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Preface

Static analysis is recognized as a fundamental tool for program verification, bug
detection, compiler optimization, program understanding, and software maintenance.
The series of Static Analysis Symposia has served as the primary venue for the pre-
sentation of theoretical, practical, and applicational advances in the area. Previous
symposia were held in Edinburgh, Saint-Malo, Munich, Seattle, Deauville, Venice,
Perpignan, Los Angeles, Valencia, Kongens Lyngby, Seoul, London, Verona, San
Diego, Madrid, Paris, Santa Barbara, Pisa, Aachen, Glasgow, Namur, and New York.
This volume contains the papers presented at SAS 2018, the 25th International Static
Analysis Symposium. The conference was held during August 29–31, 2018, at Frei-
burg, Germany.

SAS 2018 featured two associated workshops: the 9th Workshop on Static Analysis
and Systems Biology (SASB 2018), and the 9th Workshop on Tools for Automatic
Program Analysis (TAPAS 2017), which were held on August 27, 2018, the day before
the conference.

The conference received 37 submissions. Each submission was reviewed by at least
three Program Committee members. The Program Committee decided to accept 18
papers, which appear in this volume.

In addition to the regular paper review, we organized a separate evaluation for
artifacts submitted by authors, together with their papers. Previous editions of SAS also
allowed authors to submit artifacts, but this was the first edition where artifacts were
evaluated on their own, by a specific committee. Out of the 16 submissions that came
with an artifact, nine were accepted. Only the artifacts of the accepted papers were
considered for the evaluation. Each of the nine artifacts was evaluated by two or three
members of the artifact evaluation committee. The evaluation aimed at making sure
that each artifact allows one to reproduce most or all of the results of the paper. Finally,
seven artifacts were found of sufficient quality to pass the evaluation. Authors of
accepted artifacts were allowed to add to their paper an artifact-approved badge. We
hope that this experience will encourage effort for greater reproducibility of results in
static analysis.

The program includes invited talks by Aws Albarghouthi (University of Wisconsin–
Madison, USA), Zachary Kincaid (Princeton University, USA), Ruzica Piskac (Yale
University, USA), Sharon Shoham (Tel Aviv University, Israel), and invited tutorials
by Roberto Bagnara (University of Parma/BUGSENG, Italy), Ken McMillan (Micro-
soft Research, USA), Oded Padon (Tel Aviv University, Israel), and Peter O’Hearn
(University College London/Facebook, UK). We warmly thank these speakers for
accepting the invitations.

Many people and institutions contributed to the success of SAS 2018. We would
like to thank the members of the Program Committee, who worked hard at carefully
reviewing papers, holding insightful discussions during the online Program Committee
meeting, and making final selections of accepted papers. We would also like to thank



the additional referees enlisted by Program Committee members. The work of the
Program Committee and the editorial process was greatly facilitated by the EasyChair
conference management system. We are grateful to Springer for publishing these
proceedings. Finally, we would like to thank our sponsors: Hahn-Schickard, Facebook,
Axivion, ENS Paris, University of Padova, and Springer.

July 2018 Andreas Podelski
(Program Committee Chair)

Xavier Rival
(Artifact Evaluation Chair)

VI Preface



Organization

Program Committee

Domagoj Babic Google
Sam Blackshear Facebook
Marc Brockschmidt Microsoft
Bor-Yuh Evan Chang University of Colorado Boulder, USA
Swarat Chaudhuri Rice University, USA
Jerome Feret Inria, France
Ashutosh Gupta TIFR
Nicolas Halbwachs CNRS/Verimag, France
Lukas Holik Brno University of Technology, Czech Republic
Barbara König Universität Duisburg-Essen, Germany
Boris Köpf IMDEA Software Institute, Spain
Shuvendu Lahiri Microsoft
Hakjoo Oh Korea University, South Korea
Andreas Podelski University of Freiburg, Germany
Sylvie Putot LIX, Ecole Polytechnique, France
Francesco Ranzato University of Padova, Italy
Jakob Rehof TU Dortmund University, Germany
Xavier Rival Inria/CNRS/ENS Paris/PSL University, France
Sriram Sankaranarayanan University of Colorado Boulder, USA
Harald Sondergaard The University of Melbourne, Australia
Alexander J. Summers ETH Zurich, Switzerland
Ashish Tiwari SRI International, USA
Caterina Urban ETH Zurich, Switzerland
Lenore Zuck University of Illinois at Chicago, USA
Damien Zufferey MPI-SWS, Germany
Florian Zuleger Vienna University of Technology, Austria

Additional Reviewers

Allamanis, Miltos
Andrlon, Mak
Balakrishnan, Gogul
Chakarov, Aleksandar
Chen, Yu-Fang
Cho, Sungkeun

Choi, Wontae
Chu, Duc Hiep
Cox, Arlen
D’Osualdo, Emanuele
Dubreil, Jeremy
Fuhs, Carsten

Gange, Graeme
Ghorbal, Khalil
Giacobazzi, Roberto
Goubault, Eric
Hollingum, Nicholas
Journault, Matthieu



Katelaan, Jens
Lengal, Ondrej
Lopes, Nuno P.
Ouadjaout, Abdelraouf
Roux, Pierre

Simon, Axel
Srinivasan, Venkatesh
Stefanescu, Andrei
Stuckey, Peter J.
Sung, Chungha

Ulbrich, Mattias
Unadkat, Divyesh
Wang, Yuepeng
Zanella, Marco

VIII Organization



Contents

Fairness: A Formal-Methods Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Aws Albarghouthi

The MISRA C Coding Standard and its Role in the Development
and Analysis of Safety- and Security-Critical Embedded Software. . . . . . . . . 5

Roberto Bagnara, Abramo Bagnara, and Patricia M. Hill

Numerical Invariants via Abstract Machines . . . . . . . . . . . . . . . . . . . . . . . . 24
Zachary Kincaid

Deductive Verification in Decidable Fragments with Ivy . . . . . . . . . . . . . . . 43
Kenneth L. McMillan and Oded Padon

Experience Developing and Deploying Concurrency Analysis at Facebook. . . 56
Peter O’Hearn

New Applications of Software Synthesis: Verification of Configuration
Files and Firewall Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Ruzica Piskac

Interactive Verification of Distributed Protocols Using Decidable Logic . . . . . 77
Sharon Shoham

Abstract Interpretation of Stateful Networks . . . . . . . . . . . . . . . . . . . . . . . . 86
Kalev Alpernas, Roman Manevich, Aurojit Panda, Mooly Sagiv,
Scott Shenker, Sharon Shoham, and Yaron Velner

Block-Size Independence for GPU Programs . . . . . . . . . . . . . . . . . . . . . . . 107
Rajeev Alur, Joseph Devietti, and Nimit Singhania

Extending Constraint-Only Representation of Polyhedra
with Boolean Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Alexey Bakhirkin and David Monniaux

An Efficient Abstract Domain for Not Necessarily Closed Polyhedra. . . . . . . 146
Anna Becchi and Enea Zaffanella

Modular Software Fault Isolation as Abstract Interpretation . . . . . . . . . . . . . 166
Frédéric Besson, Thomas Jensen, and Julien Lepiller

Closing the Performance Gap Between Doubles and Rationals for Octagons. . . 187
Aziem Chawdhary and Andy King



Verifying Properties of Differentiable Programs . . . . . . . . . . . . . . . . . . . . . 205
Jan Hückelheim, Ziqing Luo, Sri Hari Krishna Narayanan,
Stephen Siegel, and Paul D. Hovland

A Reduced Product of Absolute and Relative Error Bounds
for Floating-Point Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Maxime Jacquemin, Sylvie Putot, and Franck Védrine

Modular Static Analysis of String Manipulations in C Programs . . . . . . . . . . 243
Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout

Verifying Bounded Subset-Closed Hyperproperties . . . . . . . . . . . . . . . . . . . 263
Isabella Mastroeni and Michele Pasqua

Process-Local Static Analysis of Synchronous Processes . . . . . . . . . . . . . . . 284
Jan Midtgaard, Flemming Nielson, and Hanne Riis Nielson

The Impact of Program Transformations on Static Program Analysis . . . . . . . 306
Kedar S. Namjoshi and Zvonimir Pavlinovic

Efficiently Learning Safety Proofs from Appearance as well as Behaviours. . . . 326
Sumanth Prabhu, Kumar Madhukar, and R. Venkatesh

Invertible Linear Transforms of Numerical Abstract Domains . . . . . . . . . . . . 344
Francesco Ranzato and Marco Zanella

Incremental Verification Using Trace Abstraction . . . . . . . . . . . . . . . . . . . . 364
Bat-Chen Rothenberg, Daniel Dietsch, and Matthias Heizmann

Volume-Based Merge Heuristics for Disjunctive Numeric Domains . . . . . . . . 383
Andrew Ruef, Kesha Hietala, and Arlen Cox

Abstract Interpretation of CTL Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Caterina Urban, Samuel Ueltschi, and Peter Müller

Inductive Termination Proofs with Transition Invariants and Their
Relationship to the Size-Change Abstraction. . . . . . . . . . . . . . . . . . . . . . . . 423

Florian Zuleger

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

X Contents



Fairness: A Formal-Methods Perspective

Aws Albarghouthi(B)

University of Wisconsin–Madison, Madison, WI, USA
aws@cs.wisc.edu

Abstract. Sensitive decisions of large-scale societal impact are increas-
ingly being delegated to opaque software—a trend that is unlikely to
slow down in the near future. The issue of fairness and bias of decision-
making algorithms has thus become a multifaceted, interdisciplinary con-
cern, attracting the attention of computer scientists, law scholars, policy
makers, journalists, and many others. In this expository paper, I will out-
line some of the research questions we have been studying about fairness
through the lens of formal methods.

1 Introduction

Whether it is at the industrial or governmental level, we are witnessing
widespread automation of processes that have the potential to adversely impact
individuals or groups. Consider, for instance, automatically assigned credit
scores, automated filtering of applicant resumes, predictive policing, or algorith-
mic pricing. All of these automated processes have the potential to adversely
affect the individuals or groups—typically minorities—who are the subjects
of the algorithmic decisions. These are not mere academic concerns. Indeed,
accounts of automated discrimination are being constantly reported in a range
of areas.

Prompted by the importance of addressing bias in automated decision-
making, researchers across many disciplines have started studying this prob-
lem. Notably, in computer science, multiple formal definitions of fairness have
been proposed, and studying their merits, shortcomings, and contradictions is
an active area of study (see, e.g., [4,6,7,9]). Relatedly, numerous techniques—
mostly in statistical machine learning—have been proposed to enforce some of
those fairness definitions (see, e.g., [6,7,12,13]).

In this paper, I will view the fairness problem through the lens of formal
methods, and outline a number of research questions we are currently studying.
A central technical theme that I wish to highlight is the reduction of probabilistic
reasoning to logical reasoning, an approach that allows us to harness the power
of established logical techniques—e.g., smt solvers—for probabilistic reasoning.

c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 1–4, 2018.
https://doi.org/10.1007/978-3-319-99725-4_1
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2 A. Albarghouthi

2 Fairness Through the Lens of Formal Methods

Fairness as a Program Property. Suppose we have a program P that,
given an input x representing some individual’s information, decides whether
to invite them for a job interview. Our view of the problem is broad: P could
be a machine-learned classifier, it could be an sql query filtering out applicants
from a database, a Python script, etc.

How do we ensure that P is fair? One class of definitions, called indi-
vidual fairness, specifies that P should return a similar decision for similar
individuals—for some definition of similarity. This is a notion of program robust-
ness, ensuring that P is unaffected by input perturbations. Another class of
definitions, called group fairness, specify that the selection rate for applicants
from a minority group is comparable to the selection rate of the rest of the
applicants—the majority.

In our work on FairSquare [1], we showed that we can characterize a range
of such fairness definitions as formal specifications of programs, and proposed
automated verification algorithms to check whether a program satisfies the spec-
ification, under a given population. Specifically, we characterize the population
as a probability distribution D. Then, P can be viewed as a distribution trans-
former, and we can ask questions like, what is the probability that P hires an
applicant conditioned on them being a minority? By answering such questions,
we can check a property like group fairness, e.g., following Feldman et al. [6],

Pr[P (x) = true | x is a minority]
Pr[P (x) = true | x is a majority]

� 1 − ε

which prescribes that the selection rate from the minority group is at least 1− ε
that of the majority group, for some small ε.

At the algorithmic level, we reduce the problem of computing those probabil-
ities to weighted volume computation, where our goal is to compute the volume
of the region defined by an smt formula in linear arithmetic. We demonstrated
that we can solve this quantitative problem via iterative calls to an smt solver,
resulting in a sound and complete approach [1,11].

Fairifying Unfair Programs. What should we do when we detect an unfair
program? We extended FairSquare with what we like to call a fairification algo-
rithm [2], which takes an unfair program P and transforms it into a fair program
P ′, for a provided fairness definition.

Specifically, we cast the problem as follows: Find a fair program P ′ such that

Pr[P (x) �= P ′(x)] is minimized

The idea is that P is not trying to be egregiously unfair. What we therefore want
to do is nudge it a little bit to make sure that we cover its blind spots that are
causing its bias.

At the algorithmic level, we demonstrate how to solve fairification via itera-
tively solving constraint-based synthesis problems, whose solutions are candidate
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programs P ′. Our approach is inspired by classic results in probably approx-
imately correct (pac) learning, adapted to an smt-based program synthesis
setting.

Fairness and Privacy. Finally, I would like to point out the connection
between fairness—particularly, individual fairness—and notions of statistical
privacy. Differential privacy [5] prescribes that minor modifications to a sin-
gle record in a database do not yield large changes in the output of a query; this
ensures the privacy of the individual to whom the record pertains. Differential
privacy is established by randomizing the query evaluation algorithm, instilling
noise in its results. The standard definition is that given query q, for all similar
databases, d and d′, and every possible output o, we have

Pr[q(d) = o] � eε · Pr[q(d′) = o]

where ε > 0 is a parameter. As ε approaches 0, the outputs of the query q on d
and d′ approach each other, increasing privacy.

Perhaps predictably, algorithms for enforcing differential privacy have been
ported for ensuring fairness [4,8]. For instance, Kearns et al. [8] employ
differential-privacy mechanisms to ensure individually fair selection of individ-
uals from a database—e.g., choosing top football players to send to the world
cup.1 Intuitively, the randomization enforced by differential privacy ensures that
minor differences between players do not translate into large changes in the cho-
sen team.

Given the difficulty of designing randomized algorithms for differential pri-
vacy (mistakes have been found in published proofs [10]), we have developed
automated techniques for proving differential privacy [3]. We demonstrated that
we can solve this problem via a careful reduction to solving a system of recur-
sive constraints, defined via constrained Horn clauses. Specifically, we showed
that a rich space of proofs, called coupling proofs, can be logically characterized,
allowing us to eliminate probabilistic reasoning.

3 Conclusion

I discussed some of our progress in applying automated verification and syn-
thesis to addressing problems in fairness of decision-making programs. I believe
that the formal methods community, broadly defined, has plenty to contribute to
the discourse on fairness and bias—for instance, by developing formally verified
implementations of fair algorithms, runtime verification techniques for detect-
ing unfairness, programming languages where fairness is a first-class construct,
debugging techniques for detecting potential bias, and others.

Acknowledgements. The work described in this talk is in collaboration with a fan-
tastic group of students and researchers: Samuel Drews, Aditya Nori, Loris D’Antoni,

1 World events at the time of writing strongly influenced my choice of example.
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Justin Hsu, Calvin Smith, and David Merrell. The work described is generously sup-
ported by the National Science Foundation (NSF) grant #1704117.
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The MISRA C Coding Standard
and its Role in the Development

and Analysis of Safety- and
Security-Critical Embedded Software

Roberto Bagnara1,2(B), Abramo Bagnara1, and Patricia M. Hill1

1 BUGSENG srl, Parma, Italy
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Abstract. The MISRA project started in 1990 with the mission of
providing world-leading best practice guidelines for the safe and secure
application of both embedded control systems and standalone software.
MISRA C is a coding standard defining a subset of the C language,
initially targeted at the automotive sector, but now adopted across all
industry sectors that develop C software in safety- and/or security-
critical contexts. In this paper, we introduce MISRA C, its role in the
development of critical software, especially in embedded systems, its rel-
evance to industry safety standards, as well as the challenges of working
with a general-purpose programming language standard that is written
in natural language with a slow evolution over the last 40+ years. We
also outline the role of static analysis in the automatic checking of com-
pliance with respect to MISRA C, and the role of the MISRA C language
subset in enabling a wider application of formal methods to industrial
software written in C.

1 Introduction

In September 1994, the “First International Static Analysis Symposium” took
place in Namur, Belgium [25]. The Call for Papers contained the following:

Static Analysis is increasingly recognized as a fundamental tool for high
performance implementations and verification systems of high-level pro-
gramming languages. The last two decades have witnessed substantial
developments in this area, ranging from the theoretical frameworks to the

While Roberto Bagnara is a member of the MISRA C Working Group and of
ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standardization Working Group, the
views expressed in this paper are his and his coauthors’ and should not be taken to
represent the views of either working group.

c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 5–23, 2018.
https://doi.org/10.1007/978-3-319-99725-4_2
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design and implementation of analysers and their applications in optimiz-
ing compilers.

In November 1994, MISRA1 published its “Development Guidelines For
Vehicle Based Software” [3]. These listed static analysis as the first automatic
methodology to verify software and contained the following paragraphs:

3.5.1.5 Consideration should be given to using a restricted subset of a
programming language to aid clarity, assist verification and facilitate
static analysis where appropriate.

3.5.2.6 Static analysis is effective in demonstrating that a program is well
structured with respect to its control, data and information flow. It can
also assist in assessing its functional consistency with its specification.

Paragraph 3.5.1.5 led to the definition of the subset of the C programming
language that will later be called MISRA C.

While the quoted texts show the passage of time (today we would express
things differently), they witness the fact that static analysis was recognized as
an established research field at about the same time that it gathered enough
industrial recognition to be explicitly recommended by an influential set of guide-
lines for the automotive industry, one of the most important economic sectors
by revenue. The connection between static analysis research and the industrial
world —which now encompasses all industry sectors— that recognizes MISRA C
as the basis for the development of safe and secure applications in C has been
basically unidirectional and mediated by the tool providers. These tool providers
are interested in all advances in static analysis research in order to improve the
applicability and usefulness of their tools and hence simplify the task of verifying
compliance with respect to the MISRA C guidelines. It must be admitted that the
static analysis research community has seen the (very pragmatic) industry move-
ment behind MISRA C with a somewhat snobbish and often not well informed atti-
tude.2 For instance, [10, Sect. 3] suggests that MISRA C concerns coding style and
that semantic-based static analysis is not needed to check its guidelines. In real-
ity, while MISRA C encourages the adoption of a consistent programming style,
it has always left this matter to individual organizations: “In addition to adopting
the subset, an organisation should also have an in-house style guide. [. . . ] How-
ever the enforcement of the style guide is outside the scope of this document”
[27, Sect. 4.2.2] (see also [28, Sect. 5.2.2]). Moreover, as we will see, semantic-based
static analysis is required to check many MISRA C guidelines without constraining
too much the way the code is written.

In this paper we try to clear up such misconceptions and to properly intro-
duce MISRA C to the static analysis community. Our ultimate aim is to foster
collaboration between the communities, one which we believe could be very fruit-
ful: the wide adoption of MISRA C in industry constitutes an avenue for a wider

1 Originally, an acronym for Motor Industry Software Reliability Association.
2 The authors of this paper are not an exception to this statement, at least not until

2010.
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introduction of formal methods and a good opportunity to channel some applied
static analysis research to the most important subset of the C programming
language.

The plan of the paper is the following: Sect. 2 introduces the C language
explaining why it is so widely adopted, why it is (not completely) defined as it
is, why it is not going to change substantially any time soon, and why subsetting
it is required; Sect. 3 introduces the MISRA project and MISRA C focusing
on its last edition, MISRA C:2012, with its amendments and addenda; Sect. 4
highlights the links between MISRA C and static analysis; Sect. 5 discusses some
trends and opportunities; Sect. 6 concludes.

2 The C Language

The development of the C programming language started in 1969 at Bell Labs,
almost 50 years ago, and the language was used for the development of the Unix
operating system [40]. Despite frequent criticism, C is still one of the most used
programming languages overall3 and the most used one for the development of
embedded systems [7,44]. There are several reasons why C has been and is so
successful:

– C compilers exist for almost any processor, from tiny DSPs used in hearing
aids to supercomputers.

– C compiled code can be very efficient and without hidden costs, i.e., program-
mers can roughly predict running times even before testing and before using
tools for worst-case execution time approximation.4

– C allows writing compact code: it is characterized by the availability of many
built-in operators, limited verbosity, . . .

– C is defined by international standards: it was first standardized in 1989 by the
American National Standards Institute (this version of the language is known
as ANSI C) and then by the International Organization for Standardization
(ISO) [17–21].

– C, possibly with extensions, allows easy access to the hardware and this is a
must for the development of embedded software.

– C has a long history of usage in all kinds of systems including safety-, security-,
mission- and business-critical systems.

– C is widely supported by all sorts of tools.

Claims that C would eventually be superseded by C++ do not seem very plausi-
ble, at least as far as the embedded software industry is concerned. In addition to
the already-stated motives, there is language size and stability: C++ has become
a huge, very complex language; moreover it is evolving at a pace that is in sharp
3 Source: TIOBE Index for June 2018, see https://www.tiobe.com/tiobe-index/.
4 This is still true for implementations running on simple processors, with a limited

degree of caching and internal parallelism. Prediction of maximum running time
without tools becomes outright impossible for current multi-core designs such as
Kalray MPPA, Freescale P4080, or ARM Cortex-A57 equivalents (see, e.g., [35–37]).

https://www.tiobe.com/tiobe-index/
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contrast with industrial best practices. The trend whereby C++ rapid evolution
clashes with the industry requirements for stability and backward compatibility
has been put black-on-white at a recent WG21 meeting,5 where the following
statement was agreed upon [46]: “The Committee should be willing to consider
the design/quality of proposals even if they may cause a change in behavior or
failure to compile for existing code.”

A good portion of the criticism of C comes from the notion of behavior,
defined as external appearance or action [20, Par. 3.4] and the so-called as-if
rule, whereby the compiler is allowed to do any transformation that ensures that
the “observable behavior” of the program is the one described by the standard
[20, Par 5.1.2.3#5].6 While all compiled languages have a sort of as-if rule that
allows optimized compilation, one peculiarity of C is that it is not fully defined.
There are four classes of not fully defined behaviors (in the sequel, collectively
referred to as “non-definite behaviors”):

implementation-defined behavior: unspecified behavior where each imple-
mentation documents how the choice is made [20, Par. 3.4.1]; e.g., the sizes
and precise representations of the standard integer types;

locale-specific behavior: behavior that depends on local conventions of
nationality, culture, and language that each implementation documents [20,
Par. 3.4.2]; e.g., character sets and how characters are displayed;

undefined behavior: behavior, upon use of a non-portable or erroneous pro-
gram construct or of erroneous data, for which this International Standard
imposes no requirements [20, Par. 3.4.3]; e.g., attempting to write a string lit-
eral constant or shifting an expression by a negative number or by an amount
greater than or equal to the width of the promoted expression;

unspecified behavior: use of an unspecified value, or other behavior where
this International Standard provides two or more possibilities and imposes no
further requirements on which is chosen in any instance [20, Par. 3.4.4]; e.g.,
the order in which sub-expressions are evaluated.

Setting aside locale-specific behavior, whose aim is to avoid some nontechni-
cal obstacles to adoption, it is important to understand the connection between
non-definite behavior and the relative ease with which optimizing compilers can
be written. In particular, C data types and operations can be directly mapped to
data types and operations of the target machine. This is the reason why the sizes
and precise representations of the standard integer types are implementation-
defined: the implementation will define them in the most efficient way depending
on properties of the target CPU registers, ALUs and memory hierarchy. Attempt-
ing to write on string literal constants is undefined behavior because they may
5 WG21 is a common shorthand for ISO/IEC JTC1/SC22/WG21, a.k.a. the C++

Standardization Working Group. The cited meeting tool place in Jacksonville, FL,
USA, March 12–17, 2018.

6 In this paper, we refer to the C99 language standard [19] because this is the most
recent version of the language that is targeted by the current version of MISRA C
[28]. All what is said about the C language itself applies equally, with only minor
variations, to all the published versions of the C standard.
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reside in read-only memory and/or may be merged and shared: for example,
a program containing ‘‘String’’ and ‘‘OtherString’’ may only store the
latter and use a suffix of that representation to represent the former. The reason
why shifting an expression by a negative number or by an amount greater than
or equal to the width of the promoted expression is undefined behavior is less
obvious. What sensible semantics can be assigned to shifting by a negative num-
ber of bit positions? Shifting in the opposite direction is a possible answer, but
this is usually not supported in hardware, so it would require a test, a jump and
a negation. It is a bit more subtle to understand why the following is undefined
behavior:

� �

uint32_t i = 1;

i = i << 32; /* Undefined behavior. */
�� �

One would think that pushing 32 or more zeroes to the right of i would
give zero. However, this does not correspond to how some architectures imple-
ment shift instructions. IA-32, for instance [15, section on “IA-32 Architecture
Compatibility”]:

The 8086 does not mask the shift count. However, all other IA-32 pro-
cessors (starting with the Intel 286 processor) do mask the shift count to
5 bits, resulting in a maximum count of 31. This masking is done in all
operating modes (including the virtual-8086 mode) to reduce the maxi-
mum execution time of the instructions.

This means that, on all IA-32 processors starting with the Intel 286, a direct
mapping of C’s right shift to the corresponding machine instruction will give:

� �

i = i << 32; /* This is equivalent to... */

i = i << (32 & 0x1F); /* ... this , i.e., ... */

i = i << 0; /* this , which is a no-op. */
�� �

So also for this case, for speed and ease of implementation, C leaves the behavior
undefined.

The recurring request to WG147 to “fix the language” is off the mark. In
fact, weakness of the C language comes from its strength:

– Non-definite behavior is the consequence of two factors:
1. the ease of writing efficient compilers for almost any architecture;
2. the existence of many compilers by different vendors and the fact that

the language is standardized.

7 Short for ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standardization Working Group.
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Concerning the second point, it should be considered that, in general, ISO
standardizes existing practice taking into account the opinions of the ven-
dors that participate in the standardization process, and with great attention
to backward compatibility: so, when diverging implementations exist, non-
definite behavior might be the only way forward.

– The objective of easily obtaining efficient code with no hidden costs is the
reason why, in C, there is no run-time error checking.

– Easy access to the hardware entails the facility with which the program state
can be corrupted.

– Code compactness is one of the reasons why the language can easily be mis-
understood and misused.

Summarizing, the C language can be expected to remain faithful to its orig-
inal spirit and to be around for the foreseeable future, at least for the devel-
opment of embedded systems. However, it is true that several features of C do
conflict with both safety and security requirements. For this reason, language
subsetting is crucial for critical applications. This was recognized early in [14]
and is now mandated or recommended by all safety- and security-related indus-
trial standards, such as IEC 61508 (industrial), ISO 26262 (automotive), CEN-
ELEC EN 50128 (railways), RTCA DO-178B/C (aerospace) and FDA’s General
Principles of Software Validation [43]. Today, the most authoritative language
subset for the C programming language is MISRA C, which is the subject of the
next section.

3 MISRA C

The MISRA project started in 1990 with the mission of providing world-leading
best practice guidelines for the safe and secure application of both embedded
control systems and standalone software. The original project was part of the
UK Governments “SafeIT” programme but it later became self-supporting, with
MIRA Ltd, now HORIBA MIRA Ltd, providing the project management sup-
port. Among the activities of MISRA is the development of guidance in specific
technical areas, such as the C and C++ programming languages, model-based
development and automatic code generation, software readiness for production,
safety analysis, safety cases and so on. In November 1994, MISRA published its
“Development guidelines for vehicle based software”, a.k.a. “The MISRA Guide-
lines” [3]: this is the first automotive publication concerning functional safety,
more than 10 years before work started on ISO 26262 [16].

The MISRA guidelines [3] prescribed the use of “a restricted subset of a
standardized structured language.” In response to that, the MISRA consortium
began work on the MISRA C guidelines: at that time Ford and Land Rover were
independently developing in-house rules for vehicle-based C software and it was
recognized that a common activity would be more beneficial to industry. The
first version of the MISRA C guidelines was published in 1998 [26] and received
significant industrial attention.
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In 2004, following the many comments received from its users —many of
which, beyond expectation, were in non-automotive industries— MISRA pub-
lished an improved version of the C guidelines [27]. In MISRA C:2004 the
intended audience explicitly became constituted by all industries that develop
C software for use in high-integrity/critical systems. Due to the success of
MISRA C and the fact that C++ is also used in critical contexts, in 2008 MISRA
published a similar set of MISRA C++ guidelines [34].
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Fig. 1. Origin and history of MISRA C

Both MISRA C:1998 and MISRA C:2004 target the 1990 version of the C
Standard [17]. In 2013, the revised set of guidelines known as MISRA C:2012 was
published [28]. In this version there is support both for C99 [19] as well as C90
(in its amended and corrected form sometimes referred to as C95 [18]). With
respect to previous versions, MISRA C:2012 covers more language issues and
provides a more precise specification of the guidelines with improved rationales
and examples. Figure 1 shows part of the relationship and influence between
the MISRA C/C++ guidelines and other sets of guidelines. It can be seen that
MISRA C:1998 influenced Lockheed’s “JSF Air Vehicle C++ Coding Standards
for the System Development and Demonstration Program” [1], which influenced
MISRA C++:2008, which, in turn, influenced MISRA C:2012. The activity that
led to MISRA C++:2008 was also encouraged by the UK Ministry of Defence
which, as part of its Scientific Research Program, funded a work package that
resulted in the development of a “vulnerabilities document” (the equivalent of
Annex J listing the various behaviors in ISO C, which is missing in ISO C++,
making it hard work to identify them and to ensure they are covered by the
guidelines). Moreover, MISRA C deeply influenced NASA’s “JPL Institutional
Coding Standard for the C Programming Language” [2] and several other coding
standards (see, e.g., [6,9,42]).
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The MISRA C guidelines are concerned with aspects of C that impact on the
safety and security of the systems, whether embedded or standalone: they define
“a subset of the C language in which the opportunity to make mistakes is either
removed or reduced” [28]. The guidelines ban critical non-definite behavior and
constrain the use of implementation-defined behavior and compiler extensions.
They also limit the use of language features that can easily be misused or misun-
derstood. Overall, the guidelines are designed to improve reliability, readability,
portability and maintainability.

There are two kinds of MISRA C guidelines.

Directive: a guideline where the information concerning compliance is generally
not fully contained in the source code: requirements, specifications, design, . . .
may have to be taken into account. Static analysis tools may assist in checking
compliance with respect to directives if provided with extra information not
derivable from the source code.

Rule: a guideline such that information concerning compliance is fully contained
in the source code. Discounting undecidability, static analysis tools should,
in principle, be capable of checking compliance with respect to the rule.

A crucial aspect of MISRA C is that it has been designed to be used within
the framework of a documented development process where justifiable non-
compliances will be authorized and recorded as deviations. To facilitate this,
each MISRA C guideline has been assigned a category.

Mandatory: C code that complies to MISRA C must comply with every man-
datory guideline; deviation is not permitted.

Required: C code that complies to MISRA C shall comply with every required
guideline; a formal deviation is required where this is not the case.

Advisory: these are recommendations that should be followed as far as is
reasonably practical; formal deviation is not required, but non-compliances
should be documented.

Every organization or project may choose to treat any required guideline as if it
were mandatory and any advisory guideline as if it were required or mandatory.
The adoption of MISRA Compliance:2016 [30] allows advisory guidelines to be
downgraded to “Disapplied” when a check for compliance is considered to have
no value, e.g., in the case of adopted code8 that has not been developed so as
to comply with the MISRA C guidelines. Of course, the decision to disapply a
guideline should not be taken lightly: [30] prescribes the compilation of a guide-
line recategorization plan that must contain, among other things, the rationale
for any decision to disapply a guideline.

Each MISRA C rule is marked as decidable or undecidable according to
whether answering the question “Does this code comply?” can be done algo-
rithmically. Hence rules are marked ‘undecidable’ whenever violations depend
8 Such as the standard library, device drivers supplied by the compiler vendor or the

hardware manufacturer, middleware components, third party libraries, automatically
generated code, legacy code, . . . .
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on run-time (dynamic) properties such as the value contained in a modifiable
object or whether control reaches a particular point. Conversely, rules are marked
‘decidable’ whenever violations depend only on compile-time (static) properties,
such as the types of the objects or the names and the scopes of identifiers.
Clearly, for rules marked ‘decidable’, it is theoretically possible (i.e., given ade-
quate computational resources) for a tool to emit a message if and only if the
rule is violated. However, for rules marked ‘undecidable’, any tool will have to
deal with the don’t know answer in addition to yes and no at each distinct,
relevant program point. In either case, if it is not practical (or even possible)
for the tool to decide if the code is compliant with respect to a guideline at a
particular program point, it can:

– suppress the don’t know answer (i.e., possibly false negatives, no false posi-
tives);

– emit the don’t know answer as a yes message (i.e., no false negatives, possibly
false positives);

– a combination of the above (i.e., both possibly false negatives and possibly
false positives);

– emit the don’t know answer as a caution message (i.e., no false negatives,
confined, possibly false positives).

MISRA C rules are also classified according to the amount of code that needs
to be analyzed in order to detect all violations of the rule.

Single Translation Unit: all violations within a project can be detected by
checking each translation unit independently.

System: identifying violations of a rule within a translation unit requires check-
ing more than the translation unit in question, if not all the source code that
constitutes the system.

MISRA C:2012 Amendment 1 [29], published in 2016, enhances MISRA
C:2012 so as to extend its applicability to industries and applications where
data-security is an issue. It includes 14 new guidelines (1 directive and 13 rules)
to complete the coverage of ISO/IEC TS 17961:2013 [22], a.k.a. C Secure Coding
Rules, a set of rules for secure coding in C.9 Details of such complete coverage are
provided in [32]. A similar document [33] shows that, with Amendment 1, cov-
erage of CERT C Coding Standard is almost complete and that, consequently,
MISRA C is today the language subset of choice for all industries developing
embedded systems in C that are safety- and/or security-critical [4].

For the rest of this paper, all references to MISRA C will be for the latest
published version MISRA C:2012 [28] including its Technical Corrigendum 1
[31] and Amendment 1 [29]: these will be consolidated into the forthcoming first
revision of MISRA C:2012 [5]. It should be noted that both the MISRA C and
MISRA C++ projects are active and constantly improving the guidelines and
developing new works: for instance, the MISRA C Working Group is currently
working at adding support for C11 [21] and, in response to community feedback,
at further enhancing the guidance on undefined/unspecified behaviors [5].
9 This technical specification has been slightly amended in 2016 [23].



14 R. Bagnara et al.

4 Static Analysis and MISRA C

The majority of the MISRA C guidelines are decidable, and thus compliance can
be checked by algorithms that:

– do not need nontrivial approximations of the value of program objects;
– do not need nontrivial control-flow information.

Of course, these algorithms can still be very complex. For instance, the nature of
the translation process of the C language, which includes a preprocessing phase,
is a source of complications: the preprocessing phase must be tracked precisely,
and compliance may depend on the source code before preprocessing, on the
source code after preprocessing, or on the relationship between the source code
before and after preprocessing.

The rest of this section focuses on those guidelines whose check for compli-
ance requires or significantly benefits from semantic-based analysis. Obviously
every undecidable rule has decidable approximations, but these are necessarily
characterized by a significant number of false positives unless rigid programming
schemes are adopted. For example, Rule 17.2, which disallows recursion, admits
a decidable approximation that requires finding cycles in the call graph and
flagging, as potentially non-compliant, all function calls via pointers. If function
calls via pointers are not used (i.e., the program is written in a smaller subset of
C than that strictly mandated by the rule) then there will be no false positives.

The guidelines are listed in Table 1. Note that the text provided for each
guideline is just, as indicated, a rough, very rough one-line summary, whereas the
proper description can span multiple pages. The reader is referred to [28,29,31]
for the full details. Note that the list of guidelines in Table 1 begins with four
directives: even though checking compliance with respect to them requires infor-
mation that may not be present in the code, they involve undecidable program
properties.

Table 2 classifies the guidelines of Table 1 according to attributes of an
approximate representation of the program semantics; an approximation built
by a static analysis algorithm to check compliance for the given guideline with
adequate precision, that is, no false negatives and relatively few false positives.
The attributes are the following:

control-flow: detecting all potential violations with a low rate of false posi-
tives requires computing an approximation that allows observing control-flow
within the program with relatively high precision;

data-flow: detecting all potential violations with a low rate of false positives
requires computing an approximation that allows observing the possible val-
ues of objects with relatively high precision; this is further refined with two
sub-attributes:
points-to: observing the values of pointer objects is important;
arithmetic: observing the values of other (i.e., non-pointer) objects (includ-

ing pointer offsets) is important.
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Table 1. MISRA C guidelines whose checking requires/benefits from semantic analysis

Guideline Rough one-line summary

D4.1 Avoid run-time failures

D4.11 Check the validity of values passed to library functions

D4.13 Resource-handling functions should be called in an appropriate sequence

D4.14 Do not trust values received from external sources

R1.3 No undefined or critical unspecified behavior

R2.1 No unreachable code

R2.2 No dead code

R8.13 Point to const-qualified type if possible

R9.1 Do not read uninitialized automatic storage

R12.2 Right-hand operand of a shift operator must be in range

R13.1 No side effects in initializers

R13.2 Do not depend on unspecified evaluation order of expressions

R13.5 No side effects in right-hand operand of && or ||

R14.1 No floating-point loop counters

R14.2 Restricted form of for loops

R14.3 No invariant controlling expressions

R17.2 No direct or indirect recursion

R17.5 Actual parameters for arrays must have an appropriate size

R17.8 Do not modify function parameters

R18.1 Pointer arithmetic must not exceed array limits

R18.2 Do not subtract pointers not pointing to the same array

R18.3 Do not compare pointers not pointing to the same object

R18.6 Pointer object must not live longer than corresponding pointees

R19.1 Objects must not be assigned or copied to overlapping objects

R21.13 Functions in <ctype.h> must not be passed out-of-spec values

R21.14 Do not use memcmp to compare null-terminated strings

R21.17 Use of functions from <string.h> must not result in buffer overflow

R21.18 size t argument of functions from <string.h> must be in range

R21.19 Do not modify objects through pointers returned by localeconv, . . .

R21.20 Pointers returned by asctime, ctime, . . . must not be reused

R22.1 All dynamically-obtained resources must be explicitly released

R22.2 Do not free memory that was not dynamically allocated

R22.3 Do not open files for read and write at the same time on different streams

R22.4 Do not attempt to write to a read-only stream

R22.5 Do not directly access the content of a FILE object

R22.6 Do not use the value of pointer to a FILE after the stream is closed

R22.7 Macro EOF must only be compared to values returned by some functions

R22.8 Reset errno before calling an errno-setting-function

R22.9 Test errno after calling an errno-setting-function

R22.10 Test errno only after calling an errno-setting-function
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Table 2. MISRA C guidelines and main static analysis properties

Guideline control-flow data-flow

points-to arithmetic

D4.1 � �
D4.11 � �
D4.13 � �
D4.14 �
R1.3 � � �
R2.1 �
R2.2 � �
R8.13 �
R9.1 �1 �1

R12.2 �
R13.1 �
R13.2 �
R13.5 �
R14.1 � � �
R14.2 � �
R14.3 � �
R17.2 � �
R17.5 � �
R17.8 �
R18.1 � �
R18.2 �
R18.3 �
R18.6 � �
R19.1 � �
R21.13 �
R21.14 �
R21.17 � �
R21.18 � �
R21.19 �
R21.20 � �
R22.1 � �
R22.2 � �
R22.3 � �
R22.4 � �
R22.5 �
R22.6 � �
R22.7 � �
R22.8 �
R22.9 �
R22.10 �
See Sect. 5.2 for an alternative view on how to

check compliance with respect to this rule.
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Of course, it is well known that control-flow information depends on data-flow
information and the other way around, exactly as points-to information depends
on arithmetic values and the other way around: here we only characterize the
approximation that is available at the end of the static analysis, without reference
to how it has been obtained.

Table 2 shows that semantic-based static analysis potentially plays an impor-
tant role in the checking of compliance with respect to MISRA C. The actual
situation, however, is not as clear cut: this brings us to the next section.

5 Discussion

We have seen that 40 MISRA C guidelines out of 173 depend on semantic prop-
erties of the program. This implies that research in semantic static analysis is
very relevant to the MISRA C ecosystem, provided that a few important points
are taken into due consideration. These are discussed in Sects. 5.1, 5.2, and 5.3.
A further opportunity for cooperation is outlined in Sect. 5.4.

5.1 MISRA C: Error Prevention, Not Bug Finding

As said earlier, MISRA C cannot be separated from the process of documented
software development it is part of. In particular, the use of MISRA C in its proper
context is part of an error prevention strategy which has little in common with
bug finding, i.e., the application of automatic techniques for the detection of
instances of some software errors. This point is so rarely understood that it
deserves proper explanation.

To start with, the violation of a guideline is not necessarily a software error.
For instance, let us consider Rule 11.4, which advises against converting integers
to object pointers and vice-versa. There is nothing intrinsically wrong about
converting an integer constant to a pointer when it is necessary to address mem-
ory mapped registers or other hardware features. However, such conversions are
implementation-defined and have undefined behaviors (due to possible trunca-
tion and the formation of invalid and/or misaligned pointers), so that they are
best avoided everywhere apart from the very specific instances where they are
both required and safe. This is why the deviation process is an essential part of
MISRA C: the point of a guideline is not “You should not do that” but “This
is dangerous: you may only do that if (1) it is needed, (2) it is safe, and (3) a
peer can easily and quickly be convinced of both (1) and (2).” One useful way
to think about MISRA C and the processes around it is to consider them as an
effective way of conducting a guided peer review to rule out most C language
traps and pitfalls.10

The attitude with respect to incompleteness is entirely different between the
typical audience of bug finders and the typical audience of MISRA C. Bug finders
are usually tolerant about false negatives and intolerant about false positives:

10 We are indebted to Clayton Weimer for this observation.
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for instance, by following the development of Clang Static Analyzer11 it can be
seen that all is done to avoid false positives with little or no regard to false
negatives. This is not the right mindset for checking compliance with respect to
MISRA C: false positives are a nuisance and should be reduced and/or confined
as much a possible, but using algorithms with false negatives implies that those
in charge of ensuring compliance will have to use other methods. So, compliance
to MISRA C is not bug finding and, of course, finding some, many or even all
causes of run-time errors does not imply compliance to MISRA C.

5.2 MISRA C: Readability, Explainability, Code Reviews

Another aspect that places MISRA C in a different camp from bug finding has
to do with the importance MISRA C assigns to reviews: code reviews, reviews
of the code against design documents, reviews of the latter against require-
ments. Concerning design documents and requirements this is captured by Direc-
tive 3.1. More generally, the need for code readability and explainability is clearly
expressed in the rationale of many MISRA C guidelines.

This fact has some counterintuitive consequences on the use of static analysis,
which is of course crucial both for bug finding and for the (partial) automation
of MISRA C compliance checking. Consider Rule 9.1, whereby the value of an
automatic object must not be read before it has been set, since otherwise we have
undefined behavior. For bug finding, the smarter the static analysis algorithm
the better. Use of the same smart algorithm for ensuring compliance with respect
to Rule 9.1 risks obeying the letter of MISRA C but not its spirit.12 Suppose on
the specific program our smart algorithm ensures Rule 9.1 is never violated: we
have thus ruled out one source of undefined behavior, which is good. However,
the programmer, other programmers, code reviewers, quality assurance people,
one month from now or six months from now may have to:

1. ensure that the automatic objects that are the subject of the rule are indeed
initialized with the correct value;

2. confirm that the outcome of the tool is indeed correct.

If this takes more than 30 s or a minute per object, this is not good: the smart
static analysis algorithm can track initializations and uses even when they are
scattered across, say, switch cases nested into complex loops; a human cannot.
So, ensuring compliance with respect to Rule 9.1 with deep semantic analysis
is counterproductive to the final goal of the process of which MISRA C is part.
For that purpose it is much better to use a decidable approximation of Rule 9.1
such as a suitable generalization of the Definite Assignment algorithm employed
by Java compilers [13, Chap. 16].

11 https://clang-analyzer.llvm.org/, last accessed on July 5th, 2018.
12 There are many ways to do that.

https://clang-analyzer.llvm.org/
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5.3 Analysis of Code Meant To Comply with MISRA C

As was already recognized in [10], despite the mentioned misunderstanding about
the nature of MISRA C, the restriction to a language subset where non-definite
behavior and many problematic features are banned or severely regulated “can
considerably help the efficiency and precision of the static analysis.” This can
simplify and guide the design of static analyzers: for example, features of C
that are deprecated by MISRA C need not be handled precisely and efficiently
when the intended application domain follows MISRA C. It is not a coincidence
that such features (e.g., unions, unrestricted pointer casts, backward gotos) pose
significant problems to the designers of static analyses tools.

5.4 Annotations

Another area where there is significant potential for collaboration between the
static analysis community and the MISRA C ecosystem concerns program anno-
tations. During the last 20 years there have been a number of proposals for
annotation languages allowing programmers to provide partial specifications of
program components. These languages are usually tied to one specific tool, e.g.:
the annotation language of the Frege Program Prover [45]; the annotation lan-
guage of eCv (Escher C Verifier) [11], the annotation language of Frama-C, ACSL
(ANSI/ISO C Specification Language) [8], and its executable variant E-ACSL
[41]; the annotation language of VCC [12]; the annotation language of Veri-
Fast [24,38]. A comparison of these tools, with particular regard to annotation
languages and the potential for application in industry, is available in [39].

The MISRA C Working Group is working, among other things, on a tool-
agnostic annotation language for C. The main objectives of this endeavor are:

1. to improve the quality (precision) of static analysis by allowing the provision
of information regarding the developer’s intent, the required state in function
preconditions and so on;

2. to make it easier to work with adopted code (legacy code, library code) that
has not been written to comply with MISRA C [30];

3. to do this in a way that will be accessible to the majority of C/C++ program-
mers in a form that is easy to read and understand.

6 Conclusion

In this paper, having explained some of the advantages and disadvantages of
using the C language for embedded systems and how the uncontrolled use of
C conflicts with both safety and security requirements, we described the back-
ground, motivation and history of the MISRA project. We have explained how
the MISRA C guidelines define a standardized structured subset of the C lan-
guage; making it easier, for code that follows these guidelines (possibly with
well-documented deviations), to verify that important and necessary safety and
security properties hold.
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We have looked at the different kinds of the MISRA C guidelines, distinguish-
ing between those that can be automatically verified from the code syntax, those
that need information beyond that contained in the source code, and those for
which the question as to whether the code is compliant is algorithmically unde-
cidable. We have noted also that, for all guidelines, due to the size and com-
plexity of modern software, automatic tools perform an essential function in the
checking or partial checking of compliance. We have highlighted the fundamental
differences between so-called bug finding and the application of MISRA C in the
context of the error prevention strategy it is part of.

In this paper we have outlined both the role of static analysis in the automatic
checking of compliance with respect to MISRA C, and the role of the MISRA C
language subset in enabling a wider application of formal methods to industrial
software. It is hoped that this will contribute to improved collaboration between
the two communities, so that static analysis will be able to play a fuller part
in the software development of critical systems leading to improved safety and
security.
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Abstract. This paper presents an overview of a line of recent work
on generating non-linear numerical invariants for loops and recursive
procedures. The method is compositional in the sense that it operates
by breaking the program into parts, analyzing each part independently,
and then combining the results. The fundamental challenge is to devise
an effective method for analyzing the behavior of a loop given the results
of analyzing its body. The key idea is to separate the problem into two:
first we approximate the loop dynamics by an abstract machine, and then
symbolically compute the reachability relation of the abstract machine.

1 Introduction

Compositional recurrence analysis (CRA) is a method for generating numerical
invariant for loops [17,25,26]. The goal of CRA is to compute a transition formula
that over-approximates the behavior of the program. CRA analyzes programs
bottom-up, in the style of an effective denotational semantics: we syntactically
decompose the program into parts, compute a transition formula for each part
independently, and then compose the results. The composition operators for
transition formulas correspond to the familiar regular expression operations of
sequencing, choice, and iteration.

The essence of the analysis is the iteration operator. Given a transition for-
mula that over-approximates the body of a loop, the iteration operator com-
putes a transition formula that over-approximates any number of iterations of
the loop. CRA accomplishes this by extracting recurrence relations from a transi-
tion formula using an SMT solver, and then computing the closed form of those
recurrences. Using this strategy, CRA can compute rich numerical invariants,
including polynomial and exponential equations and inequations.

This paper gives an alternate account for this strategy, which is based on
extracting an abstract machine that simulates the loop body, and then comput-
ing a closed form for the reachability relation of that abstract machine (thus we
replace “recurrence relations” with the broader notion of “abstract machine”).
Seen in this light, CRA is an answer to the question given some simple model of
computation that admits a closed representation of the reachability relation, how
can we make use of it in program analysis?

Secondly, this paper describes how the compositional approach to program
analysis can be used to analyze recursive procedures [25]. A key idea is to exploit
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 24–42, 2018.
https://doi.org/10.1007/978-3-319-99725-4_3
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the two-phase structure of the iteration operator: we can detect and enforce
convergence of procedure summaries using widening and equivalence operations
on abstract machines.

The remainder of the paper is organized as follows. Section 2 gives a short
introduction to compositional program analysis. The technical core of the paper
is Sect. 3, which gives a recipe for analyzing loops by computing the reachability
relation of an abstract machine that simulates its body. Section 4 illustrates how
abstract machines can be used to analyze programs with (recursive) procedures.
Section 5 surveys related work, and Sect. 6 concludes.

2 Outline

We begin by defining a simple structured programming language:

x ∈ Var

e ∈ Expr :: = x | n ∈ Z | e1 + e2 | e1e2

c ∈ Cond :: = e1 ≤ e2 | e1 = e2 | c1 ∧ c2 | c1 ∨ c2 | ¬c

P ∈ Program :: = x := e | P1;P2 | if c then P1 else P2 | while c do P

Our goal is to compute, for any given program P , a transition formula TF[[P]]
that over-approximates its behavior. A transition formula is a logical formula
over the program variables Var and a set of primed copies Var′, representing the
values of the program variables before and after executing a program. In the
following, we will make use of several different languages for expressing transi-
tion formulas. For the sake of concreteness, we give a definition of polynomial
arithmetic transition formulas, PolyTF, below:

s, t ∈ PolyTerm:: = x ∈ Var | x′ ∈ Var′ | y ∈ BoundVar | λ ∈ Q | s + t | st

F,G ∈ PolyTF:: = s ≤ t | s = t | s < t | c1 ∧ c2 | c1 ∨ c2 | ∃y ∈ N.F | ∃y ∈ Z.F

For any given program P , a transition formula TF[[P]] can be computed by
recursion on syntax:

TF[[x := e]] � x′ = e ∧
∧

y �=x∈X

y′ = y

TF[[if c then P1 else P2]] � (c ∧ TF[[P1]]) ∨ (¬c ∧ TF[[P2]])

TF[[P1;P2]] � ∃X ∈ Z.TF[[P1]][Var �→ X] ∧ TF[[P2]][Var �→ X]

TF[[while c do P]] � (c ∧ TF[[P]])⍟ ∧ (¬c[Var �→ Var′])

where (−)⍟ is an iteration operator: a function that computes an approximation
of the transitive closure of a transition formula. Thus, the essential problem
involved in designing a program analysis in this style is to define the iteration
operator.
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3 Approximating Loops with Abstract Machines

This section outlines a general strategy for loop summarization which is based on
decomposing the problem into two: (1) find an abstract machine that simulates
the action of the transition formula, and (2) express the reachability relation of
the abstract machine as a transition formula. We then describe compositional
recurrence analysis as an instance of this strategy. We begin with an example.

Example 3.1. Consider the program P given below

while (i < n) do

Body

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i := i + 1
if (y < z)

y := y + i - 1
else

z := z + i - 1

}

Recall that TF[[P]] = (i < n ∧ TF[[Body]])⍟ ∧ n ≤ i, where (−)⍟ is an iteration
operator (yet to be defined) and

TF[[Body]] ≡ i < n ∧ i′ = i + 1 ∧
(

(y < z ∧ y′ = i + 1 ∧ z′ = z)
∨ (z ≤ y ∧ y′ = y ∧ z′ = z + 1)

)
.

The formula F � i < n∧TF[[Body]] defines a transition relation R ⊆ Z
4 ×Z

4

on the state space Z
4, where each vector u =

[
i y z n

]T corresponds to an
assignment of values to the program variables i, y, z, and n. The behavior of
F is difficult to analyze directly, so instead we will approximate by a simpler
system that is more amenable to analysis. We observe that F is simulated by
the affine transformation

f(x ) =

⎡

⎣
1 0 0
1 1 0
0 0 1

⎤

⎦x +

⎡

⎣
1
0
0

⎤

⎦

where the correspondence between the state space of F (i.e., Z4) and the state
space of f (i.e., Q3) is given by the linear transformation

S =

⎡

⎣
1 0 0 0
0 1 1 0
0 0 0 1

⎤

⎦
1st dimension corresponds to i

2nd dimension corresponds to y + z

3rd dimension corresponds to n

That is, we have that for every u and u ′ in Z
4 such that u may transition to u ′

via F , we have Su ′ = f(Su). Phrased differently, we have

F |=
⎡

⎣
1 0 0 0
0 1 1 0
0 0 0 1

⎤

⎦

⎡

⎢⎢⎣

i′

y′

z′

n′

⎤

⎥⎥⎦ =

⎡

⎣
1 0 0
1 1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0 0
0 1 1 0
0 0 0 1

⎤

⎦

⎡

⎢⎢⎣

i
y
z
n

⎤

⎥⎥⎦ +

⎡

⎣
1
0
0

⎤

⎦ or,
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F |= i′ = i + 1 ∧ (y′ + z′) = (y′ + z′) + i ∧ n′ = n . (1)

The analysis of affine systems is classical. We can compute the following
symbolic representation of the transitive closure of the transition relation defined
by f :

c�(f) = ∃k ∈ N.x′
1 = x1 + kx2 +

k(k + 1)
2

∧ x′
2 = x2 + k ∧ x′

3 = x3

Since f simulates the behavior of F , then c�(f) simulates the behavior of any
number of iterations of F . Thus, if we define

F⍟ = ∃k ∈ N.y′ + z′ = y + z + ki +
k(k + 1)

2
∧ i′ = i + k ∧ n′ = n (2)

then we may take TF[[P]] = F⍟∧i′ ≥ n′ to be a conservative over-approximation
the behavior of P .

3.1 Approximating Formulas by Machines

Definition 1. An (m×n)-formula is a formula whose free variables range over
m + n free variables x1, ..., xm and x′

1, ..., x
′
n. For any (m × n)-formula F , we

use R[[F]] to denote the relation that F represents:

R[[F]] � {(u, v) ∈ Q
m × Q

n : {x1 �→ u1, ..., xn �→ un, x′
1 �→ v1, ..., x

′
n �→ vn} |= F}

We call an (n × n)-formula an n-transition formula. We use TF to denote
the set of all transition formulas (for any n).

If F is an (m × n)-formula and y = y1, ..., ym and z = z1, ..., zn are vectors
of variables of lengths m and n, we use F (y , z) to denote the result of replac-
ing each xi with yi and each x′

i with zi. If F is an (� × m)-formula and G is
an (m × n)-formula, we use F � G to denote the relational composition of F
and G:

F � G � ∃y .F (x ,y) ∧ G(y ,x ′) .

We use F̆ to denote the reversal of F , the (m × �)-formula defined by

F̆ � F [x1 �→ x′
1, ..., xm �→ x′

m, x′
1 �→ x1, ..., , x

′
n �→ xn]

Abstract Machines. Fix some class of abstract machines M, which can be
understood as some kind of discrete dynamical system with a numerical state
space. We suppose that we are given two functions that related abstract machines
to transition formulas:

– γ : M → TF, which maps each machine M to its concretization γ(M), a
transition formula that represents the action of one step of M .

– c� : M → TF, which maps each machine M it its closure c�(M), a transition
formula that represents the action of any number of steps of M .
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We assume that for any machine M in M, we have R[[γ(M)]]∗ = R[[c�(M)]].1

Example 3.2. Let 1-LT denote the set of affine transformations of the form
f(x ) = Ax + b, where A is a lower triangular matrix with 1’s on the diagonal
(e.g., the function f in Example 3.1). For any f(x ) = Ax + b in 1-LT, define
the concretization of f simply as γ(f) � x ′ = Ax + b. The readability relation
of an affine transformation in 1-LT can be expressed in polynomial arithmetic
(i.e., PolyTF) and computed in polytime. The procedure is a specialization of the
classical one for computing the reachability relation of an affine transformation
(which in general does not have a closed form in PolyTF)—see [17, §III.B] for
details.

Simulation. Simulation relations are a standard approach to relating the behav-
ior of dynamical systems [31]. Below we specialize the theory to our setting.

Definition 2. Let F be an m-transition formula and let G be an n-transition
formula. A simulation formula is an (m × n)-formula S such that

1. S is total (for all u ∈ Q
m there exists some v ∈ Q

n such that (u, v) ∈ R[[S]])
2. For all (u, v) ∈ R[[S]], for every u′ such that (u,u′) ∈ R[[F]], there exist some

v′ such that (v, v′) ∈ R[[G]] and (u’, v′) ∈ R[[S]]. Diagrammatically,

u v

u′ v′

F

G

S S

∀

∃

We use S : F � G to denote that S is simulation formula from F to G.

Example 3.3. Consider Example 3.1. For ease of reading, we will refer to original
variables i, y, z, n of the system rather than their canonical names x1, x2, x3, x4.
The simulation between relation between the transition formula F and the affine
map f is

S � x′
1 = y + z ∧ x′

2 = i ∧ x′
3 = n .

This is a special simulation in that it is functional (each state of the program
is related to exactly one state of the affine system), but this need not be the
case. For example, suppose that we know (perhaps by running a sign analysis
on the program P ) that i is non-negative. Let G = F ∧ i ≥ 0. While we cannot
understand the effect of the loop on y and z as an affine transformation, we can
so understand lower and upper bounds on them: y and z are incremented by at

1 For our purposes, the weaker hypothesis R[[γ(M)]]∗ ⊆ R[[c�(M)]] is sufficient. We use
equality to emphasize that M is expected to be a class of machines that is easy to
analyze.
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least 0 and at most i. This abstraction can be realized by the function g ∈ 1-LT
and simulation T defined by

g(x ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 = i
∧ x2 = y + z
∧ x3 = n
∧ x4 ≥ y
∧ x5 ≥ z
∧ x6 ≥ −y
∧ x7 ≥ −z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

The last ingredient we need to be able to define (although not yet compute)
an approximate transitive closure operator is a way of understanding an (n×m)
simulation formula and a m-transition formula as an n-transition formula. This
is given by conjugation:

Definition 3. Let F be an (m × m)-formula and let S be an (n × m)-formula.
The conjugation of F by S, S � F , is the (n × n)-formula defined by

S � F � S � F � S̆

= ∃y,y′.S(x,y) ∧ F (y,y′) ∧ S(x′,y′)

Example 3.4. In Example 3.1, conjugation of f by S yields the formula in Eq (1),
and conjugation of c�(f) by S yields the formula in Eq (2).

Observe that F � S is the weakest among all n-transition formulas G such
that S is a simulation from G to F . That is, we have

1. S : (S � F ) � F
2. For all n-transition formulas G, we have S : G � F if and only if G |= F � S.

Moreover, note that (R � S) � F ≡ R � (S � F ) and id � F ≡ F , where id denotes
an identity relation of appropriate dimension.

Finally, we arrive at the central observation underlying our approach:

Observation 1. Let F be a transition formula, let M be an abstract machine,
and let S be a simulation formula such that S : F � M . Let F⍟ = S � c�(M).
Then R[[F]]∗ ⊆ R[[F⍟]].

That is: provided we can compute for any transition formula F an abstract
machine M and a simulation S such that S : F � M , we can over-approximate
the transitive closure of F with the transition formula S � c�(M).

3.2 Computing (best) Abstractions

We now turn to the question of what it means for an abstract machine to be a best
abstraction of a transition formula. Consider again Example 3.1: the function
f is an affine transformation in 1-LT that simulates the given loop, but might
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there be a better one, whose closure yields more precise information about the
loop?

To investigate this problem, it is convenient to use the language of category
theory. Fix some class of simulation formulas S, which is quotiented by logical
equivalence, contains all identity relations, and is closed under composition (e.g.,
S might be the class of simulation formulas that correspond to linear transfor-
mations as in Example 3.1). We construct a category TFS where the objects
are transition formulas (or perhaps transition formulas of a certain kind, e.g.,
formulas expressed in Presburger arithmetic), and the morphisms S : F → G
are simulations belonging to S such that S : F � G. Similarly, we may construct
a category of abstract machines MS similarly where the objects are machines
and the morphisms are S-simulations. The concretization function γ can now
be extended to a functor γ : MS → TFS , which maps each machine M in M
to its concretization γ(M), and maps each simulation S : M → M ′ between
M-machines to the same simulation S : γ(M) → γ(M ′) between their associ-
ated transition formulas. The closure function c� can likewise be extended to
a functor. The question of whether the transition formulas in TF have best
abstractions in M with respect to simulations in S can now be phrased as: does
the functor γ have a left-adjoint?

Recall that a functor α : TFS → MS is left-adjoint to γ if there is a pair of
natural transformations

– η : 1TFS ⇒ γ ◦ α (the unit of the adjunction)
– ε : α ◦ γ ⇒ 1MS (the counit of the adjunction)

such that (1) for all transition formulas F , we have 1α(F ) = εα(F ) ◦α(ηF ) and (2)
for all abstract machines M , we have 1γ(M) = γ(εM )◦ηγ(M). The best abstraction
of a transition formula F can be conceived of as the pair (α(F ), ηF ) consisting of
an abstract machine α(F ) (which machine best captures the behavior of F ) and
a simulation ηF : F → γ(α(F )) (how the machine α(F ) captures the behavior
of F ). The sense in which (α(F ), ηF ) is best abstraction is that for any other
machine M and simulation S, there is a unique simulation S : α(F ) → M such
that S = γ(S) ◦ ηF ; that is, the following diagram commutes:

γ(M)

F γ(α(F ))
ηF

S
γ(S)

As a consequence, we have that there is no other machine and simulation that
yields a better approximation of the transitive closure of a formula F than
(α, ηF ). This is summarized in the following:

Proposition 1. Let F be a transition formula, let M be a machine, and let
S : F → γ(M) be a simulation. Then ηF � c�(F ) |= S � c�(M).
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Proof. Let S be the unique simulation S : α(F ) → M such that S = γ(S) ◦ ηF .
Since c� is a functor, we have a simulation c�(S) : c�(α(F )) → c�(M). It follows
that

c�(α(F )) |= c�(S) � c�(M) = S � c�(M) .

Conjugating by ηF yields

ηF � c�(α(F )) |= ηF �
(
S � c�(M)

)

=
(
ηF � S

)
� c�(M)

= S � c�(M) .

Summing up, we have the following recipe for summarizing loops:

Let S be a class of simulation relations, TFS be a category
of transition formulas, MS be a category of abstract machines,
α : TFS → MS , γ : MS → TFS , and c� : MS → TFS be functors, and
let η : 1TFS ⇒ γ ◦ α be a natural transformation such that
1. R[[c�(F )]] = R[[γ(F )]]∗

2. α is left adjoint to γ, with unit η.
Then the function F⍟ � ηF � c�(α(F )) is an iteration operator.

If we derive an iteration operator (−)⍟ by following this recipe, then it is
an easy consequence of Proposition 1 that (−)⍟ is monotone: if F |= G, then
F⍟ |= G⍟. This property makes it easier to reason about the behavior of program
analyses.

3.3 Compositional Recurrence Analysis

We will now present compositional recurrence analysis as a sequence of examples
of this recipe.

Example 3.5. The main content of [17, §III, A, B, C] is an algorithm for finding
an affine transformation in 1-LT that simulates a transition formula. We can
give a more fine-grained description of the algorithm by describing the sense in
which it is best.

The input to the algorithm is a linear arithmetic transition formula F . The
algorithm operates in two steps. The first is to compute a best abstraction of
F as an affine transformation in 1-LT with respect to simulations of the form
x ′ = Sx where each row of S is a standard basis vector. The fact that the rows of
S are required to be standard basis vectors is due to the fact that they correspond
to variables that satisfy a recurrence relation. In the light of the perspective of
abstract machines, we see an opportunity for improving the analysis by allowing
S to be an arbitrary linear transformation—computing best abstractions in this
setting is an easy extension of the existing algorithm, and yields a strictly more
precise analysis.
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Having fixed a 1-LT affine transformation f(x ) = Ax+b (of some dimension,
say n) and a simulation S with S : F � f , the second step of the algorithm is
to compute a best abstraction of F as a 1-LT affine transformation of the form

g(x ) =
[
A 0
B I

]
x +

[
b
c

]

with respect to linear simulations of the form x ′
1 = Sx ∧ x ′

2 ≥ S′x , where x ′
1

denotes the vector of variables x′
1...x

′
n and x ′

2 denotes the vector of variables
x′

n+1...x
′
m. That is, we allow the affine transformation f to be extended with

additional dimensions (n + 1 through m), which act as upper bounds on linear
terms over the variables of F (as illustrated in Example 3.3). This allows CRA
to infer invariant polynomial inequations as well as equations. The fact that the
lower right corner of the transformation matrix g is restricted to be the identity
is a non-trivial restriction: new abstraction techniques are required to lift the
assumption while retaining the property of being a best abstraction. ⌟

Example 3.6. Affine transformations can be used to capture the relationship
between the pre-state and post-state of a loop body, but information about
the guard of the loop (i.e., relationships between pre-state variables) is lost.
This information can be recovered via a pre-state formula, which is a transition
formula in which only the pre-state variables x1, x2, ... appear [17, §III, D]. The
concretization of a pre-state formula G is G itself, the closure is defined by

c�(G) = ∃k ∈ N.(k = 0 ∧
∧

x∈X

x′ = x) ∨ (k > 0 ∧ G) .

The abstraction function is α(F ) = ∃x ′.F , which is best with respect to identity
simulations. Post-state formulas can be defined dually.

Given a formula F , we can combine the pre-state, post-state, and affine
transformation abstractions of F , by separately computing the closure of each
abstraction and then conjoining the results. Better still, we can take a kind of
reduced product [14] of the abstractions by synchronizing on the existentially
quantified iteration variable k. This combination yields the compositional recur-
rence analysis described in [17].

Note that although compositional recurrence analysis computes (best)
abstractions of linear formulas, the closure operator produces polynomial formu-
las. Before applying the abstraction functions, we first linearize the loop body
formula [17, §IV]. The abstraction function of CRA is not best for polynomial
arithmetic transition formulas (and no non-trivial abstraction function can be,
since integer polynomial arithmetic is undecidable), but the fact that the abstrac-
tion function is best for linear arithmetic suggests that information is lost only
because of incomplete reasoning about non-linear arithmetic.

Example 3.7. Affine maps capture non-linear behavior where non-linearity is a
function of time, but some systems exhibit non-linear behavior even in a single
step. Solvable polynomial maps are a class of abstract machines that can capture
some such behavior while still being relatively easy to reason about.
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Definition 4 ([35]). A function f : Qn → Q
n is a solvable polynomial map

if there exists a partition of {1, ..., n}, x1 ∪· · · ∪ xm with xi ∩ yj = ∅ for i �= j
such that for all 1 ≤ i ≤ m we have

fyi(x) = Aiy
t
i + pi(y1, ...,yi−1)

where fxi(x) denotes f(x) projected onto the coordinates, xi, Ai ∈ Q
|xi|×|xi| and

pi ∈ Q[x1, ...,xi−1].

The concretization of a solvable polynomial is γ(f) � x ′ = f(x ). The closure
c�(f) of f is defined to be the reachability relation of f—[26] gives an algo-
rithm for computing a closed form representation of the reachability relation of
a solvable polynomial map in a logic involving polynomials, exponenentials, and
also operators in the Berg’s operational calculus [5], which can be treated as
uninterpreted function symbols by an SMT solver.

The abstraction algorithm presented in [26] begins by computing a conjunc-
tion of polynomial equations and inequalities that are entailed by the formula.
Since the logic is undecidable, we can make no guarantees about the quality
of this approximation (however, it is best in the sense that, if the formula is
expressed in linear arithmetic, then we compute the convex hull of the formula).
A simulating solvable polynomial map is then extracted from this system of
equations and inequalities in two steps, just as in [17]. The first step computes
the best abstraction of a transition formula as a solvable polynomial map with
respect to simulations of the form x ′ = Sx . The abstraction is best under the
assumption that the input transition formula is of the form

∧n
i=1 pi(x ,x ′) = 0,

where each pi is a polynomial and such that

1. For every polynomial p(x ,x ′) such that F |= p(x ,x ′) = 0, we have p in the
ideal generated by {p1, ..., pn}.

2. F is total—for every u there exists some v such that F (u , v) holds.

Similarly to [17], we then extend this solvable polynomial map with addi-
tional dimensions to capture inequalities. However, the algorithm for comput-
ing inequalities makes use of polyhedral widening, so it need not be a best
abstraction. ⌟

4 Control Flow and Recursive Procedures

This section explains how the style of analysis in Sect. 2 can be extended to
a more realistic program model that has unstructured control flow and recur-
sive procedures. The foundation is the algebraic view of program analysis pio-
neered by Tarjan, who developed an efficient algorithm for computing solutions
to intraprocedural program analysis problems [39,40]. The extension to the inter-
procedural setting is based on [25], which exploits abstract machines to compute
approximations of recursive procedures.
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We begin by formulating a new program model on top of the simple pro-
gramming language defined in Sect. 2. Let Proc denote a finite set of procedure
names. Define a syntactic category of instructions:

x ∈ Var e ∈ Expr c ∈ Cond p ∈ Proc

Instr:: = x := t | assume(c) | assert(c) | call p

A control flow graph G = (V,Δ, en, ex) consists of a finite set of nodes V , a finite
set of instruction-labeled edges Δ ⊆ V × Instr × V , a distinguished entry vertex
en, and a distinguished exit vertex ex. A program P = {Gp}p∈Proc consists of a
collection of control flow graphs indexed by procedure names.

The link from the effective denotational semantics of Sect. 2 to this program
model is through the medium of path expressions: regular expressions that
represent paths through a program. For our purposes, we may define a path
expression to be a regular expression over the alphabet of instructions:

E ∈ PathExp:: = instr ∈ Instr | E1 + E2 | E1E2 | E∗ | 0 | 1

Suppose that we fix an iteration operator (−)⍟ : TF → TF that over-
approximates the transitive closure of a transition formula. Then given a path
expression E and a summary map S : Proc → TF that maps each procedure
to a transition formula, we can define a transition formula TF[[E]](S) that over-
approximates the paths in the path expression:

TF[[x := e]](S) � x′ = e ∧
∧

y�=x∈Var

y′ = y

TF[[assume(c)]](S) � c ∧
∧

x∈Var

x′ = x

TF[[assert(c)]](S) � TF[[assume(c)]](S)

TF[[call p]](S) � S(p)
TF[[E1 + E2]](S) = TF[[E1]](S) ∨ TF[[E2]](S)

TF[[E1E2]](S) = TF[[E1]](S) � TF[[E2]](S)
TF[[E∗]](S) = TF[[E]](S)⍟

TF[[1]](S) = TF[[assume(0 = 0)]](S)
TF[[0]](S) = false

Tarjan gave an efficient algorithm for the single-source path expression
problem: given a control flow graph Gp = (Vp,Δp, enp, exp), compute for each
vertex v ∈ V a path expression PGp

[enp, v] representing the set of all paths from
enp to v in Gp. A summary for the procedure p may be computed by evaluating
TF[[PGp

[enp, exp]]](S), or we prove that an assertion (u, assert(c), v) never fails
by checking that TF[[PGp

[enp, u]]](S) ∧ ¬(c[X �→ X ′]) is unsatisfiable. The näıve
definition of TF[[−]] given above may use exponentially many transition formula
operations due to repeated sub-path expressions. By using memoization or path
compression, only linearly many operations are needed [39].
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4.1 Interprocedural Analysis

Tarjan’s algorithm assumes that we know how to compute a transition formula
for each instruction in the programming language. For a language with procedure
calls, this means that we require as input a summary map S : Proc → TF.
For programs without recursive procedures, we can use Tarjan’s algorithm to
compute the summary map: first place the procedures in reverse topological
order p1, ..., pn (so that if pi calls pj then j < i), and then compute

S0 = λp.false
Si = Si−1{pi �→ TF[[PGpi

[enpi
, expi

]]](Si−1)}
The summary map Sn maps each procedure to a transition formula that over-
approximates its behavior.

For programs with recursive procedures, however, this process does not work.
For recursive procedures we can always fall back on iterative techniques for
resolving fixed point equations [13] (as we did in [17]), but this is not a very sat-
isfying solution: we have a methodology for designing powerful invariant genera-
tors for loops (Sect. 3), and we would like to be able use this same methodology
to analyze recursion.

The first important development in this direction was the work of Reps
et al. [34], which showed that Tarjan’s algorithm could be used to compute
summaries for programs with linear recursion (i.e., in each path through each
procedure, there is at most call instruction). The intuition behind their app-
roach is illustrated in Fig. 1. Any path that contains a single function call, say
a(call bar)b, can be thought of as a pair consisting of a prefix a—a path from
entry to the call, and a continuation κ—a path from the call to exit. Call the
pair consisting of a and b a tensored path, and write it as a⊗ b. We can construct
a call graph CG where the vertices are the procedure foo and bar and there is an
edge from foo to bar labeled with the tensored path a⊗ b (corresponding to the
path in foo that calls bar) and similarly an edge from bar to foo labeled d ⊗ e.
We also add a base vertex to the graph, and draw an edge from each procedure to
base representing the path on which there is no recursive call. Tarjan’s algorithm
can be used to compute for each procedure a regular expression over an alphabet
of tensored paths that represents the tensored paths from that procedure to exit.

PCG[foo, base] = ((a⊗ b)(d ⊗ e))∗ (c⊗ 1) + ((a⊗ b)(d ⊗ e))∗ (a⊗ b)(f ⊗ 1)
PCG[bar, base] = ((a⊗ b)(d ⊗ e))∗ (c⊗ 1) + ((a⊗ b)(d ⊗ e))∗ (a⊗ b)(f ⊗ 1)

These regular expressions represent the language of interprocedural paths
through their respective procedures, where each tensored path (for instance, the
path (a⊗ b)(d ⊗ e)(a⊗ b)(d ⊗ e)(c⊗ 1) which belongs to PCG[foo, base]), can be
understood as an interprocedural path by reading the prefix of each tensor left-
to-right followed by the continuation of each tensor right-to-left (that is, the
path adadcebeb).

We can use transition formulas to represent the behavior of a program along
a path; we can also use them to represent the behavior of a program along a
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enfoo

u1

u2

exfoo

a

call bar

b

c

Prefix

Continuation

(a) Procedure foo

enbar

v1

v2

exbar

d

call foo

e

f

(b) Procedure bar

base

foo bar

a
b

d
e

1c 1f

(c) Call graph CG

Fig. 1. A schematic recursive program with two procedures foo and bar, along with
its call graph labeled with tensored paths. Instructions labeling non-call edges are
abstracted away by letters.

tensored path, by using twice as many variables: one set of variables for the
prefix, and one set for the continuation. That is:

Definition 5. Given two n-transition formulas F and G, their tensor product
F ⊗ G is defined to be the (2n)-transition formula

F ⊗ G � F ∧ (G[xi �→ x′
n+i, xi �→ xn+i]ni=1)

Observe that we have (F1 ⊗ G1) � (F2 ⊗ G2) ≡ (F1 � F2) ⊗ (G2 � G1), so that
composition of transition relations respects the left-to-right prefix, right-to-left
continuation interpretation of tensored paths.

Summaries for the procedures foo and bar may thus be obtained by recursion
on the regular expression of tensored paths, using the tensor product of tran-
sition formulas to interpret tensored paths, and finally converting the tensored
transition formula back into a transition formula using the following detensor
operator, which connects the prefix and continuation into a transition formula
representing an ordinary path:

D(T ) �
(

∃x ′.

(
F ∧

n∧

i=1

x′
i = x′

i+n

))
[xn+i �→ x′

i]
n
i=1 .

That is, we have

S(foo) � D(TF[[PCG[foo, base]]])

S(bar) � D(TF[[PCG[bar, base]]])

(omitting the S argument to TF[[−]] since call graph path expressions are free of
calls).

Unfortunately, this idea does not extend to non-linear recursive procedures,
so in the general case we must fall back on iterative methods for solving semantic
equations. Näıve application of the iterative method requires designing an equiv-
alence relation and widening operator for transition formulas. However, this is
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at odds with our goal of generating invariants in expressive logics, for which such
operations are not readily available.

[25] gives an alternate approach, which again exploits abstract machines.
The idea is that we can use widening and equivalence operators at the level
of abstract machines rather than transition formulas. Abstract machines have
simpler structure than general transition formulas and are more amenable to
this kind of operation.

Example 4.8. In [17], the iteration operator extracts an affine transformation f
and a linear simulation S. S � γ(f) is a formula of a particular kind: a convex
polyhedron. Widening operators for convex polyhedra are well known [15]. ⌟

Example 4.9. In [26], the iteration operator extracts a solvable polynomial map
f and a linear simulation S. The formula S �γ(f) is a conjunction of polynomial
equations and inequations. Such formulas can be represented precisely by the
wedge abstract domain, presented (along with its widening operator) in [26]. ⌟

The idea behind [25] is simple: each time we apply the iteration operator ⍟ to
a transition formula F , we will compute an abstract machine that simulates F .
Rather than using widening to ensure the convergence of the sequence of proce-
dures summaries for each procedure, we use widening to ensure the convergence
of the sequence of abstract machines for each loop. Soundness and termination of
this approach relies on the property that every recursive call is contained inside
some loop. Obviously, this need not be the case for the original program, but [25]
gives an alternative algorithm to Tarjan’s path expression algorithm that can be
used to obtain tensored path expressions for each procedure that do satisfy this
property.

5 Related Work

5.1 Abstract Machines with Closure

This section surveys a selection of work that, seen through the lens of Sect. 3,
computes closure operators for some class of abstract machines.

Linear machines. (Discrete) linear dynamical systems are a well-studied class
of machines, in which the state space is a vector space and the state evolves by
applying a linear transformation—i.e., the transition formula of a linear dynam-
ical system is of the form x′ = Ax. A formula representing the reachability
relation of such a machine can be computed via symbolic matrix exponentia-
tion: c�(A) = ∃k ∈ N.x′ = Akx. A symbolic representation Ak can be expressed
in terms of exponential-polynomials, where the base of each exponential term is
drawn from the eigenvalues of A. However, since the eigenvalues of A may be
complex, it is desirable to consider simpler closed forms.

The question of when the reachability relation of an affine dynamical system
can be expressed in Presburger arithmetic was answered by Boigelot [8]. Boigelot
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gave a procedure for computing Ak under the assumption that the multiplicative
monoid generated by A, {Ai : i ∈ N}, is finite. Boigelot gives necessary and
sufficient conditions for an iterated affine map to be definable in Presburger
arithmetic, and also Presburger arithmetic extended with a single function Vr

mapping each integer z to the greatest power of r that divides z. Boigelot also
considers the case that the linear map is equipped with a polyhedral guard
(which can restrict the number of times the linear map is iterated), in which case
his conditions are necessary but not sufficient. Finkel and Leroux [18] extends
further to guards defined in Presburger arithmetic.

Jeannet et al. developed a technique for over-approximating the behavior of
linear dynamical systems, which is based on approximating the exponential of
the real Jordan form of the transition matrix by an abstract domain of template
polyhedron matrices [24].

An affine program consists of a finite graph where each edge is labeled by an
affine transformation. A special case of interest for our purposes is with only one
vertex: such an affine program corresponds to a transition formula of the form

x ′ = A1x + b1 ∨· · · ∨ x ′ = Amx + bm (3)

Haase and Halfon gave a polytime procedure for computing a Presburger for-
mula defining the reachability relation of affine programs for which each tran-
sition matrix is diagonal and has either 0 or 1 on the diagonal (i.e., an integer
vector addition system with states and resets) [20]. Müller-Olm and Seidl give
a procedure for computing the smallest affine space that contains the reachabil-
ity relation of affine programs [32]. Hrushovski et al. [21] gives a procedure to
compute the smallest algebraic variety that contains the reachability relation.

Ultimately periodic relations. The transitive closure of difference-bound
relations [11,12] and octagon relations [9] has been shown to be definable in Pres-
burger arithmetic, and computable in polytime [27]. The theory of ultimately
periodic relations unifies work on linear systems and difference-bound/octagon
relations [10].

Polynomial machines. A solvable polynomial machine is a dynamical system
with a transition formula of the form

x ′ = p1(x ) ∨· · · ∨ x ′ = pm(x ) (4)

where each pi is a solvable polynomial map. Rodŕıguez-Carbonell and Kapur [35]
showed how to compute an algebraic variety that contains the reachability rela-
tion of a solvable polynomial machine with a real spectrum. Kovács improves
upon this result, giving an algorithm for computing the smallest algebraic variety
that contains the reachability relation of a solvable polynomial machine (with-
out spectral assumptions), and further extends the technique to a broader class
of machines with non-polynomial assignments [28]. The class of machines is
extended even further in subsequent work by Humenberger et al. [22,23].
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5.2 Symbolic Abstraction and Abstract Machines

Approximating programs by finite state machines using predicate abstraction is
a classical technique in software model checking [4,19]. Kroening et al. [29] and
Biallas et al. [6] present techniques for approximating the transitive closure of
loops using predicate abstraction.

Sinn et al. have considered the problem of computing approximations of
programs using vector addition systems [37] and difference-bound constraints
[38] in the context of resource bound analysis. The technique is based on guessing
a set of norms (integer-valued functions of the program state), which amounts
to finding a linear simulation.

Recurrence analysis. Recurrence analysis is a family of program analysis tech-
niques initiated by Wegbreit, which approximate the behavior of loops by
extracting recurrence relations from the program and computing their closed
forms [43]. It is closely related to the approach presented in this paper, with
recurrence relations serving an analogous role to abstract machines. Recur-
rence analysis is a particularly prevalent technique in resource bound analysis,
where the ability to compute non-linear expressions representing resource usage
(e.g., time complexity) is crucial [1,3,7,16].

Symbolic Abstraction. There has been a body of work on computing best approx-
imations of a logical formulas within abstract domains. For a thorough overview
of symbolic abstraction in program analysis, see [33,41]. Here we highlight a few
instances in which symbolic abstraction yields a complete instance of the recipe
from Sect. 3:

– Difference bound/octagonal relations: the best abstraction of a transition for-
mula as a difference bound or octagonal relation with respect to identity
simulations can be computed using optimization modulo theories [30,36].
Transitive closure can be computed using the methods of [9,11,12,27].

– Lossy sums: the best abstraction of a transition formula in the form x′ ≤ x+b
with respect to linear simulations can be computed using symbolic abstraction
in the domain of convex polyhedra [17,42], and the method of Ancourt et al.
for finding linear recurrence inequations from polyhedra [2].

6 Conclusion

Abstract machines give a mechanism for developing compositional program anal-
yses that generate precise numerical invariants. There are two categories of work
that are directly related to advancing this paradigm:

– Inventing new classes of abstract machines that admit effective closure
operators, and which model interesting phenomena in dynamical systems.

– Developing techniques for computing best abstractions of transition formulas
by abstract machines. E.g., there are a number of models (some of which
referenced in Sect. 5) for which the best abstraction problem has not yet been
investigated.
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Abstract. This paper surveys the work to date on Ivy, a language and
a tool for the formal specification and verification of distributed sys-
tems. Ivy supports deductive verification using automated provers, model
checking, automated testing, manual theorem proving and generation of
executable code. In order to achieve greater verification productivity,
a key design goal for Ivy is to allow the engineer to apply automated
provers in the realm in which their performance is relatively predictable,
stable and transparent. In particular Ivy focuses on the use of decid-
able fragments of first-order logic. We consider the rationale or Ivy’s
design, the various capabilities of the tool, as well as case studies and
applications.
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1 Introduction

Ivy is a language and a tool for the formal specification and verification of
distributed systems. The rationale underlying Ivy is that, to achieve a high degree
of productivity in verification, the system, its representation and its proof must
be designed in advance to take maximum advantage of automated provers while
avoiding their weaknesses. Ivy is open-source software and is freely available
under an MIT license [25].

The use of automated provers in program verification has a long history, going
back to the work of Nelson and Oppen [28,29] and the Boyer-Moore prover [9].
More recent systems include ESC Java [12], Dafny [22] and F* [40]. Program
proofs using such tools are typically more succinct than proofs using tactical the-
orem provers such as Coq [4] and Isabelle/HOL [30] by one or two orders of mag-
nitude (e.g., compare the Ironfleet project [14] using Dafny to the Verdi [42,43]
project using Coq). However, it is unclear that this succinctness leads to a pro-
portionate improvement in verification productivity. In practice, users struggle
c© Springer Nature Switzerland AG 2018
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with the unpredictability, instability and lack of transparency of the automated
verifiers [11, Sect. 9.1]. Particularly problematic is the heuristic instantiation of
quantifiers. This leads to unpredictable failures that are extremely hard to diag-
nose and may be triggered by small, seemingly irrelevant changes in the prover’s
input. By lack of transparency, we mean that no clear indication is given of the
cause of failures. It is somewhat as if one were trying to develop a software sys-
tem using a compiler that randomly failed to produce code, without producing
any useful error message. In an iterative development process requiring frequent
recompilations, this would be untenable.

To try to realize the verification productivity that automated provers
promise, the design of Ivy starts with two basic choices: a prover and an applica-
tion domain in which we wish to produce efficient verified systems. The chosen
prover (at least initially) is Microsoft Z3 [27], a high-performance SMT solver [3]
that supports satisfiability queries in full first-order logic modulo a variety of the-
ories. The chosen application domain is distributed systems. The primary design
goal of Ivy is to allow an engineer to quickly and intuitively reduce the proof of a
distributed system to proof goals in a logical fragment for which Z3 is a decision
procedure. We can think of Ivy as a test of the following three-part hypothesis:

1. Predictability, stability and transparency of proof automation lead to greater
verification productivity,

2. Within the decidable fragments used by Ivy, the Z3 prover has these proper-
ties, and

3. With appropriate language and tool support, a we can reduce proofs of dis-
tributed systems to subgoals in this fragment.

2 Language Design

The use of decidable logics also has a long history in program verification. The
choice of a logic generally depends on the application domain. For example,
Klarlund proposed the use monadic second-order logic (MSO) for reasoning
about manipulations of inductive data structures [15]. For distributed proto-
cols, we posit that decidable fragments of first-order logic are more appropriate,
since these protocols usually lack recursive structures, and uninterpreted rela-
tions and quantifiers can be used to reason about the multiple nodes or threads,
as well as messages, values, and other objects of the system.

The classical example of a decidable fragment of first-order logic is the
Bernays-Shönfinkel-Ramsey fragment (also known as EPR, for “effectively
propositional”). This consists of formulas without function symbols, whose quan-
tifier structure is ∃∀ in prenex normal form. We can extend this in various ways.
For example, in a many-sorted setting, we can allow function symbols that are
stratified (i.e., there are no cycles in the graph that the function symbols and
the ∀∃ quantifier alternations induce on the sorts). From this we observe that
(1) quantifier structure is critical, and (2) function symbols and quantifier alter-
nations should be used cautiously.
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2.1 Ivy’s Procedural Language

These considerations motivate several important design decisions in Ivy. First,
the programming language is imperative rather than functional. Partly this is
motivated by decidability. Often, though we are computing a total function,
we do not wish to specify it as such, since this could contribute to a function
cycle. Instead, we use a procedure and specify only partial correctness. Generally
speaking, we avoid any unnecessary assumptions of totality or termination for
decidability reasons. Second, the only primitive data type is the Boolean type.
This is because primitive data types would introduce both total functions and
axioms whose quantifier structure could be problematic. Instead, variables in Ivy
hold first-order relations and functions over uninterpreted sorts as their values.
This gives the user control of the use of function symbols. By preference, when
reasoning about concrete data, we use relational abstractions whose axioms are
expressible in the decidable fragment.

Finally, Ivy generates verification conditions (VC’s) using the weakest pre-
condition calculus, much like other tools, such as Dafny. The primitive constructs
of the language have been chosen so that, not only are the VC’s always expressed
in first-order logic, but their quantifier structure is apparent from the program
source. These considerations are discussed in more detail in [38], which describes
the basic procedural language, which has since been extended.

Within these constraints, Ivy’s programming language is designed to be as
expressive as possible. We can express in Ivy any update to the variables whose
transition relation is expressible in first-order logic, using relational and func-
tional updates with free parameters. For example, the following assignment state-
ment removes the pairs (x, Y ) from relation r, for all Y :

r(x,Y) := false

The capitalized symbol Y is treated implicitly as a free parameter. The transition
relation of this statement can be expressed as

∀X,Y. r′(X,Y ) = false if X = x else r(X,Y )

We can also create pure first-order function closures. For example, this assign-
ment computes a function f from the current value of the function g and a
variable v:

f(X) := g(X,v)

While the semantics of this is easily expressed in first-order logic, compiling it
is a bit more subtle. The compiler creates a closure that captures the values of
g and v, allowing function f to be evaluated on demand.

Other first-order expressible updates, such as relational joins, are also possi-
ble. With quantifiers and parameterized updates, it is possible to describe pro-
cedures that are not actually computable. The compiler handles only a subset
of the language in which finite bounds on quantifiers can be statically inferred.
Uncomputable updates are still useful, however, in writing specifications.



46 K. L. McMillan and O. Padon

2.2 Modularity

Another important generalization we can make about decidability is that mixing
theories and quantifiers is problematic. For example, quantifier-free integer linear
arithmetic with function symbols is decidable, but adding quantifiers makes it
undecidable. Moreover, by mixing procedures that use function symbols, we
might create a cycle in the function graph and thus also lose decidability.

Ivy’s answer to this conundrum is modularity. That is, we hide problematic
theories or functions inside modules, to prevent their combinations from tak-
ing us outside the decidable fragment. As a very simple example, suppose we
require an index type t that forms a discrete total order. We implement this
type in a module I which provides an interface with certain operations, such as
incrementation (i.e., computing the successor of a value), and guarantees cer-
tain properties, such as the axioms of total order. Type t is interpreted as the
integers, that is, we instantiate the integer arithmetic theory for type t, giv-
ing us interpretations for the signature {0, 1,+, <, . . .} over this type. However,
only module I sees this interpretation. Since its VC’s are quantifier free, Z3 can
decide them using its integer arithmetic theory. An application module A using
the index type t sees only its abstract specification, and not the integer theory.
Thus, it can use quantifiers safely. As we will observe in Sect. 4, this principle
can be applied in more complex situations, for example in refining an abstract
protocol model to an implementation.

To enforce the separation of theories, modularity in Ivy is quite strict. The
specification of a module is never allowed to reference internal state of the mod-
ule. Rather, the specification of a module provides an abstract notion of state.
This consists of a collection of monitors: procedures that synchronize with call
and return events at the interface, updating the abstract state. The monitors
contain assertions that act as either assumptions or guarantees for the modules.
Stateful monitors can be used, for example, to specify the interfaces of concrete
services, such as networking layers, or abstract models that are used only in the
proof.

2.3 The Fragment Checker

The decidable fragment used by Ivy is called the Finite Almost Uninterpreted
fragment or FAU [13], which is supported by Z3. FAU generalized the many-
sorted extension of EPR, and also allows restricted combination of quantifiers
and linear arithmetic. The Ivy verifier generates the verification conditions for
a program and checks syntactically that they fall into the FAU fragment. If
not, it provides a diagnostic message that explains the failure (for example, it
presents an illegal cycle of function symbols). This is important from the point
of view of transparency. That is, if a VC cannot be verified, some feedback must
be provided to help the user correct the situation and continue developing the
proof.
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3 Expressiveness of Decidable Fragments of First-Order
Logic

Much of the verification using Ivy is done in a many-sorted extension of the EPR
fragment of first order logic that allows only allows stratified or acyclic quantifier
alternations and function symbols. Since it is a fragment of first-order logic, it
may seem to be too restricted for challenging verification tasks. For example,
first-order logic cannot express properties of arithmetic, graph reachability, or
inductive data structures. Quite surprisingly, the work on Ivy shows that pure
first-order logic, and even a decidable fragment thereof, is powerful enough to
capture everything that is needed to verify several complex distributed protocols.

Transitive closure of deterministic paths can be expressed in EPR. This was
used in [16–18] for linked data structures, and these ideas can also be used to
represent tree topologies, such as forwarding trees of routing algorithms [35]. This
also generalizes to other topologies, including rings [38], that can be similarly
axiomatized in EPR, and more recently general graphs of out-degree one [32].
The key idea is to take the transitive closure as a primitive relation, and use a
formula to represent edges. This allows for a sound axiomatization, which is also
complete for finite models. That is, every finite model of the axioms corresponds
to a graph of the suitable class. Due to the finite model property of EPR, this
completeness ensures that counterexamples obtained in the verification process
are never spurious.

Another useful axiomatization is that of quorums. Many distributed protocols
employ quorums that are defined by thresholds on set cardinalities. For example,
a protocol may wait for at least N

2 nodes to confirm a proposal before committing
a value, where N is the total number of nodes. This is often used to ensure
consistency. In Byzantine failure models, a common threshold is 2N

3 , where at
most a third of the nodes may be Byzantine. First-order logic cannot completely
capture set cardinalities and thresholds. However, we can exploit the fact that
protocol correctness relies on rather simple properties that are implied by the
cardinality threshold, and that these properties can be encoded in first-order
logic.

The idea is to use a variant of the standard encoding of second-order logic
in first-order logic. We introduce a sort for quorums, that is sets of nodes with
the appropriate cardinality, and use a binary relation member to capture set
membership. (Alternatively, we can add a sort that represents general sets of
nodes, with a unary predicate over it that represents “being a quorum”.) Then,
properties that are needed for protocol correctness can be axiomatized in first-
order logic.

For example, the fact that any two sets of at least N
2 nodes intersect is crucial

for many consensus protocols. This property can be expressed in first order logic:

∀q1, q2 : quorumi. ∃n : node. member(n, q1) ∧ member(n, q2)
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For Byzantine consensus algorithms that use sets of at least 2N
3 nodes, they

key property is that any two quorums intersect at a non-Byzantine node. This
can also be expressed in first-order logic:

∀q1, q2 : quorumii. ∃n : node. ¬byz(n) ∧ member(n, q1) ∧ member(n, q2)

These ideas are used in [36,37] to verify multiple consensus protocols from
the Paxos [19,20] family, showing that properties that are expressible in first-
order logic can be used to prove challenging protocols. For several variants, this
provided the first mechanical safety proof.

4 Using Modularity to Verify Implementations

While the techniques outlined in Sect. 3 allow one to verify distributed proto-
cols at the abstract protocol level, they do not suffice to verify an executable
implementation. For verified executable implementations, we want to replace
the notion of axioms with a notion of interface specification in a modular,
assume/guarantee style. That is, we would like most of the proof to rely on
first-order properties such as total order or quorum intersection, but then we
would like to produce a concrete implementation, and prove that it satisfies
these properties.

