büchi-automaton F(A) = 〈G,Σ, Γ, κ〉,
where the set of states G = (Q×F )∪{κ} consists of pairs of an automaton state
and a final state plus a fresh initial state κ. We define the transition relation Γ
by Γ (a) = Γ1(a) ∪ Γ2(a) ∪ Γ3(a) for all a ∈ Σ, where

Γ1(a) =
⋃

τ∈F

δτ (a), Γ2(a) = {(κ,≥, κ)}, and Γ3(a) = {(κ,≥, (ι, τ)) | τ ∈ F}.

The factorization automaton F(A) can be understood as the disjoint union
of the initial state κ and the Büchi-automata Aτ ; the state κ allows F(A) to
wait in κ a finite amount of time before moving to the initial state of some Aτ .

κ (ι, τ1) (τ1, τ1)

(τ2, τ1)
(ι, τ2) (τ1, τ2)

(τ2, τ2)

a1, a2

a1, a2

a1, a2

a1

a1

a1, a2

a2

a1, a2

a2

a1

a2
a2

a1

a2

a1, a2

a2

a1

κ (ι, τ1) (τ1, τ1)

(ι, τ2) (τ2, τ2)

a1, a2

a1, a2

a1, a2

a1

a1

a1, a2

a1, a2

a2
a2

a1, a2

a1, a2

Fig. 3. On the left: Automata F(A1) and F(A3), which have the same states and
transitions except for the dashed transitions which only belong to F(A1). On the
right: Automaton F(A2). Bold arrows denote accepting transitions.
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Example 8. We draw the factor-automata of A1, A2 and A3 in Fig. 3.

We are now able to formally state our new termination criterion: Transition
automaton A satisfies the factor-termination criterion if F(A) is universal. This
notion is justified by Theorem3 below:

Theorem 3. Let A = 〈Q,Σ, δ, ι, F 〉 be a transition automaton and let P =
〈St , I , Σ, ρ〉 be a program such that A is a transition abstraction of P . If A
satisfies the factor-termination criterion, then P terminates.

Proof. We assume that F(A) is universal and that P does not terminate. Then
there is an infinite computation t = s1

a1−→ s2
a2−→ · · · of P . We consider the

associated word π = a1a2 · · · . Because F(A) is universal, the word π is accepted
by some run r. Word π = πaπb can be split in a finite prefix πa and an infinite
suffix πb such that F(A) stays in κ while reading πa before leaving κ and then
reading πb. We further see that while reading πb, F(A) stays within Aτ for some
τ ∈ F . By Proposition 4, there is a factorization πb = π1π2 · · · such that A has
a run on each πj from ι to τ . We split t into corresponding subcomputations

tj = sij

aij−−→ · · · sij+1−1

aij+1−1−−−−−→ sij+1

with πj = aij · · · aij+1−1. Hence, we have (sij , sij+1) ∈ ρ(πj) ⊆ relmin(τ) for
all j. This gives us an infinite sequence si1si2 . . . with (sij , sij+1) ∈ relmin(τ).
However, this results in a contradiction, because relmin(τ) is well-founded by
the assumption that A is a transition abstraction of P . ��

Next, we show that the universality of a transition automaton A implies
the factor-termination of A; the proof uses the fundamental fact that a Büchi-
automaton is universal iff it accepts all ultimately-periodic words:

Lemma 1. Let A be a transition automaton. If A is universal, then A satisfies
the factor-termination criterion.

Proof. We assume that A is universal. We will show that F(A) accepts all
ultimately-periodic words. Let u, v be two finite words over Σ and consider the
ultimately-periodic word uvω. Since A is universal there is an accepting run of A
ending in some final state τ ∈ F . We will use this run to construct an accepting
run of F(A). In order to accept uvω, the automaton F(A) reads the word u
staying in the initial state κ and moving to (ι, τ) with the last letter of u (we
tacitly assume here that the length of u is at least one; however this is without
loss of generality as we can consider the word uv instead of u); F(A) then reads
the word v, mimicking the accepting run of A in Aτ , and moving to state (ι, τ)
with the last letter of v; Aτ then reads the next occurrence of v in the same way;
we note that the last transition, with which the automaton returns to the initial
state (ι, τ), is accepting; thus the constructed run on uvω is accepting. ��
Remark. The combination of Theorem 3 and Lemma 1 provides an alternative
proof of Theorem2. We highlight that the proof of Lemma1 proceeds purely
by automata-theoretic techniques and does not make use of condition (*); in
particular, Ramsey’s theorem is not needed to prove Theorem 1 of [26].
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We now establish that factor-termination is a strictly more general termina-
tion criterion than universality:

Example 9. Let A3 be the automaton from Example 7, where we have established
that A3 is a transition abstraction of P1 and that A3 is not universal. We have
drawn F(A3) in Fig. 3. It remains to argue that F(A3) is universal.

