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Abstract. We propose a new relational abstract domain for analysing
programs with numeric and Boolean variables. The main idea is to repre-
sent an abstract state as a set of linear constraints over numeric variables,
with every constraint being enabled by a formula over Boolean variables.
This allows us, unlike in some existing approaches, to avoid duplicat-
ing linear constraints shared by multiple Boolean formulas. To perform
domain operations, we adapt algorithms from constraint-only representa-
tion of convex polyhedra, most importantly Fourier-Motzkin elimination
and projection-based convex hull. We made a prototype implementation
of the new domain in our abstract interpreter for Horn clauses. Our ini-
tial experiments are, in our opinion, promising and show directions for
future improvement.

1 Introduction and Related Work

Static program analysis by abstract interpretation over-approximates the set of
reachable states of a program by a set with a simple description, for instance, by
attaching one interval to each program variable at every location in the program.
Intervals however cannot express relationships between variables, so a richer
approach is to attach to every location a set of valid linear inequalities, which
geometrically is, a convex polyhedron [12,17].

Convex polyhedra are already quite formidable objects to compute with effi-
ciently, yet they are insufficient for expressing certain invariants, and what is
often needed is a disjunction of convex polyhedra. For instance, the strongest
invariant of the following loop: for(int i=0; i < n; i++){ } is (n < 0) ∨ (0 ≤
i ≤ n). Note how the disjunction arises from the partition of executions into
those that execute the loop at least once and those that do not. Better anal-
ysis precision may often be achieved by partitioning executions according to
an abstraction of the control flow [30], or by partitioning abstract states with
respect to conditions extracted from the program [11], etc. Some analyses of
programs operating over arrays and maps abstract properties over these objects
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onto disjunctive relations between the scalar variables of the program and the
values in the array cells [25,27]. For instance, a loop that fills an array for

(int i=0; i < n; i++){ a[i]=42; } can be proved correct using an invariant
∀k (0 ≤ i ≤ n) ∧ (0 ≤ k < i → a[k] = 42), with a disjunction between the cases
k < i (filled) and k ≥ i (unfilled).1

In all cases, the analysis needs to efficiently represent sets of convex poly-
hedra, possibly (but not necessarily [4]) tagged by elements of a finite set T
(abstract traces, Boolean vectors, etc.). Earlier works proposed to represent an
abstract element by an explicit map from T to convex polyhedra, either as an
array of pairs (Ti, Pi) where Ti ⊆ T and Pi are polyhedra, or as a decision
tree or DAG with polyhedra at the leaves. Both approaches are implemented in
Jeannet’s BddApron library [19].

One issue with this approach is that the possible number of abstract par-
titions is often exponential in some parameter (length of the recorded trace,
number of Boolean variables) and thus every operation (post-condition, convex
hull) is potentially repeated for each of the exponentially many polyhedra. At
the same time, the polyhedra in different abstract partitions often share most
of the constraints and only differ in few that are related to the partitioning cri-
terion. Thus, it is tempting to store a set of polyhedra in some structure that
does not require duplicating shared constraints, and to use symbolic algorithms
that, as much as possible, avoid enumerating abstract partitions individually.

One approach to this is offered by different kinds of decision diagrams over
linear constraints. A notable example is Linear Decision Diagrams (LDD) devel-
oped by Chaki, Gurfinkel, and Strichman [10]. An LDD is a DAG, where internal
nodes are labelled with linear constraints, and the two leaves are true and false,
thus a path through an LDD corresponds to a convex polyhedron. Based on the
LDD algorithms, the same authors later developed an abstract domain of boxes
[15], that only allows to have a comparison of a variable with a constant in an
interior node.

Theoretical Contribution. In this paper, we propose an alternative app-
roach: to represent an abstract state as a set of implications {Bi → ci}i=0..k,
where Bi are arbitrary Boolean formulas, and ci are linear constraints. This
way, an abstract element can still be seen as an implicit map from a partition of
B
m to convex polyhedra (similar to a BddApron element), but we do not have

to duplicate storage and computations for constraints shared by multiple parti-
tions. Another appeal of this approach is that some operations on constraint-only
polyhedra can be naturally adapted to sets of implications of the form Bi → ci.
The algorithms in this paper are based on Fourier-Motzkin elimination [28] and
the reduction of convex hull to projection of Benoy, King, and Mesnard [7,31].
Whether it is possible to also adapt the more recent algorithms based on para-
metric linear programming and raytracing by Maréchal, Monniaux, and Périn
[21–23] is a question for future work.