Concrete implementations rely on concrete data types such as integers, and
data structures such as arrays. Ivy includes a built-in library of several concrete
types with their specifications, and allows users to create user defined data types
via a module system. Verification of concrete data type implementations is car-
ried out in decidable theories, most commonly the FAU fragment mentioned ear-
lier. This fragment allows restricted combination of quantifiers and arithmetic,
and is supported by Z3. In [41], well-known modular verification techniques are
applied to separate such theory reasoning, allowing the global protocol verifica-
tion to be done in pure first-order logic (and EPR), while theories are isolated to
particular implementation modules (for example, a module implementing finite
sets with a quorum predicate).

An important tactic in that work is to use modularity to break cycles of func-
tion symbols or quantifier alternations. For example, if verification requires both
a function (or ∀∃ quantifier alternation) from sort A to sort B, and a function
from sort B to sort A, then a possible solution is to break the problem into two
modules, where each module can be verified with only one of the functions, thus
avoiding cycles.

A typical approach is to introduce a “ghost” module that formalizes an
abstract model of the protocol. The state of the ghost module is usually encoded
using relations, allowing us to verify global properties of the protocol using EPR.
The interface of the ghost module is called in the implementation module at
the “commit points” of abstract operations. Thus, by assume/guarantee reason-
ing, we can use the proved properties of the ghost module as lemmas in the
proof the implementation module. This allows us to use some quantifier alterna-
tions when proving the implementation module, and other quantifier alternations
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when proving the abstract protocol module, even though combining them would
create cycles.

Although the approach uses only modular assume/guarantee reasoning in
the proof, this method is still related to approaches based on refinement map-
pings [2]. In this case, an inductive invariant relating the ghost module’s interface
state and the implementation state takes the role of the refinement mapping.
Although prophecy variables could in principle be used, this was found in [41] to
be unnecessary in practice, as we have the flexibility to make the ghost module
deterministic.

In [41], these principles are applied to obtain verified implementations of
both Multi-Paxos and Raft [31]. The obtained implementations have perfor-
mance that is on par with other verified and unverified implementations, and
the proof burden is much lower compared to other verified implementations such
as Verdi [42,43] (using Coq) and IronFleet [14] (using Dafny and Z3). Applying
this methodology requires us to carefully consider the functional dependencies
in the system while planning the specification and proofs. This effort was more
than repaid, however, by the predictability, stability and transparency of Z3
when applied to proof goals in the decidable fragments. Overall, restricting the
proof automation to the decidable fragments did not appear to be an insuperable
obstacle and in practice resulted in more concise proofs.

5 Liveness and Temporal Verification

Safety properties can be proven using inductive invariants. However, liveness
properties of infinite-state systems are usually proven using ranking functions or
well-founded relations. Unfortunately, pure first-order logic (without theories)
cannot express the required rankings or the notion of a well-founded relation
or well-ordered set. Therefore, it may seem that liveness verification cannot be
done in pure first-order logic. However, a new technique [33] integrated into Ivy
shows that on the contrary, the formalism of first-order logic provides a unique
opportunity for proving liveness and temporal properties.

The technique exploits the flexibility of representing states as first-order
structures, and uses first-order temporal logic (FO-LTL) (e.g., [1,23]) for tem-
poral specification. This general formalism provides a powerful and natural way
to model temporal properties of infinite-state systems. It naturally supports
both unbounded parallelism, where the system is allowed to dynamically create
processes, and infinite-state per process. Unbounded-parallelism usually requires
infinitely many (or quantified) fairness assumptions (e.g., that every thread is
scheduled infinitely often in a program with dynamic thread creation, where an
infinite trace can have infinitely many threads). This is fully supported by the
formalism and the developed proof technique.

The technique developed in [33] and implemented in Ivy is based on a novel
liveness-to-safety reduction, that reduces temporal verification (expressed in FO-
LTL) to safety verification of an infinite-state system expressed in first-order logic
without temporal operators. This allows us to leverage existing safety verifica-
tion techniques, and the other techniques implemented in Ivy, to verify liveness
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and temporal properties. While such a reduction cannot be complete for com-
plexity reasons1, it is sound, and it was successful in proving liveness of several
challenging protocols, including the first mechanized liveness proofs of Stoppable
Paxos [21], and the TLB Shootdown algorithm [7].

The liveness-to-safety reduction is based on an abstract notion of acyclic-
ity, using dynamic abstraction. For finite-state systems, liveness can be proven
through acyclicity (the absence of fair cycles). This is the classical liveness-
to-safety reduction of [5]. This also works for parameterized systems, where
the state-space is finite (albeit unbounded) for every system instance [39]. For
infinite-state systems, the acyclicity condition is unsound (an infinite-state sys-
tem can be acyclic but non-terminating). The liveness-to-safety reduction with
dynamic abstraction defines a finite abstraction that is fine-tuned for each exe-
cution trace, while abstracting only the cycle detection aspect (rather than the
actual transitions of the system). Such fine-tuned abstraction is made possible
by exploiting the symbolic representation of the transition relation in first-order
logic, as well as the first-order formulation of the fairness constraints. The full
details are explained in [33].

An additional novel mechanism [34] implemented in Ivy that enhances the
proof power of the liveness-to-safety reduction is temporal prophecy and temporal
witnesses. Here, the idea is to augment the system with additional temporal
formulas that are not part of the specification, and also with additional constant
symbols that are essentially Skolem witnesses for temporal formulas. In addition
to increasing the proof power, temporal witnesses also facilitate verification of the
resulting safety problem using EPR. By introducing a temporal witnesses, one
can often eliminate quantifier alternations in the resulting verification conditions.
The idea is that a temporal witness is used to name a particular element (e.g.,
the thread that is eventually starved), and then the inductive invariant can be
specified for this particular constant, rather than with a quantifier. In several
cases we considered, this allowed to eliminate quantifier alternation cycles. In Ivy,
temporal prophecy formulas are derived from an inductive invariant provided by
the user (for proving the safety property resulting induced by the liveness-to-
safety reduction), which provides a seamless way to prove temporal properties.

6 Additional Topics

6.1 Compositional Simulation

As described in Sect. 2, module specifications in Ivy are stateful monitors. An
additional use for these monitors is to generate tests for the module using a com-
positional testing approach [8]. That is, by symbolically executing the monitor
in a given state, we can derive a predicate that represents all of the legal input
values for a given procedure in that state. By sampling randomly from the sat-
isfying assignment of this predicate, we can generate sequences of a test inputs.

1 The temporal verification problem in this setting is Π1
1 -complete [1], while safety

verification is in the arithmetical hierarchy.
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For example, in a client/server protocol, Ivy can take the role of the client in
testing the server, or the server in testing the client.

This modular approach to test generation has several advantages. First, com-
pared to traditional unit testing, it has the advantage that it is in a limited sense
complete. That is, we have a formal assume/guarantee proof that correctness of
the modules implies correctness of the system. This means that if the system
does not actually satisfy its specification, there is some unit test that exposes
this (though this test might be generated with low probability). Compared to
integration testing, the advantage is that it is easier to cover the behaviors of
a module by stimulating its inputs directly rather than the system-level inputs.
This is particularly important in the case of concurrent systems, which suffer
from an explosion of interleavings. Because the module has less concurrency
than the system, its possible interleavings are more easily explored.

In [26], this method is used to verify the hardware building blocks of a mod-
ular cache coherence system for the RISC-V processor architecture, based on
a formal specification of the coherent interface. The approach was able to find
subtle timing bugs in the RTL-level implementations, and also provides a lim-
ited guarantee that, if every block passes all possible tests, then the system as a
whole provides the required memory coherence properties.

Specification-based testing also gives a way to check parts of the “trusted
base” of Ivy, for example the networking interface, which is based on system
services that cannot be formally verified.

6.2 Abstract Model Checking

Propositional LTL is another example of a decidable logic. Satisfiability prob-
lems in this logic can be reduced to circuit representations in a standard for-
mat [6] that can be checked by highly efficient hardware model checkers such as
ABC [10]. Ivy can exploit such model checkers by means of an abstraction. As
in an SMT solver, the first-order transition relation is reduced to its “proposi-
tional skeleton” by replacing each atomic formula with a free Boolean variable.
Though all of the theory information is lost by this transformation, some can be
regained by a process of “eager instantiation” of the theory axioms. This process
can be controlled by the user by providing a collection of axiom schemata to be
instantiated or by applying standard libraries of such schemata. The user can
also increase precision by adding history and prophecy variables.

In [24] this approach is tested on a collection of distributed protocols. The
ability of the model checker to automatically synthesize part of the system’s
inductive invariant is seen to substantially reduce the complexity of the invariants
that must be provided manually.

6.3 Manual Theorem Proving

It some cases, it may be necessary to fall back on detailed manual proof. For
this purpose, Ivy provides a collection of proof tactics that can be used to manu-
ally transform proof goals. A standard library provides complete proof rules for
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first-order logic in the natural deduction style. These can be used where needed
for reasoning about specifications that are outside the decidable fragment, for
example, to apply induction over the natural numbers using the Peano induc-
tion axiom. That is, while Ivy restricts automated proof generation to decidable
fragments, manual proof is not restricted in this way.

7 Conclusion

A key design goal for Ivy is to allow the engineer to apply automated provers
in a realm in which their performance is relatively predictable, stable and trans-
parent. Ivy differs from other program verification tools, such as Dafny and
F*, primarily in that its language and features have been designed based on
the capabilities of a particular automated prover and the needs of a particular
application domain. Ivy’s design allows users to structure specifications, imple-
mentations and proofs to make maximum use of the capabilities of the prover
while avoiding its weaknesses, particularly in the area of heuristic quantifier
instantiation.

Case studies have provided preliminary evidence that such a methodology is
practical, and that the resulting predictability, stability and transparency of the
prover improves overall verification productivity. To some degree, this confirms
the three-part hypothesis of the introduction. In particular, it appears that the
performance of Z3 is substantially more stable within the decidable fragments,
and that, with appropriate language and tool support, the restriction of automa-
tion to the decidable fragment is not unduly burdensome. Still, more experience
is needed to say with certainty that this trade-off is the right one within the
chosen domain and to validate the various design decisions.

Liveness proofs are yet to be integrated with Ivy’s modular assume/guarantee
reasoning. This is needed to verify liveness of system implementations, rather
than abstract protocols. For this, module interfaces may need to be expressed
in temporal logic, such that one module’s liveness property becomes another
module’s fairness assumption. Other important issues have yet to be addressed,
for example the verification of security or privacy properties. In the long run,
the large size of the trusted computing base in Ivy must also be addressed.

Ultimately, the goal of the project is to realize in practice the promise of
greater verification productivity inherent in powerful proof tools such as Z3.
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Abstract. This paper tells the story of the development of RacerD, a
static program analysis for detecting data races that is in production at
Facebook. The technical details of RacerD are described in a separate
paper; we concentrate here on how the project unfolded from a human
point of view. The paper describes, in this specific case, the benefits
of feedback between science and engineering, the tension encountered
between principle and compromise, and how being flexible and adaptable
in the presence of a changing engineering context can lead to surprising
results which far exceed initial expectations. I hope to give the reader
an impression of what it is like to develop advanced static analyses in
industry, how it is both different from and similar to developing analyses
for the purpose of advancing science.

1 Introduction

Static program analysis is a technical subject with well developed principles and
theories. We have dataflow analysis and abstract interpretation, inter-procedural
and compositional analysis methods, and a great variety of specific abstract
domains and logical reasoning techniques. Built upon this foundation we are
seeing analysis being applied increasingly to correctness and other problems in
the codebases of major companies. It is a very interesting time to work in the
area industrially because the applications are so fresh: while there is a wealth of
technical information to draw upon, the applications faced are so varied, and the
built-up engineering experience so comparatively sparse, that one very quickly
encounters challenges at or beyond the edge of both the research and engineering
sides of the subject.

In this paper I want to provide an example of what working at the edge of
the subject is like in an industrial setting. The presentation is necessarily limited
and personal. Nonetheless, I hope that my account might be useful to people
who are interested in knowing more about the practice of doing program analysis
work from an industrial perspective.

There’s no need to build up suspense: The project I describe, RacerD, went
much better than I had ever dared hope. It has found over two thousand
data race bugs which have been fixed by Facebook programmers before code
reaches production, it has been instrumental in the conversion of part of Face-
book’s Android app from a single-threaded to a multi-threaded architecture, and,
c© Springer Nature Switzerland AG 2018
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unusually for static analysis, it even has received press attention1. A research
paper presents the technical results of the project, including information on the
analysis algorithm, its empirical evaluation, and its impact [1]. I won’t repeat this
information here.

In most research papers one gets a description of where a project got to, but
not how it got there. We get the results of science and/or engineering, but not
a picture of how it developed. For the practice of doing science and engineering
I’ve always thought the issue of “how it’s done” is an important one, and that
examples describing how can have some value. I wouldn’t want to force this
view on anyone; some might not feel it is worth it to bother with recounting the
process in an example, and might therefore prefer to go directly to the research
paper and stop reading here. But I personally have derived lots of value from
stories I heard from people on how work was done.

In this paper I will tell you about the development of the RacerD project, its
twists and its turns, the compromises and design decisions we made to achieve
an impactful analysis, and how jumping back and forth between the perspective
of an engineer and that of a scientist helped. My aim is to convey what it’s like
to work on an open research problem in static analysis, while at the same time
pursuing the industrial goal of helping people, and how these two activities can
even boost one another.

2 A Small Bold Bet

At the start of 2016 I was a manager at Facebook supporting the Infer static
analysis team. Infer is an analyzer applied to Java, Objective C and C++ code
[5], reporting issues related to memory safety, concurrency, security (informa-
tion flow), and many more specialized errors suggested by Facebook developers.
Infer is run internally on the Android and iOS apps for Facebook, Instagram,
Messenger and WhatsApp, as well as on our backend C++ and Java code. It has
its roots in academic research [6], which led to a startup company (Monoidics
Ltd.) that was acquired by Facebook in 2013. Infer was open sourced in 20152,
and is used as well at Amazon, Spotify, Mozilla, JD.com and other companies.

I had been in the management role for 2 years, but despite the team doing
well (or perhaps, rather, because of it) I was itching to get back to doing technical
work myself. I began toying with the idea to go after a problem I had thought
about for years, but had never been brave enough to really try to solve to the
point of supporting working programmers: concurrency analysis. I had described

1 e.g., thenewstack.io/facebook-engineering-takes-bite-concurrency-racerd/,
www.infoworld.com/article/3234328/java/racerd-detects-hard-to-find-race-condi-
tions-in-java-code.html and www.techrepublic.com/article/facebook-open-sources-
racerd-a-tool-thats-already-squashed-1000-bugs-in-concurrent-software/.

2 code.facebook.com/posts/1648953042007882/open-sourcing-facebook-infer-identify-
bugs-before-you-ship/.
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www.techrepublic.com/article/facebook-open-sources-racerd-a-tool-thats-already-squashed-1000-bugs-in-concurrent-software/
www.techrepublic.com/article/facebook-open-sources-racerd-a-tool-thats-already-squashed-1000-bugs-in-concurrent-software/
http://code.facebook.com/posts/1648953042007882/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
http://code.facebook.com/posts/1648953042007882/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
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my aims the year before in an interview with Mike Hicks for his “Programming
Languages Ehthusiast” blog:

I still want to understand concurrency, scalably. I would like to have anal-
yses that I could deploy with high speed and low friction (e.g., not copious
annotations or proof hints) and produce high-quality reports useful to pro-
grammers writing concurrent programs without disturbing their workflow
too much. Then it could scale to many programmers and many programs.
Maybe I am asking for too much, but that is what I would like to find.3

It was time to see if this was really asking for too much.
It’s worth remembering why concurrency analysis is not easy. Say an analyzer

wanted to examine each of the different ways to interleave two threads of 40 lines
of code. Even if we could process 1 billion interleavings per second, it would take
more than 3.4 million years to examine them all! If we extend the number of
instructions to just 150 per thread, we get over 1088 interleavings, which is
greater than the estimated number of atoms in the known universe (1080). The
inescapable conclusion is that, even though computers are powerful, we can’t
explore all the possibilities by brute force.

Yes, there are ways to cut down the number of interleavings, and there have
been many interesting research papers on concurrency analysis. But, fundamen-
tal problems remained in applying these techniques at scale. Note I am talking
here about analyses that do inference about concurrency, not ones that check
type hints (e.g., concerning what locks guard what memory) written by pro-
grammers. See the companion paper for more discussion of prior work [1].

When I was first thinking of tackling this problem my manager – Bryan
O’Sullivan, director of the Developer Efficiency org inside Facebook – was hugely
supportive. I remember saying: “you know, Bryan, this is risky, there’s a good
chance I’ll fail completely.” To which he replied: “even if you fail, we’ll have
learnt something and that will be valuable ... I’m completely supportive of you
doing this.” Bryan and I agreed that it would be good for me to shed a portion
of my management responsibilities to free up time for technical work, and Dino
Distefano kindly stepped up to take over some of these responsibilities4.

So with this as backdrop, and surrounded by the upbeat sayings in posters
on the Facebook office walls such as

3 http://www.pl-enthusiast.net/2015/09/15/facebooks-peter-ohearn-on-programming
-languages/.

4 I have since shed management responsibilities entirely, moving to a research/engi-
neering role, essentially as a consequence of enjoying doing the technical work on
this project.

http://www.pl-enthusiast.net/2015/09/15/facebooks-peter-ohearn-on-programming-languages/
http://www.pl-enthusiast.net/2015/09/15/facebooks-peter-ohearn-on-programming-languages/
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to offer encouragement, I decided to have a go at making a scalable, low friction,
high signal5 concurrency analysis for the programmers.

3 Understanding the Engineering Problem, Part 1:
The Code

At this point I felt had a solid understanding of the scientific side of the problem,
and I had a potential way in. I had developed Concurrent Separation Logic (CSL,
[9]), and by the work of numerous creative people it had shown how a surpris-
ing distance could be gotten in reasoning about concurrent programs without
enumerating interleavings (see [4] for a survey). My very general idea was: I will
make a CSL analysis that is highly compositional, it will as a result scale to
millions of lines of code, and we’ll automatically prove some properties of large
industrial codebases (see [8] for background and open problems on compositional
analysis at scale).

The first property I chose to focus on was absence of data races. This is one of
the most basic problems in concurrency. In addition to races putting data struc-
tures into inconsistent states, getting rid of them minimizes interference, thus
simplifying the task of understanding a program. And, I thought, an effective
data race detector could open up other possibilities in concurrency analysis.

The idea “I will make a CSL analysis” is, however, rather abstract from
an engineering point of view. I needed to better understand the engineering
context where it would be used. My job was to help Facebook’s programmers to
move fast and produce more reliable code, and I thought I should spend time
understanding the concurrent code that they write in order to see if I could serve
them. So I spent the next three months scouring Facebook’s Android codebases
performing mental CSL proofs of race freedom (or, mental bug detection for
failed proofs) to understand what I was up against. I made three discoveries.

The first is that Java’s explicit thread spawning was seldom seen. This was
handled by Android framework code, but also special code in a Facebook UI
library called Litho. On the other hand, the programmers were annotating classes
with a @ThreadSafe remark, as follows:

@ThreadSafe
class C{

Fields
T1 m1() { ... }
...
Tn mn() { ... }

}

This shortened my path to getting started. I had spent several weeks design-
ing an analysis algorithm for dealing with Java’s thread creation, concentrating
in particular on carrying around enough information to report errors when a
proof failed. Now I would not need that algorithm. Rather, I would choose “the

5 See [7] for further discussion on problems related to friction, signal, etc. in program
analysis.
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(non-private) methods of a class don’t race with one another when run in paral-
lel” as an approximation of the intuitive concept of thread safety: my analyzer
could choose specific parallel compositions to shoot for.

The second discovery was that CSL could in principle reason well about all
of the code I had seen. I could see how to do manual proofs about the coding
idioms I had encountered, the main questions were the level of automation I
could achieve and how to give good feedback when proofs failed.

An interesting example I came across was from the file ComponentTree.java

from Facebook’s Litho library, where the following comment indicates a pattern
where programmers try to avoid synchronization.

// This is written to only by the main thread with the lock held,

// read from the main thread with no lock held,

// or read from any other thread with the lock held.

private LayoutState mMainThreadLayoutState;

Litho is open source (https://github.com/facebook/litho) so you can go find
the code if you’d like. Boiling down what is happening to an example in “Java
with parallel composition”, the comment is indicating that

synchronized (lock) { x = 42 } ; y = x;
|| synchronized (lock) { z = x; }

is race free. You can read from x outside of synchronization in the first thread
because it is not written to in the second. There is a nice proof of this example
using CSL with fractional permissions [2,3], which looks like this:

Resource Invariant: x:1/2.

[x:1/2] synchronized (lock) { [x:1] x = 42; [x:1] };
[x:1/2] y = x; [x:1/2]

||
[x:0] sychronized (lock) {[x:1/2] z = x; [x:1/2] } [x:0]

With fractional permissions if an lvalue has permission 1 then you can read
from or write to it, for fraction >0 but <1 then you can read but not write,
and permission 0 means you can neither read nor write. The resource invariant
is added when you enter a synch block and subtracted when you leave: we get
permission 1 inside the first synch block just because 1/2 + 1/2 = 1.

I also found examples of ownership transfer, similar to some of the early
examples used to illustrate CSL, where the permission to dereference storage
transfers from one thread to another. For example, again in ComponentTree.java:

// The semantics here are tricky. Whenever you transfer

// mBackgroundLayoutState to a local that will be accessed

// outside of the lock, you must set mBackgroundLayoutState

// to null to ensure that the current thread alone has access to

// the LayoutState, which is single-threaded.

private LayoutState mBackgroundLayoutState;

https://github.com/facebook/litho
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Reasoning about the correct usage of mBackgroundLayoutState can be done
using a disjunctive resource invariant, like

mBackgroundLayoutState == null OR mBackgroundLayoutState |-> -

which we read as saying that either mBackgroundLayoutState is null or it is a non-
null pointer that is owned by a lock. While we could indeed handle such examples
with CSL, from looking at the code I hypothesized that the vast majority of it,
I guessed 95% to 98%, did not need the kind of disjunctive invariants used to
account for ownership transfer, but rather simpler ones like x:1/2 as above.

The third discovery was that by far the most common synchronization in
the codebase was expressed with the synchronized (this) construct. There were
indeed cases where two locks were used in a single file, there were some instances
of read/write locks, and even a counting semaphore. But, the majority of cases
involved synchronized (this). Note that these were by no means trivial, because
of (for example) idioms like the ComponentTree.java example above where pro-
grammers would attempt to avoid synchronization. But it suggested: initial
impact could be had even without an analysis that attempted to accurately
distinguish different locks.

The detective work I did here – reading code and constructing mental proofs
and understanding what coding patterns were more and less frequent – while
not glamorous was, in retrospect, an incredibly valuable part of the project. The
three discoveries above are not novel, but are just part of the kind of normal
scoping work one does before embarking on an engineering project. Rather than
novelty, the goal is to gather enough relevant information to inform engineering
judgement as to the way forward. In this case, the original problem was consid-
erably simplified as a bonus. At this point I had a much better understanding
of the engineering context, enough to form a more concrete plan for progress.

4 Pre-α Prototype

By July 2016 I was ready to get started with my tool. It would infer resource
invariants for fractional permissions as well as preconditions for threads, and
apply these to Facebook’s Java codebases. At first the only locking I would
treat would be by critical sections synchronized (this){..}, and I would aim
for simple, un-conditional invariants. Programs using multiple locks within a
file or ownership transfer examples, the minority, would be handled either via
manually supplied invariants or by an improvement to the algorithm after the
simpler majority had been dealt with.

I worked out a pen-and-paper analysis algorithm based on CSL with frac-
tional permissions, and I circulated an internal note to the Infer team. I was very
excited at the prospects, as I estimated that we could prove race freedom for
hundreds or thousands of classes, and find tens of data race bugs, after the ideas
were implemented and deployed. At this point I also sparked up a collaboration
with academics, Ilya Sergey from University College London and Nikos Goro-
giannis from Middlesex University, to help work on the theoretical foundations
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of the analyzer. Their input on the theory, and later the practice, would turn
out to be important (more on that in the last section of the paper).

The coding was a big task for me, but it was also great fun and very satisfying.
I had not programmed for years, and had never in truth written that much
code; I was a theorist for most of my career. Sam Blackshear had created a
framework I was using, Infer.AI, for writing compositional abstract interpreters,
and I convinced him to be my coding mentor (at the same time that I was
officially still his manager).

I didn’t begin by implementing the algorithm to infer resource invariants and
preconditions; that would have been too intricate a starting point. Rather, to
learn how to make an inter-procedural analysis which reports inter-procedural
errors, I decided that my first prototype would simply search for certain obvious
errors: writes outside of any synchronization. Any such write would give rise to
a potential self-race, when its enclosing method was run in parallel with itself.
Here is an example:

SelfRace.java:20: error: THREAD_SAFETY_VIOLATION
Unprotected write. Non-private method ‘SelfRace.foo‘ writes to field ‘this.SelfRace.y‘
outside of synchronization. Reporting because the current class is annotated ‘@ThreadSafe‘,
so we assume that this method can run in parallel with other non-private methods in the
class (including itself).
18. void foo() {
19. synchronized(this){ x = 42; };
20. > y = 84;
21. }
22.

I did not concentrate on these self races because I thought they were so
important, but rather to give me something concrete and simple to shoot for
in the prototype. I knew that when the real version landed later I would need
to provide engineers with effective signal when a potential bug was found, so I
optimized my early coding towards that (which I needed to learn about) rather
than proof (which I knew better).

By October 2016 I had knocked out a kLOC of code and completed a pro-
totype which I was running on Facebook’s Android codebases. The analyzer
was not reporting issues to developers but was rather running from time to
time silently, in stealth mode. I started planning on converting it over to a CSL
prover. I thought I could see how to do this; I could imagine a first prover ready
by June 2017 and, after α and β versions shipped to volunteers for feedback, a
real launch by the end of 2017.

You might wonder why I thought it would take a whole year. Well, it was only
me programming at this stage and, additionally, from the first internal release of
Infer in 2014 I remembered how much the tool improved during the αβ training
period. I didn’t want to underestimate the importance of the training period. I
thought I could calmly and carefully approach a successful launch of a tool for
doing concurrency proofs at scale.

So things were going well. I thought I’d have my CSL prover in production
in about a year. That would have been scientifically novel I thought, and would
likely have produced non-negligible impact and a springboard for doing more. I
had no concrete impact thus far after working for 10 months on the project, but
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my manager Bryan was very happy with this progress and remained supportive.
(In fact, he said that he preferred that I bet on uncertain long-term work that
could fail, rather than more certain short-term work.)

5 Intervention and Pivot

In October 2016 Android engineers inside Facebook caught wind of the project
when Sam let the cat out of the bag in a side remark during a status update to
an internal Android group.

...

The first question that came in response to Sam’s post asked about what in
program analysis jargon we would call inter-procedural capabilities.

The story is that a team in NYC was embarking on a new venture, converting
part of the News Feed in Facebook’s Android app from a sequential to a multi-
threaded architecture. This was challenging because hundreds of classes written
for a single-threaded architecture had to be used now in a concurrent context:
the transformation could introduce concurrency errors. They asked for inter-
procedural capabilities because Android UI is arranged in such a way that tree
structures like

are represented with one class per node. Races could happen via inter-procedural
call chains sometimes spanning several classes. Furthermore, the Litho library
for UI being developed at Facebook was arranged in such a way that mutations
almost never happened at the top level: intra-procedural race detection would
miss most races.

I was naturally pleased to have engineers express interest in the concur-
rency project, doubly-pleased in fact because inter-procedural reasoning is one
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of Infer’s strong points. But, I kept my head down working to my planned time-
line, which would see release a year later. Then, in November the level of interest
ramped up considerably, for example when I received these messages:

...

At this point I had a decision to make. I could seek to damp down expec-
tations and continue with my plan of releasing my prover in a year, or I could
pivot to serve the engineers as well as I could, as soon as possible. As a sci-
entist I would perhaps have regretted giving up on my “beautiful” prover, but
after moving from university to work in an engineering org I found it useful to
frequently remind myself of the difference between science and engineering.

“Scientists seek perfection and are idealists. ... . An engineer’s task is to
not be idealistic. You need to be realistic as you have to compromise
between conflicting interests.” Sir Tony Hoare6

These words of Tony helped me to stay grounded as I contemplated the com-
promises that would inevitably be needed were I to choose the second course.

It was in truth an easy decision to make. The job of the Infer team is to help
Facebook’s programmers: it is only right to respond and help them, and we place
this duty above (say) abstract aims concerning the exact shape of an eventual
tool. Furthermore, when you try to deploy a static analysis it can sometimes
seem like an uphill struggle to convince people that heeding the warnings will
be worthwhile. Their time is valuable and one needs to be very careful not to
inadvertently waste it. Here, though, we had a team asking for static analysis
support from a project we were already working on, for an important project
they were planning, and where the potential near-term impact of doing so far
outstripped anything I had thought about. This seemed like a golden opportunity
for someone working in static analysis.

So, I made the decision to pivot to meet the Android engineers’ needs as
well as we could in a timeframe that would fit their goals. I asked Sam to stop
6 https://reinout.vanrees.org/weblog/2009/07/01/ep-keynote.html.

https://reinout.vanrees.org/weblog/2009/07/01/ep-keynote.html
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(only) being my mentor and to join the project immediately as a full contributor
himself. He agreed, and this would considerably expand our capabilities.

6 Understanding the Engineering Problem, Part 2:
The People

Sam and I met with two Android engineers, Benjamin Jaeger and Jingbo Yang
from Facebook’s NYC office, and agreed that we should spec out a minimum
viable product (MVP) for serving them. After discussing what we thought might
and might not be possible technically in a three-month timespan, Ben came back
to us with a first draft of an MVP, which we iterated on, arriving at something
that included the following (in essence).

1. High signal: detect actionable races that developers find useful and respond
to. Find many races that would be encountered in practice, but no need to
(provably) find them all.

2. Inter-procedural: ability to track data races involving many nested procedure
calls.

3. Low friction: no reliance on manual annotations to specify which locks protect
what data.

4. Fast: able to report in 15 min on modifications to a millions-of-lines codebase,
so as to catch concurrency regressions during code review.

5. Accurate treatment of coarse-grained locking, as used in most of product code,
but no need for precise analysis of intricate fine-grained synchronization (the
minority, changing rarely, found in infrastructure code).

The requirement for high signal balances false positives and negatives rather than
seeking idealistic perfection in either direction. It is common in engineering to
accept imperfection but to measure and improve metrics over time. The engineers
were comfortable with this requirement; in fact, they suggested it when we said
we could not produce a prover with few false positives in three months.

The requirement for low friction was particularly important. Hundreds of
classes needed to be placed into a multi-threaded context. If humans were
required to write annotations about which locks protected what data, the kind
of thing one finds in @GuardedBy type systems for Java, then it would take too
much time. Inference would help our engineers to move fast.

It is important to note that the specification of the MVP was not arrived at
by abstract reasoning alone. It was conceived of by balancing what was techni-
cally possible (in our opinion) with the specific needs of people facing a specific
problem (convert News Feed), as well as other people in the general engineering
population who we needed to help prevent concurrency regressions. By aiming
to strike this balance we were able to convert a seemingly intractable problem
into a one where an initial success that we could then build on was in sight.
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7 Development and Deployment of RacerD

As it happens my pre-α prototype provided a good starting point. It was record-
ing information about accesses and whether any lock was held at a program
point. Sam and I set about completing the MVP for RacerD. It was imple-
mented as a special abstract interpreter within the Infer.AI framework. Our
design included principles guiding the initial and further developments, specific
abstract domains, and a means of determining potential races given what the
abstract domains compute. You can see the details in the companion paper [1].

Apart from the specifics, a general design goal of RacerD was simplicity:
we were determined not to introduce technical innovations unless they were
absolutely necessary. As technical program analysis people it is always tempting
to try this or that technique. But we employed occam’s razor rigorously, guided
by experiment as well as logic, and this was important for how the tool would
evolve. If we were to introduce additional complex techniques without extremely
good reasons it would have slowed us down, affecting the turnaround time for
responding to engineer feedback, and could even have imperiled the project.

After Sam and I completed the MVP, Ben and Jingbo began applying Rac-
erD to classes in our Android codebase. They encountered many false positives,
which often had to do with either access to newly allocated entities that had
not escaped, and that therefore could not be interfered with. Sam had worked
out an ownership analysis for tracking these entities; it was the most challeng-
ing part of getting a high-signal analysis, and it was refined over several months.
Other problems came up from threading assumptions. Sam and Ben designed an
annotation system for expressing assumptions about ownership and threading
to help the anlayzer along, and which reflected the way our engineers thought
about the code. By this point Sam was doing most of the implementation work
responding to false positives and other feedback.

Meanwhile Jingbo was converting vast quantities of Android code to a con-
current context, reporting false alarms to us, and running experiments to keep
the conversion moving in the right direction. By October of 2017 it was clear that
both projects, RacerD and the conversion of News Feed in Android, were suc-
cesses. Jingbo announced a performance win for the multi-threaded News Feed,
and RacerD had caught thousands of potential data races both in Jingbo’s con-
versions and in automatic comments on code modifications from hundreds of
other engineers. I won’t belabour the point that the projects went well: you can
read more about multi-threading in a blog post7, and more about RacerD in
its own blog8 and in the companion paper [1]. And there is more to come in
the future: already RacerD has enabled further work beyond races, on deadlock
detection and starvation, and a modified version of it is in production for C++
as well as for Java. Perhaps the CSL prover will even make an appearance.

7 code.facebook.com/posts/1985913448333055/multithreaded-rendering-on-android-
with-litho-and-infer/.

8 https://code.facebook.com/posts/293371094514305/open-sourcing-racerd-fast-
static-race-detection-at-scale/.

http://code.facebook.com/posts/1985913448333055/multithreaded-rendering-on-android-with-litho-and-infer/
http://code.facebook.com/posts/1985913448333055/multithreaded-rendering-on-android-with-litho-and-infer/
https://code.facebook.com/posts/293371094514305/open-sourcing-racerd-fast-static-race-detection-at-scale/
https://code.facebook.com/posts/293371094514305/open-sourcing-racerd-fast-static-race-detection-at-scale/
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Instead of talking more about what was achieved, I want instead to recount
some of the further hiccups we had while doing the work, and how we tried to
react to them.

8 Hiccups, Theorems, Science and Engineering

We had used reasoning intuition in building an analyzer that quickly searches
for likely races, but we did not formalize what we were doing before we did it.
However, in parallel, theoretical work was happening, driven mostly by Nikos
and Ilya, with Sam and I participating but concentrating more on the in-prod
analyzer.

Nikos and Ilya created an idealized analyzer, written in LaTeX, based on
CSL with fractional permissions. They then constructed a small prototype, a
“baby prover”, written in OCaml. There was a gap between the baby prover
and the in-prod RacerD. Our original plan was to close the gap, but we found
it widening over time because the in-prod analyzer was mutating at a fast rate
in response to developer feedback. There was not unanimity of opinion on what
to do about this gap.

A non-starter would have been to pause the development of the in-prod
analyzer, repeat its work to grow the baby prover, wait until the prover had
matured enough to have a low enough false positive rate, and then do the switch-
over. The in-prod analyzer was serving our programmers and improving steadily;
we did not want to sacrifice this for idealistic purposes.

We wondered if we could instead modify the in-prod analyzer to be sound for
bug prevention (over-approximation). I suggested to identify a subset of analyzer
runs which corresponded to proofs. We added soundness flags to the analyzer and
tried to keep track of sound moves, but this ultimately did not work out. Next,
Sam implemented an escape analysis to find race bugs due to locally declared
references escaping their defining scope, to reduce the false negatives. The escape
analysis led to too many false positives to put into production and we abandoned
it. Nikos tried another tack to reduce false negatives: a simple alias analysis, to
find races between distinct syntactic expressions that denote the same lvalue.
Again the attempt caused too many false positives to put into prod.

The above should not be taken as a commentary on soundness versus
unsoundness in general, or as saying unsoundness is necessary or desirable in
industrial program analysis. I see no reason why the baby prover could not be
grown to the point of being good enough for production. But, having a very
effective analyzer in place meant that the priority for doing this became less
than if we had no analyzer at all in place.

So we had engineered RacerD to search for probable race bugs rather than
to exclude races, we viewed this as a compromise, and we were responding to
this compromise by trying to change the analyzer to fit a standard soundness
theorem. And we were not succeeding. Then, one day in Sept 2017 I thought to
myself: this analysis is actually very effective, the signal is surprisingly good, few
false positives are being reported. Those false positives that were turning up often
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resulted from missing assumptions (e.g., about threading or ownership) rather
than problems in the analyzer design. So I thought, rather than try to change
the analyzer so it fit a pre-conceived soundness notion, let’s try to understand
why the already-effective analyzer is effective and formalize a portion of that
understanding. I proposed a theorem (or, hypothesis) as follows.

TP (True Positives) Theorem: Under certain assumptions (assumptions
reflecting product code), the analyzer reports no false positives.

An initial version of the assumptions was described as follows. Consider an ide-
alized language, IL, in which programs have only non-deterministic choice in
conditionals, and where there is no recursion. The absence of booleans in con-
ditionals reflects the idea that in product code very coarse grained locking is
typically used. We don’t often, for example, select a lock conditionally based on
the value of a field, like we do in ownership transfer or fine-grained concurrency
examples. The no recursion condition is there because we want to say that the
analyzer gets the races right except for when divergence make a piece of code
impossible to reach. Now IL does not perfectly represent product code (nothing
does as far as we know), but it serves as a useful working hypothesis for theory.

[Aside. One can see the TP Theorem as establishing an under-approximation
of an over-approximation. Start with a program without recursion. Replace
booleans by non-determinism (that’s over-approximation). Then no false pos-
itives (under-approx). The more usual position in program analysis is to go for
the reverse decompostion, an over-approximation of an under-approximation.
The “under” comes about from ignored features, and the “over” from a usual
sound-for-bug-prevention analysis. In contrast, under-of-over seems like a good
way to think about static analysis for bug catching. (And yes, I know the above
can even be thought of as under of over of under, where the first “under” ignores
recursion.)]

Now, the True Positives Theorem was not actually true of the in-prod ana-
lyzer when we formulated it, and it is still not. But we took it as a guiding
principle. We would subsequently, when faced with a design choice, take an
alternative consistent with the theorem. For example, we implemented a “deep
ownership” assumption: If an access path, say x.f, is owned, then so are all
extensions, e.g. x.f.g. The analyzer would never report a race for an owned
access. The deep ownership assumption goes against soundness for bug preven-
tion (over-approximation), but is compatible with soundness for bug finding
(under-approximation). The TP Theorem also provided rationalization for our
earlier decisions not to deploy alias or escape analysis.

Since then, Nikos and Ilya have proven a version of the TP Theorem for
a version 2 of RacerD, a modified version of the analyzer which is not too far
removed from the in-production version. While we had difficulty seeing how to
modify RacerD to be sound for bug prevention, we were able to modify it to be
consistent with the TP theorem (sound for bug catching, under assumptions).
We are in the process of measuring and evaluating the differences between ver-
sions 1 and 2. I won’t say more on the status of that work as it is in progress,
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but I would like to talk about science and engineering in program analysis in
light of the above.

First, about the role of the TP theorem. We did not think of the theorem
before we started, and then go on to implement an analyzer to satisfy the theo-
rem. Rather, the theorem came up later, in response to the surprising behaviour
we observed. If you think about the way software is developed in an iterative
way then this seems natural: analyzers do not need to be developed according to
a (straw man) waterfall model, any more than general software does. And as an
aside, if you think about the way research is developed, neither does it usually
flow in a neat waterfall fashion.

Second, the role of the theorem is not to provide iron-clad guarantees to
rely on. Rather, it has been used to help understand the analyzer and guide the
design while it’s in flight. This reminds me of something my PhD supervisor Bob
Tennent emphasized to me many years ago, which I did not fully appreciate at
the time. Bob said that, yes, semantics can be used to show what is true about
a programming language after it is set in stone, but it is (arguably) even more
valuable in helping inform design when a language is being created [10]. The
same is true for program analyzers: RacerD is but one illustration.

Finally, you can see that both science and engineering have played impor-
tant roles in the development of RacerD. Science gave rise to original ideas on
sequential reasoning about concurrent programs, it gave us compositionality,
abstraction, and much more. It gave us the basic ideas to get started at all in a
way that scales. Then contact with Android engineers led to compromises to get
an analyzer that is effective in practice. Trying to understand why the analyzer
was effective caused us to go back to science to formulate the TP theorem, and
this in turn influenced further development of the analyzer.

This way of having science and engineering playing off one another in a tight
feedback loop is possible, even advantageous, when practicing static analysis
in industry at present. The subject is not so over developed that exclusively-
engineering work is typically the best route to good results, and not so under
developed that exclusively-science is the only thing feasible to do. I hasten
to stress that exclusively-engineering and exclusively-science remain valuable,
things that folks should feel comfortable and well justified in doing. My main
point is rather that the current state of the subject, with the possibility of tight
science-engineering feedback, makes for a rich variety of ideas and problems to
explore.
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Abstract. The main goal of software synthesis is to automatically
derive code from a given specification. The specification can be either
explicitly written, or specified through a couple of representative exam-
ples illustrating the user’s intent. However, sometimes there is no speci-
fication and we need to infer the specification from a given environment.
This paper present two such efforts.

We first show, using verification for configuration files, how to learn
specification when the given examples is actually a set of configuration
files. Software failures resulting from configuration errors have become
commonplace as modern software systems grow increasingly large and
more complex. The lack of language constructs in configuration files,
such as types and grammars, has directed the focus of a configuration
file verification towards building post-failure error diagnosis tools. We
describe a framework which analyzes data sets of correct configuration
files and derives rules for building a language model from the given data
set. The resulting language model can be used to verify new configura-
tion files and detect errors in them.

We next describe a systematic effort that can automatically repair fire-
walls, using the programming by example approach. Firewalls are widely
employed to manage and control enterprise networks. Because enterprise-
scale firewalls contain hundreds or thousands of policies, ensuring the
correctness of firewalls – whether the policies in the firewalls meet the
specifications of their administrators – is an important but challeng-
ing problem. In our approach, after an administrator observes undesired
behavior in a firewall, she may provide input/output examples that com-
ply with the intended behavior. Based on the given examples, we auto-
matically synthesize new firewall rules for the existing firewall. This new
firewall correctly handles packets specified by the examples, while main-
taining the rest of the behavior of the original firewall.

Keywords: Software synthesis · Program repair · Verification
Configuration files · Firewalls
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1 Introduction

Software synthesis has the potential to transform the software development pro-
cess, by eliminating software errors before they even occur. The essence of soft-
ware synthesis is that a programmer must only state what should be done, and
not how it should be done. Instead of writing code manually, a programmer pro-
vides a specification and the synthesis tool automatically generates code that
satisfies the specification. Consequently, the generated code is correct by con-
struction, thereby avoiding many of the potential errors that could creep into
manually written code.

Recent work in this area has focused on manipulating fundamental data types
such as strings [5,9,14], lists [4,10] and numbers [15]. The success and impact of
this line of work can be estimated from the fact that some of this technology [5]
ships as part of the popular Flash Fill feature in Excel 2013 [16].

A common thread to all those tools that they take a given specification
and automatically generate code corresponding to that specification. The spec-
ification can be explicitly written, in which case we are talking about com-
plete specification, or it can be given in the form of input/output examples.
The user provides those examples and they should be chosen so that they illus-
trate the user’s intentions. Nevertheless, this is still an incomplete specification,
which means that there might be many programs satisfying the given examples.
This type of software synthesis is well known under the name programming by
example [3,6,8].

In this paper we describe two application domains for software synthesis that
have not been not previously studied by the community working in formal meth-
ods and verification. One topic is synthesis of a specification for configuration
files (Sect. 2, previously published in [12,13]). The second project introduces so-
called repair by example, which is used for verification and repair of firewall
programs (Sect. 3, previously published in [7]).

2 Verification of Configuration Files

Configuration errors (also known as misconfigurations) have become one of the
major causes of system failures, resulting in security vulnerabilities, application
outages, and incorrect program executions [17,18]. In 2015 Facebook, Tinder,
and Instagram all became inaccessible for approximately 52 min. A Facebook
spokeswoman reported that this was caused by a change to the site’s configura-
tion system [11]. These critical system failures are not rare – a software system
failures study [19] reports that about 31% of system failures were caused by
configuration errors. This is even higher than the percentage of failures resulting
from program bugs (20%).

A recent study [2] showed that in 2016 software errors cost the United States
economy approximately $1.1 trillion. Detecting and preventing software errors
plays a major role in a development process, with programmers using techniques
like testing, debugging, and verification. However, none of these techniques can
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be applied to finding errors in configuration files. Effective testing of config-
uration files is difficult because errors may arise only under certain, hard to
simulate conditions, such as heavy traffic loads. Another approach to finding
errors in program code is software verification, which has been applied to many
complex systems (for example, operating systems, compilers). However, tradi-
tional verification techniques cannot be applied to configuration files, because
these techniques rely on formal specifications describing the expected behavior
of the program. The difficulty with configuration files is that they are mostly
simple text files of keywords and values, and there is no traditional sense of a
specification. With no formal specification of correctness or semantic program
information, verifying configuration files is far outside the scope of existing tech-
nologies.

Modern verification technologies inherently depend on the availability of for-
mal specifications, yet they are extremely labor intensive to create and maintain.
This is especially the case for configuration files, which rarely have any docu-
mentation, even in written English form. We proposed and developed the first
tool that can synthesize complex configuration specifications. Our tool com-
bines knowledge discovery techniques with automated reasoning to synthesize
constraint models of configuration files.

In the first prototype of our tool, ConfigC [13], we analyzed existing cor-
rect configuration files and learned properties that always hold in those con-
figuration files. Some examples of the properties are ordering constraints (e.g.,
one library should be loaded before another), type constraints (e.g., which key-
words act as Boolean flags), and size constraints (e.g., that some memory size
always needs to be bounded by some other). Once we have learned such con-
straints/specifications, ConfigC can verify users configuration files, and report
any violations to the user.

We extended this work to a more advanced tool ConfigV [12], which is the first
tool that can automatically detect complex errors involving multiple variables,
and learn over a training set of partially incorrect configuration files. ConfigV
required two core theoretical advances; the first was the introduction of proba-
bilistic types, and the second was an extension to association rule learning [1].
Since configuration files lack helpful semantic information to infer types, we use
a probabilistic inference method to learn likely types for keywords based on their
values from the training set. We combined this new type information with a gen-
eralization of association rule learning that handles not just association rules,
but arbitrary, typed predicates.

We evaluated ConfigV by verifying public configuration files on GitHub, and
we showed that ConfigV can successfully detect configuration errors in these files.

3 Verification and Repair of Firewalls

Firewalls play an important role in today’s individual and enterprise-scale net-
works. A typical firewall is responsible for managing all incoming and outgoing
traffic between an internal network and the rest of the Internet. The firewall
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accepts, forwards, or drops packets based on a set of rules specified by its admin-
istrators. Because of the central role firewalls play in networks, small changes
can propagate unintended consequences throughout the network.

We proposed and developed the first framework, called FireMason [7],
https://github.com/BillHallahan/FireMason, that not only detects errors in fire-
wall behaviors, but also automatically repairs the firewall. Broadly speaking, a
firewall is correct if the rules of that firewall meet the specification of its admin-
istrator. While existing tools can identify the cause of an error, administrators
still have to manually find an effective repair to the firewall so that it meets
the specification. We introduced the concept called repair by example. Specif-
ically, a user provides a list of examples of packets and desired routing (e.g.,
all packets with a certain source IP address should be dropped) to describe the
desired behavior of the firewall. The current firewall might or might not route the
packets as specified in the examples, but FireMason automatically synthesizes
a new firewall that is guaranteed to satisfy the examples. Given the complexity
of enterprise-scale networks, finding such a repair requires considerable exper-
tise on the part of the administrator. To the best of our knowledge, there is no
other existing effort that automates firewall repairs by examples. The concept
of “repair by example” was motivated by the standard practice of how users ask
for help with repairing their firewalls. On user forums, users would provide their
firewalls and then list a couple of illustrative examples to show how the behavior
should change.

The main challenges in firewall repair and verification is that adding a new
rule might fix the current problem, but entirely break the behavior on some
packages that the user might not have considered. To ensure the correctness
of the repair we use techniques from formal methods. We translated a firewall
into the formal mathematical language of first-order logic. This allows us to
use existing SMT solvers which can automatically reason about these logics. As
an illustration, checking if the repair broke some of previously correct behavior
reduces to checking a formulas entailment.

By using SMT solvers, FireMason can provide formal guarantees that the
repaired firewalls satisfy two important properties:

– Those packets described in the examples will be routed in the repaired firewall,
as specified in provided examples.

– All other packets will be routed by the repaired firewall exactly as they were
in the original firewall.

Taken together, these two properties allow administrators confidence that the
repairs had the intended effect.

By using our formalism we are able to check some important and widely
used, but previously out-of-scope, properties, including rate limits. Rate limits,
which are frequently used in modern firewalls, put a restriction on the number of
packets matched in a given amount of time. Such rules say, for example, that we
can only accept 6 packets per minute from a certain IP address. As before, the
user provides a list of examples, but with relative times. This requires reasoning

https://github.com/BillHallahan/FireMason
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about the priorities and permissions of each firewall entry, as well as the temporal
patterns of the incoming packets.

In addition to repairing, FireMason is also a stand-alone verification tool.
For a given specification, such a checking if a certain packet will be rejected,
FireMason can either prove that it holds, or it produce counterexamples.

We evaluated our tool using real-world firewall issues from user forums. We
observed that FireMason is able to efficiently generate correct firewalls meeting
administrators’ examples, without introducing any new problems. In addition,
our evaluation shows that FireMason scales well to enterprise-scale networks.

4 Conclusions

More details about the presented projects can be found in [7,12,13].
Two presented projects demonstrated that software synthesis can be success-

fully applied to problems, such as repair of firewalls and verification of configu-
ration files, which are usually tackled by a system research community. One of
the main obstacles was that often the specification does not exist and needs to
inferred from the given context or provided examples. In our experience finding a
suitable formalism to model the problem and efficiently solve real world instances
is crucial. Both presented tools were successfully tested on the real world exam-
ples, which motivates us to further pursue addressing non-traditional synthesis
problems.

References
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1 Extended Abstract

Distributed systems are becoming more and more pervasive in our lives, making
their correctness crucial. Unfortunately, distributed systems are notoriously hard
to get right and verify. Due to the infinite state space (e.g., unbounded number
of nodes and messages) and the complexity of the protocols used, verification of
such systems is both undecidable and hard in practice.

Numerous works have considered the problem of automatically verifying dis-
tributed and parameterized systems, e.g., [1,9,10,17,18,20,23,24,26,38]. Full
automation is extremely appealing. Unfortunately, automatic techniques are
bound to fail in some cases due to the undecidability of the problem. Some impose
restrictions on the verified systems (e.g., [26]), some may diverge (e.g., [24]) and
some may report false alarms (e.g., [2]). Moreover, such techniques often suf-
fer from scalability issues and from an unpredictable performance. As a result,
most efforts towards verifying real-world systems use relatively little automa-
tion [19,25,31].

In contrast, deductive verification approaches let a user annotate the verified
system with inductive invariants and pre/post specifications, and reduce the
verification problem to the problem of proving the validity of the corresponding
verification conditions. Tools for doing so vary in their expressiveness and level of
automation. Some (e.g., [6,12,13,22,33,34]) check the verification conditions by
decision procedures, but are limited in their expressivity. Others (e.g., [29]) use
undecidable logics and semi-decision procedures, e.g., as provided by satisfiabil-
ity modulo theories (SMT) solvers (e.g., Z3 [11], CVC4 [4], OpenSMT2 [21],
Yices [14]), or by first-order solvers (e.g., Vampire [40], iProver [27]). Tools
based on semi-decision procedures might fail to discharge the verification condi-
tions either by non-terminating or by yielding inconclusive answers. Similarly to
automatic verification approaches, they also suffer from an unpredictable per-
formance: They might work well on some programs, but diverge when a small
change is performed. This is sometimes referred to as a butterfly effect [30]. When
this happens, it is often extremely difficult to discover, let alone remedy, the root
cause of failure in the complex chain of reasoning produced by the algorithm.

Proof assistants such as Coq [5] and Isabelle/HOL [35] offer great expres-
sivity, but require the user to write the proof (possibly exploiting various tac-
tics), while mechanically validating every step in the proof. Verification using
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 77–85, 2018.
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proof assistants is extremely labor intensive and requires tremendous efforts
even by expert users (e.g., approx. 10 lines of proof were required per line of
code in [42,43]). Thus, it is hard to deploy this method to verify complicated
systems.

In summary, all of these approaches either (i) handle limited classes of sys-
tems, (ii) employ sound but incomplete automatic reasoning which reports too
many false alarms, (iii) use semi-algorithms that tend to be fragile, unpredictable
and often diverge, or (iv) require too much manual effort, relying on expertise
in logic and verification.

Approach. We propose to overcome the shortcomings of existing approaches
by using an interactive verification methodology that divides the verification
problem into tasks that are well suited for automation and can be solved by
decision procedures, and tasks that are best done by a human, and finds a
suitable mode of interaction between the human and the machine.

This methodology is based on the conjecture that users usually have high
level knowledge of the functionality of the code and interactions between dif-
ferent parts of the program. On the other hand, algorithmic techniques can be
effective in reasoning about corner cases missed by the user. The key to success
is to exploit these fortes when defining the roles of the user and the automated
analysis, and to provide the suitable interface between them.

“One thing all programmers have in common is that they enjoy working
with machines; so let’s keep them in the loop. Some tasks are best done
by machine, while others are best done by human insight; and a properly
designed system will find the right balance.” — D. Knuth

We argue that letting a user convey her intuition to an automated analysis,
and making sure that automation is restricted to decidable problems, will make
the verification process more efficient and predictable, and will allow to balance
between automation and expressivity.

An attempt at applying this methodology is implemented in Ivy [37]. In
this work, we developed an interactive procedure for verifying safety properties
of distributed protocols, where the verification conditions are expressed using
decidable logic, allowing to check their validity completely automatically with
decision procedures, and where the user’s creativity guides the construction of
the proper annotations. This is achieved by graphically displaying states that
violate the verification conditions and letting the user select the relevant parts of
the state according to which the annotations (inductive invariants) are updated.
We elaborate on this approach in the sequel. We start with some background.

Decidable reasoning in Ivy. Ivy is a verification system based on decidable logic.
Decidability greatly improves the predictability of proof automation, resulting in
a more practical verification approach. Furthermore, it facilitates an interactive
process, where the user may modify the invariants used for verification based on
counterexamples.
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Ivy supports several decidable fragments of first-order logic, of which [37]
uses the Effectively PRopositional fragment (EPR). EPR [39] is a fragment
of first-order logic where the vocabulary is restricted to constant and relation
symbols,1 and the quantifier prefix is restricted to ∃∗∀∗ in prenex normal form.2

Satisfiability of EPR formulas is decidable [32] and supported by existing SMT
solvers such as Z3 [11] and first-order logic provers such as iProver [27]. Moreover,
EPR has the finite-model property, which means that every satisfiable formula
has a finite model.

EPR is a relatively weak logic, but, perhaps surprisingly, it turns out to
be suitable for modeling and verifying interesting systems, including software
defined networks [3], heap manipulating programs [16,22], and, as we do in this
work, distributed protocols [36,37,41]. We refer the interested reader to the
aforementioned works for more details on modeling systems and their properties
using EPR.

Safety verification. Safety properties specify bad behaviors that should never be
encountered in any run of a system. An example of a bad behavior is the elec-
tion of more than one leader in a leader election protocol. Safety properties are
essential requirements that, when violated, might incur catastrophical outcomes.

One of the most useful techniques for proving safety of infinite-state sys-
tems already advocated by Floyd [15] is based on inductive invariants. Inductive
invariants are an adaptation of the mathematical concept of “induction hypothe-
sis” to the domain of programs. Technically, an inductive invariant I is a property
of the system that (i) holds initially (initiation), (ii) implies the safety property
(safety), and (iii) is preserved by every step of the system, namely if the system
makes a step from any configuration that satisfies I, it reaches a configuration
that satisfies I as well (consecution). If an inductive invariant exists, the system
is safe. Thus, safety verification reduces to inferring inductive invariants. Sim-
ilarly to mathematical proofs by induction, the most challenging and creative
task in deductive verification of safety properties is coming up with the inductive
invariants.

Example 1. As a concrete example, consider a simple distributed protocol for
leader election in a ring [8]. The protocol assumes a ring of unbounded size.
Every node has a unique ID with a total order on the IDs. Thus, electing a
leader can be done by a decentralized extrema-finding protocol. The protocol
works by sending messages in the ring in one direction: Each node announces
its ID to its immediate neighbor. A node only forwards messages with higher ID
than its own ID. When a node receives a message with its own ID, it declares
itself as a leader. The safety property of interest here is that no more than one
leader is elected. To verify the protocol means to verify that this property holds
in every instance of nodes that run the protocol.
1 It is straightforward to extend EPR to allow stratified function symbols, i.e., function

symbols that do not create cycles among sorts (e.g., if there is a function symbol
from sort A to sort B, then no function symbol from sort B to sort A is allowed).

2 In particular, EPR does not allow the use of arithmetic operations.
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In this example, the safety property itself is not inductive. For example, in a
configuration where one leader is already elected but there is a pending message
to some other node with its own ID, the property will be violated in the next
step, hence violating the consecution requirement. Such a configuration is not
reachable from the initial configuration of the protocol (where no leader is elected
and no message is pending), but the safety property itself is not strong enough
to exclude it. In order to exclude the counterexample to induction and make
the candidate invariant inductive, it needs to be strengthened by adding (1) a
conjecture saying that a message can reach a node with the same ID only if this
ID is maximal — this conjecture will exclude the scenario described above, (2) a
conjecture saying that the leader has the highest ID, and (3) a conjecture saying
that messages cannot bypass nodes with higher IDs.

Verification conditions. We express protocols using a transition relation formula,
denoted Tr(V,V ′), where V is the vocabulary V used to describe the protocol’s
state, and V ′ is its copy used to represent the post-state of a transition. Initial
state conditions, safety properties and inductive invariants are also specified
via formulas, Init(V), P(V) and Inv(V), respectively, over V. Checking whether
Inv satisfies initiation, consecution and safety, then corresponds to checking the
validity of the following verification conditions:

initiation Init(V) → Inv(V)
safety Inv(V) → P(V)
consecution Inv(V) ∧ Tr(V,V ′) → Inv(V ′)

which in turn corresponds to checking the unsatisfiability of the following for-
mulas that encode violations of the requirements:

violation of initiation Init(V) ∧ ¬Inv(V)
violation of safety Inv(V) ∧ ¬P(V)
violation of consecution Inv(V) ∧ Tr(V,V ′) ∧ ¬Inv(V ′)

If Tr , Init and ¬P are EPR formulas and Inv is universally quantified, then
these formulas fall into the decidable EPR fragment. Indeed, this is the case
in the leader election example. If one of the formulas is satisfiable (i.e., the
corresponding requirement does not hold), then a finite satisfying model exists
(due to EPR’s finite model property). For example, if consecution is violated,
then a finite counterexample to induction is found – a state that satisfies Inv
but has an outgoing transition to a state that violates it.

Inference of universally quantified inductive invariants via interactive generaliza-
tion. In [37], we propose an interactive technique for inferring inductive invari-
ants in the form of universally quantified formulas that is able to discover the
inductive invariant of Example 1. The approach, implemented in Ivy, is based
on iterative strengthening.

Iterative strengthening starts from a candidate inductive invariant, e.g.,
the safety property, and strengthens it iteratively until it becomes inductive.
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Strengthening in Ivy is based on counterexamples to induction: a counterex-
ample to induction s is excluded by conjoining the candidate invariant with a
new conjecture that generalizes s into a set of excluded states. Generalization
is crucial for the success of the approach. First, the conjecture obtained by gen-
eralization must not exclude any reachable state (otherwise, it would not be
an invariant). In addition, it needs to be provable by induction with the given
language of inductive invariants (otherwise, no further strengthening would turn
the invariant into one that is also inductive). Finding a good generalization is
extremely difficult to automate, and is a key reason for failure of many automatic
techniques.

Therefore, Ivy uses an interactive generalization process, where the user con-
trols the generalization, but is assisted by the tool. Ivy interacts with the user
based on a graphical representation of concrete counterexamples to induction,
taking advantage of the finite-model property of EPR formulas, as well as of the
model-theoretic notion of a diagram.

The diagram [7] of a finite state (first-order structure) s, denoted Diag(s),
is an existentially quantified cube (conjunction of literals) that is satisfied by
a state s′ if and only if s′ contains s as a substructure (where a substructure
of s′ is a structure obtained by restricting the domain of s′ to some subset
and projecting all interpretations to the remaining elements in the domain).
As such, the negation of the diagram of s is a universally quantified clause that
“excludes” s as well as any structure that contains it as a substructure, providing
a natural generalization scheme. Additional generalization can be obtained by
omitting from Diag(s) some of the literals describing s (equivalently, omitting
some “features” from s). These observations were used in [24] as part of an
automatic invariant inference algorithm.

Ivy uses the diagram as a means to alternate between counterexamples to
induction (which are natural for the user to look at) and universally quanti-
fied clauses that exclude them. Namely, when the consecution check fails, the
user is presented with a minimal finite counterexample to induction, displayed
graphically. The user responds by determining whether the counterexample to
induction is reachable. If it is, then the inductive invariant is too strong and needs
to weakened. If it is not reachable, the invariant can be strengthened to exclude
it. In the latter case, the user hides some of the features of the counterexample
to induction (e.g., the interpretation of some relation symbol) that she judges
to be irrelevant to unreachability (i.e., such that the state remains unreachable
with any valuation of these features). In this way, she uses her intuition to focus
on the part of the state that really needs to be excluded. The feature selection is
performed via a graphical interface. Ivy then computes the diagram of the gen-
eralized state, and transforms it into a universally quantified clause (conjecture)
that excludes the generalized state and all the states that extend it. It offers the
user several additional checks, such as bounded model checking to help verify
that the new conjecture does not exclude any reachable state, and additional
generalization via interpolation based on the bounded model checking check. All
of these checks are implemented using decision procedures (relying on EPR’s
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decidability). In this way, the user controls the generalization process, and is
assisted by predictable automation.

Ivy was successfully used to infer invariants for several distributed protocols
which are beyond reach of automatic verification algorithms, demonstrating the
effectiveness of EPR and the interaction based on counterexamples to induction.
Moreover, under the assumption that the user identifies the “correct” features,
we are able to bound the complexity of the approach by means of the size of a
target invariant.

We note that while the interactive generalization technique is restricted to
generating universally quantified inductive invariants, Ivy’s graphical interface
is useful also in cases where the inductive invariant is more complex. In such
cases, Ivy provides counterexamples to induction, and updating the inductive
invariant to eliminate them is done entirely by the user. This approach has also
proven itself most effective, e.g., in verifying the Paxos consensus protocol [28]
and several of its variants [36].

Conclusion. We propose a verification methodology that aims to balance
between automation, expressivity and predictability by properly dividing the
verification task between the human and the machine. Ivy realizes this method-
ology by letting the tool check inductiveness of a given candidate inductive
invariant using decidable logic, and letting the user update the inductive invari-
ant based on graphically displayed counterexamples to induction. For universally
quantified inductive invariants, the latter is also done interactively via a process
of interactive generalization. It is left to future work to investigate these ideas
with respect to other logics, other inference algorithms (more sophisticated than
iterative strengthening), and other interaction modes.
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Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004)

6. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, pp. 167–182. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33386-6 14

7. Chang, C., Keisler, H.: Model Theory. Studies in Logic and the Foundations of
Mathematics. Elsevier Science, New York (1990)

8. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)
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instances and beyond. In: Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, 20–23 October 2013, pp. 61–68 (2013)

11. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
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Abstract. Modern networks achieve robustness and scalability by main-
taining states on their nodes. These nodes are referred to as middle-
boxes and are essential for network functionality. However, the presence
of middleboxes drastically complicates the task of network verification.
Previous work showed that the problem is undecidable in general and
EXPSPACE-complete when abstracting away the order of packet arrival.

We describe a new algorithm for conservatively checking isolation
properties of stateful networks. The asymptotic complexity of the algo-
rithm is polynomial in the size of the network, albeit being exponential
in the maximal number of queries of the local state that a middlebox
can do, which is often small.

Our algorithm is sound, i.e., it can never miss a violation of safety
but may fail to verify some properties. The algorithm performs on-the
fly abstract interpretation by (1) abstracting away the order of packet
processing and the number of times each packet arrives, (2) abstracting
away correlations between states of different middleboxes and channel
contents, and (3) representing middlebox states by their effect on each
packet separately, rather than taking into account the entire state space.
We show that the abstractions do not lose precision when middleboxes
may reset in any state. This is encouraging since many real middleboxes
reset, e.g., after some session timeout is reached or due to hardware
failure.

1 Introduction

Modern computer networks are extremely complex, leading to many bugs
and vulnerabilities that affect our daily life. Therefore, network verification
is an increasingly important topic addressed by the programming languages
and networking communities [5,12,14–17,23,30]. Previous network verification
tools leverage a simple network forwarding model, which renders the datapath
immutable. That is, normal packets going through the network do not change
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its forwarding behaviour, and the control plane explicitly alters the forwarding
state at relatively slow time scales.

While the notion of an immutable datapath supported by an assemblage of
routers makes verification tractable, it does not reflect reality. Middleboxes are
widespread in modern enterprise networks [31]. A simple example of a middle-
box is a stateful firewall which permits traffic from untrusted hosts only after
they have received a packet from a trusted host. Middleboxes, such as firewalls,
WAN optimizers, transcoders, proxies, load-balancers and the like, are the most
common way to insert new functionality in the network datapath, and are com-
monly used to improve network performance and security. Middleboxes maintain
a state and may change their state and forwarding behavior in response to packet
arrivals. While useful, middleboxes are a common source of errors in the net-
work [27].

As a simple example, consider the middlebox chain described in Fig. 1. In
this network, a firewall is used to ensure that low security hosts (l1, . . . , lm)
do not receive packets from the Sh server, and a cache and load balancer are
used to improve performance. Unfortunately, the configuration of the network
is incorrect since the cache may respond with a stored packet, bypassing the
security policy enforced by the firewall. Swapping the order of the cache and the
firewall results in a correct configuration.

Safety of Stateful Networks. We address the problem of verifying safety of
networks with middleboxes, referred to as stateful networks. We target verifica-
tion of isolation properties, namely, that packets sent from one host (or class of
hosts) can never reach another host (or class of hosts). Yet, our approach is sound
for any safety property. For example, it detects the safety violation described in
Fig. 1, and verifies the safety of the correct configuration of this network.

Our focus is on verifying the configuration of stateful networks, i.e., address-
ing errors that arise from the interactions between middleboxes, and not from the
complexity of individual middleboxes. Hence, we follow [35] and use an abstrac-
tion of middleboxes as finite-state programs. Previous work [32,35] has shown
that many kinds of middleboxes, including proxy, cache proxy, NAT, and vari-
ous kinds of load-balancers can be modeled in this way, sometimes using non-
determinism to over-approximate the behaviour, e.g. to model timers, counters,
etc. Since we are interested in safety properties, such an abstraction (overap-
proximation) is suitable.

Fig. 1. A middlebox chain with a buggy topology.
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As shown in [35], it is undecidable to check safety properties in general and
isolation in particular, even for middleboxes with a finite state space, and even
when the order of packets pending for each middlebox is abstracted away the
complexity is quite high (EXPSPACE-complete). Therefore, in this paper we
develop additional abstractions for scaling up the verification.

Our Approach. This paper makes a first attempt to apply abstract inter-
pretation [7] to automatically prove the safety of stateful networks. Our app-
roach combines sound network-level abstractions and middlebox-level abstrac-
tions that, together, make the verification task tractable. Roughly speaking,
we apply (i) order abstraction [35], abstracting away the order of packets on
channels, (ii) counter abstraction [26], abstracting away their cardinality, (iii)
network-level Cartesian abstraction [7,11,13], abstracting away the correlation
between the states of different middleboxes and different channel contents, and
(iv) middlebox-level Cartesian abstraction, abstracting away the correlation
between states of different packets within each middlebox.

The network-level abstractions, (i)–(iii), lead to a chaotic iteration algorithm
that is polynomial in the state space of the individual middleboxes and packets.
However, the number of middlebox states can be exponential in the size of the
network. For example, a firewall may record the set of trusted hosts and thus
its states are subsets of hosts. Therefore, the resulting analysis is exponential in
the number of hosts1.

The middlebox-level Cartesian abstraction, (iv), is the key to reducing the
complexity to polynomial. The crux of this abstraction is the observation that
the abstraction of middleboxes as reactive processes that query and update their
state in a restricted way (e.g., [35]) allows to represent a middlebox state as a
product of loosely-coupled packet states, one per potential packet. This lets us
define a novel, non-standard, semantics of middlebox programs that we call
packet effect semantics. The packet effect semantics is equivalent (bisimilar) to
the natural semantics. However, while the natural semantics is monolithic, the
packet effect semantics decomposes a single middlebox state into the parts that
determine the forwarding behavior of different packets, and therefore facilitates
the use of Cartesian abstraction to further reduce the complexity.

One of the main challenges for abstract interpretation is evaluating its pre-
cision. To address this challenge, we provide sufficient conditions that ensure
precision of our analysis. Namely, we show that if the network is safe in the
presence of packet reordering and middlebox reverts, where a middelbox may
revert to its initial state at any moment, then our analysis is guaranteed to
be precise, and will never report false alarms. This is, to a great extent, due
to the packet effect semantics, which allows to use a middlebox-level Carte-
sian abstraction without incurring additional precision loss for such networks.
Notice that middlebox reverts enable modelling arbitrary hardware failures,
which have not been addressed by previous work on stateful network verification

1 Unfortunately, if the set of hosts is not fixed, the safety problem becomes undecidable
(even under the unordered abstraction) [1]. This means that, in general, it is not
possible to alleviate the dependency of the complexity on the hosts.
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(e.g., in [35]). Surprisingly, verification becomes easier under the assumption
that middleboxes may reset at any time. (Recall that for arbitrary unordered
networks safety checking is EXPSPACE-complete.).

In summary, the main contributions of this paper are

– We introduce the first abstract interpretation algorithm for verifying safety
of stateful networks, whose time complexity is polynomial in the size of the
network, albeit exponential in the maximal number of queries of the local state
that a middlebox can do, which is often small even for complex middelboxes
(up to 5 in our examples).

– We develop packet effect semantics, a non-standard semantics of middelbox
programs that facilitates middlebox-level Cartesian abstraction, reducing the
complexity of the abstract interpretation algorithm from exponential in the
size of the network to polynomial without incurring any additional precision
loss for unordered reverting networks.

– We provide sufficient conditions for precision of the analysis that have a nat-
ural interpretation in the domain of stateful networks: ignoring the order of
packet processing and letting middleboxes revert to their initial states at any
time.

– We prove lower bounds on the complexity of safety verification in the presence
of packet reordering and/or middlebox reverts, showing that our algorithm is
essentially optimal.

– We implement our analysis and show that it scales well with the number of
hosts and middelboxes in the network.

We defer proofs of key claims to the extended version of this paper [1].

2 Expressing Middlebox Effects

This section defines our programming language for modeling the abstract behav-
ior of middleboxes in the network. Our modeling language is independent of
the particular network topology, which is defined in Sect. 3. The proposed lan-
guage, AMDL (Abstract Middlebox Definition Language), is a restricted form
of OCCAM [29], similar to the languages of [32,35].

We first define the syntax and informal semantics of AMDL (Sect. 2.1); we
then define a formal “standard” relation effect semantics (Sect. 2.2); we continue
by defining an alternative packet effect semantics (Sect. 2.3), which is bisimilar
to the relation effect semantics (Sect. 2.4); and finally we present a localized
version of the packet effect semantics (Sect. 2.5), which is suitable for Cartesian
abstraction.

Packets. Middlebox behavior in our model is defined with respect to packets
that consist of a fixed, finite, number of packet fields, ranging over finite domains.
As such, a packet p ∈ P in our formalism is a tuple of packet fields over predefined
finite sorts. In our examples, a packet is a tuple 〈s, d, t〉, where s, d are the source
and destination hosts, respectively, taken from a finite set of hosts H, and t is
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a packet tag (or type) that ranges over a finite domain T . In this case, |P | is
polynomial in |H|. (Our approach is also applicable when additional fields are
added, e.g., for modeling the packet’s payload via an abstract finite domain.).

2.1 Syntax and Informal Semantics

Figure 3 describes the syntax of the AMDL language2. Middleboxes are imple-
mented as reactive processes, with events triggered by the arrival of packets. If
multiple packets are pending, the AMDL process non-deterministically reads a
packet from one of the incoming channels of the process. The packet process-
ing code is a loop-free block of guarded-commands, which may update relations
and forward potentially modified packets to some of the output ports. AMDL
uses relations over finite domains to store the middlebox state. These are the
only data structures allowed in AMDL. The only relation operations allowed are
inserting a value to a relation, removing a value from a relation, and membership
queries—checking whether a value is in a relation. For a membership query of
the form a in r, we denote the relation, r, used in the query by rel(q) and denote
the tuple of atoms a by atoms(q). For example, the code for a session firewall is
depicted in Fig. 2.

Middleboxes may enforce safety properties using the abort command. For
example, an isolation middlebox would abort when a forbidden packet is received.

Fig. 2. AMDL code for session firewall.

2 In the code examples, we write p for the triple (src,dst,type) and use access path
notation to refer to the fields, e.g., p.src.
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Fig. 3. AMDL syntax. e denotes a comma-separated list of elements drawn from the
domain e. abort imposes a safety condition. c ? p reads p from a channel c and c ! p
writes p into c. We write m for a middlebox name, r for a relation name, and c for
a channel name. We write const for a constant symbol and pfld for identifiers used to
match fields in packets, e.g., src. Non-deterministic choice is denoted by �.

2.2 Middlebox Relation Effect Semantics

We now sketch the semantics of AMDL. The definitions below supply a part of
the full network semantics, which is given in Sect. 3.

Middlebox States. Each middlebox m ∈ M maintains its own local state as a
set of relations. The domain of a relation r defined over sorts s1..k is D(r) def=
D(s1) × . . . × D(sk), where D(si) is the domain of sort si. We use rels(m) to
denote the set of relations in m, and D(m) to denote the union of D(r) over
r ∈ rels(m).

The middlebox state of m is then a function s ∈ ΣR[m] def= rels(m) →
℘(D(m)), mapping each r ∈ rels(m) to v ⊆ D(r). In addition, we introduce
a unique error middlebox state, denoted err. We assume that err ∈ ΣR[m] for
every middlebox m.

Middlebox Transitions. Middlebox transitions have the form

(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→R⊆ ΣR[m] × ΣR[m]

where (p, c) denotes packet-channel at the input, and (pi, ci)i=1..k is the sequence
of packet-channel pairs that the middlebox outputs.

For example, for s
def= [requested �→ ∅, trusted �→ ∅], the guarded com-

mand corresponding to the internal port of the firewall middlebox (Fig. 2)

induces a transition s
((h1,h2,0),

→
cin)/((h1,h2,0),

→
cout)−−−−−−−−−−−−−−−−−−−−→R s′ where s′ def= [requested �→

{h2}, trusted �→ ∅].
abort commands induce transitions to the err state.
The formal definition of the middlebox transitions appears in the extended

version of this paper [1].

2.3 Middlebox Packet Effect Semantics

We now present a semantics that is equivalent to the relation effect semantics.
The semantics is based on an alternative (yet isomorphic) representation of mid-
dlebox states that reveals a loose coupling between the parts of the state that
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are relevant for different packets. This loose coupling then facilitates a Cartesian
abstraction that abstracts away correlations between packets in the same state.

Packet Effect Representation of Middlebox State. Recall that in Sect. 2.1
we restrict the values that can be used in a middlebox program to either con-
stants or the values of fields of the currently processed packet. We do not allow
extracting tuples from the relation (e.g., by having a get command, or by iterat-
ing over the contents of the relation). Instead, we limit the interaction with the
relation to checking whether a tuple (that consists of packet fields or constants)
exists in the relation. Consequently, instead of storing the contents of all rela-
tions, the state of the middlebox can be represented by mapping all potential
packets in the network to their effect on the middlebox. Specifically, we map
each packet and membership query in the program to whether that membership
query will be evaluated to True when the program is executed on that packet.

For every middlebox m, we denote by Q(m) the set of membership
queries in m’s program. (We need not distinguish between different instances
of the same query.) For example, in Fig. 2, Q(fw) =

{
p.dst in trusted,

p.src in trusted, p.src in requested
}
.

The packet effect state of a middlebox m is a function s ∈ ΣP[m] def=
P → Q(m) → {True,False}, mapping each packet p ∈ P to the evaluation
of all queries of m when p is the input packet, thus capturing the way in which
p traverses m’s program. We refer to s(p) ∈ Q(m) → {True,False} as the packet
state of packet p in middlebox state s. We extend ΣP[m] with an error state
λp ∈ P. err, which is also denoted err.

Middlebox Transition Relation in the Packet Space. The seman-
tics of middlebox m in the packet space is defined via a transition relation
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→P,m⊆ ΣP[m] × ΣP[m]. When m is clear, we omit it from the

notation. A transition s̃
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→P s̃′ exists if (one of) the sequence of

operations applied on s̃ when packet p arrives on channel c outputs (pi, ci)i=1..k

and leads to s̃′.
The semantics of operations is defined similarly to the “standard” relation

effect semantics. The semantics of error and output actions (that do not change
the middlebox state) is straightforward. Next, we explain the semantics of the
operations that depend on or change the middlebox state—membership queries
and relation updates.

Consider a membership query q. Let s̃ be the middlebox state before eval-
uating q, i.e., s̃ is the state that results from executing all previous relation
updates, and let p be the packet that invoked the middlebox transition. Then q
is evaluated to s̃(p)(q).

Next, consider a relation update. A relation update r(a) :=cond updates the
packet states of all packets that are affected by the operation. This is done as
follows. As before, let s̃ be the intermediate state of m right before executing the
operation, and let p be the packet that the middlebox program is operating on.
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Consider the case where cond evaluates to True in s̃, corresponding to addition
of a value. (Removal of a value is symmetric.) We denote by a(p) the result of
substituting each field name in a by its value in p. That is, a(p) ∈ D(r) is the
value being added to r. This addition may affect the value of membership queries
q ∈ Q(m) with rel(q) = r (querying the same relation r) for other packets p̃ as
well, in case that atoms(q)(p̃), i.e., the value being queried on p̃, is the same as
the value a(p) being added to r. Therefore, the intermediate state obtained after
the relation update operation has been applied is

s̃′ = λp̃ ∈ P. λq ∈ Q(m).

{
True, if rel(q) = r ∧ atoms(q)(p̃) = a(p).
s̃(p̃)(q), otherwise.

Namely, the operation updates to True the value of queries that coincide with
the tuple of elements inserted to the relation.

Example 1. Consider the packet effect state s̃
def= λp. λq.False ∈ ΣP[fw] of the

firewall (Fig. 2), where q ranges over the three membership queries in the code.
Upon reading the packet (h1, h2, 0) from an internal port, the middlebox per-
forms a sequence of internal transitions which includes evaluating the expression
“p.type=0” to True, outputting the packet (h1, h2, 0) to the output port, and
executing the command requested(p.dst) := true, which results in updating
the state to:

s̃′ def= λp̃. λq.

{
True, if rel(q) = requested ∧ atoms(q)(p̃) = h2

False, otherwise.
That is, s̃′((h2, ∗, ∗))(p.src in requested) = True and all the other values

in s̃′ remain False as before. Therefore, s̃
((h1,h2,0),

→
cin)/((h1,h2,0),

→
cout)−−−−−−−−−−−−−−−−−−−−→P s̃′. ��

2.4 Bisimulation of Packet Effect Semantics and Relation Effect
Semantics

We continue by showing that the transition systems defining the semantics of
middleboxes in the packet effect and in the relation effect representations are
bisimilar.

To do so, we first define a mapping ps : ΣR[m] → ΣP[m] from the relation
state representation to the packet effect state representation. Recall that the
relation state representation of middlebox states is s ∈ ΣR[m] def= rels(m) →
℘(D(m)). Given a state s ∈ ΣR[m], ps maps it to the packet effect state sP

defined as follows:

sP
def= λp̃ ∈ P. λq ∈ Q(m). atoms(q)(p̃) ∈ s(rel(q)).

That is, for every input packet p̃, the value in sP of the query q ∈ Q(m) is equal
to the evaluation of the same query in s based on an input packet p̃.

Definition 1 (Bisimulation Relation). For a middlebox m, we define the
relation ∼m⊆ ΣR[m]×ΣP[m] as the set of all pairs (s, sp) such that s = sp = err
or ps(s) = sp.
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Lemma 1. Let s ∈ ΣR[m] and s̃ ∈ ΣP[m] and s ∼m s̃. Then the following
holds:

– For every state s′ ∈ ΣR[m], if s
(p,c)/o−−−−→R s′ then there exists a state s̃′ ∈

ΣP[m] s.t. s̃
(p,c)/o−−−−→P s̃′ and s′ ∼m s̃′, and

– For every state s̃′ ∈ ΣP[m] if ŝ
(p,c)/o−−−−→P s̃′ then there exists a state s′ ∈ ΣR[m]

s.t. s
(p,c)/o−−−−→R s′ and s′ ∼m s̃′.

2.5 Locality of Packet-Effect Middlebox Transitions

In this section we present a locality property of the packet effect semantics that
will allow us to efficiently compute an abstract transformer when applying a
Cartesian abstraction. Namely, we observe that an execution of an operation
r(a) :=cond, in the context of processing an input packet p, potentially updates
the packet states of all packets. However, for each packet p̃, the updated packet
state s̃′(p̃) depends only on its pre-state s̃(p̃), the input channel c, the input
packet p, and s̃(p), which determines the value of queries; it is completely inde-
pendent of the packet states of all other packets. Since, in addition, the execu-
tion path of the middlebox when processing input packet p depends only on the
packet state of p, this form of locality, which we formalize next, extends to entire
middlebox programs.

Definition 2 (Substate). Let s̃ ∈ P → Q(m) → {True,False} be a packet
effect state. We denote by s̃|{p,p̃} ∈ {p, p̃} → Q(m) → {True,False} the substate
obtained from s̃ by dropping all packet states other than those of p and p̃. Let
ΣP[m, p, p̃] def= {p, p̃} → Q(m) → {True,False} denote the set of substates for p
and p̃.

Definition 3 (Substate transition relation). We define the substate tran-

sition relation
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→P[p,p̃]: ΣP[m, p, p̃]×ΣP[m, p, p̃] as follows. A sub-

state transition s̃[p, p̃]
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→P[p,p̃] s̃[p, p̃]′ holds if there exist s̃ and s̃′

such that s̃|[p,p̃] = s̃[p, p̃], s̃′|[p,p̃] = s̃[p, p̃]′ and s̃
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→P s̃′.

The locality of AMDL programs manifests itself in the ability to compute

the substate transition relation,
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→P[p,p̃], directly from the code

(without first computing the transition relation and then using projection). This
property will be important later to efficiently compute a network-level abstract
transformer (Sect. 4.1):

Lemma 2 (2-Locality). Given s̃[p, p̃] and s̃[p, p̃]′, checking whether

s̃[p, p̃]
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→P[p,p̃] s̃[p, p̃]′

can be done in time linear in the size of the middlebox program.
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3 Network Semantics

This section defines the semantics of stateful networks by defining the seman-
tics of packet traversal over communication channels in the network, and the
transitions between network configurations. We first define a concrete seman-
tics, followed by two relaxations: unordered semantics and reverting semantics.
These relaxations provide sufficient conditions for completeness of the abstract
interpretation performed in Sect. 4.
Network Topology. A network N is a finite bidirected3 graph of hosts and
middleboxes, equipped with a packet domain. Formally, N = (H ∪ M,E,P ),
where:

– P is a set of packets.
– H is a finite set of hosts. A host h ∈ H consists of a unique identifier and a

set of packets Ph ⊆ P that it can send.
– M is a finite set of middleboxes. A middlebox m ∈ M is associated with a set

of communication channels Cm.
– E ⊆ {〈h, cm,m〉, 〈m, cm, h〉 | h ∈ H,m ∈ M, cm ∈ Cm}∪{〈m1, cm1 , cm2 ,m2〉 |

m1,m2 ∈ M, cm1 ∈ Cm1 , cm2 ∈ Cm2} is the set of directed communication
channels in the network, each connecting a communication channel cm1 ∈ Cm1

of middlebox m1 either to a host, or to a communication channel cm2 ∈
Cm2 of middlebox m2. For e of the form 〈m, cm, h〉 or 〈m, cm, cm2 ,m2〉, we
say that e is an egress channel of middlebox m connected to channel cm

and an ingress channel of host h, respectively middlebox m2, connected to
channel cm2 .

The network semantics is parametric in the middlebox semantics. It con-
siders the semantics of a middlebox m ∈ M to be a transition system with
a finite set of states Σ[m], an initial state σI(m) ∈ Σ[m] and a set of tran-

sitions
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→⊆ Σ[m] × Σ[m]. This can be realized with either the

relation effect semantics or the packet effect semantics defined in Sects. 2.2 and
2.3, respectively.

3.1 Concrete (Ordered) Network Configurations

All variants of the network semantics defined in this section are defined over the
same set of configurations. Let Σ[M ] def=

⋃

m∈M

Σ[m] denote the set of middlebox

states of all middleboxes in a network. An ordered network configuration (σ, π) ∈
Σ = (M → Σ[M ]) × (E → P ∗) assigns middleboxes to their (local) middlebox
states and communication channels to sequences of packets. The sequence of
packets on each channel represents all packets sent from the source and not yet
processed by the destination.

3 A bidirected graph is a directed graph in which every edge has a matching edge in
the opposite direction. i.e., (u, v) ∈ E ⇐⇒ (v, u) ∈ E.



96 K. Alpernas et al.

Initial Configuration. We denote the ordered initial configuration by
(σI , λ e ∈ E . ε), where σI : M → Σ[M ] denotes the initial state of all mid-
dleboxes.
Error Configurations. We say that a configuration is an error configuration
if any of its middleboxes is in the error state. We denote all error configurations
by err.

3.2 Concrete (FIFO) Network Semantics

We first consider the First-In-First-Out (FIFO) network semantics, under which
communication channels retain the order in which packets were sent.

Ordered Network Transitions. The network semantics is defined via middle-
box transitions and host transitions.

A middlebox transition is (σ, π)
p,e,m
===⇒o (σ′, π′) where the following holds: (i)

p is the first packet on the channel e ∈ E, (ii) the channel e is an ingress channel

of middlebox m connected to channel c ∈ Cm, (iii) σ(m)
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→ σ′(m),

meaning that σ′(m) is the result of updating σ(m) according to the middlebox
semantics, (iv) the channels ei are egress channels of middlebox m connected to
the channels ci ∈ Cm, (v) π′ is the result of removing packet p from (the head
of) channel e and appending pi to the tails of the appropriate channels ei, and
(vi) the states of all other middleboxes equal their states in σ.

A host transition is (σ, π)
h,e,p
===⇒o (σ, π′) where one of the following holds:

Packet Production (i) the channel e is an egress channel of host h, (ii) p ∈ Ph

is a packet sent by h, and (iii) π′ is the result of appending p to the tail of e;
or

Packet Consumption (i) the channel e is an ingress channel of host h, (ii) p
is the first packet on the channel e, and (iii) π′ is the result of removing p
from the head of e.

We denote the ordered transition relation obtained by the union of all mid-
dlebox and host transitions by =⇒o. It is naturally lifted to a concrete transformer
T o : ℘(Σ) → ℘(Σ) defined as:

T o(X) def= {(σ′, π′) | (σ, π) ∈ X ∧ (σ, π) =⇒o (σ′, π′)} .

Collecting Semantics. The ordered collecting semantics of a network N is the
set of configurations reachable from the initial configuration.

�N�o def= LeastFixpoint(T o)(σI , λ e ∈ E . ε) =
∞⋃

i=1

(T o)i(σI , λ e ∈ E . ε) .

Definition 4 (Safety Verification Problem). For a network N and initial
state σI for the middleboxes, the safety verification problem is to determine
whether an error configuration is reachable from the initial configuration. That
is, whether err ∈ �N�o.
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Theorem 1 [35]. The safety verification problem for ordered networks is
undecidable.

In this work, we tackle the undecidability of verification by developing a
sound abstract interpretation that can be used to check the safety of networks.
Before doing so, we present two relaxed network semantics that motivate the
abstractions we employ, and also provide sufficient conditions for their com-
pleteness.

3.3 Unordered and Reverting Network Semantics

The “unordered” semantics allows channels to not preserve the packet transmis-
sion order. Namely, packets in the same channel may be processed in a different
order than the order in which they were received. The “reverting” semantics
allows middleboxes to revert to their initial state after every transition. Formally,
these relaxed semantics extend the set of network transitions (and consequently,
the transformer and the collecting semantics) with reordering transitions and
reverting transitions, respectively.

A reordering transition has the form (σ, π) e=⇒ (σ, π′) where for the channel
e ∈ E, π′(e) is a permutation of π(e) and for all other channels e′ �= e, π′(e′) =
π(e′).

A reverting transition has the form (σ, π) m=⇒ (σ′, π) where for the middlebox
m ∈ M , σ′(m) = σI(m) and for all other middleboxes m′ �= m, σ′(m) = σ(m).

The unordered network transitions consist of the ordered transitions as well
as the reordering transitions; the ordered reverting transitions consist of the
ordered transitions and the reverting transitions; and the unordered reverting
transitions consist of all of the above. We denote the corresponding collecting
semantics by �N�u, �N�or and �N�ur, respectively. Clearly,

�N�o ⊆ �N�u ⊆ �N�ur and �N�o ⊆ �N�or ⊆ �N�ur

By plugging-in the two representations of middleboxes in the definition of
the network semantics, we obtain two variants of the network semantics for each
of the four variants considered so far. In the sequel, we use a pa subscript to
refer to the packet effect semantics, and no subscript to refer to the relation
effect semantics. The bisimulation between middlebox representations is lifted
to a bisimulation between each relation state network semantics and the corre-
sponding packet state network semantics. Therefore, the following holds:

Lemma 3. For every semantic identifier i ∈ {o, u, or, ur}, err ∈ �N�i iff err ∈
�N�i

pa.

The safety verification problem is adapted for the different variants of the
network semantics. The following theorem summarizes the complexity of the
obtained problems. (We do not distinguish the packet effect semantics from the
relation effect semantics, since due to Lemma 3 they induce the same safety
verification problem.)
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Theorem 2. The safety verification problem is

(i) EXPSACE-complete for unordered networks [35].
(ii) undecidable for ordered reverting networks.
(iii) coNP-hard for unordered reverting networks.

Theorem 2(ii) justifies the need for the unordered abstraction even in revert-
ing networks. Theorem 2(iii) implies that our abstract interpretation algorithm,
presented in Sect. 4, which is both sound and complete for the unordered revert-
ing semantics, is essentially optimal since it essentially meets the lower bound
stated in the theorem (it is exponential in the number of state queries of any
middlebox and polynomial in the number of middleboxes, hosts and packets).

Sticky Properties. Unordered reverting networks have a useful property of
sticky packets, meaning that if a packet is pending for a middlebox in some run
of the network then any run has an extension in which the packet is pending
again with multiplicity > n, for any n ∈ N. This property implies a stronger
property:

Lemma 4 (Sticky Packet States Property). For every channel e, packets
p, p̃, middlebox m and packet state ṽ of p̃ in m: If, in some reachable configura-
tion, channel e contains p and in some (possibly other) reachable configuration
the packet state of p̃ in m is ṽ, then there exists a reachable configuration where
simultaneously e contains p and the packet state of p̃ in m is ṽ.

Intuitively, Lemma4 follows from the fact that all middleboxes can revert
to their initial state and the unordered semantics enables a scenario where the
particular state and packets are reconstructed. It ensures that ignoring the corre-
lation between the packet states of a middlebox for different packets, the packet
states across different middleboxes, and the occurrence (and cardinality) of pack-
ets on channels does not incur any precision loss w.r.t. safety. This makes the
network-level abstraction defined in Sect. 4, which treats channels as sets of pack-
ets and ignores correlations between packet states and channels, precise.

4 Abstract Interpretation for Stateful Networks

In this section, we present our algorithm for safety verification of stateful net-
works based on abstract interpretation of the semantics �N�o

pa, and discuss its
guarantees.

4.1 Abstract Interpretation for Packet Space

We apply sound abstractions to different components of the concrete packet state
network domain. Due to space constraints, we do not describe the intermediate
steps in the construction of the abstract domain, and only present the final
domain used by the analysis. Roughly speaking, the obtained domain abstracts
away (i) the order and cardinality of packets on channels; (ii) the correlation
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between the states of different middleboxes and different channel contents; and
(iii) the correlation between states of different packets within each middlebox.

Cartesian Packet Effect Abstract Domain. Let Q → {T, F} denote the
union of Q(m) → {T, F} over all middleboxes m ∈ M , including the error state
err. The Cartesian abstract domain of the packet state of the network is given by
the lattice A def= (A,⊥,�,�), where A

def= (M → P → ℘(Q → {T, F})) × (E →
℘(P )). That is, an abstract element maps each packet in each middlebox to a set
of possible valuations for the queries, and each channel to a set of packets. The
bottom element is ⊥ def= (λm. λp. ∅, λe. ∅), the partial order a1 � a2 is defined
by pointwise set inclusions per middlebox and channel, and join is defined by
pointwise unions (ω1, ω2)�(ω′

1, ω
′
2)

def= (λm. λp. ω1(m)(p)∪ω′
1(m)(p), λe. ω2(p)∪

ω′
2(p)).

Let C def= (℘(ΣP),⊆) be the concrete network domain. We define the Galois
connection (C, γ, α,A) as follows. The abstraction function α : ℘(ΣP) → A for a
set of packet state configurations X ⊆ ΣP is defined as α(X) = (ωmboxes, ωchans)
where

ωmboxes = λm. λp. {σ(m)(p) | (σ, π) ∈ X} and ωchans = λe.
⋃

(σ,π)∈X

π(e) .

The concretization function γ : A → ℘(ΣP) is induced by α and �. We
denote the initial abstract element as aI = α({(σI , λ e ∈ E . ∅)}).

Abstract Transformer. Next, we define the abstract transformer T � : A → A,
which soundly abstracts the concrete transformer T o and show that it is effi-
cient, due to the locality property of middlebox transitions. We use the predicate
in(c, e,m) to denote that the network channel e is an ingress channel of mid-
dlebox m, connected to its c channel. Similarly, out(c, e,m) means that e is an
egress channel of m connected to its c channel. Further, let [x1 �→y1, . . . , xn �→yn]
denote a mapping from each xi to yi for i = 1..n and f [x �→ y] denote the
function f updated by (re-)mapping x to y.