We show that F(A3) is universal by a case distinction: Assume a word con-
tains infinitely many a1. F(A3) waits for the first a1 and moves to (ι, τ1) just
before the first a1; with the first a1, F(A3) moves to (τ1, τ1); then F(A3) again
waits for the next a1, moving to (ι, τ1) just before the next a1, and so on. An
infinite word that does not contain infinitely many a1, only contains a2 from
some point on; F(A3) accepts such a word by waiting in the initial state κ until
there are only a2 left and then moves to (ι, τ2); F(A3) then can stay in (ι, τ2)
while continuing to read the letters a2.

We finally state that factor-termination is the most general termination cri-
terion based on transition abstraction:

Theorem 4. Let A be a transition automaton that does not satisfy the factor-
termination criterion. Then there is a program P such that A is a transition
abstraction of P , but P does not terminate.

We prove Theorem 4 (see Corollary 2) and further results in Sect. 6 based on
the close relationship of factorization automata and the size-change abstraction.
We first introduce the size-change abstraction in the next subsection.

5 Size-Change Abstraction

Size-change abstraction (SCA) can be seen as an instantiation of (transition-)
predicate abstraction with a restricted class of predicates: a size-change predicate
over some set of variables Var is an inequality x � y′ with x, y ∈ Var , where �
is either > or ≥ (recall that y′ ∈ Var ′ denotes the primed version of y). A size-
change relation (SCR) is a set of size-change predicates over Var . A size-change
system (SCS) S = 〈Var , Σ, λ〉 consists of a set of variables Var , a finite set of
transitions Σ and a labeling function λ, which maps every transition a ∈ Σ to a
SCR λ(a) over Var .

The SCA methodology requires an abstraction mechanism that abstracts
programs to SCSs. Various static analyzes have been proposed in the literature
which perform such an abstraction [3,9,10,20,22,23,31,34]. In this paper, we
are not concerned with how to abstract programs to SCSs (and thus we do not
describe an abstraction mechanism for programs). Rather, we will use results on
the strength of SCA [12,21] for the analysis of transition automata.

Results on the strength of SCA directly interpret SCSs as (abstract) pro-
grams, which can be seen as ‘most general programs’ that satisfies all the size-
change predicates. We now state the interpretation of SCSs as programs for which
we make use of the variable mappings and predicate interpretations defined in
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Sect. 3. An SCS S = 〈Var , Σ, λ〉 defines a program Pα(S) = 〈St ,St , Σ, ρ〉, where
St = Var → α and ρ(a) = Relα(λ(a)) for all a ∈ Σ; the program Pα(S) is
parameterized by some domain α that we require to be well-founded.

We will build on theoretical results for SCA which have been obtained
by automata-theoretic techniques (we refer the interested reader to [13] for
an overview). We begin by stating the syntactic termination criterion of [22].
Let S = 〈Var , Σ, λ〉 be an SCS. We define the Büchi-automaton DESC (S) =
〈D,Σ, μ, κ〉, where the set of states D = Var ∪ {κ} consists of the variables and
a fresh initial state κ, the alphabet Σ is the same as the alphabet of S, the tran-
sition relation μ is defined by μ(a) = μ1(a) ∪ μ2(a) ∪ μ3(a) for all a ∈ Σ, where
μ1(a) = λ(a), μ2(a) = {(κ,≥, κ)} and μ3(a) = {(κ,≥, x) | x ∈ Var}. Intuitively
the automaton DESC (S) waits a finite amount of time in the initial state κ and
then starts to trace a chain of inequalities x1 �1x2 �2x3 · · · between the variables
of S. The Büchi-acceptance condition ensures that �i = > infinitely often. Now
we are ready to define the syntactic termination criterion of [22]: SCS S has
infinite descent if DESC (S) is universal. This criterion is sound and complete:

Theorem 5 ([21,22]). S has infinite descent iff Pα(S) terminates over all
domains α. Moreover, if S does not have infinite descent, then Pα(S) does not
terminate for some domain α < ω (i.e., Pα(S) does not terminate when variables
take values in some initial segment α = [0, N ] of the natural numbers).