1 → denotes logical implication.
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The Boolean variables occurring in the formulas Bi may be program variables
(from small enumerated types) but may also be observers, partitioning according
to trace history or calling context. This solves one issue with untagged disjunc-
tions of polyhedra: when applying the widening operator to

⋃
i Pi and

⋃
j Qj ,

how does one “match” the Pi’s and Qj ’s to perform conventional widening over
polyhedra [4]? Similarly, for the “join” operation (

⋃
i Pi)	(

⋃
j Qj), does one sim-

ply concatenate the two unions while removing duplicates (thus creating longer
and longer lists), or does one “match” some Pi and Qj for convex hull, and if so
under which criteria? In our case, widening and join are guided by the Boolean
variables: the polyhedra associated to the same Boolean choice are matched
together.

Experimental Evaluation. We made a prototype implementation of the pro-
posed abstract domain in our abstract interpreter for Horn clauses [5,6].

2 Notation

We consider programs with Boolean and rational variables: a concrete program
state is a tuple (b,x) ∈ B

m × Q
n. We use bold lowercase symbols b ∈ B

m and
x ∈ Q

n to denote valuations of Boolean and numeric variables respectively. We
use lowercase Italic symbols b and x respectively to denote vectors of Boolean
and rational variables. We refer to the j-th variable in x as x(j). We use other
lowercase Italic symbols, e.g., a, d, to denote vector and scalar coefficients, and
their meaning will be clear within their context.

Without loss of generality, we make a number of assumptions on the syntactic
form of linear constraints. We assume that there exists the unique unsatisfiable
linear constraint cfalse, i.e. we will not distinguish logically equivalent, but syn-
tactically different falsities: 0 < 0, 1 ≥ 2, etc. We assume that every linear
constraint ci is written as a greater-or-equal constraint with integer coefficients,
i.e. ci = aix � di, where ai ∈ N

n, di ∈ N, and �∈ {=,≥, >}.
We sometimes write a Boolean or a linear constraint as B[b] or c[x] to empha-

size that free variables in B and c come from vectors b and x respectively. We
use the [/] notation to denote substitution. For example, B[b(j)/true] denotes
the result of substituting in B the variable b(j) with true. As a shortcut, we
write B[b] to denote the result of substituting every free variable in B with its
valuation given by b.

3 Abstract Domain of Boolean and Linear Constraints

We propose to represent an abstract state as a set of implications:

S = {Bi → ci}i=0..k

where Bi is a propositional formula over Boolean variables, and ci is a linear
constraint (equality or inequality) over numeric variables. We do not want Bi to
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be a partition of Bm. Our intention is to never duplicate linear constraints that
are shared by multiple valuations of Boolean variables.

An abstract state S represents the set of concrete states:

γ(S) =
{

(b,x)
∣
∣
∣

k∧

i=0

Bi[b] → ci[x]
}

Alternatively, one can see an abstract state as a function that maps every val-
uation of Boolean variables to a convex polyhedron that describes the possible
values of numeric variables. This is captured by the partial concretization γb:

γb(S) =
{
b �→

∧

Bi[b]

ci

∣
∣
∣ b ∈ B

m
}

The notion of partial concretization is useful when we want to show that we
correctly lift operations on sets of constraints (e.g., projection) from linear con-
straints to implications Bi → ci. We normally want a operation to commute with
γb, i.e., γb(flifted(S))(b) = foriginal(γb(S)(b)), which would mean that there is
no loss of precision on the Boolean level.

Without loss of generality, we assume that in every abstract state, the 0-th
constraint has the form B0 → cfalse, and no other constraint has cfalse on
the right-hand side. In particular, the empty polyhedron is represented by ⊥ =
{true → cfalse} and the universal polyhedron is represented by � = {false →
cfalse}.

Example 1. The abstract state where x(0) is always non-negative, and in addi-
tion, if b(0) holds, x(0) is not greater than 1 can be represented as

{false → cfalse, true → x(0) ≥ 0, b(0) → x(0) ≤ 1}

3.1 Elimination of a Rational Variable

In constraint-only representation, existential quantifier elimination (projection)
is the main operation on polyhedra, and most other operations are expressed
using projection.

We can naturally adapt Fourier-Motzkin elimination [14,18,28] to our
abstract domain in the following way. Let an abstract element S be {Bi →
ci}i=0..k and let x(j) be the variable to eliminate. First, we split every equality
where x(j) appears with nonzero coefficient into a pair of inequalities. Then, we
partition the constraints into three sets:

1. E0, where in the linear part x(j) appears with coefficient 0;
2. E+, where in the linear part x(j) appears with a positive coefficient;
3. E−, where in the linear part x(j) appears with a negative coefficient.