Definition 5. Let (ω1, ω2) ∈ (M → P → ℘(Q → {T, F})) × (E → ℘(P )) be an
abstract element. Then T �(ω1, ω2)

def=

⊔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ω1[m �→p̃s],
ω2[ei �→ω2(ei) ∪ {pi}])

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(1) m ∈ M,
(2) p ∈ ω2(e), in(c, e,m),
(3) s̃ ∈ ω1(m), p̃ ∈ P,

s̃[p, p̃] = [p �→ s̃(p), p̃ �→ s̃(p̃)],

(4) s̃[p, p̃]
(p,c)/(pi,ci)i=1..k−−−−−−−−−−−→P[p,p̃] s̃[p, p̃]′,

(5) p̃s = s̃[p̃ �→{ s̃[p, p̃]′(p̃) }],
(6) out(ci, ei,m), i = 1..k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Intuitively, the transformer updates the abstract state by joining the indi-
vidual effects obtained by: (1) considering each middlebox, (2) considering each
input packet to the middlebox, (3) considering every possible substate for the
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input packet p and every other packet p̃, (4) considering every possible substate
transition, (5) adding the new packet state for p̃ to the relevant set, and (6)
adding each output packet to the corresponding edge.

Proposition 1. The running time of T � is O((|M |+ |E|) · |P |2 ·22|Qmax|), where
Qmax denotes the maximal set of queries Q(m) over all middleboxes m ∈ M .

Our algorithm for safety verification computes μ� def= LeastFixpoint(T �)(aI) =
∞⊔

i=1

T �i(aI) and checks whether err ∈ μ�.

Complexity of Least Fixpoint Computation. The height of the abstract
domain lattice is determined by the number of packets that can be added to the
channels of the network—(|P | · |E|), multiplied by the number of state changes
that can occur in any of the middleboxes—O(|M |·|P |·2|Q|). The time complexity
of the abstract interpretation is bounded by the height of the abstract domain
lattice multiplied by the time complexity of the abstract transformer:

O(|P |4 · |E| · |M | · 23|Qmax| · (|M | + |E|)) .

4.2 Soundness and Completeness

Our algorithm is sound in the sense that it never misses an error state. This
follows from the use of a sound abstract interpretation:

Theorem 3 (Soundness). �N�o
pa ⊆ �N�ur

pa ⊆ γ(μ�).

Our algorithm is also complete relative to the reverting unordered semantics.

Theorem 4 (Completeness). μ� � α(�N�ur
pa).

The proof of Theorem4 relies on the sticky property formalized by Lemma4.
The theorem states that for reverting unordered networks μ� is at least as pre-
cise as applying the abstraction function on the concrete packet state network
semantics. In particular, this implies that if μ� is an abstract error element then
err ∈ �N�ur

pa. As a result, for such networks our algorithm is a decision procedure.
For other networks it may produce false alarms, if safety is not maintained by
an unordered reverting abstraction.

Properties. Recall that we express safety properties via middleboxes in the
network. Therefore, in unordered reverting networks, the possibility to revert
applies to the safety property as well, and may introduce false alarms due to
addition of behaviors leading to error. However, for safety properties such as
isolation which are suffix-closed (i.e., all the suffixes of a safe run are themselves
safe runs), this cannot happen [1].
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5 Implementation and Initial Evaluation

In this section, we describe our implementation of the analysis described in
Sect. 4, and report our initial experience running the algorithm on a few example
networks.

Implementation. We have developed a compiler, amdlc, which takes as input
a network topology and its initial state (given in json format) and AMDL pro-
grams for the middleboxes that appear in the topology. The compiler outputs
a Datalog program, which can then be efficiently solved by a Datalog solver.
Specifically, we use LogicBlox [3].

The generated Datalog programs include three relations: (i) packetsSeen,
which stores the packets sent over the network channels; (ii) middleboxState,
which stores the packet state of individual packets in each middlebox (i.e.,
the possible valuation of each middlebox program’s queries for each individ-
ual packet); and (iii) abort, which stores the middleboxes that have reached an
err state.

We encode the packets that hosts can send to their neighboring middleboxes
and the initial state of the middleboxes as Datalog facts (edb), and the effects of
the middlebox programs, i.e. relation update actions and packet output actions,
as Datalog rules (idb).

We then use the datalog engine to compute the fixed point of the
datalog program. That fixed point is exactly the least fixed point μ� def=

LeastFixpoint(T �)(aI) =
∞⊔

i=1

T �i(aI)

Evaluation. The main challenge in acquiring realistic benchmarks is that mid-
dlebox configuration and network topology are considered security sensitive, and
as a result enterprises and network operators do not release this information to
the public. Consequently, we benchmarked our tool using the synthetic topolo-
gies and configurations described by [24].

Our benchmarks focus on datacenter networks and enterprise networks. The
set of middleboxes we used in our datacenter benchmarks is based on infor-
mation provided in [27], and on conversations with datacenter providers. We
ran both a simple case where each tenant machine is protected by firewalls and
an IPS (Intrusion Prevention System); and a more complex case where we use
redundant servers and distribute traffic across them using a load balancer. Our
enterprise topology is based on the standard topology used in a variety of uni-
versity departments including UIUC (reported in [18]), UC Berkeley, Stanford,
etc. which employ firewalls and an IP gateway.

We ran two scaling experiments, measuring how well our system scales when
the number of hosts or the number of middleboxes in the network increases The
experiments were run on Amazon EC2 r4.16 instances with 64-core CPUs and
488 GiB RAM.

Multi Tenant Datacenter Network. Figure 4 illustrates the topology of a
multi tenant datacenter. Each rack hosts a different tenant, and the safety prop-
erty we wish to verify is isolation between the hosts of the two racks. In this
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Fig. 4. Topology of the datacenter example.

example the network also employs an IPS to prevent malicious traffic from reach-
ing the datacenter. Actual IPS code is too complex to be accurately modeled in
AMDL; instead we over-approximate the behaviour of an IPS by modeling it as
a process that non-deterministically drops incoming packets.

Enterprise Network. Figure 5a illustrates the topology of an enterprise net-
work. The enterprise network consists of three subnets, each with a different
security policy. The public subnet is allowed unrestricted access with the outside
network. The quarantined subnet is not allowed any communication with the
outside network. The private subnet can initiate communication with a host in
the outside network, but hosts in the outside network cannot initiate communi-
cation with the hosts in the private subnet.

To evaluate the feasibility of our solution, we ran the analysis of Fig. 5a on
networks with varying numbers of hosts ranging from 20 to 2,000. Our imple-
mentation successfully verified a network with 2,000 hosts in under four hours,
suggesting that the implementation could be used to verify realistic networks.
Figure 5b shows the times of the analysis on an enterprise network with 20–2,000
hosts.

Datacenter Middlebox Pipeline. Figure 6a describes a datacenter topology
with a pipeline of middleboxes connecting servers to the Internet. The topology
contains multiple middlebox pipelines for load-balancing purposes and to ensure
resiliency. We use this topology to test the scalability of our approach w.r.t the

(a) Enterprise (b) Running time (seconds).

Fig. 5. Topology and running times of the host scalability test.
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(a) Topology with multiple middlebox-
pipelines

(b) Running time (seconds).

Fig. 6. Topology and running times of the network topology scalability test.

size of the network, by adding additional middlebox pipelines and keeping the
number of hosts constant.

Figure 6b shows the running times of the analysis of a datacenter with 3–189
middleboxes (1–32 middlebox chains). All topologies contained 1000 hosts.

6 Concluding Remarks and Related Work

In this paper, we applied abstract interpretation for efficient verification of net-
works with stateful nodes. We now briefly survey closely related works in this
area.

Topology Independent Network Verification. Early work in network veri-
fication focused on proving correctness of network protocols [6,28]. Subsequent
work in the context of software define networking (SDN) including Flowlog [23]
and VeriCon [4] looked at verifying the correctness of network applications
(implemented as middleboxes or in network controllers) independent of the topol-
ogy and configuration of the network where these were used. However, since this
problem is undecidable, these methods use bounded model checking or user pro-
vided inductive invariants, which are hard to specify even in simple network
topologies.

Verifying Immutable Network Configurations. Verifying networks with
immutable states is an active line of research [2,5,12,14–16,18,30,33]. In the
future, we hope to combine our abstraction with the techniques used in
these papers. We hope to use similar techniques to Veriflow [16] to handle
switches more efficiently, and leverage compact header representation described
in NetKat [12].

Stateful Network Verification. Previous works provide useful tools for
detecting errors in firewalls [19,20,22]. Buzz [9] and SymNet [34] have looked
at how to use symbolic execution and packet generation for testing and verify-
ing the behavior of stateful networks. These works implement testing techniques
rather than verifying network behavior and are hence complementary to our
approach.
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Velner et al. [35] show that checking safety in stateful networks is undecidable,
necessitating the use of overapproximations. They provide a general algorithm
for checking safety using Petri nets. This algorithm has high complexity and
scales poorly. They also provide an efficient algorithm for checking safety in a
limited class of networks.

Exploring Network Symmetry. Recent work explored the use of bisimulation
to leverage the extensive symmetry found in real network topologies [21] to
accelerate stateless [25] and stateful [24] network verification. Both approaches
are not automatic. We are encouraged by the fact that our automatic approach
achieves performance comparable to VMN [24] on the same examples without
requiring human intervention. We attribute this improvement to modularity and
to the use of packet state representation.

Extensible Semantics. Previous works have explored ideas similar to the
reverting semantics, to obtain complexity and decidability results in different
settings.

In [8] the authors analyze the complexity of verifying asynchronous shared-
memory systems. They use copycat processes that mirror the behaviour of
another process to show that executions are extensible, similarly to how our
work uses the sticky packet states property (Lemma 4). In their model, when
the processes are finite state machines, they obtain coNP-complete complexity
for verification.

In [10] the authors explore a more general setting of well-structured transition
system, and present the home-state idea, which allows the system to return to
its initial state (essentially, revert). They obtain decidability results for well-
structured transition systems with a home-state, but do not show any tighter
complexity results.
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Abstract. Optimizing GPU programs by tuning execution parameters
is essential to realizing the full performance potential of GPU hardware.
However, many of these optimizations do not ensure correctness and sub-
tle errors can enter while optimizing a GPU program. Further, lack of
formal models and the presence of non-trivial transformations prevent
verification of optimizations.

In this work, we verify transformations involved in tuning the execu-
tion parameter, block-size. First, we present a formal programming and
execution model for GPUs, and then formalize block-size independence
of GPU programs, which ensures tuning block-size preserves program
semantics. Next, we present an inter-procedural analysis to verify block-
size independence for synchronization-free GPU programs. Finally, we
evaluate the analysis on the Nvidia CUDA SDK samples, where 35 global
kernels are verified to be block-size independent.

1 Introduction

Graphics Processing Units (GPUs) have emerged as an important data-parallel
compute platform. They are high-throughput, scalable, and useful for a wide
variety of data-intensive applications like deep learning, virtual reality, and bio-
informatics. However, programmers often struggle with tuning their GPU appli-
cations. The programmer has to repeatedly tune various execution parameters
and rewrite parts of the program to achieve significant speedups compared to
the CPU version. To add to the programmer’s burden, performance is often not
portable and the application needs to be re-tuned for another GPU.

Tuning GPU applications can introduce subtle errors into the application
which can be difficult to debug and resolve. We need tools that can automati-
cally detect such errors and ensure transformations performed while tuning an
application are correct. Existing tools for GPU verification help identify cor-
rectness issues like data-races and barrier-divergence [2,11,12], but none verify
correctness of transformations. Furthermore, synthesizing optimal execution con-
figuration at compile-time is difficult since the optimization space is large and
non-convex [21]. Hence, tuning applications by trying out different values for
parameters is unavoidable. This makes it essential to have automatic tools to
verify the correctness of transformations.
c© Springer Nature Switzerland AG 2018
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In this work, we focus on the correctness of tuning an execution param-
eter, block-size. A GPU program consists of a large number of threads that
execute the same sequence of instructions. The threads are organized in a two-
level hierarchy where individual threads are grouped into thread-blocks and the
thread-blocks together form a thread-grid. The parameter block-size represents
the number of threads in each thread-block and is specified during program
invocation, along with the total number of threads. The block-size determines
how resources required by the program are allocated on GPU cores, and is often
tuned to maximally utilize each core for performance while balancing perfor-
mance across cores in a GPU. For instance, a 75% improvement in performance
is achieved for a benchmark “SobolQRNG” on tuning block-size from 64 to 256.

We present an analysis to verify block-size independence of GPU programs
which ensures modifying block-size is a valid transformation and does not intro-
duce errors into the program. In the GPU execution model, sharing of data is
permitted between threads of a thread-block, and changing the block-size alters
the sets of threads allowed to share data, making program equivalence hard to
reason about. Therefore, we only consider synchronization-free programs, where
each thread executes independently of the other threads, and any sharing of data
between threads is prohibited and leads to a data-race.

For synchronization-free programs, the analysis only needs to ensure that the
execution of each thread is independent of block-size. Each thread in a GPU pro-
gram is provided with a block-id, bid, a thread-id within the block, tid, and the
block-size, bdim, which helps distinguish its execution from other threads. These
values get modified when the block-size is modified, and the analysis tracks the
flow of these values through variables in the program. Interestingly, the expres-
sion (bid.bdim+ tid) identifies a globally unique id for each thread, and remains
unchanged when the block-size is modified. Hence, the analysis further tracks
the sub-expressions of this expression and whenever a variable is observed to be
a function of this expression, it is marked independent of block-size. Further,
to gain precision, the analysis also tracks block-size independent multipliers, so
that expressions of the form (k.bid.bdim + k.tid), where k is a block-size inde-
pendent value, can be proven block-size independent. Finally, if none of the
block-size dependent values flow into the final state of any thread, then the pro-
gram is block-size independent. The analysis uses a novel abstraction to track
these values, where the symbolic constants track multipliers while the abstract
constants track sub-expressions. This combination of abstract interpretation
[7,18] with symbolic execution [3,8] helps scale the analysis while retaining good
precision.

To understand this further, consider the function cudaProcess() in Fig. 1
from a GPU program ‘simpleCUDA2GL’. The function initializes pixels in
an image represented by the array g odata. Each thread initializes a globally
unique location (x, y) with a value that is only a function of these coordi-
nates. The coordinates x and y are independent of block-size. Also, the function
is synchronization-free and each thread executes independently. Therefore, the
function must be block-size independent. To prove this, the analysis tracks the
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Fig. 1. Example illustrating block-size independence.

flow of block-size dependent values bid, bdim, and tid through program variables.
Note that, to mirror the 2-dimensional nature of the image, the threads are
organized in a 2-dimensional grid, where the first and second dimensions iden-
tify the x and y coordinates, respectively. During the analysis run, imgw is first
assigned a block-size independent value. Next, tx is assigned tid0, ty is assigned
tid1 and so on. Importantly, variables x and y are assigned (bid0.bdim0+tid0) and
(bid1.bdim1 + tid1), respectively, both of which are block-size independent. Fur-
ther, calls to functions make uchar4 and rgbToInt return block-size independent
values. Therefore, writes to array g odata by threads are block-size independent,
and the analysis verifies the program to be block-size independent.

We have implemented our tool in the LLVM open-source compiler. We imple-
ment an inter-procedural analysis and evaluate it on 34 sample programs from
the Nvidia CUDA SDK 8.0 [19] samples. We observe that a large number of pro-
grams are synchronization-free and can be proven block-size independent. A few
programs were trivially fixed to be block-size independent. Overall, the analysis
verifies a total of 35 global kernels in 11 programs to be block-size independent,
where a global kernel is an independent unit of execution in a GPU application.
To summarize, the paper makes the following contributions.

– Identifies and formalizes the problem of block-size independence for GPU
programs (Sect. 2).

– Presents a scalable inter-procedural analysis to verify block-size independence
for the class of synchronization-free GPU programs (Sect. 3).

– Demonstrates the relevance of the problem through an extensive evaluation
on the Nvidia CUDA SDK 8.0 samples (Sect. 4).

Lastly, we present some related work in Sect. 5 and conclude in Sect. 6.

2 Formalization

In this section, we present a formalization for the problem of block-size inde-
pendence. We first define a formal semantics for the GPU programming model
(Sect. 2.1) and the GPU execution model (Sect. 2.2). This establishes a frame-
work under which we can reason about the correctness of transformations. We
formalize block-size independence in Sect. 2.3. Finally, we discuss some design
choices and limitations for the above formalization (Sect. 2.4).
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2.1 GPU Programming Model

GPUs follow a Single Instruction Multiple Threads (SIMT) programming model,
where a large number of threads execute the same sequence of instructions, called
kernels. The threads are organized in a two-level hierarchy, where a set of threads
form a thread-block, and set of blocks forms a thread-grid. The thread-grid can
be multi-dimensional, where each thread is assigned a multi-dimensional thread-
id and block-id. Further, threads have access to thread-private local memory,
block-level shared memory, and a grid-level global memory. Each thread has
access to its thread-id (tid), block-id (bid), number of threads per block (bdim)
and the total number of threads (gdim). Finally, threads within a block can
synchronize via a syncthreads() barrier.

Formally, a GPU program is the tuple 〈d, VL, VS , VG, C,K〉, where d repre-
sents the number of dimensions in the thread-grid, VL, VS , VG represent the sets
of local, shared and global variables in the program, C = {tid, bid, bdim, gdim}
represents a set of local constants, and K is the kernel or the sequence of instruc-
tions executed by each thread. Let l ∈ VL be a local variable and v ∈ VS ∪ VG

be a shared/global array. Let E be a computable expression. The kernel K is
defined by the grammar:

S := AS | if 〈test〉 then S1 elseS2 | while 〈test〉doS | syncthreads() | S1;S2

AS := [l := E(l0, . . . , ln)] local assignments
| [l := v[l0, . . . , ln]] multi-dimensional array reads
| [v[l0, . . . , ln] := l] multi-dimensional array writes

Thread-Grid. Given the total number of threads (i.e. grid-size) and the number
of threads per block (i.e. block-size), represented by d-dimensional vectors N
and B respectively, we define the structure for the thread-grid. The thread-
grid is d-dimensional where each dimension i is divided into �N i/Bi� blocks.
The total number of threads along ith dimension is N i, and therefore, the first
(�N i/Bi� − 1) blocks consist of Bi threads, whereas the last block consists
of (N i − (�N i/Bi� − 1)Bi) threads. The blocks and threads are assigned a d-
dimensional block-id b and thread-id t. The block-ids range from 0 to �N i/Bi�−
1 for each dimension i, while the thread-ids range from 0 to min(Bi,N i−biB)−1
and identify the positions of threads within their blocks.

Figure 2 presents an example 2-dimensional thread-grid with 22 × 10 total
threads, with 4 × 3 threads per block. There are in total 6 × 4 blocks. Also, the
last block along each dimension has fewer threads than the first few blocks to
preserve the total number of threads along the dimension.

2.2 GPU Execution Model

We next present the semantics of executing a GPU program. Given a global state
σG that maps each global variable to a specific value, and a thread-grid config-
uration, given by the grid-size N and the block-size B, let �K�G(σG,N ,B)
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Fig. 2. An example 2-dimensional thread-grid with 22 × 10 total threads and 4 × 3
threads per block. Each solid block represents a thread-block, while each cell repre-
sents a thread. The darkened cell corresponds to a thread with block-id (3, 2) and
thread-id (1, 2).

represent the global state obtained after the execution of kernel K. Let τ rep-
resent a thread in the thread-grid. Let t = tid(τ) and b = bid(τ) be the
thread-id and block-id for the thread. Let G(N ,B) represent the set of all
threads in the grid. Let T (b,N ,B) be the set of all threads with block-id b,
i.e. {τ ∈ G(N ,B) : bid(τ) = b}. We first present the semantics for execut-
ing threads within a block, and then the semantics of composing executions for
blocks.

Fine-Grained Execution for Threads. We use a fine-grained semantics to
execute threads within a block, where all threads execute instructions in lock-
step. Given a block-id b, the threads in the block are T = T (b,N ,B). We
simultaneously maintain state for all threads. Each thread has access to a pri-
vate copy of local variables and a common copy of shared and global variables.
Therefore, the execution state σ consists of the local state σL : VL ×T → V that
maps local variables in each thread to their values, the shared state σS : VS → V
that maps shared variables to their values, and the global state σG : VG → V
that maps global variables to their values. Further for each thread τ ∈ T , the
local constants bdim(τ) and gdim(τ) are assigned block-size B and grid-size N ,
respectively. We now present the semantics. Let �S�(σ,Π ) represent the execu-
tion of a statement S for a set of threads Π starting in state σ. The semantics of
executing kernel K for threads with block-id b is given by �K�(σ,T (b,N ,B)).
Note the resulting state consists of all variables and not just global variables.
We define semantics by structural induction on S.

Assignments. We first define semantics of executing an assignment statement
for a single thread τ . Let σ′ ≡ �AS�(σ, τ) represent the semantics. For local
computations, [l := E(l0, . . . , ln)], the semantics updates the value of l in state
σ′ to the value E(σ(l0, τ), . . . , σ(ln, τ)). For array reads, [l := v[l0, . . . , ln]],
the semantics updates the value of variable l with the value at location x =
(σ(l0, τ), σ(l1, τ), . . . , σ(ln, τ)) in array v, i.e. σ′(l, τ) = σ(v)(x). Finally, for
array writes, [v[l0, . . . , ln] := v], the semantics updates the value at location
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x = (σ(l0, τ), σ(l1, τ), . . . , σ(ln, τ)) in array v to the value σ(l, τ):

σ′(v)(x) = σ(l, τ), and for all y 
= x, σ′(v)(y) = σ(v)(y).

Note that the constants tid, bid, bdim, and gdim can also appear on the right-
hand side of these assignments. Next, we present the semantics of executing the
assignment for a set of threads Π = {τ0, . . . , τn}. The semantics sequentially
compose the execution of individual threads, ordered by their thread-ids. Hence,
�AS�(σ, {}) = σ, and for all 0 ≤ i ≤ n,

�AS�(σ, {τi, . . . , τn}) = �AS�(�AS�(σ, τi), {τi+1, . . . , τn}).

Sequences. The semantics of executing sequence of statements S1;S2 consists
of executing S1 for all threads, followed by executing S2:

�S1;S2�(σ,Π ) = �S2�(�S1�(σ,Π ),Π ).

Conditionals. The semantics for conditionals serializes the execution of the two
branches. First all threads for which the test, given by a local boolean variable
l, is true, execute S1. Then the remaining threads execute S2 to produce the
desired state. Let Π1 = {τ ∈ Π : σ(l, τ) = true}. The semantics are:

�if l then S1 else S2�(σ,Π ) = �S2�(�S1�(σ,Π1),Π \ Π1).

Loops. The semantics for loops are similar to that for conditionals, except the
execution repeats until the test condition, given by a local boolean variable,
becomes false for all threads. Let σ0, . . . , σn and Π0, . . . ,Πn be a series of states
and sets of threads, such that σ0 = σ, Π0 = {τ ∈ Π : σ(l, τ) = true}, σi =
�S�(σi−1,Πi−1), Πi = {τ ∈ Πi−1 : σi(l, τ) = true}, and Πn = {}. If such a series
exists, then the final state σn is the desired result of executing the loop.

Syncthreads. Due to the lock-step execution of threads, the syncthreads()
barrier does not need special semantics and returns the initial state σ.

Coarse-Grained Execution for Blocks. We next present the semantics of
composing executions of individual blocks. We present a coarse-grained seman-
tics where each block executes independently and the final state is obtained by
sequentially composing executions of individual blocks, ordered by their block-
ids. The blocks share only the global variables, and the local and shared variables
are initialized to undefined values before the execution for a block begins and
discarded after the execution ends. Let �K�G(σG,Γ ,N ,B) represent the exe-
cution for blocks with block-ids in Γ = {b0, . . . , bn} starting in initial global
state σG. We define it as follows. First, �K�G(σG, {},N ,B) = σG. Next, for all
0 ≤ i ≤ n,

�K�G(σG, {bi, . . . , bn},N ,B) = �K�G(Proj(σ′, VG), {bi+1, . . . , bn},N ,B),

where σ′ = �K�(σG ∪ σS
⊥ ∪ σL

⊥,T (bi,N ,B)),
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and σL
⊥ and σS

⊥ are local and shared states with undefined values, while Proj(σ, V )
projects the state σ onto the variables in set V . Note that the final state consists
only of the global variables. Now the desired state after the execution of the
GPU program, �K�G(σG,N ,B), is given by �K�G(σG,B,N ,B) where B is the
set of all block-ids in the thread-grid.

Invalidation Semantics. We next describe scenarios under which the execu-
tion of the program is erroneous and produces an error state ⊥. First, a data-race
between threads leads to an error state. A data-race occurs when two threads
access the same shared/global memory location, and the execution of the accesses
is not separated by a syncthreads() barrier. Second, an execution where only
few of the threads within a block reach a syncthreads() barrier produces an
error state, and is called a barrier divergence. These semantics help incorporate
features of the general GPU execution model into the formalization.

To keep the execution model simple, we discuss the invalidation semantics
informally. The focus of the paper is on proving functional equivalence of the
original and the transformed program. For such a property, precise invalidation
semantics are not necessary. We still rely on the data-race freedom of programs
to prove the correctness of our analysis. However, the informal nature of the
semantics suffices.

2.3 Block-Size Independence

We now define the block-size independence for a GPU program. Let two states
σ and σ′ be equivalent (σ ≡ σ′), if they consist of the same set of variables
and each variable has the same valuation in both states. We state the formal
definition here.

Definition 1. A GPU program 〈d, VL, VS , VG, C,K〉 is block-size independent,
iff for all initial global states σG and grid-sizes N , the execution of the program
is independent of the block-size B, that is:

for all σG,N ,B,B′, �K�G(σG,N ,B) ≡ �K�G(σG,N ,B′).

2.4 Discussion

We have presented so far a formal programming and execution model for GPU
programs and defined block-size independence with respect to this model. The
proposed model closely follows popular programming models like CUDA and
OpenCL. However, there are few restrictions and limitations in the proposed
model that we discuss here:

Lock-Step Execution. We use a simplified execution model where we assume all
threads in a block to execute in lock-step. This is not true in practice for per-
formance reasons. However, we are only concerned with the functional behav-
ior of programs and proving functional correctness of block-size transformation.
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Also, the simplified execution model is functionally equivalent to the model used
in practice when programs are free of data-races.

Data-Race Freedom. Our formalization assumes that the GPU program being
transformed is free of data-races and other such correctness issues. These issues
have been tackled previously [2,11,12], and therefore, we focus only on the cor-
rectness of block-size transformation.

Total Number of Threads. In our formalization, we specify the number of threads
N as one of the invocation parameters. Among the popular models, OpenCL [24]
closely follows this model. CUDA [17], however, specifies the number of blocks
Nb as an invocation parameter and computes the number of threads along
ith dimension as Bi.(Nb)i i.e. the product between the number of blocks and
the block-size. However, specifying the number of threads N provides more
flexibility in defining the total number of threads. Also, the total number of
threads remains unchanged when the block-size is modified, which makes proving
program equivalence easier. Further, when the new block-size B′ is a divisor the
number of threads N along each grid-dimension, our model is also applicable to
CUDA and the new number of blocks along ith dimension can be computed as
Bi.(Nb)i/B′

i.

Structures and Pointers. Our formal model only considers scalars and arrays,
while the general models CUDA and OpenCL also support structures and point-
ers. The key insights for arrays carry over to structures and pointers, and there-
fore for simplicity, we omit them from our model. We address these, however, in
the implementation of our analysis.

3 Analysis for Synchronization-Free GPU Programs

This section presents an analysis to verify block-size independence for
synchronization-free GPU programs, where the kernel does not consist of
syncthreads() barriers. In a synchronization-free GPU program, each thread

must execute independently of the other threads (since any dependence on
updates from other threads leads to a data-race). Therefore, the global prob-
lem of verifying block-size independence of the program reduces to the local
problem of verifying block-size independence for the execution of each thread in
the program (Sect. 3.1).

Next, the execution of a thread is independent of block-size if the writes by
the thread to the shared and global variables do not depend on block-size.1 A
write can depend on block-size if either the location accessed, the value written
or the condition under which the write is executed is dependent on block-size.
The only sources of block-size dependence in a thread are the thread’s block-id,
bid(τ), the thread-id, tid(τ), and the block-size itself, bdim(τ) = B. Further,

1 Reads can be ignored because our syncthreads()-free and race-free assumptions
permit a thread to only read values it has written itself or are part of the initial
state.
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the expression gid(τ) = (bid.bdim + tid)(τ) is independent of block-size. This is
because gid(τ) identifies a unique global location of the thread in the thread-
grid and remains unchanged when the block-size is modified. For example in
Fig. 2, the thread with thread-id (1, 2) and block-id (3, 2) has a unique global-
id (3.4 + 1, 2.3 + 2) = (13, 8), which remains unchanged for all block-sizes. We
incorporate these features into our analysis to check block-size independence for
each thread (Sect. 3.2).

3.1 Reduction to Thread-Local Block-Size Independence

We first define thread-local block-size independence for GPU programs. A GPU
program is thread-local block-size independent if the execution of each thread in
the thread-grid is independent of block-size. Given block-sizes B and B′, let a
thread τ in grid G(N ,B) be equivalent to another thread τ ′ in grid G(N ,B′),
i.e. τ ≡ τ ′, if they have the same unique global location in the thread-grid,
namely:

for all 0 ≤ i < d, (bidi(τ).Bi + tidi(τ)) = (bidi(τ ′).B′
i + tidi(τ ′))

We observe this to be a one-to-one relation, where each thread τ in the first grid
corresponds to a unique global thread τ ′ in the second grid. Now, the program
is thread-local block-size independent, if each pair of equivalent global threads
has equivalent executions. Recall �S�(σ,Π ) denotes the execution of statement
S for a set of threads Π starting in initial state σ.

Definition 2. A GPU program 〈d, VL, VS , VG, C,K〉 is thread-local block-size
independent, iff for all initial states σG and grid-sizes N , the global state after
the execution of a thread in the thread-grid is independent of block-size, where
the local and shared variables are initialized to undefined values. Formally, the
program is thread-local block-size independent iff:

for all σG,N ,B,B′, τ ∈ G(N ,B), τ ′ ∈ G(N ,B′),
τ ≡ τ ′ =⇒ Proj(�K�(σ, {τ}), VG) ≡ Proj(�K�(σ, {τ ′}), VG),

where σ ≡ (σL
⊥ ∪ σS

⊥ ∪ σG).

We show that if a GPU program is synchronization-free, verifying thread-
local block-size independence is sufficient to verify block-size independence for
the program. We first observe that for a synchronization-free program, the lock-
step execution of threads in a block is equivalent to executing threads one after
another. This is because, to avoid data-races, each thread must operate indepen-
dently and not see updates from other threads. Therefore, the order of execution
between threads does not matter and a fine-grained interleaving (Fig. 3a) pro-
duces the same execution as a coarse-grained interleaving (Fig. 3b).
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Fig. 3. The figure shows fine-grained vs coarse-grained interleaving of threads in a
block. The rows represent sequence of instructions to be executed, while the columns
represent the threads in a block. The arrows signify the order in which the threads and
the instructions are executed.

Lemma 1. Given a synchronization-free GPU program 〈d, VL, VS , VG, C,K〉
and a set of threads Π = {τ0, . . . , τk}, the lock-step execution of threads is equiv-
alent to executing threads sequentially:

for all σ,Π , �K�(σ,Π ) ≡ σk+1,

where σ0 = σ and σi+1 = �K�(σi, {τi})for all 0 ≤ i ≤ k.

By Lemma 1, the lock-step execution of threads in a block can be substituted
with sequential execution of threads. Next, we observe that we can execute each
thread in a state where the local and shared variables are undefined initially.
This is because, the thread must not observe any updates to these variables
from the previously executed threads, or we would have a data-race. Also, these
variables are discarded at the end of the execution of the block, and we need not
retain their values. Remember �K�G(σG,Γ ,N ,B) represents execution of a set
of blocks Γ , where the shared and local variables are undefined initially and the
result of the execution consists only of the global state.

Lemma 2. Given a synchronization-free GPU program 〈d, VL, VS , VG, C,K〉
and a block-id b, the lock-step execution for block b is equivalent to execut-
ing threads sequentially, with local and shared variables initialized to undefined
values:

for all σG, b,N ,B, �K�G(σG, {b},N ,B) ≡ σG
k+1,

where σG
0 = σG and σG

i+1 = Proj(�K�(σL
⊥ ∪ σS

⊥ ∪ σG
i , {τi}), VG),

for all τi in T (b,N ,B).

Finally from Lemma 2, the execution of each thread in the first grid can
be substituted with the execution of equivalent thread in the second grid, and
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therefore, thread-local block-size independence of a synchronization-free pro-
gram implies block-size independence for the program. We conclude the following
theorem.

Theorem 1. If a synchronization-free GPU program 〈d, VL, VS , VG, C,K〉 is
thread-local block-size independent, then it is also block-size independent.

3.2 Analysis

We present our analysis to check thread-local block-size independence of GPU
programs and to ensure that the execution of each thread is block-size indepen-
dent. Initially when a thread’s execution starts, only constants bid, bdim and tid
are block-size dependent and the remaining variables are block-size independent.
While bdim is equal to block-size, the thread-id tid and block-id bid of a thread
also depend on the block-size and get updated when the block-size is modified.
Hence, if any of these values potentially flows into a global variable update, then
the final global state after the thread’s execution depends on block-size and the
program is block-size dependent. The analysis defines an abstraction of state and
abstract semantics for kernel instructions to track the flow of block-size depen-
dent values during a thread’s execution. Note that we run the analysis and show
the block-size independence separately for each dimension of thread-grid. So for
the subsequent discussion, consider bid, bdim and tid to be one-dimensional val-
ues. This is not too restrictive, since most programs are block-size independent
with respect to each grid-dimension. Also, this greatly simplifies the analysis
both in its complexity and running time.

Abstraction. The analysis defines an abstraction of program state to track
dependence of local scalar variables on block-size. Let σ̂ be the abstraction of
the program state σ, which maps each local variable to an abstract value, i.e.
VL → V̂. Let l, k0 be local variables. Let f0 be a function that maps each thread
to a block-size independent value. For integer and real variables, the abstraction
is defined as:

σ̂(l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cind, for all τ, σ(l, τ) = f0(τ).
k0cbid, σ̂(k0) = cind; for all τ, σ(l, τ) = σ(k0, τ).bid(τ).
k0cbdim, σ̂(k0) = cind; for all τ, σ(l, τ) = σ(k0, τ).bdim(τ).
k0ctid, σ̂(k0) = cind; for all τ, σ(l, τ) = σ(k0, τ).tid(τ) + f0(τ).
k0cbidcbdim, σ̂(k0) = cind;

for all τ, σ(l, τ) = σ(k0, τ).bid(τ).bdim(τ) + f0(τ).
cbsize, otherwise.

The value cind represents all block-size independent values. The abstract value
cbsize represents values with arbitrary dependence on block-size. We observe the
expression (k0.bid.bdim+k0.tid), where k0 is a block-size independent variable, is
independent of block-size. To take this account, our abstraction tracks different
sub-expressions of this expression, k0cbid, k0cbdim, k0ctid, and k0cbidcbdim, where
k0 is the multiplier or a symbolic constant representing a block-size independent
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Fig. 4. Abstract semantics for different assignment statements and initial abstract
states. State σ̂ is the incoming abstract state while σ̂′ is the updated state after the
assignment. The rules are valid only when the path-predicate π̂ is bind. Lastly, op, rel
and bop are arithmetic, relational and boolean operators, respectively.

local variable. We assume each local variable has a unique definition (e.g. SSA
form), and the variables are not updated after they are first defined. Hence, the
symbolic constant truly represents the variable used as multiplier in the abstract
value, and we do not differentiate between the variable and the symbolic constant
representing the variable.

We similarly define an abstraction for local boolean variables, which tracks
dependence of the condition on block-size. Let b0 be a block-size independent
boolean function. The abstraction for boolean variables is:

σ̂(l) =
{
bind, for all τ, σ(l, τ) = b0(τ).
bbsize, otherwise.

Finally, we do not track shared and global variables or arrays in our abstrac-
tion. We compensate by tracking each write to these variables and ensuring that
the writes are independent of block-size.

We further define a path-predicate, π̂, which is the condition under which a
statement is executed. The value of π̂ is an abstract boolean value, representing
whether the condition is dependent on block-size or not.

Abstract Semantics. We now define some abstract semantics for propagat-
ing abstract state σ̂ and path-predicate π̂ through statements in the kernel.
Figure 4 defines updates to abstract states for different assignment statements
and initial states. Note the rules in Fig. 4 are only valid if the path-predicate π̂
is bind. Also, we only show rules for scenarios where the result is non-trivial and
not cbsize/bbsize. Otherwise, if π̂ = bbsize or the rule is not shown, the updated
value for arithmetic/boolean variables is cbsize/bbsize. The path-predicate remains
unchanged after each statement, unless specified.
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We now briefly describe the rules shown in Fig. 4. Note when the multiplier
k for an abstract value is constant 1, we drop the multiplier, e.g. cbid in rule
Prod1. The rules ensure that the abstraction is preserved. For example, in rule
Sum2, abstract values k0ctid and k1cbidcbdim are added together, where k0 equals
k1. This is equivalent to the expression (k0.tid+ k0.bid.bdim), which we know is
block-size independent. Hence, the final result is assigned the value cind. Similarly,
the other rules update the abstract state while preserving the abstraction. An
important point to note here is that during the product operation (rules Prod1,
Prod2, Prod3), the multiplier for at least one of the operands must be constant
1, so that the multiplier for the other operand is set as the final multiplier.
Otherwise, the result is set to cbsize. This ensures that the set of symbolic values
for the multiplier is limited to the set of variables in the program and we do
not consider complex expressions on variables for the multiplier. While this is
imprecise, it is necessary to scale the analysis.

We next consider writes to shared/global arrays [v[l0, . . . , ln] := l], where
the analysis checks if the accessed location, the value written and the path-
predicate are independent of block-size, i.e. the values σ̂(l0), . . . , σ̂(ln) and σ̂(l)
must be cind and the path-predicate π̂ must be bind. If this is not the case, the
write is potentially a function of block-size and the analysis reports the write,
and the kernel itself, to be block-size dependent. This also ensures the values
in shared/global arrays are always block-size independent, and thus, the array
reads return a consistent value in rule Read in Fig. 4.

For conditionals [if l then S1 else S2], the analysis sets the path-predicates
for S1 and S2 to (π̂ ∧ σ̂(l)) and (π̂ ∧ ¬σ̂(l)), respectively, and propagates the
same initial abstract state σ̂ to both statements. Further, the final state after
the conditional is a merge of states after S1 and S2. If the values for a variable
are identical in both states (i.e. the type and the multiplier are equal), then this
is set as the merged value for the variable. Otherwise, the merged value is set to
cbsize/bbsize. The path-predicate after the conditional is the same as the predicate
π̂ before the conditional.

The semantics for loops are defined similarly to conditionals, but we must
additionally ensure that the analysis terminates. We observe that the set of
abstract values and the merge operation define a finite upper semi-lattice, with
a small number of different value types and the multiplier ranging over the finite
set of local variables. Further, the abstract semantics are monotonic over the
semi-lattice. Therefore, the fixed point computation on loops must terminate.

Algorithm. The overall algorithm is as follows. We initialize local variables
to cind/bind in the initial abstract state σ̂, while the path-predicate π̂ is initial-
ized to bind. The constants bid, bdim and tid are assigned values cbid, cbdim and
ctid, respectively, while gdim is independent of block-size and assigned cind. The
analysis executes the kernel for the abstract state σ̂ and the path-predicate
π̂ with the abstract semantics defined above. If it encounters a potentially
block-size dependent shared or global write, it terminates with block-size depen-
dence. Otherwise, it reports the kernel to be block-size independent.
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Inter-procedural Analysis. Our analysis also supports inter-procedural analysis,
where a kernel can call other kernels. We do a bottom-up traversal on the call-
graph, where the callees are analyzed before the callers. We analyze each kernel
assuming the parameters are set to cind/bind initially and reuse this analysis result
for all calls to the kernel with call arguments as cind/bind. For calls with block-
size dependent arguments, we conservatively report the call to be block-size
dependent and return cbsize/bbsize. For library calls (where the source code is not
linked) and inline assembly instructions, we conservatively assume the function
to be block-size dependent and to return value cbsize/bbsize. However, for specific
cases, like library calls to Math functions sinf, cosf, sqrtf etc., where
the result is a trivial function of inputs, we assume the call to be block-size
independent, and also return cind/bind if the call-arguments are cind/bind. Note
that we do not support recursive procedures in our analysis, which are rarely
present in GPU programs.

Example. We illustrate our analysis using the example in Fig. 1. We run the
analysis separately for the two thread-grid dimensions. For the first thread-
grid dimension, the analysis initializes variables as σ̂(bid0) = cbid, σ̂(bdim0) =
cbdim, σ̂(tid0) = ctid, σ̂(bid1) = σ̂(bdim1) = σ̂(tid1) = σ̂(imgw) = cind. Also, it
initializes the path-condition to bind, which is never modified. Next, it executes
the statement [tx := tid0], and sets σ̂(tx) to ctid. It similarly assigns values to
variables ty, bw, bh. When computing x, it first computes the product bid0.bw
which is equal to cbidcbdim, and then computes x as the sum of values cbidcbdim and
ctid, which we know is cind. The execution for the remaining statements continues
similarly. Finally, the global write to image g odata is executed with block-size
independent abstract values and path-condition, and hence, the write is block-
size independent. Therefore, the analysis declares the program block-size inde-
pendent along this thread-grid dimension. The analysis repeats a similar process
for the other thread-grid dimension and concludes the program to be block-size
independent.

Implementation. We have implemented the analysis as a pass in LLVM com-
piler. We define the abstract domain and the abstract semantics, and rely on an
abstract execution engine to execute the program using the abstract semantics
during the analysis. To handle pointers, we use abstract values to track block-
size dependence of the address of location represented by a pointer. Hence, when
a pointer is dereferenced, we conservatively return cind/bind if the pointer is con-
stant, and cbsize/bbsize if the pointer is not a constant. We only update the value
of a pointer variable on pointer assignment and pointer updates through index-
ing. Structures are represented similar to arrays in LLVM and hence no special
semantics are necessary.

We represent multipliers in the abstract values as follows. LLVM exposes
each variable in the program as a unique Value* pointer. We use this pointer to
represent the multiplier and compare it against other pointers. Since LLVM uses
the SSA form, the pointer corresponds to a unique definition and the value for
the variable is not updated after it is first defined. Note that the program vari-
ables which are accessed via load/store instructions, do not appear as operands
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in regular arithmetic or boolean operations, and vice-versa. Hence, such vari-
ables are never used as multipliers in the abstract domain and the value for the
multipliers is never updated through indirect store operations.

Correctness. We show the correctness of our analysis. The analysis preserves
the abstraction and ensures that each variable gets an abstract value cind/bind
only if the value is truly block-size independent, i.e. the assigned value and the
path-predicate are block-size independent. Further, each write to global vari-
ables is guarded by a check for block-size independence. Therefore, if the anal-
ysis does not report any block-size dependent writes, the updates to the global
memory are always block-size independent, and the global state at the end of
each thread’s execution must also be block-size independent. This implies the
program is thread-local block-size independent, and hence, we conclude the fol-
lowing theorem.

Theorem 2. A synchronization-free GPU program 〈d, VL, VS , VG, C,K〉 is
block-size independent, if the analysis reports the program to be block-size inde-
pendent.

4 Evaluation

We have implemented the block-size independence analysis in LLVM 7.0, a popu-
lar open-source compiler framework, and evaluate it on the Nvidia CUDA SDK
8.0 sample programs. The SDK consists of 62 applications, out of which 28
benchmarks rely on texture memory fetches and the Thrust library and could
not be compiled with LLVM. Hence, we analyze the remaining 34 benchmarks.
For each benchmark, we analyze global kernels which are entry-points into the
call-graph and are invoked directly from CPU code. For each global kernel, the
analysis reports whether the kernel is block-size independent (BSI), and if not,
the potential block-size dependent accesses in the kernel. We run the analysis
on an Amazon EC2 machine with 4-core Intel Xeon 2.3 GHz CPU and 16GB
memory running Ubuntu 16.04 LTS (OS).

How Many BSI Kernels Are Found by the Analysis? Table 1 shows
the results for the analysis. The graph shows the the total number of global
kernels and the number of BSI kernels reported by our analysis. Note that in
few of the benchmarks, the global kernels are instantiations of templated kernels.
The global kernels have similar functionality, and hence, the numbers are slightly
bloated. For example, in benchmarks “reduction”, “threadFenceReduction”, and
“alignedTypes”, the total number of kernels is 132, 40 and 16, though these are
instantiations of 7, 2 and 1 templated kernels, respectively. Yet, the analysis is
able to verify a large number of kernels as BSI. It finds 35 BSI kernels in 11
benchmarks, and runs in a few seconds for most benchmarks, rarely taking more
than a minute.

Are There Truly Non-BSI Kernels? We manually investigated the
benchmarks and found a few non-BSI kernels. These kernels asymmetrically
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Table 1. Results of BSI analysis for Nvidia CUDA SDK 8.0 samples. # Kernels repre-
sents the total number of global kernels. # BSI represents the number of these kernels
that are block-size independent.

Benchmark # Kernels # BSI Benchmark # Kernels # BSI

Mandelbrot 6 0 concurrentKernels 2 0

simpleGL 1 0 eigenValues 4 0

convolutionSeparable 2 0 fastWalshTransform 3 2

cudaDecodeGL 2 2 FDTD3dGPU 1 0

dwtHaar1D 2 0 interval 1 0

histogram 4 0 mergeSort 7 3

recursiveGaussian 3 2 newDelete 14 4

simpleCUDA2GL 2 2 reduction 132 0

binomialOptions 1 0 scalarProd 1 0

BlackScholes 1 0 scan 3 0

MonteCarloMultiGPU 2 0 shfl scan 4 0

quasiRandomGenerator 2 2 SimpleHyperQ 3 0

SobolQRNG 1 1 sortingNetworks 6 0

nbody 2 0 StreamPriorities 1 1

oceanFFT 3 2 threadFenceReduction 40 0

alignedTypes 12 12 threadMigration 1 0

cdpLUDecomposition 2 0 transpose 8 0

distribute computation between blocks and threads, and hence, are block-
size dependent. For example, benchmarks “binomialOptions” and “MonteCar-
loMultiGPU” allocate an ‘option’ per block while the threads collaborate to
compute the value for the option. Similarly, “scalarProd” allocates a vector-pair
per block while the threads multiply and add individual elements to get the
scalar product.

What Class of Kernels Could Not Be Verified? We could not ver-
ify block-size independence for kernels where shared memory and thread-
synchronization were used to intricately share data between threads within a
block. A common scenario was a parallel reduction operation such as sum-
ming elements. The block-size was hard-coded via #define constants for few
of the kernels, which prevented verification. We observed an interesting pattern
in benchmarks “dwtHaar1D” and “reduction” where each thread operated on
two locations in a global array: (2bid.bdim + tid) and (2bid.bdim + bdim + tid).
The locations individually are block-size dependent. However, cumulatively, the
threads operate on all elements, which makes the operation block-size inde-
pendent. Finally, we could not verify kernels in “simpleGL”, “oceanFFT” and
“interval” to be BSI, because library calls containing inline assembly calls and
addition between integers and booleans were inlined into the kernels, which were
falsely reported block-size dependent.
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Does Tuning Block-Size for BSI Kernels Improve Performance? We
experimented with benchmark “SobolQRNG” to gauge performance improve-
ment via block-size tuning. The benchmark originally used shared memory to
cache global constants and was reported non-BSI by our analysis. The block-
size was set to 64 threads/block and produced 18.8 Gsamples/s (baseline) on
an Nvidia GTX Titan X GPU. We removed caching to obtain a BSI version.
Here for 64 threads/block, we lost performance by 40% (11.6 Gsamples/s), but
then for 256 threads/block, we regained performance with an improvement of
9% over the baseline (20.5 Gsamples/s). Our analysis helped tune block-size to
gain performance while ensuring correctness, unlike the other optimization.

How Many Kernels Could Be Easily Fixed to Become BSI? We fixed
7 kernels to be BSI with our analysis (included in the 35 BSI kernels found by the
analysis). In “quasiRandomGenerator” and “fastWalshTransform”, the number
of blocks for the second grid dimension was set to 1, and thus bid1 was always
set to 0 and dropped from the computation for gid1. In “cudaDecodeGL”, gid
was computed as (bdim).(bid << 1) + (tid << 1), where the ‘<<’ operator was
not supported by our analysis. Finally, in “quasiRandomGenerator”, gid was
computed as (mul(bid, bdim) + tid), where the ‘mul’ method was not supported.

5 Related Work

Auto-tuning. A rich body of work exists on automatically tuning GPU appli-
cations for specific hardware configurations. Broadly, there are three types of
auto-tuning: empirical tuning [13,16,20,23,27,28], where different program vari-
ants are executed and the best variant is identified via exhaustive search or a
hill-climbing approach; model-based tuning [4,5], where a hand-crafted model
is used to select the best program variant; and predictive model-based tun-
ing [1,9,13,14,26], where a predictive model trained via machine learning tech-
niques like decision trees is used to select the best program variant. All these
approaches either automatically generate the final GPU program, or transform
an existing program to generate the tuned program. A few of these works tune
block-size directly [1,13,14,27], but do not verify correctness of the transforma-
tion. A few are domain-specific [5,16,20,23,28], often using programs written
in a domain-specific languages instead of CUDA and OpenCL. Finally, many
recent works focus on data-layout optimization [9,26] and data placement [4].
These works segregate specification of data-layout and data-placement from the
actual program by hiding it under a data-abstraction layer. Hence, only the
spec for data-layout and placement is modified during auto-tuning and the pro-
gram remains unchanged. This localizes any errors to the implementation of
data-layout specifications, which ensures greater correctness. Tuning block-size
is, however, essential to utilize resources on GPUs effectively, and our work on
validating block-size independence can enable robust auto-tuning for block-size
transformation.

GPU Verification. Several systems exist for verification of GPU programs.
GKLEE [12] and KLEE-CL [6] extend KLEE, a popular symbolic execution



124 R. Alur et al.

engine, to verify GPU programs against data-races and barrier divergence. Due
to the presence of a large number of threads, these tools do not scale to large
programs. GPUVerify [2] and PUG [11] improve upon GKLEE and KLEE-CL,
by using symbolic threads and SMT-based verification to identify data-races.
The underlying SMT solvers have trouble scaling to very large formulae as well.
Finally, Leung et al. [10] present an approach where they analyze programs for
input-independence, verify safety properties of input-independent programs for
a small set of inputs and then generalize results to all other inputs. The analysis
to verify input-independence is similar to ours, except it tracks the flow of input
variables instead of the block-size dependent constants.

Abstract Interpretation+Symbolic Execution. A few works, similar to
our work, use symbolic constants to improve precision of an abstract domain,
while retaining the scalability of the analysis. Sankaranarayanan et al. [22] and
Venet [25] extend the Interval domain with symbolic ranges, where the upper and
lower bounds of an interval are a linear combination of symbolic constants repre-
senting program variables. Miné [15] presents two generic techniques: lineariza-
tion, which instantiates symbolic variables with abstract constants to obtain a
linear expression in symbolic variables, and symbolic constant propagation, which
propagates symbolic constants across expressions to gain precision.

6 Conclusion

The paper formalizes block-size independence for GPU programs and presents an
inter-procedural analysis to verify block-size independence for synchronization-
free programs. The analysis relies on tracking the flow of block-size dependent
values via an abstraction that combines symbolic multipliers with abstract con-
stants representing different dependencies on block-size. It is very efficient and
finds a considerable number of block-size independent global kernels in Nvidia
CUDA SDK.

In future, we would like to extend the analysis to GPU programs with
restricted synchronization between threads, by either transforming these pro-
grams into synchronization-free programs or ensuring that the execution of each
thread is independent of the set of threads it synchronizes with, and then the
present analysis would suffice to prove block-size independence of the programs.

We would like to thank the anonymous reviewers and our shepherd Sylvie
Putot for their valuable feedback. We would also like to thank NSF award XPS-
1337174 and hardware donations from Nvidia for supporting this research.
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Abstract. We propose a new relational abstract domain for analysing
programs with numeric and Boolean variables. The main idea is to repre-
sent an abstract state as a set of linear constraints over numeric variables,
with every constraint being enabled by a formula over Boolean variables.
This allows us, unlike in some existing approaches, to avoid duplicat-
ing linear constraints shared by multiple Boolean formulas. To perform
domain operations, we adapt algorithms from constraint-only representa-
tion of convex polyhedra, most importantly Fourier-Motzkin elimination
and projection-based convex hull. We made a prototype implementation
of the new domain in our abstract interpreter for Horn clauses. Our ini-
tial experiments are, in our opinion, promising and show directions for
future improvement.

1 Introduction and Related Work

Static program analysis by abstract interpretation over-approximates the set of
reachable states of a program by a set with a simple description, for instance, by
attaching one interval to each program variable at every location in the program.
Intervals however cannot express relationships between variables, so a richer
approach is to attach to every location a set of valid linear inequalities, which
geometrically is, a convex polyhedron [12,17].

Convex polyhedra are already quite formidable objects to compute with effi-
ciently, yet they are insufficient for expressing certain invariants, and what is
often needed is a disjunction of convex polyhedra. For instance, the strongest
invariant of the following loop: for(int i=0; i < n; i++){ } is (n < 0) ∨ (0 ≤
i ≤ n). Note how the disjunction arises from the partition of executions into
those that execute the loop at least once and those that do not. Better anal-
ysis precision may often be achieved by partitioning executions according to
an abstraction of the control flow [30], or by partitioning abstract states with
respect to conditions extracted from the program [11], etc. Some analyses of
programs operating over arrays and maps abstract properties over these objects
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onto disjunctive relations between the scalar variables of the program and the
values in the array cells [25,27]. For instance, a loop that fills an array for

(int i=0; i < n; i++){ a[i]=42; } can be proved correct using an invariant
∀k (0 ≤ i ≤ n) ∧ (0 ≤ k < i → a[k] = 42), with a disjunction between the cases
k < i (filled) and k ≥ i (unfilled).1

In all cases, the analysis needs to efficiently represent sets of convex poly-
hedra, possibly (but not necessarily [4]) tagged by elements of a finite set T
(abstract traces, Boolean vectors, etc.). Earlier works proposed to represent an
abstract element by an explicit map from T to convex polyhedra, either as an
array of pairs (Ti, Pi) where Ti ⊆ T and Pi are polyhedra, or as a decision
tree or DAG with polyhedra at the leaves. Both approaches are implemented in
Jeannet’s BddApron library [19].

One issue with this approach is that the possible number of abstract par-
titions is often exponential in some parameter (length of the recorded trace,
number of Boolean variables) and thus every operation (post-condition, convex
hull) is potentially repeated for each of the exponentially many polyhedra. At
the same time, the polyhedra in different abstract partitions often share most
of the constraints and only differ in few that are related to the partitioning cri-
terion. Thus, it is tempting to store a set of polyhedra in some structure that
does not require duplicating shared constraints, and to use symbolic algorithms
that, as much as possible, avoid enumerating abstract partitions individually.

One approach to this is offered by different kinds of decision diagrams over
linear constraints. A notable example is Linear Decision Diagrams (LDD) devel-
oped by Chaki, Gurfinkel, and Strichman [10]. An LDD is a DAG, where internal
nodes are labelled with linear constraints, and the two leaves are true and false,
thus a path through an LDD corresponds to a convex polyhedron. Based on the
LDD algorithms, the same authors later developed an abstract domain of boxes
[15], that only allows to have a comparison of a variable with a constant in an
interior node.

Theoretical Contribution. In this paper, we propose an alternative app-
roach: to represent an abstract state as a set of implications {Bi → ci}i=0..k,
where Bi are arbitrary Boolean formulas, and ci are linear constraints. This
way, an abstract element can still be seen as an implicit map from a partition of
B
m to convex polyhedra (similar to a BddApron element), but we do not have

to duplicate storage and computations for constraints shared by multiple parti-
tions. Another appeal of this approach is that some operations on constraint-only
polyhedra can be naturally adapted to sets of implications of the form Bi → ci.
The algorithms in this paper are based on Fourier-Motzkin elimination [28] and
the reduction of convex hull to projection of Benoy, King, and Mesnard [7,31].
Whether it is possible to also adapt the more recent algorithms based on para-
metric linear programming and raytracing by Maréchal, Monniaux, and Périn
[21–23] is a question for future work.

1 → denotes logical implication.
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The Boolean variables occurring in the formulas Bi may be program variables
(from small enumerated types) but may also be observers, partitioning according
to trace history or calling context. This solves one issue with untagged disjunc-
tions of polyhedra: when applying the widening operator to

⋃
i Pi and

⋃
j Qj ,

how does one “match” the Pi’s and Qj ’s to perform conventional widening over
polyhedra [4]? Similarly, for the “join” operation (

⋃
i Pi)	(

⋃
j Qj), does one sim-

ply concatenate the two unions while removing duplicates (thus creating longer
and longer lists), or does one “match” some Pi and Qj for convex hull, and if so
under which criteria? In our case, widening and join are guided by the Boolean
variables: the polyhedra associated to the same Boolean choice are matched
together.

Experimental Evaluation. We made a prototype implementation of the pro-
posed abstract domain in our abstract interpreter for Horn clauses [5,6].

2 Notation

We consider programs with Boolean and rational variables: a concrete program
state is a tuple (b,x) ∈ B

m × Q
n. We use bold lowercase symbols b ∈ B

m and
x ∈ Q

n to denote valuations of Boolean and numeric variables respectively. We
use lowercase Italic symbols b and x respectively to denote vectors of Boolean
and rational variables. We refer to the j-th variable in x as x(j). We use other
lowercase Italic symbols, e.g., a, d, to denote vector and scalar coefficients, and
their meaning will be clear within their context.

Without loss of generality, we make a number of assumptions on the syntactic
form of linear constraints. We assume that there exists the unique unsatisfiable
linear constraint cfalse, i.e. we will not distinguish logically equivalent, but syn-
tactically different falsities: 0 < 0, 1 ≥ 2, etc. We assume that every linear
constraint ci is written as a greater-or-equal constraint with integer coefficients,
i.e. ci = aix � di, where ai ∈ N

n, di ∈ N, and �∈ {=,≥, >}.
We sometimes write a Boolean or a linear constraint as B[b] or c[x] to empha-

size that free variables in B and c come from vectors b and x respectively. We
use the [/] notation to denote substitution. For example, B[b(j)/true] denotes
the result of substituting in B the variable b(j) with true. As a shortcut, we
write B[b] to denote the result of substituting every free variable in B with its
valuation given by b.

3 Abstract Domain of Boolean and Linear Constraints

We propose to represent an abstract state as a set of implications:

S = {Bi → ci}i=0..k

where Bi is a propositional formula over Boolean variables, and ci is a linear
constraint (equality or inequality) over numeric variables. We do not want Bi to
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be a partition of Bm. Our intention is to never duplicate linear constraints that
are shared by multiple valuations of Boolean variables.

An abstract state S represents the set of concrete states:

γ(S) =
{

(b,x)
∣
∣
∣

k∧

i=0

Bi[b] → ci[x]
}

Alternatively, one can see an abstract state as a function that maps every val-
uation of Boolean variables to a convex polyhedron that describes the possible
values of numeric variables. This is captured by the partial concretization γb:

γb(S) =
{
b �→

∧

Bi[b]

ci

∣
∣
∣ b ∈ B

m
}

The notion of partial concretization is useful when we want to show that we
correctly lift operations on sets of constraints (e.g., projection) from linear con-
straints to implications Bi → ci. We normally want a operation to commute with
γb, i.e., γb(flifted(S))(b) = foriginal(γb(S)(b)), which would mean that there is
no loss of precision on the Boolean level.

Without loss of generality, we assume that in every abstract state, the 0-th
constraint has the form B0 → cfalse, and no other constraint has cfalse on
the right-hand side. In particular, the empty polyhedron is represented by ⊥ =
{true → cfalse} and the universal polyhedron is represented by � = {false →
cfalse}.

Example 1. The abstract state where x(0) is always non-negative, and in addi-
tion, if b(0) holds, x(0) is not greater than 1 can be represented as

{false → cfalse, true → x(0) ≥ 0, b(0) → x(0) ≤ 1}

3.1 Elimination of a Rational Variable

In constraint-only representation, existential quantifier elimination (projection)
is the main operation on polyhedra, and most other operations are expressed
using projection.

We can naturally adapt Fourier-Motzkin elimination [14,18,28] to our
abstract domain in the following way. Let an abstract element S be {Bi →
ci}i=0..k and let x(j) be the variable to eliminate. First, we split every equality
where x(j) appears with nonzero coefficient into a pair of inequalities. Then, we
partition the constraints into three sets:

1. E0, where in the linear part x(j) appears with coefficient 0;
2. E+, where in the linear part x(j) appears with a positive coefficient;
3. E−, where in the linear part x(j) appears with a negative coefficient.

The constraints from E0 we keep as-is, and from every pair of constraints in E+

and E−, we produce a positive combination, in which x(j) has coefficient 0. The
difference from the original Fourier-Motzkin algorithm is that when we combine
two constraints, we conjoin their Boolean parts. This is summarized in Fig. 1.
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Fig. 1. Elimination of the variable x(j). Assuming that every equality that contains
x(j) was replaced by a pair of inequalities.

Example 2. Let

S = {true → x(0) − x(1) = 0, b(0) → x(0) ≥ 0, b(1) → −x(1) ≥ −1}
and let us apply the Fourier-Motzkin-based elimination to the variable x(0).
First, we partition the constraints into the three sets:

E0 = {b(1) → −x(1) ≥ −1}
E+ = {true → x(0) − x(1) ≥ 0, b(0) → x(0) ≥ 0}
E− = {true → −x(0) + x(1) ≥ 0}

We keep the elements of E0 and combine the elements of E+ and E−, producing
the set

{b(1) → −x(1) ≥ −1, true → 0 ≥ 0, b(0) → x(1) ≥ 0} =
{b(1) → −x(1) ≥ −1, b(0) → x(1) ≥ 0}

In this case, we only need to eliminate the trivially valid constraint true → 0 ≥ 0;
in general Fourier-Motzkin elimination can produce constraints that are non-
trivially redundant.

Lemma 1. For every abstract state S, rational variable x(j), and b ∈ B
m,

γb(eliminateR(x(j), S))(b) ↔ ∃x(j). γb(S)(b)

Proof Idea. To prove Lemma 1, we can pick an arbitrary b ∈ B
m and show that

the set of linear constraints {ci | Bi → ci ∈ eliminateR(j, S) ∧ Bi[b]} is the
same as the set of constraints produced by applying standard Fourier-Motzkin
elimination to γb(S)(b).

To eliminate multiple rational variables, we apply eliminateR iteratively. The
standard heuristic is to pick and eliminate in every step a variable that minimizes
|E+||E−| − |E+| − |E−|, which is the upper bound on the growth of the number
of constraints.
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Gaussian Elimination. When an abstract element contains an equality true →
ax = d, where a(j) �= 0, this equality can be used as a definition of the variable
x(j). Then, to eliminate the x(j) from an abstract element, we can replace it
with this definition in every remaining constraint, instead of performing Fourier-
Motzkin elimination. This is useful for eliminating, e.g., temporary variables that
an analysis may introduce when pre-processing the program.

Example 3. Let

S = {true → x(0) − x(1) = 0, b(0) → x(0) ≥ 0, b(1) → −x(1) ≥ −1}
and let us apply the Gaussian elimination to the variable x(0), using the equality
true → x(0) − x(1) = 0. That is, we replace x(0) with x(1) in the two remaining
constraints, getting

{b(0) → x(1) ≥ 0, b(1) → −x(1) ≥ −1}
This can be generalized to the case when the abstract element contains a

subset of equalities {Bj → ajx = dj}j=1..m ⊆ S, s.t.
∨m

j=1 Bj = true, as shown
in Fig. 2

Fig. 2. Generalization of Gaussian elimination of the variable x(j).

3.2 Equivalent and Redundant Constraints

When working with constraint-only representation of polyhedra, one of the big
challenges is eliminating redundant constraints. As shown above, every round
of Fourier-Motzkin elimination creates a quadratic number of new constraints,
an most of them are usually redundant. When eliminating multiple variables
(notably, during join computation, see Sect. 3.3), redundant constraints have
to be eliminated regularly, otherwise their number might grow in a double-
exponential way (while McMullen’s upper bound theorem [24] implies that the
number of non-redundant constraints cannot grow more than exponentially with
the number of projected dimensions). In his work on constraint-only representa-
tion of polyhedra [13], A. Fouilhé argues for redundancy elimination after elim-
inating every variable. The conventional approach to redundancy elimination
in a list of n constraints is to go over every constrain and use linear program-
ming test whether it is redundant with respect to the n − 1 other ones (some



Extending Constraint-Only Representation of Polyhedra 133

other criteria [18,20] cannot eliminate all redundancies. “Raytracing” [23] is a
fast method to identify redundancies, but it degenerates into the conventional
linear programming approach in the worst case). We adapt that approach to the
Boolean setting: to check whether a constraint is redundant, we call an SMT
solver. We also implement a number of less costly redundancy checks.

Pairwise Redundancy Checks. There is a number of reductions that can be
implemented without necessarily calling an SMT solver.

First, we can combine constraints with identical linear part:

{B1 → c,B2 → c} ≡ {B1 ∨ B2 → c}
This is an important step that allows to not duplicate linear constraints; dupli-
cation would be amplified by Fourier-Motzkin elimination.

Second, we can eliminate a constraint if it is implied by another constraint:

if B2 → B1 ∧ c1 → c2, then
{B1 → c1, B2 → c2} ≡ {B1 → c1}

This requires a procedure to efficiently check implication between Boolean for-
mulas, which is available, e.g., if they are represented as BDDs. Implication
between a pair of linear constraints is a straightforward syntactic check.

Pairwise reduction checks reduce the number of SMT calls, which are costly.
This is especially important in lower dimensions and when few constraints are
relational. In these cases, most of redundant constraints can be eliminated with
pairwise checks.

SMT-Based Redundancy Check. Let S = {Bi → ci}i=0..k. Then the j-th
constraint is redundant, if its negation is unsatisfiable with respect to the other
constraints:

isRedundant(j, S) ≡ Bj ∧ ¬cj ∧
∧

i=0..k,i �=j

(Bi → ci) is UNSAT

An SMT-based redundancy check is an expensive operation, but it has to be
performed regularly to limit the growth of the number of constraints.

In general, for a given abstract state S, there may be no unique smallest set
of non-redundant constraints. Currently, we implement a greedy strategy: we
successively check every constraint and if it is redundant, immediately eliminate
it, before checking other constraints. We can artificially make this procedure
deterministic by ordering the constraints; in particular it is beneficial to first
attempt to remove constraints with larger absolute values of coefficients, both
for human-readable output and for performance of an SMT solver.

Example 4. Let

S = {true → x(0) ≥ 0, b(0) → x(0) ≥ −1, b(1) → x(1) ≥ 0, b(1) → x(0)+x(1) ≥ 0}
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Let us remove redundant constraints from this system. First, we note that
(true → x(0) ≥ 0) → (b(0) → x(0) ≥ −1), since b(0) → true and x(0) ≥ 0 →
x(0) ≥ −1, thus the latter constraint is redundant. Second, we note that:

(true → x(0) ≥ 0) ∧ (b(1) → x(1) ≥ 0) ∧ b(1) ∧ x(0) + x(1) < 0 is UNSAT

Thus, the remaining non-redundant constraints are:

{true → x(0) ≥ 0, b(1) → x(1) ≥ 0}

3.3 Join

To perform join of two abstract elements, we adapt the projection-based convex
hull computation of Benoy et al. [7,31]. The original algorithm is based on the
observation that every point in the convex hull is a convex combination of a
pair of points from the original polyhedra. Figure 3 expresses this more formally
and adapted to our setting. Given the two abstract elements S1 and S2, first
we construct the set of constraints S12. The variables λ1, λ2 are the scaling
coefficients of the two points in S1 and S2 respectively, s.t. λ1, λ2 ≥ 0 and λ1 +
λ2 = 1; y1 an y2 are the vectors of coordinates of the two points, pre-multiplied
by scaling coefficients, and thus should satisfy the pre-multiplied constraints of
S1 and S2; finally x is the vector of coordinates of a point in the convex hull, and
thus x = y1 + y2. Eliminating y1, y2, λ1, and λ2 from S12 produces the closure of
the convex hull. With some extra bookkeeping, it is then possible to express the
resulting linear constraints in terms of the original constraints [13] and turn some
closed constraints back into open (a positive combination a set of constraints,
where at least one constraints is open, is also open).

Fig. 3. Convex hull of two abstract states. The sign � stands for the closed version of
the corresponding sign �. When � is >, � is ≥; otherwise � is the same as �.

Lemma 2. For every pair of abstract states S1, S2 and every b ∈ B
m,

γb(join(S1, S2))(b) = γb(S1)(b) 	 γb(S2)b

Proof Idea. To prove Lemma 2, similarly to Lemma 1, we can pick an arbitrary
b ∈ B

m and show that the set of constraints S12 in Fig. 3 is the same as the
set of constraints generated by F. Benoy’s convex hull applied to γb(S1)(b)
and γb(S2)b.
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Join of Elements with Disjoint Pure Boolean Constraints. Let S1, S2

be a pair of abstract elements:

S1 = {B1
0 → cfalse}∪{B1

i → c1i }i=1..n S2 = {B2
0 → cfalse}∪{B2

j → c2j}j=1..m,

where ¬B1
0∧¬B2

0 = false, i.e., their pure Boolean constraints are disjoint, and for
a given valuation of Boolean variables b, at least one of the polyhedra γb(S1)(b),
γb(S2)(b) is empty. In this case, S1 and S2 can be joined exactly and without
computing the convex hull as follows:

boolDisjointJoin(S1, S2) ≡ {B1
i ∧ ¬B1

0 → c1i }i=1..n ∪ {B2
j ∧ ¬B2

0 → c2j}j=1..m ∪
{B1

0 ∧ B2
0 → cfalse}

As we later show, this optimization is important for efficient elimination of
Boolean variables. Soundness can be shown by writing down the disjunction
of logical formulas corresponding to S1 and S2, distributing the disjunction over
the conjunctions and applying equivalences that follow from ¬B1

0 ∧¬B2
0 = false.

Let S1, S2 be a pair of abstract elements:

S1 = {B1
0 → cfalse} ∪ {B1

i → c1i }i=1..n S2 = {B2
0 → cfalse} ∪ {B2

j → c2j}j=1..m,

where ¬B1
0 ∧ ¬B2

0 = false. Let us observe the disjunction of their corresponding
logical characterizations:

(
(B1

0 → cfalse) ∧ (
n∧

i=1

B1
i → c1i )

) ∨ (
(B2

0 → cfalse) ∧ (
m∧

j=1

B2
j → c2j )

)

Conjoining the pure boolean constraints to numeric constraints

=
(
(B1

0 → cfalse) ∧ (
n∧

i=1

B1
i ∧ ¬B1

0 → c1i )
) ∨ (

(B2
0 → cfalse) ∧ (

m∧

j=1

B2
j ∧ ¬B2

0 → c2j )
)

=

Distributing the disjunction

=
∧

i=1..n,j=1..m

(¬B1
i ∨ B1

0 ∨ c1i ∨ ¬B2
j ∨ B2

0 ∨ c2j ) ∧

n∧

i=1

(¬B1
i ∨ B1

0 ∨ c1i ∨ ¬B2
0 ∨ cfalse) ∧

m∧

j=1

(¬B2
j ∨ B2

0 ∨ c2j ∨ ¬B1
0 ∨ cfalse) ∧

(¬B1
0 ∨ cfalse ∨ ¬B2

0 ∨ cfalse)

From ¬B1
0 ∧ ¬B2

0 = false it follows that B1
0 ∨ B2

0 = true, ¬B1
0 → B2

0 , and
¬B2

0 → B1
0

=
n∧

i=1

(B1
i ∧ ¬B1

0 → c1i ) ∧
m∧

j=1

(B2
j ∧ ¬B2

0 → c2j ) ∧ (B1
0 ∧ B2

0 → cfalse)

Which is the logical characterization of boolDisjointJoin(S1, S2).
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3.4 Other Operations

Intersection with a Constraint. To intersect an abstract state S with a
constraint B → c, we add B → c to S. To intersect an abstract state S with a
linear constraint c, we add true → c to S. To intersect an abstract state S with
a Boolean constraint B, we add ¬B → cfalse to S.

Linear Assignment. The general way to apply a linear assignment x(j) :=
ax + d is by renaming and elimination. We introduce a fresh variable x′

(j) that
denotes the value of x(j) after or before the assignment, relate it to x(j), eliminate
x(j) and then rename x′

(j) into x(j):

post(x(j) := ax + d, S) ≡ eliminateR(x(j), S ∪ {x′
(j) = ax + d})[x′

(j)/x(j)]

pre(x(j) := ax + d, S) ≡ eliminateR(x(j), S ∪ {x(j) = (ax + d)[x(j)/x
′
(j)]})[x′

(j)/x(j)]

This applies to both invertible (where in ax + d, x(j) has a non-zero coefficient)
and non-invertible assignments. Invertible assignments (e.g. a := 2a+1) can also
be implemented by substituting the inverted expressions (e.g. a �→ (a − 1)/2)
into the constraints [12, Sect. 4.2.2.1].

Elimination of a Boolean Variable. We use the equivalence ∃b ∈ B. ϕ =
ϕ[b/true] ∨ ϕ[b/false] over-approximate logical disjunction with the join opera-
tion:

eliminateB(b(j), S) ≡ join(S[b(j)/true], S[b(j)/false])

Example 5. Let

S = {b(0) → x(0) = 0, b(0) → x(1) = 0, ¬b(0) → x(0) = 1, ¬b(0) → x(0) = 1}
That is, when b(0) is true, x(0) = x(1) = 0, and when b(0) is false, x(0) = x(1) = 0.
To eliminate the single Boolean variable b(0), we take the join of the two abstract
elements:

S[b(0)/true] = {true → x(0) = 0, true → x(1) = 0}
S[b(0)/false] = {true → x(0) = 1, true → x(1) = 1}

One possible representation of the result is

eliminateB(b(0), S)= {true → x(0) ≥ 0, true → −x(0) ≥ −1, true → x(0)−x(1) = 0}
Example 6. For an example of a join of two Boolean-disjoint abstract states, let
us consider the abstract state

S = {true → x(0) ≥ 0, b(0) → −x(0) ≥ −1, b(0) �= b(1) → false}
and let us eliminate the variable b(0) from it. Notice that this abstract state
asserts that b(0) = b(1), and thus we expect that the elimination will result in
substituting b(0) with b(1) in every constraint. First, we compute

S[b(0)/true] = {true → x(0) ≥ 0, true → −x(0) ≥ −1, ¬b(1) → false}
S[b(0)/false] = {true → x(0) ≥ 0, b(1) → false}
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Then, we observe that these abstract states are Boolean-disjoint, since ¬¬b(1) ∧
¬b(1) = false, i.e., we can apply the specialized version on join and, as
expected, get

boolDisjointJoin(S[b(0)/true], S[b(0)/false])
= {b(1) → x(0) ≥ 0, b(1) → −x(0) ≥ −1, ¬b(1) → x(0) ≥ 0}
= {true → x(0) ≥ 0, b(1) → −x(0) ≥ −1}

This example demonstrates a common scenario when eliminating temporary
Boolean variables. The eliminated variable may be introduced using an explicit
equality, like in this example, or in some similar way that makes it so that
restricting this variable to true and false respectively produces Boolean-disjoint
elements. Having a specialized join operation for Boolean-disjoint abstract states
is important when an analysis may transform the input program and introduce
such variables.

Boolean Assignment. An assignment of the form b(j) := B we implement,
similarly to the linear case, using renaming and elimination:

post(b(j) := B,S) ≡ eliminateB(b(j), S ∪ {¬(b′
(j) ↔ B) → cfalse})[b′

(j)/b(j)]

pre(b(j) := B,S) ≡ eliminateB(b(j), S ∪ {¬(b(j) ↔ B[b(j)/b
′
(j)]) → cfalse})[b′

(j)/b(j)]

Linear to Boolean Assignment. In some cases, during the analysis we want
to introduce an observer variable – a Boolean variable that the stores truth
value of some linear constraint at some point of program execution. When c is
an inequality (not an equality), the assignment b(j) := c is straightforward to
implement, since the equivalence b ↔ c can be represented as a pair of con-
straints: b → c,¬b → ¬c. That is,

post(b(j) := c, S) ≡ eliminateB(b(j), S ∪ {b′
(j) → c,¬b′

(j) → ¬c})[b′
(j)/b(j)]

and similarly for pre. For an equality ax = d, though, we cannot assign its truth
value to a single Boolean variable. Instead, we have to use two Boolean variables
to separately assign to them the truth values of ax ≥ d and −ax ≥ −d.

Widening. Widening in convex polyhedra is based on the idea of keeping the
constraints of the previous approximation that are also satisfied by the new
approximation [3,17]. In our setting, we want, for every linear constraint from
the previous approximation, to find for which values of Boolean variables it is
implied by the new approximation. To find for which values of Booleans an
inequality c is implied by an abstract state S, we can conjoin true → ¬c to S
and then eliminate all the rational variables. This produces an abstract state of
the form {B → cfalse} which is interpreted as: when B holds, ¬c is unsatisfiable
in S and thus B → c is implied by S. Thus, assuming that every equality is first
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split into a pair of inequalities and that S1 � S2, we get:

widen(S1, S2) ≡
{

B3
i → c1i

∣
∣
∣∣
∣
B1

i → c1i ∈ S1 ∧
eliminateR(x, S2 ∪ {true → ¬c1i }) = {B3

i → cfalse}

}

∪

{B2
0 → cfalse | B2

0 → cfalse ∈ S2}

Inclusion Test. To check for inclusion between abstract states, we currently
use an SMT solver. Let S1 = {B1

i → c1i }i=0..k1 and S2 = {B2
j → c2j}j=0..k2 . Then

S1 � S2 ≡
( k1∧

i=0

B1
i → c1i

)
∧ ¬

( k2∧

j=0

B2
j → c2j

)
is UNSAT

Checking, whether an abstract state S is empty, i.e., whether S � ⊥ also requires
an SMT solver call.

3.5 Implementation Details

Representing Boolean Formulas. We currently propose to represent Boolean
formulas with BDDs, the main reason being that BDDs allow to represent for-
mulas in a canonical way and avoid unbounded syntactic growth, when formulas
are repeatedly conjoined (during elimination) and disjoined (when combining
constraints with coinciding linear part).

Constraints over Integer Variables. To achieve additional precision, we
can rewrite linear constraints when every variable with a non-zero coefficient is
integer. In this case, a strict inequality can be rewritten as non-strict:

ax > d ≡ ax ≥ d + 1

For an inequality over integer variables, we can divide the coefficients of a
constraint over integer variables by the GCD of the variable coefficients, rounding
the free coefficient towards 0:

ax ≥ d ≡ (a/g)x ≥ round(d/g), where g = gcd a

For an equality over integer variables, the free coefficient has to be divisible
by the GCD of the variable coefficients, otherwise the equality is unsatisfiable.

4 Implementation and Experiments

We implemented the proposed abstract domain in our abstract interpreter for
Horn clauses [5,6]. Our tool can find models of systems of constrained Horn
clauses [9] with predicates over numeric and Boolean variables. It is based on
the technique of path focusing [26] and uses an SMT solver (Z3) to iterate over
relevant disjuncts of the direct consequence relation. As the abstract domain, it
supports BddApron [19] and now also the abstract domain that we propose in
this paper. The tool is implemented in OCaml.
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4.1 Example

Figure 4 shows an example of a kind of a program that we are interested in.
Figure 4 is a typical result of instrumenting a program with Boolean observer
variables that record which branches were taken during an execution. At every
step, this program non-deterministically chooses whether to assume a constraint
on a numeric variable x(i), and the choice is recorder in a Boolean variable b(i).
At this point, we do not care how exactly this program was obtained, and we
are interested in efficiently computing invariants in a way that allows to relate
Boolean and numeric variables. Our original motivation though comes from using
observer variables for trace partitioning in array-manipulating programs [27],
where different branches correspond to different relations between array indices.

Figure 5 encodes the example program as a system of Horn clauses that
can be processed by our tool. In this system, predicates P0, · · · , P3 denote the
invariants of the four program locations, and every Horn clause corresponds to
one transition (in general, a clause may encode multiple sequences of statements).
The smallest model of the system in Fig. 5 is the collecting semantics of the
program in Fig. 4.

Fig. 4. An example of a program
instrumented with observer vari-
ables.

Fig. 5. An encoding of the program in
Fig. 4 into Horn clauses for our tool.
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The original implementation of our tool used the BddApron abstract domain,
and the invariant that it infers for the predicate P3 (the final program location)
consists of 8 polyhedra, one for every valuation of Boolean variables:

(¬b(0)¬b(1)¬b(2) ∧ x(0) ≥ 0 ∧ x(1) ≥ 0 ∧ x(2) ≥ 0) ∨
(¬b(0)¬b(1)b(2) ∧ x(0) ≥ 0 ∧ x(1) ≥ 0 ∧ 1 ≥ x(2) ≥ 0) ∨
· · · ∨
(b(0)b(1)b(2) ∧ 1 ≥ x(0) ≥ 0 ∧ 1 ≥ x(1) ≥ 0 ∧ 1 ≥ x(2) ≥ 0)

In a larger program, such an invariant would be propagated further, with every
post-condition computation begin essentially repeated for each of the eight poly-
hedra (i.e., exponentially many times in the number of Boolean variables).

The implementation of the domain that we propose in this paper allows to
represent P3 in a much more compact form:

{ true → x(0) ≥ 0, true → x(1) ≥ 0, true → x(2) ≥ 0,

b(0) → −x(0) ≥ −1, b(1) → −x(1) ≥ −1, b(2) → −x(2) ≥ −1 }

4.2 Experiments

We evaluate the performance of the implementation using two sets of programs.
For both sets, we measure the total time it took to run on every program a single
forward analysis with narrowing. We summarize the results in Table 1. Time
figures were obtained on a PC with a Core i7-3630QM CPU and 8GB RAM.

SV-COMP Programs. For the first set of experiments, we selected a number
of programs from “loop” and “recursive” categories of the Competition on Soft-
ware Verification SV-COMP [1] and translated them into Horn clauses (the input
language of our tool) with the tool SeaHorn [16] using two different Clang opti-
mization levels -O3 and -O0 (SeaHorn operates on LLVM bytecode). This way
we obtained 123 systems of Horn clauses. By default, SeaHorn uses a version of
large block encoding [8] and produces programs with relatively few locations, but
with complicated transition relations and a large number of temporary Boolean
and numeric variables; even a simple C program can produce a good benchmark
for the implementation of an abstract domain. In Appendix A, we show an exam-
ple of a C program and the corresponding system of Horn clauses produced by
SeaHorn. On SV-COMP programs, the implementation of the proposed domain
is 2–10 times slower than BddApron; about 5 times slower on average.

Hand-Crafted Programs. For the second set, we selected 10 hand-crafted
programs coming from different sources: array-manipulating programs encoded
using array abstraction of Gonnord and Monniaux [27], other programs that use
trace partitioning with observer variables, etc. With hand-crafted examples, we
noticed that some of SMT queries that test constraint for redundancy cause the
solver (Z3 4.5.0) to reach timeout, which we set at 10 seconds. This does not
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Table 1. Experimental results

Program set # Total time, s

BddApron This paper

SV-COMP 123 9.2 52

Hand-crafted, no solver timeout 8 0.9 6.8

Hand-crafted, all 10 1.6 113.5

make the analysis unsound; a timeout of a redundancy check only causes the
analysis to keep a redundant constraint in an abstract element. We have not yet
found a workaround, and we display the hand-crafted programs in two rows: all
programs (10) and programs that do not cause solver timeouts (8). On hand-
crafted programs without solver timeout, the implementation of the proposed
domain is 2–10 times slower than BddApron; about 7 times slower on average.

Conclusion. On average, the current implementation of the proposed abstract
domain is about 5–7 times slower than BddApron. We find this result promising
(given that this is our initial prototype implementation) and it shows directions
for future improvement. In particular, much of the analysis time is spent in SMT
solver calls in order to detect redundant constraints. These calls are costly, but
have to be performed regularly. We are going to address the performance of
eliminating redundant constraints in future work.

5 Conclusion and Future Work

In this paper, we propose a new relational abstract domain for analysing programs
with numeric andBoolean variables. Themain idea is to represent an abstract state
as a set of linear constraints over numeric variables, with every constraint being
enabled by a formula over Boolean variables. This allows, unlike in some exist-
ing approaches, avoiding the duplication of linear constraints shared by multiple
Boolean formulas. Currently, we use the simple formulations of Fourier-Motzkin
elimination [28] and projection-based convex hull [7,31], and we rely on an SMT
solver for redundancy elimination and inclusion checks (the counterpart of sys-
tematically using linear programming). Our experiments have shown that this is
a worthy combination, which avoids some of the inefficiencies of earlier works.

The main direction for future work is to improve the performance of elimi-
nating redundant constraints. There may be multiple ways to do this.

First, we may find additional heuristics that will reduce the number calls to
a complete elimination procedure (that now calls an SMT solver). For example,
Maréchal and Périn propose a fast incomplete procedure to detect non-redundant
constraints based on raytracing [23], and there may be a way to adapt it (or a
similar heuristic) to our setting.

Second, we may replace the SMT calls with a specialized procedure that
combines LP-based and BDD-based reasoning. In particular, the observation
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is that a constraint is non-redundant, if it is non-redundant for at least one
valuation of Boolean variables. While, an abstract element in the worst case
describes exponentially many (in the number of constraints) convex polyhedra,
there may be a way to not enumerate all of them during the redundancy check,
at least in the average case.

Third, we may attempt to adapt to our setting the state-of-the art algorithms
for constraint-only polyhedra, but this is not straightforward. For example, we
cannot immediately adapt algorithms that require an interior point, such as
those on parametric linear programming (for projection and convex hull) and
ray-tracing (for redundancy elimination), by Maréchal, Monniaux, and Périn
[21–23]: different Boolean assignments may have different interior points (in case
of polyhedra with empty interior, we consider the interior relative to the affine
span; but again this depends on the affine span). This is unfortunate, since much
time is currently spent inside the SMT solver for checking for redundancy, and
parametric linear programming is more efficient than Fourier-Motzkin elimina-
tion. A possible workaround, to be explored, is to partition the Boolean space
according to affine span and point in the relative interior.

Regardless of the issues related to redundancy, presence of Boolean con-
straints often prevents us from using some standard approaches to representing
polyhedra. In computations over convex polyhedra, one usually maintains, in
addition to a system of inequalities, a system of linear inequalities that defines
the affine span of the polyhedron. Given an ordering over the dimensions, this
system of equalities may be echelonized and used to eliminate variables from the
system of inequalities. The resulting system of equalities and non-redundant,
normalized inequalities is canonical 2. In our case, the affine span may depend
on the Boolean part, thus it is impossible to canonicalize the inequalities uni-
formly with respect to the Booleans. We intend to investigate partitioning the
Boolean space according to the affine span.

Fig. 6. An example of a C program

2 In the case of polyhedra with nonempty interior, an non-redundant system of nor-
malized inequalities canonically describes a polyhedron: each inequality corresponds
to a face. This is not true in the general case: both x ≤ y ∧ y ≤ x ∧ 0 ≤ x ∧ x ≤ 1
and x ≤ y ∧ y ≤ x ∧ 0 ≤ x ∧ y ≤ 1 are non-redundant systems defining the same
polyhedron. Its affine span is defined by x = y, then one can rewrite the inequalities
using this equality and obtain x = y ∧ 0 ≤ y ∧ y ≤ 1, which is canonical.
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A Input Example

Figure 6 shows an example of a C program. Figure 7 in the next page shows the
corresponding system of Horn clauses produced by SeaHorn.

Fig. 7. System of Horn clauses produced by SeaHorn for the program in Fig. 6.
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Grenoble & Institut National Polytechnique de Grenoble, March 1979. https://tel.
archives-ouvertes.fr/tel-00288805

18. Imbert, J.: Fourier’s elimination: which to choose? In: PPCP, pp. 117–129 (1993)
19. Jeannet, B.: Bddapron. http://pop-art.inrialpes.fr/∼bjeannet/bjeannet-forge/

bddapron/. Accessed Apr 2018
20. Kohler, D.: Projections of convex polyhedral sets. Ph.D. thesis, University of Cal-

ifornia, Berkeley (1967)
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Abstract. We present a construction of the abstract domain of NNC
(not necessarily topologically closed) polyhedra based on a recently intro-
duced variant of the double description representation and conversion pro-
cedure. We describe the implementation of the operators needed to inter-
face the new abstract domain with commonly available static analysis
tools, highlighting the efficiency gains enabled by the new representation.
We also reconsider the widening operator for NNC polyhedra, proposing
a more appropriate specification based on the semantics of the domain
elements, rather than their low level representation details. Finally, we
provide an experimental evaluation comparing the efficiency of the new
abstract domain with respect to more classical implementations.
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1 Introduction

When developing or configuring a program analysis or verification tool based
on Abstract Interpretation, the choice of the underlying abstract domain is a
critical design decision. For numerical properties, many possible alternatives are
available, each one characterized by a different tradeoff between the precision of
the properties that can be expressed and the corresponding computational cost.

The abstract domain of convex polyhedra [22] is often positively consid-
ered as far as precision is concerned, but deemed unfeasible due to well-known
results on its worst case exponential complexity. On the other hand, the domain
of intervals [20] is definitely one of the most efficient choices, but quite often
leads to insufficient precision. Many weakly-relational domains have been pro-
posed (bounded differences [36,42], bounded logahedra [31], octagons [37], octa-
hedra [17], parallelotopes [1], pentagons [35], subpolyhedra [34], template poly-
hedra [41], two variables per inequality [43], weighted hexagons [23], . . . ), each
one providing its own contribution to a whole spectrum of options. In many
cases, analysis tools are based on a suitable combination of several domains [15].

The recent years have witnessed significant progress in the implementation of
some of these abstract domains. Sometimes, efficiency gains have been obtained
by strictly algorithmic improvements: this is the case, for instance, for the imple-
mentation of the octagon domain optimized for dense representations [44], or for
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 146–165, 2018.
https://doi.org/10.1007/978-3-319-99725-4_11
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the adoption of more efficient adjacency tests [24,47] in the conversion proce-
dures of convex polyhedra. In other cases, the progress resulted from the appli-
cation of generic techniques that allow for a scalable use of the precise abstract
domains, such as the careful adoption of variable packing, either computed stati-
cally [15] or dynamically [26,27,45,46]. As a result, analyses that were previously
dismissed as unfeasible turn out to be affordable and surprisingly effective.

In this paper, building on a recent result [12,13] on the representation of
NNC (not necessarily topologically closed) convex polyhedra in the DD (double
description) framework, we describe the development of an alternative implemen-
tation for the corresponding abstract domain. We reconsider all of the operators
that are needed for the definition of a classical static analysis based on Abstract
Interpretation, stressing on the efficiency gains that are triggered by the adop-
tion of the new representation. In particular, by exploiting the availability of an
efficiently computable canonical representation for NNC polyhedra, we propose
a more appropriate, semantics-based specification for the widening operator.

All the proposed algorithms have been implemented in the PPLite library,
a new C++ library derived from the PPL (Parma Polyhedra Library, [8,9]). In
order to compare the new domain with respect to some of the available alter-
natives, we first interface the PPLite library with Apron [32] and then use it in
the static analyzer PAGAI [30]. This experimental evaluation allows for com-
paring both the precision and the efficiency of the analysis, showing significant
speedups with respect to the more classical implementations of the domain of
NNC polyhedra on a wide range of benchmarks.

The paper is structured as follows: Sect. 2 introduces the required notation
and background concepts; Sect. 3 summarizes the new representation for NNC
polyhedra [13]; Sect. 4 shows how to implement on the new representation the
operators needed for the development of a static analysis tool; Sect. 5 summarizes
the results of the experimental evaluation; we conclude in Sect. 6.

2 Preliminaries

We write R
n to denote the Euclidean topological space of dimension n > 0 and

R+ for the set of non-negative reals; for S ⊆ R
n, cl(S) and relint(S) denote the

topological closure and the relative interior of S, respectively.
A not necessarily topologically closed convex polyhedron (for short, NNC

polyhedron) is defined as the set of solutions of a finite system C = 〈C=, C≥, C>〉
of linear equality, non-strict inequality and strict inequality constraints, i.e.,

P = con(C) def=
{

p ∈ R
n

∣
∣ ∀β = (aTx �� b) ∈ C, �� ∈ {=,≥, >} . aTp �� b

}
.

The set Pn of all NNC polyhedra on the vector space R
n, partially ordered

by set inclusion, is a lattice1 〈Pn,⊆, ∅,Rn,∩,
 〉, where the emptyset and R
n

are the bottom and top elements, the binary meet operator is set intersection

1 We assume some familiarity with the basic notions of lattice theory [14].
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and the binary join operator ‘
’ is the convex polyhedral hull. We write CPn to
denote the lattice of closed polyhedra on R

n, which is a sublattice of Pn.
A constraint β = (aTx �� b) is said to be valid for P ∈ Pn if all the points

in P satisfy β. We write Hβ to denote the hyperplane induced by β; the set
F = Hβ ∩ P is a face of P. We write nncFacesP to denote the finite set of faces
of P ∈ Pn. Note that P =

⋃{
relint(F )

∣
∣ F ∈ nncFacesP

}
.

A vector r ∈ R
n such that r �= 0 is a ray of a non-empty polyhedron P ⊆ R

n

if, ∀p ∈ P and ∀ρ ∈ R+, it holds p + ρr ∈ P. The empty polyhedron has no
rays. If both r and −r are rays of P, then r is a line of P. A vector c ∈ R

n

is a closure point of a non-empty polyhedron P ⊆ R
n if, ∀p ∈ P and ∀λ ∈ R

such that 0 < λ < 1, it holds λp + (1 − λ)c ∈ P. The set P ⊆ R
n is an NNC

polyhedron if there exist finite sets L,R,C, P ⊆ R
n such that 0 /∈ (L ∪ R) and

P = gen
(〈L,R,C, P 〉), where

gen
(〈L,R,C, P 〉) def=

⎧
⎪⎨

⎪⎩
Lλ + Rρ + Cγ + Pπ ∈ R

n

∣
∣
∣
∣
∣
∣
∣

λ ∈ R
�,ρ ∈ R

r
+,

γ ∈ R
c
+,π ∈ R

p
+,π �= 0,

∑c
i=1 γi +

∑p
i=1 πi = 1

⎫
⎪⎬

⎪⎭
.

We say that P �= ∅ is described by the generator system G = 〈L,R,C, P 〉 [6,11].
For a constraint β and a generator system G, we write sat(β,G) to denote the

generator system composed by those elements of G saturating β (i.e., satisfying
the corresponding equality constraint). For a constraint system C, we define
sat(C,G) =

⋂{
sat(β,G)

∣
∣ β ∈ C }

.2 We define sat(g, C) and sat(G, C) similarly.
The DD method [39] combines the constraints and the generators of a poly-

hedron into a DD pair (C,G): we write P ≡ (C,G) when P = con(C) = gen(G).
For topologically closed polyhedra (i.e., those polyhedra that can be described

by a constraint system where C> = ∅ and a generator system where C = ∅), there
exist conversion procedures [16] that can compute each description starting from
the other one. When converting from constraints to generators,3 the procedure
starts from a DD pair (C0,G0) representing the whole vector space and adds, one
at a time, the elements β0, . . . , βm of the input constraint system producing a
sequence of DD pairs

{
(Ck,Gk)

}
0≤k≤m+1

representing the polyhedra

R
n = P0

β0−→ . . .
βk−1−−−→ Pk

βk−→ Pk+1
βk+1−−−→ . . .