While the original motivation for studying SCA has been termination analy-
sis, we recently extended the theoretical results on SCA to complexity analysis:

Theorem 6 ([12]). Let S be an SCS that is size-change terminating. Then there
effectively is a rational number z ≥ 1 such that the length of the longest run of
P[0,N ](S) is of asymptotic order Θ(Nz) for natural numbers N .

Our result provides a complete characterization of the complexity bounds
arising from SCA and gives an effective algorithm for computing the exact
asymptotic bound of a given abstract program. The proof of Theorem6 pro-
ceeds by rephrasing the question of complexity analysis for SCSs as a question
about the asymptotic behaviour of max-plus automata. The main induction of
the proof relies on the Factorization Forest Theorem [28], which is a power-
ful strengthening of Ramsey’s Theorem for finite semigroups that offers a deep
insight into their structure (see [11] for an overview).

6 Canonical Programs for Transition Automata

In this section, we will relate transition abstraction and SCA. We will describe
the extraction of a size-change system S = S(A) from a transition automaton
A. We will argue that the associated program Pα(S) is canonical for A. We will
prove three results that justify the use of the word ‘canonical’:

1. We show that the criterion of factor-termination for A agrees with the crite-
rion of infinite descent for S (Corollary 1).
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2. We show that A is a transition abstraction of Pα(S) for all domains α (Propo-
sition 5). This result allows us to establish that factor-termination is the most
general termination criterion (Corollary 2).

3. If A is a transition abstraction for some program P , then every run of P can
be mimicked by a run of Pα(S), where the domain α depends on P and needs
to be chosen appropriately (Lemma 3). This result allows us to transfer the
result on complexity analysis for SCSs (see Theorem 6) to transition automata
(Theorem 7).

6.1 Extracting Size-Change Systems from Transition Automata

We fix some transition automaton A = 〈Q,Σ, δ, ι, F 〉. Let F(A) = 〈G,Σ, Γ, κ〉
be the associated factorization automaton, where G = Q × F ∪ {κ} and Γ (a) =
Γ1(a)∪Γ2(a)∪Γ3(a) for all a ∈ Σ. We extract the associated size-change system
from F(A) and define S(A) = 〈Var , Σ, λ〉 by setting Var = Q × F and λ(a) =
Γ1(a) for all a ∈ Σ (i.e., S(A) is obtained from automaton F(A) by restriction
to the non-initial states).

Example 10. We consider the transition automaton A2. We have drawn F(A2)
in Fig. 3. We now state the size-change system extracted from F(A2): We have
S(A2) = 〈{ι, τ1, τ2} × {τ1, τ2}, {a1, a2}, λ〉, where λ is given by

– λ(a1) = {(ι, τ1) ≥ (τ1, τ1)′, (τ1, τ1) ≥ (τ1, τ1)′, (τ2, τ2) ≥ (τ2, τ2)′,
(ι, τ1) > (ι, τ1)′, (τ1, τ1) > (ι, τ1)′, (τ2, τ2) > (ι, τ2)′},

– λ(a2) = {(τ1, τ1) ≥ (τ1, τ1)′, (ι, τ2) ≥ (τ2, τ2)′, (τ2, τ2) ≥ (τ2, τ2)′,
(τ1, τ1) > (ι, τ1)′, (ι, τ2) > (ι, τ2)′, (τ2, τ2) > (ι, τ2)′}.

Example 11. We consider the transition automaton A3. We have drawn F(A3)
in Fig. 3. We now state the size-change system extracted from F(A3). We have
S(A3) = 〈{ι, τ1, τ2} × {τ1, τ2}, {a1, a2}, λ〉, where λ is given by

– λ(a1) = {(ι, τ1) ≥ (τ1, τ1)′, (τ1, τ1) ≥ (τ1, τ1)′, (ι, τ2) ≥ (τ1, τ2)′,
(τ1, τ2) ≥ (τ1, τ2)′, (ι, τ1) > (ι, τ1)′, (τ1, τ1) > (ι, τ1)′},

– λ(a2) = {(τ1, τ1) ≥ (τ1, τ1)′, (ι, τ1) ≥ (τ2, τ1)′, (τ2, τ1) ≥ (τ2, τ1)′,
(τ1, τ2) ≥ (τ1, τ2)′, (ι, τ2) ≥ (τ2, τ2)′, (τ2, τ2) ≥ (τ2, τ2)′,
(τ1, τ1) > (ι, τ1)′, (ι, τ2) > (ι, τ2)′, (τ2, τ2) > (ι, τ2)′}.