The constraints from E0 we keep as-is, and from every pair of constraints in E+

and E−, we produce a positive combination, in which x(j) has coefficient 0. The
difference from the original Fourier-Motzkin algorithm is that when we combine
two constraints, we conjoin their Boolean parts. This is summarized in Fig. 1.
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Fig. 1. Elimination of the variable x(j). Assuming that every equality that contains
x(j) was replaced by a pair of inequalities.

Example 2. Let

S = {true → x(0) − x(1) = 0, b(0) → x(0) ≥ 0, b(1) → −x(1) ≥ −1}
and let us apply the Fourier-Motzkin-based elimination to the variable x(0).
First, we partition the constraints into the three sets:

E0 = {b(1) → −x(1) ≥ −1}
E+ = {true → x(0) − x(1) ≥ 0, b(0) → x(0) ≥ 0}
E− = {true → −x(0) + x(1) ≥ 0}

We keep the elements of E0 and combine the elements of E+ and E−, producing
the set

{b(1) → −x(1) ≥ −1, true → 0 ≥ 0, b(0) → x(1) ≥ 0} =
{b(1) → −x(1) ≥ −1, b(0) → x(1) ≥ 0}

In this case, we only need to eliminate the trivially valid constraint true → 0 ≥ 0;
in general Fourier-Motzkin elimination can produce constraints that are non-
trivially redundant.

Lemma 1. For every abstract state S, rational variable x(j), and b ∈ B
m,

γb(eliminateR(x(j), S))(b) ↔ ∃x(j). γb(S)(b)

Proof Idea. To prove Lemma 1, we can pick an arbitrary b ∈ B
m and show that

the set of linear constraints {ci | Bi → ci ∈ eliminateR(j, S) ∧ Bi[b]} is the
same as the set of constraints produced by applying standard Fourier-Motzkin
elimination to γb(S)(b).

To eliminate multiple rational variables, we apply eliminateR iteratively. The
standard heuristic is to pick and eliminate in every step a variable that minimizes
|E+||E−| − |E+| − |E−|, which is the upper bound on the growth of the number
of constraints.
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Gaussian Elimination. When an abstract element contains an equality true →
ax = d, where a(j) �= 0, this equality can be used as a definition of the variable
x(j). Then, to eliminate the x(j) from an abstract element, we can replace it
with this definition in every remaining constraint, instead of performing Fourier-
Motzkin elimination. This is useful for eliminating, e.g., temporary variables that
an analysis may introduce when pre-processing the program.

Example 3. Let

S = {true → x(0) − x(1) = 0, b(0) → x(0) ≥ 0, b(1) → −x(1) ≥ −1}
and let us apply the Gaussian elimination to the variable x(0), using the equality
true → x(0) − x(1) = 0. That is, we replace x(0) with x(1) in the two remaining
constraints, getting

{b(0) → x(1) ≥ 0, b(1) → −x(1) ≥ −1}
This can be generalized to the case when the abstract element contains a

subset of equalities {Bj → ajx = dj}j=1..m ⊆ S, s.t.
∨m

j=1 Bj = true, as shown
in Fig. 2

Fig. 2. Generalization of Gaussian elimination of the variable x(j).

3.2 Equivalent and Redundant Constraints

When working with constraint-only representation of polyhedra, one of the big
challenges is eliminating redundant constraints. As shown above, every round
of Fourier-Motzkin elimination creates a quadratic number of new constraints,
an most of them are usually redundant. When eliminating multiple variables
(notably, during join computation, see Sect. 3.3), redundant constraints have
to be eliminated regularly, otherwise their number might grow in a double-
exponential way (while McMullen’s upper bound theorem [24] implies that the
number of non-redundant constraints cannot grow more than exponentially with
the number of projected dimensions). In his work on constraint-only representa-
tion of polyhedra [13], A. Fouilhé argues for redundancy elimination after elim-
inating every variable. The conventional approach to redundancy elimination
in a list of n constraints is to go over every constrain and use linear program-
ming test whether it is redundant with respect to the n − 1 other ones (some
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other criteria [18,20] cannot eliminate all redundancies. “Raytracing” [23] is a
fast method to identify redundancies, but it degenerates into the conventional
linear programming approach in the worst case). We adapt that approach to the
Boolean setting: to check whether a constraint is redundant, we call an SMT
solver. We also implement a number of less costly redundancy checks.

Pairwise Redundancy Checks. There is a number of reductions that can be
implemented without necessarily calling an SMT solver.

First, we can combine constraints with identical linear part:

{B1 → c,B2 → c} ≡ {B1 ∨ B2 → c}
This is an important step that allows to not duplicate linear constraints; dupli-
cation would be amplified by Fourier-Motzkin elimination.