βm−−→ Pm+1 = P.

When adding the constraint βk to polyhedron Pk = gen(Gk), the generator
system Gk is partitioned into the three components G+

k , G0
k , G−

k , according to
the sign of the scalar products of the generators with βk (those in G0

k are the
saturators of βk); the new generator system for polyhedron Pk+1 is computed
as Gk+1

def= G+
k ∪ G0

k ∪ G�
k , where G�

k = comb adjβk
(G+

k ,G−
k ) and

comb adjβk
(G+

k ,G−
k ) def=

{
combβk

(g+, g−)
∣
∣ g+ ∈ G+

k , g− ∈ G−
k , adjPk

(g+, g−)
}
.

2 Note that we abuse notation by adopting the usual set operator and relation symbols
to denote the corresponding component-wise extensions on systems.

3 The opposite conversion works in the same way, exploiting duality.
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Function ‘combβk
’ computes a linear combination of its arguments, yielding a

generator that saturates the constraint βk; predicate ‘adjPk
’ is used to select only

those pairs of generators that are adjacent in Pk. The conversion procedure can
also simplify systems, putting them in minimal form: C (resp., G) is in minimal
form if it contains a maximal set of equalities (resp., lines) and no redundancies.4

The classical approach for the extension of the DD method to the case of
NNC polyhedra, put forward in [28,29] and studied in more detail in [6,11], is
the one adopted in both the NNC Polyhedra domain of the PPL [9] and the
NewPolka domain of the Apron library [32]. It is based on an indirect rep-
resentation, whereby each NNC polyhedron P ∈ Pn is mapped into a closed
polyhedron R ∈ CPn+1. The mapping encodes the strict inequality constraints
by means of an additional space dimension (playing the role of a slack vari-
able) usually denoted as ε, which needs to be non-negative and bounded from
above. While allowing for reusing the same conversion procedures implemented
for closed polyhedra, this approach is known to suffer from a few issues (which
have been described in full detail in [13]), leading to avoidable inefficiencies.

3 The New Representation for NNC Polyhedra

To the best of our knowledge, the algorithms described in [13] are the first
proposals of conversion procedures working on a direct DD representation for
NNC polyhedra. In this section we summarize the results presented in [13], which
lay the foundations for the development of a new implementation of the abstract
domain of NNC polyhedra.

The new representation of [13] stems from the observation that some of the
constraints and generators describing an NNC polyhedron need not be provided
with a fully geometrical description. This can be seen for the polyhedron shown5

on the left hand side of Fig. 1: there is no need to know the exact slope of the
strict inequality constraint β1, as it can be replaced by any other strict inequality
satisfied by all of the points of the polyhedron and saturated by closure point
c0; similarly, there is no need to know the precise position of point p1, which can
be replaced by any other point on the open segment (c0, c1).

Hence, the new representation distinguishes between the skeleton compo-
nent, which is described geometrically, and the non-skeleton component, which
is instead provided with a combinatorial description. For constraints, the non-
skeleton component is a collection of strict inequality constraints behaving as
face cutters: they remove some of the faces from the polyhedron described by
the skeleton constraint system. For generators, the non-skeleton consists of gen-
erating points behaving as face fillers: they add to the polyhedron described by
the skeleton generator system (the relative interior of) some of its faces.

4 β ∈ C is redundant in C if con(C) = con(C \ {β}); similarly for generators.
5 In the figures, the (strict) inequality constraints are denoted by (dashed) lines and

the (closure) points are denoted by (unfilled) circles.
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Fig. 1. On the left hand side, an NNC polyhedron having no “canonical” geometric
representations; on the right hand side, the same polyhedron, after the strict inequality
β has been (incrementally) processed by procedure skel-conv.

For exposition purposes and without loss of generality, in the following we
focus on the constraint representation. As usual, by duality arguments, all defi-
nitions and results can be extended to the case of generators [13].

A non-empty face can be uniquely identified by the set of skeleton constraints
that it saturates: thus, a cutter for such a face can be represented in a combina-
torial way using the same set, called its support.

Definition 1 (Skeleton and non-skeleton of a constraint system). Let
P = con(C) ∈ Pn and Q = cl(P), where C = 〈C=, C≥, C>〉 is a constraint system
in minimal form; let SC ⊆ C> be the set of strict inequalities β> whose non-
strict version β≥ cannot be obtained by a combination of the other constraints

in C. The skeleton of C is SK = skel(C) def= 〈C=, C≥ ∪ SC, ∅〉. The support of a

face F of Q is SKF
def= {β ∈ SK | F ⊆ Hβ }. The non-skeleton of C is the set

NS def= ↑{SKF | ∃β ∈ C> . F = Hβ ∩ Q}.6

Note that the skeleton has no strict inequalities, so that con(SK) = cl(P).
If F ′ ⊆ F are two faces of Q = cl(P), then SKF ⊆ SKF ′ ; also, the set of
faces of Q that are cut (i.e., not included) in P is downward closed, hence
the non-skeleton NS is upward closed. Thus, polyhedron P can be obtained by
removing from its topological closure those faces encoded by the non-skeleton:
namely, P = con(〈SK,NS 〉) def= con(SK) \ ⋃{F | SKF ∈ NS }. Given a support
ns = SKF ∈ NS , we write ns ≡ β> to denote that β> is a materialization of ns,
i.e., a geometric cutter for face F , obtained by combining the constraints in ns.

Several optimizations can be applied at the implementation level. Since every
ns ∈ NS always includes all the equalities in C=, these can be left implicit, i.e.,
removed from the support. When this is done, the supports that happen to be
singletons correspond to the combinatorial encoding of the constraints in SC
(see Definition 1). Since their geometric position is uniquely identified, these can
be promoted, i.e., removed from the non-skeleton component NS and directly
included as strict inequalities in SK; namely, the skeleton SK = 〈C=, C≥ ∪SC, ∅〉
is actually represented as SK = 〈C=, C≥,SC〉. Finally, the upward closed set NS
is represented by encoding only its minimal elements; a support ns ∈ NS can

6 ↑ S denotes the smallest upward closed set containing S.
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be identified as redundant (and removed) when ns ∩ SC �= ∅ or there exists
ns ′ ∈ NS such that ns ′ ⊂ ns. In the rest of the paper, when referring to a pair
〈SK,NS 〉, it is assumed that these optimizations are applied.

Example 1. Consider the polyhedron on the left hand side of Fig. 1, defined by
constraint system C = {2 ≤ x < 7, 1 ≤ y ≤ 3, x + y > 3}. The constraint system
is split into the skeleton component

SKc =
〈∅, {2 ≤ x, 1 ≤ y ≤ 3}, {x < 7}〉

and the non-skeleton component NS c = {nsc}, where nsc = {2 ≤ x, 1 ≤ y}. Note
that β1 = (x + y > 3) is one of the materializations of the support nsc and the
strict inequality β2 = (x < 7) has been promoted into the skeleton component.
Similarly, the generator system is split into SKg =

〈∅, ∅, {c0, c1, c2}, {p0}
〉

and
NSg = {nsg}, where nsg = {c0, c1}. Point p0 has been promoted into the skeleton
component and point p1 is a materialization of nsg.

Conversion Algorithm. Consider the conversion from constraints to gener-
ators, which incrementally adds a set of geometric constraints SKc

in to a DD
pair (Cdst ,Gdst). The new procedure [13], recalled in Pseudocode 1, handles each
β ∈ SKc

in in two phases, one for each of the components of Gdst = 〈SK,NS 〉.
The skeleton phase follows the same pattern of the conversion procedure for

closed polyhedra. Namely, SK is partitioned in SK+, SK0, SK− according to the
sign of the scalar products with β, and the set SK� is computed by combining
the generators in SK+ with those in SK−. Being restricted to the skeleton, the
combination can safely apply the adjacency tests, which are crucial for efficiency.

The non-skeleton phase is where the new algorithm really differs from the
classical one. Due to space constraints, we only provide here a high level, intuitive
view of this phase, which is described in full detail in [13]. The NS component
is partitioned in NS+, NS 0, NS− and NS±, according to the already computed
partition for the skeleton. These sets are then processed to produce NS� by
helper procedures move-ns and create-ns. Each support ns ∈ NS± (i.e., those
whose materializations lie on both sides of Hβ) is updated by move-ns so as
to saturate (resp., satisfy) the non-strict (resp., strict) inequality constraint β.
Each other support (i.e., those whose materializations lie on only one of the
half-spaces induced by β) is processed by create-ns, which “combines” it with
the supports on the other side of β. This combination step includes a partial
enumeration of the face lattice (enumerate-faces). In lines 8 to 12 NS� is
non-redundantly merged (using operator ‘⊕’) with the remaining supports. It
should be stressed that the non-skeleton phase of the algorithm only performs
set-theoretic operations on supports, i.e., no further linear combinations need to
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be computed. It uses two basic helper functions, to compute support closure [33]
and project it on the correct side of constraint β:

supp.cl(ns) def= sat
(
sat(ns,SKc),SKg

) \ L,

projβ(ns) def=

{
ns \ SK−, if β is a strict inequality;
ns ∩ SK0, otherwise.

Example 2. Consider again the polyhedron P shown on the left hand side of
Fig. 1, already described in Example 1. On the right hand side of the figure, we
show the effect of adding to P the strict inequality β = (4 < x).

The skeleton component SKg is partitioned in SK+ = {c1, c2}, SK0 = ∅ and
SK− = {p0, c0}; thus, NS+ = NS 0 = NS− = ∅ and NS± = NS = {nsg}.7 In the
skeleton phase, the set SK� = {c3, c4} is obtained combining adjacent skeleton
generators (c0 with c1 and p0 with c2, respectively). In the non-skeleton phase,
move-ns processes nsg ∈ NS±, obtaining

ns�
1 = projβ(supp.cl(nsg)) = {c0, c1, c3} \ {p0, c0} = {c1, c3}.

We have intuitively moved the materializations for nsg to the correct side of β.
Function create-ns processes the skeleton point p0, which is a filler for (the
relative interior of) point p0 itself, the segments [p0, c2], [p0, c0] and the whole
polyhedron P: enumerate-faces explores this set of faces and projects them
in NS+, obtaining the new supports ns�

2 = {c2, c4} and ns�
3 = {c1, c2, c3, c4}.

After removing redundancies (i.e., dropping the non-minimal support ns�
3), we

obtain
SKg =

〈∅, ∅, {c1, c2, c3, c4}, ∅〉
, NSg =

{
ns�

1,ns
�
2

}
.

4 Operators on the New Representation

In principle, when adopting the new representation recalled in the previous
section, each operator on the abstract domain of NNC polyhedra could be
implemented indirectly, by first materializing the non-skeleton elements and
then applying the operator on the fully geometrical descriptions obtained. In
this section we show that such a materialization step (and its computational
overhead) is not really needed: all of the classical operators required for static
analysis can be directly computed on the new representation, by distinguishing
their effects on the geometrical and the combinatorial components, also exploit-
ing this division to simplify some of the procedures.

Emptiness, Inclusion and Equality. P = gen(〈SKg,NS g〉) is empty if and
only if it has no point, i.e., SKg contains no point and NS g = ∅.

7 Recall that nsg = {c0, c1} is the support describing the materialization p1.
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Pseudocode 1 . Conversion from geometric constraints to generators.
function skel-conversion(SKc

in , 〈SK,NS〉)
2: for all β ∈ SKc

in do
skel partition(β, SK);

4: nonskel partition(〈SK,NS〉);
SK� ← comb adjβ(SK+, SK−); SK0 ← SK0 ∪ SK�;

6: NS� ← move-ns(β, 〈SK,NS〉);
NS� ← NS� ∪ create-ns(β, 〈SK,NS〉);

8: if is equality(β) then 〈SK,NS〉 ← 〈SK0,NS0 ⊕ NS�〉;
else if is strict ineq(β) then

10: SK0 ← points become closure points(SK0);
〈SK,NS〉 ← 〈SK+ ∪ SK0,NS+ ⊕ NS�〉;

12: else 〈SK,NS〉 ← 〈SK+ ∪ SK0, (NS+ ∪ NS0) ⊕ NS�〉;
promote-singletons(〈SK,NS〉);

14: return 〈SK,NS〉;
function move-ns(β, 〈SK,NS〉)

16: NS� ← ∅;
for all ns ∈ NS± do NS� ← NS� ∪ {projβ(supp.cl(ns))};

18: return NS�;

function create-ns(β, 〈SK,NS〉)
20: NS� ← ∅;

let SK = 〈L, R, C,SP〉;
22: for all ns ∈ NS− ∪ {{p} | p ∈ SP−} do

NS� ← NS� ∪ enumerate-faces(β, ns, SK+, SK);

24: if is strict ineq(β) then
for all ns ∈ NS0 ∪ {{p} | p ∈ SP0} do

26: NS� ← NS� ∪ enumerate-faces(β, ns, SK+, SK);

else
28: for all ns ∈ NS+ ∪ {{p} | p ∈ SP+} do

NS� ← NS� ∪ enumerate-faces(β, ns, SK−, SK);

30: return NS�;

function enumerate-faces(β, ns, SK′, SK)
32: NS� ← ∅; let SK′ = 〈L′, R′, C′,SP ′〉;

for all g ∈ (R′ ∪ C′) do NS� ← NS� ∪ {projβ(supp.cl(ns ∪ {g}))};

34: return NS�;

procedure promote-singletons(〈SK,NS〉)
36: let SK = 〈L, R, C,SP〉;

for all ns ∈ NS such that ns = 〈∅, ∅, {c}, ∅〉 do
38: NS ← NS \ {ns}; C ← C \ {c}; SP ← SP ∪ {c};

The inclusion P1 ⊆ P2 holds if and only if each generator of P1 satisfies all of
the constraints of P2. Note that the lines, rays and closure points of P1 need to be
checked only against the skeleton constraints of P2; only the points of P1 need to
be checked against the non-skeleton strict inequalities of P2. Also, when checking
a non-skeleton element, no additional scalar product needs to be computed: the
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result of the check is derived from the saturation information already computed
(and cached) for skeleton elements. For instance, a skeleton point p1 ∈ SKg

1

violates a non-skeleton constraint ns2 ∈ NS c
2 when p1 ∈ sat(ns2,SKg

1).
Equivalence P1 = P2 can be checked by performing two inclusion tests. Since

the new representations satisfy a stronger form of normalization,8 optimizations
are possible: for instance, the test can be quickly answered negatively when the
cardinalities of the minimized representations do not match.

Conditional and “forget”. A conditional test checking an affine predicate on
program variables is modeled by adding the corresponding constraint to the poly-
hedron defining the program state. Similarly, a non-deterministic (or non-linear)
assignment can be modeled by “forgetting” all the constraints mentioning the
variable assigned to, i.e., by adding the corresponding line as a generator. Hence,
these two operators can be directly implemented by a call to the incremental
conversion procedure of [13].

Meet and Join. From a high level point of view, when a conversion procedure is
available the computation of meets (i.e., set intersections) and joins (i.e., convex
polyhedral hulls) on the domain of convex polyhedra is straightforward. Namely,
if P1 ≡ (C1,G1) and P2 = (C2,G2), then the DD pair for P = P1 ∩ P2 is obtained
by incrementally adding to (C1,G1) the constraints in C2; similarly, the DD pair
for P = P1 
 P2 is obtained by adding to (C1,G1) the generators in G2.

Without loss of generality, consider the case of set intersection. When incre-
mentally adding the constraints in C2 = 〈SKc

in ,NS c
in〉 to the DD pair for P1, we

first apply the algorithm in Pseudocode 1 to the skeleton constraints in SKc
in ;

then, in order to avoid materializations, we process each non-skeleton constraint
ns ∈ NS c

in using the procedure shown in Pseudocode 2 (this extension of the
conversion procedure was not considered in [13]).

Note that, in lines 3 to 4, the constraint ns always partitions the generators
so that SK− = NS− = NS± = ∅. Hence, we can avoid all the scalar prod-
ucts that would have been computed in the case of a geometric input; also,
saturation information is not affected, so that SK0 (and consequently NS 0) are
easily computed by intersecting the generators saturating the support. As a
consequence, the non-skeleton conversion procedure can directly call the helper
strict-on-eq-points(ns, SK, NS ) defined in [13], which is a tailored version
of the create-ns function, also including the final update of SK and NS .9

At the implementation level, a little additional care has to be taken when pro-
cessing the skeleton component: if a geometric constraint β ∈ SKc

in is detected
to be redundant, it cannot be eagerly dropped, because it might occur in a

8 It is meant, with respect to those available for ε-representations.
9 The first parameter β of strict-on-eq-points seems to require a geometrical con-

straint, but this is not really the case; the parameter is only used to check the
constraint kind (equality, non-strict inequality or strict inequality): in the special
case of a non-skeleton element ns, we always have a strict inequality.
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Pseudocode 2 . Conversion from combinatorial constraints to generators.
function nonskel-conversion(NS c

in , 〈SK,NS〉)
2: for all ns ∈ NS c

in do
SK− = ∅; SK0 = sat(ns, SK); SK+ = SK \ SK0;

4: nonskel partition(〈SK,NS〉);
strict-on-eq-points(ns, 〈SK,NS〉);

6: return 〈SK,NS〉;
procedure strict-on-eq-points(β, 〈SK,NS〉)

8: NS� ← ∅; let SK0 = 〈L0, R0, C0,SP0〉;
for all ns ∈ NS0 ∪ {{p} | p ∈ SP0} do

10: NS� ← NS� ∪ enumerate-faces(β, ns, SK+, SK);

SK0 ← points-become-closure-points(SK0);
12: 〈SK,NS〉 ← 〈SK+ ∪ SK0,NS+ ⊕ NS�〉;

support ns ∈ NS c
in and hence be needed to compute the corresponding parti-

tion; thus, the removal of β is delayed till completion of nonskel-conversion.
The extension of the conversion procedure that incrementally adds non-

skeleton generators (used when computing joins) is similar and can be derived,
as usual, by exploiting duality arguments.

Assignment of an Affine Expression. The assignment xi := aTx+b is mod-
eled by computing the image the polyhedron under the affine map f : Rn → R

n,
where q = f(p) is such that qi = aTp+ b and qj = pj , when i �= j. If f is invert-
ible (i.e., ai �= 0), then the image and its inverse f−1 can be easily applied to
the skeleton components of the generator and constraint representations, respec-
tively; the non-skeleton components are not affected at all. If f is not invertible
(i.e., ai = 0), then it is computed by first “forgetting” the constraints on xi,
adding the corresponding line, and then adding constraint β = (xi = aTx + b).
In both cases, the minimal form of the input DD pair is incrementally maintained
(i.e., there is no need to invoke the full conversion procedure).

4.1 A Semantic Widening for NNC Polyhedra

The design of appropriate widening operators is considered both a key compo-
nent and a main challenge in the development of abstract domains [5,7,18,19,21],
in particular when targeting numerical properties [3,4,40], because their accu-
racy mostly depends on the particular context of application. For ease of expo-
sition, in the following we will only consider the well known standard widen-
ing [25].10

10 For all widenings ‘∇’, we implicitly specify that ∅∇P2 = P2 .
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Definition 2 (Standard widening on CPn). Let P1,P2 ∈ CPn be such that
Pi = con(Ci), where P1 �= ∅ and C1 is in minimal form. Let also Ii = ineqs(Ci);11

then P1∇CP2
def= con(I ′

1 ∪ I ′
2), where

I ′
1 =

{
β1 ∈ I1

∣
∣ P2 ⊆ con({β1})

}
,

I ′
2 =

{
β2 ∈ I2

∣
∣ ∃β1 ∈ I1 . P1 = con(I1 \ {β1} ∪ {β2})

}
.

When P1 ⊆ P2, the following is an equivalent specification (see [3, Theo-
rem 5]), more appropriate for implementations based on the DD method.

Definition 3. Let P1,P2 ∈ CPn be such that P1 ≡ (C1,G1), P2 = con(C2),
∅ �= P1 ⊆ P2 and C1 is in minimal form. Then P1∇CP2

def= con(C), where

C =
{

β2 ∈ C2

∣
∣ ∃β1 ∈ C1 . sat(β1,G1) = sat(β2,G1)

}
.

More often than desired, the specification of widening operators relies on
the “syntactic” representations of the abstract domain elements, rather than
their “semantics”; thus, when a canonical representation is missing (or deemed
too expensive to compute), the result of the widening depends on low level
representation details. This was the case for the original proposal of widening
on closed polyhedra [22], which was refined into a “semantic” widening in [25].
Similarly, the widenings defined in [38] for the graph-based representations of
bounded differences and octagons were refined into semantic widenings in [2,10].
Available implementations of the domain of NNC polyhedra based on the DD
method are affected by the same issue, because they compute the widening
of the underlying ε-representations, which are not canonical. This happens for
all of the widening variants defined on polyhedra, including the one proposed
in [3,4], as well as the improved versions that can be obtained by applying generic
techniques, such as the widening up-to [29].

x

≤ 1

R1

x

≤ 1

R2

x

≤ 1

R3

Fig. 2. Widening NNC polyhedra delegating to widening on ε-representations.

Example 3. Consider the ε-representation polyhedra in Fig. 2. The two polyhe-
dra R1,R2 ∈ CP2 on the left hand side and the middle of the figure are encoding
the same NNC polyhedron P = con(C) ∈ P1, where C = {0.5 ≤ x, x < 2}. Both
representations encode no redundant constraint; they only differ in the slope of
11 We write ineqs(C) to denote the constraint system obtained by splitting each equality

in C into a pair of non-strict inequalities.
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the facet representing the strict inequality constraint. As a consequence, when
computing R3 = R1∇CR2, shown on the right hand side of the figure, the stan-
dard widening operator on the ε-representations fails to detect the stability of
the strict inequality constraint, which is dropped. R3 represents the NNC poly-
hedron P ′ = con({0.5 ≤ x}): even though correct from a theoretical point of
view, the widening depends on the syntactic encoding of strict inequalities. As
a side note, the user of the abstract domain might reasonably expect that a
property such as P∇CP = P always holds, but this is not the case.

When implementing the widening on NNC polyhedra by delegating to the
underlying widening on closed polyhedra, some precautions are required too:

– Definition 3 assumes that P1 ⊆ P2; note however that, for NNC polyhedra,
P1 ⊆ P2 does not automatically imply that property R1 ⊆ R2 holds for the
corresponding ε-representations;

– the implementation has to make sure that the result of the widening is still
a valid ε-representation, i.e., the bounds for ε cannot be dropped;

– in order to ensure the finite convergence guarantee, the first argument P1

should be described by a constraint system encoding no redundant elements;
however, a non-redundant description for the ε-representation R1 can still
encode many redundant constraints; these have to be removed by applying
the strong minimization procedures defined in [6,11].

As a consequence, the overall approach may also incur a significant overhead.
In contrast, when adopting the direct encoding of Sect. 3, we can adopt a

variant of Definition 3 to obtain a semantic widening on NNC polyhedra, because
all of the materializations of a non-skeleton strict inequality constraint share the
same saturation information, no matter for the variation in their slopes.

Definition 4 (Widening on Pn). Let P1,P2 ∈ Pn be such that P1 ≡ (C1,G1),
P2 = con(C2), ∅ �= P1 ⊆ P2, each Ci = 〈SKc

i ,NS
c
i 〉 is in minimal form and

G1 = 〈SKg
1,NS

g
1〉. Then P1∇NP2

def= con(〈SKc,NS c〉), where

SKc =
{

β2 ∈ SKc
2

∣
∣ ∃β1 ∈ SKc

1 . sat(β1,SKg
1) = sat(β2,SKg

1)
}
;

NS c = {ns2 ∈ NS c
2 | ns2 ⊆ SKc }.

The next two lemmas show that ‘∇N’ is a well-defined widening operator on Pn.

Lemma 1. Definition 4 specifies a binary operator on Pn.

Proof. We need to show that the result computed by ‘∇N’ is not affected by a
change of representation for the two input arguments.

For P1,P2 ∈ Pn, where P1 �= ∅ and P1 ⊆ P2, let P1∇NP2 be computed
according to Definition 4; in particular, let P1 ≡ (C1,G1) and P2 = con(C2),
where Ci = 〈SKc

i ,NS
c
i 〉 are arbitrary constraint representations for Pi satisfying

the minimality hypothesis and G1 = 〈SKg
1,NS

g
1〉.
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Note that, due to the inclusion hypothesis P1 ⊆ P2, all of the equality con-
straints in SKc

2 are detected as stable. Let β1 ∈ SKc
1 be a skeleton (strict or non-

strict) inequality constraint and β2 ∈ SKc
2 be a skeleton inequality constraint

such that sat(β1,SKg
1) = sat(β2,SKg

1) holds; that is, β2 ∈ SKc
2 is detected to

be stable due to β1 ∈ SKc
1. Being a skeleton constraint and due to the mini-

mality assumption, β1 identifies a facet F1 of cl(P1); thus, any other constraint
system representation for P1 will always contain a constraint β′

1 (identifying
the same facet F1) such that sat(β1,SKg

1) = sat(β′
1,SKg

1). The same reasoning
can be repeated for β2 and F2. Hence, the computed skeleton component SKc

does not depend on the chosen representations for P1 and P2. As a side note, if
P1 = cl(P1) then no strict inequality in SKc

2 can be detected as stable. When
working on closed polyhedra, Definition 4 becomes equivalent to Definition 3
and we have:

cl(P1)∇N cl(P2) = cl(P1)∇C cl(P2), (1)

where ‘∇C’ is known to be well-defined on CPn [3, Theorem 5].
Finally, consider the non-skeleton component and let ns2 ∈ NS c, so that

ns2 ∈ NS c
2 and ns2 ⊆ SKc. Support ns2 identifies a face (not a facet) F2 of

cl(P2) which is cut from P2, i.e., F2 ∩ P2 = ∅. Let F = {Fβ | β ∈ ns2 }
be the set of facets identified by the constraints in ns2, so that F2 =

⋂ F .
Note that, since ns2 is non-redundant, all the facets in F have a non-empty
intersection with P2 (i.e., they correspond to non-strict inequalities); moreover,
all the facets in F are stable and, as observed in the previous paragraph, the
set of stable facets does not depend on the chosen constraint representations.
Therefore, in any other minimal representation for P2, there will be a set ns ′

2

(i.e., a support) of non-strict skeleton constraints that identifies the same set
of stable facets F ; namely, ns ′

2 identifies the same cut face F2 identified by
ns2. Hence, the computed non-skeleton component NS c does not depend on the
chosen representations for P1 and P2. ��
Lemma 2. ∇N : Pn × Pn → Pn is a widening operator.

Proof. For P1,P2 ∈ Pn, where P1 �= ∅ and P1 ⊆ P2, let P ′ = P1∇NP2 be
computed according to Definition 4.

First we show that ‘∇N’ is an upper bound operator, i.e., it satisfies both
P1 ⊆ P ′ and P2 ⊆ P ′. By Definition 4, it can be seen that P ′ = con(SKc,NS c),
P2 = con(SKc

2,NS
c
2) and both SKc ⊆ SKc

2 and NS c ⊆ NS c
2 hold; hence, the

inclusion P2 ⊆ P ′ follows from the anti-monotonicity of function ‘con’; the other
inclusion P1 ⊆ P ′ follows from the hypothesis P1 ⊆ P2.

Next we show that the systematic application of ‘∇N’ forces the upward
iteration sequence to stabilize after a finite number of iterates. To this end, we
define a ranking function rank: Pn → N

2+n, mapping a polyhedron into the
well-founded set (N2+n,�), where ‘�’ denotes the strict lexicographic ordering.
For each P = con(C) ∈ Pn such that P �= ∅ and C = 〈SKc,NS c〉 is in minimal
form, we define rank(P) def= (e, s, fn−1, . . . , fj , . . . , f0), where e is the number of
equality constraints in SKc, s is the total number of constraints in SKc and,
for each j ∈ {0, . . . , n − 1}, fj is the number of strict inequality constraints
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in C cutting a face of cl(P) having affine dimension j.12 Note that ‘rank’ is
well-defined, because C is in minimal form.

To complete the proof we have to show that, whenever P1 ⊂ P ′ = P1∇NP2,
i.e., when the increasing sequence has not stabilized yet, the ranking function is
decreasing, i.e., rank(P ′) � rank(P1).

Let rank(P1) = (e, s, fn−1, . . . , f0) and rank(P ′) = (e′, s′, f ′
n−1, . . . , f

′
0).

Since the constraint systems are in minimal form and ‘∇N’ is an upper bound
operator on Pn, for the equality constraints we always have e′ ≤ e. If e′ < e,
then the ranking function is decreasing; thus, in the rest of the proof, we assume
that e′ = e. Namely, we assume that P1, P2 and P ′ all have the same affine
dimension k = n − e.

Observe now that, by Definition 4, for the skeleton constraints we have s′ ≤ s.
Namely, each skeleton (strict or non-strict) inequality constraint β2 ∈ SKc

2 that is
selected to enter SKc has a unique corresponding skeleton constraint β1 ∈ SKc

1,
which identifies the same facet of cl(P ′) (recall that P1 and P ′ both have affine
dimension k). Again, if s′ < s, then the ranking function is decreasing; thus,
in the rest of the proof, we assume both e′ = e and s′ = s. Under such an
assumption, by Definition 4, we obtain a one-to-one correspondence between the
facets of cl(P1) and those of cl(P ′): this implies cl(P1) = cl(P2) = cl(P ′).

Consider now the tuples t = (fk−1, . . . , f0) and t′ = (f ′
k−1, . . . , f

′
0), where as

said above k = n − e is the affine dimension of the polyhedra.13 By hypothesis,
cl(P) = cl(P ′) but P1 ⊂ P ′; hence we obtain t �= t′. Moreover, we cannot have
t � t′, since this would mean that there exists a strict inequality in P ′ cutting
a face which is not cut from P1, contradicting P1 ⊂ P ′. Therefore t′ � t, which
implies rank(P ′) � rank(P1). ��

The new widening satisfies both P∇NP = P and P∇N cl(P) = cl(P), which
is not the case for the widening based on the ε-dimension approach. Also, Eq. (1)
means that operator ‘∇N’ is indeed an extension on the domain Pn of the stan-
dard widening ‘∇C’ defined on CPn.

Example 4. Reconsider polyhedron P = con({0.5 ≤ x, x < 2}), for which a
couple of possible ε-representations were shown in Fig. 2. When directly encoding
the strict inequalities and applying Definition 4, constraint β = (x < 2) is
detected to be stable, so that P∇NP = P. Moreover, letting β′ = (x ≤ 2), we
also have P∇N cl(P) = cl(P), because sat(β,SKg

1) = sat(β′,SKg
1).

In Definition 4, the non-skeleton constraints and generators in NS c
1 and NSg

1

play no role in the computation of the widening, simplifying its implementation.
As shown in Example 4, a non-strict inequality in β2 ∈ SKc

2 can be detected as
stable (i.e., enter the result SKc) even when it weakens a corresponding strict
inequality in SKc

1; this is not the case when blindly extending Definition 2. Also
note that a stable non-skeleton constraint ns ∈ NS c is only supported by stable
skeleton constraints.
12 As an example, f0 is the number of strict inequality constraints cutting only a vertex

from the topological closure of the polyhedron.
13 Note that for all k ≤ j ≤ n − 1, we have fj = f ′

j = 0.
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Fig. 3. From left to right: P1, P2 and P = P1∇NP2.

Example 5. Consider P1 = con({0 ≤ x < 4, 0 ≤ y, 0 < x + 4y ≤ 8}) and
P2 = con({0 ≤ x ≤ 4, 0 ≤ y ≤ 2, 0 < 2x + y}), shown on the left and middle
of Fig. 3, respectively. Constraint β2 = (x ≤ 4) is stable, as it shares on P1 the
same saturation information of β1 = (x < 4). Support ns2 = {x ≥ 0, y ≥ 0} ≡
(0 < 2x + y) is stable, no matter if the shown materialization differs from the
one chosen for ns1 ≡ (0 < x + 4y), because the skeleton constraints defining it
are both stable. Thus, P1∇NP2 = con({0 ≤ x ≤ 4, 0 ≤ y, 0 < 2x + y}), shown
on the right hand side of the figure. An implementation based on Definition 2
would drop β2 and, depending on the chosen materializations, maybe also ns2.

In the next example we show that a blind extension of Definition 3 to the
case of NNC polyhedra, where the non-skeleton component NS c

2 is treated the
same of the skeleton component SKc

2, would not result in a proper widening,
since the finite convergence guarantee is compromised.

Example 6. For each i ∈ N \ {0}, let βi = (x + iy ≤ i), Ci = {0 ≤ x, 0 ≤ y <
1, βi} and Pi = con(Ci); note that Pi ⊂ Pi+1. Polyhedra P1 and P2 are shown
on the left hand side and middle of Fig. 4. Note that Ci = 〈SKc

i ,NS
c
i 〉, where

SKc
i = {0 ≤ x, 0 ≤ y, βi}, NS c

i = {nsi} and nsi = {0 ≤ x, βi} ≡ (y < 1).
By using Definition 3 as is, we would obtain Pi∇CPi+1 = Pi+1; namely, the
skeleton constraint βi+1 and the non-skeleton constraint nsi+1 are detected to
be stable, since in Pi they share the same saturation information of nsi (they are
only saturated by closure point (0, 1)). Hence, {Pi}i∈N would form an infinite
increasing chain. In contrast, when using Definition 4 to compute P1∇NP2, shown
on the right of the figure, constraints β2 and ns2 are both dropped.

P1

ns1

β1

x

y

P2

ns2

β2 β3

x

y

P

x

y

Fig. 4. An increasing chain in P2 where Definition 3 is not stabilizing; P = P1∇NP2 is
the result obtained when using Definition 4.

The ranking function defined in the proof of Lemma 2 may be decreasing
even though the number of non-redundant constraints is increasing.
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Example 7. For i = 1, 2, consider Pi = con(Ci) ∈ P2, where

C1 = {0 < x < 1, 0 < y < 1},

C2 = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < x + y < 2,−1 < x − y < 1},

so that P1 is a topologically open square and P2 (which is neither closed nor
open) is obtained from cl(P1) by cutting away its four vertices. It is easy to
observe that P1∇NP2 = P2, because all of the skeleton constraints are stable.
Note that both constraint systems are in minimal form and their cardinalities are
increasing: |C2| = 8 > 4 = |C1|. Nonetheless, the ranking function is decreasing:

rank(P2) = (e′, s′, f ′
1, f

′
0) = (0, 4, 0, 4) � (0, 4, 4, 0) = (e, s, f1, f0) = rank(P1).

5 Experimental Evaluation

The new representation for NNC polyhedra, the conversion algorithms and the
operators presented in the previous sections are implemented in PPLite, a new
software library developed at the Department of Mathematical, Physical and
Computer Sciences of the University of Parma. Derived from the Parma Poly-
hedra Library, PPLite is written in modern C++ and has a different goal: to
provide a simpler framework for experimenting with new ideas and algorithms
in the context of polyhedral computations, for both researchers and students. In
particular, it is not aimed at implementing the full range of abstract domains
(and operators) made available by the PPL. Other main characteristics are: (a)
both closed and NNC rational polyhedra are supported; (b) arithmetic compu-
tations are based on FLINT (http://www.flintlib.org/); (c) encapsulation is not
fully enforced, so that a knowledgeable user can directly change the contents of
data structures, e.g., to experiment with alternative implementations of domain
operators; (d) while performance and portability are deemed important, priority
is given to ease of implementation and readability.

A preliminary experimental evaluation of the new representation and conver-
sion algorithms for (closed and NNC) polyhedra was reported in [13], showing
impressive efficiency gains with respect to the PPL. Those results were obtained
inside the PPL framework, hence they were orthogonal with respect to many of
the PPLite’s implementation choices (e.g., the use of FLINT).14

In the following paragraphs we summarize the results of a more thorough
experimental evaluation,15 where the PPLite library is used in a program analy-
sis based on Abstract Interpretation. To this end, we have interfaced the PPLite’s
NNC polyhedra domain to the Apron library [32], so as to make it available
to PAGAI [30], a static analyzer for invariant generation built on top of the
LLVM infrastructure. When using PAGAI, it is possible to choose between
several abstract domains, including boxes (box), octagons (oct), the native

14 The efficiency gains have been confirmed when adopting the PPLite implementation.
15 All experiments have been performed on a laptop with an Intel Core i7-3632QM

CPU, 16 GB of RAM and running GNU/Linux 4.13.0-36.

http://www.flintlib.org/
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Apron domain for polyhedra (pk) and the Apron layer for the PPL’s polyhe-
dra (ppl poly); we added support for the new domain pplite poly. In Table 1
we report the time spent by PAGAI in calls to the operators of these abstract
domains (column ‘size’ shows the size of the LLVM bitcode file) when analyzing
some C source files distributed with PAGAI; most of these are variants of bench-
marks taken from the SNU real-time benchmark suite for worst-case execution
time analysis.16

Table 1. Efficiency comparison for PAGAI’s domains.

Test Size Apron’s time

KB box oct pplite ppl pk

decompress 549 6.64 41.04 40.83 101.08 211.04

filter 15 1.08 5.77 19.02 88.02 82.32

adpcm 67 0.75 3.12 5.08 14.31 21.78

decompress-opt 71 0.59 9.97 3.02 7.85 13.42

nsichneu 527 0.51 0.49 1.55 3.06 2.33

cover 33 0.35 0.38 1.25 2.09 1.61

fft1 20 0.16 0.51 0.82 1.74 2.02

edn 57 0.17 0.32 0.73 1.57 1.71

compress 30 0.15 0.67 0.69 1.84 2.64

ndes 45 0.17 0.25 0.64 1.27 1.20

minver 30 0.15 0.24 0.52 1.02 1.10

The new domain performs significantly better than the other polyhedra
domains, being also competitive with respect to the domain of octagons on the
biggest benchmarks. It is worth stressing that these efficiency gains have been
obtained even if PAGAI makes a quite limited use of strict inequalities, which
are only used to model floating point values: among the tests reported in Table 1,
only ‘fft1’ and ‘minver’ declare floating point variables. Moreover, the “classic”
static analysis implemented in PAGAI applies no variable packing technique at
all: hence, all the relational domains incur avoidable overheads [45,47], which
are orthogonal with respect to the chosen implementation of NNC polyhedra.

In order to assess correctness, we also performed a different experimental
evaluation where, after each and every invocation of an abstract operator, the
result computed by the new domain pplite poly is systematically compared
with the result computed by ppl poly: the only differences were recorded when
computing widenings, where the semantic widening ‘∇N’ used by PPLite was
sometimes more precise than the syntactic one used by PPL.

16 We only show those tests where the time spent by pplite poly is above 0.5 s.
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6 Conclusion

By leveraging on a new DD representation and conversion algorithm, we have
presented the corresponding implementation of the abstract domain of NNC
polyhedra. In particular, we focused our work on the specification of the opera-
tors needed for defining a static analysis based on Abstract Interpretation, here
included a semantics-based widening operator. The experimental evaluation con-
ducted shows that the new domain systematically outperforms the more classical
implementations. As future work, we plan to extend the abstract domain so as
to also support operators needed in other contexts. For instance, in the analysis
and verification of hybrid systems, strict inequalities usually play a more impor-
tant role: we reasonably expect that the adoption of our new implementation for
the domain of NNC polyhedra may result in even larger efficiency gains.
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Abstract. Software Fault Isolation (SFI) consists in transforming
untrusted code so that it runs within a specific address space, (called the
sandbox) and verifying at load-time that the binary code does indeed
stay inside the sandbox. Security is guaranteed solely by the SFI verifier
whose correctness therefore becomes crucial. Existing verifiers enforce
a very rigid, almost syntactic policy where every memory access and
every control-flow transfer must be preceded by a sandboxing instruction
sequence, and where calls outside the sandbox must implement a sophis-
ticated protocol based on a shadow stack. We propose to define SFI as
a defensive semantics, with the purpose of deriving semantically sound
verifiers that admit flexible and efficient implementations of SFI. We
derive an executable analyser, that works on a per-function basis, which
ensures that the defensive semantics does not go wrong, and hence that
the code is well isolated. Experiments show that our analyser exhibits the
desired flexibility: it validates correctly sandboxed code, it catches code
breaking the SFI policy, and it can validate programs where redundant
instrumentations are optimised away.

1 Introduction

A fundamental challenge in system security is to share computing resources and
run programs from various level of trusts, some untrusted or even malicious, on
the same host machine. In this context, it is desirable to isolate the different
programs, limit their interactions and ensure that, whatever the behaviour of
imported code, the security of the host machine cannot be compromised. There
exist many isolation mechanisms available at the hardware, virtual machine or
operating system level. In this paper, we consider Software Fault Isolation (SFI),
an isolation mechanism pioneered by Wahbe et al. [15] and further developed in
Google’s Native Client (NaCl) [13,16] and others. SFI is a flexible and lightweight
isolation mechanism which does not rely on hardware or operating system sup-
port. Instead, it relies on a static, untrusted, program instrumentation that is
validated at load-time by a trusted binary verifier. Compared to other isolation
mechanisms, SFI allows the safe execution of trusted and untrusted code within
the same address space, thus avoiding costly context switches with kernel code.

c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 166–186, 2018.
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Source
code 

Distribution of
the executable SFI verifier 

 Safe  
execution SFI generator

Compiler
Trusted
Computing Base 

s t a t i c i n l i n e i n t sandbox ( i n t p) { re turn (& s f i + (p & 0b11111111 ) ) ; }

Fig. 1. SFI chain with typical sandboxing code

The general SFI architecture is shown in Fig. 1 together with some typi-
cal sandboxing code. The SFI transformation is performed at compile-time. It
instruments every memory access so that it is performed inside the memory
sandbox. To ensure that a pointer p is within the sandbox variable sfi that is 28

bytes aligned and 28 bytes wide, the code increments the base address sfi of the
sandbox with the 8 least significant bits of the pointer p extracted by masking
p using a bitwise &. Control-flow transfers are instrumented so that the code
does not jump outside the code sandbox. At load-time, a binary verifier rejects
code that is not correctly instrumented. From a security standpoint, only the
binary verifier is part of the Trusted Computing Base (TCB). State-of-the-art
SFI verifiers trade precision for simplicity and speed, and only perform a linear
scan of the binary code. Therefore, the verifiers enforce very strong sufficient
conditions for isolation. This has the side-effect that the SFI transformation is
performed late in the compiler backend and that the isolated code cannot be
optimised. The verifiers perform very local reasoning, and hence cannot verify
that function calls, especially between trusted and untrusted code, abide to call-
ing conventions. As a result, trusted code needs to implement a specific protocol
for parameter passing and set up its own private run-time stack. This requires
low-level platform-specific support and, most notably, increases the run-time
overhead of context switches between untrusted and trusted code.

In this paper, we propose a relaxed definition of SFI where trusted and
untrusted code may share the same runtime stack but must still respect the
isolation properties of the sandbox and abide to calling conventions. Based on
this definition, we define an intra-procedural binary verifier which enforces iso-
lation. The verifier implements a static analysis and is using a weakly relational
domain in order to verify that calling conventions are satisfied. A difficulty is to
ensure that the isolation property holds even in the presence of stack overflow.
This is done by ensuring that all stack overflows are caught by so-called guard
zones, placed at both ends of the stack. The binary verifier is more flexible than
state-of-the-art SFI verifiers and, in particular, is able to validate code where
redundant sandboxing instrumentations are optimised away by compiler passes.
Our contributions can therefore be phrased as follows:

– A defensive semantics which formalises a relaxed Software Fault Isolation
property where the runtime stack is safely shared between trusted and
untrusted code.
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– An intra-procedural abstraction which ensures that the defensive semantics
cannot go wrong.

– An executable binary verifier, working on a per-function basis, that is more
flexible than state-of-the-art binary verifiers for SFI.

The rest of the paper is organised as follows. In Sect. 2, we define our SFI
property by means of a defensive, instrumented semantics. To enable a modular
verification, we present in Sect. 3 an intra-procedural abstraction of the defen-
sive semantics. It is further abstracted in Sect. 4 into an executable binary veri-
fier. Section 5 presents our experiments based on the bincat [2] binary analysis
framework. We present related work in Sect. 6 and conclude in Sect. 7.

2 Software Fault Isolation as a Defensive Semantics

We define SFI and its sandbox property operationally, as a defensive semantics
which includes a series of additional (dynamic) verifications. These dynamic
checks express what it means for code to be properly sandboxed. Later, we
define a static analysis for guaranteeing that the dynamic verifications will not
fail at run-time, and hence that the code respects the SFI property.

2.1 Intermediate Language

We define our semantics on an intermediate representation (IR) obtained by
disassembling the binary. In this approach, each binary instruction is typically
translated into a sequence of instructions of the IR. For instance, for x86, a simple
arithmetic operation has the side-effect of setting various flags e.g. the carry or
overflow flag. For simplicity, we also assume that the IR only manipulates 32-bits
values. The abstract syntax of the instructions is given below:

e :: = r | n | e1 �� e2
i :: = r := e | [e1] = e2 | r = [e] | jmpif e1 e2 | call e | ret e | hlt

The language features expressions e made of registers r, numeric constants n and
binary operators ��. Binary operators range over typical arithmetic operators
e.g. +, ×, bitwise operators e.g. xor and logical operators e.g. <. An instruction
i consists of assigning an expression to a register (r = e); storing in memory
the value e2 at the address e1 ([e1] = e2); loading in register r the value stored
at address e (r = [e]). A conditional jump jmpif e1 e2 jumps to the computed
address e2 if the condition e1 holds (e1 �= 0). The instruction call e is equivalent
to the computed jump jmpif 1 e but identifies a function call; ret e is also
equivalent to a computed jump but identifies a function return. The instruction
halt immediately stops the program.

The operational semantics of the IR operates over a state 〈ρ, μ, ι〉 where ρ is
an environment (Env = Reg → B32), μ is the whole memory of the process and
ι is the current instruction pointer. The memory is divided into regions and each
region is granted access rights among read, write and execute that are checked
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for by the semantics. For instance, before reading in memory, we check that the
address has the read permission r. The rules that give the semantics of each
instruction are fairly standard and are given in Appendix A.

2.2 Semantic Domains

Our defensive semantics makes use of several semantic domains that we describe
below. Our notations are fairly standard: the set B = {0, 1} is the set of booleans
and we write B32 for B

32 which reads bitvector of size 32. A stack frame is a
pair 〈bp, φ〉 ∈ B32 ×B∗

32 where bp represents the base pointer of the stack frame
and φ is a list of 32-bits values modelling the content of the stack frame. The
semantics is using several architecture-dependent constants. The constant d0 is
the base address of the sandbox, the constant s0 is the top address of the stack,
and the maximum size of a stack frame is fs.

In order to detect stack overflows at runtime, the runtime stack is surrounded
by so-called guard zones. The concept of guard zone was already present in the
original work on SFI [15]. Semantically, this is modelled as memory regions which
have no access rights. As a result, accesses within the guard zones are trapped,
by letting the execution enter a specific “crash state” � where it stays forever. In
the following, gz� is the size of the guard zone at the top of the stack and gz⊥ is
the size of the guard zone at the bottom of the stack. The guard zones are part
of the stack. A call stack CS = (B32 × B∗

32)
∗ is a list of stack frames such that

the successive base addresses are decreasing (the stack grows downward). The
length of the (intermediate) stack frames is given by the difference between two
successive base pointers. A call stack is immutable but the content of the call
stack can be read. This is modelled by the following judgement cs �a v which
reads the call stack cs contains the value v at address a.

a ≤ bp φ(bp − a) = 	v

cs :: 〈bp, φ〉 �a v

a > bp cs �a v

cs :: 〈bp, φ〉 �a v
.

2.3 Defensive Semantics

At binary level, the runtime stack and the code segment are no different from
any other part of memory. Our defensive semantics must therefore explicitly
enforce a stack discipline and ensure that function boundaries are respected.
The program text is located in memory. For this purpose, we identify a set of
addresses Code ⊂ B32 that correspond to the program code. Given an address i,
the function instr(i) checks that i ∈ Code and returns the instruction stored at
address i. Moreover, we assume given a set F ⊆ Code of function entry points,
and a set T ⊆ B32 of trusted functions that form the only authorized entry
points of the trusted library.

A semantic derivation occurs in a context 〈cs, bp, ρi〉 ∈ CS × B32 × Env
where cs is the call stack, bp is the base pointer of the current frame and ρi is
the environment at the function entry. A judgement is of the form Γ � s → s′

where Γ is an inter-procedural context and s, s′ are either intra-procedural states
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s, s′ ∈ State = Env × B∗
32 × B∗

32 × B × B32 or the crash state �. A state
〈ρ, δ, φ(β), ι〉 ∈ State is made of an environment ρ mapping registers to values, a
public data segment δ i.e. the sandbox, a stack frame φ, a boolean β which tells
whether a write has occurred in the current frame, and the current instruction
pointer ι. (We write ι+ for the pointer to the next instruction.) The semantics
also ensures that there is no overlap between the call stack (including the current
stack frame), the code, and the data segment.

The semantics rules are found in Fig. 2. The Assign rule assigns a new value
to a register. This is always possible without violating the SFI property and
no extra check is needed. The rule StoreData describes the execution of the

Fig. 2. Defensive semantics
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statement [e1] = e2 for the case where e1 evaluates to a memory address within
the sandbox. The value of e1 is computed and the start address of the data
segment (the sandbox) d0 is subtracted from it to obtain an offset o into the
data segment. It is then verified that this offset is indeed smaller than the size
of the data segment. If this verification succeeds, the location at offset o in the
sandbox is updated with the value of e2.

The rule StoreFrame similarly makes the checks necessary for storing
securely into the run-time stack. Here, the value of e1 is supposed to be a valid
reference into the current stack which starts at the address designated by the
base pointer bp. Because the stack grows towards smaller addresses, the relative
offset o into the current stack frame is computed as bp − �e1�ρ. In order for the
store to proceed normally, this offset must point into that part of the stack frame
that is not making up the guard zone (0 ≤ o <| φ | −gz⊥). It is also checked
that the offset does not point into the guard zone at the beginning of the stack
segment (bp− o ≤ s0 −gz�). This rule also sets β to 1, which has the side-effect
of ensuring the current base pointer is above the guard zone (there is some space
to write to). The rule LdStCrash describes what happens on an attempt to
write into or read from one of the guard zones. In that case, the program transits
to the crash state � and stays there forever due to rule Crash.

The two rules LoadData, LoadStack describe how data are read from
the data segment and the run-time stack. Reading from the data segment uses
verification similar to storing into it. Loading from the stack is, however, slightly
different in that our version of SFI allow reads from all of the stack frames, and
not just the current frame. This allows e.g. functions to read their arguments.
It is still verified that the access does not fall in the guard zones, using checks
similar to StoreFrame.

The rule Call for the function call instruction call e first verifies that the
value �e�ρ belongs to the set of function entry points F . The current stack frame
is divided into two parts φ1 ·φ2 where φ1 is local data of the caller and φ2 is the
new stack frame for the function call, which starts at the address contained in
register esp. The offset o between the start of the old stack frame and the new
is verified to be smaller than the maximal frame size fs. Because it is checked
that β = 1, i.e. the frame has already been written to in this function, this check
has the side-effect to ensure bp is above the guard zone gz⊥ and therefore the
new bp is still at least fs above the bottom of the stack. Note that enforcing a
write before calls is not restrictive as writes are generated by compilers before
function calls in any architecture. The actual method call is modelled as an
execution starting at address f with the same environment ρ, the same data
segment δ, and a stack frame φ

(0)
2 where the 0 indicates that the frame has

not yet been written into. The end of the call is identified by the execution
reaching a ret e′ instruction. The value of �e′�ρ′ is verified to be the return
address using the architecture-dependent predicate isret. The return address is
the next instruction to execute. The semantics verifies that callee-saved registers
are restored after the function call. For instance on X86 assembly, registers esp,
ebx etc. are saved. For this same architecture, isret checks that the return



172 F. Besson et al.

address has indeed been pushed to the call stack. Calling a trusted function
is modelled with the rule CallTrust. This rule follows the same pattern as
the rule for ordinary calls, except that the trusted call is allowed to modify the
sandbox data but should leave the callee’s stack frame unchanged. We model
this as a non-deterministic rule that can return any δ′ in its resulting state.

The rules Cont and Jump model the instruction jmpif e1 e2 for conditional
jumps to a computed address. If the condition e1 evaluates to zero, execution
continues with the next instruction. Otherwise, the value �e2�ρ is computed and
it is verified that this new jump target is in the code block Code. Finally, we use
the (secure) crash state � to model program termination in the rule Halt. The
rule Crash states that once in a crash state the execution stays in this state
forever. This semantic sleight of hand simplifies the statement of the overall
security property, which becomes essentially a progress property. Employing a
specific error state would be equivalent but slightly more cumbersome.

2.4 The Sandbox Property

The side-conditions of the rules performing memory accesses ensure that the
defensive semantics gets stuck when memory accesses do not respect the sand-
boxing property. This means that we can state our sandbox property as a
simple progress property of the defensive semantics: as long as the semantics
can progress to a new state (possibly the crash state) no security violation has
occurred.

There is one obstacle to this, though: due to our big-step modelling of function
calls, the semantics also gets stuck as soon as a function call does not terminate.
In other words, all infinite loops are deemed insecure, which is clearly not what we
want. To remedy this, our sandbox property is defined over the set of reachable
states induced by the defensive semantics where the transition relation → is
extended with a relation � which for each call instruction explicitly adds a
transition to the callee state.

CallAcc

instr(ι) = 	call e
 �e�ρ = f f ∈ F
ρ(esp) = bp − o | φ1 |= o o < fs isret(ι+, ρ, φ1)

〈〈cs, bp, ρi〉, 〈ρ, δ, φ1 · φ
(1)
2 , ι〉〉 � 〈〈cs::〈bp, φ1〉, bp − o, ρ〉, 〈ρ, δ, φ

(1)
2 , f〉〉

Dually, we also add a transition stating that, for a ret instruction, the return
state is not stuck provided that the calling conventions are respected. Since the
next step is taken care of by the Call rule, the resulting state is just a witness
that the execution can proceed; we reuse for this purpose the state �.

RetAcc
ρi ∼ ρ′ isret(ret, φ1, ρi) instr(ι) = 	ret e′
 �e′�ρ′ = ret

〈〈cs::〈bp, φ1〉, bp − o, ρi〉, 〈ρ′, δ, φ′(β)
2 , ι〉〉 � 〈〈cs::〈bp, φ1〉, bp − o, ρi〉,�〉

Definition 1 (Augmented defensive semantics). The augmented defensive
semantics ⇒ is given by the union of the relation → and � such that:

Γ � Σ1 → Σ2

〈Γ,Σ1〉 ⇒ 〈Γ,Σ2〉
〈Γ1, Σ1〉 � 〈Γ2, Σ2〉
〈Γ1, Σ1〉 ⇒ 〈Γ2, Σ2〉
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The SFI sandbox property can then be expressed as the progress property of the
augmented defensive semantics.

Definition 2 (Sandboxing as progress). Let ι0 be the entry point of the
program and let the initial state be 〈Γ0, Σ0〉 = 〈〈[〈s0, φi〉], s0 − gz�, ρ0〉,
〈ρ, δ, φ(0), ι0〉〉 with | φi |= gz�. The program satisfies the SFI sandbox prop-
erty if the set of reachable states Acc = {s | 〈Γ0, Σ0〉 ⇒∗ s} satisfies ∀s ∈
Acc.∃s′.s ⇒ s′.

We write Safe(Acc) if this is the case.

3 Intraprocedural Semantics as an Abstract
Interpretation

In order to derive a modular static analyser we abstract the defensive seman-
tics into an intra-procedural semantics where the accessible states I -Acc are
computed for each function separately: I -Acc =

⋃
f∈F I -Acc(f). Our intra-

procedural semantics abstracts away the data region and all of the call stack,

Fig. 3. Abstraction of call stack

except the frame of the caller. Thus the stack
component is abstracted to two small zones
of the stack above and below the current base
pointer, representing the frames of the caller
and the callee (the currently executing func-
tion). Both are modelled by memory regions
of size fs where fs is a chosen maximum size
of these abstract stack frames. Figure 3 illus-
trates the abstraction of the stack segment.
The current code can write to its own frame
(the W zone) and read from both frames (the
R zone). The size of the guard zones are set
such that the abstract frames are always con-
tained in the stack, possibly overlapping a
guard zone.

The judgement of the intra-procedural semantics is of the form: Γ � s → s′

where the context Γ = 〈φi, bp, ρi〉 ∈ Ctx � is constant. Here, φi is the frame of
the caller, bp is the base pointer and ρi is the initial environment. The states s
and s′ are either the crash state � or of the form 〈ρ, φ(β), ι〉 ∈ State�.

The intra-procedural semantics has no knowledge about where it is in the
stack segment so it cannot detect stack overflows per se. We solve this problem
by a judicious use of the guard zones. The defensive semantics enforces that
a successful memory write occurs within the current stack frame before any
call. This entails the semantic invariants that 1. before a function call the base
pointer is always inside the stack and outside of the guard zone, 2. at function
entry point, the base pointer is always inside the stack or at most fs bytes inside
the guard zone, 3. hence, there are at least fs bytes left between bp and the end
of the stack segment (including the guard zone). These invariants are formally
stated by Lemma 3 that is proved in Appendix C.
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Similarly, we also guarantee that the call stack is at least of size fs, possibly
overlapping the guard zone gz�. Those invariants are enough to detect both
stack overflows and underflows using the intra-procedural semantics: if all the
stack accesses are proved to be within the bound of fs above and below the stack
pointer bp, the accesses are either defined in the defensive semantics or lead to
a crash because the access is performed inside the guard zone.

The intra-procedural and defensive semantics are linked by the concretization
function γ : Ctx � × State� → P((Ctx × State) ∪ {�}). The data segment is not
represented in the intra-procedural semantics, so its concretization is any data
segment of size ds. The concretization constructs the call stack and the current
defensive frame in such a way that, once appended to one another, they form a
memory region of size ss and fi and f are windows of size fs around the address
pointed to by the base pointer. Formally, we have:

γ(〈fi, bp, ρi〉, 〈ρ, f (β), ι〉) = {�} ∪
⎧
⎨

⎩
〈cs, bp, ρi〉, 〈ρ, δ, φ(β), ι〉

∣
∣
∣
∣
∣
∣

f = φ|[0,fs−1]

fi = cs|[|cs|−fs,|cs|]

⎫
⎬

⎭

where cs is obtained by concatenating the different stack frames of the call stack
and φ|[a,b]

extracts the sub-list between the indexes a and b.

cs =
{

[] if cs = []
φ · cs′ if cs = 〈bp, φ〉::cs′ φ|[a,b]

=

{
[] if a > b
φ(a)::φ|[a+1,b]

otherwise

Except for the handling of stack overflows and underflows, the rules for the
intra-procedural semantics are fairly standard and can be found in Appendix B.
When a memory component is absent from the abstraction i.e. the data region,
the intra-procedural semantics non-deterministically picks a value. For the call
instruction, the rule is similar to the defensive semantics rule Call with the
notable exception that no recursive call is made.

FunCall

instr(ι) = 	call e
 �e�ρ = f f ∈ F ∪ T
ρ(esp) = bp − o 0 ≤ o < fs | φ1 |= o isret(ι+, ρ, φ1) ρ ∼ ρ′

〈φi, bp, ρi〉 � 〈ρ, φ1 · φ
(1)
2 , ι〉 →� 〈ρ′, φ1 · φ

′(1)
2 , ι+〉

The rule FunLdArg shows how to access the arguments of the function that
are placed in the stack frame of the caller modelled by φi.

FunLdArg
instr(ι) = 	r = [e]
 �e�ρ = (bp + fs) − o 0 ≤ o < fs

〈φi, bp, ρi〉 � 〈ρ, φ(β), ι〉 →� 〈ρ[r �→ φi(o)], φ(β), ι+〉
The base address of φi is obtained by incrementing the base pointer bp by the
stack frame size fs and checking that the offset o is in range [0; fs[. The soundness
of this rule exploits the fact that the defensive stack is guarded by gz�. As a
result, if FunLdArg succeeds, either the memory access also succeeds in the
defensive semantics (rule LoadStack) or it accesses the guard zone gz� and
triggers a crash (rule LdStCrash).
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For each function entry ι ∈ F , the initial states Init(f) ⊆ Ctx � × State� are

defined by: Init(ι) =
{

〈〈φi, bp, ρ〉, 〈ρ, φ(0), ι〉〉
∣
∣
∣
∣
| φ |=| φi |= fs∧
bp > s0 − ss + gz⊥ − fs

}

. As we

already discussed, the frames φ and φi have length fs. At the function start, the
environments of the caller and the callee are the same; the base pointer is so
that there is below it a stack frame of size at least fs and no memory write has
been performed on the current frame φ. For a given function entry point f ∈ F ,
the reachable states are defined as

I -Acc(f) = {(Γ, s) | Γ � s0 →∗ s ∧ (Γ, s0) ∈ Init(f)}.

The intra-procedural semantics is also defensive and gets stuck when abstract
verification conditions are not met.

Definition 3 (Intra-procedural progress). The intra-procedural states are
safe (written I -Safe(I -Acc)) iff ∀f ∈ F ,∀(Γ, s) ∈ I -Acc(f).∃s′.Γ � s → s′.

The checked conditions are sufficient (but may not be necessary). For instance,
the intra-procedural semantics gets stuck when an access is performed outside
the bound of the current stack frame φ. However, because φ only models a
prefix of the frame of the defensive semantics, the defensive semantics may not
be stuck. As a result, the usual result Acc ⊆ γ(I -Acc) does not hold. Instead,
we have Lemma 1 stating that if the intra-procedural semantics is not stuck, it
abstracts the defensive semantics and ensures that the accessible states of the
defensive semantics are safe.

Lemma 1 (Correctness of the Intra-procedural semantics).

I -Safe(I -Acc) ⇒ Acc ⊆ γ(I -Acc) ∧ Safe(Acc).

The proof can be found in Appendix C.

4 A Static SFI Analysis

To get a modular executable verifier, we abstract further the intra-procedural
semantics. The verifier needs to track numeric values used as addresses, in order
to guarantee that memory accesses are within the sandbox or within the current
stack frame, hence we need domains tailored for such uses of numeric values. The
verifier also needs to gather some input-output relational information about the
registers and verify that, at the end of the functions, callee-saved registers are
restored to their initial values.

4.1 Abstract Domains

As pioneered by Balakrishnan and Reps [1], we perform a Value Set Analysis
(VSA) where abstract locations (a-locs) are data for the sandbox region and
code for the code region. We also introduce an abstract location for the function
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return ret, the base pointer bp and for each register e.g. eax, ebx. To model
purely numeric data, we have a dedicated a-locs zero with value 0:

a-locs = {zero,data,code,ret,bp,eax,ebx, . . .}.

a-locs are equipped with an arbitrary non-relational numeric domain. The
abstract value domain B

�
32 is therefore a pair (L, o) made of an abstract location

L and a numeric abstraction o ∈ D�. For each concrete operation � on values, the
transfer function on abstract (L, o)-values is using the corresponding operation
�� of the abstract domain. For instance, for addition and subtraction, we get:

(L, o1) +� (zero, o2) = (L, o1 +� o2) (zero, o1) +� (L, o2) = (L, o1 +� o2)
(L, o1) −� (zero, o2) = (L, o1 −� o2) (L, o1) −� (L, o2) = (zero, o1 −� o2)

When symbolic computations are not possible, it is always possible to abstract
(L, o) by (zero,�) and use numeric transfer functions. As the usual sandboxing
technique consists in masking an address using a bitwise & ([e1] := e2 � [d0 +
e1&1k] := e2)1 we opt, in our implementation, for the bitfield domain [11].

The abstract machine state at a program point is the product of an abstract
environment Env�, an abstract frame Frame�, and a code pointer B32.

Env� = Reg → B
�
32 Frame� = (B�

32)
fs × B State� = Env� × Frame� × B32.

The abstract frame is annotated by a boolean indicating whether a memory
write has definitively occurred in the stack frame.

The concretization function is parametrised by a mapping λ : a-locs → B32

assigning a numeric value to abstract locations and the concretization function
γ : D� → P(B32) of the numeric domain. The concretization is then obtained
using standard constructions:

γλ(L, o) = {v + λ(L) | v ∈ γ(o)}
γλ(ρ�) = {ρ | ∀r.ρ(r) ∈ γλ(ρ�(r))}
γλ(φ�) = {φ | ∀i ∈ [0, fs].φ(i) ∈ γλ(φ�(i))}
γλ(〈ρ�, φ�(b), ι〉) =

{ 〈ρ, φ(β), ι〉∣∣ β ≥ b ∧ ρ ∈ γλ(ρ�) ∧ φ ∈ γλ(φ�)
}

The mapping λ denotes a set of intra-procedural contexts such that a register r
in the environment ρi has the value λ(r) and the return address is constrained
by the calling conventions.

γ(λ) =
{

〈φi, bp, ρi〉
∣
∣
∣
∣
∀r, ρ(r) = λ(r),
bp = λ(bp) = λ(esp), isret(λ(ret), ρi, φi)

}

.

Finally, the whole concretization γ : State� → P(Ctx� × State�) is defined as:

γ(s�) = {〈Γ,�〉} ∪ {〈Γ, s〉 | ∃λ, Γ ∈ γ(λ) ∧ s ∈ γλ(s�)}.

1 This exploits the property that the range of the sandbox is a power of 2.
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4.2 Abstract Semantics

The abstract semantics takes the form of a transition system that is presented
in Fig. 4. The rule AAssign abstracts the assignment to a register and consists
in evaluating the expression e using the abstract domain of Sect. 4.1. A memory
store is modelled by the rules AStD and AStF depending on whether the
address is within the sandbox or within the current stack frame. Both rules
ensure that the offset is within the bounds of the memory region. A memory
load is modelled by the rules ALdD, ALdF or ALdS depending on whether
the address is within the sandbox, the current stack frame or the caller stack
frame. Each memory access is protected by a verification condition ensuring
that the offset is within the relevant bounds. For the ALdF rule, the memory
offset off is used to fetch the abstract value from the abstract frame φ. As the

Fig. 4. Abstract semantics
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sandbox and the caller frame are not represented, we get the top element of the
abstract domain i.e. (zero,�). The rule ACall models function calls. It checks
whether the target of the call is a trusted (f ∈ T ) or untrusted function (f ∈ F).
For the call to proceed, the stack pointer esp must be within the bounds of the
current stack frame and the return address ι+ needs to be stored according to the
calling conventions (isret(ι+, ρ, φ1)). After the call, the resulting environment ρ′

satisfies that the callee-saved registers are restored to their values in ρ (ρ ∼ ρ′)
and the suffix of the current frame φ′

2 is arbitrary i.e. φ′
2 = (zero,�)|φ2|. The

rule ARet ensures that the expression e evaluates to the return of the current
function (�e�ρ = (ret, o) {0} = γ(o)), and also that the callee-saved registers
are restored to their initial values. For instance, for ebx, preserve(ρ) ensures
that ρ(ebx) = (EBX, o) with γ(o) = {0}. The rules ACont and AJump model
control-flow transfer and check that the obtained code pointer is within the
bounds of the code. The last two rules AHalt and ACrash model the crash
state that is produced by the hlt instruction and is its own successor.

Like the intra-procedural semantics, the abstract semantics is safe if it is not
stuck (Definition 4).

Definition 4 (Abstract progress). The reachable intra-procedural states are
safe (written A-Safe(A-Acc)) iff ∀f ∈ F ,∀s ∈ A-Acc(f).∃s′.s → s′.

The abstract semantics embeds abstract verification conditions that are only
sufficient but not necessary for the intra-procedural semantics. As a result, it
only computes a safe approximation under the condition that all the reachable
abstract states are safe.

Lemma 2 (Correctness of the abstract semantics).

A-Safe(A-Acc) ⇒ I -Acc ⊆ γ(I -Acc) ∧ I -Safe(I -Acc)

The proof can be found in Appendix D. By transitivity, using Lemma 2 and
Lemma 1, we get Theorem 1.

Theorem 1 (Correctness of SFI Verifier). A-Safe(A-Acc) ⇒ Safe(Acc)

By definition of Safe, Theorem 1 means that the defensive semantics is not stuck.

5 Implementation and Experiments

We have implemented the static analysis on top of the BinCAT binary code anal-
ysis toolkit [2]. First, our SFI analyser reconstructs the structure of the binary
and in particular partitions the code into separate functions and transforms
the binary instructions into the REIL [4] intermediate representation. Second,
each previously identified function is analysed separately, using the abstraction
described in Sect. 4. For each function, the analysis checks that all the intra-
procedural jumps stays within the current function and that the abstract seman-
tics never blocks. The analysis also checks that all calls are towards previously
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identified entry points thus validating a posteriori that the initial partition of
the code into distinct functions is indeed correct.

The analysis has been tested on three test suites: correctly sandboxed pro-
grams, incorrectly sandboxed programs, and optimised, correctly sandboxed pro-
grams. The first test suite is built by compiling programs that are part of the
CompCert test suite with a modified version of CompCert that includes sandbox-
ing instructions. Because these binaries are correct by construction, the verifier
should accept all of them. In our experiments, we have tested 10 programs,
composed of 51 functions in total. 41 functions are verified in under 100 ms, 9
functions are verified in less than 300 ms and 1 function is verified in 3.5 s. This
last function occurs in sha3.c, and is responsible for the program being verified
in 3.5 s. This file is 200LoC long, while another file, aes.c, is 1.5KLoC long, com-
posed of 7 functions and takes only 1s to validate. This suggests that the time
complexity depends on the number of nested loops rather than on the size of the
code to verify.

The second test suite for catching incorrect programs has been obtained by
compiling incorrectly sandboxed programs with gcc and verifying they do not
pass our verification. Each test in the suite aims at a different error: returning
before the end of a function, writing above and below the frame, stack or sandbox
and bypassing the guard zones. Overall, the test suite contains 9 programs and
all are correctly identified as violating the sandbox property. Some of these
programs can be found in Fig. 5.

Fig. 5. Violation of sandboxing

We have also evaluated the ability of the analysis to verify programs where
redundant sandboxing instructions have been optimised away. For instance, the
sandboxing of consecutive accesses to an array can be factorised and imple-
mented by a single sandboxing instruction. In addition to masking the most
significant bits, this sandboxing instruction also zeroes out several least signifi-
cant bits thus aligning the base address of the array. The reasoning is that if an
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address a of the sandbox is aligned on k bits we have that a+ i for i ∈ [0, 2k −1]
is also in the sandbox. We have sandboxed the programs manually and compiled
them with gcc and verified whether they passed our verification. Our numerical
domain is able to model alignment constraints and the analysis accepts programs
where consecutive writes are protected by the previous sandboxing operation.
Yet, the analysis rejects programs where the sandboxing instruction is factored
outside loops because the information inferred about the loop bound is currently
not precise enough. More precision could be obtained by using more sophisti-
cated numerical domains. An example program that fails our verification is given
in Fig. 6.

Fig. 6. Optimising array accesses in a loop

The use of alloca(size t size) is another example of a code that respects the
security property as defined by the defensive semantics, but cannot be under-
stood by the analyser, unless more work is done by the programmer with the
result of that function. Because we limit the maximum size of the stack frame,
this function cannot work properly when its argument is bigger than this limit.
The result is a pointer outside of the frame, and the module is rejected when a
write at this address is detected.

6 Related Work

Software Fault Isolation has been proposed by Wahbe et al. [15] as a way to
ensure that a binary code runs inside a sandbox. Native Client (NaCl) [13,16]
is a state-of-the-art implementation that was part of chromium-based browsers
in order to safely run binary plugins. The NaCl binary verifier only performs a
linear scan of the code. It is very fast, simple and has a small TCB. As shown by
the RockSalt project [12], it is also amenable to formal verification. The NaCl
verifier requires setting up trampoline code to share a runtime stack between
trusted and untrusted code. Using abstract interpretation, we propose a more
flexible binary verifier where redundant sandboxing operations can be optimised
away and where the runtime stack is safely shared between trusted and untrusted
code. Our TCB is bigger than NaCl but could be reduced using certified abstract
interpretation [6].

Kroll et al. [8] propose to implement SFI as a Cminor compiler pass of the
CompCert [9] verified compiler. They show that proving both safety and security
of the SFI pass is enough to get a secure binary. For their approach, redundant
sandboxing operations can be optimised away by the compiler back-end; the
runtime stack is managed by the compiler and therefore shared between trusted
and untrusted code. A main difference with our work is that we explicitly state,
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using our defensive semantics, the security property that holds at binary level.
Moreover, we propose a flexible binary verifier for this property.

The NaCl technology has recently been replaced by WebAssembly [5].
Webassembly is an intermediate language, similar to Cminor, that is just-in-
time compiled into binary code. As the code may be malicious, the just-in-time
compiler adds runtime checks to make sure the code runs inside a sandbox. Com-
pared to the previous approaches, the TCB includes the just-in-time compiler
and there is no independent binary verifier.

Binary Analysis frameworks e.g. BAP [3] and Angr [14] propose rich APIs
to develop static analyses on top of an architecture independent intermediate
language. We use BinCAT [2] based on the REIL intermediate representation [4].
Our binary verifier has the rare feature of being intra-procedural. As a result,
we have adapted their interprocedural analysis engine and implemented our own
analysis domains. Our analysis domain is inspired from the a-locs domain of
Balakrishnan and Reps [1] which we adapt to a purely intra-procedural setting
and where a-locs are also used to model the initial values of registers. There are
full-fledged, whole-program, binary analysers e.g. Jackstab [7] and Bindead [10].
They both use a sophisticated combination of abstract domains. Our domains
are simpler but specialised to prove the sandboxing property. Moreover, our
analysis is intra-procedural and finely models the calling conventions.

7 Conclusions

We have shown that the Software Fault Isolation mechanism for safely executing
untrusted binaries can be formalised as a defensive semantics of an intermediate
representation of binary code. Our semantics generalises existing approaches and
defines a relaxed SFI property where the runtime stack is safely shared between
trusted and untrusted code. Using abstract interpretation, we derive from the
defensive semantics an intra-procedural binary verifier which for each individual
function can verify that memory accesses are sandboxed and that the code abides
to calling conventions. The verifier is implemented and our tests show that it is
able to validate programs even when compiler optimisations are enabled.

Further work will concern improving the robustness of the verifier and ensur-
ing a degree of completeness w.r.t. more complex optimisations. To do so, we
intend to enrich our abstract domains to cope specifically with program transfor-
mations based on code motion where sandboxing instrumentations are factored
outside loops. In addition, we intend to extend the verifier to handle multi-
threaded applications. We expect that the data-local, intra-procedural design of
the verifier will greatly facilitate the extension to such a multi-threaded setting.
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A Concrete Operational Semantics

ISTR
instr(ι) = 	r = e


〈ρ, μ, ι〉 −→ 〈ρ[r �→ �e�ρ], μ, ι+〉

ISTM
instr(ι) = 	[m] = e
 Writable(�m�ρ)

〈ρ, μ, ι〉 −→ 〈ρ, μ[�m�ρ �→ �e�ρ], ι+〉

IWCRASH
instr(ι) = 	[m] = e
 ¬Writable(�m�ρ)

〈ρ, μ, ι〉 −→ �

ILDM
instr(ι) = 	r = [m]
 Readable(�m�ρ)

〈ρ, μ, ι〉 −→ 〈ρ[r �→ μ(�m�ρ)], μ, ι+〉

IRCRASH
instr(ι) = 	r = [m]
 ¬Readable(�m�ρ)

〈ρ, μ, ι〉 −→ �

IJCCNO
instr(ι) = 	jmpif cond addr
 �cond�ρ = 0

〈ρ, μ, ι〉 −→ 〈ρ, μ, ι+〉
IJCC

instr(ι) = 	jmpif cond addr
 �cond�ρ �= 0)
〈ρ, μ, ι〉 −→ 〈ρ, μ, �addr�ρ〉

ICALL
instr(ι) = 	call addr


〈ρ, μ, ι〉 −→ 〈ρ, μ, �addr�ρ〉
IRET

instr(ι) = 	ret addr

〈ρ, μ, ι〉 −→ 〈ρ, μ, �addr�ρ〉

IHLT
instr(ι) = 	hlt

〈ρ, μ, ι〉 −→ �

B Intra-procedural Semantics

FunAssign
instr(ι) = 	r = e


Γ � 〈ρ, φ(β), ι〉 →� 〈ρ[r �→ �e�ρ], φ(β), ι+〉

FunStD
instr(ι) = 	[e1] = e2
 �e1�ρ = d0 + o 0 ≤ o <| δ |

Γ � 〈ρ, φ(β), ι〉 →� 〈ρ, φ(β), ι+〉
FunStF

instr(ι) = 	[e1] = e2
 �e1�ρ = bp − o 0 ≤ o <| φ |
〈φi, bp, ρi〉 � 〈ρ, φ(β), ι〉 →� 〈ρ, φ[o �→ �e2�ρ](1), ι+〉

FunLdD
instr(ι) = 	r = [e]
 �e�ρ = d0 + o 0 ≤ o <| δ |

Γ � 〈ρ, φ(β), ι〉 →� 〈ρ[r �→ v], φ(β), ι+〉
FunLdArg

instr(ι) = 	r = [e]
 �e�ρ = (bp + fs) − o 0 ≤ o < fs

〈φi, bp, ρi〉 � 〈ρ, φ(β), ι〉 →� 〈ρ[r �→ φi(o)], φ(β), ι+〉
FunLdFrame

instr(ι) = 	r = [e]
 �e�ρ = bp − o 0 ≤ o < fs

〈φi, bp, ρi〉 � 〈ρ, φ(β), ι〉 →� 〈ρ[r �→ φ(o)], φ(β), ι+〉
FunCont

instr(ι) = 	jmpif e1 e2
 �e1�ρ = 0

Γ � 〈ρ, φ(β), ι〉 →� 〈ρ, φ(β), ι+〉
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FunJump
instr(ι) = 	jmpif e1 e2
 �e1�ρ �= 0�e2�ρ ∈ Code

Γ � 〈ρ, φ(β), ι〉 →� 〈ρ, φ(β), �e2�ρ〉

FunCall

instr(ι) = 	call e
 �e�ρ = f f ∈ F ∪ T
ρ(esp) = bp − o 0 ≤ o < fs | φ1 |= o

isret(ι+, ρ, φ1) ρ ∼ ρ′

〈φi, bp, ρi〉 � 〈ρ, φ1 · φ
(1)
2 , ι〉 →� 〈ρ′, φ1 · φ

′(1)
2 , ι+〉

FunRet

instr(ι) = 	ret e
 �e�ρ = ret
isret(ι+, ρi, φi) ρi ∼ ρ

〈φi, bp, ρi〉 � 〈ρ, φ(β), ι〉 →� �

FunHalt
instr(ι) = 	hlt


Γ � 〈ρ, φ(β), ι〉 →� �
FunCrash

Γ � � →� �

C Proof of Lemma 1

First we need an intermediate lemma:

Lemma 3 (Base pointer is contained).

∀S = 〈〈bp, cs, ρi〉, 〈ρ, δ, φ(β), ι〉〉 ∈ Acc,
if β = 1

then s0 − ss + gz⊥ < bp ≤ s0 − gz�
else s0 − ss + gz⊥ − fs < bp ≤ s0 − gz�

Proof. We reason by induction on S ∈ Acc. In the initial state, we have
bp = s0 − gz� and β = 0, so the property is true since ss > gz� + gz⊥.

In the inductive case, we procede by case analysis on S ⇒ S′, where S
verifies the property. Because the property only depends on the context and
β, most cases are trivial: they preserve the context and β. In the case of the
StoreFrame rule, the context is preserved, and β is updated to 1. The property
is still preserved because the property when β = 0 implies the property when
β = 1.

The last case is when the extended call rule applies. In that case, β(S) = 1,
bp(S′) = bp(S)− | φ1 | with | φ1 |≤ fs and β(S′) = 0.

Since s0 − ss + gz⊥ < bp(S) ≤ s0 − gz�, s0 − ss + gz⊥− | φ1 |< bp(S′) ≤
s0 − gz�, so s0 − ss + gz⊥ − fs < bp(S′) ≤ s0 − gz� and the property holds.

Now we can prove the main lemma:

Proof. First, we prove that Acc ⊆ γ(I -Acc).
Let S ∈ Acc. By induction on S, we have the following cases:

– S = 〈Γ0, Σ0〉 = 〈〈[〈s0, φi〉], s0 − gz�, ρ0〉, 〈ρ, δ, φ(0), ι0〉〉 with | φi |= gz�.
By definition, ι0 ∈ F , so we can construct Init(ι0). By construction,
S ∈ γ(Init(ι0)).
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– S = 〈Γ2, Σ2〉 with 〈Γ1, Σ1〉 ∈ Acc and 〈Γ1, Σ1〉 ⇒ 〈Γ2, Σ2〉. By induction
hypothesis, we also have S� such that 〈Γ1, Σ1〉 ∈ γ(S�).
Since I -Safe(I -Acc), S� →� S�

2.
By case analysis on the rule that allows →�, we have:

• (FunAssign) The preconditions are the same as for (Assign), so there
is S′ such that S →� S′. Furthermore, S′ ∈ γ(s′�).

• (FunStD, FunLdD, FunCont, FunIndirectJump, FunHalt, FunCrash)
Similar reasoning.

• (FunStF) Here, the preconditions are either true for (StoreFrame) or
(StoreCrash) because of Lemma 3, so there is S′ such that S →� S′, with
S′ = � (writing in the guard zone) or S′ = 〈ρ, δ, φ(β), ι〉 (writing in the
frame). Furthermore, S′ ∈ γ(s′�).

• (FunLdS) Here, the preconditions are either true for (LoadStack) or
(LoadCrash) because of Lemma 3, so there is S′ such that S →� S′, with
S′ = � (reading in the guard zone) or S′ = 〈ρ, δ, φ(β), ι〉 (reading in the
stack). Futhermore, S′ ∈ γ(s′�).

• (FunCall) Here the preconditions are the same as for (CallAcc) because
of Lemma 3, so there is S′ such that S ⇒ S′. Furthermore, S′ ∈
γs(Init(f)) ⊆ γs(S�).

• (FunRet) Here the preconditions are the same as for (RetAcc), so
S ⇒ �. Furthermore, � ∈ γ(s′�).

Hence our intermediate conclusion: Acc ⊆ γ(I -Acc).
Let’s now take S ∈ Acc. We use the previous conclusion to also choose

S� ∈ I -Acc such that S ∈ γ(S�). Because we have I -Safe(I -Acc), we can also
take S�

2 such that S� → S�
2.

By case analysis with a similar reasoning as the previous property, we get
that S ⇒ S′ with S′ ∈ γ(S�

2).
Hence Safe(Acc).

D Proof of Lemma 2

Proof. First, we prove that I -Acc ⊆ γ(A-Acc).
Let S ∈ I -Acc. By induction on S, we have the following cases:

– S ∈ Init(f) = 〈〈φi, bp, ρ〉, 〈ρ, φ(f), 0〉〉
We can construct S� = 〈〈φ′

i, bp, ρ′〉, 〈ρ′, φ′(f), 0〉 ∈ AInit(f) such that S ∈
γ(S�).
S� ∈ A-Acc, so the property is true in that case.

– S = 〈Γ,Σ2〉 with 〈Γ,Σ1〉 ∈ I -Acc and Γ � Σ1 →� Σ2. By induction hypoth-
esis, we also have S� such that 〈Γ1, Σ1〉 ∈ γ(S�).
Because we have A-Safe(A-Acc), we also have S�

2 such that S� → S�
2.

By case analysis on →, we can see as before that the preconditions of the
abstract semantics are the same or more restrictive than those of the intra
procedural semantics. It is also built in a way that 〈Γ,Σ2〉 ∈ γ(S�

2).
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Hence our intermediate conclusion: I -Acc ⊆ γ(A-Acc).
Let’s now take S ∈ I -Acc. We use the previous conclusion to also choose

S� ∈ A-Acc such that S ∈ γ(S�). Because we have A-Safe(A-Acc), we can also
take S�

2 such that S� → S�
2.

By case analysis with a similar reasoning as the previous property, we get
that S ⇒ S′ with S′ ∈ γ(S�

2).
Hence Safe(I -Acc).
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Doubles and Rationals for Octagons
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Abstract. Octagons have enduring appeal because their domain opera-
tions are simple, readily mapping to for-loops which apply max, min and
sum to the entries of a Difference Bound Matrix (DBM). In the quest
for efficiency, arithmetic is often realised with double-precision floating-
point, albeit at the cost of the certainty provided by arbitrary-precision
rationals. In this paper we show how Compact DBMs (CoDBMs), which
have recently been proposed as a memory refinement for DBMs, enable
arithmetic calculation to be short-circuited in various domain operations.
We also show how comparisons can be avoided by changing the tables
which underpin CoDBMs. From the perspective of implementation, the
optimisations are attractive because they too are conceptually simple,
following the ethos of Octagons. Yet they can halve the running time on
rationals, putting CoDBMs on rationals on a par with DBMs on doubles.

1 Introduction

The dominating arithmetic operations for Difference Bound Matrices (DBMs)
are addition and comparison. The speed of these operations for double-precision
floating-point arithmetic is comparable with that of long integer arithmetic for
modern 64-bit desktop processors, hence the trend to work with floating-point
rather than idealised arithmetic, even though the latter is arguably more attrac-
tive for verification since it avoids any concerns on rounding. The problem is
not just one of speed: arbitrary-precision rational numbers, as supported by the
GNU multiple precision (GMP) library, require at least 24 bytes to store each
entry of a DBM, whereas an IEEE 754-1983 double occupies exactly 8 bytes.

Recent progress has been made on reducing space requirements by observing
the DBM entries are frequently repeated [7]. This leads to a factored represen-
tation for a DBM [7] in which the entries in the matrix are identifiers for the
rationals rather than the rationals themselves. The idea is to interpret matrix
entries using a table which maps each identifier to its corresponding rational; a
second table is used for searching for the (unique) identifier for a given rational.
The first table is used for reading a matrix and the second is used for writing
to a matrix; both tables are shared across all matrices. Since the number of dis-
tinct rationals occurring as DBM entries is small, typically thousands over the
lifetime of a long-running static analysis, the identifiers can be represented as 16-
bit integers. Even with the overhead of the two additional tables, this reduces
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 187–204, 2018.
https://doi.org/10.1007/978-3-319-99725-4_13
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the space consumption of a matrix, mimicking the space savings which come
with hash consing (that incidentally was invented with linear probing [12,13]).
The resulting alternative representation for a DBM has been dubbed a Compact
DBM (CoDBM) [7] (which is not to be confused with a Coherent DBM [23,24]).
The net reduction in space over DBMs, which derives from each rational now
being represented exactly once, improves cache behaviour. It also saves repeat-
edly initialising memory for storing the rationals, an auxiliary operation which
matches the frequency of the addition and comparison. For long-running analy-
ses, CoDBMs reduce memory consumption by approximately 30% and improve
running-time by approximately 40%, by virtue of the reduction in memory ini-
tialisation and improved locality [7].

This paper focuses on the computational, rather than the space-saving
aspects of CoDBMs. Our first contribution is in optimising a write to a CoDBM.
A CoDBM employs an ordered table (the second table) which maps each rational
encountered thus far during analysis to its unique identifier. Whenever an entry
is to be written, the table is searched (using binary search) for a rational and its
corresponding identifier. We show how hashing and linear probing can avoid the
repeated comparisons made by binary search and avoid the need to maintain an
ordered table. We report that the number of resulting comparisons (and mul-
tiplications) is indeed reduced and demonstrate a commensurate speedup and
improved cache behaviour.

Our second contribution relates to join, which is one of the domain operations
that occurs with high frequency. Join is computed pairwise on the entries of two
DBMs, and likewise for CoDBMs, by comparing each entry point-wise and taking
the maximum. Point-wise join can be simplified by checking if the two identifiers
align, or if one matches the special identifier which is reserved for infinity. Both
operations can be implemented in a lightweight manner using CoDBMs, thus
avoiding expensive number comparison operations. These refinements constitute
our second contribution.

Our third contribution exploits the infinity identifier in another domain oper-
ation: closure. Closure reduces to a sequence of addition and maximum calcula-
tions, the results of which will be infinity if either of their arguments are infinity.
Thus, if an entry of the CoDBM feeds an addition, and that entry is the infinity
identifier, the result of the addition is infinity, irrespective of its other argument.
Likewise for maximum. A lightweight check can be introduced to detect when
the inner loop of the closure calculation can be bypassed. An analogous refine-
ment carries over to incremental closure [10,24]. These refinements make up the
third contribution.

Cumulatively, these refinements close the performance gap between doubles
and rationals for octagons, from which we conclude that the role of rationals
needs to be reevaluated. The paper feeds into the growing body of work [2,3,7,
17,26,28,29] on how best to realise octagons on stock architectures.
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2 Background

An octagonal constraint [1,23,24] is a two-variable inequality of the syntactic
form xi −xj � c, xi +xj � c or −xi −xj � c where c is a constant, and xi and xj

are drawn from a finite set of variables {x0, . . . , xn−1}. This class includes unary
inequalities xi + xi � c and −xi − xi � c which express interval constraints.
An octagon is a set of points satisfying a system of octagonal constraints. The
octagon domain is the set of all octagons defined over a given set of variables.

2.1 DBMs

Implementations of the octagon domain reuse machinery developed for solving
difference constraints of the form xi − xj � c. An octagonal constraint over
{x0, . . . , xn−1} can be translated [24] to a difference constraint over an aug-
mented set of variables {x′

0, . . . , x
′
2n−1}, which are interpreted by x′

2i = xi and
x′
2i+1 = −xi. The translation proceeds as follows:

xi − xj � c � x′
2i − x′

2j � c ∧ x′
2j+1 − x′

2i+1 � c
xi + xj � c � x′

2i − x′
2j+1 � c ∧ x′

2j − x′
2i+1 � c

−xi − xj � c � x′
2i+1 − x′

2j � c ∧ x′
2j+1 − x′

2i � c
xi � c � x′

2i − x′
2i+1 � 2c

−xi � c � x′
2i+1 − x′

2i � 2c

A difference bound matrix (DBM) [11,22] (denoted m) which is a square matrix
of dimension n × n, is commonly used to represent a systems of n2 (syntacti-
cally irredundant [21]) difference constraints over n variables. The entry mi,j

represents the constant c of the inequality xi − xj � c where i, j ∈ [0, n). Since
an octagonal constraint system over n variables translates to a difference con-
straint system over 2n variables, a DBM representing an octagon has dimension
2n×2n. Figure 1 illustrates how an octagon translates to a system of differences.
The entries of the DBM correspond to the constants in the difference constraints.
Note how differences which are (syntactically) absent from the system lead to
entries which take a symbolic value of ∞. Observe how the DBM can be viewed
as an adjacency matrix for the illustrated graph.

Fig. 1. Example of an octagonal system and its DBM representation
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2.2 Closure

Closure properties define canonical representations of DBMs, and can decide
satisfiability and support operations such as join and projection. Bellman [4]
showed that the satisfiability of a difference system can be decided using shortest
path algorithms on a graph representing the differences. If the graph contains
a negative cycle (a cycle whose edge weights sum to a negative value) then
the difference system is unsatisfiable. The same applies for DBMs representing
octagons. Closure propagates all the implicit (entailed) constraints in a system,
leaving each entry in the DBM with the sharpest possible constraint entailed
between the variables. A DBM m of dimension n × n is said to be closed iff
∀i.mi,i = 0 for all i ∈ [0, n) and mi,j � mi,k + mk,j for all i, j, k ∈ [0, n). Zero
diagonal elements are enjoyed by octagons which are satisfiable. The DBM is
said to be strongly closed iff additionally ∀i, j.mi,j � mi,̄ı/2 + mj̄,j/2 for all
i, j ∈ [0, n), where ı̄ is i + 1 if i is even, and i − 1 otherwise. Strong closure
merges a pair of unary constraints into a single binary constraint: the binary
constraint 2(x′

i − x′
j) � mi,̄ı + mj̄,j following from the two unary constraints

2x′
i = x′

i − x′
ı̄ � mi,̄ı and −2x′

j = x′
j̄ − x′

j � mj̄,j . Figure 2 gives a cubic
implementation which tightens a DBM to ensure closure and a quadratic pass
which enforces strong closure. Satisfiability is checked by merely inspecting the
diagonal of the tightened DBM.

2.3 Incremental Closure

Minè introduced incremental closure [24] which reestablishes closure once a small
number of constraints are added to a closed DBM. This algorithm was subse-
quently refined [9,10] to give the quadratic algorithm listed in Fig. 3, presented
both with and without loop-invariant code hoisting. The idea is to determine how

Fig. 2. Non-incremental closure and strengthening
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Fig. 3. Incremental Closure (without and with code hoisting)

each DBM entry mi,j is effected by the addition of a new constraint x′
a −x′

b � d,
independent of every other DBM entry.

The force of (strong) closure, whether incremental or not, is that it gives a
canonical representation for DBMs; it also reduces join to the pointwise max of
two closed DBMs, to give the quadratic join operation illustrated in Fig. 4.

Fig. 4. Join of two closed DBMs

2.4 Apron

Apron is a widely-used Octagon domain library [18] which is implemented in C,
with bindings for C++, Java and OCaml. It supports various number systems.
Numbers are represented by a type bound t, which, depending on compile-time
options, will select a specific header file with a specific concrete implementation
of numbers extended with symbolic values of −∞ and +∞. Every bound t object
is initialised via a call to bound init, which in the case of GMP rationals will
call a malloc function. Numbers of type bound t cannot be assigned directly,
but instead are assigned via function calls such as bound set.
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DBMs are stored by taking advantage of coherence [24], which can be
assumed without loss of generality. A DBM m is said to be coherent if mi,j =
mj̄,̄ı for all i, j ∈ [0, n). Coherence allows a half-matrix to be represented which,
in turn, can then be packed into a (linear) array of bound t objects as follows:
If i � j or i = j̄ then the entry at (i, j) in the DBM is stored at index j + �i2/2�
in the array. Otherwise (i, j) is stored at the index location reserved for entry
(j̄, ı̄). A DBM of dimension n × n then requires an array of size 2n(n + 1).

2.5 CoDBMs

Compact DBMs (CoDBMs) [7] redistribute the cost of memory allocation and
initialisation, and do so in a way that is sensitive to the relative frequency of
DBM reads to DBM writes (the latter being less frequent than the former).
CoDBMs are matrices where the entries are identifiers (short integers), rather
than numeric values (rationals), and each identifier references a number in a
shared number pool, as illustrated in Fig. 5. The number pool is abstracted by
two functions: values : N → Q and search : Q → N, which are mutual inverses.

The change from DBMs to CoDBMs requires a new API for reading and
writing an entry ci,j of a CoDBM c. Reading ci,j amounts to interpreting the
index stored in ci,j using values to obtain a value v = values(ci,j). Writing a value
v to ci,j involves applying a function � = search(v) to retrieve the identifier
� for v and then assigning ci,j to �. The function Search, which is listed in
Fig. 6, manufactures a unique identifier if v is fresh and extends values and search
accordingly. Previous work [7] realised values as an array of rationals and search
as an ordered array of rationals, the index of a particular rational defining the
identifier. The identifier was found using Bisection search [32]. CoDBMs achieve

Fig. 5. Example illustrating the difference between DBMs and CoDBMs

Fig. 6. Searching and extending search and values
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speedups because they store identifiers which are more compact than rationals
(improving locality) and each distinct rational is stored once in the number pool
(saving initialisation).