We comment on the intuition behind the definition of the SCS S = S(A). The
underlying idea has been to obtain a close correspondence between DESC (S)
and F(A). Indeed, DESC (S) and F(A) are almost identical, the only difference
is that the initial state of DESC (S) allows moving to every state, whereas the
initial state of F(A) only allows moving to the initial states of the components
Aτ . However, this difference does not change the set of accepted words, as we
prove in the next lemma:

Lemma 2. Let S = S(A) be the SCS extracted from A. Then L(F(A)) =
L(DESC (S)).
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Proof. We recall DESC (S) = 〈D,Σ, μ, κ〉, where D = Var ∪ {κ} and μ(a) =
μ1(a) ∪ μ2(a) ∪ μ3(a) for all a ∈ Σ. We see that both automata have the same
set of states G = D = Q × F ∪ {κ}. From the definition of F(A) and DESC (S)
we further have that Γ1(a) = μ1(a), Γ2(a) = μ2(a) and Γ3(a) ⊆ μ3(a) for all
a ∈ Σ.

Thus, we get L(F(A)) ⊆ L(DESC (S)) because every run of A is also a
run of DESC (S). We now show L(F(A)) ⊇ L(DESC (S)): Let π be some word
accepted by DESC (S) and let r be an accepting run of DESC (S) on π. We
can choose some factorization π = π1π2 such that the last transition in r when
reading π1 is accepting. We note that after reading π1, DESC (S) must be in
some state (ι, ) because accepting transition always move to some state where
the first component is ι. We further note that while reading π2, DESC (S) only
uses transitions from μ1, because there is no transition returning to κ. Hence,
the accepting run r of DESC (S) can be mimicked by F(A) as follows: F(A)
waits in the initial state κ while reading π1 and then moves to the state (ι, )
with the last letter of π1. After that F(A) follows the accepting run of DESC (S)
on π2, which can be done because of Γ1 = μ1. ��

As immediate corollary we get the equivalence of the termination conditions:

Corollary 1. A has factor termination iff S has infinite descent.

6.2 Factor-Termination Is the Most General Termination Criterion

We consider the size-change system S = S(A) extracted from transition automa-
ton A. Our next result is that A is a transition abstraction for the program Pα(S)
associated to S. The crucial insight is that S exactly implements the minimal
requirements to satisfy the condition of transition abstraction: the inequalities
of S exactly follow the transition relation of A, where strict inequalities ensure
that the value of variable (ι, τ) decreases iff A visits an accepting state τ .

Proposition 5. A is a transition abstraction of Pα(S) for all domains α.

Proof. Let α be some well-founded domain. We will show that A is a transition
abstraction of Pα(S) using Proposition 2 as proof principle. For this we define a
size-change relation Tτ for each τ ∈ Q \ {ι}. We set Tτ = {(ι, τ ′) ≥ (τ, τ ′) | τ ′ ∈
F} ∪ T dec

τ , where T dec
τ = {(ι, τ) > (ι, τ)}, if τ ∈ F , and T dec

τ = ∅, otherwise. It
is easy to check that we have Relα(Tτ ) ◦ Relα(λ(a)) ⊆ Relα(Tτ ′) for all (τ, τ ′) ∈
δ(a). We now apply Proposition 2 and get relmin(τ) ⊆ Relα(Tτ ) for all τ ∈ Q.

It remains to argue that the relations relmin(τ) are well-founded for all
τ ∈ F . This follows from relmin(τ) ⊆ Relα(Tτ ) and the fact that Relα(Tτ )
is well-founded due to the predicate T dec

τ , which ensures the decrease of
variable (ι, τ). ��
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We are now in a position to prove Theorem4, i.e., that factor termination is
the most general termination criterion for transition abstraction:

Corollary 2. Let A be a transition automaton that does not satisfy the factor-
termination criterion. Then A is a transition abstraction of Pα(S) for all
domains α, but Pα(S) does not terminate for some α < ω.