Second, we can eliminate a constraint if it is implied by another constraint:

if B2 → B1 ∧ c1 → c2, then
{B1 → c1, B2 → c2} ≡ {B1 → c1}

This requires a procedure to efficiently check implication between Boolean for-
mulas, which is available, e.g., if they are represented as BDDs. Implication
between a pair of linear constraints is a straightforward syntactic check.

Pairwise reduction checks reduce the number of SMT calls, which are costly.
This is especially important in lower dimensions and when few constraints are
relational. In these cases, most of redundant constraints can be eliminated with
pairwise checks.

SMT-Based Redundancy Check. Let S = {Bi → ci}i=0..k. Then the j-th
constraint is redundant, if its negation is unsatisfiable with respect to the other
constraints:

isRedundant(j, S) ≡ Bj ∧ ¬cj ∧
∧

i=0..k,i �=j

(Bi → ci) is UNSAT

An SMT-based redundancy check is an expensive operation, but it has to be
performed regularly to limit the growth of the number of constraints.

In general, for a given abstract state S, there may be no unique smallest set
of non-redundant constraints. Currently, we implement a greedy strategy: we
successively check every constraint and if it is redundant, immediately eliminate
it, before checking other constraints. We can artificially make this procedure
deterministic by ordering the constraints; in particular it is beneficial to first
attempt to remove constraints with larger absolute values of coefficients, both
for human-readable output and for performance of an SMT solver.

Example 4. Let

S = {true → x(0) ≥ 0, b(0) → x(0) ≥ −1, b(1) → x(1) ≥ 0, b(1) → x(0)+x(1) ≥ 0}
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Let us remove redundant constraints from this system. First, we note that
(true → x(0) ≥ 0) → (b(0) → x(0) ≥ −1), since b(0) → true and x(0) ≥ 0 →
x(0) ≥ −1, thus the latter constraint is redundant. Second, we note that:

(true → x(0) ≥ 0) ∧ (b(1) → x(1) ≥ 0) ∧ b(1) ∧ x(0) + x(1) < 0 is UNSAT

Thus, the remaining non-redundant constraints are:

{true → x(0) ≥ 0, b(1) → x(1) ≥ 0}

3.3 Join

To perform join of two abstract elements, we adapt the projection-based convex
hull computation of Benoy et al. [7,31]. The original algorithm is based on the
observation that every point in the convex hull is a convex combination of a
pair of points from the original polyhedra. Figure 3 expresses this more formally
and adapted to our setting. Given the two abstract elements S1 and S2, first
we construct the set of constraints S12. The variables λ1, λ2 are the scaling
coefficients of the two points in S1 and S2 respectively, s.t. λ1, λ2 ≥ 0 and λ1 +
λ2 = 1; y1 an y2 are the vectors of coordinates of the two points, pre-multiplied
by scaling coefficients, and thus should satisfy the pre-multiplied constraints of
S1 and S2; finally x is the vector of coordinates of a point in the convex hull, and
thus x = y1 + y2. Eliminating y1, y2, λ1, and λ2 from S12 produces the closure of
the convex hull. With some extra bookkeeping, it is then possible to express the
resulting linear constraints in terms of the original constraints [13] and turn some
closed constraints back into open (a positive combination a set of constraints,
where at least one constraints is open, is also open).

Fig. 3. Convex hull of two abstract states. The sign � stands for the closed version of
the corresponding sign �. When � is >, � is ≥; otherwise � is the same as �.

Lemma 2. For every pair of abstract states S1, S2 and every b ∈ B
m,

γb(join(S1, S2))(b) = γb(S1)(b) 	 γb(S2)b

Proof Idea. To prove Lemma 2, similarly to Lemma 1, we can pick an arbitrary
b ∈ B

m and show that the set of constraints S12 in Fig. 3 is the same as the
set of constraints generated by F. Benoy’s convex hull applied to γb(S1)(b)
and γb(S2)b.
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Join of Elements with Disjoint Pure Boolean Constraints. Let S1, S2

be a pair of abstract elements:

S1 = {B1
0 → cfalse}∪{B1

i → c1i }i=1..n S2 = {B2
0 → cfalse}∪{B2

j → c2j}j=1..m,

where ¬B1
0∧¬B2

0 = false, i.e., their pure Boolean constraints are disjoint, and for
a given valuation of Boolean variables b, at least one of the polyhedra γb(S1)(b),
γb(S2)(b) is empty. In this case, S1 and S2 can be joined exactly and without
computing the convex hull as follows:

boolDisjointJoin(S1, S2) ≡ {B1
i ∧ ¬B1

0 → c1i }i=1..n ∪ {B2
j ∧ ¬B2

0 → c2j}j=1..m ∪
{B1

0 ∧ B2
0 → cfalse}

As we later show, this optimization is important for efficient elimination of
Boolean variables. Soundness can be shown by writing down the disjunction
of logical formulas corresponding to S1 and S2, distributing the disjunction over
the conjunctions and applying equivalences that follow from ¬B1

0 ∧¬B2
0 = false.