3 Hashing

The GMP manual [15] alludes to the fact that comparisons on rationals are
expensive since p/q � r/s reduces to sp � qr if the denominators p and s
are positive. Comparison thus involves two multiplications in general. Moreover,
Search is invoked on every write to the CoDBM and each invocation will com-
pute 	log2(n)
 comparisons in the worst case where n is the number of rationals
in number pool. Thus, even if the pool contains just 256 rationals, a write can
induce 16 multi-precision multiplications. Moreover, to insert a new rational
into an ordered table it is necessary to shuffle along other elements. These costs
motivate hashing.

A rational r is hashed by converting it to a double-precision floating point
number f , an operation which is supported by GMP. If s is the size of the
hash table then a multiplicative hash [20] h(f) is computed by calculating � =
	fs(1 +

√
5)/2
 mod s with floating-point arithmetic and defining h(f) = �

if � � 0 and h(f) = s − � otherwise. Hashing with the Golden Ratio helps
ensure that the hashes are scattered evenly, reducing the chance of collisions [20,
Chap. 6.4]. If a rational does not exist at entry h(f) then r is inserted at this
entry and h(f) is returned by Search. If the entry h(f) is already occupied by
a rational r′, then an equality check r = r′ is performed on rationals (which is
constant-time by virtue of a canonical representation). If r = r′ succeeds then
h(f) is returned by Search. If r = r′ fails then linear probing is applied to find
the next consecutive (modulo s) identifier �′ whose entry is empty in the table.
The rational r is then inserted at �′ and �′ is returned by Search. Note if that
r is exceptionally large then f can conceivably be NaN in which case a constant
hash can be assigned.

Although multiplicative hashes are not renowned for avoiding collisions, they
are simple, and it turns out that collisions are incredibly rare because the number
of distinct rationals is small and thus the occupancy of the table is low.

4 Optimising Join

DBMs typically contain many symbolic infinity values: a property has sparked an
interest in using sparse representations for difference constraints [14]. However,
sparse representations complicate the join of octagons [19], the simplicity of
which we want to preserve. Nevertheless, the identifiers employed by CoDBMs
enable join to bypass vacuous DBM entries, without adding any conceptual
complexity to join itself. The idea is to merely fix the identifier for symbolic
infinity up-front so that infinity can be intercepted with a lightweight check
without inspecting the symbolic value itself.
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Fig. 7. DBM max operation used in join and widening, and its optimised version

To reflect on the cost of join, consider the implementation of a max operation
(setdbmmax) used in join, which assigns ci,j to the maximum of c1i,j and c2i,j

shown in Fig. 7. Quite apart from the two multi-precision multiplications used
in the comparison which underpins bound max in line 3, line 2 allocates and
initialises memory (which we make explicit to highlight a hidden cost).

Yet if either c1i,j or c2i,j is the identifier for infinity, denoted �∞, then there
is no need to perform any comparison between rationals: the entry ci,j can simple
be assigned the identifier �∞. Moreover, if the identifiers c1i,j and c2i,j align,
then again a rational comparison is not needed. In fact, only in exceptional cases
do the rationals need to be looked-up at all, which reduces memory pressure.
This optimisation can be rolled out for widening which also uses setdbmmax.
An analogous optimisation applies for meet, using min instead of max (though
meet arises relatively infrequently during analysis).

5 Optimising Closure

Figure 8 shows how the identifier �∞ can be likewise trapped to speed up non-
incremental and incremental closure. The observation is that if ci,k = �∞ then
sum values(ci,k)+ values(ck,j) will be infinity irrespective of the identifier stored
in ck,j . Moreover, the check ci,k = �∞ is performed on identifiers (integers) rather
than rationals, so has negligible overhead, yet it potentially enables the entire
inner loop of closure to be short-circuited (see CloseOpt of Fig. 8). Incremen-
tal closure algorithm can also be optimised (see IncCloseHoistOpt of Fig. 8)
where both the outer and inner loop can be skipped if certain indices match
the fixed identifier �∞. These optimisations will only really benefit closure cal-
culations on large CoDBMs so it is important that the checks are sufficiently
lightweight to not overburden closures operating on small CoDBMs.
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Fig. 8. Optimised versions of closure and incremental closure

6 Experiments

This section compares the performance of CoDBMs over rationals against DBMs
over doubles using three abstract interpreters [6,16,30], reporting execution
times augmented with memory statistics for the longest running analyses. All
statistics were gathered on a Linux machine equipped with 128 GB of RAM and
dual 2.0 GHz Intel Xeon E5-2650 processors. Timings were averaged over five
runs using multitime (http://tratt.net/laurie/src/multitime/) and include the
time required to perform a complete analysis from parsing source to output.

6.1 FuncTion: Timings

Figure 9 presents the running times of the FuncTion termination analyser on
all the 58 benchmarks from its repository (https://github.com/caterinaurban/
function); timings which are fully detailed in the accompanying technical report
[8]. FuncTion [30] applies abstract interpretation to infer piece-wise ranking func-
tions for verifying termination. It is implemented in OCaml and can analyse sim-
ple programs in a C-like language. FuncTion has options for intervals, arbitrary
polyhedra and octagons. For octagons, the default setting is Apron DBMs instan-
tiated with rationals, reflecting a focus on verification. Doubles and CoDBMs
were supported by changing the build system.

The cross marks of the scatter plot compare the running time for Apron
DBMs over rationals against the execution time for Apron DBMs over doubles, so

http://tratt.net/laurie/src/multitime/
https://github.com/caterinaurban/function
https://github.com/caterinaurban/function
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Fig. 9. CoDBMs and DBMs for rationals against DBMs for doubles

as quantify the overhead induced by rationals. The dotted-line has the gradient
of one. The triangles illustrate the execution time of CoDBMs over rationals,
equipped with the complete set of optimisations, again relative to doubles on
DBMs. The top graph illustrates these timing for all benchmarks, whereas the
bottom graph zooms in on the cluster of benchmarks around the origin. The
proximity of the triangles near to the dotted line suggests that CoDBMs over
rationals, when optimised, compare favourably to DBMs over doubles, at least
for the benchmarks under test. Figure 10 compares CoDBMs to DBMs using a
different perspective: it also compares CoDBMs over rationals to CoDBMs over
doubles, showing how CoDBMs, when optimised, reduce the overhead of moving
from doubles to rationals relative to the same move on DBMs.
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Fig. 10. DBMs for rationals against DBMs for doubles and likewise for CoDBMs

6.2 Crab-LLVM: Timings

To compare rationals against doubles with a state-of-the-art [16] inter-procedural
analysis, Crab-LLVM (https://github.com/seahorn/crab-llvm) was built against
Apron and CoDBMs and then applied to the 596 benchmarks of product-line
SV-COMP series to infer octagonal invariants. This setup also exercised the
domain operations from C rather than through OCaml bindings so as to check
whether the bindings impact on performance.

The large number of benchmarks make a scatter plot infeasible, hence Fig. 11
plots the cumulative running time for the first n benchmarks against n itself;

Fig. 11. Cumulative execution times over product-lines SV-COMP benchmarks

https://github.com/seahorn/crab-llvm


198 A. Chawdhary and A. King

the technical report [8] details all these timings. These benchmarks divide into
the elevator, email, and minepump sub-series of unreachability problems. Each
benchmark in each sub-series has a broadly similar execution time, so the cumu-
lative running time approximates a piece-wise linear function. The headline mes-
sage is that, again, CoDBMs over rationals approach the performance of DBMS
over doubles; moreover CoDBMs provide a modest gain on DBMs for doubles
when all the optimisations are in place. Interestingly, Crab-LLVM defaults to
the Elina library [29] which partitions a DBM on-the-fly into sub-DBMs that do
not share variables, whilst simultaneously applying vectorisation. This invited a
comparison. Elina did not perform as well as CoDBMs with the join and closure
optimisations or even DBMs. Though unexpected, we include these results nev-
ertheless. (It should be stressed that Elina was built exactly as specified, to the
same level of optimisation as DBMs and CoDBMs, with the vector flag correctly
set for an E5-2650 which supports vectorisation. Elina currently does not provide
OCaml bindings otherwise we would have performed further comparisons using
FuncTion and Frama-C.)

6.3 Frama-C: Timings

With an eye towards longer running analyses, EVA [6], the abstract interpreta-
tion plugin for Frama-C Sulfur, was used for comparing rationals against doubles
for DBMs and CoDBMs. EVA is a prototype analyser for C99 which supports
Apron but does not provide state-of-the-art optimisations such as automatic
variable clustering [17] or access-based localisation [3]. Nevertheless, Fig. 12
lists the programs used for benchmarking, which represent eight programs from
the Frama-C case study repository (https://github.com/Frama-C/open-source-
case-studies) that successfully terminate when the EVA plugin is instantiated
with octagons.

Figure 13 details the overall execution for DBMs, both for doubles and ratio-
nals. Interestingly, teas, mod and bzip are ten-fold slower with rationals than
doubles for DBMs. This stems from a high number of DBMs with high dimension
so that, cumulatively, the total number of DBMs entries created during analysis
for each of these three problems is between 40- and 400-fold the number of DBM

Abbrv Benchmark LOC Description
lev levenstein 187 Levenstein string distance library
sol solitaire 334 card cipher
2048 2048 435 2048 game
kh khash 652 hash code from klib C library
taes Tiny-AES 813 portable AES-128 implementation
mod libmodbus 7685 library to interact with Modbus protocol
mgmp mini-gmp 11787 subset of GMP library
bzip bzip-single-file 74017 bzip single file for static analysis benchmarking

Fig. 12. Benchmarks

https://github.com/Frama-C/open-source-case-studies
https://github.com/Frama-C/open-source-case-studies
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Apron DBM CoDBM rationals CoDBM doubles
Abbrv rationals doubles Ids Bisect Hash Join Close Bisect Hash Join Close
lev 22.78 4.71 900 12.16 10.66 8.15 7.41 5.87 4.78 4.74 4.30
sol 92.13 42.77 2161 80.22 71.00 51.48 50.61 52.09 44.03 42.89 42.52
2048 37.74 8.28 358 22.36 19.57 14.09 13.31 10.79 8.73 8.26 7.77
kh 3.087 1.92 196 2.44 2.447 2.167 2.131 1.871 2.014 1.928 1.843
taes 1883.50 153.43 140 740.47 663.37 411.72 386.67 261.32 164.85 143.63 129.67
mod 820.88 96.68 3627 558.27 494.12 321.72 293.68 192.63 111.92 102.78 91.70
mgmp 4.33 4.36 126 4.33 4.28 4.18 4.16 4.38 4.28 4.22 4.15
bzip 655.82 54.15 262 232.63 94.98 95.49 94.20 168.90 60.01 59.00 58.99

Fig. 13. Frama-C EVA plugin timings

entries created for any of the other five problems. The Ids column records the
total number of identifiers (distinct DBM entries) used over the lifetime of each
analysis. These counts are significantly smaller than the total number of DBM
entries over the lifetime of each analysis by typically six orders of magnitude
larger. (Shorter running analyses typically have smaller Ids counts.)

The Bisect column records the overall running time when bisection search
is used to locate an identifier. Hash gives the runtime when hashing and linear
probing is used instead. The hash table was allocated to store 10K rationals and
collisions were barely discernible (since the Ids count was always low) hence the
table was never expanded. Join presents the time when hashing is augmented
with join (and meet) optimisation. The Close column additions applies the opti-
misations on both closure and incremental closure. For the longer running prob-
lems, Hash significantly improves on Bisect and Join significantly improves on
Bisect (which the notable exception of mgmp where it has little effect). Close
makes a less significant improvement on Join, but is useful nevertheless.

As a control, the last four columns of the table repeat the experiments but
with CoDBMs instantiated with doubles. Since arithmetic is faster on doubles
and doubles are compact, it is surprising to see that CoDBMs sometimes outper-
form DBMs. We surmise that the speedup comes from reduced memory pressure.

6.4 Frama-C: Memory Usage

Figure 14 records total memory usage as harvested by GNU time, which returns
the maximum resident set size of the process during its lifetime. The table con-
tains some surprises. First, memory usage for CoDBMs over rationals gives a
net increase on DBMs over rationals for some problems. This increase occurs for
the Sulfur version of Frama-C; the previous version gives a consistent reduction
in memory usage (which is expressed as a percentage in the same column). The
problem in recycling memory seems to relate to GNU multi-precision arithmetic
since Sulfur gives a reduction when the same CoDBM code is instantiated with
doubles. The second surprise is that Sulfur gives a dramatic overall decrease
when CoDBMs are deployed with the join optimisation. This stems from the
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CoDBM
rationals Apron DBM Bisect Hash Join Close
lev 1,498,168 1,457,632 1,452,868 106,072 106,620
sol 6,187,568 10,718,464 10,717,924 246,008 247,044
2048 3,714,408 2,999,468 3,034,068 170,840 170,700
kh 163,840 142,168 142,264 69,696 69,440
taes 20,845,632 119,190,024 119,153,636 591,228 590,700
mod 28,945,580 73,116,452 73,111,892 911,572 901,788
mgmp 89,496 89,992 88,844 89,308 88,508
bzip 9,499,460 1,636,276 1,634,444 551,664 551,516

CoDBM
doubles Apron DBM Bisect Hash Join Close
lev 191,968 106,264 106,004 106,200 105,756
sol 690,476 284,556 284,068 283,812 283,952
2048 413,916 167,432 165,548 165,712 165,284
kh 73,608 68,780 68,720 68,376 68,696
taes 2,044,832 603,056 604,440 604,416 604,420
mod 2,871,612 921,780 939,056 919,808 922,108
mgmp 89,832 88,092 88,548 88,008 88,628
bzip 1,158,460 555,216 551,884 552,524 552,988

Fig. 14. Memory Usage in kb for Frama-C: rationals above and doubles below

allocation and initialisation space for each maxima. This only occurs for ratio-
nals, hence Join offers little improvement for doubles.

Figure 15 records cache statistics for DBMs and CoDBMs which were har-
vested with Cachegrind [25] (for four representative benchmarks). Refs and Miss
respectively denote the number of memory references and last-level cache misses
for rationals for both DBMs and CoDBMs, where m denotes millions. A, B, H,
J and C abbreviate the column names of Fig. 14. Reading an element from a
CoDBM incurs an extra layer of indirection compared to a DBM and writing to

Abbrv Insts Refs Miss Rate
2048 A 242190m 99227m 185m 0.187
2048 B 125304m 47092m 52m 0.112
2048 H 95078m 41082m 52m 0.128
2048 J 65529m 30433m 5m 0.016
2048 C 56981m 26670m 5m 0.018
kh A 13870m 6545m 5.2m 0.08
kh B 9228m 4595m 2.7m 0.06
kh H 8579m 4465m 2.7m 0.06
kh J 7840m 4196m 1.3m 0.03
kh C 7690m 4130m 1.3m 0.03

Abbrv Insts Refs Miss Rate
lev A 145649m 59428m 72m 0.121
lev B 67952m 25346m 25m 0.101
lev H 52800m 22565m 25m 0.113
lev J 38634m 17472m 3m 0.017
lev C 32925m 14975m 3m 0.020
bzip A 52677557m 2166803m 19579m 0.904
bzip B 1855916m 410861m 76m 0.019
bzip H 533543m 229553m 76m 0.033
bzip J 522984m 225737m 57m 0.026
bzip C 512926m 221316m 57m 0.026

Fig. 15. Instruction count and cache statistics for Frama-C for rationals
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a CoDBM can incur multiple memory references, so one might expect additional
memory references. Yet the number of references reduces uniformally between
DBMs and CoDBMs for Bisect and then across the CoDBM optimisations. The
number of cache misses reduces even faster, indicating that locality is improved
too, hence the decreasing cache miss-rate percentage (Rate). Reassuringly, the
number of misses does not increase between Bisect and Hash, even though hash-
ing can map a number to any location in the hash table, whereas bisection will
only search the portion of the second table which is actually populated. A single
(non-local) read into the hash table (which is the norm as collisions are rare)
seems to more than offset the multiple reads incurred by bisection, which become
progressively more local as search proceeds. Join gives an order of magnitude
reduction in the number of misses because it bypasses accessing numbers in the
first table as well as avoiding initialising a temporary variable and then stor-
ing the maxima. Cachegrind also records the number of instructions executed,
which is a reflected in the Insts column, and is a proxy for work. The reduc-
tion in instruction count stands independent of the timings which are ultimately
dependent on system behaviour.

7 Related Work

The tension between the elegance of octagons and their scalability has moti-
vated a number of imaginative techniques [2,3,5,7,17,26,28,29] for enhancing
octagonal analysis. First, variable clustering was proposed [5,23,31] for group-
ing variables into sets which scope the relationships that are tracked. However,
deciding variable groupings is an art, although there has been recent progress
made in automating decomposition both before [17] and during [29] analysis.

Second, the domain operations themselves have been refined, notably showing
how strengthening (the act of combining pairs of unary octagon constraints to
improve binary octagon constraints) need not be applied repeatedly, but instead
can be left to a single post-processing step [1]. This led to a significant perfor-
mance improvement of approximately 20% [1].

Thirdly, and more recently, there has been a move to curb the size of DBMs
using sparse analyses [27] and access-based localisation techniques [3]. Access-
based localisation uses scoping heuristics to adjust the size of the DBM to those
variables that can actually be updated [3]. Sparse analyses generalise access-
based localisation techniques, using data dependencies to adjust the size of
abstract states propagated to method calls: [27] defines a generic technique
to apply sparse techniques to abstract interpretation and combines this with
variable packing to scale an octagon-based abstract interpreter for C programs.
Access-based localisation and sparse frameworks (and variable clustering too) are
orthogonal to our work, and can take advantage of the techniques introduced in
this paper. Sparse matrix representations have been proposed for octagons [19]
and differences [14] as an alternative to DBMs, but these representations sit at
odds with the simplicity of the algorithms originally proposed for the domain.
The desirable property of strong closure [24] (the normal form for octagons)
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does not hold for a sparse representation, motivating the need to rework domain
operations [19].

Fourthly, there has been a move to better exploit the underlying architecture,
either to harness GPUs [2] or advanced vector extensions (AVX) [29] in closure
and strengthening (the latter being the first work to comment on the impact of
cache misses in domain engineering).

8 Conclusion Discussions

The paper contributes to the growing body of work on domain engineering,
where performance is improved, often in small steps, by devising refinements
which relieve the pressure of the most commonly occuring domain operations.
We buck the trend towards instantiating octagons with doubles by showing how
CoDBMs, which save space over DBMs, can also save on computation if equipped
with simple optimisations. These optimisations enable arithmetic to be short-
circuited in join and closure, and also avoid repeated comparisons by changing
the tables which underpin CoDBMs. The net effect is to put rationals on a par
with doubles, so as to simultaneously achieve performance and soundness.

In terms of future work, it would be interesting to apply caching more aggres-
sively and determine whether the hash could preserve the ordering on the ratio-
nals. If so, then join (and meet) could be further refined by comparing hashes.
Moreover, it would be interesting to investigate temporal locality on rational
arithmetic itself and determine if caching could be deployed to further acceler-
ate the domain operations.
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20. Knuth, D.: The Art of Computer Programming, Volume 3: Sorting and Searching,
2nd edn. Addison Wesley, Reading (1998)

21. Lassez, J.-L., Huynh, T., McAloon, K.: Simplication and elimination of redundant
linear arithmetic constraints. In: Constraint Logic Programming, pp. 73–87. MIT
Press (1993)

22. Measche, M., Berthomieu, B.: Time Petri-nets for analyzing and verifying time
dependent communication protocols. In: Rudin, H., West, C. (eds.) Protocol Spec-
ification, Testing and Verification III, pp. 161–172. North-Holland, Amsterdam
(1983)
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Abstract. There is growing demand for formal verification methods in
the scientific and high performance computing communities. For scien-
tific applications, it is not only necessary to verify the absence of viola-
tions such as out of bounds access or race conditions, but also to ensure
that the results satisfy certain mathematical properties. In this work,
we explore the limits of automated bounded verification in the verifica-
tion of these programs by applying the symbolic execution tool CIVL
to some numerical algorithms that are frequently used in scientific pro-
grams, namely a conjugate gradient solver, a finite difference stencil, and
a mesh quality metric. These algorithms implement differentiable func-
tions, allowing us to use the automatic differentiation tools Tapenade
and ADIC in the creation of their specifications.
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1 Introduction

Numerical algorithms are at the core of many scientific and high performance
computing (HPC) applications such as weather forecasting and climate mod-
elling, computational fluid dynamics, or seismic imaging. Other authors have
noted that there is a growing need for formal methods or more rigorous testing
in scientific computing [10,15], since errors regularly have costly consequences.
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A recent report by the U.S. Department of Energy speaks of an ongoing cor-
rectness crisis [13], and lists a number of reasons for the difficulty in establishing
correctness of scientific software. One of them is that bugs do not always lead
to a detectable violation of a safety property, and may instead lead to wrong
results. At the same time, wrong results may look plausible even to experts [15].

While a full verification of most scientific or HPC applications is beyond the
current capabilities of formal verification methods, we present a step towards
this goal by using the static analysis, model checking and symbolic execution
tool CIVL [30] to verify properties of implementations of some commonly used
numerical algorithms.

Each of the algorithms verified in this paper is differentiable. We exploit this
fact by applying the algorithmic differentiation (AD) tools Tapenade [14] and
ADIC [24] to generate specifications. AD can be viewed as a formal method and
has a long history in scientific computing, and is introduced in Sect. 2.2.

The paper is structured as follows. First, we verify that a conjugate gradient
solver for systems of linear equations is guaranteed to find a solution under par-
ticular circumstances described in Sect. 3, before showing that the derivatives of
that CG solver have some expected properties. We then show that a function
from the mesh adaptation framework FeasNewt [21] correctly implements the
gradients and Hessians of another function in Sect. 4. Finally, we show the cor-
rectness of a table of finite difference coefficients in Sect. 5. We conclude with
related work in Sect. 6 and a summary in Sect. 7.

For experiments, we used an iMac with a 3.5 GHz Intel Quad Core i7-4771
CPU and 32 GB memory. Java 1.8 and CIVL 1.13 were used. The Java Virtual
Machine was permitted to use up to 30 GB for the heap. All experimental
artifacts can be downloaded from https://vsl.cis.udel.edu/civl/sas18.

1.1 Contributions

In the paper, we present

– automated verification to prove properties of a conjugate gradient solver,
– algorithmic differentiation as a technique to create program specifications,
– automated verification of the order of accuracy of finite difference stencils,
– verification of a non-trivial part of a mesh adaptation framework, and
– the incorporation of probabilistic techniques into a verification framework to

check assertions involving very large symbolic expressions.

1.2 Limitations

Full verification of scientific codes is hard, and we can not claim to have solved
this problem. Remaining limitations of our approach include:

– We only perform bounded verification. This can complement traditional test-
ing with larger problem sizes.

– Some of our experiments use probabilistic methods to scale to larger problem
sizes. This leaves a small probability of error (< 10−36).

https://vsl.cis.udel.edu/civl/sas18
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– We are verifying simplified implementations.
– We are only showing correctness of the C code, which ignores the possibility

of errors in the compiler, runtime environment, or hardware.
– We are ignoring roundoff effects.
– Our approach requires writing code that serves as a specification. The speci-

fication codes are very simple, but there is the possibility of human error.

2 Background

This section describes the CIVL tool that we used for verification, and the Tape-
nade and ADIC algorithmic differentiation tools used to create specifications.

2.1 The CIVL Verification Platform

CIVL is a verification framework for sequential or parallel C programs. The ver-
ifier uses static analysis, symbolic execution and model checking techniques. In
particular, it explores a set of program states, and within a state, each variable is
assigned a symbolic expression. The state includes models of the scoped memory
structure of the program, the call stack and the heap. (For a parallel program,
there is a call stack for each process.) As usual in symbolic execution, the state
also includes a path condition variable which records the Boolean condition that
must have held in order for an execution path to have been followed.

Arithmetic operations are all interpreted as taking place in the mathematical
integers and real numbers. This can be seen as a limitation or a feature. When
verifying that an algorithm has been implemented correctly, we show that prop-
erties that ought to hold in real arithmetic (but do not usually hold in floating
point arithmetic) do in fact hold. In this way we are able to separate discrepan-
cies due to roundoff error from discrepancies due to an incorrect implementation.
In this context, symbolic execution with real-valued semantics has advantages.

The CIVL verifier performs a depth-first search of the reachable state space,
checking a number of properties along the way. It also uses the Symbolic Algebra
and Reasoning Library (SARL, [27]) to manipulate, simplify, and reason about
symbolic expressions. SARL’s simplification process can resolve many validity
queries quickly; for those that it cannot resolve, it invokes one or more automated
theorem provers, including CVC4 [3] and Z3 [8].

CIVL is typically used by placing small bounds on the sizes of input data
structures. It can then prove, automatically, that assertions hold for all execu-
tions and all possible concrete inputs within those bounds.

The input language for CIVL is CIVL-C, an extension of C. The framework
also includes a number of translators to convert a C program that uses one or
more parallel programming models (such as Pthreads, OpenMP, CUDA, or MPI)
to CIVL-C. However, in this work, we wrote in the CIVL-C language directly,
and we deal only with sequential programs.
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2.2 Algorithmic Differentiation

Algorithmic differentiation (AD), sometimes also called automatic differentia-
tion, is a way to compute derivatives of numerical programs. Assuming that a
given program implements a differentiable function

y = F (x)

that computes an output vector y based on some input vector x, one can apply
AD to F to obtain the derivative of y with respect to x. One approach in AD is
source transformation, where a derivative program is created by static analysis
and source-to-source compilation [25].

There are two basic modes of AD, namely forward and reverse mode. In
forward mode AD, derivatives are computed in the order of the original com-
putation, while in reverse mode, derivatives are computed in the reverse order.
The result ẏ of the forward mode is equivalent to the product of the Jacobian
matrix J of the function F and a user-provided vector ẋ that has the same size
as the input vector x, or more formally

ẏ = Jẋ with Ji,j =
∂Fi

∂xj
.

The vector ẋ can be chosen by the user. For example, selecting the i-th Cartesian
basis vector for ẋ will cause ẏ to become the i-th column of the Jacobian matrix.
Conversely, the reverse-mode result x̄ is the product of the transposed Jacobian
matrix JT with a provided vector ȳ of the size of the output vector y, or

x̄ = JT ȳ,

where choosing the j-th Cartesian basis vector for ȳ will cause x̄ to become
the j-th row of the Jacobian matrix. While the forward mode is often easier
to implement, the reverse mode is a much more efficient way to compute the
Jacobian matrix if F has many inputs and few outputs.

In principle, AD can be applied to a program that was created by AD. In this
way, higher-order derivatives can be obtained. For example, applying AD to a
derivative program will yield a program that computes second-order derivatives.
The forward and reverse mode can be combined freely, for example a program
generated by reverse mode AD can be differentiated using forward mode AD.

Two source transformation AD tools were used in this work: ADIC, a source
transformation tool for automatic differentiation of C and C++ codes [24], and
Tapenade, an automatic differentiation Engine for Fortran77, Fortran95 or C
codes. [14]. A developer may also choose to perform manual differentiation of
some computer program, and can largely follow either of the previous approaches.
Often, a human expert can exploit high-level properties to compute derivatives
more efficiently than an AD tool.
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3 Verifying Properties of Conjugate Gradient Solvers

The conjugate gradient method (CG, Fig. 1) is an algorithm for solving a linear
system Ax = b, where A ∈ Rn×n is a symmetric positive definite matrix and
b ∈ Rn [4]. CG is widely used in HPC. The algorithm has many extensions, but
in this paper we focus on the basic version.

CG can be used as an iterative method, meaning one can start with any
“guess” for the solution, and after each iteration of the main loop, this approxi-
mation gets closer to the true solution. However, CG was originally developed as
a direct solver, as after exactly n iterations, the exact solution will be achieved—
assuming all operations are carried out with infinite precision.

In practice, the number of iterations performed is often much smaller than
n—control exits the loop as soon as a convergence criterion is met. The num-
ber of iterations may also be greater than n because with round-off error the
approximation may continue to improve after n iterations. In this paper, we
assume that the number of iterations is exactly n, as this allows us to specify
the expected output of CG.

Input : right hand side b, initial guess x, matrix A, step count nsteps

Output: solution x
1 p, r ← b − A · x;
2 ρold ← rT · r;
3 for k ← 0 . . . nsteps − 1 do
4 pA ← A · p;

5 α ← ρold

pT ·pA
;

6 x ← x + α · p;
7 r ← r − α · pA;
8 ρnew ← rT · r;
9 if ρnew = 0 then break ;

10 p ← r + ρnew
ρold

· p ;

11 ρold ← ρnew;
12 end

Fig. 1. Conjugate gradient solver. The highlighted statements are assumed not to
divide by zero. The algorithm is then guaranteed to find the exact solution x = A−1b
(where A−1 is the inverse of A) if nsteps is set to the size of A. Note that x is not only
an output but also an input. In practice, a good initial guess for x can speed up CG
convergence. In our verification we assume that initially x = 0.

We implemented CG as a C function with the following signature:

void cg(int n, double A[n][n], double b[n], double x[n], int nsteps)

Here, A and b are the inputs, and x is the “out” variable that will hold the
approximate solution obtained after nsteps iterations. This function definition
is in file cg.c and its prototype in cg.h.
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3.1 Verification of Exactness of Solution After n Iterations

The implementation of CG in our experiment runs for the number of iterations
required to guarantee an exact solution, and only breaks earlier if the exact
solution is found. It can easily be shown that r = b−A ·x is an invariant for the
loop in Fig. 1. Therefore, the break condition in line 9 can only occur if r = 0
and therefore if b − A · x = 0, meaning that a solution has been found. What is
less obvious is that after n iterations, r = 0 must hold and x must be a solution.
This is known to hold in real arithmetic, and we use CIVL to verify it.

We first verified the following: for any A and b, if cg is called with nsteps = n,
and the denominators in Fig. 1 are never 0, then the resulting x satisfies Ax = b.
To do this, we wrote a driver in the CIVL-C language (cg driver.cvl, Fig. 2).
CIVL-C extends C with keywords beginning with $. The type qualifier $input
(lines 3–5) declares an input variable. The value of an input variable may be
specified on the command line when invoking the CIVL verifier. If no command
line value is specified but an initializer is given—as in line 3—then the initializer
is used. If neither command line nor initializer are given, then the variable has
an unconstrained value of its type. In the driver, M and b therefore respectively
represent an arbitrary n × n matrix and vector of length n.

1 #include "cg.h"

2 #include "vectorutils.h"

3 $input int n = 5; // should be at least 1
4 $input double M[n][n]; // used to construct A; only use upper triangle
5 $input double b[n]; // right-hand side
6 int main() {

7 double A[n][n], x[n], b_test[n];

8 for (int i=0; i<n; i++) { // construct a symmetric matrix A
9 for (int j=0; j<i; j++)

10 A[i][j] = A[j][i] = M[i][j];

11 A[i][i] = M[i][i];

12 }

13 cg(n, A, b, x, n); // invoke conjugate gradient function with nsteps = n

14 matvecprod(n, A, x, b_test); // check that x is a solution
15 $assert($forall (int i : 0..n-1) b_test[i]==b[i]);

16 }

Fig. 2. cg driver.cvl: CIVL driver for verification of cg

Lines 8–12 construct a symmetric matrix A from M. Function cg is then
invoked on A and b, with nsteps = n, and the result going to x. The func-
tion matvecproc (provided in vectorutils) multiplies a matrix and vector—
in this case A with the solution x returned by cg. If x is an actual solution, then
the result, b test should equal b. This is asserted in line 15.

Initially, the driver included the assumption (formulated using Sylvester’s
criterion [33]) that A is positive definite, which is a sufficient condition to guar-
antee existence of a solution and convergence of CG. Later, we discovered that
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this assumption is unnecessary in the case that all denominators in CG are
non-zero. We discovered this by removing the assumption and observing that
verification still succeeded. In contrast, the assumption that A is symmetric is
necessary, and verification will fail if that assumption is removed. Also, instead of
using $assume statements that declare the denominators to be non-zero, we use
a CIVL verifier option which instructs CIVL to turn off checks that all divisors
are non-zero.

The CIVL verifier is invoked, for example, as follows:

civl verify -userIncludePath=../shared -checkDivisionByZero=false

-inputn=2 ../shared/cg.c ../shared/vectorutils.c cg_driver.cvl

The user include path tells CIVL where to find #include-ed files. The option
-inputX=val specifies the value of input variable X. The verifier can analyze a
program composed of several translation units; in this case three input files are
specified. The verifier enumerates the reachable symbolic states of the program,
calling on automated theorem provers to check the satisfiability of the path
condition or the validity of an assertion as needed. In this example (n = 2),
CIVL returns in a few seconds with the result “The standard properties hold
for all executions”, which indicates that the assertions must hold, as well as
standard properties including absence of illegal pointer dereferences, memory
leaks, deadlocks and out-of-bound array indexes.

When we tried to run the verifier for n = 3, it did not return after 2 h.
We found that most of the time was spent expanding polynomial expressions
that are part of the rational expressions occurring in CG. These polynomials are
symbolic expressions involving addition, multiplication, powers with concrete
natural number exponents, rational number constants, and “variables” of the
form A[i][j] and b[i] for 0 ≤ i, j < n. Expansion involves repeated multipli-
cations and additions to transform the expression into a linear combination of
monomials. For example, the expression (x+y)2 expands to x2+2xy+y2. SARL,
the symbolic algebra library used by CIVL, expands a polynomial to determine
whether it is 0, which is required to check the assertion on line 15.

In CG, the size of these polynomials blows up quickly with n. Figure 4 gives
some statistics illustrating this, which we now describe. An expression can be
represented as a tree, as in Fig. 3 (left). In SARL, expressions are immutable, and
the Flyweight Pattern [12] is used to guarantee that there is at most one instance
of each equivalance class of expressions, where two expressions are equivalent if

Fig. 3. Standard tree representation of 2(x+ y)10 + 3(x+ y) + 1 and compressed DAG
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they have the exact same form. Figure 3 (right) shows how the expression is
actually represented; we refer to this as the compressed form. The compressed
form is a directed acyclic graph (DAG).

The table gives some statistics for any one of the n polynomials that must
be expanded when verifying CG for size n. It shows the number of variables
involved, an upper bound on the total degree of the polynomial, the height of
the tree, the number of tree nodes (if it were to be expanded), and the number
of nodes in the compressed DAG. The scale of these expressions suggests that,
even using the most efficient known polynomial multiplication algorithms, full
expansion for n ≥ 3 is intractable. We also used several other tools to attempt
to prove that the polynomial for n = 3 is zero. All of these tools, including
Mathematica [34], SAGE [31], CVC4, Z3, and Maple [1], either timed out after
2 h or returned immediately with “unknown”.

We therefore used a probabilistic approach. The DeMillo-Lipton-Schwartz-
Zippel lemma [29,35] provides a randomized method to test the zero-ness of a
polynomial with an upper bound on the probability of error. Specifically, let F be
a field, and P a non-zero polynomial in m variables over F and with total degree
at most d. Let S be a finite subset of F , and let r1, . . . , rm be chosen randomly
and with uniform probability from S. Then the probability that P evaluates to
0 at (r1, . . . , rm) is at most d/|S|. The method proceeds as follows. Given P ,
choose m random values from S and evaluate P . If the result is non-zero, then
P is not zero, terminate. Otherwise, choose another random point and repeat. If
k evaluations are carried out and all return 0, one can conclude that P is zero,
with the probability of being wrong at most (d/|S|)k.

In our case, the field is the field of rational numbers, and for S we use the set of
Java ints, i.e., [−231, 231−1]. The Java class Random is used to generate a stream
of pseudorandom integers using method nextInt, which guarantees that “[a]ll
232 possible int values are produced with (approximately) equal probability”
[26]. Given a polynomial of total degree at most d, the number k of random
evaluations is chosen so that the probability of error is at most 2−128 ≈ 2.9e−39.
Note that SARL uses exact, unbounded representations of integers and rational
numbers. There is no issue of overflows or round-off errors, but the intermediate
numbers can grow quite large in the course of an evaluation.

We added a command-line option -prob to CIVL which activates the prob-
abilistic method whenever the size of a polynomial exceeds some threshold. In
these cases, CIVL also prints a warning message saying that a probabilistic tech-
nique was used. If p polynomials are determined to be 0 in this way, then the
probability of an incorrect verification result is at most 1 − (1 − 2−128)p.

Using this approach, we were able to verify (with an extremely small prob-
ability of error) the desired property of CG for all n ≤ 8. The table shows the
number of polynomials that were determined to be zero using the probabilistic
approach, and the number of evaluations performed on each. These numbers are
quite modest—at most 11 evaluations. Nevertheless, the time visibly explodes
for n ≥ 7. Examination revealed that most of the time involves exact arithmetic
on very large integers which arise in the course of the evaluations. For example,
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full probabilistic
n states vars height degree tree DAG time (s) time (s) evals prob
1 96 2 2 1 3 2 1.3 - - -
2 240 5 20 23 2.0e+3 57 1.5 1.4 5 5.9e−39
3 476 9 29 134 2.7e+5 143 TO 1.4 6 8.8e−39
4 822 14 39 781 6.0e+7 280 TO 1.6 6 1.2e−38
5 1296 20 47 4552 2.1e+10 470 TO 1.9 7 1.5e−38
6 1916 27 57 26531 1.1e+13 723 TO 7.3 8 1.8e−38
7 2700 35 65 154634 7.9e+15 1041 TO 95.8 9 2.1e−38
8 3666 44 75 901273 7.3e+18 1434 TO 1820.2 11 2.4e−38

Fig. 4. CIVL verification of CG: matrix size n; the number of reachable symbolic states;
the number of var iables in one of the n polynomials P that is asserted to be 0; the
height of the tree representation of P ; the total degree of P ; the number of nodes in
the tree; the number of nodes in the compressed DAG representation of P ; the time
for full verification; the time for probabilistic verification with probability of error in
checking zero-ness of P less than 2−128; the number of random evaluations performed
on P . The final upper bound on the probability of an incorrect verification result is
1 − (1 − 2−128)n. Time out (TO) occurs after 2 h.

full probabilistic
n states vars height degree tree DAG time (s) time (s) evals prob
2 718 5 29 44 1.2e+4 146 5.6 2.4 5 1.2e−38
3 1987 9 50 266 5.5e+6 547 TO 2.8 6 2.6e−38
4 4426 14 70 1560 5.1e+9 1365 TO 3.4 6 4.7e−38
5 8569 20 90 9102 9.3e+12 2803 TO 13.2 7 7.3e−38
6 15046 27 109 53060 3.1e+16 5095 TO 250.2 8 1.1e−37

Fig. 5. Statistics for CIVL verification of CG derivatives.

for n = 8, over 2000 multiplication operations on big integers are carried out
while evaluating one polynomial at a random point. The mean size of these big
integers is over 27 million bits (or approximately 8 million decimal digits).

3.2 Verification of Derivatives of CG

We prove the equivalence of applying AD to CG and computing the inverse of
the matrix. This experiment could be interpretted as verifying the correctness
of the AD-generated code, or as verifying the correctness of the mathematical
derivation described in the following. We use the Tapenade in forward mode to
create a differentiated CG solver with the following signature:

void cg d(int n, double A[n][n], double b[n], double bd[n],

double x[n], double xd[n], int steps);

As explained in Sect. 2.2, the resulting function will be an implementation of

ẋ = JCGḃ,
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where JCG is the Jacobian matrix of a CG solver applied to A. It is also known
as explained and verified in Sect. 3.1 that a CG solver applied to a matrix A and
right hand side b is equivalent to the matrix vector product

x = A−1b,

and therefore the Jacobian matrix of the CG solver must be equal to A−1.
We verify this in the following experiment. The forwardmode derivative of

CG is called n times, where in each call the vector ẋ is set to a different Cartesian
basis vector. In this way, the entire Jacobian matrix is constructed, which we
expect to be A−1. The obtained matrix is multiplied with A, and we use CIVL
to prove that the result of this procedure is the identity matrix, which proves
that the code generated by Tapenade did indeed compute the correct derivative.
The CIVL driver for this experiment is shown in Fig. 6. Figure 5 shows some
statistics from CIVL for this experiment.

1 #include "cg d.h"

2 #include "vectorutils.h"

3 $input int n = 2;

4 $input double b[n], A[n][n];

5

6 int main() {

7 double Ainv[n][n], M[n][n], P[n][n];

8

9 for (int i=0; i<n; i++) {

10 for (int j=0; j<i; j++)

11 M[i][j] = M[j][i] = A[i][j];

12 M[i][i] = A[i][i];

13 }

14 fwdDriver(n, Ainv, M, b, n); // apply AD to CG to get the inverse
15 matmatprod(A, Ainv, P); // compute matrix product P=A*Ainv
16 for (int i=0; i<n; i++) // now show that P == I
17 for (int j=0; j<n; j++)

18 if (i==j) $assert(P[i][j]==1);

19 else $assert(P[i][j]==0);

20 }

Fig. 6. cg d driver.cvl: CIVL driver for verification of differentiated cg.

4 Verifying the Correctness of Hand-Coded Derivatives

In this section we verify for two given subprograms that one computes the
first-order or second-order derivative of the other. As a case study, we use
the FeasNewt mesh-adaptation program [21,23]. Computational meshes are an
important component in solving partial differential equations (PDEs). The space-
time domain in which the solution is computed is split into many discrete ele-
ments, for example triangles in two dimensions or tetrahedra in three dimen-
sions, where each element contains a part of the computed solution. Most PDE
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solvers rely on the elements to be almost unilateral, that is, the ratio between
the shortest and longest edge of a given element should be close to 1.

FeasNewt achieves this by optimising the coordinates of individual vertices,
thereby changing the distribution of elements and the length of their edges with-
out changing the topology of the mesh. To do this systematically, a differentiable
function is implemented that computes the quality of elements based on their
vertex positions. By differentiating this function, one obtains the derivative of
the mesh quality with respect to the coordinates, which can then be used for a
gradient-based optimisation. An optimal vertex distribution can be found faster
if not only gradients, but also Hessians of the mesh quality are known. For this
reason, FeasNewt contains mesh quality metrics and their gradients and Hes-
sians, which are studied here.

Previous work [28] showed the floating-point equivalence of some of the test
cases that we present. We reproduce these verifications in CIVL assuming real
arithmetic, and also verify the equivalence in real arithmetic for test cases that
are not floating-point equivalent. We investigate the gradients and Hessians of
inverse mean ratio (IMR) [22], a metric for triangular elements that is imple-
mented in FeasNewt. The two-dimensional coordinates of the three points that
make up the triangle are provided in a vector x with

x = [x0 x1 x2 y0 y1 y2] .

From this input, IMR uses matrices A and W−1 as given below to compute the
element quality metric O given by

O =
‖AW−1‖2F

2|det (AW−1)| ,

where ‖ · ‖ denotes the Frobenius norm.

A =
[
x1 − x0 x2 − x0

y1 − y0 y2 − y0

]
; W−1 =

[
1 −1√

3

0 2√
3

]
;

The implementation of IMR in the C programming language is shown in Fig. 7.
Note that the original implementation contained error-handling, function head-
ers, variable declarations etc., which have been left away for brevity.

The FeasNewt function for calculating the gradient of IMR was manually
implemented and optimised for performance, and is also shown in Fig. 7. Again
we present only the core function without error handling etc. The Hessian calcu-
lation was also manually optimised for efficiency. It is not shown here for space
reasons. We refer to these hand-crafted gradient and Hessian functions as manual
gradient and manual Hessian.
Tapenade and ADIC are used to differentiate the element function. We use both
tools in their forward and reverse modes as explained in Sect. 2.2, and create
wrappers that ensure a matching function signature between the manual gradi-
ent, Tapenade forward and reverse gradients, and the ADIC forward and reverse
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1 // 1/sqrt(3)
2 #define sqrt3 .57735026918962579

3 // Calculate M = A*inv(W).
4 matr[0] = x[1] - x[0];

5 matr[1] = (2.0*x[2] - x[1] - x[0])*sqrt3;

6 matr[2] = x[4] - x[3];

7 matr[3] = (2.0*x[5] - x[4] - x[3])*sqrt3;

8 // Calculate det(M).
9 g = matr[0]*matr[3] - matr[1]*matr[2];

10 // Calculate norm(M).
11 f = matr[0]*matr[0] + matr[1]*matr[1] +

12 matr[2]*matr[2] + matr[3]*matr[3];

13 // Calculate objective function.
14 (*obj) = 0.5 * f / g;

1 // Start with original IMR (left away for brevity),
2 // then compute the derivative:
3 g = -((obj)/g);

4

5 adj m[0] = 2.0*matr[0]*loc1 + matr[3]*g;

6 adj m[1] = 2.0*matr[1]*loc1 - matr[2]*g;

7 adj m[2] = 2.0*matr[2]*loc1 - matr[1]*g;

8 adj m[3] = 2.0*matr[3]*loc1 + matr[0]*g;

9

10 loc1 = sqrt3*adj m[1];

11 g obj[0] = -adj m[0] - loc1;

12 g obj[1] = adj m[0] - loc1;

13 g obj[2] = 2.0*loc1;

14

15 loc1 = sqrt3*adj m[3];

16 g obj[3] = -adj m[2] - loc1;

17 g obj[4] = adj m[2] - loc1;

18 g obj[5] = 2.0*loc1;

Fig. 7. Left: Implementation of IMR from FeasNewt. Right: Gradient of IMR. Is this
the derivative of the program on the left?

gradients. Similarly, wrapper functions are created to enable the comparison
between the manual Hessians, and Hessians obtained from Tapenade.

CIVL can verify the equivalence of manual gradients and Tapenade forward
mode gradients. During the verification of Tapenade reverse mode gradients
against the forward mode and manual gradients, CIVL discovered a bug in our
wrapper program. The verification succeeds after fixing this. CIVL also found a
bug in ADIC: constants with a very long mantissa were truncated in an internal
transformation, which led to a loss of precision that was never noticed during
testing. CIVL performed these verifications in less than 10 s. Note that due to the
fixed small problem size, this works without the use of probabilistic techniques.

The Hessians are verified next. We combine Tapenade forward and reverse
mode in three different ways (forward over forward, forward over reverse, reverse
over forward) and also apply Tapenade forward mode to the manual gradi-
ent, and create a wrapper for all of these variants to match the function sig-
nature of the manual Hessian to enable a comparison with CIVL. Due to a
similar problem in the wrapper as in the gradient case, the verification fails
at first, but is successful after fixing the wrapper. Futhermore, CIVL was able
to detect a loss of precision in the manual Hessian, caused by inaccurate con-
stants. This bug in FeasNewt was never detected in testing. The wrong con-
stants were 0.57735026919 instead of 5.77350269189625797959429519858e − 01,
and 0.33333333333 instead of 3.33333333333333333333333333333e − 01. CIVL
can detect this type of bug, since all operations are assumed to be carried out
in exact arithmetic and the truncated constants will result in different outputs.
A simple test based on execution in floating point arithmetic might not lead to
the detection of this bug, since the slight difference in outputs may be incor-
rectly blamed on roundoff effects. Once these problems are corrected, Hessians
are verifiably identical for any input. Again, the verification took less than 10 s.
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5 Verifying the Accuracy of Central Difference Schemes

Finite difference (FD) schemes are used to compute approximations for the
derivative of functions, using only the result of the function at a discrete set
of points. This is useful in cases where the function is not known analytically
and symbolic derivatives and algorithmic differentiation are infeasible. Two of
the most widely known examples are the central difference approximations for
first and second order derivatives with fixed step size h, given by

df

dx

∣∣∣∣
x=x0

=
f(x0 + h) − f(x0 − h)

2h
+ O(h2) (1)

d2f

dx2

∣∣∣∣
x=x0

=
f(x0 + h) − 2f(x0) + f(x0 − h)

h2
+ O(h2). (2)

The unknown analytical derivatives (left) are approximated with a weighted
sum of function values (fraction on the right), where the difference between the
derivatives and the approximation is called truncation error, and is in this case
O(h2). The exponent of this expression is called order of accuracy, and is in this
case 2. The order of accuracy is an important measure for the quality of an FD
scheme. Note that the truncation error is independent of roundoff errors.

FD schemes can be constructed for arbitrary orders of derivatives d and
arbitrary orders of accuracy a. One way of constructing these schemes is to fit
a polynomial of order a + d − 1 to the available data, and then computing its
d-th order derivative, resulting in a scheme with truncation error a [16]. There
are more efficient methods to construct the same FD schemes, see [16,19] for
an overview. It is common practice in scientific software to use hard-coded FD
coefficients taken from the literature, such as the ones shown in Fig. 9, which can
also be found in [11] or Wikipedia 1. Figure 8 shows one way of implementing a
second-order accurate scheme for second order derivatives.

A scheme that computes a-th order accurate d-th order derivatives must
be exact when it is applied to arbitrary polynomials of order a + d − 1. We
can use CIVL to verify that this is the case for all schemes shown in Fig. 9
without using probabilistic techniques. This will also guarantee that the scheme
has been implemented correctly in C. To do this, we implement the C func-
tion double p(double x, int k, double* c) that implements a polynomial
of order k with coefficients c as

res = c0 + c1 · x + c2 · x2 + . . . + co · xk. (3)

Using CIVL-C, the coefficient vector c and the position x0 at which the deriva-
tives are evaluated are declared as symbolic inputs, and the step size h is declared
as a strictly positive symbolic input. We then create a driver program that uses
FD to approximate derivatives of p, and also uses analytical derivatives of p
generated by AD to compute exact derivatives of p. For any scheme that claims
1 https://en.wikipedia.org/w/index.php?title=Finite difference coefficient&oldid=82

0038001.

https://en.wikipedia.org/w/index.php?title=Finite_difference_coefficient&oldid=820038001
https://en.wikipedia.org/w/index.php?title=Finite_difference_coefficient&oldid=820038001
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1 #include "polynomial.h"

2 #include <civlc.cvh>

3 $input double coef[k+1], x0;

4 $input double h; $assume(h>0);

5 int main() {

6 double fd = (1.0*p(x0-h, k, coef)

7 - 2.0*p(x0 , k, coef)

8 + 1.0*p(x0+h, k, coef)

9 ) / (h*h);

10 double ad = p d d(x0,k,coef);

11 $assert(fd == ad);

12 }

Fig. 8. Driver program for finite difference scheme verification. The external function
p(double x, int k, double* c) implements the polynomial p(x) = c0 +c1x+c2x

2 +
. . .+ckx

k, and is called by the driver program at the locations x0 −h, x0, x0 +h, where
x0 and the polynomial coefficients are arbitrary symbolic inputs, h is an arbitrary
strictly positive input, and k is left undefined. The result is asserted as equal that
returned by a call to p d d, which is the second-order derivative of p produced by AD.
The verification succeeds for k ∈ {0, 1, 2, 3}, and fails otherwise.
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Fig. 9. Finite difference coefficients for several schemes. Figure 8 implements a second-
order accurate second-order derivative scheme using the coefficients highlighted in gray.

order a accuracy for derivatives of order d, the results of FD and AD must match
exactly if a polynomial of order a with a < d + k is used. This was confirmed
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using CIVL, for all coefficients in Fig. 9. An example of this is shown in Fig. 8.
The verification for the complete table takes less than 7s on our test machine.
As should be expected, the verification fails if the polynomial order is increased
to a => d + k, or if the coefficients are modified.

6 Related Work

While the lack of formal verification in scientific computing has been noted in
Sect. 1, there have been previous attempts to address this problem, for example
the full mechanised verification of a PDE solver presented in [6]. The authors
use Frama-C [7] and Coq to manually create a mechanised correctness proof for
a one-dimensional wave equation solver. They note that this process is labour
intensive, and cannot be applied to other PDE solvers without repeating some
of the manual steps. In [10], the authors advocate a fully automated verification
of PDE solvers that is integrated into the development process, but are using
testing as opposed to formal methods.

Between those two extremes, previous work has used formal methods to verify
selected properties of scientific programs, such as [28], where the authors prove
bitwise equivalence of the gradient and Hessian programs shown in Sect. 4. Oth-
ers showed the correctness of optimisations applied to LU decomposition [2],
and [32] use formal methods in their construction. Previous work has also
addressed the verification of some properties of CG [20].

Other authors use formal methods to construct linear algebra kernels [5,18],
or formally construct a correct CG solver [9]. Other work has looked at the order
of accuracy [36] and the verification of finite difference stencil solvers using a
trusted reference implementation [17].

7 Summary and Outlook

In Sect. 3, we explored the limit of the capabilities of symbolic execution in an
attempt to verify a conjugate gradient solver. Interestingly, the real limiting
factor in this test case is the complexity of the expressions, not the number of
states. Non-determinism and state space explosion are well known problems for
model checking techniques or finite state verification techniques. However in this
case, our programs have few states, but complicated mathematical expressions.
There may be unexplored performance improvements for this setting.

We are not aware of a way to automatically and exhaustively check the
correctness of these properties, but demonstrated that probabilistic methods can
be used successfully in this setting. Since the correctness of the CG algorithm
was formally proven in the maths literature, it is likely that a mechanised proof
can be constructed, but this would probably require the formalisation of high-
level math theorems. CG is only one solver of many. One could attempt to verify
other linear solvers with known convergence properties such as GMRES.

In Sects. 4 and 5 we verified that some program computes the derivatives
of another program by creating an equivalent function using AD. Specification
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languages could be extended to include a notion of derivatives and integrals,
and some AD capabilities could be built into the verification tool to facilitate
the verification of programs with these specifications.
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Abstract. Rigorous estimation of bounds on errors in finite precision
computation has become a key point of many formal verification tools.
The primary interest of the use of such tools is generally to obtain worst-
case bounds on the absolute errors. However, the natural bound on the
elementary error committed by each floating-point arithmetic operation
is a bound on the relative error, which suggests that relative error bounds
could also play a role in the process of computing tight error estimations.
In this work, we introduce a very simple interval-based abstraction, com-
bining absolute and relative error propagations. We demonstrate with
a prototype implementation how this simple product allows us in many
cases to improve absolute error bounds, and even to often favorably com-
pare with state-of-the art tools, that rely on much more costly relational
abstractions or optimization-based estimations.

1 Introduction

Computing worst-case bounds on the potential loss of accuracy in numerical
programs due to the use of floating-point arithmetic is of utmost importance
in many fields of application, such as embedded systems or numerical simula-
tion. Several analyzes for the computation of sound error bounds have been
proposed in the last 15 years, and generally implemented in academic proto-
types. Most of them rely on abstractions of the value and absolute errors of
program variables. An additional output of such analyses is sometimes bounds
on the relative errors, but they are mostly computed a posteriori, from the values
and absolute errors. Still, the natural bound on the elementary error commit-
ted by each floating-point arithmetic operation is a bound on the relative error.
This strongly suggests that relative error bounds can also play a role in the
process of computing tight error estimates. This is what this work proposes
to explore. We indeed note that on some patterns, abstraction relying only on
absolute error yields unreasonably conservative error bounds, and that a simple
product with relative error bounds can bring a drastic improvement. One such
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 223–242, 2018.
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pattern is a conditional statement that tests a quantity subject to a round-
ing error. We consider the very simple piece of code introduced in Example 1.

x = i ∗ i ;
i f ( x <= 2 . 0 )

y = x ;
else

y = 2 . 0 ;

Example 1. Variables i, x, y are double precision
floating-point numbers, and input i is given without
error in range [1, 100]: The multiplication x:=i*i results
in variable x in [1,10000] with an elementary absolute
rounding error Ea(x) bounded in [−9.09e−13, 9.09e−13].
If evaluated directly by using the fact that the ele-
mentary error in floating-point arithmetic is bounded in relative error, we
obtain a relative error Er(x) bounded in [−1.11e−16, 1.11e−16]. It is clear that
some information is lost if the error is abstracted by bounds on the absolute
error only, especially on a non-relational abstraction like intervals (and the
wider the intervals, the more so). Take for instance constraint x <= 2.0 on
our variable x. Using the relative error bound allows us to compute a much
tighter absolute error bound in the true branch of the conditional. Indeed,
the value of x knowing that the constraint is satisfied can be reduced in [1,2].
Thus, a new absolute error bound for x in this branch can be computed by
Ea(x) = Ea(x) ∩ xEr(x) = [−9.09e−13, 9.09e−13] ∩ [1, 2][−1.11e−16, 1.11e−16] =
[−2.22e−16, 2.22e−16]. Therefore, the absolute error on variable y will be bounded
in [−2.22e−16, 2.22e−16]. Whereas if not using this reduced product, the error
on x simply propagates as an error on y, and the absolute error bound on y will
be [−9.09e−13, 9.09e−13].

Another simple example, that focuses on arithmetic operations, is taken from
the introduction of [16]:

Example 2. We consider expression t/(t + 1), where t is a double precision
floating-point value in [0,999]. An error is committed when computing t + 1:
the absolute error of t + 1 is bounded by Ea(t + 1) = [−5.68e−14, 5.68e−14], the
relative error by Er(t+1) = [−1.1e−16, 1.1e−16]. For comparison, the a posteriori
evaluation of the relative error bounds from the absolute error bounds is

Ea(t + 1)
t + 1

=
[−5.68e−14, 5.68e−14]

[1, 1000]
= [−5.68e−14, 5.68e−14]

thus 500 times larger than the direct estimate Er(t + 1). Thus, if the relative
error is not explicitely propagated, some information is lost.

And indeed, as we will develop in Sect. 3.2, it is natural to express the absolute
error on the division x ÷ y using the relative error on y. Actually, the bounds
on the absolute error of t/(t + 1) using this product are [−1.67e−13, 1.67e−13],
340 times tighter compared to the bounds [−5.68e−11, 5.68e−11] that would be
obtained by classical error propagation relying only on absolute error. On this
example, the method of [16], that relies on optimisation of the error globally on
subexpressions, is more accurate than our improved bounds. This is because we
still suffer here from the conservativeness of interval abstraction in the evaluation
of our expressions. But their results come at the expense of much more expensive
computations.
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In both cases, we note that this conjunction of the propagation of the relative
error and the absolute error, in the end, helps us improve sometimes dramatically
the absolute error bound, while maintaining a very cheap analysis. It is indeed
the center idea of this work to observe that the information contained in the
absolute and the relative error bounds are complementary, and to propose an
interval-based analysis computing an inexpensive reduced product that combines
the information for the best final estimations of error bounds. The idea has been
experimented here on a reduced set of operators, and ignoring the possibility of
control flow divergences between the floating-point and the corresponding real
computations, as a proof of concept. But the approach can naturally be extended
to more operators, as well as to relational abstractions of values and error, in
order to enhance many existing error analyzes. Additionally, using relational
abstractions is necessary to handle with reasonable accuracy errors due to control
flow divergences.

Contents. After some background on floating-point arithmetic in Sect. 2, we
introduce our abstraction in Sect. 3. In Sect. 4, we demonstrate that our anal-
ysis, implemented in the Frama-C platform, while being very efficient in time,
often also favorably compares in accuracy to the generally much more expensive
existing approaches of the state of the art [11,16]. We use for this a set of bench-
marks classically used to compare error analyses, extracted from FPBench1.

Related Work. Abstract interpretation [2] is widely used for the analysis of
floating-point computations. Most analyses dedicated to the propagation of error
bounds in floating-point computations focus on absolute round off error bounds.
Existing abstraction for rounding errors often are based on intervals [8,13], affine
forms [1,4,9,10] as implemented in the analyzer Fluctuat [7]. The tool Gappa [6]
relies on interval arithmetic and expression rewriting. It additionally generates
a proof of the bounds it computes, that can be automatically checked with a
proof assistant such as Coq. Some approaches combine these abstractions with
some optimization techniques to enhance bounds on values and errors. The tool
PRECiSA [17], relies on intervals, combined with branch-and-bound optimiza-
tion and symbolic error computations using the Bernstein basis. It also generates
proof certificates on the error bounds. Rosa [5] combines affine arithmetic with
some SMT solving. Real2float [12] also bounds absolute rounding errors using
optimization techniques relying on semidefinite programming and sparse sums
of squares certificates.

Some of the tools based on these methods provide the user with relative error
bounds, but they are often a posteriori bounds, computed from the bounds on
the absolute error. Direct relative error bounds are computed by FPTaylor [16],
which formulates the problem of bounding errors as an optimization problem,
using first-order Taylor approximations of arithmetic expressions. The optimiza-
tion based approach of FPTaylor has been extended in Daisy [11], which also
relies on some of the techniques already present in Rosa [5] for value and absolute

1 http://fpbench.org.

http://fpbench.org
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error estimate. In the present work, we propose a much less costly alternative to
the direct estimate of relative error, which we show still behaves very well on a
number of classical benchmarks, and demonstrate how this error can be used to
also improve absolute error bounds. Compared to the related work which uses
optimization somewhat blindly, we demonstrate the interplay between the two
types of errors.

2 Floating-Point Arithmetic and Rounding Errors

2.1 Floating-Point Numbers and Rounding Errors

The floating-point representation of a real number x is defined by the IEEE 754
standard as the triple (sgn, sig, exp). In this triple, sgn corresponds to the sign
of x, the signific and sig has fixed size p, and, for normalized numbers, is such
that 1 ≤ sig < 2, and exp is the exponent. This representation is evaluated as
(−1)sgn × sig × 2exp. Denormalized numbers allow gradual underflow to zero.
Their exponent is fixed equal to emin, and the signific and is such that sig < 1.

Because of the finite size of the signific and, a real value is represented
by a rounded value. This rounding can be represented through the operator
rnd : R → F that returns the closest floating-point number with respect to the
rounding mode. Common rounding modes defined by the standard are rounding
to nearest (ties to even), toward zero and toward ±∞. In this work, we con-
sider the classical case of rounding to nearest. The rounding operator is often
modeled as:

rnd(x) = x(1 + ex) + dx (1)

where |ex| ≤ εM , |dx| ≤ δM , ex × dx = 0 and (εM , δM ) are parameters fixed by
the format (simple, double or quad precision). Constant εM is often called the
machine epsilon and depends of the precision p of the floating-point numbers
used. It is equal to the distance 21−p between 1 and its floating-point successor,
with p = 24 for float and p = 53 for double numbers. Constant δM is the small-
est denormalized number, equal to 2emin+1−p, with emin = −127 for float and
emin = −1023 for double numbers. In this model, dx represents the absolute error
committed when rounding to a denormalized floating-point number while ex is
the relative error committed when rounding to a normalized floating-point num-
ber. They cannot be present at the same time, which is expressed by condition
ex × dx = 0.

This model can be refined. The normalized floating-point rounding error xex

in (1) is actually bounded by the distance between two consecutive floating-point
numbers around x. This distance can be expressed as ufp(x) εM , using the notion
of unit in the first place ufp() introduced in [15] and defined by:

ufp(x) =

{
0 if x = 0
2�log2|x|� if x �= 0

(2)

Function ufp() is piecewise constant: the result of ufp(x) for |x| ∈ [2n, 2n+1)
is the constant 2n. Using this definition, the gap xex between the real and its
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floating-point representation can be rewritten as ufp(x) ex and the rounding
operator is now:

rnd(x) = x + ufp(x) ex + dx (3)

Absolute and Relative Elementary Rounding Errors. We now define Γa(x) and
Γr(x) the elementary absolute and relative rounding errors which occur when a
real number x is rounded to its floating-point approximation x̃ = rnd(x):

Γa(x) = rnd(x) − x = ufp(x) ex + dx (4)

The relative error is defined only when x �= 0:

Γr(x) =
rnd(x) − x

x
=

ufp(x) ex + dx

x
(5)

2.2 Arithmetic Operations

The IEEE-754 norm standardises some operations that are required to be exactly
rounded (addition, subtraction, multiplication, division and square root): the
result of the floating-point operation on real operands is the same as if the
operation was performed in real numbers on the given inputs, then rounded.
For every operation op : Rk → R defined as exactly rounded, the corresponding
floating-point operation õp can be expressed as:

õp(x1, . . . , xk) = rnd(op(x1, . . . , xk)) (6)

The IEEE754-2008 revision additionally recommends that fifty additional oper-
ators are correctly rounded. We do not handle these operations in this work, but
the approach developed here can be extended.

We now consider the propagation of errors through successive operations. We
denote by x̃ the approximation of an idealized computation x. We thus define
the absolute error due to the approximation by:

Ea(x) = x̃ − x

and the relative error, for x �= 0, by:

Er(x) =
x̃ − x

x

The absolute error on the result of an operation op on values x̃1, . . . , x̃k which
are already the approximations of some idealized values x1, . . . , xk is defined by:

Ea(op(x1, . . . , xk)) = õp(x̃1, . . . , x̃k) − op(x1, . . . , xk)

where for all i = 1, . . . , k, the approximated value x̃i is such that x̃i = xi +
Ea(xi) = xi(1 + Er(xi)).

Using Eqs. (6) and (4), this can be rewritten:

Ea(op(x1, . . . , xk)) = op(x̃1, . . . , x̃k) + Γa(op(x̃1, . . . , x̃k)) − op(x1, . . . , xk) (7)

The relative error is derived, when op(x1, . . . , xk) �= 0:

Er(op(x1, . . . , xk)) =
Ea(op(x1, . . . , xk))

op(x1, . . . , xk)
(8)
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2.3 Concrete Semantics

The concrete model is that of traditional numerical error analyzes, and in partic-
ular the static analysis [9], which describe the difference of behavior between the
execution of a program in real numbers and in floating-point numbers, along the
floating-point execution flow. We consider in this work the analysis of a language
with the operations {+,−,×,÷,

√}, which are required to be exactly rounded
in the IEEE-754 standard, conditional statements and loops. The concrete value
that we will compute for all program variables and control points of a program
in this language, is (x, x̃, Ea(x), Er(x)), where:

– x̃ is the result of the execution of the program in a floating-point semantics,
until the control point of interest,

– x is the result of the execution of the same sequence of arithmetic operations
in a real semantics, ignoring the possibility of a control flow divergence due
to rounding errors,

– the errors between the real execution and the floating-point executions Ea(x)
and Er(x) are defined by Eqs. (7) and (8).

Conditional Statements and Unstable Tests. In this work, the path conditions are
those of the floating-point executions. We thus ignore the possibility of unstable
tests, when for same input values, the floating-point and the real-valued exe-
cutions can take different branches of a conditional statement. We simply issue
a warning when this possibility is detected, as in for instance early versions of
Fluctuat [7,9]. In case an unstable test actually occurs, the analysis is possibly
unsound, as the discontinuity error between the computations performed in the
two branches should be considered as an additional error. Relational analyzes are
needed to estimate such discontinuity errors in a not overly conservative way, and
this has been studied and implemented for instance in [5,10]. But the problem is
somewhat orthogonal to the interplay between relative and absolute error con-
sidered here, and is also not considered in the most closely related work [11,16],
to which we compare our analysis in the section dedicated to experiments. But
we intend to handle unstable tests in the future, in a relational version of the
present analysis.

3 Interval-Based Abstraction

Intervals [13] are used in many situations to rigorously compute with interval
domains instead of reals. Throughout the paper, intervals are typeset in boldface
letters. Let x = [x, x] be such an interval, with its bounds x ≤ x where x ∈
R∪ {−∞} and x ∪ {+∞}. Interval arithmetic computes a bounding interval for
each elementary operation by x ◦ y = [minx∈x,y∈y{x ◦ y},maxx∈x,y∈y{x ◦ y}],
where ◦ ∈ {+,−,×,÷}, and analogously for the square root. Intervals are the
basis of one of the first and most widely used numerical abstract domains, the
lattice of intervals [3].
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In what follows, we propose an abstraction which relies on the lattice of
intervals: we abstract with intervals (x̃,Ea(x),Er(x)), the floating-point range,
absolute and relative errors. The errors are computed, on each control-flow path,
under the assumption for the error estimation that the real and floating-point
executions follow the same path. We deduce bounds for the value in real-valued
semantics by x = x̃−Ea(x). The abstract domain forms a complete lattice, fully
relying on the lattice of intervals, with a join operator performed componentwise
on the value and errors using the classical join operator on intervals.

The rounding mode for computing the interval extremities on the intervals
bounding the floating-point range will be the rounding mode of the computation
we analyse (rounding to the nearest). The other terms, that bound the errors
and the real-valued range, will be computed with outward rounding, in order to
ensure a sound implementation.

3.1 Abstraction of the Elementary Rounding Errors

In this section, we define the abstraction Γa(x) and Γr(x) of the elementary
rounding errors defined by (4) and (5). They will be used for the abstraction of
transfer functions in Sect. 3.2.

Terms ex and dx that appear in the elementary rounding errors are bounded
respectively in [−εM , εM ] and [−δM , δM ]. Additionally, we know that ex and dx

cannot be both non-zero for the same x. If x is rounded to a normalized number,
then dx = 0 and if x is rounded to a denormalized number, then ex = 0. We can
thus compute the abstraction of the elementary absolute rounding error over an
interval of real numbers as the union of the two cases:

Γa(x) = ufp(x) ε(x) ∪ δ(x) (9)

where ε (resp. δ) returns the interval [−εM , εM ] (resp. [−δM , δM ]) if its parameter
contains at least a normalized (resp. denormalized) number and [0, 0] otherwise.
Moreover, as ufp() is increasing in the absolute value of its argument, we can
abstract the rounding error on normalized numbers by

ufp(x) ε(x) ⊆ ufp(max(|x|, |x|)) ε(x).

Let us define norm(x) and denorm(x) that return respectively the subsets
of normalized and denormalized numbers from interval x. We can define the
abstraction Γr(x) of the elementary relative error, for any interval x, as:

Γr(x) = max
x∈norm(x),x �=0

∣∣∣∣ufp(x)
x

∣∣∣∣ [−εM , εM ] ∪ max
x∈denorm(x)

[−δM , δM ]
|x| (10)

Equation (10) will be used to derive in Sect. 3.2 relative error bounds also when
interval x possibly contains zero. These error bounds will be valid whenever the
relative error is defined, that is for all non zero value in x.
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Let us first evaluate in (10) the error due to the rounding of normalized
numbers. Consider x strictly positive (the negative case is symmetric), then we
can write: ∣∣∣∣ufp(x)

x

∣∣∣∣ =
2exp

sig × 2exp
=

1
sig

(11)

Given sig ∈ [1, 2), a simple abstraction of
∣∣∣ufp(x)

x

∣∣∣ is the interval
(
1
2 , 1

]
, and its

maximum is always bounded by 1. However, we can slightly refine this estimate
when there exists n such that |x| ⊆ [2n, 2n+1). This gives, when x does not
contain 0:

max
x∈x

∣∣∣∣ufp(x)
x

∣∣∣∣ =

{
1/sigmin(|x|,|x|) if ∃n ∈ Z, |x| ⊆ [2n, 2n+1)
1 otherwise

(12)

Let us now consider the error due to denormalized numbers if x contains
any. Let us consider again x strictly positive. A positive denormalized number
can be expressed as a multiple of δM , i.e. x = nδM with n ∈ Z, and an absolute
error of magnitude at most δM can be committed, we thus abstract the relative
error on denormalized numbers by:

max
x∈denorm(x)

[−δM , δM ]
|x| ⊆ [−1, 1] (13)

3.2 Transfer Functions for Arithmetic Operations

Let us now study the transfer functions for each operation in {+,−,×,÷,
√}.

First, the floating-point range x̃ is abstracted classically in interval arith-
metic. Then the absolute and relative error bounds are computed as described
in this section, by an interval abstraction of (7) and (8). Finally, bounds for the
value in real-valued semantics are deduced by x = x̃ − Ea(x).

Let us first state that after each operation, which yields a result z = op(x,y),
we perform a reduced product of the absolute and relative errors:

Reduction ⎧⎨
⎩

Ea(z) = Ea(z) ∩ Er(z)z

Er(z) = Er(z) ∩ Ea(z)
z

whenever 0 /∈ z
(14)

We will see that, in particular for the division and the square root, the two
types of errors are more tightly coupled than by the only use of this reduction.
Indeed, some formulations which are equivalent on real numbers, yield different
levels of conservativeness when computed abstracted. It is thus important to
carefully state the precise expression of the propagation of errors through arith-
metic operations. We detail below, for each arithmetic operation, propagation
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rules that provide a sound abstraction, while reducing the wrapping effect due
to the use of intervals:

Lemma 1 (Addition and Subtraction)

Ea(x ± y) = (Ea(x) ± Ea(y)) + Γa(x̃ ± ỹ) (15)

The relative error is defined only when 0 /∈ x ± y. In this case, we have:

Er(x ± y) =

⎧⎪⎪⎨
⎪⎪⎩

(Er(x) − Er(y)
1 ± y/x

+ Er(y)
)
(1 + Γr(x̃ ± ỹ)) + Γr(x̃ ± ỹ) if 0 /∈ x(Er(y) − Er(x)

1 ± x/y
+ Er(x)

)
(1 + Γr(x̃ ± ỹ)) + Γr(x̃ ± ỹ) if 0 /∈ y

(16)
When x and y both do not include zero, then the relative error can be computed
as the intersection of the 2 estimates in (16).

Proof. The propagation of the absolute error corresponds to a classical absolute
rounding error analysis, starting from Eq. (7) instantiated for the addition and
subtraction: for all x ∈ x, y ∈ y, x̃ = x + Ea(x) ∈ x̃, ỹ = x + Ea(y) ∈ ỹ,

Ea(x ± y) = (x̃ ± ỹ) + Γa(x̃ ± ỹ) − (x ± y)
= ((x + Ea(x)) ± (y + Ea(y))) + Γa(x̃ ± ỹ) − (x ± y)
= (Ea(x) ± Ea(y)) + Γa(x̃ ± ỹ)

Abstracting this result in intervals, we get Eq. (15), which defines Ea(x ± y) as
an interval over-approximation of {Ea(x ± y), x ∈ x, y ∈ y}.

Note that we would naturally also get a sound over-approximation of Ea(x±
y) by directly computing in intervals (x̃± ỹ)+Γa(x̃± ỹ)−(x±y). However, the
result would be very conservative in general, because interval arithmetic does
not handle correlations. We thus derive, for each arithmetic operation, error
formulas in real numbers by reorganizing terms in an equivalent expression but
reducing variable repetitions. We then abstract the final expression in intervals.

For any binary operation ◦, for all x ∈ x, y ∈ y such that x ◦ y �= 0, for all
x̃ = x + Ea(x), ỹ = y + Ea(y), we can compute the relative error as

Er(x ◦ y) =
(x̃ ◦ ỹ) + Γa(x̃ ◦ ỹ) − (x ◦ y)

x ◦ y

=
(x̃ ◦ ỹ) + (x̃ ◦ ỹ)Γr(x̃ ◦ ỹ) − (x ◦ y)

x ◦ y

from which we have:

Er(x ◦ y) =
x̃ ◦ ỹ

x ◦ y
(1 + Γr(x̃ ◦ ỹ)) − 1 (17)

We can deduce:

Er(x ± y) =
x(Er(x) + 1) ± y(1 + Er(y))

x ± y
(1 + Γr(x̃ ± ỹ)) − 1

=
xEr(x) ± yEr(y)

x ± y
(1 + Γr(x̃ ± ỹ)) + Γr(x̃ ± ỹ)
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It is interesting to reformulate this expression in order to suppress as much as
possible variable repetitions. This will reduce the loss of correlation when the
expression will be evaluated in interval arithmetic. For x �= 0, we can write:

Er(x ± y) =
(

xEr(x) − xEr(y)
x ± y

+
xEr(y) ± yEr(y)

x ± y

)
(1 + Γr(x̃ ± ỹ)) + Γr(x̃ ± ỹ)

=
(Er(x) − Er(y)

1 ± y
x

+ Er(y)
)

(1 + Γr(x̃ ± ỹ)) + Γr(x̃ ± ỹ)

A symmetric transformation can be done, exchanging x and y, which allows us
to conclude with Eq. (16), after abstraction in intervals.

We note that the addition is the operation for which propagating relative
error is less natural, and thus some accuracy loss can be expected.

Lemma 2 (Multiplication)

Ea(x × y) = xEa(y) + yEa(x) + Ea(x)Ea(y) + Γa(x̃ × ỹ) (18)
Er(x × y) = (Er(x) + 1)(Er(y) + 1)(1 + Γr(x̃ × ỹ)) − 1 (19)

Proof. As for the addition, the expression of the propagated absolute error by the
multiplication is quite natural, and corresponds to a classical absolute rounding
error analysis: for all x ∈ x, y ∈ y, x̃ = x + Ea(x), ỹ = y + Ea(y),

Ea(x × y) = (x̃ × ỹ) + Γa(x̃ × ỹ) − (x × y)
= (x + Ea(x))(y + Ea(y)) + Γa(x̃ × ỹ) − (x × y)
= xEa(y) + yEa(x) + Ea(x)Ea(y) + Γa(x̃ × ỹ)

Starting from Eq. (17), we obtain an expression of the propagated relative error
that naturally involves the relative errors on the operands:

Er(x × y) =
x̃ × ỹ

x × y
(1 + Γr(x̃ × ỹ)) − 1

=
x(Er(x) + 1) × y(Er(y) + 1)

x × y
(1 + Γr(x̃ × ỹ)) − 1

= (Er(x) + 1)(Er(y) + 1)(1 + Γr(x̃ × ỹ)) − 1

This propagation of relative errors should be quite accurate, as we could
remove correlations to values of x and y.

x = a + 3 * b ;

y = c + 3 * d ;

z = x * y ;

Example 3. We consider a very simple example to exem-
plify our analysis. We have 4 input floating-point vari-
ables a, b, c, d given respectively in the ranges [0,1],
[1,2], [0,1], and [1,2]. All these inputs are supposed to
be known exactly, with no rounding error, i.e. ∀v ∈
{a, b, c,d}, Ea(v) = Er(v) = [0, 0]. We now consider the errors committed on
the computations that define floating-point variables x, y, z. For the sake of
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demonstration, we explicit here the computation of errors in term of the machine
epsilon εM . In order to evaluate the error on variable x, we first evaluate 3b: its
range of value is 3b = [3, 6], and the errors are Er(3b) = Γr(3b) = [−εM ,+εM ]
and Ea(3b) = Γa(3b) = [−4εM ,+4εM ] The errors on x that results from the
addition are obtained using (15) and (16):

Ea(x) = Ea(3b) + Γa([3, 7]) = [−8εM ,+8εM ]

Er(x) =
(Er(3b) − Er(a)

1 + a/3b
+ Er(a)

)
(Γr([3, 7]) + 1) + Γr([3, 7])

=
[−εM ,+εM ]

[1, 4/3]
([−εM ,+εM ] + 1) + [−εM ,+εM ] = [−2εM ,+2εM ] + O(ε2M )

Note that the bounds for the relative errors are 4
3 times better than the a posteri-

ori estimate Ea(x)/x =
[− 8

3εM ,+ 8
3εM

]
. The errors on y are computed similarly.

Finally, we can deduce absolute error bounds for z using (18):

Ea(z) = xEa(y) + yEa(x) + Ea(x)Ea(y) + Γa(x × y)
= 2 × [3, 7] [−8εM ,+8εM ] + [−8εM ,+8εM ] [−8εM ,+8εM ] + Γa([9, 49])

= [−144εM ,+144εM ] + O(ε2M )

and relative error bounds using (19):

Er(z) = (Er(x) + 1)(Er(y) + 1)(Γr(x × y) + 1) − 1

= ([−2εM ,+2εM ] + 1)([−2εM ,+2εM ] + 1)(Γr([9, 49]) + 1) − 1 + O(ε2M )

= [−5εM ,+5εM ] + O(ε2M )

Neglecting here for simplicity the second order errors, the reduced product yields
an estimate for the relative error approximately 3.2 times better than the a
posteriori estimate Ea(z)/[9, 49].

Lemma 3 (Division). The division is defined whenever 0 /∈ y, by:

Ea(x ÷ y) =
Ea(x) − xEr(y)

ỹ
+ Γa(x̃ ÷ ỹ) (20)

Er(x ÷ y) =
Er(x) + 1
Er(y) + 1

(1 + Γr(x̃ ÷ ỹ)) − 1 (21)

Proof. The division is a case where the coupling between the computation of two
errors is integrated: the absolute error on x ÷ y naturally involves the absolute
error on x and the relative error on y:

Ea(x ÷ y) = (x̃ ÷ ỹ) + Γa(x̃ ÷ ỹ) − (x ÷ y)

=
yx̃ − ỹx

yỹ
+ Γa(x̃ ÷ ỹ)

=
y(x + Ea(x)) − (y + Ea(y))x

yỹ
+ Γa(x̃ ÷ ỹ)

=
Ea(x) − xEr(y)

ỹ
+ Γa(x̃ ÷ ỹ)
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This is thus an operation where propagating tight relative error bounds on the
operands proves useful to tighten the absolute error bounds on the result.

Er(x ÷ y) =
x̃ ÷ ỹ

x ÷ y
(1 + Γr(x̃ ÷ ỹ)) − 1

=
x(Er(x) + 1)
y(Er(y) + 1)

× y

x
× (1 + Γr(x̃ ÷ ỹ)) − 1

=
Er(x) + 1
Er(y) + 1

(1 + Γr(x̃ ÷ ỹ)) − 1

As for the multiplication, we note that the propagation of relative errors should
be generally quite accurate. Note also that as for the multiplication as well, the
relative error bounds are defined even when 0 ∈ x ÷ y , as long as they are
defined for x and y. The bound will be valid for all nonzero values in x ÷ y.
This is exemplified in Example 4.

Example 4. Let us come back to Example 2 of the introduction. An error is
committed when computing t+1, the absolute error of t+1 is bounded by Ea(t+
1) = [−5.68e−14, 5.68e−14], the relative error by Er(t + 1) = [−1.1e−16, 1.1e−16].
Using Eq. (20) to bound the absolute error of the division, we obtain:

Ea

(
t

t + 1

)
= −tEr(t + 1)

t̃ + 1
+ Γa

(
t̃

t̃ + 1

)

=
[0, 900][−1.1e−16, 1.1e−16]

[1, 1000]
+ [−5.68e−14, 5.68e−14]

= [−1.67e−13, 1.67e−13]

If only absolute error bounds were available, we would replace xEr(y) by
xEa(y)/y in Eq. (20) and obtain the absolute error analysis used classically. We
would then obtain as absolute error bound on t/(t+ 1):

[0, 999] × [−5.68e−14, 5.68e−14]
[1, 1000]2

+ [−5.68e−14, 5.68e−14] = [−5.68e−11, 5.68e−11]

which is 340 times larger than the absolute error bound computed using our
reduced product.

The relative error on t/(t+ 1) is bounded where it is defined, that if for all
t �= 0, by:

Er

(
t

t + 1

)
=

Er(t) + 1
Er(t+ 1) + 1

(
1 + Γr

(
t̃

t̃ + 1

))
− 1

=
1

[−1.1e−16, 1.1e−16] + 1

(
1 + Γr

(
t̃

t̃ + 1

))
− 1

For t = [0, 999] , t and t/(t+1) contain zero. As t is an input, its relative error
Er(t) is zero when it is defined, that is for all t �= 0. The elementary relative
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error Γr is also defined for all t �= 0, and is bounded by the maximum relative
error when using denormalized floating-point numbers around 0, given by (13):
for all t �= 0, Γr( t

t+1 ) ⊆ [−1, 1]. Thus

Er

(
t

t + 1

)
=

1

[−1.1e−16, 1.1e−16] + 1
(1 + [−1, 1]) − 1 ⊆ 1 + [−1, 1] − 1 = [−1, 1]

The square root is an operation where the relative error on the operand
naturally appears in the propagation:

Lemma 4 (Square root)

Ea(
√
x) =

√
x(

√
1 + Er(x) − 1) + Γa(

√
x̃) (22)

Er(
√
x) =

√
1 + Er(x)(Γr(

√
x̃) + 1) − 1 (23)

Proof. In order to avoid the loss of correlation, it is natural to factorize
√

x:

Ea(
√

x) =
√

x̃ + Γa(
√

x̃) − √
x

=
√

x(
√

1 + Er(x) − 1) + Γa(
√

x̃)

The expression of the relative error is deduced immediately.

Er(
√

x) =
√

x̃√
x

(Γr(
√

x̃) + 1) − 1

=

√
x(Er(x) + 1)

x
(Γr(

√
x̃) + 1) − 1

=
√

Er(x) + 1(Γr(
√

x̃) + 1) − 1

Using similar developments, it is possible to handle more functions. We chose
in this work to focus on the main arithmetic operations which error bounds have
long been specified by the IEEE 754 norm.

3.3 Handling Conditional Statements

Interpretation of Conditional expressions. Let γ(x1, . . . , xn) a conditional
expression defined by f(x1, . . . , xn) � b, with � ∈ {<,>,=,≤,≥}. Let us denote
by x̃γ the interval abstraction of the floating-point value of variable x, after
transformation by the interpretation of conditional γ. It is computed by the
classical backward constraint propagation on intervals which filters out values
of x̃ that do not satisfy the constraint. Note that as already discussed in the
section devoted to the concrete semantics, we consider the path condition only
on the floating-point value. The bound on the relative error is left unchanged by
the interpretation of constraints:

Er(xγ) = Er(x) (24)

In a classical error analysis, that is, with no information about the relative error,
the absolute error bounds are also left unchanged by the interpretation of this
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conditional: Ea(xγ) = Ea(x). When available, the relative error bounds can be
used to reduce the absolute error in the case the range of values xγ has been
reduced compared to x by the constraint propagation:

Ea(xγ) = Ea(x) ∩ xγEr(x). (25)

Example 5. In Example 1 of the introduction, the multiplication x:=i*i results
in x = [1, 10000] with an elementary absolute rounding error Ea(x) =
[−9.09e−13, 9.09e−13], and a relative error bound Er(x) = [−1.11e−16, 1.11e−16].
The constraint x <=2 yields x(x≤2) = [1, 2] in the true branch. We can
then reduce the absolute error bound on x in this branch (and thus on y),
by Ea(y) = [1, 2][−1.11e−16, 1.11e−16], as already stated in this introductory
example.

Join and widening. Joining values coming from different branches of the program
analyzed supposes to define a join or upper bound operator on abstract values.
The join can be performed componentwise on the value, relative and absolute
errors, relying on the classical join on intervals. Naturally, this relies on the
hypothesis that there is no unstable test. Similarly, a widening can be defined
componentwise relying on any widening operator on intervals.

4 Implementation and Experimental Evaluation

We have implemented this approach as a new abstract domain called Numerors
in the Abstract Interpretation plug-in Eva of the verification platform Frama-C2.
Frama-C provides a collection of plug-ins that perform static analysis, deductive
verification, and testing, for safety- and security-critical software. Those plug-
ins can cooperate thanks to their integration on top of a shared kernel and data
structures along with their compliance to a common specification language.

In what follows, we evaluate our approach by comparing the error bounds
obtained by our tool against the state of the art tools Fluctuat [9], Daisy [11]
and FPTaylor [16], on a set of representative benchmark examples.

Selection and Description of the Benchmarks. The examples are mostly
extracted from the FPBench3 suite for comparing verification tools on floating-
point programs, to which we have added 4 examples of our own. Our selection
has been guided by the will to keep a reasonably small set of examples, while
including most classes of examples which were previously studied with the tools
of the related work, Daisy and FPTaylor. We excluded the examples containing
calls to mathematical functions like transcendentals that we do not handle, vari-
ations of the same examples that did not show a different behavior, and examples

2 Our abstract domain should be included in an upcoming release of Frama-C/Eva
(https://frama-c.com/value.html).

3 http://fpbench.org.

https://frama-c.com/value.html
http://fpbench.org
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for which the inputs were not fully specified. Finally, we modified4 the inputs of
some examples so that all tools compute a non trivial relative error bounds.

The first four examples were written to highlight some features that were not
well represented in FPBench, and in particular programs that include some con-
ditional statements (the first three examples), and a program with square roots
(the fourth). Benchmark log approx computes an approximation of the logarithm
of the square of its input, using a loop and a Taylor expansion. Benchmark con-
ditional ex is Example 1, and conditional 1 is similar but with more computa-
tion. Finally, sqrt 1 computes the function

√
2x + 3/(2

√
x + 3). The remaining

examples come from the FPbench suite. Example complex sqrt belongs to the
Herbie [14] suite. Examples from intro example to test05 nonlin1 test2 come
from the FPTaylor test suite, and intro example and sec4 example are specif-
ically used in [16] to introduce their technique. The remaining examples come
either from the Rosa [5] or the FPTaylor test suites, and have already been used
as benchmarks for both absolute and relative errors [11,16].

Table 1. Tools comparison on the absolute errors

Name Under-Appprox Numerors Fluctuat Fluctuat Daisy Daisy FPTaylor

Intervals Affine 1 2

log approx – 6.25e−14 3.56e−11 3.56e−11 – – –

conditional ex – 2.22e−16 9.09e−13 9.09e−13 – – 9.09e−13

conditional 1 – 8.43e−13 6.82e−12 6.82e−12 – – 2.09e−11

sqrt 1 2.11e−16 5.51e−15 3.72e−14 3.38e−14 3.72e−14 4.52e−16 2.75e−16

complex sqrt 5.00e−16 1.29e−15 3.93e−15 2.52e−15 3.92e−15 1.89e−15 5.70e−16

kepler0 2.42e−13 3.63e−13 3.63e−13 3.63e−13 3.63e−13 7.15e−13 3.18e−13

intro example 1.65e−16 1.68e−13 5.68e−11 5.67e−11 5.68e−11 2.52e−16 1.67e−16

sec4 example 3.25e−15 6.35e−11 1.16e−09 1.16e−09 1.16e−09 7.00e−14 3.73e−13

test01 sum3 8.88e−16 3.33e−15 3.33e−15 2.89e−15 3.33e−15 4.11e−15 2.89e−15

test02 sum8 4.00e−15 6.22e−15 6.22e−15 6.22e−15 6.22e−15 9.55e−15 6.22e−15

test03 nonlin2 1.64e−16 3.11e−15 2.42e−14 2.28e−14 2.42e−14 4.45e−16 3.47e−16

test04 dqmom9 5.87e−12 8.64e−05 8.64e−05 8.64e−05 8.64e−05 1.78e−09 1.85e−05

test05 nonlin1 r4 1.32e−12 2.78e−07 1.67e−06 1.67e−06 1.67e−06 5.93e−11 2.21e−09

test05 nonlin1 test2 8.29e−17 8.33e−17 8.33e−17 8.33e−17 8.33e−17 1.39e−16 8.33e−17

doppler1 6.13e−14 1.62e−13 3.45e−13 3.45e−13 3.91e−13 1.74e−13 9.91e−14

doppler2 1.14e−13 3.27e−13 8.78e−13 8.78e−13 9.78e−13 3.18e−13 1.84e−13

doppler3 4.16e−14 8.50e−14 1.36e−13 1.36e−13 1.60e−13 9.13e−14 5.70e−14

rigidBody1 1.79e−13 2.40e−13 2.40e−13 2.40e−13 2.40e−13 5.08e−13 2.13e−13

rigidBody2 1.81e−11 2.31e−11 2.31e−11 2.31e−11 2.31e−11 6.32e−11 2.27e−11

turbine1 4.30e−15 4.73e−14 6.04e−14 5.76e−14 6.04e−14 2.80e−14 1.24e−14

turbine2 4.41e−15 8.57e−15 8.57e−15 8.54e−15 8.57e−15 1.71e−14 7.38e−15

turbine3 3.22e−15 3.85e−14 4.72e−14 4.54e−14 4.72e−14 1.65e−14 7.15e−15

verhulst 1.70e−16 3.77e−16 3.77e−16 3.00e−16 3.80e−16 4.21e−16 1.79e−16

predatorPrey 8.79e−17 1.40e−16 1.40e−16 1.38e−16 1.41e−16 2.27e−16 1.01e−16

carbonGas 3.13e−09 2.00e−08 2.00e−08 1.58e−08 2.06e−08 1.03e−08 4.96e−09

sine 2.71e−16 5.18e−16 5.18e−16 5.18e−16 5.18e−16 6.55e−16 4.38e−16

sqroot 4.41e−16 5.62e−16 5.62e−16 5.62e−16 5.62e−16 7.89e−16 4.86e−16

sineOrder3 3.11e−16 5.91e−16 5.96e−16 5.86e−16 7.84e−16 7.99e−16 5.28e−16

4 http://www.lix.polytechnique.fr/Labo/Maxime.Jacquemin/numerors.c
for the examples.

http://www.lix.polytechnique.fr/Labo/Maxime.Jacquemin/numerors.c
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Table 2. Tools comparison on the relative errors

Name Under-Approx Numerors Posteriori Daisy Daisy Daisy FPTaylor

1 2 3

log approx – ∞ ∞ – – – –

conditional ex – 1.11e−16 9.09e−13 – – – 1.13e−16

conditional 1 – 8.94e−16 3.41e−12 – – – 7.22e−16

sqrt 1 3.42e−16 6.61e−16 6.83e−12 1.10e−12 1.02e−15 ∞ 4.26e−16

complex sqrt 2.04e−16 4.98e−16 8.64e−14 4.01e−15 1.94e−15 ∞ 2.64e−16

kepler0 3.65e−16 1.20e−15 1.20e−15 1.20e−15 2.13e−15 1.06e−15 5.71e−16

intro example 1.87e−16 1.00 ∞ ∞ ∞ ∞ ∞
sec4 example 6.52e−15 1.40e−13 8.71e−06 8.71e−06 3.60e−13 2.34e−13 6.65e−12

test01 sum3 2.78e−16 ∞ ∞ ∞ 1.37e−15 ∞ 5.05e−16

test02 sum8 3.42e−16 5.94e−16 7.77e−16 7.77e−16 1.19e−15 7.73e−16 4.82e−16

test03 nonlin2 2.17e−16 ∞ ∞ ∞ ∞ ∞ ∞
test04 dqmom9 1.46e−12 ∞ ∞ ∞ ∞ ∞ ∞
test05 nonlin1 r4 2.63e−12 5.55e−12 5.00e−01 5.00e−01 2.07e−10 1.68e−05 3.46e−06

test05 nonlin1 test2 1.66e−16 2.26e−16 2.50e−16 2.50e−16 4.17e−16 2.96e−16 1.69e−16

doppler1 6.70e−16 1.10e−15 1.17e−11 1.33e−11 5.91e−12 1.26e−15 9.69e−16

doppler2 7.17e−16 1.21e−15 4.62e−11 5.14e−11 1.67e−11 1.37e−15 9.13e−16

doppler3 5.63e−16 9.75e−16 3.11e−13 3.65e−13 1.82e−13 1.14e−15 7.36e−16

rigidBody1 3.44e−16 7.79e−16 1.04e−12 1.04e−12 2.21e−12 9.76e−16 4.39e−16

rigidBody2 4.84e−16 9.65e−16 1.32e−15 1.32e−15 3.50e−15 1.17e−15 6.27e−16

turbine1 4.21e−16 3.05e−14 3.90e−14 3.90e−14 1.41e−14 1.75e−15 7.95e−16

turbine2 2.30e−16 4.98e−16 4.98e−16 4.98e−16 9.23e−16 6.92e−16 3.97e−16

turbine3 3.53e−16 7.50e−14 1.01e−13 1.01e−13 2.91e−14 6.51e−15 2.40e−15

verhulst 2.26e−16 3.75e−16 1.20e−15 1.21e−15 1.16e−15 4.59e−16 2.41e−16

predatorPrey 3.12e−16 4.82e−16 3.76e−15 3.77e−15 6.09e−15 6.87e−16 3.58e−16

carbonGas 3.39e−16 7.16e−16 9.52e−15 9.80e−15 2.40e−15 8.11e−16 7.67e−16

sine 2.71e−16 1.75e−15 2.27e−15 2.27e−15 8.56e−16 6.31e−16 4.41e−16

sqroot 3.99e−16 6.72e−16 6.72e−16 6.72e−16 7.91e−16 5.66e−16 4.44e−16

sineOrder3 3.53e−16 1.13e−14 1.41e−14 1.86e−14 9.11e−16 8.94e−16 6.06e−16

Methodology of Comparison. For each example, absolute error bounds on the
output of interest are presented in Table 1, relative error bounds in Table 2.
Table 3 presents the running times for each tool, on the complete set of
benchmarks.