Proof. From Corollary 1 we get that S does not satisfy the infinite descent crite-
rion because A does not satisfy the factor-termination criterion. By Theorem5
we know that the program Pα(S) does not terminate for some α < ω because
S does not size-change terminate. We have that A is a transition abstraction of
Pα(S) by Proposition 5. ��

6.3 Complexity Analysis with Transition Automata

Let A = 〈Q,Σ, δ, ι, F 〉 be a transition automaton and P = 〈St , I , Σ, ρ〉 be a
program such that A is a transition abstraction of P . Let S = S(A) = 〈Var , Σ, λ〉
be the SCS extracted from A. We will show that every run of P can be mimicked
by a run of Pα(S), where the domain α depends on P and needs to be chosen
appropriately. We first introduce the machinery necessary to define α.

We define the height of a transition abstraction as the maximum of the
heights of the well-founded relations relmin(τ), i.e., we set

height(A,P ) = max
τ∈F

‖relmin(τ)‖ .

We set height•(A,P ) = height(A,P ) + 1; we work with height•(A,P ), which
differs from height(A,P ) by plus one for technical convenience; however, the
difference of plus one is not important for our results on asymptotic complexity
analysis.

We introduce another auxiliary definition. For every pair (τ ′, τ) ∈ Q × F we
define a relation SuccP (τ ′, τ) ⊆ St × St by setting

SuccP (τ ′, τ) =
⋃

word π with (τ ′,τ)∈δ(π)

ρ(π).

We note that SuccP (ι, τ) = relmin(τ) for all τ ∈ F .
For every pair (τ ′, τ) ∈ Q × F we define a function rankτ ′,τ : St →

height•(A,P ) that maps a state s ∈ St to an ordinal below height•(A,P ), by
setting

rankτ ′,τ (s) = sup
(s,s′)∈SuccP (τ ′,τ)

‖s′‖relmin(τ)
+ 1,

where the sup over the empty set evaluates to 0. The following proposition is
immediate from the definitions:

Proposition 6. We have rank ι,τ (s) = ‖s‖relmin(τ)
for all s ∈ St.
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Proof. Let s ∈ St be some state. From the definition of SuccP we get SuccP (ι, τ)
= relmin(τ). Thus, we get rank ι,τ (s) = sup(s,s′)∈SuccP (ι,τ) ‖s′‖relmin(τ)

+ 1 =
sup(s,s′)∈relmin(τ) ‖s′‖relmin(τ)

+ 1 = ‖s‖relmin(τ)
. ��

For every s ∈ St we define a valuation σs : Q×F → height•(A,P ) by setting
σs(τ ′, τ) = rankτ ′,τ (s).

Lemma 3. Let α = height•(A,P ). For all pairs of states (s, s′) ∈ ρ(a), where
a ∈ Σ, we have (σs, σs′) ∈ Relα(λ(a)).

Proof. Let a ∈ Σ be some transition and let (s, s′) ∈ ρ(a) be a pair of states in
the associated transition relation.

We consider an inequality (τ, τ ′′) ≥ (τ ′, τ ′′)′ ∈ λ(a). By definition of
λ(a) we have (τ, τ ′) ∈ δ(a). From this we get {(s, s′)} ◦ SuccP (τ ′, τ ′′) ⊆
SuccP (τ, τ ′′) because for every word π such that (τ ′, τ ′′) ∈ δ(π) we have
that (τ, τ ′′) ∈ δ(a · π) and thus (s′, s′′) ∈ ρ(π) implies (s, s′′) ∈ ρ(a · π).
Hence, we get σs(τ, τ ′′) = rankτ,τ ′′(s) = sup(s,s′′)∈SuccP (τ,τ ′′) ‖s′′‖relmin(τ ′′) +1 ≥
sup(s′,s′′)∈SuccP (τ ′,τ ′′) ‖s′′‖relmin(τ ′′) + 1 = rankτ ′,τ ′′(s′) = σs′(τ ′, τ ′′).

We consider an inequality (τ ′, τ) > (ι, τ)′ ∈ λ(a). By definition of λ(a)
we have (τ ′, τ) ∈ δ(a). From this we get (s, s′) ∈ ρ(a) ⊆ SuccP (τ ′, τ). From
Proposition 6 we have rank ι,τ (s′) = ‖s′‖relmin(τ)

. Hence, we get σs(τ ′, τ) =
rankτ ′,τ (s) = sup(s,s′′)∈SuccP (τ ′,τ) ‖s′′‖relmin(τ)

+ 1 > ‖s′‖relmin(τ)
= rank ι,τ (s′) =

σs′(ι, τ). ��
We immediately obtain the following corollary:

Corollary 3. Let α = height•(A,P ). Let s1
a1−→ s2

a2−→ · · · be a computation of
P . Then, σs1

a1−→ σs2

a2−→ · · · is a computation of Pα(S).