Let S1, S2 be a pair of abstract elements:

S1 = {B1
0 → cfalse} ∪ {B1

i → c1i }i=1..n S2 = {B2
0 → cfalse} ∪ {B2

j → c2j}j=1..m,

where ¬B1
0 ∧ ¬B2

0 = false. Let us observe the disjunction of their corresponding
logical characterizations:

(
(B1

0 → cfalse) ∧ (
n∧

i=1

B1
i → c1i )

) ∨ (
(B2

0 → cfalse) ∧ (
m∧

j=1

B2
j → c2j )

)

Conjoining the pure boolean constraints to numeric constraints

=
(
(B1

0 → cfalse) ∧ (
n∧

i=1

B1
i ∧ ¬B1

0 → c1i )
) ∨ (

(B2
0 → cfalse) ∧ (

m∧

j=1

B2
j ∧ ¬B2

0 → c2j )
)

=

Distributing the disjunction

=
∧

i=1..n,j=1..m

(¬B1
i ∨ B1

0 ∨ c1i ∨ ¬B2
j ∨ B2

0 ∨ c2j ) ∧

n∧

i=1

(¬B1
i ∨ B1

0 ∨ c1i ∨ ¬B2
0 ∨ cfalse) ∧

m∧

j=1

(¬B2
j ∨ B2

0 ∨ c2j ∨ ¬B1
0 ∨ cfalse) ∧

(¬B1
0 ∨ cfalse ∨ ¬B2

0 ∨ cfalse)

From ¬B1
0 ∧ ¬B2

0 = false it follows that B1
0 ∨ B2

0 = true, ¬B1
0 → B2

0 , and
¬B2

0 → B1
0

=
n∧

i=1

(B1
i ∧ ¬B1

0 → c1i ) ∧
m∧

j=1

(B2
j ∧ ¬B2

0 → c2j ) ∧ (B1
0 ∧ B2

0 → cfalse)

Which is the logical characterization of boolDisjointJoin(S1, S2).
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3.4 Other Operations

Intersection with a Constraint. To intersect an abstract state S with a
constraint B → c, we add B → c to S. To intersect an abstract state S with a
linear constraint c, we add true → c to S. To intersect an abstract state S with
a Boolean constraint B, we add ¬B → cfalse to S.

Linear Assignment. The general way to apply a linear assignment x(j) :=
ax + d is by renaming and elimination. We introduce a fresh variable x′

(j) that
denotes the value of x(j) after or before the assignment, relate it to x(j), eliminate
x(j) and then rename x′

(j) into x(j):

post(x(j) := ax + d, S) ≡ eliminateR(x(j), S ∪ {x′
(j) = ax + d})[x′

(j)/x(j)]

pre(x(j) := ax + d, S) ≡ eliminateR(x(j), S ∪ {x(j) = (ax + d)[x(j)/x
′
(j)]})[x′

(j)/x(j)]

This applies to both invertible (where in ax + d, x(j) has a non-zero coefficient)
and non-invertible assignments. Invertible assignments (e.g. a := 2a+1) can also
be implemented by substituting the inverted expressions (e.g. a �→ (a − 1)/2)
into the constraints [12, Sect. 4.2.2.1].

Elimination of a Boolean Variable. We use the equivalence ∃b ∈ B. ϕ =
ϕ[b/true] ∨ ϕ[b/false] over-approximate logical disjunction with the join opera-
tion:

eliminateB(b(j), S) ≡ join(S[b(j)/true], S[b(j)/false])

Example 5. Let

S = {b(0) → x(0) = 0, b(0) → x(1) = 0, ¬b(0) → x(0) = 1, ¬b(0) → x(0) = 1}
That is, when b(0) is true, x(0) = x(1) = 0, and when b(0) is false, x(0) = x(1) = 0.
To eliminate the single Boolean variable b(0), we take the join of the two abstract
elements:

S[b(0)/true] = {true → x(0) = 0, true → x(1) = 0}
S[b(0)/false] = {true → x(0) = 1, true → x(1) = 1}

One possible representation of the result is

eliminateB(b(0), S)= {true → x(0) ≥ 0, true → −x(0) ≥ −1, true → x(0)−x(1) = 0}
Example 6. For an example of a join of two Boolean-disjoint abstract states, let
us consider the abstract state

S = {true → x(0) ≥ 0, b(0) → −x(0) ≥ −1, b(0) �= b(1) → false}
and let us eliminate the variable b(0) from it. Notice that this abstract state
asserts that b(0) = b(1), and thus we expect that the elimination will result in
substituting b(0) with b(1) in every constraint. First, we compute