In Tables 1 and 2, underestimates of the errors are given in the first column
denoted Under-Approx. They are obtained with Daisy, computing the maximum
of errors obtained for runs on 100000 random input values. The second column
denoted Numerors in all result tables presents the results of the approach pre-
sented in our work. Fluctuat in its Intervals mode is used in third column of
Table 1 as a witness of the results obtained with a classical interval absolute
error analysis. The results of the corresponding a posteriori computation of the
relative error are presented in third column of Table 2. This also corresponds to
the results of our tool Numerors on absolute error, without the reduced prod-
uct. In the fourth column of Table 1, we give the results of Fluctuat in its affine
arithmetic based relational mode. We do not report results in Table 2, as the
error is only computed a posteriori, and does not bring much new information.
Finally, Daisy and FPTaylor are state on the art references for the computation
of relative error bounds, relying on optimisation techniques. Daisy provides many
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possible options, with different evaluation modes both for values and errors, that
combine interval and affine arithmetic based estimates with SMT. We included a
representative set, providing different trade-offs between efficiency and accuracy.
Mode Daisy 1 is:

daisy --analysis=dataflow --rangeMethod=intervals --errorMethod=interval

Mode Daisy 2 is

daisy --analysis=opt --rangeMethod=smt --errorMethod=affine.

Finally, mode Daisy 3, which is dedicated to relative error (and provides to
absolute error bound, hence is not included in Table 1), is:

daisy --analysis=relative --rel-rangeMethod=smtcomplete.

Our understanding is that Daisy 3 corresponds to [11]. Note that Daisy does
not currently handle conditional statements, so that we give no estimate for these
examples. We can specify conditionals as constraints to FPTaylor, however this
is inconvenient for loops, so that we do not give any estimate for log approx.

Results. Let us first comment the timings results presented in Table 3, that
correspond, for each tool, to the sum of times spent for each of the examples that
could be analyzed. Fluctuat, which is dedicated to error analysis, is the fastest,
even in its affine mode: the examples here being all quite simple, affine forms scale
well. While our abstract domain should theoretically be comparable to Fluctuat
Intervals, it is here 10 times slower, partially due to the less specialization of
the frama-C core on which we rely. Finally and most importantly, we want to
stress that Numerors is drastically more efficient than Daisy in any of its modes
or than FPTaylor, which rely on SMT or optimization. We compare ourselves
to the results given by these tools, not because we aim at being more accurate,
but in order to demonstrate that we manage to often come close, or even beat
in precision these more costly approaches, while keeping very low analysis costs.

Table 3. Times comparison

Numerors Fluctuat
Intervals

Fluctuat
Affine

Daisy 1 Daisy 2 Daisy 3 FPTaylor

0.271 0.059 0.049 4.220 652.062 16056.987 197.774

On each line, the result in boldface letters corresponds to the best estimate,
the one in italic one corresponds to the second best one.

Numerors does not manage to bound the relative error on four examples:
(log approx, test01 sum3, test03 nonlin2 and test04 dqmom9. The reason is that
it finds that the range of the variable of interest includes zero for all these exam-
ples, and some addition and subtraction where involved with a result including
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zero. Daisy and FPTaylor also cannot bound the relative error on three of these
examples, for the same reason. On the fourth (test01 sum3 ), Daisy and FPTay-
lor get finite bounds. This is because the actual range does not include zero, but
a relational analysis is needed to infer this. Note that the reduced product would
allow us to compute again relative error bounds on further computations (if they
do not include zero in their result range). Finally, on example intro example,
which corresponds to Example 2, the range of the result also contains zero, and
Numerors produces an error bound of 1 while Daisy and FPTaylor do not pro-
duce relative error bounds. This bound of 1 is valid for all non-zero values of the
range, and corresponds to the maximum error bounds on denormalized numbers,
as detailed in Example 4.

One obvious strength of our analysis concerns the interpretation of condi-
tional statements. This is highlighted by the first three examples, where we are
much better on absolute errors than FPTaylor, and comparable in relative error.

On the remaining benchmarks, our experiments often demonstrate that
FPTaylor obtains the most accurate results, both in absolute and relative errors.
However, for the absolute error, Numerors is still the best for 2 cases out of 25,
and it is second best in more 10 cases. For the relative error, considering only
the 23 examples for which at least one tool finds a finite bound, it is best on
4 examples, and sometimes even spectacularly so, and second best in 12 exam-
ples. Naturally, it is also always at least - and often considerably - better than
Fluctuat in its interval mode. But it is also often better also than Fluctuat in its
affine mode, when the loss of correlation due to intervals is not too important.

5 Conclusion and Future Work

We have demonstrated how a simple interval-based reduced product of abso-
lute and relative error bounds greatly enhanced the absolute error bounds, at
a very low additional cost. A possible additional interest of such analysis, is to
further valorize these relative error bounds: indeed, some undesired phenomena
of floating-point arithmetic, such as catastrophic cancellation, are best detected
using relative error bounds.

Another possibility offered by this analysis is to refine error bounds by local
subdivisions of the range of variables. Partitioning the range of some well chosen
program variables is an approach used in most tools, that often allows them to
considerably narrow value and error estimation. But this approach is costly, and
it usually has to be performed globally on the program. We believe that relative
error bounds can be used to enhance the quality of results using much cheaper
local subdivisions, using an idea similar to the interpretation of conditional: the
relative error bounds can be used to reduce the absolute error bounds, given some
additional constraint on the value that corresponds to a local subdivision of the
range. This refinement can be used to improve locally an error estimation, on
demand. An additional advantage of the local compared to the global subdivision
is that it can be realized on any quantity and not only on input variables.

Finally, a natural extension of this work, that we intend to investigate in
the future, is its combination with relational abstractions such as affine forms.
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A simple way to do this is to simply adapt the analysis presented here, using a
relational abstraction to bound the values and errors. But we expect that more
refined interactions would improve the strength of the analysis. Using a relational
abstraction will also allow us to accurately compute discontinuity errors between
branches, and thus handle possible control flow divergences.
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Abstract. We present a modular analysis able to tackle out-of-bounds
accesses in C strings. This analyzer is modular in the sense that it infers
and tabulates (for reuse) input/output relations, automatically parti-
tioned according to the shape of the input state. We show how the
inter-procedural iterator discovers and generalizes contracts in order to
improve their reusability for further analysis. This analyzer was imple-
mented and was able to successfully analyze and infer relational contracts
for functions such as strcpy, strcat.

1 Introduction

1while (*q != ’\0’) {
2*p = *q;
3p ++;
4q ++;
5};
6*p = *q;

Program 1.1. strcpy

Abstract interpretation [9] enables the development of
sound static analyzers that infer and prove invariants
on the set of states reachable in a program. Consider
for instance the strcpy function in C, shown in Pro-
gram 1.1. This function is often called and may cause
out-of-bounds errors. Therefore the implementation of
a modular static analyzer able to infer and prove contracts on such functions
without losing precision would yield a scalable analyzer able to prove the absence
of buffer overruns in C projects manipulating strings.

In a C string, a ’\0’ character designates the end of the string. Henceforth
the length of a string is defined to be the index of the first ’\0’ character
appearing in the string. As emphasized in Program 1.1, the correctness of a
string manipulating program (in the sense that it does not yield an out of memory
access) depends upon the length and the allocated size of the buffer in which it
is contained. Therefore in the fashion of [24] we summarize strings by two values:
the position of the first ’\0’ character and the buffer size.

The fragment of C on which we want to perform modular analysis supports
string manipulations, unions, structures, arrays, memory allocations (static and
dynamic), pointer casts, function calls, . . . . Accordingly we need to build our
analyzer, that manipulates predicates and can perform modular analysis, upon
an existing analyzer able to deal with low level features of C.

This work is supported by the European Research Council under Consolidator Grant
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An analyzer computing invariants by induction on the syntax of programs
requires abstract transformers for function calls. A straightforward way to
achieve this, provided that there is no recursivity, is to analyze the body of
the function at each call site. Therefore a way to improve scalability is to design
modular analyzers able to reuse previous analysis results so that reanalysis is
not always needed (as emphasized in [11]). As an example, in a project contain-
ing an incrementation function, we want to be able to express and to infer that
∀x, incr(x) = x + 1. Once this relation discovered, no further analysis of the
body of incr is required. Abstract interpretation is always sound and inferred
invariants describe an over-approximation of the reachable set of states. There-
fore the use of input/output relations discovered on statements must yield an
over-approximation. Nonetheless we do not want to give up too much precision
to achieve scalability. This was done by using classical techniques to express
input/output relations on numerical variables as performed in [11], partitioning
these relations according to symbolic conditions in the abstract state as proposed
by Bourdoncle [4], and generalizing them using widening operations.

By mixing the idea of representing a string as its length using a numeric
abstraction and input/output relations, our analyzer is able to handle the strcpy
example. More precisely, consider that char* p points to some char[10] dest
string and char* q points to some char[20] src string with dest �= src, fur-
thermore let variables oq, op denote the initial offset of p and q, variable lsrc
codes for the length of src, and variable adest denotes the size of the allocated
memory of the string pointed to by dest. Our analyzer is able to prove that if
lsrc < asrc and lsrc−oq < adest−op then no out of bounds access are performed.
Moreover enabling modular analysis would yield that lsrc = l′src and ldest = l′src
where primed variables (resp. unprimed variables) denote the state at the begin-
ning (resp. at the end) of the analysis of the body of the function. Therefore
these two relations state that the length of src was not modified by the call to
strcpy, while the length of dest is now that of src.

Outline. Section 2 describes the subset of C we wish to analyze, Sect. 3 defines
a low-level C abstraction upon which our analyzer is based, Sect. 4 details the
String abstract domain, Sect. 5 outlines the lifting of our analyzer to a modular
analysis, Sect. 6 contains a few remarks on the implementation of the analyzer.
Finally Sect. 7 gives an overview of related works, while Sect. 8 concludes.

Contributions. The main contributions of this article are: (1) The development
of a static analyzer able to reason on low level C, while performing higher level
abstractions (such as the String domain that will be presented thereafter) (2)
The lifting of this analyzer to a precise modular framework based on numerical
input/output relations [11], partitioning [4] and input generalizations.

2 Syntax and Concrete Semantics

Syntax. We will thereafter call C-- the language defined in Fig. 1 and denote by
V a set of variables. The description of Fig. 1 omits some classical statements
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but make precise some low-level features of the language. Note moreover that
int-types are denoted by their signededness (s for signed integers, u for unsigned
integers) and their length in bits, instead of char or unsigned long. This trans-
formation is made before the analysis, and depends on the platform. Moreover,
in order to simplify the presentation we will consider strings as arrays of u8 (or
unsigned char), results can be easily extended to arrays of s8 (char).

int-type
Δ= s8 | s16 | s32 | s64
| u8 | u16 | u32 | u64

scalar-type
Δ= int-type | ptr

type
Δ= scalar-type
| type[n] n ∈ N

| struct{u0 : type, . . . , un−1 : type}
| union{u0 : type, . . . , un−1 : type}

lval
Δ= *scalar-typeexpr | v ∈ V

expr
Δ= cst cst ∈ N

| &lval
| expr � expr � ∈ {+,≤, . . . }

stmt
Δ= v = malloc(e)

v ∈ V, e ∈ expr
| type v v ∈ V
| · · ·

Fig. 1. The syntax of the C-- subset of C.

Cells. Our C-like language features a rich type system. In a classic way, we
will present the semantics of operations on scalar data-types: integers of various
size and pointers, and reduce structured data-types, such as arrays, struct and
unions, malloced blocks, to collections of scalar objects, we call cells. A simple
solution would be to use the type of a structured variable and decompose it stat-
ically into such collections; left-values thus become access paths. Unfortunately,
this static view does not hold for programs that abuse the type system and access
some block of memory with various types, which is possible (and even common)
in C using union types and pointer casts. One solution would be to model the
memory as arrays of bytes or even bits, and synthesize non-byte access (for
instance, reading a 16-bit integer a would be expressed as a[0]+256*a[1]), but
such a complex modeling would put a great strain on numeric abstract domains
and cause huge precision losses. We thus rely on previous work [18], that pro-
poses to model memory blocks as collections of (possibly multi-byte) scalar cells,
that are inferred and maintained dynamically during the analysis, according to
the memory access pattern effectively employed by the program at run-time. For
our purpose, we can assume that all memory accesses have the form *τe, where
τ is a scalar type and e is a pointer expression using pointer arithmetic at the
byte level (this reduction can be performed statically as a pre-processing).

Remark 1. In addition to the definitions of Fig. 1, we assume that we are given
a function typeof ∈ (V → type). The type of a variable is given by its declaration
in a C-- program. Moreover we assume given a sizeof function from type to N

that gives the size in bytes of each type (e.g. sizeof(int) = 4).

A cell denotes an addressable group of bytes to store a scalar value, it is rep-
resented by a base variable (V ), an integer coding for the offset of the cell
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(o), and the type of the cell (t). Therefore we define the following set of cells:
Cell

Δ= {〈V, o, t〉 | V ∈ V, t ∈ scalar-type, 0 ≤ o ≤ sizeof(typeof(V )) − sizeof(t)}.
By construction Cell represents the set of all addressable memory locations. The
abstract states we will build contain a subset of those cells. Cells might denote
overlapping portions of the memory. In such cases the underlying state satisfies
every constraint implied by a cell: cells are understood conjunctively. There-
fore removing cells induces a loss of information. A key aspect of [18] we reuse
is that new cells from Cell are added to the current environment dynamically
to account for the access patterns encountered during the analysis, in a flow-
sensitive way. As we do not rely on static type information, which can be mislead-
ing in C, we can handle union types, type-punning, and untyped allocated blocks
transparently.

Concrete semantic. We will not detail here the complete concrete semantic of the
C-- language, however we give a definition of the set of concrete environments
using cells, noted E . An environment is a set of cells C and a function ρ mapping
each cell to a value. A value can be either a numerical value or a pointer. A
pointer is represented by: the base variable towards which it points and its
offset. The set of pointer Ptr is augmented with two special values: the NULL
pointer and the invalid pointer : Ptr

Δ= (V × Z) ∪ {NULL, invalid}

E Δ=
⋃

C⊆Cell

{〈C, ρ〉 | ρ ∈ R
Δ= C → (N ∪ Ptr)}

3 Cell Abstract Domain

Let us consider the Cell abstraction [18], an abstract domain able to abstract
the semantic of C programs manipulating pointers. This abstract domain comes
with an abstract interpreter that can successfully analyze C programs with no
recursion and no dynamic memory allocation. The abstraction we propose here
is built upon the cell abstract domain, it extends this domain so as to handle
dynamic allocations and higher level string manipulations.

Pointers bases. When C ⊆ Cell is a set of cells, we define C to be the set of
cells denoting pointers : C

Δ= {〈V, o, t〉 ∈ C | t = ptr}. Upon this we define
PC = C → ℘(V ∪ {NULL, invalid}). PC represents the possible memory loca-
tions pointed to by cells representing pointers (note that PC only accounts for
the base variable that is pointed to and not for the offset).

Numerical domain. We assume that for any set of variables V we are given
a numerical domain N �

V abstracting ℘(V → N) with concretization function
γV ∈ N �

V → ℘(V → N). For example we can use the polyhedra domain [15] or the
interval domain [10]. These domains come with an environment change operator
�|V such that: ∀V ′, if S� ∈ N �

V′ then S�
|V ∈ N �

V . S�
|V is obtained by removing all

variables not in V and adding all variables in V but not in V ′ (with unconstrained
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value), so that the result is defined exactly over the variable set V. Furthermore
we assume given a function range(x, S�

V), yielding an interval of N containing
all concrete values associated to variable x in N �

V . For any subset C ⊆ Cell we
can therefore rely on a numerical abstraction N �

C abstracting ℘(C → N). We
give the numerical domain of our abstraction a double role:

– For a cell containing a pointer, the variable (from the numerical domain)
assigned to this cell codes for possible offsets of the pointer (thus paired with
information from PC we will describe completely the pointer contained in
the cell)

– For other cells (containing e.g. a u8, a s32) the variable (from the numerical
domain) codes for values contained in the cell.

Abstract states. We define the domain D�
m with concretization γm ∈ D�

m → E as:

D�
m

Δ= {〈C,R�, P 〉 | C ⊆ Cell, R� ∈ N �
C , P ∈ PC}

γm〈C,R�, P 〉 Δ= 〈C, {ρ′ ∈ R,∃ρ ∈ γC(R�), ∀c = 〈V, o, t〉 ∈ C,⎧
⎨

⎩

ρ′(c) = ρ(c) if t �= ptr
ρ′(c) = 〈p, ρ(c)〉 if t = ptr ∧ p ∈ P (c) ∩ V
ρ′(c) = p if t = ptr ∧ p ∈ P (c) \ V

}〉

Example 1. Consider the abstract state: S� = 〈{〈a, 0,u64〉}, {〈a, 0,u64〉 =
232 + 2}, ∅〉. Moreover we assume that due to some cast operations, cells
{〈a, 0,u32〉} and {〈a, 4,u32〉} are needed (imagine for example the encod-
ing in little-endian of a pair of u32 as a u64). S� is equivalent to:
〈{〈a, 0,u64〉, 〈a, 0,u32〉, 〈a, 4,u32〉}, {〈a, 0,u64〉 = 232 + 2, 〈a, 0,u32〉 = 2 (=
(232 + 2) mod 232)), 〈a, 4,u32〉 = 1 (= (232 + 2) /232)}, ∅〉.

1int a = 1;
2int p = &a;
3*p = *p + 1;

Program 1.2.
Dereferencing

Abstract operators and abstract transformers. Abstract oper-
ators (join, meet, widening) are defined by first unifying the
operands, and then performing the operation in the underly-
ing unified numerical domain and pointer map. The unifica-
tion operator transforms two abstract elements into abstract
elements with the same set of cells. This is done by adding cells in both elements
so that the resulting set of cells in both elements is the union of the initial sets
of cells. We do not give here the definition of all the abstract transformers oper-
ating on our abstract states, however the following example emphasizes how an
abstract state is modified by expressions and statements of the C language. In
particular, we note that when cells are available, most expressions are treated as
expressions on a language where cells are the variables. When cells mentioned
in the expressions are not available, they are added to the set of cells of the
abstract state, by collecting information available in the overlapping cells, such
as joining two byte-cells to synthesize the initial value of a new u16-cell at the
same position.
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Example 2. Consider Program 1.2, starting from � = 〈∅, ∅, ∅〉. The first state-
ment requires the existence of the cell a = 〈a, 0, s32〉. The set of cells constrained
by our abstract state is dynamically updated to mention a, yielding: 〈{a}, ∅, ∅〉,
then we rewrite the statement in the following manner: a = 1. We execute
this statement in the underlying numerical domain, and get: 〈{a}, {a = 1}, ∅〉.
The second statement adds a new cell p = 〈p, 0,ptr〉 and an element to
the pointer map: 〈{a,p}, {a = 1,p = 0}, {p �→ {a}}〉. Note that p = 0
codes for the value of the offset of pointer p. Finally the expression *p of the
third statement is evaluated by following the P component of the abstract
state, therefore the statement is transformed into a = a + 1. Thus yielding:
〈{a,p}, {a = 2,p = 0}, {p �→ {a}}〉. Henceforth, in order to clarify the pre-
sentation, a denotes 〈a, 0, τ〉 when τ is the declared type of variable a.

4 String Abstract Domain

4.1 Domain Definition

The introductory example shows that describing a string by a set of cells (one
cell per character of the string) was usually not necessary to prove the absence
of buffer overrun in string manipulations. Therefore we propose to add to our
existing low-level abstraction of C--, an abstraction of strings that sums up all
of its characters into two variables, one coding for the length of the string and
the other for the allocated size of the buffer in which it is contained. Memory
blocks will therefore be abstracted either by the cell abstract domain or by the
string abstract domain. In order to simplify the presentation we assume given
a set of memory locations V for which we will use a string summary, however
this set can be dynamically modified and reductions could be proposed in order
to store information on some memory locations in both the String domain and
the Cell domain. We assume that for each memory location s ∈ V, we are given
two variables denoted sl and sa. Those variables code for the length and the
allocated size of the string, they will be added to the numerical domain of the
cell abstract domain so that we are able to describe relations between length of
variables and offsets of pointers. In the following V� denotes

⋃
s∈V{sa, sl}, this

is the set of all numerical variables needed to describe strings in V.

Definition of the String abstract domain. We define the String abstract
domain to be: S�

m
Δ= {〈C,R�, P 〉 | C ⊆ Cell \ {〈V, , 〉 | V ∈ V}, R� ∈

N �
C∪V� , P ∈ PC}. This abstract domain is ordered by the same relation as

the cell abstract domain: �S�
m

Δ=�D�
m

. We recall that �Dm
will test the inclu-

sion of the two numerical domains once cell sets have been unified, therefore our
definition of S� �S�

m
S�′ amounts to verifying that the constraints on the string

variables (sl and sa) are stronger in the left member of the inequality.

Galois connection with the Cell abstract domain. The String abstract domain
is an abstraction of the Cell abstract domain. Indeed we forget information
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that do not help us track the position of the first ’\0’ character. We define
the Galois connection between the Cell domain and the String domain using
two functions : to cell and from cell. The to cell(s, S�) function computes
the range of sl in the numeric abstract domain, for each possible length value
we set the cells placed before (resp. at) the length to [1; 255] (resp. 0), this
yields an abstract element per possible value in the range, those are then joined.
Conversely from cell(s, S�) computes the minimum length value (the index of
the first cell whose range contains 0), and the maximum length value (the index
of the first cell whose range is exactly {0}), finally those constraints are added to
the numerical domain. If a string does not contain any ’\0’ character, we define
its length to be the allocated size of the buffer it is contained in. Both functions
can be found in Appendix A.1. With V = {s0, . . . , sn−1}, we can define:

γS�
m,D�

m
(S�) = to cell(s0, . . . , (to cell(sn−1, S

�)) . . . )

αS�
m,D�

m
(S�) = from cell(s0, . . . , (from cell(sn−1, S

�)) . . . )

Example 3. Consider the string abstract elements 〈∅, {sl = 2, sa = 4}, ∅〉 when
sizeof(type(s)) = 4. We have: γS�

m,D�
m

= 〈{〈s, 0,u8〉, 〈s, 1,u8〉, 〈s, 2,u8〉},

{〈s, 2,u8〉 = 0, 〈s, 0,u8〉 �= 0, 〈s, 1,u8〉 �= 0}, ∅}〉. The corresponding concrete
state is the set of states in which there is a memory location where the first two
bytes are non zero bytes, the third byte is set to zero and the fourth byte is
unconstrained.

Remark 2. The interest of the definition of γS�
m,D�

m
and αS�

m,D�
m

is twofold: it
enables us to define the semantic of the String abstract domain, but we also
note that both functions to cell and from cell are computable. Therefore the
set of memory locations dealt with by each domain can easily evolve during
the analysis. Moreover with γS�

m,D�
m

and αS�
m,D�

m
being both computable, we

can define a reduction operator between the String abstract domain and the
Cell abstract domain. For efficiency reasons we can remove some information
from the Cell domain, knowing that information from the String domain can be
brought back to the Cell domain. This situation is similar to a reduction between
octagons and the, strictly less expressive, interval domain as proposed in [12].

4.2 Operators and Transformers

Operators. As for the definition of the �S�
m

operator, the join (�S�
m

), meet (�S�
m

)
and widening (�S�

m
) of two abstract elements is defined by applying the according

operator in the underlying numerical abstract domain (after the addition on both
sides of potentially missing variables and the unification of the set of cells).

Example 4. Consider Program 1.1 of the introductory example where
typeof(p) = typeof(q) = u8*, if S�

1 = 〈{p,q}, {p = 0,q = 0, srcl ≥ 0, srca ≥
srcl, destl ≥ 0, desta ≥ destl}, {p �→ {dest},q �→ {src}}〉 is the abstract
state from which we start the analysis then S�

2 = 〈{p,q}, {p = 1,q = 1,
srcl ≥ 1, srca ≥ destl, destl ≥ 1, desta ≥ 1, desta ≥ destl}, {p �→ {dest},
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q �→ {src}}〉 is the abstract state after one analysis of the body of the while loop
(constraint srca ≥ destl comes from the fact that we collect error free execu-
tions). Therefore our analyzer has to perform the join of those two abstract states
before reanalyzing the body of the loop. S�

1 �S�
m

S�
2 = 〈{p,q}, {p = q,p ≤ 1,

p ≥ 0,p ≤ destl, desta ≥ destl,p ≤ srcl,p ≤ srca}, {p �→ {dest},q �→
{src}}〉.
The state transformations induced on our abstract state by the semantic of
the C language is mainly dealt with by the Cell abstraction. In order to ease
the presentation of the relation between the Cell abstraction and the String
abstraction, we add expressions of the form @[v,e] with e ∈ expr and v ∈ V to
the C-- language. Such expressions denote pointers to variable v, with offset e:
((char *) &v) + e.

Example 5. We want to perform the analysis of the statement

stmt = *u8t = *u8(p + *s32(&u + 2))

(where typeof(p) = typeof(t) = u8*) in the following abstract state: S� =
〈{p, 〈u, 2, s32〉, t}, R�, {p �→ s′, t �→ s}〉 where R� is a numerical abstract state
built from the set of constraints we do not need to explicit for this example.

The Cell abstraction rewrites stmt into: *u8@[s,t] = *u8(@[s′,p +
〈u, 2, s32〉]). The operations that remain to be defined are therefore:

S
��*τ@[s,e1] = e2�(S�) where s ∈ V, e1 ∈ expr, e2 ∈ expr, τ ∈ scalar-type

E
��*τ@[s,e]�(S�) where s ∈ V, e ∈ expr, τ ∈ scalar-type

Abstract evaluation. Let us first consider the evaluation of the dereferencing
of a pointer to a string. The analyzer we want to define performs partitioning
on the abstract state during the evaluation of expressions, therefore evaluation
results are pairs (evaluated expression × abstract state). This set is understood
disjunctively and greatly improves the precision of the analyzer. The result of
an evaluation is therefore a finite element of ℘(exp × S�

m). Five cases can be
distinguished during the evaluation of *τ@[s,e]:

– before: τ = u8 and @[s,e] points before the first ’\0’ character. In this
case the evaluation can yield any character that is not ’\0’.

– at: τ = u8 and @[s,e] points at the first ’\0’ character. In this case the
evaluation yields ’\0’.

– after: τ = u8 and @[s,e] points after the first ’\0’ character. In this case
the evaluation can yield any character.

– eerror: τ = u8 and @[s,e] points after the end of the allocated memory. In
such a case we generate an out of bounds error.

– τ �= u8, in this case we over-approximate the evaluation by the range of the
type τ .
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before(e, s, S�) =

{([1; 255],

〈C,R� � {0 ≤ e, e < sl, e < sa}, P 〉}

function tests on offset evaluation
before 0 ≤ o ∧ o < l ∧ o < a [1; 255]
at 0 ≤ o ∧ o = l ∧ o < a 0
after 0 ≤ o ∧ o > l ∧ o < a [0; 255]
eerror o > a ∨ o < 0 ∅

Fig. 2. Evaluation of a dereferencing.

Figure 2 summarizes those cases and gives the example of the before func-
tion. In this table o is the offset of the pointer, l and a are the length and the
allocated size of the string. The definition of these functions can be found in
Appendix A.2. We can now define E

��*τ=u8@[s,e]�(S�) =
⋃{before(e′, s, S�)∪

at(e′, s, S�) ∪ after(e′, s, S�) ∪ eerror(e′, s, S�) | (e′, S�) ∈ E
��e�(S�)} and

E
��*τ �=u8@[s,e]�(S�) = {(range(τ), S�)}.

Abstract transformations. In order to complete the definition of our abstract
interpreter, we need to provide the abstract semantic of an assignment in a
string *τ@[s,e1] = e2. We can distinguish 6 cases in such an assignment:

– set0: τ = u8 and a character that appears before the first ’\0’ is assigned
to ’\0’, in which case we need to set the variable coding for the length of
the string to its new value (the offset of the pointer to the string).

– setnon0: τ = u8 and the first ’\0’ is replaced with a non-’\0’ character,
in which case we need to set the variable coding for the length of the string
to its new value (it can be anything greater than the offset of the pointer to
the string).

– unchanged: τ = u8 and we are performing an assignment that does not
change the position of the first ’\0’ character.
Either because we are replacing a character placed before the first ’\0’ char-
acter by a non-’\0’ character,
or because we are assigning a character after the position of the first ’\0’
character.

– l unchanged: τ �= u8 and we are performing an assignment that does not
change the position of the first ’\0’ character: the only modified characters
are placed after the first ’\0’ character.

– forget: τ �= u8 and the offset of the pointer is less than the length of the
string, in this case the position of the first ’\0’ character is greater than the
offset of the pointer.

– serror: The writing generates an out of bounds, in which cases we generate
an out of bounds warning.

Figure 3 summarizes these cases. In this table l and a denote respectively the
length and the allocated size of string s, o denotes the offset of the pointer, c
denotes the evaluated right-hand side of the assignment, and finally r denotes
sizeof(τ). The definitions of all these functions can be found in Appendix A.3 and
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function tests on offsets tests on rhs transformation
set0 o ≥ 0 ∧ o ≤ l ∧ o < a c = 0 l ← o

setnon0 o ≥ 0 ∧ o = l ∧ o < a c = 0 l ← [o + 1; a]
unchanged o ≥ 0 ∧ o < l ∧ o < a c = 0
unchanged o ≥ 0 ∧ o > l ∧ o < a �
l unchanged o ≥ 0 ∧ o > l ∧ o + r ≤ a �
forget o ≥ 0 ∧ o ≤ l ∧ o + r ≤ a � l ← [o; a]
serror o + r > a ∨ o < 0 � out of bounds

Fig. 3. Summary of transformations.

they are similar to the definition of before in Fig. 2. Using the 6 transformations
aforementioned we can now define:

S
��*τ@[s ∈ V,e1]=e2�(S�) =

•
⊔

{set0(s, e′
1, e

′
2, S

�′′) � serror(s, e′
1, 1, S�′′) � unchanged(s, e′

1, e
′
2, S

�′′)

� setnon0(s, e′
1, e

′
2, S

�′′) | (e′
1, S

�′) ∈ E
��e1�(S�), (e′

2, S
�′′) ∈ E

��e2�(S�′)}
if τ = u8

•
⊔

{l unchanged(s, e′
1, sizeof(τ), S�′) � forget(s, e′

1, sizeof(τ), S�′)�
serror(s, e′

1, sizeof(τ), S�′) | (e′
1, S

�′) ∈ E
��e1�(S�)} if τ �= u8

Example 6. Going back to Example 5, we now assume that R� is a numer-
ical abstract state built from the constraint set: {t < sa, t = sl,p +
〈u, 2, s32〉 < s′

l, s
′
l < s′

a}. Moreover in the following S�[E] denotes the
abstract state S� in which the numerical component has been extended
with the constraints set E, and e denotes the expression p + 〈u, 2, s32〉.
E

��*(@[s′,e])�(S�) = {([1; 255], S�[{e ≥ 0, e < s′
l, e < s′

a}]), (0, S�[{e ≥ 0, e =
s′

l, e < s′
a}]), ([0; 255], S�[{e ≥ 0, e > s′

l, e < s′
a}])}. With a precise enough

numerical domain (e.g. polyhedra), S�[{e ≥ 0, e = s′
l, e < s′

a}], S�[{e ≥ 0, e >
s′

l, e < s′
a}] and S�[{e < 0∨e ≥ s′

a}] form empty partitions, meaning that in this
example, they represent impossible cases. For similar reasons S

��stmt�(S�) will
compute abstract elements that are reduced to ⊥ for functions set0, unchanged
and serror. Therefore: S

��stmt�(S�) = 〈{p, 〈u, 2, s32〉, t}, R�′, {p �→ s′, t �→ s}〉
with R�′ = {t < sa, t + 1 ≤ sl,p + 〈u, 2, s32〉 < s′

l, s
′
l < s′

a}. This assignment
made our abstraction lose the position of the first ’\0’ character, as it wrote a
non-’\0’ character in its place.

String declaration. When encountering a local variable declaration (u8 s[n]
with n ∈ N≥0 and s ∈ V) we can set the allocated size of the string to
n, and set the length to the range [0, n] as shown in the following example:
S

��u8 s[27]�(〈∅, ∅, ∅〉) = 〈∅, {sl ≥ 0, sl ≤ 27, sa = 27}, ∅}〉. The formal defini-
tion is straightforward (see Appendix A.4).
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Example 7. Consider again Program 1.1 from the introductory example, ana-
lyzed starting from an abstract state S� = 〈{p,q}, {p = 0,q = 0, 0 ≤ sl < sa,
0 ≤ s′

l < s′
a}, {p �→ s,q �→ s′}〉. Note that the input state contains the infor-

mation that p and q do not alias. The numerical invariant (the rest of the
abstract state is not modified by the analysis) found at the beginning of line 2
is: {−p + q = 0, s′

l ≥ p + 1, s′
a − s′

l ≥ 0,p ≥ 0, sl ≥ p}. An out of bounds
error is generated at line 3, indeed in the starting abstract state, no hypothesis
is made on the relation between s′

l and sa therefore there might be a buffer
overrun at line 3. Finally the numerical invariant discovered at the end of line 6
is: {s′

l = sl,q = sl,p = sl, s
′
a ≥ sl + 1, sl ≥ 0, sa ≥ sl + 1}, thus showing that we

were able to infer that the two strings pointed to by p and q have the same size
at the end of the analysis.

1void aux1(char** x,int e) {

2
1
*x = malloc(e);

3}
4void aux2(char** x,int e) {

5
2
*x = malloc(e);

6}
7int main() {
8char* x;
9aux1(&x,10); aux1(&x,20);
10aux1(&x,30); aux2(&x,40);
11*x = ’\0’;
12}

Program 1.3. Dynamic
memory allocation

Dynamic memory allocation. As mentioned
in Fig. 1, we allow dynamic memory alloca-
tions. The Cell abstract domain as presented
in Sect. 3 is not able to handle those. To
model dynamic memory allocation, we con-
sider a finite set A of heap addresses, derived
from the allocation site using recency abstrac-
tion [2]: for each allocation site a, one abstract
address, as, is used to model the last block
allocated at a, and another one, aw, to sum-
marize the blocks allocated previously at a.
While we perform weak updates on the later, we can perform strong updates on
the former, which ensures a gain in precision.

Example 8. Consider now Program 1.3, and assume that as and aw (resp. bs

and bw) are addresses for which we perform strong and weak update at program
point 1 (resp. 2). Starting from � the analysis of the body of function main, we
get: 〈{x}, {0 ≤ aw

l ≤ aw
a , 10 ≤ aw

a ≤ 20, 0 ≤ as
l ≤ as

a, as
a = 30, bs

a = 40, bs
l = 0,

x = 0}, {x �→ bs}〉 This state gives us that x points to a memory location
starting from a ’\0’ character. We also note that information about the two first
allocations made at program point a have been collapsed into the aw address.

5 Modular Analysis

1void strcat(char* dest , char* src)
2{
3int i; int j;
4for (i=0; dest[i]!=’\0’;i++) ;
5for (j=0; src[j]!=’\0’;j++)
6dest[i+j] = src[j];
7dest[i+j] = ’\0’;
8}

Program 1.4. strcat

In a C project that manipulates strings,
calls to functions such as strcpy,
strcat are performed many times and
at many different call sites. Perform-
ing a modular analysis of such func-
tions and inferring a summary that is
reusable at subsequent calls has poten-
tial to greatly improve scalability. We chose to perform our modular analysis
in a classic top-down fashion. This ensures that when a function is analyzed,
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we already have some information on its context (in particular, the possible
pointer aliasing and variable range), which helps maintaining the precision of
the function analysis. Therefore we would like to be able to infer a partial func-
tion that, given an input abstract state and a statement, can produce an output
abstract state that is an over approximation of the abstract state we would have
obtained by performing the analysis of the statement. Such a function will be
called a summary. Note that substituting some of the statement analysis by a
call to a summary is sound.

Example 9. Given stmt ∈ stmt, (I�, O�) ∈ (S�
m × S�

m) such that
S

��stmt�(I�) � O�, let us define R� = λ(stmt′, S�), if stmt′ = stmt ∧
S� � I� then O� else undefined. R� is a summary function, built using an
input/output relation. This can be easily generalized using a set of input/out-
put relations. Moreover we can remove constraints on I� before the analysis of
the body of the function in order to improve the reusability of the input/output
relation obtained, the drawback being that the corresponding output abstract
value will be greater thus losing precision. Furthermore computing and storing
new (I�, O�) relations whenever no existing summary could be used can cause
the computation of input/output relations that will never be reused, hence the
importance of generalizing I� in the direction of newly discovered call contexts,
so as to tailor summaries to actual call sites abstract values.

Remark 3. Consider the statement stmt = x = x + 1, and assume our abstract
domain to be the interval domain [6]. For every input state of the form {x �→
[α, β]}, the output state will be of the form {x �→ [α + 1, β + 1]}. A summary
function R� defined on {stmt} × S�

m in the manner of Example 9 (with a finite
list of input/output relations) will never yield an analyzer able to express that
for every input [γ, δ] the output is [γ+1, δ+1]. Indeed the interval domain would
produce a set of input/output relations {[αi, βi] �→ [αi + 1, βi + 1]}, and for an
input [γ, δ] � [α0, β0] we could only use as output abstract state [α0 +1, β0 +1],
thus losing information compared to [γ + 1, δ + 1].

Using relational domains. Relational domains are able to express relations of the
form y = x+1. Such a relation can grasp the semantic of stmt from the previous
remark. We use the relational aspect of the numerical domain to express relations
not only between the values of variables, but also between their values and their
input values. This idea was introduced in [7] and is also used in [11]. Consider
two sets of variables V = {x, y} and V ′ = {x′, y′} and the abstract element:
S� = {x = y′, y = x′}. Moreover assume at input that {x = 3, y = 5}, then using
the meet provided by the numerical domain in order to instantiate S� with input
constraints: {x = 3, y = 5}|{x′,y′, x,y} � {x = y′, y = x′} = {x = 3, y = 5, x′ =
5, y′ = 3} , and finally {x = 3, y = 5, x′ = 5, y′ = 3}|{x,y} = {x′ = 5, y′ = 3}.
This example emphasized how relational domains are used to express precise
input/output relations between numerical variables.

Building the summary function. We feel that two analyses starting from dif-
ferent aliasing patterns should be kept separated in order to improve precision.
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Indeed, analyzing strcat(p,q) (see Program 1.4) without any hypothesis on the
possible aliasing of p and q would result in a huge loss of precision and in false
alarms being raised at every call (p and q might be aliased, which would raise a
segmentation fault). Therefore we must use partitioning of the abstract domain,
performing an analysis for every possible aliasing scheme would result in a com-
binatorial blow up, moreover we might perform analysis for partitions that will
never occur at any call site. For these reasons we will only analyze partitions on
demand. Our goal is therefore to build a summary that is a set of numerical rela-
tions such as defined above. The decision to extend a partition or to build a new
one will be based on the “symbolic” part of the abstract domain. The heuristic
we chose was to separate abstract states with different aliasing, but also those
where the unification of the cell or string sets would induce major differences
in the numerical domain set. Moreover the summary function is extended on
demand, meaning that when the analyzer encounters a function call, it tries to
use an existing relation and if none can be found it builds a new relation or it
generalizes an existing one. Generalization of a relation is done in the following
way: assume known a relation with input I� and an abstract state S�, such that
S� �� I�. If the analyzer deems that S� and I� should be in the same relation
(e.g. because they have the same aliasing), we perform a new analysis of the
function starting from I��(S� � I�), that is a generalization, of I�, by the mean
of the widening operator. This ensures that, given an aliasing, a function will be
analyzed only a finite number of times and that the input of the obtained rela-
tion is tailored to the actual values at call site. Building numerical relations does
not require a transformation of the intra-procedural iterator. Indeed variables
are added to the numerical domain with equality constraints between primed
and unprimed variables. Analysis is then performed as if primed variables were
not present in the numerical domain and they are removed after storing the
summary.

Example 10. Consider the statement s32 x = a + 1 (with typeof(a) = s32),
from input state: 〈{a′}, {a′ = a,a ≥ 0}, ∅〉. The output state is then
〈{a′,x′}, {a′ = a,x′ = a + 1,a ≥ 0}, ∅〉. From this we deduce the relation:
let I�

α be some input state, if the set of cells of I�
α is precisely {a} and if the

numerical domain of I�
α satisfies the condition a = α and if the pointer map is

empty, then the best possible output state is 〈{a,x}, {a = α,x = α + 1}, ∅〉.
Example 11. Consider now the function strcat of Program 1.4. The modular
analysis of this function yields a relation stating that:

if dest points (at offset 0) to some memory location s, with length sl and allo-
cated size sa, and if src points (at offset 0) to some memory location t with
equivalent length and allocated size definition and t �= s

then {s′
l = tl + sl, s

′
a = sa, t′a = ta, t′l = tl, t

′
l ≥ 0, t′l ≤ t′a − 1, t′l ≤ s′

l, s
′
l ≤ s′

a − 1}
Therefore thanks to the s′

l = tl+sl relation, if another call to strcat is performed
in a state where sl = α and tl = β for some α and β, our analyzer, can conclude
(without reanalysis) that the length of the string tl at the end of the analysis is
α + β.
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Remark 4. The following improvements were added:

– in order to improve reusability, we increase the input state by removing some
memory blocks (meaning we leave out constraints on these regions) from the
input state. This plays the role of the framing rule in separation logic. Note
that this improvement does not induce any precision loss.

– when a summary is created, some memory blocks are quantified universally,
therefore when trying to apply a summary we try to unify the memory blocks
from the actual input state with those of the summary input state.

6 Implementation

The analyzer was implemented in OCaml in the novel and still in development
Mopsa framework. Mopsa enables a modular development of static analyzers
defined by abstract interpretation. An analyzer is built by choosing abstract
domains, and combining them according to the user specification. Abstract
domains are either predefined (e.g. Cell abstract domain, loop iterators, . . . )
or user-defined (e.g. String abstract domain). The String abstract domain was
added to the library of existing domains, and a new inter-procedural iterator
was added to implement the modular analysis presented in Sect. 5. The current
analyzer is in development, it is able to analyze all C code fragments presented
in this article, but can not tackle complete realist C projects yet. To test our
modular string analysis, we thus considered the examples and benchmarks used
in previous works on string analysis [1,16].

In related works, Allamigeon et al. mentioned in [1], Sect. 5, that the most
difficult example they had to deal with were calls to strcpy performed on string
placed in a structure, itself placed in a matrix, and accessed via pointer manip-
ulations (see Program 1.6, in Appendix B). This example was successfully ana-
lyzed with the version of strcpy defined in Program 1.1 and with an alternate
implementation found in Qmail (see Program 1.7), the second case was more
complex and required the use of partitioning. Our ability to easily deal with
such manipulations comes from the use of the Cell domain to deal with low-level
features of C.

1char * insert_long (cp)
2char *cp;
3{
4char tbuf[BUFSIZ];
5int i;
6for (i=0;& buf[i]<cp;++i)
7tbuf[i] = buf[i];
8strcpy(&tbuf[i],"(long)");
9strcpy(&tbuf[i + 6], cp);
10strcpy(buf , tbuf);
11return cp + 6;
12}

Program 1.5. insert long

from web2c

We are able to tackle most of the pro-
grams from web2c mentioned in [16] (7 out
of 9, programs that could not be analyzed are
due to the fact that we do not have yet imple-
mented all the features of the C language). The
precision of this analysis (number of errors
and false alarms) is similar to that of [16]
and the execution time of the analyzer was
always below 2 s. As an example consider Pro-
gram 1.5, starting the analysis under the con-
ditions that: cp points to buf, a buffer of size
BUFSIZ before the first ’\0’ character produces alarms at line 9 and 10. Indeed
under such hypothesis strcpy tries to write outside of tbuf. Note moreover
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that both [1,16] defined special abstract transformations for strcpy, whereas
we perform a modular analysis of the function.

7 Related Works

Modular Static Analysis. Cousot and Cousot mentioned in [11] the importance of
performing modular analyses and described several methods to design them. An
efficient way is to use user-provided contracts as in [17]. Our goal was to infer
contracts, as in [14], therefore works closest to ours would be the input/out-
put inference performed by Bourdoncle in [4], however this method was limited
to non-relational (interval) domains, unlike our method, which is thus more
expressive (see Remark 3). In [11], numerical relations are used to represent the
semantic of a set of statements, however this is limited to numerical programs
whereas we extend the method to consider both numbers and pointers, includ-
ing pointer arithmetic. The analyzer proposed by Sotin and Jeannet in [23] is
able to infer input/output relations of the form proposed in Sect. 5. Neverthe-
less they consider a subset of C that does not contain pointer arithmetic, union
types nor pointer casts. Müller-Olm and Seidl [19] and Sharma and Reps [20]
proposed domains specialized in the discovery of numerical input/output rela-
tions on statements, in both cases the relations discovery is performed during the
analysis of the statement by a special domain. In Sect. 5 we mentioned that we
implemented a mechanism to infer framing in order to improve analysis reusabil-
ity, framing mechanisms are fundamentals in tools base on separation logic such
as Smallfoot [3] or Infer [5].

String analysis. One popular technique to avoid buffer overflows is dynamic
analysis. There is a long history of such technique (see [25] for some examples).
These methods induce an overhead cost and do not prevent program failures.
By contrast we employ static analysis. String are arrays of characters, therefore
analysis methods proposed in [8,13] could be used to design static analyzers
handling strings. The three following works are the closest to ours and all follow
the idea introduced in [24] to track the length of strings. Dor et al. [16] tackled
the problem by rewriting string manipulating statements into statements over a
numerical variable language, however this transformation induced the usage of a
number of variables quadratic in the number of strings present in the analysis, in
order to account for pointer aliasing. Simon and King [22] proposed an analyzer
for a sub-C language manipulating strings, and allowing dynamic memory alloca-
tion, but some pointer manipulations could not be handled. They improved their
results in [21], the string domain presented here is a combination of results from
[21] and the cell abstract domain, moreover we provided a way to dynamically
balance strings dealt with by the string abstract domain and by the cell domain.
Additionally string length and allocated size are bound to pointers (whereas
we bind them to the actual memory location containing the string), and this
approach seems to prevent the modular integration of this domain in a full C
language analyzer. Allamigeon et al. [1] also proposed an analyzer that keeps
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track of the position of the first ’\0’ character, however their analysis is non-
relational, can not handle arbitrary pointer cast, and uses static information on
string length, therefore preventing the domain reusability for dynamically allo-
cated strings. We believe that our analysis is the first one that is both modular,
able to reason both on the C at a low-level (including pointer casts and unions),
and at a higher-level (on strings using dedicated abstractions).

8 Conclusion

In this article we proposed an abstract domain able to tackle C string of para-
metric size, built as an add-on to an existing domain [18] capable of dealing with
most of the features of the C language. We have shown how our analyzer can
be tuned dynamically (by choosing whether the String or Cell domain should
deal with certain memory regions, by changing the partitioning heuristics in the
inter-procedural iterator or by changing the underlying numerical domain) so as
to adjust its precision. Upon the aforementioned analyzer we defined an inter-
procedural iterator designed to increase statement analysis reusability without
having to lose precision.

A Tool functions

A.1 Definition of the Galois Connection

In the following st denotes sizeof ◦ typeof.

to cell(s, S�) =

let 〈C,R�, P 〉 = add cells({〈s, 0,u8〉, . . . , 〈s, st(s),u8〉}, S�) in

let [a; b] = range(sl, R
�) ∩ [0; st(s)] in

let (R�
i)i∈[a;b] =R� �{〈s, 0,u8〉�= 0, . . . , 〈s, i−1,u8〉�= 0, 〈s, i,u8〉= 0} in

b⊔

j=0

〈C ′, R�
j , P 〉

from cell(s, S�) =

let 〈C,R�, P 〉 = add cells({〈s, 0,u8〉, . . . , 〈s, st(s),u8〉}, S�) in

let c≥ = min({i | 0 ∈ range(〈s, i,u8〉, R�)} ∪ {st(s)}) in

let c≤ = min({i | {0} = range(〈s, i,u8〉, R�)} ∪ {st(s)}) in

let C� = {〈s′, i, τ〉 ∈ C | s �= s′} in

let R� = R � {sl ≥ c≥, sl ≤ c≤, sa = st(s)} in

〈C�, R�, P 〉
Using functions to cells and from cells, and under the hypothesis that

V = {s0, . . . , sn−1}, we can define the Galois connection between the Cell
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abstract domain and the String abstract domain:

γS�
m,D�

m
(S�) = to cell(s0, . . . , (to cell(sn−1, S

�)) . . . )

αS�
m,D�

m
(S�) = from cell(s0, . . . , (from cell(sn−1, S

�)) . . . )

A.2 Definition of the Evaluation of a Dereferencing

before(e, s, S�) =

{([1; 255], 〈C,R� � {0 ≤ e, e < sl, e < sa}, P 〉}
at(e, s, S�) =

{(0, 〈C,R� � {0 ≤ e, e = sl, e < sa}, P 〉}
after(e, s, S�) =

{([0; 255], 〈C,R� � {0 ≤ e, e > sl, e < sa}, P 〉}
eerror(e, s, S�) =

let R�
1 = R� � {e ≥ sa} � R� � {e < 0} in

test for out of bounds (R�
1 �S�

m
⊥)?

∅

A.3 Definition of the Abstract Postcondition of an Assignment

set0(s, e1, e2, 〈C,R�, P 〉) =

let R�
1 = R� � {e1 ≥ 0, e1 ≤ sl, e1 < sa, e2 = 0} in

let R�
2 = S

��sl ← e1�(R
�
1) in

〈C,R�
2, P 〉

setnon0(s, e1, e2, 〈C,R�, P 〉) =

let R�
1 = R� � {e1 ≥ 0, e1 = sl, e1 < sa, e2 �= 0} in

let R�
2 = S

��sl ← [e1 + 1; sa]�(R�
1) in

〈C,R�
2, P 〉

unchanged(s, e1, e2, 〈C,R�, P 〉) =

let R�
1 = (R� � {e1 ≥ 0, e1 < sl, e1 < sa, e2 �= 0})

� (R� � {e1 ≥ 0, e1 > sl, e1 < sa}) in

〈C,R�
1, P 〉
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l unchanged(s, e1, r, 〈C,R�, P 〉) =

let R�
1 = (R� � {e1 ≥ 0, e1 > sl, e1 + r ≤ sa}) in

〈C,R�
1, P 〉

forget(s, e1, r, 〈C,R�, P 〉) =

let R�
1 = R� � {e1 ≥ 0, e1 ≤ sl, e1 + r ≤ sa} in

let R�
2 = S

��sl ← [e1; sa]�(R�
1)in

〈C,R�
2, P 〉

serror(s, e1, r, 〈C,R�, P 〉) =

let R�
1 = R� � {e1 ≥ sa} in

let R�
2 = R� � {e1 < 0} in

test for out of bounds((R�
2 �S�

m
R�

1) �S�
m

⊥)?

⊥

A.4 String Declaration

S
��u8 s∈ V[n ∈ N≥0]�(〈C,N �, P 〉) = 〈C, S��sl ← [0, n]�(S��sa ← n�(N �)), P 〉

B C Programs

1 typedef struct {
2 char* f;
3 } s;
4 char buf [10];
5

6 void init(s* x) {
7 x[1].f = buf;
8 }
9 int main () {

10 s a[2][2];
11 s* ptr = (s*) &(a[1]);
12 init(ptr);
13 ptr = (s*) &(a[0]);
14 strcpy(a[1][1].f,"strcpy ok");
15 strcpy(a[1][1].f,"strcpy not ok");
16 }

Program 1.6. Program from [1]

1void strcpy(char* s, char* t)
2{
3for (;;) {
4if (!(*s = *t)) return ; ++s; ++t;
5if (!(*s = *t)) return ; ++s; ++t;
6if (!(*s = *t)) return ; ++s; ++t;
7if (!(*s = *t)) return ; ++s; ++t;
8}
9}

Program 1.7. Strcpy from Qmail
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Abstract. Hyperproperties are quickly becoming very popular in the
context of systems security, due to their expressive power. They differ
from classic trace properties since they are represented by sets of sets of
executions instead of sets of executions. This allows us, for instance,
to capture information flow security specifications, which cannot be
expressed as trace properties, namely as predicates over single execu-
tions. In this work, we reason about how it is possible to move standard
abstract interpretation-based static analysis methods, designed for trace
properties, towards the verification of hyperproperties. In particular, we
focus on the verification of bounded subset-closed hyperproperties which
are easier to verify than generic hyperproperties. It turns out that a lot
of interesting specifications (e.g., Non-Interference) lie in this category.

1 Introduction

When reasoning about systems executions, a key point is the degree of approx-
imation given by the choice of the semantics used to represent computations.
Since its origin in 1977, abstract interpretation [12] has been widely used to
describe and formalize approximate systems computations in many different
areas of computer science and, in particular, in program verification. In this
direction, comparative semantics consists in comparing semantics at different
levels of abstraction, always by abstract interpretation [11,17]. The choice of the
semantics is a key point, not only for finding the desirable trade-off between pre-
cision and decidability of program analysis in terms, for instance, of verification
expressiveness, but also because not all the semantics are suitable for proving any
possible specification of interest. In other words, the semantics must describe at
least the program features involved by the specification of interest. For instance,
in the security context, there are specifications that can be expressed as trace
properties, like Access Control, and others which cannot, like Non-Interference1.
In this latter case, it is necessary to specify it as an hyperproperty. Intuitively,
a trace property is defined exclusively in terms of individual executions and, in
general, do not specify any relation between different executions of a system.
1 Access Control is defined over systems (reachable) states. Non-Interference, instead,

is defined over systems input/output (I/O) traces.

c© Springer Nature Switzerland AG 2018
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Instead, an hyperproperty specifies the set of sets of system executions allowed
by the specification, therefore expressing relations between executions. In [9]
it is stated that hyperproperties are able to define every possible specification
concerning systems modeled as sets of traces (of states).

Unfortunately, hyperproperties are not, in general, precisely verifiable with
standard methods, e.g., with standard abstract interpretation-based static anal-
yses. In [25] we face the problem of formally verifying hyperproperties from a
very general point of view, by providing several ingredients necessary for tackling
the problem of verifying hyperproperties. We introduce a classification of hyper-
properties distinguishing between those that can be “precisely” analyzed with
standard program analysis (trace hyperproperties), those that technically could
be analyzed with standard methods (with potentially unsatisfactory results) but
for which an analysis at hyperlevel could gain precision (subset-closed hyper-
properties) and those for which standard static analyses cannot work properly
(all other hyperproperties). Then we formally describe the hyperlevel of seman-
tics by integrating the hyperlevel in the hierarchy of semantics [11], providing a
formal framework for reasoning about hyperproperties of systems.

Contribution. In the present work, program verification of hyperproperties,
which was the main motivation of [25], becomes the central focus. First of all, we
deepen the verification problem of a restriction of subset-closed hyperproperties,
i.e., bounded subset-closed hyperproperties. These hyperproperties are expressive
enough to capture lots of interesting specifications (such as information flow)
but their verification is made easier. In particular, verification of these hyper-
properties is bounded to a fixed input cardinality, restricting the search space
for confutation. Nevertheless, also for this kind of hyperproperties, the analysis
has to move to the hyperlevel for reducing the loss of precision, which, at the
standard level, could make the analysis useless (even if it is still possible).

At this point, we wonder how we can lift, not the whole concrete semantics
(as in [25]), but the interpreter computing the collecting semantics. We pro-
pose a general technique for lifting collecting semantics and we observe that the
semantics proposed in [9] is a particular instance of our general approach. The
added value of tackling the problem from a general and formal point of view is
that it allows us to discuss and prove soundness and completeness properties.

Finally, as it happens in standard analysis where the collecting semantics is
approximated in a domain of observations, we aim at defining hyper abstract
domains, in order to approximate the collecting hypersemantics. With this aim in
mind, we propose a methodology for lifting abstract domains to the hyperlevel.

Structure of the Paper. In Sect. 2, we briefly recall the concept of hyperproperty
and the issue of its verification. Then we introduce the new notion of bounded
subset-closed hyperproperty. In Sect. 3, we deal with the problem of lifting the
collecting semantics of a given static analysis at the level of sets of sets. In
Sect. 4, we describe general patterns for building (hyper) domains, suitable for
the verification of hyperproperties. In Sect. 5, we show how to instantiate the
methodologies introduced, in order to obtain sound and complete static analyses
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for bounded subset-closed hyperproperties. Finally, in the last two sections, we
have related works, future research directions and conclusions.

2 Concerning Hyperproperties Verification

Let DEN be the set of all possible denotations for systems executions (e.g., reach-
able states, pairs of input and output states, finite sequences of states, etc.). We
recall that while a trace property P, i.e., a property whose satisfaction depends
on single executions, is modeled as the set of all executions satisfying it (hence
P ∈ ℘(DEN)), an hyperproperty Hp, verifiable on sets of executions, is modeled
as the set of all sets of executions satisfying it (hence Hp ∈ ℘(℘(DEN))).

2.1 Bounded Subset-Closed Hyperproperties

In [25], we define the following hyperproperties classification:

TRCH � {Hp ∈ ℘(℘(DEN)) | ℘(
⋃
Hp) = Hp}

SSCH � {Hp ∈ ℘(℘(DEN)) | X ∈ Hp ⇒ (∀Y ⊆ X .Y ∈ Hp)}

The first are called trace hyperproperties and the second subset-closed hyper-
properties. Trace hyperproperties are isomorphic to trace properties, namely
they corresponds to all and only the hyperproperties verifiable on single execu-
tions, i.e., they do not need the comparison of different executions. Subset-closed
hyperproperties are those hyperproperties that can be refuted just by showing
an arbitrary subset of the semantics that does not satisfies the hyperproperty
(witness of refutation).

In this paper, we introduce a stronger notion of subset-closed hyperproperty,
allowing us to further restrict the search space for possible refuting witnesses.

Definition 1 (k-Bounded Subset-Closed Hyperproperty)

SSCHk � {Hp ∈ ℘(℘(DEN)) | X /∈ Hp ⇔ (∃Tk ⊆ X . (|Tk| ≤ k ∧ Tk /∈ Hp))}

The set Tk is the witness of refutation, namely a set of traces of cardinality
at most k ∈ N violating the property. In other words, in a k-bounded subset-
closed hyperproperty, every set of traces not satisfying the hyperproperty has
a refuting witness with at most k traces. This means that, in order to refute
the hyperproperty, we need to exhibit a counterexample consisting in at most
k traces. Formally, suppose Hp ∈ SSCHk, if we find {d1, d2, . . . dk} ⊆ X such that
{d1, d2, . . . dk} /∈ Hp, then we can imply that X /∈ Hp. Hence X |= Hp, meaning
X satisfies Hp, iff {{d1, d2, . . . dk} | d1, d2, . . . dk ∈ X} ⊆ Hp. Clearly, it turns out
that a trace hyperproperty is 1-bounded, namely TRCH = SSCH1.

It is also clear that the union of all the k-bounded subset-closed hyperprop-
erties and the unbounded subset-closed hyperproperties (i.e., those with k = ω)
is precisely the set of all the subset-closed hyperproperties.

Proposition 1. It holds that SSCH =
⋃

k≤ω SSCHk.
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For every Hp ∈ SSCH we can define a refuting set RHp, namely a set of sets
of traces representing the witnesses for refuting the hyperproperty. These sets
are inspired by the prefixes representing the “bad thing” in safety properties.
It is possible to define different refuting sets for a given hyperproperty, since
when a set X /∈ Hp then we have that X ∪ Y /∈ Hp, by subset-closure. A SSCH

hyperproperty Hp is violated iff the given set of traces is a superset of an element
in RHp. So Hp can be characterized as:

∀X ∈ ℘(DEN) . (∃Tr ∈ RHp . Tr ⊆ X) ⇔ X /∈ Hp (1)

If Hp ∈ SSCHk (i.e., it is bounded) then we can define the minimal refuting set
Rmin

Hp (i.e., the one containing the sets with minimal cardinality) characterizing
the hyperproperty. This means that for every set violating the hyperproperty,
Rmin

Hp contains only its minimal representative (w.r.t. ⊆). In particular, every
element in Rmin

Hp has cardinality k.

Example 1. Let St = Var −→ Z and DEN = St × St. Non-Interference [10,21],
parametric on a security variables typing Γ ∈ Var −→ {L,H}, is:

NI � {X ∈ ℘(DEN) | ∀d, d′ ∈ X . (d� =L d′
� ⇒ d� =L d′

�)}

where d� and d� are the projections on the first and last element of the pair d,
respectively. The equivalence =L holds for memories agreeing on the values of
public (L) variables. NI is in SSCH2, namely X |= NI iff {{d, d′} | d, d′ ∈ X} ⊆ NI.
Hence, if we find a pair of interfering executions, i.e., {d, d′} �∈ NI, then we prove
that X �|= NI. Indeed, the minimal refuting set for Non-Interference is:

Rmin
NI �

{
{d, d′} ∈ ℘(DEN)

∣
∣ d� =L d′

� ∧ d� �=L d′
�
}

End example.

Note that substituting ⊆ with the prefix-set relation �2 in (1) we obtain the
minimal refuting set for an hypersafety.

2.2 The Safety/Liveness Dichotomy

In the context of trace properties, a particular kind of properties are the safety
ones [2], expressing the fact that “nothing bad happens”. These properties are
interesting because they depend only on the history of single executions, meaning
that safety properties are dynamically monitorable [2]. Similarly, safety hyper-
properties (or hypersafety) are the lift to sets of safety properties. This means
that, for each set of executions that is not in a safety hyperproperty, there exists
a finite prefix-set of finite executions (the “bad thing”) which cannot be extended
for satisfying the property. Dually, liveness (trace) properties express the fact
that “something good eventually happens”, namely the systems satisfying a live-
ness property are those that, eventually, exhibit a good behavior. Again, liveness
2 Here X � Y iff for every d ∈ X exists d′ ∈ Y such that d is a prefix of d′ [9].
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hyperproperties (or hyperliveness) are the lift to sets of liveness properties. This
means that a set of finite traces can be extended to a set of infinite traces sat-
isfying the property. An interesting aspect of the safety/liveness dichotomy is
that every trace property can be expressed as the intersection of a safety and a
liveness one. This also holds for hyperproperties, i.e., every hyperproperty can
be expressed as the intersection of a hypersafety and a hyperliveness one [9,28].

Another particular class of hyperproperties are the k-safety hyperproperties
(or k-hypersafety). They are safety hyperproperties in which the “bad thing”
never involves more than k executions [9]. This means that it is possible to check
the violation of a k-hypersafety just observing a set of k executions (note that
1-hypersafeties are exactly safety properties). This is important for verification,
in fact, it is possible to reduce the verification of a k-hypersafety on a system S
to the verification of a safety on the self-composed system Sk [9].

It turns out that all hypersafety are subset-closed [9]. But also some hyper-
liveness are subset-closed, in fact every trace hyperproperty is subset-closed and
hence every liveness property, which is an hyperliveness, is in SSCH. Every k-
hypersafety is k-bounded and every liveness is a 1-bounded subset-closed hyper-
property. But there are also other hyperliveness which are bounded, as we can
see in the following example.

Example 2. Suppose now that executions denotations are infinite sequences of
states, namely DEN = Stω. Suppose also that the systems of interest can receive
requests and can provide responses to these requests. We denote with the pred-
icate Req(d, i) the fact that a system, in the execution d, has received a request
at time i, namely in the state di. Analogously, we denote with the predicate
Resp(d, i, j) the fact that the system has provided a response at time j to the
request received at time i. Then we can define a policy saying that if the execu-
tions of a system receive a request at time i then they have to provide a response
at time j, meaning that if they receive a request at the same time then they have
to respond at the same time. Formally:

SyncR �
{

X ⊆ Stω
∣
∣
∣
∣ ∀d, d′ ∈ X ∀i ∈ N .

(Req(d, i) ∧ Req(d′, i)) ⇒
∃j ∈ N . (Resp(d, i, j) ∧ Resp(d′, i, j))

}

It is easy to note that SyncR is subset-closed but it is not an hypersafety. Indeed
it is an hyperliveness, but it is also a bounded subset-closed hyperproperty. In
particular, it is in SSCH2: In order to refute it, it is sufficient to look for sets of
(infinite) sequences with cardinality 2. End example.

Example 2 proves that there are hyperproperties which are not k-hypersafety
but are k-bounded subset-closed (other than the trivial liveness properties). In
Fig. 1 we have a graphical representation of how we can classify hyperproperties,
w.r.t. the safety/liveness dichotomy and subset-closure.

2.3 Exploring the Hyperproperties Verification Issue

Let us now consider as systems the programs P written in a given imperative
deterministic programming language, with assignments, conditionals and while
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HL HSL S k-HS

Trace hyperproperties

Bounded SSC hyperproperties
SSC hyperproperties

HS: hypersafety
k-HS: k-hypersafety
S: safety (1-hypersafety)
HL: hyperliveness
L: liveness

Fig. 1. Classification of hyperproperties.

loops. Let DEN be the domain of denotations for program behaviors, then S[P] ∈
℘(DEN) denotes the semantics of P, intended as the strongest trace property of
P. In this case properties of P are those in ℘(DEN), while hyperproperties of
P are those in ℘(℘(DEN)). For instance, if DEN = St � Var −→ Z, i.e., states
are represented as mappings from variables to values, we cannot express Non-
Interference (comparing traces of executions sharing the same low inputs) but we
can express Access Control (checking whether in a program point an access has
been granted or not). For defining Non-Interference we need, at least, denotations
representing the programs input/output (I/O) relation, e.g., DEN = St × St.

In the context of program verification of (trace) properties, the satisfaction is
given by set inclusion, i.e., a program P satisfies a property P ∈ ℘(DEN), written
P |= P, iff S[P] ⊆ P. For hyperproperties, P |= Hp iff S[P] ∈ Hp iff {S[P]} ⊆ Hp.
In particular, {S[P]} ∈ ℘(℘(DEN)) is the strongest hyperproperty of P [25].

In general, the semantics of a program is not computable, hence practical
verification methods rely on approximations. In standard trace properties ver-
ification, we compute an over-approximation, e.g., by abstract interpretation,
O ⊇ S[P] which is such that, if O ⊆ P, then we can soundly imply P |= P.
Unfortunately, over-approximations on ℘(DEN) do not always work properly with
hyperproperties. In particular, it formally does work for Hp ∈ SSCH, in fact if
we prove that O ⊇ S[P] and O ∈ Hp, then by subset-closure of Hp we also have
that S[P] ∈ Hp. Hence, we can conclude that standard approaches for semantic
approximation may work also for hyperproperties, clearly taking into account the
imprecision due to the semantics approximation. For instance, suppose DEN = St,
and suppose to be interested in verifying the hyperproperty

PP � {X ∈ ℘(Z) | ∀d1, d2 ∈ X . Par(d1) = Par(d2) ⇒ Pos(d1) = Pos(d2)}

where Par is the parity while Pos is the sign of numerical values, respectively.
Then, suppose S[P1] = {1, 3, 4}3, in this case it is clear that P1 |= PP, but

also the abstract computation of P1 computing the sign of the set (in this case

3 For the sake of simplicity, we suppose the programs Pi have only one variable and
the state is denoted by the set of its possible values.
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positive) would allow to verify the hyperproperty for P1 (if all computed values
have the same sign, PP is trivially verified). It is anyway clear that, as usual
in abstraction, we lose precision since, for example, the program P2 such that
S[P2] = {−1,−3, 4} satisfies PP, but the sign abstraction of the semantics would
return �, not allowing to verify PP.

Moreover, real problems of precision arise, also for SSCH, when, due to the
approximation, we move verification on domains less expressive than DEN. For
instance, when DEN is defined on traces of states (e.g., I/O traces St2 or partial
traces St∗) and the verification method deals with states only. Indeed, if the
abstract computation could approximate sets of traces as sets of traces, then
still we could reason as before, but sets of traces are usually approximated as
a trace of sets, computing the trace of reachable states. This approximation
completely loses the trace information necessary for verifying a hyperproperty
defined on a trace domain of denotations. In Fig. 2 it is graphically provided
the intuition that, by approximating the collecting semantics at the hyperlevel,
we obtain a more precise approximation, since we can keep distinctions among
reachable states allowing us to verify hyperproperties, with sufficient precision,
even in presence of approximation.

Example 3. Consider, for instance, Non-Interference of Example 1, where states
in St are denoted as tuples of values, namely a state [h/h, l/l] is denoted as
〈h, l〉. Let P � h := 0 ; l := 2l and Γ (h) � H, Γ (l) � L. Now consider I �
{〈h, l〉 | l ∈ {1, 2, 3, 4}, h ∈ Z}, then the resulting semantics of the program,
starting from I, is {〈h, l〉〈0, 2l〉 | l ∈ {1, 2, 3, 4}, h ∈ Z}. Any over-approximation
of this set in ℘(DEN) allows us to soundly verify NI, e.g., if we abstractly compute,
in output, the set {〈h, l〉〈0, 2l〉 | h, l ∈ Z} then we can still soundly verify NI.
But, any approximation on traces of sets (i.e., on ℘(St)2), e.g., the trace of sets
{〈h, l〉 | l ∈ {1, 2, 3, 4}, h ∈ Z}{〈0, l〉 | l ∈ {2, 4, 6, 8}}, losing the I/O relation of
traces, becomes useless for NI verification. In this case, we need to move towards
the hyperlevel of semantics, in order to not lose too much information, necessary
to verify the hyperproperty. In the example, the possibility to compute the trace
of (hyper)sets {{〈h, l〉 | h ∈ Z} | l ∈ {1, 2, 3, 4}}{{〈0, l〉} | l ∈ {2, 4, 6, 8}} would
allow us to verify NI observing that, independently from a fixed low input and
from any high input, the low output is always a constant, being the output of
the resulting trace a set of sets of states sharing the same low value. Graphically:

〈1, 1〉
〈2, 1〉
〈3, 1〉

...

〈1, 2〉
〈2, 2〉
〈3, 2〉

...

〈1, 3〉
〈2, 3〉
〈3, 3〉

...

〈1, 4〉
〈2, 4〉
〈3, 4〉

...

〈0, 1〉
〈0, 2〉
〈0, 3〉
〈0, 4〉

�P�

NI�

〈1, 1〉
〈2, 1〉
〈3, 1〉

...

〈1, 2〉
〈2, 2〉
〈3, 2〉

...

〈1, 3〉
〈2, 3〉
〈3, 3〉

...

〈1, 4〉
〈2, 4〉
〈3, 4〉

...

〈0, 1〉
〈0, 2〉
〈0, 3〉
〈0, 4〉

�P�h

NI�

End example.
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S[P] ⊆ ℘(DEN) = ℘(St∗)

Computing approximated
semantics on ℘(St)

Computing approximated
semantics on ℘(℘(St))

More precision

Fig. 2. The intuition: Why computing approximation on ℘(℘(St)) is more precise.

3 Lifting the Collecting Semantics

In this section, we describe how we can move the computation of a seman-
tics into the hyperlevel, in order to be able to approximate the verification of
hyperproperties, still keeping as much precision as possible, together with anal-
ysis feasibility. We provide the lifting framework parametric on the domain of
denotations of the collecting semantics to lift, namely we consider a collecting
semantics defined in ℘(DEN) and we show how to lift it on ℘(℘(DEN)). Indepen-
dently from the domain of the hyperproperty to verify, it is the verification and
approximation process that fixes the relation between denotations domains, as
shown in Fig. 2. In the figure, the semantics and the hyperproperty to verify
are defined on ℘(St∗), while we lift into the hyperlevel a collecting semantics
computed on ℘(St), moving the computation at the hyperlevel, i.e., on ℘(℘(St)).

As we have observed, in order to verify hyperproperties, we may need to move
program semantics into the hyperlevel. In [25], we describe the links between
standard and hypersemantics of a transition system. In this section, we show
how to lift a given collecting semantics4, defined on sets, in order to obtain
a corresponding collecting hypersemantics, defined on sets of sets, suitable for
hyperproperties verification. In this work, we consider big-step semantics, but
the whole framework can be generalized to other types of semantics.

Let L be a deterministic imperative language whose set of statements is StmL

(single statements without composition). Given the domain of denotations DEN,
the semantic computation is defined by a semantic operator inductively defined
on the syntax of L, i.e., f L ∈ StmL × DEN −→ DEN. Let P ∈ L be a program
written in L, its concrete (big-step) semantics is a function 〈|P |〉 ∈ DEN −→ DEN

defined compositionally on the statements of P, i.e., it is computed by composing
the application of f L to the program statements. For instance, letP = h := 0 ; l :=
2l, the concrete semantics is 〈|P |〉d = f L(l := 2l, f L(h := 0, d)). In particular,
〈|P |〉 is defined also in terms of the semantics of arithmetic expressions, denoted
〈|a |〉 ∈ DEN −→ Z, and of boolean expressions, denoted 〈|b |〉 ∈ DEN −→ B.

4 Namely a semantics function, defined on a program P syntax, computing S[P].
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3.1 Lifting the (Collecting) Interpreter

The collecting semantics �P� ∈ ℘(DEN) −→ ℘(DEN) is the additive lift (i.e., the
set of the direct images of the elements in input) to sets of denotations, namely
�P�X = {〈|P |〉d | d ∈ X}. As far as expression semantics is concerned, for boolean
expressions �b� ∈ ℘(DEN) −→ ℘(DEN) is a filtering function, namely �b�X � {d ∈
X | 〈|b |〉d = tt}, while for arithmetic expressions it is the additive lift of the
concrete semantics. The collecting semantics is computed by composing a new
operator F L ∈ StmL × ℘(DEN) −→ ℘(DEN), which is the additive lift of f L. For
example, the semantics for assignments is �x := a�X = F L(x := a,X) � {f L(x :=
a, d) | d ∈ X}. The while statement operator is defined as F L(while b {P },X) �
�¬b�(lfp⊆

∅
W), where W � λT .X ∪ �P��b�T . It can be shown that W is a

monotone function over the complete lattice 〈℘(DEN),⊆,∪,∩, DEN, ∅〉 hence its
least fixpoint exists and it can be computed as

⋃
n≥0 Wn(∅), with W0 � λX . ∅

and Wn+1 � λX . W ◦ Wn(X). In this case, this least fixpoint is precisely the
additive lift of f L, namely F L(while b {P },X) = {f L(while b {P }, d) | d ∈
X}. Note that, if I ⊆ DEN is the set of all possible inputs of the program,
the collecting semantics �P� from I computes the strongest program property
S[P] ∈ ℘(DEN), i.e., S[P] = �P�I.

At this point, we have to move semantics towards the hyperlevel, namely on
℘(℘(DEN)), since, when we are interested in hyperproperties, we may need to
define a collecting hypersemantics �P�h ∈ ℘(℘(DEN)) −→ ℘(℘(DEN)). In this case,
we need to lift the semantic operator F L, and we can show several ways for doing
it. Suppose to have the filtering function �b�h ∈ ℘(℘(DEN)) −→ ℘(℘(DEN)) for
boolean expressions, defined as �b�hX � {�b�X | X ∈ X}. The definition of the
collecting hypersemantics is just the additive lift (to sets of sets) of F L for every
statement, except for the while case. Indeed, we can observe that, at hyperlevel,
the semantic operator F L

h for the while statements does not coincide with the
additive lift of F L, which would be F L

h (while b {P },X ) � �¬b�h(lfp⊆
∅

Wh) with
Wh � λT .X ∪ �P�h�b�hT . Unfortunately, this semantics is not sound being
such that �P�X /∈ �P�h{X}. This is a problem, since when �P�I �∈ �P�h{I}, from
�P�h{I} ⊆ Hp we cannot infer anything about the property validation.

Example 4. Let DEN = Var −→ Z and P = while (x < 4) { x := x + 1 }. Since P
has only one variable, we simplify the notation by denoting [x/v] just by v and
the set of functions {[x/v1 ], . . . [x/vn

]} by {v1, . . . vn}. The collecting semantics,
from I = {2, 5}, is �P�{2, 5} = {4, 5}, computed as {2, 5} W−→ {4, 5} where

W0 = ∅; W1 = {2, 5}; W2 = {2, 3, 5}; W3 = {2, 3, 4, 5}

The trivial additive lift of the while collecting semantics would be �P�h{{2, 5}}=

{∅, {4}, {5}}, computed as {{2, 5}} Wh−−→ {∅, {4}, {5}} where

Wh
0 = ∅; Wh

1 = {{2, 5}}; Wh
2 = {{3}, {2, 5}}; Wh

3 = {{3}, {4}, {2, 5}};

Wh
4 = {∅, {3}, {4}, {2, 5}}
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From the iterates of Wi and Wh
i we can observe the monotonicity (and the

extensivity) of W and Wh, but the hypersemantics is not sound, because
�P�{2, 5} = {4, 5} �∈ {∅, {4}, {5}} = �P�h{{2, 5}}. End example.

In order to lift the while semantics, we propose the following three possibil-
ities. We define the collecting hypersemantics operator for while statements as
F L

h (while b {P },X ) � �¬b�h(lfp⊆
∅

Wh) where:

1. (Bcc lift) Wh � λT . ℘(
⋃

X ∪ �P��b�
⋃

T )
2. (Inner lift) Wh � λT . {∅} ∪ (X � �P�h�b�hT )
3. (Mixed lift) Wh � λT .X ∪ {�P��b�T ∪ �¬b�T | T ∈ T }

The Bcc lift defines the collecting hypersemantics as the best complete con-
cretization [25] of the while semantics. The Inner lift combines by union, at
each step of computation, all the possible results. In particular, the binary oper-
ator � ∈ ℘(℘(DEN))×℘(℘(DEN)) −→ ℘(℘(DEN)), defined as X �Y � {X ∪Y | X ∈
X ∧Y ∈ Y}, is a slight modification of ∪� , introduced in [25] and it is an instance
of the construction presented in [14] (Page 4, example 1). Moreover, the result-
ing semantics corresponds to the one proposed in [20] for analyzing analyses.
Finally, the Mixed lift is the instantiation of the hypercollecting semantics of [4]
to a generic trace denotations domain DEN. Each while operator Wh is a mono-
tone function over the complete lattice 〈℘(℘(DEN)),⊆,∪,∩, ℘(DEN), ∅〉, hence its
least fixpoint exists and it can be computed as shown before.

Unfortunately, none of the previous definitions computes the additive lift of
F L, namely {F L(while b {P },X) | X ∈ X} �= F L

h (while b {P },X ), as we can
observe in the next example.

Example 5. Consider P of Example 4. The Bcc lift collecting hypersemantics is
�P�h{{2, 5}} = ℘({4, 5}), computed as {{2, 5}} Wh−−→ ℘({4, 5})} where

Wh
0 = ∅; Wh

1 = ℘({2, 5}); Wh
2 = ℘({2, 3, 5}); Wh

3 = ℘({2, 3, 4, 5})

The Inner lift collecting hypersemantics is �P�h{{2, 5}} = {∅, {5}, {4, 5}}, com-

puted as {{2, 5}} Wh−−→ {∅, {5}, {4, 5}} where

Wh
0 = ∅; Wh

1 = {∅, {2, 5}}; Wh
2 = {∅, {2, 5}, {2, 3, 5}};

Wh
3 = {∅, {2, 5}, {2, 3, 5}, {2, 3, 4, 5}}

The Mixed lift collecting hypersemantics is �P�h{{2, 5}} = {{5}, {4, 5}}, com-

puted as {{2, 5}} Wh−−→ {{5}, {4, 5}} where

Wh
0 = ∅; Wh

1 = {{2, 5}}; Wh
2 = {{2, 5}, {3, 5}}; Wh

3={{2, 5}, {3, 5}, {4, 5}}

From the iterates Wh
i we observe the monotonicity (extensivity) of Wh. All the

semantics are sound, because �P�{2, 5} ∈ �P�h{{2, 5}}. End example.
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3.2 Soundness and Completeness Issues

Let �P�
b
h, �P�

i
h and �P�

m
h be the collecting hypersemantics defined in terms of the

Bcc, Inner and Mixed lifts, respectively, for the while case of F L

h , and defined
as the additive lift to ℘(℘(DEN)) of F L for all the other statements. Then, all
these collecting hypersemantics are sound.

Theorem 1 (Soundness). For every X ∈ ℘(DEN) we have

�P�X ∈ �P�
b
h{X} and �P�X ∈ �P�

i
h{X} and �P�X ∈ �P�

m
h {X}

This results tells us that these hypersemantics can be soundly used for the verifi-
cation of hyperproperties of P, unfortunately adding some further spurious infor-
mation not directly due to approximation, i.e., spurious elements of ℘(℘(DEN)).
This is somewhat new: Usually the source of incompleteness is the abstraction
process (of an abstract semantics), not the collecting semantics itself. Luckily, for
subset-closed hyperproperties this is not a real concern. In fact when Hp ∈ SSCH,
we have that P |= Hp iff ℘(�P�I) ⊆ Hp. Furthermore, the three collecting hyper-
semantics introduced above, are related as follows.

Proposition 2. ∀X ∈ ℘(℘(DEN)): �P�
m
h X ⊆ �P�

b
hX and �P�

i
hX ⊆ �P�

b
hX .

Hence we can state that all the proposed collecting hypersemantics are complete
verification methods for bounded subset-closed hyperproperties.

Theorem 2 (Completeness). Let Hp ∈ SSCHk (for some k ∈ N), then:

P |= Hp ⇔ �P�
b
h{I} ⊆ Hp ⇔ �P�

i
h{I} ⊆ Hp ⇔ �P�

m
h {I} ⊆ Hp

The theorem follows from the fact that all three semantics, computed from I,
are contained in ℘(�P�I). So, even if the collecting hypersemantics inserts spu-
rious information, this information does not lower the precision of the analy-
sis, when we deal with bounded subset-closed hyperproperties. Note that the
Theorem 2 also holds with k = ω, i.e., it also holds for unbounded subset-closed
hyperproperties.

4 Lifting Abstract Domains

Once we have lifted the semantics, in order to perform verification we need to
compute the semantics on an abstract domain5, namely we have to compute an
abstract semantics. In the classic framework of abstract interpretation [12,13] we
compute an over-approximation O ⊇ �P�I of a program semantics, allowing us
to soundly verify trace properties. This is obtained by means of an abstraction
of the concrete domain, where the abstract semantics plays the role of the over-
approximation. Let P be a program, A an abstract domain of ℘(DEN), forming
5 A is an abstract domain of C if there exists a Galois connection (〈C, �〉, α, γ, 〈A, �〉),

where α, γ are monotone maps such that: ∀c ∈ C, a ∈ A . α(c) � a ⇔ c � γ(a).
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the Galois connection (〈℘(DEN),⊆〉, α, γ, 〈A,�〉), P a trace property in ℘(DEN)
and �P�

A an abstract interpretation of �P� on A, i.e., �P�X ⊆ γ ◦ �P�
A ◦ α(X).

Then γ ◦ �P�
A ◦ α(I) ⊆ P implies P |= P. Similarly, an over-approximation

O ⊇ �P�h{I} leads to a sound verification mechanism for hyperproperties.
Let Ah be an abstract domain of ℘(℘(DEN)), forming the Galois connection
(〈℘(℘(DEN)),⊆〉, αh, γh, 〈Ah,�h〉), Hp ∈ ℘(℘(DEN)) an hyperproperty, �P�h a
sound collecting hypersemantics, i.e., �P�I ∈ �P�h{I}, and �P�

Ah

h an abstract
interpretation of �P�h on Ah, i.e., �P�hX ⊆ γh ◦ �P�

Ah
h ◦ αh(X ). Then:

γh ◦ �P�
Ah

h ◦ αh({I}) ⊆ Hp implies P |= Hp

Hence, at this point we wonder how we can define/lift abstract domains at the
hyperlevel, i.e., on sets of sets, in order to approximate hypersemantics, i.e.,
semantics lifted to the hyperlevel.

4.1 The Compositional Nature of Hyper Abstract Domains

An hyper abstract domain, or hyperdomain, can be decomposed basically into
two parts: an inner abstraction and an outer abstraction. Note that we are not
talking about a generic abstract domain on sets of sets: Our focus is on the
verification of hyperproperties, hence we need domains, on sets of sets, which
represent information concerning programs, whose concrete semantics is on sets.
Let us consider Non-Interference (NI) as running example, for providing the
intuition beyond these concepts. NI requires that, for each set of computations
agreeing on the the same low input, the low output is constant.

The inner abstraction approximates sets of denotations in DEN, namely it
says which information about program executions should be observed. In NI,
for each set of computations we are interested in the constant analysis on low
variables, i.e., each set of computations (starting from states agreeing on the low
variables) should be contained in a set of the form Cl � {〈h, l〉 | h ∈ Z}, l ∈ Z.

The outer abstraction approximates sets of sets of denotations, namely it
says which information about programs semantics is interesting, in other words,
which is the desired invariant among all the sets of computations collected. In
the example, we require that all the possible resulting sets are constants in the
low variable, hence they are a set in ℘({Cl | l ∈ Z}).

It should be clear that, the outer abstraction is defined at the hyperlevel
and therefore in order to compose it with the inner one, defined at the standard
level ℘(DEN), we need to lift the inner abstraction to ℘(℘(DEN)). In this case, the
lifting function just leverages the domain at the level of sets of sets. In the case
of hyperdomains lifting a domain does not introduce computability problems,
hence we can always use the additive lift. Formally, suppose the inner abstraction
A is given by the Galois connection

〈℘(DEN),⊆〉 −−−→←−−−
αi

γi 〈A,�〉
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The lifting transformer L ∈ (℘(DEN) −→ A) −→ (℘(℘(DEN)) −→ ℘(A)) is the
transformer addively lifting functions, namely L � λf . λX . {f(X) | X ∈ X}
[11]. Let us consider the transformer G ∈ (℘(DEN) −→ A) −→ (℘(A) −→ ℘(℘(DEN)))
[11] defined as G � λf . λY . {X | f(X) ∈ Y }. Due to elementwise set abstraction,
we have that L(αi) and G(αi) form a Galois connection [11], in particular we
have

〈℘(℘(DEN)),⊆〉 −−−−−→←−−−−−
L(αi)

G(αi) 〈℘(A),⊆〉

We obtained so far, starting form the inner abstraction defined on the standard
level and applying the additive lift, the hyper domain on which we can define the
outer abstraction. In other words, the outer abstraction is a further abstraction
of ℘(A) given by the Galois connection

〈℘(A),⊆〉 −−−→←−−−
αo

γo 〈Ah,�h〉

This outer abstraction captures the information that must be invariant among
all the collected sets of executions (abstracted in A), looking, by construction,
for invariants among elements of A. Finally, by composition, we have that

〈℘(℘(DEN)),⊆〉 −−−−−−−−→←−−−−−−−−
αo◦L(αi)

G(αi)◦γo 〈Ah,�h〉

Note that, it is not mandatory, for the inner abstraction A, to form a Galois con-
nection. Indeed, in order to apply the lifting transformer, the abstraction func-
tion αi may also fail additivity [11]. Note that, the abstract domains defined in
[4] are instances of the pattern proposed here. For instance, cardinality abstrac-
tion crdval ∈ ℘(Z) −→ [0,∞] (which is not additive) corresponds to our inner
abstraction, while αmax ∈ ℘([0,∞]) −→ [0,∞] computing the least upper bound,
i.e., αmax(X) � max(X), is the outer abstraction. The resulting abstraction
is obtained by lifting the inner one and composing it with outer one, i.e.,
αcrdval ∈ ℘(℘(Z)) −→ [0,∞] coincides with αmax ◦ L(crdval), which is the pro-
cess we have generalized above. In the following, we give some examples of hyper
abstract domains obtained starting from initial known abstractions on sets.

4.2 Dealing with Constants Propagation

Suppose to define an hyperanalysis on the concrete domain ℘(℘(Z)), and to be
interested in constants propagation at the hyperlevel, namely we aim at verifying
whether all the sets of computations provide constant results. This corresponds
intuitively to an inner abstraction which is the hyperlevel constant propaga-
tion (lifted as shown before), and an outer abstraction retrieving information
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about the constant analysis at standard level. The standard domain of constants
C� Z∪{⊥,�} is defined by the Galois insertion6 (〈℘(Z),⊆〉, αc, γc, 〈C,�〉) where
c1 � c2 � (c1 = ⊥ ∨ c1 = c2 ∨ c2 = �) and

αc � λX .

⎧
⎪⎨

⎪⎩

⊥ if X = ∅

n if X = {n}
� otherwise

γc � λc .

⎧
⎪⎨

⎪⎩

∅ if c = ⊥
{n} if c = n

Z otherwise

In order to get an abstract domain on sets of sets we rely on the lifting trans-
former, obtaining the following Galois insertion

〈℘(℘(Z)),⊆〉 −−−−−→−→←−−−−−−
L(αc)

G(αc) 〈℘(C),⊆〉

At this point, to look for constant invariants at the hyperlevel, namely in the
outer abstraction, means to check whether all the collected sets of values are
constants. Hence, we need to retrieve information about what there is inside the
analysis at standard level. This is obtained by using the Galois insertion

〈℘(C),⊆〉 −−−−→−→←−−−−−
αcc

γcc 〈℘(Z) ∪ {C},⊆〉 where αcc(X) �
{

X if X ⊆ Z

C otherwise
γcc � id

Obtaining, by composition, the insertion

〈℘(℘(Z)),⊆〉 −−−−−−−−→−→←−−−−−−−−−
αcc◦L(αc)

G(αc)◦γcc 〈℘(Z) ∪ {C},⊆〉) (2)

In this example, we have an outer abstraction that simply checks whether all
the collected sets of computations satisfy the constant property for numerical
variables, namely all the sets of computations produce constant values. We can
generalize the same idea to any inner abstraction, namely we can build an outer
abstraction checking whether all the collected sets of computations constantly
satisfy an abstract property, fixed by the inner abstraction. We call this hyper
abstract domain hyperlevel (abstract) constants of an inner abstraction.

Hyperlevel (Abstract) Constants. Consider a lattice 〈A,�,�,�,�A,⊥A〉,
forming the Galois connection (〈℘(C),⊆〉, α, γ, 〈A,�〉). The set of atoms AtmA

of A is the set of its elements covering the bottom, i.e., AtmA � {a ∈ A | ∀a′ ∈
A . a′ � a ⇒ (a′ = ⊥A ∨ a′ = a)}. Suppose A is partitioning7 [22,29], which in
particular implies that AtmA induces, by means of α, a partition of C, namely
for each element c ∈ C we have that α(c) ∈ AtmA. For instance, consider the
abstract domain Pos � {∅, Z<0, {0}, Z>0, Z≥0, Z≤0, Z�=0, Z}8 ⊆ ℘(Z). The set of
its atoms is AtmPos = {Z<0, {0}, Z>0}. In order to perform hyperlevel constants

6 It is a Galois connection with surjective abstraction function.
7 We recall that any abstract domain can be made partitioning [22].
8 Where Z<0 � {n ∈ Z | n < 0} and the others are similarly defined.
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on A we consider the set of its atoms, which precisely identify the properties
of concrete values observed in A (in Pos the sign of any value). The idea is
to check whether these abstract values remain constant during computations.
For instance, we aim at checking whether all the computations starting from
inputs with the same sign, keep constant the value sign during execution. At
this point, we can define the hyperlevel (abstract) constants domain for A as
Ahc � ℘(AtmA) ∪ {A}, forming the following insertion:

〈℘(A),⊆〉 −−−−→−→←−−−−−
αhc

γhc 〈Ahc,⊆〉 where αhc(X) �
{

X if X ⊆ AtmA

A otherwise
γhc � id

Then, applying the lifting transformer and composing, we have

〈℘(℘(C)),⊆〉 −−−−−→←−−−−−
L(α)

G(α)
〈℘(A),⊆〉 〈℘(℘(C)),⊆〉 −−−−−−−−→←−−−−−−−−

αhc◦L(α)

G(α)◦γhc 〈Ahc,⊆〉 (3)

For instance, if C = Z and A = Pos then Poshc � ℘({∅, Z<0, {0}, Z>0}) ∪
{Pos} is the hyperdomain, abstraction of ℘(℘(Z)), for hyperlevel (abstract) Pos-
constants.

4.3 Dealing with Intervals

Suppose now to be interested in a hyper intervals analysis. The classic abstract
domain of intervals is defined over numerical values, but the interval construction
can be easily generalized [13]. Given a complete lattice 〈C,�,∨,∧,�,⊥〉, we can
define its interval domain as:

I = {[a, b] | a ∈ C � {�}, b ∈ C � {⊥}, a � b} ∪ {⊥ı}

We have that 〈I,�,�,�, [⊥,�],⊥ı〉 is a complete lattice where: ∀I ∈ I .⊥ı �
I � [⊥,�] and [a, b] � [c, d] iff c � a and b � d; [a, b] � [c, d] � [a ∧ c, b ∨ d];
[a, b] � [c, d] � [a ∨ c, b ∧ d] if a ∨ c � b ∧ d and [a, b] � [c, d] � ⊥ı if a ∨ c �� b ∧ d.
An instance of this pattern is the classic domain of intervals over integers, where
the initial domain is the lattice 〈Z ∪ {−∞,+∞},≤,max,min,+∞,−∞〉 [13].

The corresponding Galois connection between (the powerset of) the concrete
domain C and its intervals domain is

〈℘(C),⊆〉 −−−→←−−−
αı

γı 〈I,�〉
where αı(X) � [

∧
X,

∨
X] γı([a, b]) � {c ∈ C | a � c � b}

We can use this construction for an inner abstraction when we aim at charac-
terizing invariants of intervals of computations. In this case we use the lift L and
then we compose it with an outer abstraction determining the desired invariants.
But, we can use this construction also for an outer abstraction by defining it on
a domain A already obtained by an inner abstraction. In this case we charac-
terize interval invariants of an inner abstract domain, abstraction of ℘(A). For
instance, if the inner is Pos, then we would characterize the sign properties of
interval bounds.
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5 Verifying Bounded Subset-Closed Hyperproperties

As we have seen in Sect. 2, for bounded subset-closed hyperproperties the veri-
fication process is simplified. Instead of checking the hyperproperty for the set
of all inputs I, or for all its subsets, it is sufficient to check the hyperproperty
for a set of finite subsets of I. Namely, if Hp ∈ SSCHk, we need to check the sets
in I|k � {X ⊆ I | |X| = k}. Then with a sound collecting hypersemantics �P�h
(Sect. 3), we can verify the hyperproperty just approximating �P�hI

|k.

Theorem 3. Given Hp ∈ SSCHk, we have that �P�hI
|k ⊆ Hp iff P |= Hp.

Proof. By soundness and completeness (for SSCH) of the collecting hyperseman-
tics, stated in Sect. 3, we have that {�P �X | X ∈ I|k} ⊆ �P�hI

|k. Then, recalling
that we are in a deterministic setting, we have that {�P �X | X ∈ I|k} = {X ⊆
�P�I | |X| = k}. Then, the theorem follows from the results of Sect. 2. ��

Theorem 3 allows us to simplify the design of hyperanalyses for bounded subset-
closed hyperproperties. It justifies also the methodology used in [4] in order
to verify information flow. In fact, despite their analysis starts from {I}, the
(abstract) semantics indeed decomposes I in all its subsets, in order to apply
approximations at the level of sets of sets. Theorem3 confirms the correctness
of the approach used in [4] and states that the “decomposition” can be made
explicit, splitting the input set from which we start the hyperanalysis.