Finally, we are in a position to transfer Theorem6:

Theorem 7. Let A be a transition automaton that satisfies the factor-
termination termination criterion. Let S = S(A). Let z be the rational number
obtained from Theorem6 for S.

Let P = 〈St , IN , Σ, ρ〉 be a program whose set of initial states IN is param-
eterized by natural number N ∈ N, such that A is a transition abstraction of P
and height(A,P ) = O(N). Then, the length of the longest computation of P is
of asymptotic order O(Nz).

Moreover, A is a transition abstraction for P[0,N ](S) and the length of the
longest computation of P[0,N ](S) is of asymptotic order Θ(Nz).

Proof. By Proposition 5, A is a transition abstraction of P[0,N ](S) for all N ∈
N. From Theorem 6 we have that the longest computation of P[0,N ](S) is of
asymptotic order Θ(Nz).

Because of height(A,P ) = O(N), we can find some a, b ∈ N such that
height(A,P ) ≤ a · N + b for all N ∈ N. By Corollary 3, for every computa-
tion of PN there is a computation of P[0,a·N+b](S) of equal length. Hence, the
longest computation of PN is of asymptotic order O((a · N + b)z) = O(Nz). ��
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We highlight that Theorem7 gives a complete characterization of the com-
plexity bounds obtainable with transition abstraction and provides an effective
algorithm for computing these complexity bounds.

Theorem 7 allows us to derive the precise complexity for P1 and P2:

Example 12. We consider the size-change system S = S(A2), which we have
extracted in Example 10 from transition automaton A2. Theorem 6 allows us
to derive that P[0,N ](S) has complexity Θ(N). In Example 5 we defined an
abstract-transition program (A2, rel2) for P2; the inductive proof labeling rel2
in conjunction with the invariant Inv = Relα({x ≤ N, y ≤ N}) implies that
height(A2, P2) = N . Hence, we can apply Theorem 7 and infer that P2 has com-
plexity O(N), which is the precise asymptotic complexity of P2.

We consider the size-change system S = S(A3), which we have extracted in
Example 11 from transition automaton A3. Theorem 6 allows us to derive that
P[0,N ](S) has complexity Θ(N2). In Example 4 we defined an abstract-transition
program (A1, rel1) for P1; the inductive proof labeling rel1 in conjunction with
the invariant Inv = Relα({x ≤ N, y ≤ N}) implies that height(A1, P1) = N .
Hence, we can apply Theorem 7 and infer that P2 has complexity O(N2), which
is the precise asymptotic complexity of P2.

7 Future Directions and Conclusion

In this paper, we have established a new connection between transition automata
and the size-change abstraction. Our results suggest that all tools which imple-
ment termination analysis with transition invariants based on an inductive argu-
ment (such as Terminator) can be retro-fitted to be complexity analyzers,
which is an interesting direction for further research: While this paper has inves-
tigated what information can be extracted from a fixed proof (i.e., from a fixed
set of transition predicates), there is also the question of what strategy for predi-
cate selection gives the best results. We have seen that the predicates x′ < x and
y′ < y allow inferring the linear complexity of P2; these predicates are simple
and can be extracted from the if- resp. else branch of P2 by simple heuristics.
On the other hand, the predicate x′ + y′ < x + y allows establishing the linear
complexity of P2 using a single predicate; this predicate, however, is more com-
plex and requires more complicated heuristics for extraction. Finding the right
balance in predicate selection is an interesting topic for future research.

Ranking function construction is an alternative technique for termination
proofs: [33] states a complete construction for deterministic size-change systems.
[8,15] describes practical but incomplete constructions for general programs
based on transition predicate abstraction. [15] states an example which has a
transition invariant but no lexicographic ranking function over linear expres-
sions; it is interesting to better understand the connection between the different
termination proof techniques and investigate under which conditions ranking
functions can be constructed.

Our results on transition abstraction and the previous results on size-change
abstraction heavily rely on automata-theoretic techniques. We speculate that
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the study of the automaton structure of other inductive proofs, such as cyclic
proofs [27], might also yield interesting results.

Acknowledgements. This article is dedicated to the memory of Helmut Veith who
proposed to me the PhD topic of automatic derivation of loop bounds. Our initial idea
was to extend the termination analysis of Terminator. With this article I managed
to return to this original idea.
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