S[b(0)/true] = {true → x(0) ≥ 0, true → −x(0) ≥ −1, ¬b(1) → false}
S[b(0)/false] = {true → x(0) ≥ 0, b(1) → false}
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Then, we observe that these abstract states are Boolean-disjoint, since ¬¬b(1) ∧
¬b(1) = false, i.e., we can apply the specialized version on join and, as
expected, get

boolDisjointJoin(S[b(0)/true], S[b(0)/false])
= {b(1) → x(0) ≥ 0, b(1) → −x(0) ≥ −1, ¬b(1) → x(0) ≥ 0}
= {true → x(0) ≥ 0, b(1) → −x(0) ≥ −1}

This example demonstrates a common scenario when eliminating temporary
Boolean variables. The eliminated variable may be introduced using an explicit
equality, like in this example, or in some similar way that makes it so that
restricting this variable to true and false respectively produces Boolean-disjoint
elements. Having a specialized join operation for Boolean-disjoint abstract states
is important when an analysis may transform the input program and introduce
such variables.

Boolean Assignment. An assignment of the form b(j) := B we implement,
similarly to the linear case, using renaming and elimination:

post(b(j) := B,S) ≡ eliminateB(b(j), S ∪ {¬(b′
(j) ↔ B) → cfalse})[b′

(j)/b(j)]

pre(b(j) := B,S) ≡ eliminateB(b(j), S ∪ {¬(b(j) ↔ B[b(j)/b
′
(j)]) → cfalse})[b′

(j)/b(j)]

Linear to Boolean Assignment. In some cases, during the analysis we want
to introduce an observer variable – a Boolean variable that the stores truth
value of some linear constraint at some point of program execution. When c is
an inequality (not an equality), the assignment b(j) := c is straightforward to
implement, since the equivalence b ↔ c can be represented as a pair of con-
straints: b → c,¬b → ¬c. That is,

post(b(j) := c, S) ≡ eliminateB(b(j), S ∪ {b′
(j) → c,¬b′

(j) → ¬c})[b′
(j)/b(j)]

and similarly for pre. For an equality ax = d, though, we cannot assign its truth
value to a single Boolean variable. Instead, we have to use two Boolean variables
to separately assign to them the truth values of ax ≥ d and −ax ≥ −d.

Widening. Widening in convex polyhedra is based on the idea of keeping the
constraints of the previous approximation that are also satisfied by the new
approximation [3,17]. In our setting, we want, for every linear constraint from
the previous approximation, to find for which values of Boolean variables it is
implied by the new approximation. To find for which values of Booleans an
inequality c is implied by an abstract state S, we can conjoin true → ¬c to S
and then eliminate all the rational variables. This produces an abstract state of
the form {B → cfalse} which is interpreted as: when B holds, ¬c is unsatisfiable
in S and thus B → c is implied by S. Thus, assuming that every equality is first
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split into a pair of inequalities and that S1 � S2, we get:

widen(S1, S2) ≡
{

B3
i → c1i

∣
∣
∣∣
∣
B1

i → c1i ∈ S1 ∧
eliminateR(x, S2 ∪ {true → ¬c1i }) = {B3

i → cfalse}

}

∪

{B2
0 → cfalse | B2

0 → cfalse ∈ S2}

Inclusion Test. To check for inclusion between abstract states, we currently
use an SMT solver. Let S1 = {B1

i → c1i }i=0..k1 and S2 = {B2
j → c2j}j=0..k2 . Then

S1 � S2 ≡
( k1∧

i=0

B1
i → c1i

)
∧ ¬

( k2∧

j=0

B2
j → c2j

)
is UNSAT

Checking, whether an abstract state S is empty, i.e., whether S � ⊥ also requires
an SMT solver call.

3.5 Implementation Details

Representing Boolean Formulas. We currently propose to represent Boolean
formulas with BDDs, the main reason being that BDDs allow to represent for-
mulas in a canonical way and avoid unbounded syntactic growth, when formulas
are repeatedly conjoined (during elimination) and disjoined (when combining
constraints with coinciding linear part).

Constraints over Integer Variables. To achieve additional precision, we
can rewrite linear constraints when every variable with a non-zero coefficient is
integer. In this case, a strict inequality can be rewritten as non-strict:

ax > d ≡ ax ≥ d + 1

For an inequality over integer variables, we can divide the coefficients of a
constraint over integer variables by the GCD of the variable coefficients, rounding
the free coefficient towards 0:

ax ≥ d ≡ (a/g)x ≥ round(d/g), where g = gcd a

For an equality over integer variables, the free coefficient has to be divisible
by the GCD of the variable coefficients, otherwise the equality is unsatisfiable.