5.1 Non-Interference

Information flows control is one of the primary motivations that has led
researchers to develop a theory about hyperproperties. A well-known informa-
tion flow property is Non-Interference [10,21], introduced in Example 1. As we
have seen in the example, NI is defined over I/O traces, i.e., DEN � St × St =
(Var −→ Z) × (Var −→ Z), and a program P satisfies NI iff �P�I ∈ NI. It is
trivial to show that NI ∈ SSCH2, hence P |= NI iff ∀X ∈ I|2 . �P�X ∈ NI. In
particular, we only need to check the sets {d, d′} such that d� =L d′

�. Let
I|2
L = {{d, d′} ∈ I|2 | d� =L d′

�}. Suppose to have a sound collecting hyperseman-
tics �P�h ∈ ℘(℘(DEN)) −→ ℘(℘(DEN)). Then we have that P |= NI iff �P�hI

|2
L ⊆ NI.

Now we look for a hyper abstract domain allowing us to verify NI. First of all,
we abstract sets of sets of traces in sets of traces of sets, namely sets of traces of
“abstract memories” St� � Var −→ ℘(Z)9. Hence, consider the following Galois
connection (〈℘(℘(DEN)),⊆〉, αtr, γtr, 〈℘(St�),⊆〉) with

αtr(X ) = {λx ∈ VarL . {d�(x) | d ∈ X} | X ∈ X} γtr(Y) =
⋃

{X | αtr(X ) ⊆ Y}

and where VarL � {x ∈ Var | Γ (x) = L}. This abstraction keeps only the abstract
memories collecting values of the low variables, moving from sets of sets of traces
to sets of abstract memories. This means that, for all computations starting from
9 Here we implicitly apply a non-relational variables abstraction.
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sets (of cardinality 2) which agree on low input variables, NI requires that the
resulting sets of values for low variables are constant. Hence, in order to verify NI
we compose this connection with the one defined in Eq. 2. Let αNI � αcc◦L(αc)◦
αtr where we abuse notation by defining ∀X ∈ ℘(St�), αcc ◦ L(αc)(X) � λx ∈
VarL . αcc ◦ L(αc)({d�(x) | d� ∈ X}), and γNI is the corresponding concretization.
Then we have (〈℘(℘(DEN)),⊆〉, αNI, γNI, 〈Var −→ ℘(Z) ∪ {C}, ⊆̇〉)10.
Proposition 3. P |= NI iff ∀x ∈ VarL . αNI(�P�hI

|2
L )(x) �= C.

So, we can soundly approximate NI verification by computing the approximated
hypersemantics on the hyper abstract domain ℘(Z) ∪ {C}, for all low variables.

5.2 Abstract Non-Interference

Abstract Non-Interference [18,19] is a weakening of Non-Interference by abstract
interpretation. The idea is to model flows of properties of data, modeled as
abstractions of data. In particular, let us consider a simplified form of the notion
given in [19]. Let (〈℘(Z),⊆〉, αφ, γφ, 〈Φ,�φ〉) be an abstraction on input values,
fixing what is observable/not-observable of the input. For instance, in the stan-
dard case of Non-Interference it is the abstraction observing � (nothing) of H
variables, and the identity of L variables. But it possible to weaken the policy
by observing other properties of input variables, where the input property fixed
for H variables represents the information we allow to flow, while the property
of L ones represents a weakening of what an observer may observe of low inputs.
Consider also an output abstraction (〈℘(Z),⊆〉, αϑ, γϑ, 〈Θ,�ϑ〉), which repre-
sents what can be observed in output, in the standard case the identity on L
variables and �, i.e., nothing, on H variables. Also in this case, the framework
allows us to weaken the policy by fixing a more abstract observable property of
L variables. Formally, Abstract Non-Interference is:

ANI = {X ∈ ℘(DEN) | ∀d, d′ ∈ X . (αφ(d�) = αφ(d′
�) ⇒ αϑ(d�) = αϑ(d′

�))}

As it happens for Non-Interference, we only need to check ANI for the sets {d, d′}
such that αφ(d�) = αφ(d′

�). Let I|2
φ � {{d, d′} ∈ I|2 | αφ(d�) = αφ(d′

�)},
then we have that P |= ANI iff �P�hI

|2
φ ⊆ ANI. Consider the Galois inser-

tion of Eq. 3 instantiated on A = Θ and C = Z, and consider the abstrac-
tion αtr defined before for NI. Let us define then αANI = αhc ◦ L(αϑ) ◦ αtr. As
before, we abuse notation by defining ∀X ∈ ℘(St�), αhc ◦ L(αϑ)(X) � λx ∈
VarL . αhc ◦ L(αϑ)({d�(x) | d� ∈ X}), and γANI the corresponding concretization.
By composition, we have (〈℘(℘(DEN)) ⊆〉, αANI, γANI, 〈Θhc, ⊆̇〉).
Proposition 4. P |= ANI iff ∀x ∈ VarL . αANI(�P�hI

|2
φ )(x) �= Θ.

Hence, we can soundly approximate the verification of ANI by computing the
approximated hyper semantics on the hyper domain Θhc of abstract stores,
checking whether all the computations have constant values in Θ for all the
low variables.
10 Here ⊆̇ denotes the pointwise set inclusion.
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6 Related Works

The topic of hyperproperties verification is relatively new. In [9], the authors
state that it is possible to reduce the verification of a k-hypersafety on a system
S to the verification of a safety property on the self-composed system Sk. The
self-composition can be sequential, parallel or in an interleaving manner and a
lot of works applied this methodology [6,27,30,31]. All these approaches only
deal with hypersafety, but we believe that self-composition methods could be
extended to the more general bounded subset-closed hyperproperties, in order
to verify also non-safety hyperproperties. A very recent work [3] proposes a new
methodology for proving the absence of timing channels. This work is based on
the idea of “decomposition instead of self-composition” [3]. The authors claim
that self-composition is computationally to expensive to be used in practice, so
they propose a different approach. The idea is to partition the program semantics
and to analyze each partition with standard methods. All previous approaches
are proven to be sound and complete for k-hypersafety, but our methodology is
sound and complete for the more general subset-closed hyperproperties.

Besides the reduction to safety, in [1] the authors introduce a runtime refuta-
tion methods for k-safety, based on a three-valued logic. Similarly, [8,15] define
hyperlogics (HyperLTL and HyperCTL/CTL∗), i.e., extensions of temporal logic
able to quantify over multiple traces. Some algorithms for model-checking in
these extended temporal logics exist, but only for particular decidable fragments,
since the model-checking problem for these logics is, in general, undecidable.

The use of abstract interpretation in hyperproperties verification is limited to
[4,25,32]. In [4], the authors deal with information flow specifications and they
focus on the definition of the abstract domains over sets of sets needed for the
analysis. They proposed an hyper collecting semantics computed denotationally
on the code of the program to analyze. We already highlighted (Sects. 4.1 and 5)
the links between the present work and [4]. Our approach is a generalization
of the methodologies of [4], since their hypercollecting semantics is an instance
of our semantics lift and the abstract domains they use follow our inner/outer
abstractions pattern. In [25] we extend the hierarchy of semantics of a transi-
tion system [11], in order to cope with hyperproperties verification. Furthermore,
we introduce the notion of subset-closed hyperproperties. Our present work fol-
lows this latter, but it is focused on how it is possible to construct a collect-
ing hypersemantic, for computer programs, lifting a given collecting semantics
(Sect. 3). Furthermore, our work aims at the verification of particular subset-
closed hyperproperties. Finally, in [32] the authors use abstract interpretation
in order to define an ad-hoc semantics at the level of sets of sets suitable for
the verification of a particular hyperproperty called “data input usage”. This
latter is not subset-closed, hence it is beyond the scope of the present work.
Furthermore, their goal is not to give a general methodology for defining new
verification methods for hyperproperties, as we do for subset-closed hyperprop-
erties. Indeed, despite the interesting approach, their work can be applied only
to the particular hyperproperty they introduced.
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7 Conclusion and Future Works

In this work, we made another little step into the understanding of hyperproper-
ties. In particular, we reasoned about particular subset-closed hyperproperties,
which are more suitable for verification. Subset-closed hyperproperties are those
allowing to disprove program hyperproperties by finding a subset of its semantics
which do not satisfy the hyperproperty. If we can limit the cardinality of these
refuting witnesses we obtain the bounded subset-closed hyperproperties. These
latter generalize k-hypersafety and some hyperliveness, so they capture a lot of
interesting systems specifications. In this work, we described how it is possible to
leverage the standard abstract interpretation based static analysis framework in
order to verify bounded subset-closed hyperproperties. In particular, we showed
how to lift a collecting semantics to sets of sets and how to build hyper abstract
domains. Putting all the ingredients together, we specified the general recipe for
defining an hyperanalysis (i.e., a static analysis at the level of sets of sets) for
bounded subset-closed hyperproperties. It is clear that, such an analysis would
be useful, not only for checking (abstract) non-interference in its different forms
(e.g., declassified) [5,19,23], but also in other contexts related to information
flow such as abstract slicing [24,26] or injection vulnerability analysis [7].

As future works, we want to investigate whether it is possible to compute a
collecting hypersemantics reducing as much as possible the spurious information
added by lifting semantics at the hyperlevel. We already observed that this is
not a problem for SSCH hyperproperties, we wonder whether we can improve
the proposed framework by enriching the information represented by states, in
order to reduce the noise added by collecting at the hyperlevel. Moreover, we
want to deepen the link between hyperproperties and the problem of analyzing
analyzers, aiming at systematically analyzing static analyses [16]. In particular,
we believe that the hyperdomains, introduced in Sect. 4, can be used not only
for hyperproperties verification but also for this latter purpose.

Acknowledgments. We thank Roberto Giacobazzi and Francesco Ranzato for shar-
ing with us their preliminary work on analyzing analyses [20], which has many connec-
tions with the present work and may create interesting future collaborations. Finally,
we would like to thank the anonymous reviewers for the useful suggestions and com-
ments, helping us in improving the presentation of our work.
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Abstract. We develop a modular approach to statically analyse imper-
ative processes communicating by synchronous message passing. The
approach is modular in that it only needs to analyze one process at
a time, but will in general have to do so repeatedly. The approach com-
bines lattice-valued regular expressions to capture network communi-
cation with a dedicated shuffle operator for composing individual pro-
cess analysis results. We present both a soundness proof and a proto-
type implementation of the approach for a synchronous subset of the Go
programming language. Overall our approach tackles the combinatorial
explosion of concurrent programs by suitable static analysis approxi-
mations, thereby lifting traditional sequential analysis techniques to a
concurrent setting.

1 Introduction

Concurrent software surrounds us: whether as an app on a mobile phone commu-
nicating with a server, in the software business where a system has been struc-
tured as a service-oriented architecture, or at the data center where processes
spread on many processors to collectively solve a computational query, they are
all structured as software processes communicating by some form of message
passing. The past decades contain a line of work towards ensuring correctness
of such software: The model checking community has developed techniques for
validating such distributive designs and the types community has developed ses-
sion types for checking the overall communication structure. Within the static
analysis community a line of work has pursued static analysis of process calculi
(which may themselves be viewed as suitable process abstractions).

In this work we develop a static analysis approach that works directly at the
source code level and addresses how safety properties of a distributed program
may depend on intricate details involving both the order and content of the net-
work communication. Rather than risk a combinatorial explosion by computing
a collective state of all involved processes, our approach captures the network
communication between a number of synchronous, message-passing processes
with a dedicated abstract domain. This approach allows us to analyze each

c© Springer Nature Switzerland AG 2018
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process separately. We then combine the analysis results of individual processes
with a dedicated shuffle operator for the domain. We prove soundness of the
analysis with respect to an operational semantics for a subset of Go and discuss
a prototype implementation of the approach.

Fig. 1. An example Go program

Consider the Go program in Fig. 1. It declares two common channels ch1

and ch2, spawns off two processes (go-routines), and proceeds to the main read-
statement at the bottom. The first process in line 6 attempts to send 1 on channel
ch1 and 2 on channel ch2. The second process in line 7 reads a value (1) from
channel ch1 into variable x and sends the value of x+1 (2) on channel ch2. Finally
the read statement in line 10 reads a value from ch2. Under worst-case intra-
process analysis assumptions this read could receive any value and bind it to y.
This is also the result of a first iteration of our intra-process analysis. From this
first intra-process analysis result we can read off that the three processes perform
(the prefix-closure of) the network actions ch1![1; 1] · ch2![2; 2], ch1?[−∞; +∞] ·
ch2![−∞; +∞], and ch2?[−∞; +∞] respectively, here expressed as lattice-valued
regular expressions with channel-tagged intervals. By shuffling the first and third
result and performing intra-process reanalysis of the second process under this
stronger assumption, we learn that it actually performs (the prefix-closure of)
the network actions ch1?[1; 1] · ch2![2; 2]. Finally we shuffle this result with the
result from the first process and run a third round of intra-process reanalysis to
learn that the value read from ch2 and assigned to y is constant [2; 2].

2 Language

We consider an imperative core language extended with primitives for syn-
chronous message passing between individual processes, as illustrated by the
above example. The core language is designed to be a genuine subset of Go
(restricted to synchronous message passing), which we term nano-Go. Because
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of our restrictions, programs in nano-Go consist of a fixed number of top-level
processes communicating through a fixed number of channels:

As such, the programs spawn off n processes and can thereby conveniently
be described by their process bodies s1, . . . , sn from an abstract syntax point of
view. We provide a BNF grammar of the process language in Fig. 2. Each process
is defined by a composite statement (ending in a blocking select { } statement)
and has access to a process-local environment of pre-declared variables.

The statements of the language are mostly self-explanatory.
select { a1 . . . an } non-deterministically chooses between a list of read and write
cases a1, . . . , an. The case case x = <- ch : s reads a value from channel ch,
stores it in the variable x, and proceeds to execute s. The case case ch <- e : s
writes the value of the expression e to channel ch and proceeds to execute s.
Reading and writing messages is synchronous: a writing process blocks without
an available receiver. Similarly a reading process cannot proceed until a writing
process is ready to supply an input.

We assume that all statements and cases have been uniquely labeled. To
be able to refer to specific labels occurring in a given statement or case
we define the three functions first , last , and labels in Fig. 3. Each of these

Fig. 2. BNF grammar of nano-Go

Fig. 3. Definitions of first , last , and labels
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accept a labeled statement or case as input, first returns a label, whereas
last and labels return a set of labels. For example, for the statement s =
if tt�0 { x =�1 1 } else { skip�2 } we get first(s) = �0 while last(s) = {�1, �2}

Fig. 4. Operational semantics of nano-Go
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and labels(s) = {�0, �1, �2}. Technically skip� is not a valid statement in concrete
Go syntax, but we include it nevertheless as it is convenient (as the identity)
in translating valid Go statement sequences into abstract syntax trees (ASTs)
with only binary statement composition.

We provide an operational semantics of nano-Go in Fig. 4. In the semantics
a system configuration consists of an ordered sequence of process configura-
tions c1 . . . cn. This setup can capture execution from the point just after all
go-routines have been started. Each process configuration is a pair ci = 〈si, ρi〉
where the store ρi captures the values of the ith process’s variables and si is
either a statement or a case (also denoted ai) that captures the program point
of the ith process. As traditional we express message-passing communication
with annotation labels, writing ch!v and ch?v for a message write and a mes-
sage read, respectively. Synchronization is expressed in rule SysComm by pairing
a read with a write, whereas the rule SysTau expresses a non-communicating
action. We label the system-level transitions with the indices of the involved pro-
cesses, writing i, τ for the ith process performing a non-communicating action
and i, ch, v, j for process i writing a value v on channel ch which is read by
process j. Following the (informal) semantics of Go, a process cannot send a
message on a channel to itself. We model this restriction by testing the sender’s
index i against the receiver’s index j. Because two senders can write to the same
channel, in a given trace the semantics non-deterministically puts the message
of one sender before another.

Nano-Go embodies two simplifying assumptions: there is no dynamic channel
or process creation and message passing is synchronous. We are well aware of the
limitations induced by these assumptions but find them orthogonal to the topic
of this paper: process-local static analysis. As such we plan to address them in
future work.

3 Background

We assume the reader is familiar with lattice theory [8,11] and abstract inter-
pretation [5,6], and only recall the more specialized and recent material on the
abstract domain of lattice-valued regular expressions [21].

3.1 Lattice Theory and Abstract Interpretation

An atom a ∈ L is a lattice element such that if ⊥ � s � a for some other s ∈ L
then s = ⊥ or s = a. We write Atoms(L) for L’s set of atoms and let a, a′ range
over this set. An atomic lattice requires that for all non-bottom elements s ∈ L
there exists a ∈ Atoms(L) such that a � s. An atomistic lattice requires that
each non-bottom element s ∈ L is expressible as a join of atoms s = � S for some
S ⊆ Atoms(L). An atomistic Galois insertion 〈C;�〉 −−−→−→←−−−−

α

γ 〈A;≤〉 requires that
α, γ connect two atomistic lattices such that α : Atoms(C) −→ Atoms(A) is
surjective (α maps atoms to atoms and for all a ∈ Atoms(A) there exists an
c ∈ Atoms(C) such that α(c) = a).
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3.2 Lattice-Valued Regular Expressions

To analyze the network communication and content we will use the domain of
lattice-valued regular expressions (LVREs) [18,21]. We recall here the basics of
LVREs (sans complement as it is irrelevant for the problem at hand). Syntac-
tically LVREs are regular expressions with its characters drawn from a lattice
〈A;�〉:

̂RA ::= ∅ | ε | � | ̂R∗
A | ̂RA · ̂RA | ̂RA + ̂RA | ̂RA & ̂RA where � ∈ A \ {⊥}

We assume that the meaning of the lattice literals (A’s elements) are given
by a Galois insertion 〈℘(C);⊆〉 −−−→−→←−−−−

α

γ 〈A;�〉 and that α maps atoms to atoms:
α : Atoms(℘(C)) −→ Atoms(A). These assumptions are liberal enough to
allow many standard domains from the Galois connection framework (signs,
parity, constant propagation, intervals, etc.). A number of consequences follow
from these basic assumptions: A is a complete lattice, A is atomic, and A is
atomistic. They also have the consequence that γ is strict (γ(⊥) = ∅), that
α : Atoms(℘(C)) −→ Atoms(A) is surjective (we have an atomistic Galois inser-
tion), and that A’s atoms have no overlapping meaning (∀a, a′. a �= a′ =⇒
γ(a) ∩ γ(a′) = ∅) [21].

We give meaning to the LVREs relative to the γ of the given Galois insertion.
The denotation is given in Fig. 5. Based on this denotation two LVREs r, r′ are
ordered language-wise: r �∼ r′ ⇐⇒ L(r) ⊆ L(r′). This ordering constitutes only
a pre-order as it fails anti-symmetry. To regain a partial order we consider LVREs
up to language equivalence ̂RA/≈. The resulting quotient domain constitutes
a lattice with binary least upper bounds + and greatest lower bounds &. It
follows from the definition of L that, e.g., concatenation · is monotone in both
arguments.

LVREs provide a number of domain operations: nullable : ̂RA −→ B deter-
mines whether the empty string is accepted by the language of a LVRE r
(nullable(r) ⇐⇒ ε ∈ L(r)). We omit the straight-forward, structural defini-
tion here for brevity. The Brzozowski derivative [2] ̂D : Atoms(A) × ̂RA −→ ̂Ra

defined in Fig. 6 represents the language of a LVRE r remaining after hav-
ing matched some a ∈ Atoms(A) as the first character. One can prove that
L( ̂Da(r)) = {w | ∀c ∈ γ(a). cw ∈ L(r)} for all a ∈ Atoms(A) and r ∈ ̂RA.
The definition of Brzozowski derivatives over LVREs extends structurally to
strings: ̂Dε(r) = r and ̂Daw(r) = ̂Dw( ̂Da(r)). Following Brzozowski [2] deriva-
tives can be used for translating LVREs to lattice-valued automata. One can thus
view LVREs as automata states and the derivatives as transitions. A LVRE r is

Fig. 5. The denotation of lattice-valued regular expressions
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Fig. 6. The Brzozowski derivative of lattice-valued regular expressions

considered an accept state iff nullable(r). This view is underlined by the fact
that there are only a finite number of syntactically different LVRE derivatives
(corresponding to individual states) up to associativity, commutativity, and idem-
potency (ACI) of + when Atoms(A) is finite.

In practice many derivatives are syntactically identical, e.g., over LVREs
with intervals ̂D[0;0]([0; 100] · [1; 2]∗) = . . . = ̂D[100;100]([0; 100] · [1; 2]∗) = ε·[1; 2]∗

which motivated to group atoms with identical derivatives together in equiva-
lence classes. For this purpose r̂ange(r) : ̂RA −→ êquivA computes a partition
of Atoms(A) such that two atoms a, a′ are placed in the same equivalence class
a, a′ ∈ [a′′] ∈ r̂ange(r) if ̂Da(r) = ̂Da′(r). Similarly ôverlay : êquivA× êquivA −→
êquivA refines two partitions into a new partition coarser than both. ôverlay
is thus monotone over the lattice of partitions ordered under refinement [11].
Finally we require an operation r̂epr : (℘(Atoms(A)) \ {∅}) −→ Atoms(A) that
returns a representative atom a ∈ r̂epr([a′]) of a given equivalence class [a′] in
a partition, and a second operation p̂roject : (℘(Atoms(A)) \ {∅}) −→ A that
returns a lattice element greater than all atoms in a given equivalence class:
∀a ∈ [a′]. a � p̂roject([a′]).

4 Shuffling Lattice-Valued Regular Expressions

To support analysis of arbitrary combinations of processes we extend LVREs
with a symbolic shuffle operator. Formally we extend the grammar of LVREs
with an additional production: ̂RA ::= . . . | ̂RA ‖ ̂RA

Next we consider how to extend the various auxiliary operations to support
the shuffle operator. First we define single string shuffling over the concrete
domain C as follows:

ε ‖ w = {w} w ‖ ε = {w}
c1w1 ‖ c2w2 = {c1w | w ∈ w1 ‖ c2w2} ∪ {c2w | w ∈ c1w1 ‖ w2}

This definition is taken from Sulzmann and Thiemann [31]. For example, for
C = {a, b, c} we have ab ‖ bc = {abbc, abcb, babc, bacb, bcab}. The single string
operation is commutative: for any strings w,w′ we have w ‖ w′ = w′ ‖ w.
We can lift the single string shuffling definition (elementwise) to languages
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(also from Sulzmann and Thiemann [31]):

L1 ‖ L2 = {w | w ∈ w1 ‖ w2 ∧ w1 ∈ L1 ∧ w2 ∈ L2}
Before we continue we establish a number of properties. Interestingly, the

language shuffling operation is not idempotent. For example: {a} ‖ {a} = {aa} �=
{a}. We believe the following four properties are well known [31] but nevertheless
include them for completeness.

Lemma 1 (Shuffling of prefixed languages)

c1 · L1 ‖ c2 · L2 = c1 · (L1 ‖ c2 · L2) ∪ c2 · (c1 · L1 ‖ L2)

Lemma 2 (Shuffling is commutative, distributive, associative)

L1 ‖ L2 = L2 ‖ L1 (commutative)

L ‖ (L1 ∪ L2) = (L ‖ L1) ∪ (L ‖ L2) (distributive)

L1 ‖ (L2 ‖ L3) = (L1 ‖ L2) ‖ L3 (associative)

We can prove a general shuffle property, that says that the shuffle of two arbi-
trary strings accounts for all possible splits of them: both the recursive shuffling
of their first halves and their second halves are taken into consideration.

Lemma 3 (Generalized shuffle property)

∀w1, w2, w3, w4 ∈ C∗. (w1 ‖ w2) · (w3 ‖ w4) ⊆ (w1 · w3) ‖ (w2 · w4)

For example, by choosing w3 = ε and w4 = c we obtain ∀c ∈ C,w1, w2 ∈
C∗. (w1 ‖ w2) · c ⊆ w1 ‖ (w2 · c) which says that choosing c last is one possibility.
Similarly in an alphabet with {rd ,wr} ⊆ C by choosing w3 = rd and w4 = wr
as a corollary we obtain ∀c ∈ C,w1, w2 ∈ C∗. (w1 ‖ w2) · {rd · wr ,wr · rd} ⊆
(w1 · rd) ‖ (w2 · wr).

Shuffling LVREs. We can now give meaning to symbolic shuffling of LVREs as
language shuffling of their meanings: L(r1 ‖ r2) = L(r1) ‖ L(r2). Consequently
the symbolic operation is commutative and associative under language equality:
r1 ‖ r2 ≈ r2 ‖ r1 and r1 ‖ (r2 ‖ r3) ≈ (r1 ‖ r2) ‖ r3. It is also monotone by
definition: r1 �∼ r′

1 =⇒ r1 ‖ r2 �∼ r′
1 ‖ r2 (and similarly in the second argument

by commutativity).

Derivatives and the nullable predicate. Under the view of expressions-as-states
and derivatives-as-transitions, the combined, synchronized automaton can take
an a-step if either the first automaton can take an a-step or the second automaton
can take an a-step. This leads to the following definition: ̂Da(r1 ‖ r2) = ̂Da(r1) ‖
r2 + r1 ‖ ̂Da(r2). Similarly the combined, shuffling automaton is in an acceptance
state if both automata are in acceptance states. This leads to the following
definition: nullable(r1 ‖ r2) = nullable(r1) ∧ nullable(r2).
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Our previous work established the Brzozowski equation for LVREs. We
extend this result by showing how it also holds for LVREs with shuffle expres-
sions:

Theorem 4 (Brzozowski’s equation)

r ≈
∑

a∈Atoms(A)

a ̂Da(r) + δ(r) where δ(r) =

{

ε ε �∼ r

∅ ε ��∼ r

Based on this we can now extend the following lemmas to hold for LVREs with
shuffle.

Lemma 5 (Meaning of derivatives).

L( ̂Da(r)) = {w | ∀c ∈ γ(a). c · w ∈ L(r)}

Lemma 6 ( ̂D monotone in second argument). r �∼ r′ =⇒ ̂Da(r) �∼ ̂Da(r′)

Lemma 7 (Correctness of nullable). nullable(r1 ‖ r2) ⇐⇒ ε ∈ L(r1 ‖ r2)

Finitely many derivatives. We argue that for all r, there exists at most dr dif-
ferent derivatives up to ACI of +. We first prove a syntactic characterization of
all derivatives as a sum of derived shuffle pairs. There are only as many different
derivatives (up to ACI of +) as there are different sets of such pairs. For each
of the dr1 different first components in such pairs there are at most dr2 different
second components and hence at most dr1 ∗ dr2 different pairs. This gives an
upper bound of 2dr1∗dr2 different sets of pairs. To reduce the number of deriva-
tives further, we can utilize that ‖ is commutative, meaning there are only as
many unique derivative pairs as there are unique first and second components.
This reduction is however not required to upper-bound the number of different
derivatives.
The r̂ange operator We extend the r̂ange operator to shuffled expressions:

r̂ange(r1 ‖ r2) = ôverlay (r̂ange(r1), r̂ange(r2))

and we subsequently verify that this definition satisfies our formal requirements:

Lemma 8 (r̂ange partitions atoms). ∀r1, r2, [ai] ∈ r̂ange(r1 ‖ r2), a, a′ ∈
Atoms(A).

a, a′ ∈ [ai] =⇒ ̂Da(r1 ‖ r2) = ̂Da′(r1 ‖ r2)

5 Analysis

Our core analysis is a standard imperative analysis over abstract stores ρ̂ ∈ Ŝtore,
e.g., with intervals. It requires auxiliary, monotone functions âssign, ̂A, ̂true, and



Process-Local Static Analysis of Synchronous Processes 293

f̂alse which are standard and omitted for space reasons. We assume they satisfy
the following:

Lemma 9 (Soundness of ̂A, âssign, ̂true, ̂false [20]).

∀e ∈ E, ρ̂ ∈ Ŝtore. αv({v | ρ ∈ γst(ρ̂) ∧ ρ �A e ⇓ v}) � ̂A(e, ρ̂)

∀ρ̂, x , v̂. αst({ρ[x �→ v] | v ∈ γv(v̂) ∧ ρ ∈ γst(ρ̂)}) �̇ âssign(ρ̂, x , v̂)

∀b, ρ̂. αst({ρ ∈ γst(ρ̂) | ρ �B b ⇓ tt}) �̇ ̂true(b, ρ̂)

∀b, ρ̂. αst({ρ ∈ γst(ρ̂) | ρ �B b ⇓ ff}) �̇ ̂false(b, ρ̂)

where �̇ is the pointwise lifting of the value ordering � and where the definitions
of αv, γv and αst , γst are postponed to Sec. 6.

Rather than try to track the state of each individual process simultaneously
which would lead to a combinatorial explosion, each process is approximated by
its network interaction and analyzed in isolation against a given environment of
network communication behaviour. We thus let LVREs of futures track writes
and reads over a given channel when analyzing an individual process and set up
a product ̂Ch(̂Val) of a write domain (Ŵrite(̂Val) in Fig. 7 captures approximate
write characters) and a read domain (R̂ead(̂Val) in Fig. 7 captures approximate
read characters). 1 We use an interval in both to capture channel numbers. The
analysis future ̂f ∈ ̂R

̂Ch(̂Val)
represents the network communication the sur-

rounding environment may offer. Finally the analysis specification is expressed
as two global analysis caches ̂E , ̂X where ̂E (�) = (ρ̂, ̂f) capture the store and
future upon entry to the statement labeled � and ̂X (�) capture a corresponding
pair upon completion of the statement. The caches are naturally partitioned
into process-individual parts ̂E1, . . . , ̂En with dom( ̂E i) = labels(si) such that ̂E i

accounts for the labels in process i’s body si (and similarly for ̂X i). Collectively
these are non-overlapping and span Labels for an entire program. Notationally
we write ̂E i

ρ(�) and ̂E i
f (�) to refer to the two components of ̂E i(�) (and similarly

for ̂X i).

Fig. 7. Analysis domains

1 The product with singleton sets {!} and {?} is just presentational: one component
denotes writes and another component denotes reads.
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5.1 Analysis Algorithm

The analysis is structured in two parts: an intra-process part (in Figs. 8 and 9)
for analyzing each individual process in isolation and an inter-process part (in
Fig. 10) for analyzing a system of processes with the latter depending on the
former.

The intra-process analysis specification in Fig. 8 is standard [25] modulo the
cases for network interaction. Here a read action involves a suitable derivative
of the future wrt. a write action (and vice versa). The specification is slightly
complicated by our partitioning of atoms into equivalence classes with identical
derivatives. Algorithmically we use this intra-process analysis to infer process-
local caches ̂E i and ̂X i for a given initial future ̂f and statement si.

Fig. 8. Intra-process analysis specification



Process-Local Static Analysis of Synchronous Processes 295

Fig. 9. Reading off a collective trace history

Fig. 10. Inter-process analysis specification

Given an acceptable analysis result ̂E i and ̂X i of a process si we subsequently
use H( ̂E i, ̂X i, si) in Fig. 9 to read off the collective network communication his-
tory of this process’s writes and reads. H returns a pair of two languages: The
first component denotes the prefix p of network communication strings that may
arise from a statement si, whereas the second component denotes the complete
language c of network communication strings that may arise from an end-to-end
execution of statement si. Collectively p+c represents all prefixes of si’s network
communication. For a less structured language we expect Tarjan’s algorithm [33]
could be adapted.

We can now combine intra-process communication histories 〈pi, ci〉 =
H( ̂E i, ̂X i, si) via the shuffle operator to obtain a better approximation of futures
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and repeat the intra-process analysis from this new starting point. For exam-
ple, for an analysis of three processes s1, s2, s3 we reanalyze s1 under the future
̂E1

f (first(s1)) & (p2 + c2) ‖ (p3 + c3). To soundly model how a third party pro-
cess may interfere or communicate with either party before or after a message
synchronization the inter-process analysis specification in Fig. 10 imposes a clo-
sure requirement. In this setup a future write followed by a matching read (and
vice versa) may match up and thereby cancel each other out. We express this
requirement with derivatives: a write requires a derivative with respect to a
suitable read (and vice versa). Since r̂ange groups into equivalence classes atoms
with identical derivatives, a little extra care is needed to find equivalence classes
for which two consecutive derivatives are guaranteed to yield the same. This is
the purpose of the bottom requirement in Fig. 10, which utilizes that the atoms
of ̂Ch(̂Val) can be partitioned with a pair (the first projection π1 partitions
the atoms Atoms(Ŵrite(̂Val)) × {⊥} and the second projection π2 the atoms
{⊥} × Atoms(R̂ead(̂Val))).

6 Soundness

The soundness proof is complicated by the fact that we relate two concepts of
inherently different shape: we approximate a property expressible as a set of
(prefix) traces, albeit where a single computation step in the trace itself may
require a derivation tree in the structural operational semantics of the corre-
sponding process, whereas we specify the static analysis as a syntax-directed
acceptability relation over the program text of each participating process. We
proceed by first proving local statement-level soundness and then use this to
prove system-level soundness. As these assume some over-approximate futures,
we finally prove how an acceptable analysis result may be combined into a better
over-approximation.

The analysis is parametric in the value abstraction, assuming it is given
as an atomistic Galois insertion ℘(Val) −−−→−→←−−−−−

αv

γv
̂Val . The value abstraction is

straightforwardly lifted to a Galois insertion over stores: ℘(Var ↪→ Val) −−−−→−→←−−−−−
αst

γst

Ŝtore. Finally the channel abstraction ℘(Action) −−−−→−→←−−−−−
αch

γch
̂Ch(̂Val) is a stan-

dard Cartesian abstraction with Action = WrAction ∪ RdAction, αch(S) =
(αwr ({ch!v ∈ S}), αrd ({ch?v ∈ S})) and γch(v̂w, v̂r) = γwr (v̂w) ∪ γrd(v̂r). We
sometimes abbreviate αch(S) as ̂S. The channel abstraction itself utilizes two
atomistic Galois insertions ℘(WrAction) −−−−→−→←−−−−−

αwr

γwr

Ŵrite(̂Val) with αwr (S) =
⊔

ch!v∈S(αInt({ch}), αv({v})) and γwr ([l;u], v̂) =
⋃

ch∈γInt ([l;u])v∈γv(v̂)
{ch!v} and

similarly for αrd , γrd [20].

6.1 Statement-Level Soundness

The following two lemmas express soundness at the statement level for both
SOS steps leading to a terminal and a non-terminal configuration. Properties
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related to how futures propagate across processes are handled at the system
level. The two lemmas are reminiscent of lemmas 7.9, 7.10 in our previous
work [20] with the key difference that those were expressed in terms of an instru-
mented semantics. Both of these lemmas express soundness of a network action
α against the environment using a derivative of the converse action α defined as
τ = ε ch?v = ch!v ch!v = ch?v.

Lemma 10 (One step statement soundness, terminal). If 〈s, ρ〉 α−→
ρ′, ̂E i, ̂X i � s, and ρ ∈ γst( ̂E i

ρ(first(s))) then ∀� ∈ last(s). ρ′ ∈
γst(̂X i

ρ(�)) ∧ ̂D
̂α(̂E i

f (first(s))) �∼ ̂X i
f (�)

Lemma 11 (One step statement soundness, non-terminal). If 〈s, ρ〉 α−→
〈s′, ρ′〉, ̂E i, ̂X i � s, ρ ∈ γst( ̂E i

ρ(first(s))), and ̂D
̂α(̂E i

f (first(s))) ��∼ ∅ then ̂E i, ̂X i �
s′ ∧ ρ′ ∈ γst( ̂E i

ρ(first(s′))) ∧ ̂D
̂α(̂E i

f (first(s))) �∼ ̂E i
f (first(s′))

6.2 System-Level Soundness

To express system-level soundness we introduce two homomorphisms over the
labels of the semantics’s system-level transitions:

�k(i, τ) = ε

�k(i, ch, v, j) =

⎧
⎪⎨

⎪⎩

ch!v k = i

ch?v k = j

ε k /∈ {i, j}

∫−k(i, τ) = ε

∫−k(i, ch, v, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ch?v k = i

ch!v k = j

ch!v · ch?v k /∈ {i, j}, i < j

ch?v · ch!v k /∈ {i, j}, i > j

Note how in two cases ∫−k maps a single communication to a string of two char-
acters: write-read or read-write, depending on the index of the participant (we
have chosen somewhat arbitrarily to let the lowest process index go first).

Theorem 12 (Analysis soundness). For all programs s1 : · · · : sn, initial
stores ρinit , acceptable analysis answers ̂E , ̂X such that ̂E , ̂X � s1 : · · · : sn and
the initial store is soundly account for ∀i. ρinit ∈ γst( ̂E i

ρ(first(si))), and arbitrary
traces 〈s1, ρinit 〉 . . . 〈sn, ρinit〉 α1=⇒ . . .

αk=⇒ c′
1 . . . c′

n with futures soundly accounted
for ∀i. ∫−i(α1 . . . αk) ∈ L(̂E i

f (first(si))) then for any i such that 1 ≤ i ≤ n and c′
i =

〈s′
i, ρ

′
i〉 we have ρ′

i ∈ γst( ̂E i
ρ(first(s′

i))) ∧ ̂D
̂∫−i(α1...αk)

(̂E i
f (first(si))) �∼ ̂E i

f (first(s′
i))

Intuitively, the analysis accounts for all execution traces in the program such
that the abstract store associated to each entry accounts for the reachable con-
crete stores and the abstract future associated to each entry accounts for the
network communication of the surrounding process environment. We prove the
generalization that concludes ̂E i, ̂X i � s′

i in addition to the above.
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6.3 Soundness of Iterative Approach

The above proves soundness of the process analysis assuming that all futures
are soundly accounted for in the initial statements of the individual processes,
e.g., from worst-case assumptions ∀i. ̂E i

f (first(si)) = �∗. To do better, we first
express futures as a suitable shuffling of histories:

Lemma 13 (Futures as histories, sans sum). For all programs s1 : · · · : sn,
initial stores ρinit , and traces 〈s1, ρinit 〉 . . . 〈sn, ρinit〉 α1=⇒ . . .

αk=⇒ c′
1 . . . c′

n such
that for all 1 ≤ i ≤ n and c′

i = 〈s′
i, ρ

′
i〉 we have ∫−i(α1 . . . αk) ∈ ‖

j �=i
�j(α1 . . . αk)

As a corollary by monotonicity of ‖ we obtain the following:

Corollary 14 (Futures as histories, with sum). For all programs s1 : · · · :
sn, initial stores ρinit , and traces 〈s1, ρinit〉 . . . 〈sn, ρinit〉 α1=⇒ . . .

αk=⇒ c′
1 . . . c′

n

such that for all 1 ≤ i ≤ n and c′
i = 〈s′

i, ρ
′
i〉 we have ∫−i(α1 . . . αk) ∈

‖
j �=i

(

∑

k′≤k �j(α1 . . . αk′)
)

Finally we can prove soundness of H from an acceptable analysis result:

Lemma 15 (History soundness). For all programs s1 : · · · : sn, initial
stores ρinit , and traces 〈s1, ρinit〉 . . . 〈sn, ρinit 〉 α1=⇒ . . .

αk=⇒ c′
1 . . . c′

n such that
for all 1 ≤ i ≤ n and c′

i = 〈s′
i, ρ

′
i〉 and analysis answers ̂E , ̂X such that

ρinit ∈ γst( ̂E i
ρ(first(si))), ∫−i(α1 . . . αk) ∈ L(̂E i

f (first(si))), and ̂E , ̂X � si. we have

�i(α1 . . . αk) ∈ L(p + c) where 〈p, c〉 = H( ̂E i, ̂X i, s)

From a sound analysis result we utilize Corollary 14, Theorem 15, and mono-
tonicity of ‖ to obtain a (potentially better) approximation of the futures which
proves the soundness of the inter-process analysis result shuffling:

∫−i(α1 . . . αk) ∈‖
j �=i

⎛

⎝

∑

k′≤k

�j(α1 . . . αk′)

⎞

⎠ ⊆ ‖
j �=i

〈pj ,cj〉=H(̂Ei,̂X i,s)

L(pj + cj)

7 Implementation

To illustrate feasibility of our approach we have implemented a proof-of-concept
prototype in OCaml. The prototype takes roughly 4200 lines of code and is
available for download at https://github.com/jmid/nano-go. It is structured as
a traditional front end with a lexer and a parser. The input is subsequently
translated and labeled into an internal AST representation. The analysis walks
this AST repeatedly until stabilization. As the shuffling operator over LVREs is
commutative and associative we represent a sequence of shuffles r1 ‖ (r2 ‖ (· · · ‖
rn)) internally as a sorted sequence, since the element order does not matter.

https://github.com/jmid/nano-go
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Since L(∅ ‖ r) = L(∅) and L(ε ‖ r) = L(r) we furthermore simplify LVREs
internally from the former to the latter. Such meaning-preserving simplifications
are common in derivative-based language processors [26]. We have implemented
the closure requirement from the inter-process analysis specification in Fig. 10 as
a local iteration, that repeats an inclusion of consecutive reads-and-writes (and
vice versa) until stabilization. As there are only finitely many derivatives of a
given future this iteration is bound to terminate. We only trigger the closure
iteration on newly formed entries. Internally in the intra-process analysis the
prototype widens on loop headers to ensure termination. Seen as a black box,
the intra-process analysis is a deterministic function expecting a future ̂f as
input. Since there are only finitely many derivatives of a given ̂f we do not
need to widen over futures. Finally we widen over abstract stores by pointwise
lifting of a traditional interval widening operator [4]. In the outer inter-process
analysis the prototype starts from a safe �∗ approximation of futures and runs
at most 100 iterations of the inter-process analysis to improve on this worst case
assumption.

We have used the js of ocaml compiler to create a client-side web-interface
for the prototype, available at https://jmid.github.io/nano-go/. To illustrate the
applicability of the analysis we have implemented two kinds of warnings based
on the analysis results: We mark a statement s� with ̂E i

ρ(�) = ⊥ as unreachable
and read and write actions with an empty derivative over futures as unable to
succeed. Both of these are safety properties compatible with the analysis output.
Figure 11 illustrates these warnings in the web-interface on a simple deadlock
example with two processes both attempting to read before writing, thereby
mutually blocking each other. In the example, the prototype highlights the read
statements in lines 7 and 12 as unable to succeed and the subsequent lines as
unreachable.

For a more elaborate example, consider the nano-Go program in Fig. 12
ported from Stadtmüller et al. [30]. The program declares two channels ch and
done and consists of 5 processes. The first process (Send) in line 6 sends an
integer over channel ch and thereby triggers one of two competing receiver pro-
cesses (Recv1 and Recv2) in lines 7 and 12. The successful receiver acknowledges
reception by subsequently writing the received value on channel done. A fourth
process (Work) in line 17 simply runs an infinite loop, while the main process
at the end expects to receive two acknowledgments. In the first inter-process
iteration the intra-process analysis infers the history ε + ch![42; 42] for Send,
ε + ch?[−∞; +∞] + ch?[−∞; +∞] · done![−∞; +∞] for Recv1 and Recv2, ε for
Work, and ε + done?[−∞; +∞] + done?[−∞; +∞] · done?[−∞; +∞] for the final
process. Each of these are obtained from the worst case assumption �∗ about
futures. Throughout the remaining inter-process iterations the results for Send

and Work are unchanged. In the second inter-process iteration when the above
histories are shuffled and fed to an intra-process re-analysis, Recv1’s and Recv2’s
histories are both improved to ε + ch?[42; 42] + ch?[42; 42] · done![42; 42] and the
final process’s history is improved to ε + done?[−∞; +∞]. In the third itera-
tion Recv1’s and Recv2’s histories remain unchanged while the final process’s

https://jmid.github.io/nano-go/
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history is improved to ε + done?[42; 42]. The fourth and final iteration confirms
inter-process stabilization. The analysis prototype thereby discovers that the
second read statement in line 17 is unable to succeed.

Fig. 11. Screenshot of the prototype’s web-interface

Fig. 12. A deadlock example ported from Stadtmüller et al. [30]
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Table 1. Preliminary performance measurement (all reported times are in seconds)

program # proc # chan # interproc. iter min time max time avg.time

initial example, Fig. 1 3 2 4 0.014 0.018 0.0158

simple deadlock, Fig. 11 2 2 3 0.010 0.012 0.0110

deadlock, Fig. 12 5 2 4 0.055 0.058 0.0572

fanIn 4 3 4 0.896 0.938 0.9140

philo 4 1 3 0.770 0.793 0.7822

Table 1 lists performance of the command-line prototype on a number of
examples, including two additional example programs ported from Stadtmüller
et al. [30]. The reported timings were measured using the time tool for the
natively compiled prototype running on a lightly loaded 3.1Ghz MacBook Pro
laptop. For each program we list the number of processes and channels, the num-
ber of inter-process analysis iterations, and the minimum, maximum, and aver-
age analysis time across five analysis runs. Whereas these numbers are promis-
ing they are also preliminary and included here only to demonstrate feasibility
of the approach. The deadlock examples from Figs. 11 and 12 illustrate how
it is possible to catch some deadlocks despite analyzing a safety property over-
approximately. In contrast, our tool raises no warnings when analyzing the philo

dining philosophers program listed in Table 1 as it may execute successfully. In
Sect.8 we further compare our approach with that of Stadtmüller et al. [30].

In order to meet our long term goal of scalable inter-process analysis, we
expect a number of optimizations to be relevant. For one, an alternative imple-
mentation based on extracting constraints would only need to traverse the AST
once to eliminate the repeated interpretive overhead. For another, one could
consider caching (or dependencies between) the intra-process analysis results to
avoid needless intra-process reanalysis. Finally, our division into repeated intra-
process analysis lends itself to parallelization.

8 Related Work

Historically, channel-based concurrency in the style of Hoare’s CSP has influ-
enced programming languages such as Concurrent ML (CML) [27] and more
recently Google’s Go programming language. Static analysis of CSP-like pro-
grams dates back to an early application of abstract interpretation [7], a whole
program analysis. Since the nineties various forms of static analysis of concur-
rent programs have been investigated. In an early contribution Mercouroff [19]
developed an abstract interpretation-based, polynomial-time analysis of CSP-like
programs. It could infer the communication count on each channel connecting
two processes. Nielson and Nielson [24] developed a type and effect system for
CML with dynamic process and channel creation that could predict, e.g., the
number of processes and channels created during a program’s execution. Com-
pared to our analysis it did not characterize the content of the messages sent.
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Colby [3] subsequently developed an abstract interpretation of CML, including
dynamic process creation. Akin to Nielson and Nielson [24] he analyzed the com-
munication topology of a given program, to answer questions of the form ’which
occurrences of receive can a transmit occurrence reach’? In subsequent work
various analyses for process calculi were investigated. For example, Venet [34]
developed a framework for static analysis of π-calculus programs, Rydhof Hansen
et al. [28] developed a static analyses for control flow and occurrence counting of
mobile ambients, and Feret [9] developed control-flow and occurrence counting
analyses of π-calculus programs.

Kobayashi and co-authors have since developed a range of type-based static
analyses for π-calculus: Igarashi and Kobayashi [12] developed a type-based anal-
ysis of channel communication count, Kobayashi [13] developed an type-based
information flow analysis including a type inference algorithm, Kobayashi [14]
developed a type system that guarantees deadlock-freedom including an type
inference algorithm, and Kobayashi and Sangiorgi [15] developed a hybrid lock-
freedom analysis guaranteeing that certain communications will succeed while
itself relying on deadlock-freedom and termination analyses. Most recently
Giachino et al. [10] have developed a refinement of Kobayashi’s earlier deadlock-
freedom analysis that can precisely detect deadlocks in value-passing CCS (and
pi-calculus) programs with arbitrary numbers of processes while still permitting
type inference. Since many of the process analyses can themselves be viewed as
operating over a program abstraction (a process calculus term), they are inher-
ently limited by the precision of this abstraction. Our work instead builds on
a reduced product, in which information about program variables can influence
the knowledge of network communication content and vice versa.

One may view our analysis analysis as an effect system specialized to inferring
histories of synchronous network communication akin to Skalka et al. [29] with
the LVREs representing sets of traces of such events. In comparison to Skalka
et al. [29] our approach however also infers more precise information about the
value of individual events: in that sense it refines the primitive notion of an event
to a lattice value.

A number of recent papers develop static analyses for various subsets of Go.
Ng and Yoshida [23] first developed a static deadlock detection system for a
subset of Go with a fixed number of processes and synchronous communica-
tion. Stadtmüller et al. [30] then developed a trace-based deadlock analysis of
Synchronous Mini-Go, a syntactically slightly bigger language than nano-Go. It
built on earlier work by Sulzmann and Thiemann [32] by first extracting reg-
ular expressions extended with forkable behaviours and subsequently analyzing
these for deadlocks. Technically this involved both shuffling for the denotation
of forkable behaviours and Brzozowski derivatives for the subsequent analysis.
Recently Lange et al. [16] have developed a verification framework for a big-
ger subset of Go, supporting both asynchronous message passing and recur-
sion. It works by approximating program behaviours by behavioural types and a
subsequent bounded verification of these. The above are primarily analyses for
detecting potential deadlocks which our approach is not particularly geared for.



Process-Local Static Analysis of Synchronous Processes 303

However our value analysis is more precise since it utilizes a finer value abstrac-
tion than types. Botbol et al. [1] develop a whole-program approach based on
lattice automata [17] and symbolic transducers to analyze synchronous processes
communicating via message passing and illustrate it with an application to MPI
in C.

Miné [22] developed a thread-modular analysis approach to the different
setting of shared variable concurrency, building on the idea of an interference
domain that capture relations between globally mutable variables. Like our app-
roach it may need to reanalyze each thread repeatedly. In previous work we
developed LVREs, including an ordering algorithm and a widening operator [21]
and illustrated the domain with an intra-process analysis over LVRE futures. In a
follow-up paper [20] we refined this idea to an inter-process analysis with LVREs
for both histories and futures, albeit limited to two synchronous processes. The
current paper generalizes from 2 to n processes by means a shuffle operator and
reads off a history with H in favor of computing it within a fixed-point com-
putation. Logozzo [18] previously suggested LVREs as an abstract domain but
his formulation did not fit our purpose. For one, he defines L(ε) = ∅ which is
algebraically controversial. For another, his structural widening operator was
too sensitive to syntactic variations and did not satisfy the classical widening
definition [21].

9 Conclusion and Perspectives

We have presented a modular approach to analyzing processes communicating
by synchronous message passing. It combines the analysis results of individual
processes by a dedicated shuffle operator. The approach has been formalized and
proven sound for a subset of the Go programming language. We see a number
of advantages to the approach: Since each analysis iteration result is sound, one
can run the analysis in the background and warn of, e.g., an unsuccessful read
or write, as soon as it is discovered. It also opens for algorithmic improvements
to save intra-process reanalysis when futures are unchanged. Finally the anal-
ysis cache naturally falls into separate per process caches which opens up for
parallelization.

A full version including proofs is available from
http://janmidtgaard.dk/papers/Midtgaard-Nielson-Nielson%3aSAS18-full.pdf

References

1. Botbol, V., Chailloux, E., Le Gall, T.: Static analysis of communicating processes
using symbolic transducers. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017.
LNCS, vol. 10145, pp. 73–90. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-52234-0 5

2. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
3. Colby, C.: Analyzing the communication topology of concurrent programs. In: Pro-

ceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pp. 202–213 (1995)

http://janmidtgaard.dk/papers/Midtgaard-Nielson-Nielson%3aSAS18-full.pdf 
https://doi.org/10.1007/978-3-319-52234-0_5
https://doi.org/10.1007/978-3-319-52234-0_5


304 J. Midtgaard et al.

4. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, pp. 106–
130. Dunod, France (1976)

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pp. 238–252 (1977)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the Sixth Annual ACM Symposium on Principles of Programming
Languages, pp. 269–282 (1979)

7. Cousot, P., Cousot, R.: Semantic analysis of communicating sequential processes.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 119–133.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 65

8. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (2002)

9. Feret, J.: Confidentiality analysis of mobile systems. In: Palsberg, J. (ed.) SAS
2000. LNCS, vol. 1824, pp. 135–154. Springer, Heidelberg (2000). https://doi.org/
10.1007/978-3-540-45099-3 8

10. Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
63–77. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 6

11. Grätzer, G.: General Lattice Theory. Pure and Applied Mathematics. Academic
Press, New York (1978)

12. Igarashi, A., Kobayashi, N.: Type-based analysis of communication for concurrent
programming languages. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302,
pp. 187–201. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0032742

13. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Infor-
matica 42(4–5), 291–347 (2005)

14. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11817949 16

15. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile
processes. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 80–93.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 10

16. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for
channel-based programming. In: Proceedings of the 44th Annual ACM Symposium
on Principles of Programming Languages, pp. 748–761 (2017)

17. Le Gall, T., Jeannet, B.: Lattice automata: a representation for languages on infi-
nite alphabets, and some applications to verification. In: Nielson, H.R., Filé, G.
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Abstract. Semantics-preserving program transformations, such as
those carried out by an optimizing compiler, can affect the results of
static program analyses. In the best cases, a transformation increases
precision or allows a simpler analysis to replace a complex one. In other
cases, transformations have the opposite effect, reducing precision. This
work constructs a theoretical framework to analyze this intriguing phe-
nomenon. The framework provides a simple, uniform explanation for
precision changes, linking them to bisimulation relations that justify the
correctness of a transformation. It offers a mechanism for recovering lost
precision through the systematic construction of a new, bisimulating
analysis. Furthermore, it is shown that program analyses defined over
a class of composite domains can be factored into a program transforma-
tion followed by simpler, equally precise analyses of the target program.

1 Introduction

It has been empirically observed that a semantics-preserving program transfor-
mation may alter the outcome of a static analysis, making the results more or
less precise. Consider, for instance, the program on the left in Fig. 1. A standard
odd-even parity analysis will deduce that x is odd and y is even at the end of
the program; but the parity of z is unknown, as the value of y div x could have
either parity (consider y = 10, x = 5 and y = 10, x = 3). An application of con-
stant propagation and folding, a standard compiler optimization that replaces
expressions with equivalent constant values, produces the program on the right.
Parity analysis on that program will deduce that z is even.

In this instance, the transformation enhances precision. Several tools (e.g.,
SMACK [4] and SeaHorn [17]) use transformations for this purpose. But not
all transformations enhance precision: as pointed out in [22], a translation to 3-
address code can render certain relational analyses imprecise. Program analyses
are, therefore, not robust under semantics-preserving transformations.

This observation raises three central questions: (1) How does an (arbitrary)
transformation affect the results of an (arbitrary) analysis? (2) Is there a mech-
anism to recover lost precision? and (3) Are there systematic ways to simplify
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x := 3;

y := x * 4;

z := (y div x)*z;

x := 3;

y := 12;

z := 4*z;

Fig. 1. A constant propagation transformation: source on left, target on right.

analysis through program transformation? In this work, we set up a mathemat-
ical framework to analyze these questions, and provide some answers.

The framework is built as follows. Static program analyses are modeled with
standard concepts from abstract interpretation [7,8]. Crucially, a semantics-
preserving transformation is modeled as a proof-generator. In transforming a
source program S to a program T , we suppose that a transformation also pro-
vides a bisimulation relation, B, which justifies the semantic equivalence between
the two programs. The bisimulation links the state spaces of S and T , making
it possible to transfer invariants (in particular, static analysis results) from one
side to the other, allowing their relative precision to be compared. Using this
framework, we establish general results that explain why precision is gained or
lost, and how it may be regained.

We show that an analysis with domain D on program T can be converted to a
bisimulating analysis on S, producing results that are (near-)equivalent – after
transferring through the bisimulation – to the results on T . The bisimulating
analysis is defined over a new abstract domain, D′, constructed in terms of B and
D. One can explain the effect of a transformation on precision by comparing the
relative strengths of D and D′. This provides a uniform explanation of precision
changes observed in different settings, including the ones discussed above.

Moreover, the analysis designed in [22] to counteract the loss of precision
is essentially the analysis induced by the new domain D′. The construction of
D′ thus provides a systematic, general method to form a new domain and its
associated analysis to recover from a loss of precision.

Finally, we establish that any analysis over a one-way reduced product of
domains C and D can be factored into a program transformation defined using
C, followed by an analysis of the resulting program over domain D, with equally
precise results. This provides a systematic method to design transformations
which simplify analysis without losing precision.

Together, these results provide a firmer understanding of how transforma-
tions influence precision. This should help in practice to choose (or construct)
the right set of transformations to simplify an analysis task.

2 Overview

In this section we provide a high-level overview of how we model the effect of
program transformations on static analyses. Table 1 summarizes the transfor-
mation and parity analysis for the introductory constant propagation example.
Parity domain elements E and O represent even and odd numbers, respectively,
and � represents all integers. The analysis maintains an abstract state for every
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Table 1. (a) the results of the parity analysis for the optimized program, (b) the opti-
mized program, (c) the bisimulation relation witnessing the correctness of the opti-
mization, (d) the original program, (e) the results of the parity analysis on the original
program, (f) the results of the bisimulating parity analysis.

x′:O x’ := 3 x′=x=3 ∧ y′=y ∧ z′=z x := 3 x:O x:O
y′:E y’ := 12 x′=x=3 ∧ y′=y=12 ∧ z′=z y := x * 4 y:E y:E
z′:E z’ := 4*z’ x′=x=3 ∧ y′=y=12 ∧ z′=z z := (y/x)*z z:� z:E

)f)e)d)c)b)a

location, a map from variables to elements of the parity domain. To avoid clutter,
we show only the changes to the abstract state.

Bisimulation Relation. The relation is symbolically presented in Table 1(c).
The bisimulation relates corresponding program states iff (1) they share the
same location and (2) their variable valuations satisfy the predicates appearing
on the horizontal line connecting identical program locations.

Bisimulating Analysis. The new bisimulating analysis combines the parity
domain and the bisimulation relation. It operates on the original program as fol-
lows. In each step, the analysis uses the bisimulation to move from the source to
the transformed program, transforming the current abstract state through the
bisimulation. Parity analysis on the optimized program with the transformed
state produces a new abstract state, which is back-propagated to the source,
again using the bisimulation (technically, its inverse). In effect, this process
refines abstract states using bisimulation information.

Consider the point just before the last line of the source. The current abstract
state, [x : O, y : E, z : �], is transferred to the same location in the transformed
program using the middle horizontal line. This results in the abstract state [x′ :
O, y′ : E, z′ : �], which parity analysis uses to analyze the last command. This
produces [x′ : O, y′ : E, z′ : E], which is back-propagated using the bottom
horizontal line, resulting in the state [x : O, y : E, z : E], as shown in Table 1(f).

Precision. One can view the bisimulating analysis, roughly speaking, as oper-
ating on a domain that is a product of the parity domain and the domain used
for constant analysis. That is, to obtain the same precision as on the transformed
program, one must analyze the source with a domain that combines constants
and parity. This explains the gain in precision provided by the transformation.
One can reverse this view, and consider that a source analysis with a product
domain (constants ×parity) is factored into a transformation based only on the
constants domain, and analysis based only on parity. These intuitions are made
precise in the rest of the paper.

3 Preliminaries

For convenience, we abstract from programming syntax and represent programs
by their induced transition systems and program transformations as transition
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system transformations. Representing program transformations semantically is
uncommon, but was also followed in, e.g. [9], for similar reasons. We represent
static analyses formally using the framework of abstract interpretation [7].

3.1 On Notation

We follow the notation of Dijkstra and Scholten from [12] for algebraic cal-
culations. Sets are identified with predicates, Boolean operators stand for set
operations, e.g., A ∩ B is written as A ∧ B, and the “boxed” form [ϕ] rep-
resents that the predicate ϕ is true (equivalently, that the set ϕ is universal).
Thus, [X → Y ] expresses that set X is a subset of set Y . A calculational proof
is a sequence of proof steps, each one being a weakening (indicated by → ) or
an equivalence (indicated by ≡ ). A proof step establishing [f → g], say, is
displayed as follows.

f

→ g {hint why f is stronger than g}

3.2 Programs and Program Transformations

Transition Systems. A program is represented by its induced transition sys-
tem [3]. A transition system is defined by a tuple (S, I,Σ, δ), where S is a set
of states, I is a non-empty subset of initial states, Σ is a set of actions, and
δ ⊆ S × Σ × S is the transition relation. For a triple (s, a, s′) ∈ δ, we say that
s′ is a successor to s on a. We use the notation δ(Y ), for a set of states Y , to
denote the successors of Y by δ, i.e., s′ ∈ δ(Y ) if, and only if, there is a state
s in Y such that δ(s, a, s′) holds for some action label a. An execution of the
transition system from state s is a sequence of alternating states and actions,
of the form s = s0, a0, s1, a1, . . ., where for each i, (si, ai, si+1) is a transition
in δ. Its trace is the sequence a0, a1, . . .. A computation is an execution from
some initial state. A state is reachable if it appears along some computation.
The language of a transition system T , denoted as L(T ), is the set of traces of
its finite and infinite computations.

Program Transformations and Correctness. A program transformation, viewed
semantically, is a function mapping one transition system to another with the
same action set. A transformation from S to T is correct if L(T ) ⊆ L(S). I.e.,
for every computation x of T , there is a computation y of S such that x and y
have the same1 trace.

1 To allow stuttering, one may define a subset of actions to be observable, and let the
trace of an execution be the sequence of observable actions on it.
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Simulation and Bisimulation. A relation R connecting states of transition system
T to states of transition system S is a simulation (of T by S) – also called a
“refinement mapping” – if:

– For states t, s such that (t, s) ∈ R, for every action a, and every successor t′

of t on a, there is a successor s′ of s on a such that (t′, s′) ∈ R, and
– For every initial state t of T , there is an initial state s of S where (t, s) ∈ R.

Relation R is a bisimulation if both R and its inverse relation, R−1 are sim-
ulations. Establishing (bi)simulation is a standard proof technique for showing
correctness, thanks to the following standard results.

Theorem 1. Let S, T be transition systems, and let R be a relation connecting
states of T to those of S. If R is a simulation, then L(T ) ⊆ L(S). If R is a
bisimulation, then L(T ) = L(S).

Relational Operators. For any relation R on any domain, the modal operators
preR and postR, are defined as follows. For any set S,

u ∈ preR(S) = (∃v : uRv ∧ v ∈ S) postR(S) = preR−1(S)

I.e., preR(S) is the pre-image of S under R; it is the set of all elements that are
related by R to some element of S. Likewise, postR(S) is the image of S by R;
it consists of all elements that are connected to elements in S by R.

A set of states, X, is an inductive invariant of a transition system (S, I,Σ, δ)
if it includes all initial states, i.e., [I → X], and is closed under the transi-
tion relation, i.e., [postδ(X) → X]. Invariants of S can be transformed into
invariants of T through a simulation B, as follows.

Theorem 2 (cf. [27]). Let R be a simulation from T to S. For any inductive
invariant ϕ of S, the set preR(ϕ) is an inductive invariant of T .

Transformation Witnesses. We assume that every semantic-preserving program
transformation has an associated bisimulation relation which acts as a “witness”
(i.e., a proof) for correctness. Common compiler transformations, e.g., constant
propagation, dead store removal, static single assignment (SSA) conversion and
loop invariant code motion have simple witnesses [2,28]. Abadi and Lamport’s
result [1] shows that every language inclusion has a simulation witness (after
adding auxiliary history and prophecy information).

3.3 Static Program Analysis

We briefly review standard notions. A static program analysis is usually defined
by specifying (1) a concrete domain as a partial order (C,≤C), (2) an abstract
domain as a partial order (A,≤A), and (3) a pair of functions (α, γ), called
a Galois connection, between the two domains where [α(c) ≤A a ≡ c ≤C

γ(a)]. The concrete semantics of a program is defined as the least fixpoint of a
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transformer τ : C → C. The Galois connection induces a transformer α ◦ τ ◦ γ
whose least fixpoint over A defines the most precise abstract semantics, which
is an over-approximation of the concrete one [7].

In this work, the concrete domain consists of sets of states ordered by sub-
set inclusion. As we combine aspects of static analysis with those of invariants
and (bi)simulation, it is convenient to work entirely within the concrete domain
instead of carrying around an abstract domain and a Galois connection. We use
an equivalent formulation of abstract domains in terms of closure operators on
the concrete domain. An operator cl is a (up-)closure if it is monotonic, i.e.,
[X → Y ] implies that [cl(X) → cl(Y )]; increasing, i.e., [X → cl(X)]; and
idempotent, i.e., [cl(cl(X)) ≡ cl(X)]. Given a Galois connection (α, γ), the
operator γ ◦ α is a closure, with closed sets corresponding to abstract elements.

The set of reachable states of a transition system (S, I,Σ, δ) is the least
fixpoint of the concrete transformer δ+(X) = X ∨ δ(X) that includes the initial
states, I. Following [8], we write this as lfp (δ+, I). The general form lfp (f, a)
denotes the least fixpoint of f above a, which exists if a ≤ f(a) for monotone f ,
cf. [5]. The reachable states can also be expressed as lfp ((λX : I ∨ δ(X)), ∅).
In the abstract setting, we look for closed sets as solutions. Thus, we construct
lfp (cl ◦ δ+, I) or, equivalently, lfp ((λX : cl(I ∨ δ(X))), ∅).

Theorem 3. lfp (cl ◦ δ+, I) is well defined. It is the least closed set that is an
inductive invariant of the transition system.

Proof. As both cl and δ+ are increasing, [I → cl ◦ δ+(I)]. Thus, the least
fixpoint exists. Let L = lfp (cl ◦ δ+, I). Then [I → L] by definition of L.
Moreover, [cl(δ+(L)) ≡ L] by the fixpoint property; hence, L is closed, and
[δ(L) → L]. Thus, L is a closed inductive invariant.

To show the minimality of L, let Y be any closed set that is also an inductive
invariant. From inductiveness, [I → Y ] and [δ(Y ) → Y ] holds. Hence,
[δ+(Y ) ≡ Y ]; since Y is closed, [cl(δ+(Y )) ≡ Y ] holds. Thus, Y includes I
and is a fixpoint of cl ◦ δ+. As L is the least such set, [L → Y ]. ��

More approximate closed invariants are provided by lfp (η, I), where η is
monotone, [I → η(I)], and η maps to closed sets of cl. To be sound, lfp (η, I)
must be a superset of the reachable states. That is guaranteed if η(X) is a
superset of δ+(X) for all X. We say that such η are adequate.

One mechanism to achieve finite convergence of the fixpoint computation is
widening [6,7,9]. Let D be an abstract domain with elements denoted by D. A
widening operator is a function � : D × D → D such that:

• [D2 ⊆ D1�D2]
• [D2 ⊆ D1 → D1�D2 = D1]
• Let D0,D1, . . . be an increasing chain of abstract elements. Let D′

0,D
′
1, . . .

be a chain of elements such that Di ⊆ D′
i for every i. Then there exists n ∈ N

such that ∀k ≥ n : Dk�D′
k = Dn.

Given an adequate transformer η and a widening �, the new transformer
η�(X) � X � η(X) is adequate and for every initial approximation D ∈ D
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the sequence 〈ηi
�(D), i ∈ N〉 becomes stationary [6]. The least fixpoint of η� is

an over-approximation, sacrificing precision for guaranteed eventual termination.

4 Relating Analyses Under Bisimulation

In this section, we formulate a framework for analyzing the effect of transfor-
mations on static analysis results. For the remainder of this paper, we assume
a source program S, a transformed program T , and a bisimulation B between
T and S semantically modeling a semantic-preserving program transformation.
We further assume an abstract domain underlying the desired analysis in terms
of closures clS and clT for the source and transformed program, respectively, and
corresponding widening operators �S and �T .

The above assumptions fit the setting in which program verification tools
such as SMACK [4] and SeaHorn [17] operate. Programs S and T are available
in practice as the mentioned tools anyhow run the transformations. Also, tools
performing semantic-preserving transformations implicitly have all of the infor-
mation necessary to generate the underlying bisimulation information [18,28,33].
Lastly, the assumed closure and widening operators are essentially program-
specific lifts of corresponding operators defined over readily available program-
agnostic domains such as intervals, octagons [25], polyhedra [11], etc.

4.1 Comparing Invariants of S and T

Let G denote the invariant on S computed with clS , and let H denote the
invariant on T computed with clT . In order to compare the relative strengths of
the two invariants, we have to transform them from one state space to the other,
as the state spaces of S and T may, in general, be different. The bisimulation B
is used to perform this transformation, using Theorem2.

Informally, we would consider H to be stronger than G if, after transferring
H from T to S via B−1, the resulting invariant in S is stronger than G, i.e., if
[postB(H) → G]. By the symmetry of bisimulation, we should also require that
the invariant obtained by transferring G in the other direction, from S to T , is
weaker than H. I.e., we want [H → preB(G)] to also hold.

Thus, we take the two conditions (a) [postB(H) → G] and (b) [H →
preB(G)] as the definition of the property “H is stronger than G”. Condition (a)
is equivalent to [clS ◦ postB(H) → G], a form that is used in the proofs below.

4.2 Induced Closure for S

Suppose that H is stronger than G. In order to explain the precision gain T
exhibits compared to S (equivalently, the precision loss of S subject to T ), we
formulate a new abstract domain on S (via a new closure operator) such that an
analysis on S with this operator produces an invariant that is at least as strong
as the transferred invariant postB(H).
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A natural way to reflect the computation from T into S is as follows: given a
subset X of the states of S, its closure is computed by mapping X to its image Y
in T through the relation B−1; forming Y ′, the closure of Y in T through clT ; and
finally, mapping Y ′ back to a set X ′ in S through B. The new operator clB,H is
formulated using this intuition. It is defined as a least fixpoint, (λX. lfp (g,X)),
where the function g is given below. The key to g is the composition postB ◦preB

(ignoring the intervening closures); this composition formalizes the intuition of
moving from S to T and back again.

g(Z) � Z ∨ postB ◦ clT (H ∩ preB ◦ clS(Z)) (1)

The function g is increasing by its first term and monotone as all operators
are monotone. It follows from standard arguments that

Lemma 1. clB,H = (λZ. lfp (g, Z)) is a closure operator on S.

4.3 Induced Static Analysis

We now turn to the invariants computed with static analysis using the new
closure operator on S and the best abstract transformer, clB,H

S ◦δ+S . We show that
the resulting inductive invariant is at least as precise as the invariant postB(H)
obtained by transferring the analysis result H from T to S.

Theorem 4. Let G = lfp (clS ◦ δ+S , IS) be the result of the static analysis on S.
Let H = lfp (ηT , IT ) be the result of a sound static analysis on T with closure clT .
Let GB,H = lfp (clB,H

S ◦ δ+S , IS) be the invariant computed on S with the newly
defined closure operator. If H is stronger than G, then [GB,H → postB(H)].

Proof. We prove the claim by showing that postB(H) is a superset of IS , and a
pre-fixpoint of the function clB,H

S ◦ δ+S .
As postB(H) is an inductive invariant of S, it includes the initial states;

hence, [IS → postB(H)].
Next, we establish that [clB,H

S ◦ δ+S (postB(H)) → postB(H)]. As postB(H)
is inductive for S, this is equivalent to [clB,H

S (postB(H)) → postB(H)], which
holds if postB(H) is a pre-fixpoint of the function g used to define clB,H

S (in
Eq. 1). By the form of g, we only need to consider its second term:

postB ◦ clT (H ∩ preB ◦ clS(postB(H)))

→ postB ◦ clT (H ∩ preB(G)) {H is stronger than G, condition (a)}
≡ postB ◦ clT (H) {H is stronger than G, condition (b)}
≡ postB(H) {H is closed under clT by property of ηT }

��
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Discussion. This theorem shows how to construct a new domain on S that
matches (or improves) the gain of precision obtained by transforming S to T . The
new domain is constructed from the bisimulation B, the abstract domain of T ,
as well as its invariant H. The structure of clB,H

S shows how a transformation, in
the form of its bisimulation relation, influences the precision of an analysis. This
is a somewhat indirect demonstration: an intriguing open question is whether it
is possible to determine directly from B and clT if precision is lost or gained.

As bisimulation is symmetric, a loss of precision in a transformation from S to
T is a gain of precision when viewed from T towards S. Therefore, if precision is
lost, this theorem can be applied to construct a new domain in T which recovers
the greater precision of analysis in S – for instance, in the introductory 3-address
code translation example.

The reason why the new analysis in S can be strictly more precise than the
back-propagated invariant of T is that some transformations can introduce com-
plexity in the transformed program. For instance, envision a transformation that
replaces a constant in the program with, say, a binary expression that provably
always evaluates to that constant. The induced analysis reaps the benefits of the
bisimulation and the simplicity of the original program for such transformations.

5 Practicality Extensions

If verification tools were to implement the induced analysis, the only new opera-
tion they are required to implement is refinement of an abstract domain element
with the bisimulation information postB ◦ preB (modulo intervening closures).
This operation is often feasible as the bisimulation for many common trans-
formations is essentially a conjunction of equalities between the variables and
expressions of T and S at corresponding points in the two programs [18,22,28].
However, the induced analysis has several shortcomings that hinder its usability.

First, the results of Sect. 4.3 hold for the best transformer δ+S of the source
program, which might not be easily computable. In fact, the abstract transformer
for the source program might not be even available in some cases. Several veri-
fication frameworks translate programs written in higher-level source languages
to a bytecode representation to support multitude of different programming lan-
guages [13,22]. In that case, only the transformer for program T is available. Sec-
ond, the analysis operates and produces results over the new (induced) abstract
domain. The widening operators for this domain are not immediate. Third, the
closure operator clB,H

S is defined as a fixpoint which might be expensive to com-
pute in practice. Lastly, the new domain relies on the precomputed invariant H
of T . We now address these practical limitations of the induced analysis.

5.1 Bisimulating Analysis

The results in Sect. 4.3 show that the least fixpoint of the best transformer
induced by clB,H

S is at least as strong as the back-propagated invariant from
T . In this part, we exhibit a simpler bisimulating analysis with a similar prop-
erty. In essence, the new transformer ηS uses the bisimulation to jump to the
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transformed program, makes an analysis step there, and then comes back to the
source program.

ηS(X) � clS ◦ postB ◦ ηT ◦ clT (H ∩ preB(X)) (2)

An important property of ηS is that, although it is defined over the source
program, the analysis uses only the provided adequate transformer ηT for the
transformed program. Hence, it does not depend on the source transformer that,
as pointed our earlier, sometimes might not be even available in practice. We
also remind the reader that this is the analysis we used in our example of Sect. 2.
Furthermore, this analysis avoids the fixpoint calculation in the closure operator
clB,H

S .
The new analysis is step-wise more precise than the provided analysis on the

transformed program. That is, in each iteration the bisimulating analysis does
not lose precision. The following results formalize this intuition.

Lemma 2. The new bisimulating analysis operator ηS is sound for S.

Proof. The operator ηS is monotonic, as all operations in its defining expression
are monotonic. We show that lfp (ηS , IS) is well-defined and that the result
over-approximates the reachable states.

We first establish that [IS → ηS(IS)], to ensure that lfp (ηS , IS) is defined.
As H is an invariant of T and B is a bisimulation, IT is a subset of (H ∩ preB(IS)).
By adequacy of ηT , it follows that IT is a subset of ηT ◦clT (H ∩ preB(IS)). As B
is a bisimulation, IS is a subset of postB ◦ ηT ◦ clT (H ∩ preB(IS)), and therefore
of ηS(IS).

Next, we establish that [Rk+1 → ηS(Rk)] for all k, which establishes that
lfp (ηS , IS) includes all reachable states. Consider a state s′ in Rk+1 = δ+S (Rk).
There are two cases.

(i) s′ is in Rk. Then s′ is also in postB(H), as that is an invariant of S.
Hence, there is a state t′ in T such that t′Bs′ holds, and t′ ∈ H. Therefore, t′ is
in H ∩ preB(Rk) and thus in the closure of that set under clT . By adequacy of
ηT , the state t′ is in ηT ◦ clT (H ∩ preB(Rk)). As t′ is related to s′ by B, s′ is in
clS ◦ postB ◦ ηT ◦ clT (H ∩ preB(Rk)), i.e., s′ is in ηS(Rk).

(ii) s′ is a successor of a state s in Rk. As s is in postB(H), there is a state
t of T such that tBs and t is in H ∩ preB(Rk). As B is a simulation relation,
this state has a successor, t′, such that t′Bs′ holds. By adequacy of ηT , t′ is in
ηT ◦ clT (H ∩ preB(Rk)). As t′ is related to s′ by B, s′ is in clS ◦ postB ◦ ηT ◦
clT (H ∩ preB(Rk)), i.e., s′ is in ηS(Rk). ��

We now show that the result of analyzing program S with ηS is as precise
as the transferred invariant postB(H), when expressed as a closed set using clS .
Note that as H is presumed to be stronger than G, by condition (a) of that
definition, clS ◦ postB(H) is stronger than G.

Theorem 5. Let G = lfp (clS ◦ δ+S , IS) be the result of the original analysis on
S, and Ĝ = lfp (ηS , IS) be the result of the analysis on S using the new ηS.
Let H = lfp (ηT , IT ) be the result of the static analysis on T using an adequate
transformer ηT . If H is stronger than G, then [Ĝ → clS ◦ postB(H)].
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Proof. We prove this by showing that clS ◦ postB(H) is a pre-fixpoint of ηS and
that it includes IS . As postB(H) is an invariant of S, we have that [IS →
postB(H)]. Hence, [IS → clS ◦postB(H)]. Now consider the pre-fixpoint claim.

ηS(clS ◦ postB(H))

≡ clS ◦ postB ◦ ηT ◦ clT (H ∩ preB(clS(postB(H)))) {definition}
→ clS ◦ postB ◦ ηT ◦ clT (H ∩ preB(G)) {H is stronger than G (a)}
→ clS ◦ postB ◦ ηT ◦ clT (H) {H is stronger than G (b)}
≡ clS ◦ postB(H) {H clT -closed, fixpoint of ηT }

��
Widenings. By relying on the abstract domain and transformer of T , we can also
use the widening operator for T to ensure finite convergence of the bisimulating
analysis. We assume the abstract transformer on T is η�

T (Y ) � Y �T ηT (Y ),
where ηT is an adequate monotone function as usual. We therefore use ηT to
define ηS , as shown above, and then define the widened bisimulating transformer
as η�

S (X) � X �S ηS(X). The analysis based on this transformer is guaranteed
to converge in a finite number of steps but it may be less precise than the
propagated invariant computed by η�

T . The reason for this is that, although
ηS is more precise than the back-propagated ηT , the widening operators are not
necessarily monotone [6]. We leave for future work the investigation of the actual
ramifications of this imprecision in practice as well as the construction of more
precise bisimulating widening operators.

5.2 Optimizing Domain Calculations Under Bisimulation Closure

The formulations of the new closure operator (Sect. 4.3) and the bisimulating
analysis (Sect. 5.1) rely on the invariant H on T . We show below that this depen-
dence can be removed if H is known to be closed under bisimulation within T
– i.e., if state s is in H, so is any other state s′ that is bisimular to s. This is
guaranteed if all closed sets in T are closed under bisimulation, as H is one such.
Intuitively, bisimulation-closure asserts that indistinguishable concrete states do
not negatively effect the precision of an abstract domain. Formally, we define

Assumption 1 (Bisimulation closure). [preB ◦ postB(Y ) → Y ] holds for
all closed sets Y of clT .

Assuming bisimulation-closure, the definitions can be simplified by eliminat-
ing H, as shown below, while retaining the properties shown previously.

clB,H(X) � lfp (g,X)), where g(Z) � Z ∨ postB ◦ clT ◦ preB ◦ clS(Z) and

ηS(X) � clS ◦ postB ◦ ηT ◦ clT ◦ preB(X)

Bisimulation-closure holds if B has a functional form, as shown below. Several
common program optimizations have functional bisimulation relations. Exam-
ples include constant propagation, dead-code removal, and loop unrolling. Even
transformations that reorder execution, such as loop inverse, induce a bisimula-
tion relation that maps every source state to a single target state.



The Impact of Program Transformations on Static Program Analysis 317

Lemma 3. If B is functional, i.e., [tBs ∧ t′Bs → t = t′], then bisimulation-
closure holds.

Proof. Consider any subset Y of T . State t′ is in preB ◦ postB(Y ) iff there are
states s in S and t in Y such that tBs and t′Bs. As B is functional, t = t′; thus,
t′ is in Y . ��

Transformations that can potentially invalidate the bisimulation closure are
those that break-up the computation. For instance, 3-address code translation
will break a single source statement into several target ones. Consider a source
statement assume (x - y ≤ 7) and its 3-address translation t1’ := x’ - y’;
t2’ := t1’ ≤ 7; assume t2’. A source state just before the original statement
maps to several target states corresponding to the intermediate computation of
the starting two statements in the target program. However, these statements
only refine the relationship between the variables. That is, at the beginning of the
target program no relationship between target variables t1’, x’, y’ and t2’
is known. Each consecutive statement does not invalidate existing relationships
between other variables, yet it only refines the ones between the above mentioned
target variables, satisfying the bisimulation closure assumption.

5.3 Counteracting Precision Loss in 3-Address Code Transformation

We now exemplify how verification tools can use the new bisimulating analysis
to counteract precision loss due to a transformation. Consider a relational static
analysis that computes bounds on the difference between the values of pairs
of variables. In other words, an abstract state is the conjunction of difference-
bounds constraints of the form x − y ≤ c and ±x ≤ c, where x and y are
program variables and c is an integer or real constant [23,24]. For the example
of three-address code transformation from [22], shown in Fig. 2, the analysis will
infer that (x − y) ≤ 7 holds at the end of the source program (on the left). The
same analysis, however, fails to infer any useful relation between x and y on the
transformed program (on the right). As explained in [22], for an accurate result,
it is necessary to track a relationship between three variables (e.g., t′1 = x′ − y′),
which cannot be done precisely in the given analysis domain.

Fig. 2. A 3-address code translation (from [22]) and accompanying bisimulation rela-
tion
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Bisimulation Relation. The bisimulation is symbolically illustrated in Fig. 2
using the horizontal lines and the attached predicates defined over program vari-
ables. The relation also contains “history” information connecting t′1 and t′2 to
x′ and y′. The bisimulation allows stuttering steps on T . The transformation
engine can generate the bisimulation relation while performing the actual trans-
formation [20,21]. That is, the information about equality of live expressions can
be extracted directly from the generated 3-address code.

Bisimulating Analysis. Initially, the invariant approximant for the source
program maps the top and bottom difference-bounds abstract element to the
first and last source location, respectively. This approximant is then transformed
into an approximant for the transformed program using clT ◦preB . The resulting
approximant assigns the top abstract element to the first three locations of
T since the corresponding bisimulation information does not imply any useful
difference-bounds of variables in T . The last location of T is assigned the bottom
element as that is the element being forward propagated from S. As explained
earlier, applying ηT results in the top element being assigned to every location of
T . However, the resulting approximant can now be refined using the bisimulation
information when propagating the information back to S using clS ◦postB . That
is, the information on the last horizontal line of Fig. 2 implies x − y ≤ 7.

Although the analysis technically works over the source program, the infer-
ence step is in fact made on the transformed program. The resulting invari-
ant can again be converted into an invariant for T using the result of Theo-
rem 2. The new operation verification tools are required to implement is refine-
ment/strengthening of abstract elements with the bisimulation information. One
possible way to implement this operation is to rely on known techniques for
strengthening branch results with guard information when analyzing guard state-
ments [7].

Precision. Logozzo and Fähndrich [22] show how the precision lost by the trans-
formation can be restored if information about available program expressions,
and equalities between them, are preserved at each location in T . But this is pre-
cisely the information provided by the bisimulation relation. To see this, one has
to switch the roles of S and T , which is possible as B−1 is a bisimulation from S
to T . The domain of the induced bisimulating analysis on T combines informa-
tion about program expressions, such as the definition of t1, with the original
difference domain. One can therefore derive the analysis of [22] systematically
from the bisimulating analysis definition, and view their specific implementation
as a particular form of the bisimulating analysis.

6 Transformations as Static Analyses

Consider, once again, the transformation shown in Fig. 1. Parity analysis is less
precise for variable z in the source program as it does not observe the actual
values of variables y and x. That can be done with a second domain to track
constant values, combining its information with the parity analysis to obtain
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a precise parity value for z. This is the role of the standard reduced product
construction of [8]. Applied to the product domain C × D of domains C and
D, a reduction operation transforms an abstract value (c, d) – where c ∈ C and
d ∈ D – into a more precise abstract value (c′, d′) with the same concretization.
Reduction is carried out by using the information in c to refine d to d′, and
the information in d to refine c to c′. In our example, the information flow is
one-way: the constants domain is used to refine the parity result. The program
transformation shown in Fig. 1 is also based on the constants domain. One might
conjecture from this that the transformation plays a role analogous to a one-way
reduced product.

In this section, we establish a precise form of this conjecture. We show that
an analysis based on a one-way reduced product of domains C with D, where
information flows only from C to D, can be “factored” into a program trans-
formation based on an analysis of the source program with domain C, followed
by an analysis of the transformed program with D, obtaining results on D that
are at least as precise as the original. Thus, an analysis expressed as a chain of
one-way products of C1, C2, C3, . . . , Cn = D where Ci is used to refine Ci+1, can
be broken down into a chain of transformations, one for each Ci, ending with
a program that is analyzed with D. (For a similar reduction over domains but
without program transformations, see [15]).

The (simple) transformation eliminates the need to compute with a reduction
operator, which can be a significant advantage in practice. It also shows that new
program transformations may be designed solely for the purpose of simplifying
program analysis, in addition to the use of standard compiler transformations,
which are designed primarily to improve run-time performance.

One-Way Reduced Product. Consider abstract domains C and D, specified
by their closure functions, clC and clD. The Cartesian product of C and D is
the domain formed by the closure function given by cl(X) = clC(X) ∩ clD(X).
For convenience, elements in this domain may be represented by a pair of sets
(X,Y ), where X is closed for C and Y is closed for D, with the interpretation
that (X,Y ) denotes the set X ∩ Y .

A one-way reduction function ρ maps a pair (X,Y ) of the form above to a
set Y ′ that is closed for D, such that the interpretation of (X,Y ) and (X,Y ′) is
the same. (A two-way reduced product, in addition, reduces X to some X ′.) The
best one-way reduction of (X,Y ) is given by clD(X ∩ Y ). This shows clearly that
the reduction transfers information from the X component to the Y component,
producing Y ′ = clD(X ∩ Y ) which, by its definition, is at least as precise as Y .

Fixpoint Analysis. The standard construction of the best abstract transformer
adds reduction as the final step. I.e., to obtain the best abstract representation
from a starting point (X,Y ), one computes X ′ = clC ◦δ+S (X ∩ Y ) and Y ′ = clD ◦
δ+S (X ∩ Y ) and reduces (X ′, Y ′) to (X ′, ρ(X ′, Y ′)). We relax this construction
using the common simplification which applies the transformers for C and D
individually, i.e., letting X ′ = clC ◦ δ+S (X) and Y ′ = clD ◦ δ+S (Y ).
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Theorem 6 (Factoring). Consider the least fixpoint analysis of program S
with a one-way reduced product of domains C and D and the relaxed best trans-
former. Equally or even more precise result can be obtained by transforming S
to a program T , based on the analysis of S over domain C, followed by analysis
of T over domain D.

Proof. The proof outline is as follows. We first establish that the least fixpoint
analysis can be sequentialized. We use the fixpoint over C to define the trans-
formation from S to T , and prove that analysis of T over D produces the same
result as the original fixpoint.

Let (c̄, d̄) be the least fixpoint of the relaxed transformer defined earlier that
includes the initial states of S. This is a simultaneous fixpoint definition over
the vector (X,Y ).

We simplify this to a different, but equivalent form, starting from the empty
set instead of from IS . Let functions fC and gD be defined on a pair (X,Y ) by
fC(X) = clC(IS ∨ δS(X)) and gD(X,Y ) = ρ(fC(X), clD(IS ∨ δS(Y ))). Then
the original fixpoint can be re-expressed as

(c̄, d̄) = lfp ((λ(X,Y ). (fC(X), gD(X,Y ))), (∅, ∅))

By a well-known result from Bekic̆ (sometimes called the Scott-Bekic̆ theo-
rem), the fixpoint value for domain D can also be obtained with the “flattened”
nested fixpoint defined below, where the outer fixpoint is over the closed sets Y
of D, and the inner fixpoint over the closed sets X of C.

let d̄ = lfp ((λY. gD(lfp ((λX : fC(X)), ∅), Y )), ∅)

As fC is independent of Y , the inner fixpoint can be extracted to form the
equivalent, simpler definition:

let c̄ = lfp ((λX. fC(X)), ∅)
let d̄ = lfp ((λY. gD(c̄, Y )), ∅)

That is, the computation of the original fixpoint can be sequentialized, by
first computing c̄, and only then computing d̄ in terms of c̄. By Theorem 3, c̄ is
an inductive invariant of S.

We now use the value c̄ to define a simple transformation from S to T . The
program T has the same state space and the same set of initial states as S,
but its transition relation is a restriction of that of S, defined by [δT (t, t′) ≡
c̄(t) ∧ δS(t, t′)]. I.e., transitions are allowed only from states satisfying c̄. As c̄ is
inductive for δS , the expression for δT (t, t′) is equivalent to c̄(t) ∧ δS(t, t′) ∧ c̄(t′).
Hence, for a set Y of states, [δT (Y ) ≡ c̄ ∧ δS(Y ∩ c̄)].

Define the relation B from T to S by B(t, s) ≡ (t = s) ∧ c̄(s). The fact
that c̄ is an inductive invariant of S helps establish that B is a bisimulation, we
omit the simple proof.
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The standard analysis with D on T results in d� = lfp ((λY. clD(IT ∨
δT (Y ))), ∅). We show that this is at least as precise as d̄, i.e., [d� → d̄].
This follows if d̄ is a pre-fixpoint of the function used to define d�.

clD(IT ∨ δT (d̄))

≡ clD(IS ∨ δT (d̄)) {as [IT ≡ IS ]}
≡ clD(IS ∨ (c̄ ∧ δS(d̄ ∩ c̄))) {by the relationship between δT and δS}
≡ clD(c̄ ∧ (IS ∨ δS(d̄ ∩ c̄))) {[IS → c̄] by inductiveness of c̄ for S}
→ clD(c̄ ∧ clD(IS ∨ δS(d̄))) {monotonicity}
→ ρ(c̄, clD(IS ∨ δS(d̄))) {by definition of the best reduction}
≡ gD(c̄, d̄) {by definition of gD}
≡ d̄ {by fixpoint}

��
From the careful examination of the above proof, it becomes clear that the
transformation plays the role of the one-way reduction; as noted, the result
obtained on the transformed program may even be stronger than that obtained
by the one-way reduced product.

7 Related Work and Conclusion

In this work, we introduced a formal account of the impact program transfor-
mations can have on static analyses. By modeling transformations semantically
using bisimulations and static analyses using abstract interpretation, we show
how the improved/decreased precision of an analysis on the transformed program
can be explained in terms of the bisimulation. We assemble the bisimulation and
a given abstract domain to form a new abstract domain. The newly constructed
domain induces an analysis on the source program that is more precise than the
given analysis for the transformed program. We also present a weaker but more
practical bisimulating analysis that utilizes information already present in ver-
ification frameworks, allowing the transfer of theoretical results almost directly
to practice. We also show, in the opposite direction, how 1-way reduced prod-
uct static analyses can be broken into a transformation followed by a simpler
analysis. Our framework thus provides a formal understanding and theoretical
machinery for a more systematic design of program analysis tools that combine
program transformations and static analyses. We now discuss related work.

The work most closely related to ours is the one by Logozzo and
Fähndrich [22]. The authors exemplify how 3-address code transformation
can introduce imprecision for static analyses working over relational abstract
domains. They also show how the lost precision can be recovered by additionally
tracking available expressions, a technique introduced by Miné [26]. We already
overviewed the mentioned imprecision phenomena and the recovering technique
in Sect. 5.1. Our work is a substantial generalization. The framework supports
any transformation whose correctness can be witnessed by a common general
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class of bisimulations. Furthermore, there is a general technique for recover-
ing from precision, which specializes to the use of symbolic expressions in their
setting. Our work also paves the way for implementing static analyses using
transformations.

Cousot and Cousot introduce a general and language-independent framework
for designing program transformations [9]. By adopting the view that syntax
is an abstraction of semantics, the authors use abstract interpretation to for-
malize and argue the idea that syntactic transformations are an abstraction of
possibly incomputable semantic transformations. Their formalization allows for
a more systematic design of syntactic transformations and simpler arguments
of their correctness. Our work, on the other hand, is concerned with formal
understanding of how program transformations affect static analyses, how the
negative effects can be remedied, and how to design static analyses using pro-
gram transformations. The common theme of the two papers is the semantic
view of program transformations. As their work shows, syntactic transforma-
tions overapproximate the semantic ones; we use bisimulations to recover the
loss of information stemming from the (proper) overapproximation.

Ranzato and Tapparo show in [29,30,32] how strong preservation in abstract
model checking, witnessed by a bisimulation, can be characterized and gener-
alized by the notion of completeness in abstract interpretation [8,16]. In effect,
the authors show how bisimulations are a particular case of abstract interpre-
tation. As a consequence, abstract models can be refined using domain refine-
ment techniques of abstract interpretation in order to achieve preservation of
properties from the concrete model [31]. This body of work and our paper are
related by using bisimulations in the context of abstract interpretation, specif-
ically domain refinement [15]. Cousot et al. devise an abstract interpretation
framework for inferring invariants over arbitrary abstract domains for refac-
tored code fragments [10]. Focusing on the method extraction refactoring, the
authors show how to reuse the invariants computed for the original program to
infer the most general correct pre- and post-conditions for the extracted method
that are compatible with the method use in the program and do not violate any
assertions of the method body. Our work focuses on transformations that can
be modeled semantically using bisimulations and is concerned with remedying
potential precision loss caused by transformations. Their work has the objective
of inferring good annotations for the refactored piece of code by utilizing the
information provided by the prior analysis of the original program. Fedyukovich
et al. present techniques that infer simulation relations that in turn allow trans-
fer of safe inductive invariants from (an abstraction) of a source program P to
its arbitrarily modified version Q [14]. Our work assumes a bisimulation rela-
tion but is concerned with designing new abstract domains that capture how
semantic-preserving program transformations affect static analyses.

SeaHorn is a fully automated framework for verifying safety properties of
software [17]. Built on top of LLVM [19], the framework uses sophisticated
SMT-based model checking techniques together with abstract interpretation
to perform inter-procedural static analysis. As a preprocessing step, SeaHorn
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performs several known program transformations, such as static single assign-
ment (SSA), function inlining, dead-code elimination, etc. This preprocessing
step, as reported, is introduced to simplify the verification task. SMACK is a
verification toolchain which is also based on LLVM [4]. As a pre-processing step,
SMACK runs common program optimizations provided by LLVM since they, as
reported, improve the performance and accuracy of verification [4].
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25. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100
(2006)
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Abstract. Proving safety of programs relies principally on discovering
invariants that are inductive and adequate. Obtaining such invariants,
therefore, has been studied widely from diverse perspectives, including
even mining them from the input program’s source in a guess-and-check
manner [13]. However, guessing candidates based on syntactical construc-
tions of the source code has its limitations. For one, a required invariant
may not manifest on the syntactic surface of the program. Secondly, a
poor guess may give rise to a series of expensive checks. Furthermore,
unlike conjunctions, refining disjunctive invariant candidates is unobvi-
ous and may frequently cause the proof search to diverge. This paper
attempts to overcome these limitations, by learning from both – appear-
ance and behaviours of a program. We present an algorithm that (i)
infers useful invariants by observing a program’s syntactic source as well
as its semantics, and (ii) looks for conditional invariants, in the form of
implications, that are guided by counterexamples to inductiveness. Our
experiments demonstrate its benefits on several benchmarks taken from
SV-COMP and the literature.