4 Implementation and Experiments

We implemented the proposed abstract domain in our abstract interpreter for
Horn clauses [5,6]. Our tool can find models of systems of constrained Horn
clauses [9] with predicates over numeric and Boolean variables. It is based on
the technique of path focusing [26] and uses an SMT solver (Z3) to iterate over
relevant disjuncts of the direct consequence relation. As the abstract domain, it
supports BddApron [19] and now also the abstract domain that we propose in
this paper. The tool is implemented in OCaml.
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4.1 Example

Figure 4 shows an example of a kind of a program that we are interested in.
Figure 4 is a typical result of instrumenting a program with Boolean observer
variables that record which branches were taken during an execution. At every
step, this program non-deterministically chooses whether to assume a constraint
on a numeric variable x(i), and the choice is recorder in a Boolean variable b(i).
At this point, we do not care how exactly this program was obtained, and we
are interested in efficiently computing invariants in a way that allows to relate
Boolean and numeric variables. Our original motivation though comes from using
observer variables for trace partitioning in array-manipulating programs [27],
where different branches correspond to different relations between array indices.

Figure 5 encodes the example program as a system of Horn clauses that
can be processed by our tool. In this system, predicates P0, · · · , P3 denote the
invariants of the four program locations, and every Horn clause corresponds to
one transition (in general, a clause may encode multiple sequences of statements).
The smallest model of the system in Fig. 5 is the collecting semantics of the
program in Fig. 4.

Fig. 4. An example of a program
instrumented with observer vari-
ables.

Fig. 5. An encoding of the program in
Fig. 4 into Horn clauses for our tool.
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The original implementation of our tool used the BddApron abstract domain,
and the invariant that it infers for the predicate P3 (the final program location)
consists of 8 polyhedra, one for every valuation of Boolean variables:

(¬b(0)¬b(1)¬b(2) ∧ x(0) ≥ 0 ∧ x(1) ≥ 0 ∧ x(2) ≥ 0) ∨
(¬b(0)¬b(1)b(2) ∧ x(0) ≥ 0 ∧ x(1) ≥ 0 ∧ 1 ≥ x(2) ≥ 0) ∨
· · · ∨
(b(0)b(1)b(2) ∧ 1 ≥ x(0) ≥ 0 ∧ 1 ≥ x(1) ≥ 0 ∧ 1 ≥ x(2) ≥ 0)

In a larger program, such an invariant would be propagated further, with every
post-condition computation begin essentially repeated for each of the eight poly-
hedra (i.e., exponentially many times in the number of Boolean variables).

The implementation of the domain that we propose in this paper allows to
represent P3 in a much more compact form:

{ true → x(0) ≥ 0, true → x(1) ≥ 0, true → x(2) ≥ 0,

b(0) → −x(0) ≥ −1, b(1) → −x(1) ≥ −1, b(2) → −x(2) ≥ −1 }

4.2 Experiments

We evaluate the performance of the implementation using two sets of programs.
For both sets, we measure the total time it took to run on every program a single
forward analysis with narrowing. We summarize the results in Table 1. Time
figures were obtained on a PC with a Core i7-3630QM CPU and 8GB RAM.

SV-COMP Programs. For the first set of experiments, we selected a number
of programs from “loop” and “recursive” categories of the Competition on Soft-
ware Verification SV-COMP [1] and translated them into Horn clauses (the input
language of our tool) with the tool SeaHorn [16] using two different Clang opti-
mization levels -O3 and -O0 (SeaHorn operates on LLVM bytecode). This way
we obtained 123 systems of Horn clauses. By default, SeaHorn uses a version of
large block encoding [8] and produces programs with relatively few locations, but
with complicated transition relations and a large number of temporary Boolean
and numeric variables; even a simple C program can produce a good benchmark
for the implementation of an abstract domain. In Appendix A, we show an exam-
ple of a C program and the corresponding system of Horn clauses produced by
SeaHorn. On SV-COMP programs, the implementation of the proposed domain
is 2–10 times slower than BddApron; about 5 times slower on average.

Hand-Crafted Programs. For the second set, we selected 10 hand-crafted
programs coming from different sources: array-manipulating programs encoded
using array abstraction of Gonnord and Monniaux [27], other programs that use
trace partitioning with observer variables, etc. With hand-crafted examples, we
noticed that some of SMT queries that test constraint for redundancy cause the
solver (Z3 4.5.0) to reach timeout, which we set at 10 seconds. This does not
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Table 1. Experimental results

Program set # Total time, s

BddApron This paper

SV-COMP 123 9.2 52

Hand-crafted, no solver timeout 8 0.9 6.8

Hand-crafted, all 10 1.6 113.5

make the analysis unsound; a timeout of a redundancy check only causes the
analysis to keep a redundant constraint in an abstract element. We have not yet
found a workaround, and we display the hand-crafted programs in two rows: all
programs (10) and programs that do not cause solver timeouts (8). On hand-
crafted programs without solver timeout, the implementation of the proposed
domain is 2–10 times slower than BddApron; about 7 times slower on average.

Conclusion. On average, the current implementation of the proposed abstract
domain is about 5–7 times slower than BddApron. We find this result promising
(given that this is our initial prototype implementation) and it shows directions
for future improvement. In particular, much of the analysis time is spent in SMT
solver calls in order to detect redundant constraints. These calls are costly, but
have to be performed regularly. We are going to address the performance of
eliminating redundant constraints in future work.

5 Conclusion and Future Work

In this paper, we propose a new relational abstract domain for analysing programs
with numeric andBoolean variables. Themain idea is to represent an abstract state
as a set of linear constraints over numeric variables, with every constraint being
enabled by a formula over Boolean variables. This allows, unlike in some exist-
ing approaches, avoiding the duplication of linear constraints shared by multiple
Boolean formulas. Currently, we use the simple formulations of Fourier-Motzkin
elimination [28] and projection-based convex hull [7,31], and we rely on an SMT
solver for redundancy elimination and inclusion checks (the counterpart of sys-
tematically using linear programming). Our experiments have shown that this is
a worthy combination, which avoids some of the inefficiencies of earlier works.

The main direction for future work is to improve the performance of elimi-
nating redundant constraints. There may be multiple ways to do this.

First, we may find additional heuristics that will reduce the number calls to
a complete elimination procedure (that now calls an SMT solver). For example,
Maréchal and Périn propose a fast incomplete procedure to detect non-redundant
constraints based on raytracing [23], and there may be a way to adapt it (or a
similar heuristic) to our setting.

Second, we may replace the SMT calls with a specialized procedure that
combines LP-based and BDD-based reasoning. In particular, the observation



142 A. Bakhirkin and D. Monniaux

is that a constraint is non-redundant, if it is non-redundant for at least one
valuation of Boolean variables. While, an abstract element in the worst case
describes exponentially many (in the number of constraints) convex polyhedra,
there may be a way to not enumerate all of them during the redundancy check,
at least in the average case.

Third, we may attempt to adapt to our setting the state-of-the art algorithms
for constraint-only polyhedra, but this is not straightforward. For example, we
cannot immediately adapt algorithms that require an interior point, such as
those on parametric linear programming (for projection and convex hull) and
ray-tracing (for redundancy elimination), by Maréchal, Monniaux, and Périn
[21–23]: different Boolean assignments may have different interior points (in case
of polyhedra with empty interior, we consider the interior relative to the affine
span; but again this depends on the affine span). This is unfortunate, since much
time is currently spent inside the SMT solver for checking for redundancy, and
parametric linear programming is more efficient than Fourier-Motzkin elimina-
tion. A possible workaround, to be explored, is to partition the Boolean space
according to affine span and point in the relative interior.

Regardless of the issues related to redundancy, presence of Boolean con-
straints often prevents us from using some standard approaches to representing
polyhedra. In computations over convex polyhedra, one usually maintains, in
addition to a system of inequalities, a system of linear inequalities that defines
the affine span of the polyhedron. Given an ordering over the dimensions, this
system of equalities may be echelonized and used to eliminate variables from the
system of inequalities. The resulting system of equalities and non-redundant,
normalized inequalities is canonical 2. In our case, the affine span may depend
on the Boolean part, thus it is impossible to canonicalize the inequalities uni-
formly with respect to the Booleans. We intend to investigate partitioning the
Boolean space according to the affine span.

Fig. 6. An example of a C program

2 In the case of polyhedra with nonempty interior, an non-redundant system of nor-
malized inequalities canonically describes a polyhedron: each inequality corresponds
to a face. This is not true in the general case: both x ≤ y ∧ y ≤ x ∧ 0 ≤ x ∧ x ≤ 1
and x ≤ y ∧ y ≤ x ∧ 0 ≤ x ∧ y ≤ 1 are non-redundant systems defining the same
polyhedron. Its affine span is defined by x = y, then one can rewrite the inequalities
using this equality and obtain x = y ∧ 0 ≤ y ∧ y ≤ 1, which is canonical.
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A Input Example

Figure 6 shows an example of a C program. Figure 7 in the next page shows the
corresponding system of Horn clauses produced by SeaHorn.

Fig. 7. System of Horn clauses produced by SeaHorn for the program in Fig. 6.
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