1 Introduction

Arguing for program correctness is a challenging task. But it is non-optional,
especially as software has permeated our lives, in forms that are many times even
safety- or business-critical. Not surprisingly, this subject has been the focus of a
lot of research in the last several decades, and there is a vast amount of literature
covering different facets of this problem. The issue that is central to all of this
is that of discovering inductive invariants, that are sufficient to discharge the
property in question. Invariants help in over-approximating the reachable states,
which can then be shown to be disjoint with the set of bad states to establish
safety, whereas precisely computing what is reachable may be infeasible.

Numerous techniques have been proposed for inferring program invariants
automatically, and even semi-automatically with human assistance. Broadly
speaking, these techniques learn meaningful information about the input pro-
gram from its semantics, using approaches based on abstract interpretation [5–7],
constraint solving [4,16], counterexample-guided abstraction refinement [3],
property directed reachability [2,17], interpolation [1,8], user-assistance [19], etc.
In contrast, Fedyukovich et al. [13] recently demonstrated that invariants can
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 326–343, 2018.
https://doi.org/10.1007/978-3-319-99725-4_20
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int n;

assume(1 <= n <= 1000);

int sum = 0, i = 1;

while(i<=n) {

sum = sum + i;

i = i + 1;

}

assert(2*sum == n*(n+1));

(a)

int LRG = nondet();

assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {

if (x < LRG) {

y = y;

} else {

y = y + 1;

}

x = x + 1;

}

assert(y == 2*LRG);

(b)

Fig. 1. Motivating examples

often be caught on the surface, i.e. the invariants many times imitate the syntac-
tical constructions appearing in the source code. Their tool, FreqHorn, works
in a guess-and-check manner, by sampling candidates from an appearance-guided
search space built automatically from ingredients found in the program source.
A follow-up work [12], and the corresponding tool FreqHorn-2, accelerates
this process by computing additional candidates as interpolants from proofs of
bounded safety. These candidates likely reflect the nature of the error unreach-
ability, and thus have a semantic value. While this justifies the idea of supple-
menting syntactic search with behavioural1 facts about the program, interpolants
obtained from bounded proofs may not fully capture these facts. Nevertheless,
an important contribution of this technique is the automatic construction of
sampling space, which is particular to the input program. This can even assist
template-based methods, e.g. Daikon [11], in selecting the templates carefully,
instead of working with a generic one that may be needlessly more expressive.

Consider the example shown in Fig. 1a. It computes the sum of first n natural
numbers, and asserts that twice the computed sum equals n times (n+1). Since
this is an arithmetic fact, the program is safe. The sum is computed by iterating
over the numbers from 1 to n in a loop, and by adding each number to the
variable sum, which is 0 initially. One way to prove this program correct is to
obtain the following inductive invariants for the while loop: 2∗ sum = (i− 1) ∗ i,
and i ≤ (n + 1). Along with the exit condition of the loop, (i > n), these are
sufficient to derive that 2 ∗ sum = n ∗ (n + 1).

1 behaviour refers to facts derivable from the program’s meaning, not necessarily lim-
ited to its concrete runs; we use the terms behaviours and semantics interchangeably.
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A merely syntactic exploration would find the invariant i ≤ (n + 1) (it is a
mutation of the loop condition), but it would fail2 to deduce that 2 ∗ sum =
(i − 1) ∗ i is a loop invariant. While the latter is quite similar to an expression
appearing in the program, namely the property, FreqHorn-2 does not consider
mutations that alter variables. And even if it did, that would result in a number of
mutants which are poor candidates. I.e. they would fail the inductiveness check,
which is an expensive operation in this case because of the non-linear template.
On the other hand, if we look to obtain algebraic invariants behaviourally, e.g.
as proposed by Sharma et al. [24], we can get that inductive invariant almost
immediately.

It is noteworthy that an execution-based approach, similar to the one stated
above, would be able to verify this example even when n is replaced by a concrete
value, say 239, and the property becomes 2∗sum = 57360. The desired invariant,
2 ∗ sum = (i − 1) ∗ i, is no longer available as a mutation of the property.
But it is still a valid algebraic relation between sum, i and i2, that can easily
be drawn from program executions. In other words, information available from
concrete runs complements the syntactic search for invariants, especially when
the property does not entirely manifest at the program surface, but also lies
deeper in its behaviours.

For another limitation of the existing technique, let us consider the program
shown in Fig. 1b, chosen from the benchmarks used in [12]. The program has a
positive constant LRG, denoting a large value perhaps, and two variables, x and y.
The while loop in the program has two distinct phases – first in which only x gets
incremented, till it becomes LRG (and equal to y’s initial value), and the second
where both x and y are incremented as long as x is less than twice the large
constant. The assertion holds because x and y are equal after every iteration in
the second phase. A formal proof of correctness can be derived from the following
inductive invariants: (((x <LRG) ⇒ (y =LRG)) ∧ ((x ≥LRG) ⇒ (y = x))), and
(x ≤ 2∗LRG).

FreqHorn-2 rarely converges to a proof for this program (only once in
20 runs in our experiments, with a timeout of 600 s); the reason being lack of
structured search, particularly for disjunctive invariant candidates. For example,
in order to get ((x ≥LRG)∨(y =LRG)), FreqHorn-2 has to choose the candidate’s
arity as 2, and then sample the parts (x ≥LRG) and (y =LRG) separately. If any
of the choices turn out to be bad, the inductiveness check fails, and a subsequent
refinement may even replace disjuncts that are useful or necessary. Analyzing
behaviours may not work for such programs either. There must be enough runs
representing all the phases in order to deduce the algebraic relations, even if
they exist.

We propose a method to solve this problem by extracting conditional invari-
ants, which are implications with antecedents that are derived from conditions
appearing in the program. Whether a conditional invariant needs to be sampled
or not is decided by inspecting the counterexamples to inductiveness, or CTIs,
of the candidates explored thus far. We check if the counterexamples can be

2 FreqHorn-2 times out after 600 s, in an experimental set-up similar to [12,13].
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made to fit into a polynomial over program variables, to determine if they are
of the same kind. Intuitively, if there are different kinds of counterexamples, it
may be worthwhile to look for an invariant for each kind. I.e. implications of the
form condi ⇒ invi, where condi qualifies the kind of CTIs, and invi denotes the
invariant that gets rid of those.

Given the invariants that are needed to prove safety of the example in Fig. 1b,
it is evident that this enhancement allows us to get them quickly. Note that the
restriction to sample the antecedents from a very small space (of conditions
appearing in the program, and their mutations) prevents us from divergence in
many cases. However, at the same time, it is expressive enough to work in a
number of cases. In particular, it enables our approach to solve examples with
multi-phase loops that require phase-specific invariants [23].

The core contributions of this paper are summarized as follows:

– A technique that combines learning from a program’s behaviours, with that
from its syntactic source, for inferring useful invariants.

– A heuristic to determine whether conditional invariants could be useful, and a
method to obtain them by analyzing implications whose antecedents are cho-
sen to be (possibly, conjunctions and/or mutations of) conditions appearing
in the program, or negations thereof.

– An implementation that extends FreqHorn-23 – the tool used for evaluation
in [12], which forms the basis of this work.

– Experimental evaluation that illustrates the usefulness of our approach on
several benchmarks from SV-COMP and the literature.

Outline of the Paper. We start with a survey of the related work in the next
section (Sect. 2), before moving over to some of the closely related ones in details,
seeing that they serve as the necessary background (Sect. 3). Section 4 describes
the core contributions of this work, and is followed by a discussion of the experi-
mental results (Sect. 5). Section 6 concludes the paper, and includes our thoughts
on several interesting directions of pursuing this further.

2 Related Work

Invariant synthesis is an essential step in program verification. Abstract interpre-
tation [5,6] is a prominent technique which iteratively computes approximations
until a fix point is reached. The assertion generated at fix point is an induc-
tive invariant. In order to overcome the difficulty of choosing widening heuristics
in abstract interpretation, template-based techniques were proposed. For exam-
ple, [4] assumes the invariants to be in a fixed template over program variables.
Inductiveness conditions are translated to nonlinear constraints such that the
solutions of constraints are invariants. However, this technique relies on the effi-
ciency of nonlinear constraint solving.
3 Thanks to Grigory Fedyukovich, the sources of FreqHorn-2 are available at https://

github.com/grigoryfedyukovich/aeval/tree/rnd.

https://github.com/grigoryfedyukovich/aeval/tree/rnd
https://github.com/grigoryfedyukovich/aeval/tree/rnd
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A somewhat related technique for invariant discovery is that of guess-and-
check, which repeatedly guesses candidate invariants from a known language rep-
resented by a grammar, and checks them for invariance. Automatic construction
of an adequate grammar, tractable search among candidates, and inductiveness
check of candidates are the main challenges of this technique. In general, an SMT
solver that can decide the underlying theory is used for the inductiveness check.
The other two challenges are addressed using data computed through static and
dynamic analysis techniques. For instance, the technique presented in [24] uses
concrete program runs as data to discover invariants. Invariants are assumed to
have the form of a fixed-degree polynomial equation over program variables. The
execution traces are used to solve for coefficients of the polynomial. It uses an
SMT solver to check inductiveness of the solutions. A similar dynamic analysis
technique to discover polynomial and array invariants has been proposed in [18].
The drawbacks of these techniques are high computational complexity for dis-
covering invariants with inequality [18], and inability to derive disjunctions that
are not polynomial equations.

Counterexamples to consecution, along with the information available on
unreachable and reachable states (referred to as ICE), are used for guiding the
search for invariant candidates in [15]. An invariant is assumed to be boolean
combinations of atomic formulas of a particular form, e.g. an octagon. The prob-
lem of guessing a candidate is modeled as problem of generating a formula that
separates reachable and unreachable states. Techniques from learning theory are
used on the available data to solve this problem.

In [22], the invariant candidates are sampled as boolean combinations of
linear inequalities, whose coefficients and constants are taken from a data set
that is populated from constants occurring in the source code, and their sums
and differences. It also incorporates those counterexamples in the data that
disqualify a candidate as an invariant. The entire program source may also be
considered as data, e.g. [13]. A frequency distribution obtained from the input
program’s source guides the automatic construction of grammar. Moreover, failed
candidates are used to prune the search space of candidates. This technique was
found to be competitive to other machine-learning techniques. However, pruning
can cause divergence in the algorithm. This problem is partially addressed in [12],
which performs consecution checks in batches, and uses the counterexamples to
induction effectively. It also supplements the method with candidates of semantic
values, obtained as interpolants from bounded proofs. Our work further enhances
this by mining candidates from program behaviours, and enabling discovery of
conditional invariants.

3 Notations and Background

We begin with a description of the notations that are used in Fedyukovich
et al. [12,13], which we also follow.

Definition 1. A program P is defined as a transition system, or a tuple 〈V ∪
V ′, Init ,Tr〉, where
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– V denotes the set of variables, and the corresponding primed set V ′ represents
their next-state copies,

– Init is a set of initial states encoded as a formula over V , and
– Tr(V, V ′) is a transition relation encoded as a formula over V and V ′.

We assume that the formulas belong to a fixed first order language L. A
state is an assignment of values to all variables in V or V ′. For a formula φ over
V , a state s satisfies it, s |= φ, when the assignment of values to all variables
as per s satisfies the formula φ. A state sk is reachable if either sk |= Init or
∃sk−1, (sk−1, s

′
k) |= Tr , where sk−1 is a reachable state and s′

k assigns same
values as V for corresponding primed set V ′.

Given 〈P,Bad〉, where Bad is an undesirable set of states encoded as a for-
mula over V , verification of P is the task of deciding whether a state from Bad
is reachable or not. An L-formula Inv which is disjoint from Bad and includes
all the reachable states is called a safe inductive invariant, or henceforth simply
an invariant. If we assume that an invariant exists in L, then verification of P
reduces to finding an invariant Inv , such that the following hold:

Init(V ) ⇒ Inv(V ) initiation
Inv(V ) ∧ Tr(V, V ′) ⇒ Inv(V ′) consecution

Inv(V ) ∧ Bad(V ) ⇒ ⊥ safety

Note that ⊥ denotes false. These validity checks can be transformed into
equivalent unsatisfiability checks, to be discharged by an SMT solver e.g. Z3 [9].
The models corresponding to the consecution check failure are referred to as
CTIs. More formally, CTIs is a set of pair of states (sk, s′

k+1), such that sk |= Inv
and (sk, s′

k+1) |= Tr , but s′
k+1 |= Inv ′.

We also recall a few basic definitions from linear algebra that we use.
Given a vector space V, over a field F with its additive identity denoted as

0, its basis B = {v1, . . . ,vn} is a minimal subset of V satisfying:

1. ∀ a1, . . . , an ∈ F, if a1v1 + · · · + anvn = 0, then a1 = 0, . . . , an = 0.
2. ∀ v ∈ V,∃ a1, . . . , an ∈ F such that v = a1v1 + · · · + anvn.

The cardinality of B is called dimension of V. For a matrix A, the dimension
of the vector space generated by its columns is called its rank. The nullspace of a
matrix A is a set of all vectors v such that Av = 0. The dimension of a matrix’s
nullspace is also called its nullity.

3.1 Syntax-Guided Invariant Synthesis

An important contribution of [13] is the automatic generation of production rules
for the sampling grammar G, guided by the structure of encoding of Init , Tr and
Bad . Candidate invariants are guessed using these production rules, and then
checked for invariance and safety using an SMT solver. The candidates sampled
from G are disjunctions of linear inequalities. The final invariant is assumed to be
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Algorithm 1. FreqHorn: Syntax-guided invariant generation
Input: Init , Tr , Bad and V
Output: lemmas

1: P ← computeDistribution(Init ,Tr ,Bad)
2: G ← constructGrammar(P)
3: L ← ∅ � the set of lemmas
4: while

∧

l∈L

l ∧ Bad(V ) is SAT do

5: init ← false, consec ← false
6: cand ← newCandidate(G)
7: if Init(V ) ∧ ¬cand(V ) is UNSAT then init ← true

8: if cand(V )
∧

l∈L

l(V ) ∧ Tr(V, V ′) ∧ ¬cand(V ′) is UNSAT then consec ← true

9: if init ∧ consec then L ← L ∪ cand
10: adjust(cand, G, P)

11: return L

a conjunction of these candidates, also called lemmas. I.e. Inv ⇔ l0∧ l1∧· · ·∧ ln,
where the lemmas li ∈ G.

A high level description of their technique is presented in Algorithm 1. The
procedure computeDistribution computes a frequency distribution of arities
of operations, program variables and constants used, from the Init , Tr and Bad .
This distribution is used to construct production rules for the sampling grammar
resulting in an initial grammar G in the second step. After this step the algorithm
enters a loop where candidate lemmas, as per the grammar G, are guessed and
checked until a safe invariant is found. The SAT checks in lines 4, 7, and 8 are,
respectively, the checks for safety, initiation, and consecution. If a candidate fails
one of the last two checks, the grammar G is adjusted so that syntactically similar
candidates are not sampled immediately. Otherwise the candidate is added to
the set of lemmas.

3.2 Bootstrapping and Batch Checking

The tool FreqHorn that implements Algorithm 1 outperforms other data-
based tools. However, in a follow-up paper [12], Fedyukovich et al. mitigate two
downsides of this technique, namely (i) the candidates being ignorant to the
program semantics, and (ii) a useful candidate failing the inductiveness check,
even though it is inductive relative to some other candidates that may get sam-
pled in due course. They propose an improved algorithm (shown as Algorithm 2)
that works in two phases: bootstrapping and sampling. During bootstrapping
they add additional candidates obtained as interpolants, from proofs of bounded
safety, as seeds (line 1). This adds semantically valuable candidates, unlike its
predecessor where candidate sampling was purely syntactic. The seeds them-
selves may be safe invariants, or they may assist in constructing safe invariants
in the sampling phase. The sampling phase works in a similar manner as before,
except that the consecution check is done for a batch of candidates at once,
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instead of a single candidate (line 12). This is to address the latter issue, i.e. to
avoid rejecting candidates that are relatively inductive to other lemmas. This
check is similar to the algorithm used in Houdini tool [14].

Algorithm 2. FreqHorn-2: Bootstrapping and Batch Checking
Input: Init , Tr , Bad and V
Output: lemmas

1: candidates ← bootstrapInterpolants(Init ,Tr ,Bad)
2: P ← computeDistribution(Init ,Tr ,Bad)
3: G ← constructGrammar(P)
4: L ← ∅
5: while

∧

l∈L

l ∧ Bad(V ) is SAT do

6: while |candidates| < BatchSize do � for a pre-decided BatchSize
7: cand ← newCandidate(G)
8: if Init(V ) ∧ ¬cand(V ) is UNSAT then
9: candidates ← candidates ∪ {cand}

10: else adjust(cand, G, P)

11: for cand ∈ candidates do
12: if

∧

c∈candidates

c ∧ ∧

l∈L

l ∧ Tr(V, V ′) ∧ ¬cand(V ′) is SAT then

13: candidates ← candidates \ {cand}
14: adjust(cand, G, P)
15: candidates.reset � start the loop afresh

16: for cand ∈ candidates do
17: L ← L ∪ {cand}
18: return L

4 Combining Syntax and Behaviours

The semantic information added by interpolants in the bootstrapping phase
of [12] certainly accelerates the task. However, we have seen that interpolants
from bounded proofs may fail to capture certain behavioural facts. Making the
sampling grammar richer is one solution, but without any guidance irrelevant
candidates will become a bottleneck during the checking phase. We propose an
enhancement to the semantic guidance – from candidates that are not available
on surface, but can be discovered by analyzing behaviours. We also show how
CTIs may be used to detect the need for conditional invariants and how this can
be useful for a certain class of programs.

4.1 Behaviours

Recall the example in Fig. 1a, which needed, along with the inequality (i ≤ n+1),
an algebraic invariant (2 ∗ sum = i2 − i) which was not available from syntax.
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We aim to discover lemmas such as these, by sampling candidates that have the
following fixed degree polynomial equation form:

c1 ∗ m1 + c2 ∗ m2 + · · · + cn ∗ mn = 0

where mi = xk1
1 . . . xkl

l are monomials and ci ∈ Q are coefficients. The degree
of a monomial is the sum

∑
i ki, and the degree of a polynomial equation is

the highest degree among its monomials. In our technique, we consider that
xi’s come from the set of variables V . For instance, 2 ∗ sum − i2 + i = 0 is
a polynomial equation of degree 2 for the program in the variables sum and
i, with the monomials sum, i2 and i. One may sample such candidate lemmas
by guessing the monomials and their coefficients. However, the probability of
obtaining a poor candidate is very high, resulting in a number of expensive
checks. Instead, we rely on the following theorem from [24] to discover them.

Theorem 1. If an invariant is a conjunction of k polynomial equations each of
degree d and nullity of A is k, where A is a data matrix, then any basis for
nullspace of A forms an invariant.

A data matrix is a matrix of values of monomials up to degree d. Each row of
the data matrix corresponds to values of monomials computed by using concrete
values of corresponding variables from V . The concrete values of variables are
obtained from behaviours. For example, Table 1 shows a data matrix computed
with d = 2 for the program in Fig. 1a. The first three columns shows the values
of variables i, n and sum at loop head for five iterations of the loop. The value
of n is a non-deterministic assignment as it is not initialized in the program.

Table 1. Monomials up to degree 2 for the program in Fig. 1a

i n sum i2 i ∗ n i ∗ sum n2 n ∗ sum sum2 const

1 36 0 1 36 0 1296 0 0 1

2 36 1 4 72 2 1296 36 1 1

3 36 3 9 108 9 1296 108 9 1

4 36 6 16 144 24 1296 216 36 1

5 36 10 25 180 50 1296 360 100 1

The central idea of Theorem 1 is that if invariants are assumed to be poly-
nomial equations of degree d over V , then one can obtain coefficients of these
equations using the data matrix. This is because the values from data matrix,
when substituted for monomials, gives us a system of linear equations in c1 . . . cn.
The solutions to these equations form a vector space, and the basis of this vector
space gives coefficients of polynomial equations. The basis of a system of linear
equations can be computed by the well-known Gauss-Jordan elimination algo-
rithm. The computational complexity of this algorithm is O(m2n) for an m × n
matrix.
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Algorithm 3. getAlgebraicCandidates: Learning algebraic invariants from
behaviours
1: procedure getAlgebraicCandidates(behaviours)
2: candidates ← ∅
3: M ← computeMonomials(behaviours, dpoly)
4: B ← GaussJordan(M)
5: for coefficients ∈ B do
6: candidates ← candidates ∪ ConstructPolynomial(coefficients, dpoly)

7: return candidates

Algorithm 3 presents the procedure getAlgebraicCandidates, which
takes behaviours as input, provided either by user or computed using an SMT
solver, and returns a set of candidates. It starts with computing the val-
ues of all monomials up to pre-decided degree dpoly using behaviours, and
stores them in a data matrix M . The basis of nullspace of this data matrix
B is computed using Gauss-Jordan algorithm in the next step. Each vector
of the basis is used as coefficients c1 . . . cn to construct a polynomial equa-
tion following Theorem 1. Thus computed polynomial equations are returned
as candidates. For instance, if we use the values from Table 1 we get basis
B = {(0 1 0 0 0 0 0 0 0 −36

)
,

(−1 0 −2 1 0 0 0 0 0 0
)
,

(−36 0 0 0 1 0 0 0 0 0
)
,(

0 0 0 0 0 0 1 0 0 −1296
)
,

(
0 0 −36 0 0 0 0 1 0 0

)}. When they are substituted
as coefficients we get the following polynomials as candidates: n − 36 = 0,
−i−2∗sum+i2 = 0, −36∗i+i∗n = 0, n∗n−1296 = 0 and −36∗sum+sum∗n = 0.
Among these candidates −i − 2 ∗ sum + i2 = 0 passes both initiation and con-
secution checks.

4.2 Counterexamples to Induction (CTIs)

In this subsection we present a heuristic to solve programs like Fig. 1b. We
observe that invariants of such programs may have different lemmas that hold in
different blocks of the loop, i.e. the lemmas may only be conditional. Hence, the
technique presented in previous section will not be able to generate necessary
invariants. To address this, we first need to check whether a given program
requires conditional invariants. A naive solution is to traverse the transition
relation Tr and look for if conditions in loops. However, this will not work
always and may even miss simple invariants. Consider the program shown in
Fig. 2 which is taken from the benchmarks of FreqHorn-2. Even though this
program has an if condition, a simple assertion i+j = n itself is a safe invariant.
This invariant can be discovered from the technique mentioned in Sect. 4.1.

We call Tr , a polynomial relation if it is possible to represent all variables
from V ′ in a fixed degree polynomial equation over V . This polynomial is of the
form:

f(x′
i) = c1 ∗ m1 + c2 ∗ m2 + · · · + cn ∗ mn

where x′
i ∈ V ′, mi are all possible monomials over V up to a certain degree d

and ci ∈ Q are coefficients.
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main() {

int i=0,j=0,k=100,n=0,b;

assume(b == 0 || b == 1);

while(n < 2*k) {

if (b == 0) {

i++; b = 1;

} else {

j++; b = 0;

}

n++;

}

assert(i+j == n);

}

Fig. 2. A benchmark program from [12]

Our idea is that if Tr is not a polynomial relation then the loop requires
conditional invariants. For example, consider the program in Fig. 1b. Both x′

and y′ are getting modified by two relations: y′ = y, x′ = x + 1, LRG′ = LRG
and y′ = y + 1, x′ = x + 1, LRG′ = LRG, which are from if and else blocks
respectively. It is not possible to find a polynomial function for y′. Hence, we
need an implication. Whereas if we consider the example from Fig. 2, all the
variables in V ′ can be represented by the following polynomial equations over
V : n′ = n + 1, b′ = 1 − b, i′ = i + 1 − b and j′ = j + b. Hence, this program does
not require conditional invariant.

One approach to check if Tr is a polynomial relation is to encode a con-
straint whose satisfiability implies that V ′ can be represented by V . However,
this approach will not scale with larger degrees and variables. We propose an
efficient technique by using concepts of linear algebra and CTIs. Recall that the
models corresponding to the consecution check failure are referred to as CTIs.
In a nutshell, we try to look for coefficients c1 . . . cn that are consistent with
CTIs. We substitute values for f(x′

i) and mi in polynomial equations by using
values of V ′ and V respectively from CTIs. If there are l CTIs this results in
l linear equations over c1 . . . cn. These equations can be represented in matrix
form as Mc = fx′

i
, where M is the matrix of values for mi, cT =

(
c1 . . . cn

)
and

fx′
i

T =
(
x′
i1

. . . x′
il

)
. The following standard theorem from linear algebra [21]

helps to determine if these equations have a solution for the ci’s or not.

Theorem 2. A system of linear equations is consistent if and only if the rank
of the matrix of the system is equal to the rank of its augmented matrix.

In our case the matrix of the system is M and the augmented matrix is M|fx′
i
,

i.e. M augmented with fx′
i
. As per Theorem 2 if rank(M) and rank((M|fx′

i
))

are not equal then it is not possible to have a solution for ci.
The procedure checkForImpl is presented in Algorithm 4. It takes the

CTIs as input. In the first step, it computes M using CTIs up to degree dpoly . It
then checks for each variable x′

i in V ′ whether the rank of its augmented matrix
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Algorithm 4. checkForImpl: Deciding the need for implications from CTIs
1: procedure checkForImpl(CTIs)
2: M ← computeMonomials(CTIs, dpoly)
3: for x′

i ∈ V ′ do
4: fx′

i
← CTIs[xi

′]
5: Maug ← augment(M, fx′

i
)

6: if rank(M) �= rank(Maug) then
7: return true

is equal to rank of the matrix M . If this is not the case for any of the variables,
the procedure returns with the decision that implications will be sampled as
candidates. The complexity of computing the rank of a m×n matrix is O(m2n).

We get the candidates for implication by sampling antecedents and conse-
quents from different sampling grammar. The sampling grammar for antecedent
is constructed by considering only conditions of if statements in Tr . This con-
sideration ensures that candidates for antecedents are sampled from the syntax
that is causing implications. For consequent, the Init , Tr and Bad is considered,
like in the FreqHorn algorithm.

A class of programs that this technique can successfully address is the one
with multi-phase loops, as mentioned in [23]. Splitter-predicates are used to iden-
tify the different phases of the loop, based on when these predicates, or their
negations hold. A loop may start its iteration in one of the phases and then
move to new phases as it progresses. Owing to these, such programs require dis-
junctive invariants. The solution presented in [23] is to compute invariants for
each phase separately. The splitter-predicates are either conditions of if state-
ments, or their weakest preconditions w.r.t. statements in the loop. Similarly,
we derive antecedents from a grammar constructed using the encoding of con-
ditions. In principle, this enables our technique to work for programs where
splitter-predicates helps in discovering disjunctive invariants; in fact, even in
cases when the phases are not syntactically evident.

4.3 Combining Behaviours and CTIs

Algorithm 5 shows the complete algorithm, which combines the techniques illus-
trated above. We skip the description of steps that are already explained in
Sects. 3.1 and 3.2. The algorithm begins by generating behaviours using an SMT
solver, if they are not provided as input. This is done by unwinding Tr to
a certain bound and then computing models for V at each unwinding. These
behaviours are used to compute algebraic candidate lemmas as described ear-
lier. The next two steps create a frequency distribution P using Init , Tr and
Bad , and a grammar G using P. The grammar G is used to get candidates when
algebraic lemmas are not found, or are insufficient to prove the property. We
create a new frequency distribution Pa based on conditions in loop body and its
negations, and a grammar Ga using Pa. These are used to sample antecedents,
if required.
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Algorithm 5. ELABor: Learning from Behaviours and CTIs
Input: Init , Tr , Bad and V
Output: lemmas

1: behaviours ← execute(Init ,Tr ,Bad)
2: candidates ← getAlgebraicCandidates(behaviours)
3: P ← computeDistribution(Init ,Tr ,Bad)
4: G ← constructGrammar(P)
5: Pa ← computeDistribution(Trconds)
6: Ga ← constructGrammar(Pa)
7: L ← ∅ � the set of lemmas
8: disjunct ← false
9: while

∧

l∈L

l(V ) ∧ Bad(V ) is SAT do

10: if ¬disjunct then disjunct ← checkForImpl(CTIs)
11: if disjunct then antecedent ← newCandidate(Ga)
12: while |candidates| < BatchSize do � for a pre-decided BatchSize
13: cand ← newCandidate(G)
14: if init ← Init(V ) ∧ ¬cand(V ) is UNSAT then
15: if disjunct then candidates ← candidates ∪ {antecedent ⇒ cand}
16: else candidates ← candidates ∪ {cand}
17: else adjust(cand, G, P)

18: for cand ∈ candidates do
19: if

∧

c∈candidates

c(V )
∧

l∈L

l(V ) ∧ Tr(V, V ′) ∧ ¬cand(V ′) is SAT then

20: candidates ← candidates \ {cand}
21: adjust(cand, G, P)
22: CTIs ← CTIs ∪ {getModel(V )} ∪ {getModel(V ′)}
23: candidates.reset � start the loop afresh

24: if disjunct ∧ |candidates| > 0 then adjust(antecedent, Ga, Pa)

25: for cand ∈ candidates do L ← L ∪ {cand}
26: return L

The algorithm proceeds to sample and check candidates in a loop, simi-
lar to FreqHorn-2. This loop is modified to check if sampling implications is
necessary. In the beginning of each iteration, the procedure checkForImpl is
called. If it suggests that an implication is needed then we get them by sampling
antecedents from Ga, and consequents from G. This is followed by a check for
inductiveness and safety. If the consecution check fails, we store the correspond-
ing models (CTIs) in a matrix. This check is unmodified from FreqHorn-2. The
grammar Ga is adjusted when the inductiveness check passes for candidates with
existing antecedents, to ensure different antecedents for new candidates. In our
experiments, we unwound the transition relation up to bound of 10 for getting
the behaviours. We also put a threshold on the number of CTIs collected before
checking the need for implications, and bounded the degree of polynomials to 2.
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5 Experiments

The aim of our experiments was to evaluate the effectiveness of our ideas. In
particular, we were looking to answer the following questions:

1. Does the proposed strategy, of adding behaviours and implications, help
improve the performance of FreqHorn-2 - (a) w.r.t. the number of bench-
marks solved, and (b) w.r.t. the average time taken to solve a benchmark?

2. Does our CTI-based heuristic hamper the tool’s performance in cases when
a conditional invariant may not necessarily be required?

Implementation and Set-Up. We have implemented our ideas as an extension
of FreqHorn-2. We have named it as ELABor, which stands for Efficiently
Learning from Appearance and Behaviour. Like its predecessors, the input pro-
gram and the property are assumed to be in the form of linear constrained Horn
clauses. Additionally, loop head states observed from behaviours may be pro-
vided as input. If that is missing, ELABor automatically generates behavioural
data by unrolling the input program to a certain bound and evaluating models
for program variables at loop head using Z3. Candidate lemmas are computed
from loop head states using the Gauss-Jordan algorithm. For matrix operations,
we use Armadillo [20], a C++ library for linear algebra.

Table 2. Comparison on programs for which FreqHorn-2 timed out in more than
half of the runs; the values show the mean execution time taken (in seconds)

Program FreqHorn-2 ELABor Reason

exact iters 5 ∞ 0.7 B

s mutants 22 ∞ 24.6 B

s mutants 21 ∞ 0.7 B

dillig22-6 ∞ 229 I

dillig22-4 ∞ 7.2 B

dillig22-3 ∞ 13.6 B

nonlin gauss sum ∞ 49.9 B

abdu 03 312.3 0.9 B

exact iters 4 272.2 0.7 B

menlo park term orig 373.2 188.1 B

s mutants 20 252.6 2.2 B

dillig18 344.4 45.8 I

dillig22-5 224.7 13.1 B

phases true-unreach-call1 445.7 256.9 I

gj2007 true-unreach-call 342.8 150.1 I

half true modif 476.6 0.7 B
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We experimented with the benchmarks that are provided with FreqHorn-
2. These benchmarks have been taken from SV-COMP and the literature. There
were a total of 172 safe programs, of which we excluded 6 programs that had
nested conditions and function call which our tool does not support. We only
compare ELABor with its predecessor FreqHorn-2, as the latter has been
shown to outperform other data-driven tools on these benchmarks [12]. Our
experiments were performed by running 4 tasks in parallel, on a system with 16
cores of 2.40 GHz speed each, and total memory of 20 GB. We used a timeout of
600 s for each task. The tasks were run 10 times each, on both the tools, to handle
the stochastic nature of the tools. We ran FreqHorn-2 with the interpolants
option and a bound of 3. ELABor, on the other hand, was run without the
interpolants option (it is turned off by default), as it might be unnecessary to
employ multiple ways of getting behavioural candidates. The artifact submitted
with this paper contains both the tools, the benchmarks, and the instructions
and scripts to reproduce the results.

Results. Of the 166 benchmarks that we used, FreqHorn-2 could not generate
safe invariants for 13 programs in any of the runs. Apart from these, there were
11 programs which FreqHorn-2 missed on more than half of the runs. Of
these 24 programs in total, ELABor worked for 16 programs almost always (it
solved 14 in all 10 runs and for 2 more in 8 runs out of 10). Table 2 lists these
programs, along with the mean execution time (over successful runs) of the tools.
The symbol ∞ indicates a time out in all runs. The last column shows the reason
behind ELABor discovering a safe invariant: ‘B’ indicates the enhancement of
combining behaviours, and ‘I’ indicates the one of mining implications.

W.r.t. the average execution time, we say that one of the tool did better than
the other only if (i) the faster tool took less than half the time that the other
one, or (ii) the time difference was more than 100 s. ELABor outperformed
its predecessor on 31 programs, while for 8 programs it is FreqHorn-2 that
worked better. The scatter plot on the left in Fig. 3 compares the time taken
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Fig. 3. Scatter plots comparing execution time (in ms) of the tools
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(in milliseconds) by ELABor (along the x-axis) and FreqHorn-2 (along the
y-axis). The slack for those 8 programs was mostly due to lemmas that the
interpolation engine provided upfront to FreqHorn-2, while we took a bit
longer in discovering them. We confirmed this by running ELABor with the
interpolants option—now there were only 3 programs for which FreqHorn-2
outperformed us. However, the additional time taken by the interpolation engine
gets reflected as points that were above the line, drifting closer to the line in the
scatter plot on the right in Fig. 3.

6 Conclusion and Future Work

This work builds upon a recently proposed idea of inferring inductive invariants
using a guess-and-check method, by sampling predicates, and its mutants, from
the input program source [13]. In addition to obtaining a seed set of candidates
from interpolation proofs of bounded safety [12], we show that a similar seed
set can be obtained by analyzing behaviours of the program. We also propose a
method to overcome a limitation of this guess-and-check method w.r.t. disjunc-
tive invariants, by looking for conditional invariants in the form of implications.

There are a number of interesting directions in which this work may be
extended. In particular, it would be worthwhile to explore the following:

– Guidance from counterexamples to adequacy. The current approach to deal
with the inadequacy of discovered lemmas is to simply look for more. It would
be useful to see how the property and the lemmas may together guide the
search for additional facts, e.g. using ideas from abductive inference [10].

– Refining candidates with disjunctions. In the present algorithm, a disjunctive
invariant candidate is either inductive, or is entirely useless. A method to
find out which disjunct needs refinement, and how may it be refined, would
certainly be helpful.

– Choosing between syntax and behaviours. Can there be some guidance in
deciding, at every stage of the algorithm, whether the missing lemmas are
more likely to be found through a syntactic search, or a behavioural one?

– Machine learning to refine sampling. Can machine learning technique be help-
ful in deciding when and how to nudge the probability distribution of candi-
dates sampling?

We plan to investigate some of these research directions as we go ahead.
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Abstract. We study systematic changes of numerical domains in
abstract interpretation through invertible linear transforms of the
Euclidean vector space, namely, through invertible real square matrices.
We provide a full generalization, including abstract transfer functions, of
the parallelotopes abstract domain, which turns out to be an instantia-
tion of an invertible linear transform to the interval abstraction. Given
an invertible square matrix M and a numerical abstraction A, we show
that for a linear program P (i.e., using linear assignments and linear tests
only), the analysis using the linearly transformed domain M(A) can be
obtained by analysing on the original domain A a linearly transformed
program PM . We also investigate completeness of abstract domains for
invertible linear transforms. In particular, we show that, perhaps counter-
intuitively, octagons are not complete for 45◦ rotations and, additionally,
cannot be derived as a complete refinement of intervals for some family
of invertible linear transforms.

1 Introduction

In abstract interpretation [6,7], the choice of an abstract domain determines
which program properties will be analysed as well as the precision and efficiency
of the corresponding program analysis. A vast array of abstract domains for
analysing properties of numerical program variables is available as well as a
number of operators for their combination, refinement and transformation which
have been defined since the beginning of abstract interpretation [6,7,9–12]—see
[18] for a recent and comprehensive tutorial on numerical abstract domains. The
abstract domain of parallelotopes has been introduced and studied in [1–4] as a
linear transform of the standard interval abstract domain [6]. Any invertible n×n
real matrix M defines a domain of M -parallelotopes which consists of (vectors
of) intervals 〈[li,ui]〉n

i=1, for l,u ∈ (R ∪ {±∞})n, whose concrete meaning is
recast as the set of vectors x ∈ R

n such that l ≤ Mx ≤ u. The basic idea is
that the matrix M represents a change of basis of the Euclidean vector space
R

n, which can be always converted back through its inverse matrix M−1. Hence,
〈[li,ui]〉n

i=1 is a symbolic representation of the vectors {x ∈ R
n | l ≤ Mx ≤ u}

in the new coordinate system based on M , which is therefore its concretization
for the parallelotopes domain.
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Parallelotopes can be used in program analysis in two different ways. In the
first approach described in [1,2], the matrix M is fixed and is purposely synthe-
sized for a program P through some statistical inference of the data gathered by
a dynamic analysis of P , typically a variation of principal component analysis.
On the other hand, [3,4] put forward a program analysis where the abstract
values are pairs consisting of an interval together with a matrix M , so that here
the matrix is not computed a priori but rather the abstract transfer functions
may change it during program analysis (as happens for convex polyhedra).

We study here a generalization of the first approach to the abstract domain
of parallelotopes. An invertible square matrix M can be applied for system-
atically transforming any numerical abstract domain A together with all its
abstract transfer functions. This is called an invertible linear transform of A and
denoted by AM . This linear transform M preserves the whole structure of the
abstract domain A, meaning that if A is defined by a Galois connection/inser-
tion then this also holds for AM , although this M -transform may also preserve
domains defined through a concretization map only. Furthermore, it turns out
that M systematically transforms the abstract transfer functions available in A.
More precisely, for the standard abstract transfer functions and operators used
in abstract interpretation, namely, lub and glb, (single, parallel and backward)
assignment, Boolean test, widening and narrowing, we provide a simple technique
for designing the abstract transfer functions in the transformed domain AM in
terms of the abstract transfer functions in the original domain A. Moreover, this
transform of abstract functions preserves all their significant properties: sound-
ness, best correct approximation, completeness and exactness. As a consequence,
we show that an analysis with the transformed abstraction AM of a program
P consisting of linear assignments and tests can be obtained by analysing with
the original abstraction A a transformed program PM which is obtained from
P by transforming all its linear assignments and tests while maintaining the
same control flow graph. It should be remarked that this program change may
transform single linear assignments of P into parallel linear assignments in PM .
If the analysis in A of the transformed program PM relies on abstract transfer
functions which are best correct approximations then this technique computes at
each program point of PM precisely the best abstract value for AM at the same
program point of P . This technique is illustrated through a couple of examples
different from parallelotopes, namely linear transforms of constant propagation
and octagon analysis.

As an example, a linear transform of Kildall’s [15] standard constant propa-
gation domain Const for three program variables through the invertible matrix
M =

(
1 0 0

−1 1 0
−1 0 1

)
results in a transformed domain ConstM which is able to represent

program invariants of type x1 = k1, x1 + x2 = k2, x1 + x3 = k3, where xi’s are
variables and ki’s range in Const and therefore represent either a constant value
or unreachability or no information. For instance, an analysis based on ConstM

of the following program:

x1 := 2; x2 := 3; x3 := 6;
while (x2 < x3 ) do

{ x1 := x1 − 2; x3 := x1 + x2 + x3 − 1; x2 := x2 + 2; }
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is able to compute the abstract loop invariant 〈�, 5, 8〉 meaning that the addi-
tions x1 + x2 and x1 + x3 are always equal to, respectively, 5 and 8.

We also investigate completeness and exactness [7,13] of abstract domains for
invertible linear transforms. Firstly, we show that a linearly transformed domain
AM is useless—meaning that it is equivalent to A itself—precisely when A is
both complete and exact for the linear transform M . In particular, as expected, it
turns out that any linear transform of Karr’s [14], templates [19] and convex poly-
hedra [8] abstract domains is ineffective. Instead, we prove that a linear trans-
form M of intervals and octagons [17] is useless exactly when M is a monomial
matrix, namely each row and column of M has exactly one nonzero entry. This
characterization is expected since monomial matrices intuitively encode nonre-
lational linear transforms. Finally, we show that octagons cannot be obtained
from intervals as the minimal refinement which is complete for some family of
invertible linear transforms (this is called complete shell in [13]). This is some-
how against the graphical intuition that octagons are complete for rotations of
π
4 radians and therefore could be designed through a complete shell of intervals
for this family of rotations. Rather, this intuition holds just in 2D, namely for
two variables only. What we instead prove is that octagons can be synthesized
through a suitable reduced product of π

4 rotations of intervals.
Due to lack of space all the proofs are omitted.

2 Background

Linear Transformations. We denote by R the set of real numbers R aug-
mented with +∞ and −∞, where ordering and numeric operations are extended
from R to R in the standard way. Vectors x ∈ R

n (or x ∈ R
n) are usually

intended as column vectors, while xT denotes the corresponding (transpose) row
vector and xi ∈ R, with i ∈ [1, n], denotes its i-th component. If x,y ∈ R

n and
a ∈ R then x · y, x + y and ax denote, respectively, scalar product, addition of
vectors and scalar multiplication in R

n. The canonical orthonormal basis of R
n is

denoted by 〈e1, ..., en〉, where eii = 1 and, for any j 	= i, eij = 0. R
m×n denotes

the set of all m × n matrices with entries in R, while GL(n) denotes the general
linear group of n × n invertible square matrices with entries in R. 0n ∈ R

n×n

denotes the square zero matrix, In ∈ GL(n) denotes the identity matrix and A−1

and AT denote, respectively, the inverse and transpose of A. A 1 × n matrix is
also used as a row vector, while a n×1 matrix as a column vector. A linear trans-
formation of the n-dimensional Euclidean space R

n is a function in R
n → R

n of
the form x �→ Mx, where M ∈ R

n×n, which is simply denoted by M : R
n → R

n.
Given any set X ∈ ℘(Rn), we use the notation M · X � {Mx ∈ R

n | x ∈ X}
to denote the pointwise extension of M , and we also use TM : ℘(Rn) → ℘(Rn)
to denote the corresponding function on sets of vectors. Noteworthy examples
of linear transformations include scalings, rotations, shearings and projections.
Linear transformations M are partitioned between noninvertible and invertible:
for example, (orthogonal or oblique) projections are noninvertible while rotations
are always invertible. The set of invertible linear transformations of R

n endowed
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with function composition forms the well-known (noncommutative) general lin-
ear group GL(n). Let us also recall that M · X ⊆ Y ⇔ X ⊆ M−1 · Y always
holds for any M ∈ GL(n).

An affine transformation of R
n is a composition of a linear transformation

with a transalation, i.e., it is a function in R
n → R

n of the form x �→ Nx + t,
where N ∈ R

n×n and t ∈ R
n. A pure translation Trt(x) � x+t, for some vector

t ∈ R
n, is the simplest example of (invertible) affine transformation.

Notable Linear Transformations. A scaling by a vector s ∈ R
n is the linear

transformation x �→ Dsx, where Ds ∈ R
n×n is the diagonal matrix defined by

(Ds)ii � si and for i 	= j, (Ds)ij � 0. A scaling transform is invertible iff for any
i, si 	= 0.

Let n ≥ 2. Given some λ ∈ R and a, b ∈ [1, n] with a 	= b, the invertible
shear matrix Sha,b,λ ∈ GL(n) is defined as follows: (Sha,b,λ)ii = 1, (Sha,b,λ)ab =
λ, otherwise (Sha,b,λ)ij = 0. This defines an invertible linear transformation
called shearing (often used in computer graphics) which preserves the area of
geometric figures and the alignment and relative distances of collinear points
(a 2D example is in Fig. 1). The inverse of Sha,b,λ is simply the shearing Sha,b,−λ

and, in general, shearings are not closed w.r.t. composition and their composition
is not commutative.

Fig. 1. An example of shearing and rotation transforms for two variables.

A Givens rotation (or principal rotation) is the linear transformation which
maps x ∈ R

n into the point x′ ∈ R
n obtained by rotating x counterclockwise in

a (a, b) plane of R
n (i.e., generated by ea and ea), where a, b ∈ [1, n] with a 	= b,

by an angle of θ ∈ R radians around the origin (a 2D example is in Fig. 1). This
transformation is represented by an invertible Givens rotation matrix Ra,b,θ ∈
GL(n) which is defined as follows: Ra,b,θ differs from the identity matrix In in
the four entries (a, a), (a, b), (b, a), (b, b), where it assumes, respectively, the
values cos θ, − sin θ, sin θ, cos θ. Clearly, Ra,b,−θ is the inverse of Ra,b,θ. Givens
rotations are closed by composition and When the rotation angle is θ = (2π)/m
for some m ∈ N � {0}, it turns out that Ra,b,θ is cyclic, namely (Ra,b,θ)k = In

for some integer k > 0.
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Numerical Abstract Domains. According to the most general definition, a
numerical abstract domain is a tuple 〈A,≤, γ〉 where 〈A,≤〉 is at least a pre-
ordered set and the concretization function γ : A → ℘(Rn), where n ≥ 1,
preserves the relation ≤, i.e., a ≤ a′ implies γ(a) ⊆ γ(a′). Thus, A plays the
usual role of set of symbolic representations for sets of vectors of R

n. If the base
field of real numbers R is replaced by the field of rationals Q, which is a possible
choice for an abstract interpretation framework (see [18]), then completeness of
the lattice 〈R,≤〉 is lost (i.e., 〈Q,≤〉 is not a complete lattice) so that some lin-
ear transformations cannot be taken into account, e.g., a Givens rotation of π/4.
Also, linear transformations preserving integer vectors in Z

n (the n-dimensional
integer lattice) have a narrow scope (they are studied in lattice geometry) and are
not considered here (see [2, Sect. 7.5] for a discussion). Well-known examples of
numerical abstract domains include signs, constants, intervals, affine equalities,
zones, pentagons, octagons, parallelotopes, templates, convex polyhedra (the
interested reader is referred to the recent tutorial [18]). Some numerical domains
just form preorders (e.g., standard representations of octagons by DBMs allow
multiple representations) while other domains give rise to posets (e.g., signs,
constants and intervals). Of course, any preordered abstract domain 〈A,≤, γ〉
can be canonically quotiented to a poset 〈A/∼=,≤, γ〉 where a ∼= a′ iff a ≤ a′

and a′ ≤ a. While a monotone concretization γ is enough for reasoning about
soundness of static analysis on numerical domains, the notions of best correct
approximation and completeness rely on the existence of an abstraction func-
tion α : ℘(Rn) → A which requires that 〈A,≤〉 is (at least) a poset and that
the pair (α, γ) forms a Galois connection (GC), i.e. for any X ⊆ R

n, a ∈ A,
α(X) ≤ a ⇔ X ⊆ γ(a) holds, which becomes a Galois insertion when γ is
injective (or, equivalently, α is surjective). Most numerical domains admit a def-
inition through Galois connections, while for some domains this is impossible,
notably for convex polyhedra. Let us recall that the nonrelational interval domain
Int = 〈Int,≤, γ, α〉 is defined by: Int � {〈[li, ui]〉i∈[1,n] | li, ui ∈ R, li ≤ ui} ∪ ⊥,
γ(〈[li, ui]〉i∈[1,n]) = {x ∈ R

n | ∀i ∈ [1, n]. li ≤ xi ≤ ui}, γ(⊥) = ∅, and
α(X) � 〈infx∈X xi, supx∈X xi〉i∈[1,n].

A function f � : A → A is a sound approximation of a concrete (transfer)
function f : ℘(Rn) → ℘(Rn) when, for any a ∈ A, f(γ(a)) ⊆ γ(f �(a)) holds,
while f � is forward-complete (or f-complete or exact) when f ◦ γ = γ ◦ f � holds.
Assume that a Galois connection (α, γ) for A exists. The abstract function fA �
α◦f ◦γ is called the best correct approximation (bca) of f on A. Also, soundness
of f � can be equivalently stated by α(f(X)) ≤ f �(α(X)), for any X ∈ ℘(Rn),
while f � is defined to be backward-complete (or b-complete or just complete)
when α ◦ f = f � ◦ α holds.

3 Linear Transforms of Abstract Domains

Linear transformations can be used to recast any existing numerical abstract
domains: an invertible linear transformation performs a change of basis of the n-
dimensional Euclidean space R

n and the transformed abstract domain is accord-
ingly interpreted with this transformed coordinate system.
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Definition 3.1 (Linear Transform of Abstractions). Consider any invert-
ible matrix M ∈ GL(n) and a numerical abstract domain A = 〈A,≤, γ〉. The
M -transform of A is given by AM � 〈A,≤, γM 〉, also denoted by M(A), where
the concretization map γM : A → ℘(Rn) is defined by γM (a) � M−1 · γ(a). If
A admits an abstraction map α : ℘(Rn) → A then AM is also endowed with a
function αM : ℘(Rn) → A defined by αM (X) � α(M · X). ��

Equivalently, we have that γM = TM−1 ◦ γ and αM = α ◦ TM . The basic
idea is that the invertible matrix M represents a change of basis for R

n, which
can be always converted back through its inverse matrix M−1. According to this
view, an abstract value a ∈ A becomes a symbolic representation of the set of
vectors γ(a) ∈ ℘(Rn) in the new coordinate system based on M , so that the
concretization γM of a in the original coordinate system of R

n is given by the
conversion of γ(a) through M−1 back to the original basis of R

n, namely γM (a) =
M−1 ·γ(a) ∈ ℘(Rn). Dually, if A admits an abstraction function α, so that 〈A,≤〉
is (at least) partially ordered, then AM also has an abstraction map αM which
provides the best approximation of some X ∈ ℘(Rn) in A when interpreted w.r.t.
the new coordinate system based on M , namely αM (X) = α(M · X). Hence,
Definition 3.1 is a straightforward generalization of the parallelotope domain
defined in [2, Definition 2], since a parallelotope domain indexed by M ∈ GL(n)
boils down to the M -transform of the interval abstraction Int .

If A is a numerical domain equipped with a concretization map γ only, then
AM is clearly a sound numerical domain, since we just need to check that γM

still preserves the relation ≤ on A: if a ≤ a′ then γ(a) ⊆ γ(a′), so that γM (a) =
M−1·γ(a) ⊆ M−1·γ(a′) = γM (a′). Moreover, any order-theoretic property of the
abstract domain A is obviously preserved when interpreted in its M -transform,
e.g., bottom and top elements, lub’s and glb’s, chains, etc. It is also easy to
observe that linear transforms of numerical domains also preserve the existence
of abstraction maps.

Lemma 3.2. If A = 〈A,≤, γ, α〉 is a Galois connection (insertion) then its
M -transform AM = 〈A,≤, γM , αM 〉 is a Galois connection (insertion).

Example 3.3 (Linear Transform of Constant Propagation). Constant
propagation is a well-known and simple abstract interpretation used in compiler
optimization for detecting whether a variable at some program point always
stores a single constant value for all possible program executions (see, e.g.,
[18, Sect. 4.3]). Constant propagation relies on the nonrelational constant
abstract domain, which is here given for variables assuming real values: Const �
R∪{⊥,�}. Const is endowed with the usual flat partial order: for any x ∈ Const,
⊥ ≤ x ≤ � (and x ≤ x), which makes it an infinite complete lattice with height
2. Const is easily defined by a Galois insertion with its standard abstraction and
concretization maps α : ℘(R) → Const and γ : Const → ℘(R).

α(X) �

⎧
⎪⎨
⎪⎩

⊥ if X = ∅

z if X = {z}
� otherwise

γ(a) �

⎧
⎪⎨
⎪⎩

∅ if a = ⊥
{a} if a ∈ R

R if a = �
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Let us consider 3 variables and the invertible matrix

S =

⎛
⎝

1 0 0
−1 1 0
0 0 1

⎞
⎠

⎛
⎝

1 0 0
0 1 0

−1 0 1

⎞
⎠ =

⎛
⎝

1 0 0
−1 1 0
−1 0 1

⎞
⎠ which is obtained as composition of the

two shearing matrices Sh2,1,−1 and Sh3,1,−1. Its inverse is S−1 =

⎛
⎝

1 0 0
1 1 0
1 0 1

⎞
⎠.

Let us consider Const for three variables, namely as an abstraction of ℘(R3).
The matrix S thus induces the transformed domain ConstS , where a vector
〈a1, a2, a3〉 ∈ ConstS , by Definition 3.1, has the following meaning:

γS(〈a1, a2, a3〉) = S−1γ(〈a1, a2, a3〉) =

{〈z1, z1 + z2, z1 + z3〉 ∈ R
3 | z1 ∈ γ(a1), z2 ∈ γ(a2), z3 ∈ γ(a3)}.

Moreover, if ki ∈ R then αS({〈k1, k2, k3〉}) = α(S〈k1, k2, k3〉) = α({〈k1, k2 −
k1, k3−k1〉}) = 〈k1, k2−k1, k3−k1〉. For instance, if ki ∈ R then γS(〈�, k2, k3〉) =
{〈z, z + k2, z + k3〉 | z ∈ R}, γS(〈k1,�, k3〉) = {〈k1, z, k1 + k3〉 | z ∈ R}, while
αS({〈−1, 0, 1〉, 〈1, 1, 3〉}) = 〈�,�, 2〉 and αS({〈−1, 0, 1〉, 〈1, 2, 3〉}) = 〈�, 1, 2〉.
This abstraction ConstS is therefore able to represent invariants for program
variables xi of type x1 ∈ γ(a1) ∧ x1 + x2 ∈ γ(a2) ∧ x1 + x3 ∈ γ(a3), where
ai ∈ Const. For instance, for the following program P already considered in
Sect. 1 and here decorated with program points:

(1) x1 := 2; x2 := 3; x3 := 6; (2)
while (3) (x2 < x3 ) do

(4) x1 := x1 − 2;
(5) x3 := x1 + x2 + x3 − 1;
(6) x2 := x2 + 2;

od (7)

while a constant analysis with Const derives no information at program point
(3), namely the abstract value 〈�,�,�〉, we expect that an analysis based on
ConstS is able to compute the abstract value 〈�, 5, 8〉 which represents that
at program point (3) the additions x1 + x2 and x1 + x3 are always equal to,
respectively, 5 and 8. ��

4 Linear Transforms of Abstract Functions

Background. An abstract interpretation-based static analysis of programs with
numeric variables relies on sound approximations of the standard transfer func-
tions on the concrete domain ℘(Rn) used by the collecting program seman-
tics (see, e.g., [18]): binary set unions and intersections, variable assignments,
Boolean tests, widening and narrowing operators. Let us briefly recall the defi-
nitions for assignments and tests.

The most general form of variable assignment is given by a parallel (or
simultaneous) assignment [xi := fi(x)]i∈[1,n] (as in Python and JavaScript),
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with generic (possibly nonlinear) functions fi : R
n → R which define a

n-dimensional transform f : R
n → R

n by f(x) � 〈f1(x), ..., fn(x)〉. The
transfer function assign(f) : ℘(Rn) → ℘(Rn) is the corresponding pointwise
extension of f defined by assign(f)(X) � {f(x) | x ∈ X}. If i ∈ [1, n]
and f : R

n → R then a single assignment xi := f(x) for the i-th vari-
able is defined by assign(i, f) : ℘(Rn) → ℘(Rn) as the following specific
instance: assign(i, f)(X) � {〈x1, ...,xi−1, f(x),xi+1, ...,xn〉 | x ∈ X}. Linear
parallel assignments rely on a square matrix N ∈ R

n×n and a vector b ∈ R
n

which define the transfer function assign(N,b) : ℘(Rn) → ℘(Rn) as follows:
assign(N,b)(X) � {Nx + b | x ∈ X}. As a particular case, linear (single)
assignments for the i-th variable consider a vector a ∈ R

n and a constant b ∈ R

which define the affine transformation x �→ (eiaT )x + bei whose corresponding
transfer function is assign(i,a, b) � assign(ei(a − ei)T + I, bei), namely,

assign(i,a, b)(X) = {〈x1, ...,xi−1,a · x + b,xi+1, ...,xn〉 | x ∈ X}.

Let us also recall backward assignment, namely the adjoint of a (forward) assign-
ment, which is typically used in backward abstract interpretation [5] for refin-
ing the output of a forward abstract interpretation. In general, the transfer
function assign�(f) : ℘(Rn) → ℘(Rn) of the backward parallel assignment for
[x := f(x)] is simply given by the inverse image assign�(f)(Y ) � f−1(Y ) =
{x ∈ R

n | f(x) ∈ Y }, so that for a single assignment xi := f(x), we have
that assign�(i, f)(Y ) � {x ∈ R

n | 〈x1, ..., f(x), ...,xn〉 ∈ Y }. In turn, the
transfer function of the backward linear parallel assignment for N ∈ R

n×n and
b ∈ R

n is assign�(N,b) : ℘(Rn) → ℘(Rn) defined by assign�(N,b)(Y ) � {x ∈
R

n | Nx + b ∈ Y }.
A nondeterministic assignment for the i-th variable xi :=? is modeled by the

transfer function forget(i) : ℘(Rn) → ℘(Rn) defined as follows: forget(i)(X) �
{〈x1, ...,xi−1, z,xi+1, ...,xn〉 | x ∈ X, z ∈ R}. This can be viewed as an instance
of a more general function forget(v) : ℘(Rn) → ℘(Rn) indexed by a vector
v ∈ R

n and defined by forget(v)(X) � {x + zv | x ∈ X, z ∈ R}. Thus,
it turns out that forget(i) can be retrieved by considering v = ei, that is,
forget(i) = forget(ei).

The most general form of Boolean test considers any predicate p : R
n → {t, f}

and selects those program states that make the predicate p true. This is modeled
by a transfer function test(p) : ℘(Rn) → ℘(Rn) defined by test(p)(X) � X ∩
{x ∈ R

n | p(x) = t}. A linear Boolean test is defined by a matrix N ∈ R
m×n,

a vector b ∈ R
m and some comparison relation �	 ⊆ R

m × R
m, here used in

infix notation, which define a transfer function test(N,b, �	) : ℘(Rn) → ℘(Rn)
as follows: test(N,b, �	)(X) � X ∩{x ∈ R

n | Nx �	 b}. As a particular case, we
have that if a ∈ R

n and b ∈ R then test(a, b, �	)(X) � X ∩ {x ∈ R
n | a ·x �	 b}.

Linear Transforms. Let us consider how abstract operations can be defined
on a linear transform of a numerical abstract domain. Consider a numerical
abstract domain A = 〈A,≤, γ〉, possibly endowed with an abstraction function α.
Consider any concrete transfer function f : ℘(Rn) → ℘(Rn) and a corresponding
abstract transfer function f � : A → A, which may be sound, bca, b-/f-complete
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w.r.t. f . The following result provides a precise guideline in order to design an
abstract transfer function on a transformed domain AM , with M ∈ GL(n).

Lemma 4.1. f � : A → A is sound (bca, b-complete, f-complete) w.r.t. f for the
abstract domain AM iff f � : A → A is sound (bca, b-complete, f-complete) w.r.t.
the concrete function TM ◦f ◦TM−1 : ℘(Rn) → ℘(Rn) for the abstract domain A.

By analogy with the standard notion of matrix conjugation, the transformed
concrete transfer function TM ◦ f ◦ TM−1 : ℘(Rn) → ℘(Rn) in Lemma 4.1 may
be called M -conjugation of the original function f . Indeed, if f is a transfer
function for a linear map N then its conjugation TM ◦f ◦TM−1 involves the stan-
dard matrix conjugation of N . Lemma 4.1 allows us to design abstract transfer
functions for f on the transformed abstraction AM by considering the abstract
transfer functions on the original abstraction A but w.r.t. the M -conjugation of
f . Hence, if the family of abstract transfer functions handled by some numerical
abstract interpretation A is closed under conjugation then Lemma 4.1 yields a
straight and practical technique for designing a full abstract interpretation on
the transformed abstraction AM . The following result provides the linear trans-
formations of abstract functions for AM for all the standard operators and linear
transfer functions.

Theorem 4.2. Let A = 〈A,≤, γ〉 be a numerical abstract domain, possibly with
abstraction map α, and let M ∈ GL(n).

(1) Let assignA(N,b) be a sound abstract transfer function in A of a linear par-
allel assignment assign(N,b). Then, assignA(MNM−1,Mb) is the corre-
sponding sound transfer function in AM .

(2) Let assign�A(N,b) be a sound abstract transfer function in A of a backward
linear parallel assignment assign�(N,b). Then, assign�A(MNM−1,Mb) is
the corresponding sound transfer function in AM .

(3) Let forgetA(v) be a sound abstract transfer function in A of a nondetermin-
istic assignment forget(v). Then, forgetA(Mv) is the corresponding sound
transfer function in AM .

(4) Let testA(N,b, �	) be a sound abstract transfer function in A of a lin-
ear Boolean test(N,b, �	). Then, testA(NM−1,b, �	) is the corresponding
sound transfer function in AM .

(5) If � and � are sound abstract lub and glb in A then � and � are also sound
in AM .

(6) If ∇ and Δ are correct widening and narrowing operators in A then ∇ and
Δ are also widening and narrowing in AM .

As an instance of Theorem 4.2 (1)–(4) to single assignments and tests, we
obtain:

Corollary 4.3

(1) Let assignA(i,a, b) be a sound abstract transfer function in A for a lin-
ear single assignment xi := a · x + b. Then, assignA(M(ei(a − ei)T +
I)M−1,M(bei)) is the corresponding sound transfer function in AM .
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(2) Let assign�A(i,a, b) be a sound abstract transfer function in A for a backward
linear single assignment xi := a · x + b. Then, assign�A(M(ei(a − ei)T +
I)M−1,M(bei)) is the corresponding sound transfer function in AM .

(3) Let forgetA(i) be a sound abstract transfer function in A of a nondetermin-
istic assignment xi := ?. Then, forgetA(Mei) is the corresponding sound
transfer function in AM .

(4) Let testA(a, b, �	) be a sound abstract transfer function in A of a linear
Boolean test a ·x �	 b. Then, testA(aT M−1, b, �	) is the corresponding sound
transfer function in AM .

It is important to remark that since Lemma 4.1 goes beyond soundness
and also holds for best correct approximations, and backward- and forward-
completeness, we also obtain the following consequence of Theorem 4.2 (1)–(5).

Corollary 4.4. In Theorem4.2 (1)–(5) and in Corollary 4.3, sound can be
replaced with bca, b-complete and f-complete.

Hence, this allows us to retrieve as an instance to the transformed inter-
val domain IntM all the corresponding results by Amato et al. [2, Theorems 3,
4, 5 and 6] on the best correct approximations of, respectively, lub/glb, lin-
ear single assignments, nondeterministic assignments and single Boolean tests
for parallelotopes. In particular, Corollary 4.3 holds for best correct approxi-
mations, so that once the abstraction A provides definitions of abstract tests
testA(a, b, �	) which are bca’s and closed by the matrix multiplications then
this same abstraction A also gives the corresponding bca’s in AM , which are
thus given by testA(aT M−1, b, �	). For linear assignments, it is important to
remark that the linear transform of abstract single assignments may well lead
to abstract parallel assignments, as shown by the following example for the par-
allelotope domain.

Example 4.5. Let M =
(

1 −1
1 1

)
∈ GL(2), as considered in [2, Example 1]

and obtained by composing a scaling with a Givens rotation, namely M =
D(

√
2,

√
2)R1,2, π

4 . Consider two program variables and a single assignment such
as x1 := k, for some constant k ∈ R, whose best correct approximation for the
interval domain Int for two variables is given by assignInt(1, (0, 0), k). Then, by
Corollary 4.4, the best correct approximation of x1 := k for the parallelotope

IntM is given by the parallel assignment assignInt(M
(

0 0
0 1

)
M−1,M(k, 0)) =

assignInt(
(

0.5 −0.5
−0.5 0.5

)
, (k, k)), namely it coincides with the best correct

approximation in Int of the following linear parallel assignment: [x1 := 0.5x1 −
0.5x2 + k; x2 := −0.5x1 + 0.5x2 + k; ]. ��
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5 Transforming Linear Programs

We observe that in the proof of Theorem4.2, and in turn in Corollary 4.3,
the implications from sound (bca, b-complete, f-complete) abstract transfer
functions in A to corresponding sound (bca, b-complete, f-complete) abstract
transfer functions in AM are indeed equivalences. This is a straight consequence
of Lemma 4.1, which indeed shows an equivalence between the abstract transfer
functions for A and AM . Thus, since best correct approximations are always
unique, as well as (backward or forward) complete abstract functions, when
they exist, are unique, we obtain the following characterizations of linear single
assignments and tests.

Theorem 5.1

(1) The bca in AM of a linear single assignment xi := a ·x+b coincides with the
bca in A of the linear (possibly) parallel assignment [x := M(ei(a − ei)T +
I)M−1x + M(bei); ].

(2) The bca in AM of a linear Boolean test a · x �	 b coincides with the bca in
A of the linear Boolean test aT M−1x �	 b.

Moreover, both in (1) and (2), the bca in AM is b-complete (f-complete) iff the
bca in A is b-complete (f-complete), and in this case they coincide.

This means that existence of the bca in either domain A or AM implies the
existence of the bca in the other domain. This also hints that an analysis with
the transformed abstraction AM of a program P consisting of linear assignments
and tests only can be obtained by analysing with the original abstraction A a
program PM which is obtained from P by transforming all its linear assignments
and tests by exploiting Theorem 5.1, so as to maintain the same program points
(i.e., the control flow graphs of P and PM coincide). In particular, if the analysis
in A of the assignments and tests occurring in the transformed program PM relies
on abstract transfer functions which are the best correct approximations in A
then Theorem 5.1 guarantees that at each program point of PM we obtain exactly
the same (best) abstract value that we would have obtained at the same program
point by analysing P in AM . Instead, if the analysis of PM in A exploits some
abstract transfer functions which are not bca’s in A, then we achieve abstract
values for P which are still sound in AM , although, of course, they are not
guaranteed to be the best possible abstract values in AM , since possible losses
of precision in A are shifted to AM .

As shown in Example 4.5, it should be noted that even if P does not con-
tain parallel assignments, the transformed program PM may well include par-
allel assignments. Thus, the program analysis design in A should also include
abstract transfer functions for parallel linear assignments. Of course, this pro-
gram transformation has a cost. The computational time complexity of the
transform P �→ PM of Theorem 5.1 is O(n2) for each linear assignment and
test occurring in P , as argued in [2, Sect. 5] for the case of parallelotopes (the
transforms are exactly the same). We envision that this program transform can
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be implemented as a preprocessing step of the analysis in AM . Let us consider
a first example with parallelotopes.

Example 5.2 (Parallelotopes). Consider the following program P taken
from [2]:

x1 := 4; x2 := −4;
while (x1 > x2 ) do

x1 := x1 − 1;
x2 := x2 + 1;

As argued in [2, Sect. 1] and [20], a statistical dynamic analysis such as orthog-
onal simple component analysis may determine that the analysis of P using
the parallelotope instance IntM may provide precise results when the matrix is

M =
(

1 −1
1 1

)
, namely when M is the matrix of Example 4.5 obtained by first

applying a π
4 clockwise rotation matrix followed by a

√
2 scaling for both x1 and

x2. Let us also recall that M−1 =
(

0.5 0.5
−0.5 0.5

)
. Any vector 〈x1, x2〉 ∈ R

2 is thus

transformed into M

(
x1

x2

)
=

(
x1 − x2

x1 + x2

)
, namely IntM is able to represent the

program invariants: {l1 ≤ x1 − x2 ≤ u1, l2 ≤ x1 + x2 ≤ u2}, with li, ui ∈ R.
Conversely, any vector of intervals 〈[l1, u1], [l2, u2]〉 ∈ IntM represents the set of
stores M−1 · γInt(〈[l1, u1], [l2, u2]〉) = {〈0.5z1 + 0.5z2,−0.5z1 + 0.5z2〉 ∈ R

2 | l1 ≤
z1 ≤ u1, l2 ≤ z2 ≤ u2}. By Theorem 5.1, P is transformed into the following
program PM , where, for the sake of clarity, we use variables yi:

y1 := 8; y2 := 0;
while (y1 > 0) do

y1 := y1 − 2;

This transformed program PM is obtained as follows. The initializations {x1 :=

4; x2 := −4; } coincide with the parallel assignment [x := 02x +
(

4
−4

)
] whose

M -transform is [y := (M02M
−1)y + M

(
4

−4

)
] = [y := 02y +

(
8
0

)
], namely

[y1 := 8; y2 := 0; ]. The guard (x1 > x2) corresponds to the Boolean test
(1 −1)x > 0, whose M -transform is

(
(1 −1)M−1

)
y > 0, namely (1 0)y > 0,

which is the guard (y1 > 0). Finally, the assignments {x1 := x1−1; x2 := x2+1; }
correspond to the parallel assignment [x = I2x+

(
−1
1

)
], which is M -transformed

to [y = (MI2M
−1)y + M

(
1

−1

)
], that is, [y1 := y1 − 2; y2 := y2; ].

Since the interval abstraction Int provides best correct approximations for all
the transfer functions of the statements occurring in the transformed program
PM , by Theorem 5.1, it turns out that the analysis of PM using Int gives exactly
the most precise program invariants for P in IntM . The analysis of PM using
Int with widening provides {y1 ≤ 8, y2 = 0} as loop invariant, so that at the
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exit point we obtain {y1 ≤ 0, y2 = 0}. Hence, the concrete interpretation of
the output of this analysis states that at the exit point of the original program
P the invariant x1 − x2 ≤ 0 ∧ x1 + x2 = 0 holds, whose abstraction in Int is
{x1 ≤ 0, x2 ≥ 0}. The analysis of P using Int with widening is much less precise,
since it yields the interval {x1 ≤ 4, x2 ≥ −4} both as loop invariant and at the
exit point. ��

In the following we consider a couple of examples different from parallelo-
topes, namely linear transforms of constant propagation and octagon analysis.

5.1 Linear Transform of Constant Propagation

Let us carry on Example 3.3 on the linear transform ConstS of the constant
propagation domain, which is able to represent invariants of type {x1 = a1, x1+
x2 = a2, x1 + x3 = a3}, where ai ∈ Const. In order to analyze the program P
in Example 3.3 using the abstraction ConstS , we compute its transform PS by
exploiting Theorem 5.1.
The initializations within the program points (1)–(2) correspond to the parallel

assignment [x = 03x+

⎛
⎝

2
3
6

⎞
⎠], whose S-transform is: [y = (S03S

−1)y+ S

⎛
⎝

2
3
6

⎞
⎠],

which is [y1 := 2; y2 := 5; y3 := 8; ]. The guard (x2 < x3) corresponds to the
Boolean test (0 1 −1)x < 0, which is transformed into

(
(0 1 −1)S−1

)
y < 0,

which leaves it unchanged, i.e. (y2 < y3). The S-transforms, denoted by
⇒S , of the three assignments in the body of the while-loop at program
points (4)–(5)–(6) are computed in Fig. 2. We obtain the following transformed
program PS :

(1) y1 := 2; y2 := 5 y3 := 8; (2)
while (3) (y2 < y3 ) do

(4) y1 := y1 − 2; y2 := y2 − 2; y3 := y3 − 2;
(5) y3 := y2 + y3 − 1;
(6) y2 := y2 + 2;

od (7)

All the abstract transfer functions for linear assignments and tests in the con-
stant propagation abstraction Const are best correct approximations. Hence,
the optimal analysis of P with ConstS is achieved by analysing PS with Const,
where widening is obviously not needed. The analysis of PS at program point
(3) computes the invariant 〈y1 = �, y2 = 5, y3 = 8〉 ∈ Const. Thus, at the exit
point (7), we obtain testConst(¬(y2 < y3))〈y1 = �, y2 = 5, y3 = 8〉 = ⊥Const,
which allows us to derive that the exit point (7) is unreachable. By contrast,
constant propagation analysis of the original program P gives no information in
(3), namely it computes the invariant (x1 = �, x2 = �, x3 = �), so that nothing
can be derived at the exit point (7).
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Fig. 2. Linear transforms of assignments.

Fig. 3. The program P , on the left, and its M -transform PM , on the right.

5.2 Linear Transform of Octagons

Recall that the weakly-relational octagon abstract domain Oct = 〈Oct,≤,
γOct, αOct〉 represents program invariants of type l ≤ ±xi±xj ≤ u and l ≤ xi ≤ u
for l, u ∈ R [16,17]. Assume that we want to infer that program point (5) of pro-
gram P in Fig. 3 is unreachable. The analysis of P using Oct with its standard
widening operator computes the invariant {x1 ≤ 2, x2 ≤ 4, x2 − x1 ≤ 2} at pro-
gram point (2), so that at program point (4) we get {x1 ≤ 2, x2 ≤ 0, x2−x1 ≤ 2},
and, in turn, {0 < x1 ≤ 2, x2 ≤ 0, x2 − x1 ≤ 2} = {0 < x1 ≤ 2, x2 ≤ 0} at
program point (5), which does not allow us to detect that (5) is an unreachable
program point.

Let us consider the matrix M =
(

1 0
−1 1

)
∈ GL(2), which is the shearing

matrix Sh2,1,−1 and whose inverse is M−1 =
(

1 0
1 1

)
. A vector 〈x1, x2〉 ∈ R

2 is

transformed into M

(
x1

x2

)
=

(
x1

−x1 + x2

)
, so that OctM is able to represent the

program invariants: {l ≤ x1 ≤ u, l ≤ x2 ≤ u, l ≤ x1−x2 ≤ u, l ≤ 2x1−x2 ≤ u}.
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Fig. 4. M -transform of statements occurring in P .

On the other hand, an octagon oct ∈ OctM represents the set of vectors M−1 ·
γOct(oct) = {〈z1, z1 + z2〉 ∈ R

2 | 〈z1, z2〉 ∈ γOct(oct)}}. The computations of the
M -transform PM are given in Fig. 4 by exploiting Theorem 5.1. The assignments
(which are single assignments) and tests occurring in PM are of type yi := ui+k,
(yi + yj ≤ k) and (yi ≤ k), and Oct provides best correct approximations for
them [17, Sects. 4.4 and 4.5]. Hence, the analysis of PM using the original octagon
abstraction Oct with widening operator is optimal. This analysis computes the
invariant {y1 ≤ 2, y2 ≤ 2, y1 − y2 = 0} at program point (2), so that we obtain
{y1 ≤ 2, y2 ≤ 2, y1 − y2 = 0, y1 + y2 ≤ 0} = {y1 ≤ 0, y2 ≤ 0, y1 − y2 = 0}
at program point (4). Hence, this analysis infers the invariant {y1 ≤ 0, y2 ≤
0, y1 − y2 = 0, y1 > 0} at program point (5). The reduction of this octagonal
constraint shows that (5) is an unreachable program point in PM , thus proving
that (5) is an unreachable program point in the original program P .

Fig. 5. The program Q, on the left, and its M -transform QM , on the right.

Consider now the program Q in Fig. 5, where rnd outputs a random value.
Here again, the goal is to check that (5) is an unreachable program point. By
comparison, let us first consider the analysis of Q using parallelotopes. A dynamic
analysis of Q typically derives from the partial traces at program point (2)
(e.g., 〈2, 4〉 � 〈1, 3〉 � 〈0, 2〉 � 〈−1, 1〉 � 〈−2, 0〉; 〈2, 4〉 � 〈1, 2〉 � 〈0, 0〉; 〈2, 4〉 �

〈1, 3〉�〈0, 1〉�〈−1, 0〉) that an analysis based on parallelotopes should represent
precisely the program invariants l ≤ x1 − x2 ≤ u and l ≤ 2x1 − x2 ≤ u,
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corresponding to the matrix N =
(

1 −1
2 −1

)
∈ GL(2). The analysis of Q using

these N -parallelotopes with widening computes the loop invariant prl � {−2 ≤
x1 − x2, 2x1 − x2 ≤ 0} at program point (2). Consequently, the most precise
parallelotope approximating prl ∩{x2 ≤ 0} at program point (4) still is prl itself.
In turn, at program point (5) the best possible approximation of prl ∩ {x1 > 0}
is given again by prl , and prl does not allow to infer that (5) is unreachable. By
contrast, let us consider the M -transform QM in Fig. 5, which is obtained simply
by adding the transform of x2 := x2 −1 to the transforms in Fig. 4. The analysis
of QM using the original octagon abstraction Oct with widening computes the
invariant {y1 ≤ 2, y2 ≤ 2, y1 − y2 ≤ 0} at program point (2), and {y1 ≤ 2, y2 ≤
2, y1 −y2 ≤ 0, y1 +y2 ≤ 0} at program point (4). Hence, after a reduction of this
latter octagon, one obtains {y1 ≤ 0, y2 ≤ 2, y1 − y2 ≤ 0, y1 + y2 ≤ 0} at program
point (4). In turn, {y1 ≤ 0, y2 ≤ 2, y1−y2 ≤ 0, y1+y2 ≤ 0}∩{y1 > 0} allows us to
derive that that (5) is an unreachable program point in PM . Hence, the analysis
of P with OctM is able to infer that the program point (5) in P is unreachable.
Finally, let us observe that even the analysis of Q using M -parallelotopes, which
represent invariants of type l ≤ x1 ≤ u and l ≤ x2−x1 ≤ u, remains inconclusive:
here the loop invariant computed at (2) is {x1 ≤ 2, x2−x1 ≤ 2}, which is also the
best invariant at (4), and therefore does not allow to infer that (5) is unreachable.

6 Completeness for Linear Transforms

Let us recall [13] that if A = 〈A,≤, γ, α〉 is a Galois Connection and an abstract
function f � : A → A is f-complete or b-complete for a concrete function f :
C → C then f � = fA holds, so that the property of being f- or b-complete
for f � actually depends on the domain A only, i.e., it is an abstract domain
property. Hence, by defining the closure operator ρ � γ ◦ α : C → C, which
encodes an abstraction independently of the representation of its elements, an
abstract domain A is defined to be f-complete for f when ρ ◦ f ◦ ρ = f ◦ ρ
holds and b-complete for f when ρ ◦ f ◦ ρ = ρ ◦ f holds. It is shown in [13,
Sect. 5] that any abstract domain can be refined to its so-called complete shell
to attain b-completeness, namely, for any domain A and any set of concrete
functions F ⊆ C → C there exists the least refinement ShellF (A) of A which is
b-complete for F , provided that C is a complete lattice and the functions in F
are Scott-continuous.

The following result shows that a linear transform M(A) is equivalent to
its input abstract domain A exactly when A is backward and forward complete
for the linear transformation TM . This formalizes the intuition that in order
to be beneficially used in program analysis, a linear transform M(A) must be
applied to abstractions A which are either backward or forward incomplete for
M . Recall that two abstract domains Ai = 〈Ai,≤i, γi〉, i = 1, 2, are equivalent,
denoted by A1

∼= A2, when they represent the same concrete sets, i.e., when
γ1(A1) = γ2(A2) holds.
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Theorem 6.1. Let A = 〈A,≤, γ, α〉 be a numerical abstract domain defined by
a GC and let M ∈ GL(n). Then, M(A) ∼= A iff A is b- and f-complete for TM .

Let K, TX and P denote, respectively, the relational abstract domains of affine
equalities, also called Karr’s domain [14], templates for some m×n matrix X [19]
and convex polyhedra [8]. As expected, it turns out that any linear transform of
these numerical domains is ineffective.

Lemma 6.2. For any M ∈ GL(n), M(K) ∼= K, M(TX) ∼= TX and M(P) ∼= P.

As a consequence of Theorem 6.1 and Lemma 6.2, since both abstract
domains K and T can be defined through a Galois connection (see, e.g.,
[18, Sect. 5]), we derive that for any M ∈ GL(n), Karr’s K and template T
abstract domains are backward and forward complete for TM , as hinted by the
intuition. Convex polyhedra do not have an abstraction map, so that complete-
ness does not play a role.

Let us now focus on intervals Int and octagons Oct . Recall (see e.g. [21]) that
M ∈ GL(n) is a monomial matrix (or generalized permutation matrix) if each
row and column of M has exactly one nonzero entry and all other entries are 0. It
turns out that M ∈ GL(n) is a monomial matrix if and only if M can be written
as a product of an invertible diagonal matrix and a permutation matrix (i.e.,
each row and column has exactly one 1 and all other entries are 0). We denote by
Mon(n) ⊆ GL(n) the subset of monomial matrices, which is actually a subgroup
(for matrix multiplication). It turns out that monomial matrices characterize
precisely the linear transforms which are ineffective for intervals and octagons,
where the intuition is that a monomial matrix represents a nonrelational linear
transform.

Lemma 6.3. Let M ∈ GL(n). If n ≥ 3 then M ∈ Mon(n) iff M(Int) ∼= Int iff
M(Oct) ∼= Oct. If n = 2 then M ∈ Mon(n) iff M(Int) ∼= Int.

By combining Theorem 6.1 and Lemma 6.3, we derive the following note-
worthy consequence: octagons cannot be obtained as a completeness shell from
intervals for some family of invertible linear transforms in GL(n).

Theorem 6.4. For all n ≥ 3 and T ⊆ {TM | M ∈ GL(n)}, ShellT (Int) 	∼= Oct.

This result is somehow against the intuition that octagons are (backward
and forward) complete for π

4 rotations and therefore could be designed through
a complete shell of intervals for this family of rotations. Instead, this intuition
holds just in 2D, namely for two variables only.

Lemma 6.5. Let R1,2, π
4

: ℘(R2) → ℘(R2) be transformation function for the
π
4 rotation matrix in GL(2). Then, ShellR1,2, π

4
(Int) ∼= Oct.

While octagons cannot be obtained from intervals through a complete shell
for π

4 rotations when n ≥ 3, they can still be synthesized through a suitable
reduced (or Cartesian) product [7], here denoted by Π and �, of π

4 rotations of
intervals.
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Lemma 6.6. For all n ≥ 3, Oct ∼= Πn
i,j=1,i<jR

i,j, π
4 (Int). Furthermore, Oct ∼=

Πn
i,j=1,i<j

(
Shi,j,1(Int) � Shi,j,−1(Int)

)
.

The intuition is quite simple. Octagons can be viewed as the product of all
the π

4 rotational transforms of intervals because any such transform Ri,j, π
4 (Int),

with i < j, is able to represent the program invariants l ≤ xi + xj ≤ u, l ≤
xi − xj ≤ u and l ≤ xk ≤ u, for any k ∈ [1, n] � {i, j}, so that their reduced
product precisely expresses all the octagonal constraints in Oct. Similarly, a
reduced product Shi,j,1(Int)�Shi,j,−1(Int) of two shearing transforms represents
l ≤ xi + xj ≤ u, l ≤ xi − xj ≤ u and l ≤ xk ≤ u, for any k 	= i, so that their
reduced product still gets back all the octagons.

7 Further Work

We have shown how the idea behind the definition of the abstract domain of
parallelotopes can be generalized and pushed forward to the class of numerical
abstract domains which are not complete for invertible linear transforms. We
proved how linear transforms of abstract domains closely correspond to linear
transforms of programs, since the analysis of a program P on a linearly trans-
formed domain M(A) can be designed as the analysis of a linearly transformed
program M(P ) on the original abstract domain A.

As argued in [1,2] for parallelotopes, a good linear transformation matrix M
to be used for analyzing a program P with an abstraction A can be derived by
resorting to some statistical technique applied to the data obtained by a dynamic
analysis of P . This approach appears to be promising for parallelotopes [2] and
therefore it is worth to pursue an investigation of it for linear transforms of
octagons by exploiting the general framework of this article. In particular, this
would be appealing since octagons have a cubic time complexity, while the cost
of applying a linear transform to octagons is quadratic for any assignment and
Boolean test occurring in the program to analyze. Moreover, one could also
investigate how to adapt and generalize the dynamic approach studied in [3,4]
where the linear transform M is part of the abstract value and therefore may
be changed by the abstract transfer functions during the analysis of a program.
Finally, let us observe that a broad perspective of our analysis technique with
a linearly transformed abstraction M(A) is that in order to analyze a program
P with some abstraction A, P is first transformed into P ′, then P ′ is analyzed
with a different but related abstraction A′, and the output of this latter analysis
is projected back into A for the program P . In a sense, this can be seen as
a proof-of-concept of a more general problem in program analysis. It is known
that the precision of program analyses is an extensional property (analogously to
computational complexity of programs), namely the precision of an analysis of
P depends upon the way the code of P is written. The possibility of increasing
or reducing the precision of the analysis of a program P by transforming the
code of P has not been investigated and our transformational approach can be
viewed as a step towards this goal.
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Abstract. Despite the increasing effectiveness of model checking tools,
automatically re-verifying a program whenever a new revision of it is
created is often not feasible using existing tools. Incremental verification
aims at facilitating this re-verification, by reusing partial results. In this
paper, we propose a novel approach for incremental verification that is
based on trace abstraction. Trace abstraction is an automata-based verifi-
cation technique in which the program is proved correct using a sequence
of automata. We present two algorithms that reuse this sequence across
different revisions, one eagerly and one lazily. We demonstrate their effec-
tiveness in an extensive experimental evaluation on a previously estab-
lished benchmark set for incremental verification based on different revi-
sions of device drivers from the Linux kernel. Our algorithm is able to
achieve significant speedups on this set, compared to both stand-alone
verification and previous approaches.

1 Introduction

Manual detection of bugs in software is extremely time consuming and requires
expertise and close acquaintance with the code. Yet, for some applications, deliv-
ering a bug-free product is crucial. Using automated program verification tools
is a useful means to ease the burden. Despite the increasing effectiveness of such
tools, advancements in technology of the past decade have given rise to new
challenges. Modern software consists of thousands of lines of code and is devel-
oped by dozens of developers at a time. As a result, the software update rate
is extremely high and dozens or even hundreds of successive program versions
(also called revisions) are created every day. Automatically re-verifying the entire
program whenever a new revision is created is often not feasible using existing
tools.

Incremental verification is a methodology designed to make re-verification
realistic. When a program revision undergoes incremental verification, changes
made from the previous revision are taken into account in an attempt to limit
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the analysis to only the parts of the program that need to be reanalyzed. Partial
verification results obtained from previous revisions can help accomplish this
task and can also be used to make analysis more effective.

The development of incremental verification techniques is a long-standing
research topic (e.g., see [6,8,15,19,20,22,23]). The main challenge these tech-
niques face is deciding which information to pass on from the verification of one
revision to another, and to find effective ways to reuse this information. The
proposed solutions vary, based on the underlying non-incremental verification
technique used. For example, the technique proposed by He, Mao, and Wang [15]
is based on assume-guarantee reasoning, and thus suggests reusing contextual
assumptions, whereas the technique by Sery, Fedyukovich, and Sharygina [23] is
based on bounded model checking using function summaries, and thus suggests
reusing these summaries.

In this paper, we propose a new technique for incremental verification, which
is based on the verification method of Heizmann, Hoenicke and Podelski [16,
17]. At the basis of this verification method is the idea of looking at the basic
statements of the program, i.e., its assignments and conditions, as letters of
a finite alphabet. Following this point of view, the paths of the program can
be seen as words over this alphabet; the program itself can be seen as a finite
automaton whose states are the program locations, and whose language is a set
of paths. The way the method works is by constructing an abstraction of the
set of infeasible program paths, called a trace abstraction, which is a sequence
of automata over the alphabet of statements. Our suggestion is to use this trace
abstraction for incremental verification. We believe that some of its properties,
which we will present in later sections, make it an ideal candidate for reuse.

The paper is organized as follows: In Sect. 2 we will provide notations and
formal definitions. Then, in Sect. 3, we will briefly review the work of [16,17] on
which our incremental approach is based. Next, in Sect. 4, we will present our
approach, and in Sect. 5 we will discuss our implementation details, and present
extensive experimental results. Finally, in Sect. 6 we will survey related work,
and in Sect. 7 we will conclude.

2 Preliminaries

In this section we will present the formal setting of our work. Basic concepts
from the world of verification, such as a program and program correctness, will
be defined in terms of formal languages and automata.

Traces. Throughout the paper, we assume the existence of a fixed set of state-
ments, ST . The reader should think of this set as the set of all possible statements
one can compose in a given programming language. An alphabet is a finite non-
empty subset of ST . A trace over the alphabet Σ, denoted π, is an arbitrary
word over Σ (i.e., π ∈ Σ∗).
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Programs. It is common to represent a program using its control flow graph
(CFG). The set of vertices of the CFG is the set of program locations L, which
contains a distinguished initial location, li, and a subset of distinguished error
locations, Le. Edges of the CFG are labeled with statements of the program.
An edge (lj , s, lk) appears in the graph iff the control of the program reaches
location lj , i.e., iff it is possible to continue to location lk if the statement s
executes successfully. A trace is an error trace of the program if it labels a path
from li to some error location le ∈ Le in this graph.

In our setting, we prefer to view the program as an automaton over the
alphabet of statements, instead of a graph. Formally, we define a program P as
an automaton (Q,Σ, q0, δ, F ), called a control-flow automaton, where:

1. Q, the (finite) set of automaton states, is the set of all program locations L.
2. Σ, the alphabet of the automaton, is the set of all statements that appear

in the program. Note that this set is indeed an alphabet according to our
previous definition (i.e., Σ ⊆ ST ).

3. q0, the initial state of the automaton, is the initial location li.
4. δ, the transition relation, is a subset of L × Σ × L containing exactly those

triples that are edges of the CFG.
5. F , the set of final states, is the set of error locations, Le.

By construction, the language of this automaton, L(P), is the set of error traces
of the program.

Example 1. Figure 1 presents the pseudo-code of a program Pex1, along with its
control-flow automaton, APex1 . The correctness of this program is specified via
the assert statement at location �2: every time this location is reached, the value
of the variable p must not equal 0. Thus, modeling of the assert statement is
done using an edge labeled with the negation of the assertion (here, p==0 ) to
a fresh error location, �e. The initial state of the automaton is the entering point
of the program, �0, and the only accepting state is �e.

�0: assume p!=0;

�1: while(n>=0) {
�2: assert p!=0;

if(n==0) {
�3: p:=0;

}
�4: n--;

}

�0 �1

�2

�3

�4

�5

�e

p!=0

n>=0

n==0

p:=0

n != 0

p==0

n--

n < 0
�0: assume p!=0;

�1: while(n>=0) {
�2: assert p!=0;

if(n==0) {
�3: p:=0;

}
�4: n--;

}

�0 �1

�2

�3

�4

�5

�e

p!=0

n>=0

n==0

p:=0

n != 0

p==0

n--

n < 0

Fig. 1. Pseudo-code of a program Pex1 and its control-flow automaton APex1 .
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Correctness. We assume a fixed set of predicates Φ, which comes with a binary
entailment relation. If the pair (ϕ1, ϕ2) belongs to the entailment relation, we
say that ϕ1 entails ϕ2 and we write ϕ1 |= ϕ2. We also assume a fixed set HT of
triples of the form (ϕ1, s, ϕ2), where ϕ1, ϕ2 ∈ Φ and s ∈ ST . A triple (ϕ1, s, ϕ2)
is said to be a valid Hoare triple if it belongs to HT. In this case, we write
{ϕ1}s{ϕ2}. The set of valid Hoare triples with s ∈ Σ is denoted HTΣ . Given
a set S ⊆ HT, we denote by ΦS the set of predicates that appear in S (i.e., all
predicates that are the first or the last element of some triple in S).

Next, we extend the notion of validity from statements to traces. Given
a trace π = s1 · · · sn, where n ≥ 1, the triple (ϕ1, π, ϕn+1) is valid (and
we write {ϕ1}π{ϕn+1}), iff there exists a sequence of predicates ϕ2 · · · ϕn s.t.
{ϕi}si{ϕi+1} for all 1 ≤ i ≤ n. For an empty trace π (a trace of length 0), the
triple (ϕ, π, ϕ′) is valid iff ϕ entails ϕ′.

In order to define correctness, we also assume the existence of a pair of specific
predicates from Φ, true and false. A trace π is infeasible if {true}π{false}.
The set of all infeasible traces over the alphabet Σ is denoted infeasibleΣ .
Finally, a program P is said to be correct if all error traces of it are infeasible.
That is, if L(P) ⊆ infeasibleΣ , where Σ is the alphabet of the program.

3 Verification Using Trace Abstraction

In this section we will review the work of [16] and [17], which presents an
automata-based approach for verification, upon which our incremental verifi-
cation scheme is based. Even though some of the notions had to be adapted to
our setting, all relevant theorems remain valid.

3.1 Floyd-Hoare Automata

We begin by introducing the notion of a Floyd-Hoare automaton, presented
in [17], and describing some of its key properties. Intuitively, a Floyd-Hoare
automaton is an automaton over an alphabet Σ whose states can be mapped to
predicates from Φ and whose transitions can be mapped to valid Hoare triples.
The motivation behind this definition is that we want Floyd-Hoare automata to
accept only infeasible traces, by construction. Formally, we use the following
definition:

Definition 1 (Floyd-Hoare automaton). A Floyd-Hoare automaton is a
tuple

A = (Q,Σ, q0, δ, F, θ)

where Q is a finite set of states, Σ is an alphabet, q0 ∈ Q is the initial state,
δ ⊆ Q × Σ × Q is the transition relation, F ⊆ Q is the set of final states, and
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θ : Q → Φ is a mapping from states to predicates s.t. the following conditions
hold:

1. θ(q0) = true.
2. For every q ∈ F , θ(q) = false.
3. For every triple (qi, s, qj) ∈ δ, {θ(qi)}s{θ(qj)}.

The function θ is called the annotation of A. The image of θ (i.e., the set of
all predicates ϕ ∈ Φ s.t. there exists a q ∈ Q for which θ(q) = ϕ) is called the
predicate set of A and is denoted ΦA .

Theorem 1 ([17, p. 12]). Every trace accepted by a Floyd-Hoare automaton
A is infeasible. That is, for every Floyd-Hoare automaton A over Σ,

L(A) ⊆ infeasibleΣ

In what follows, we define a mapping from Floyd-Hoare automata to sets
of valid Hoare triples, and vice versa, using a pair of functions, α and β. The
function α is a function from sets of valid Hoare triples to Floyd-Hoare automata.
A set S of valid Hoare triples over Σ is mapped by α to the Floyd-Hoare
automaton AS = (QS , Σ, q0S , δS , FS , θS) where:

– QS = {qϕ|ϕ ∈ ΦS} ∪ {qtrue, qfalse}.
– q0S = qtrue

– δS = {(qϕ1 , s, qϕ2)|(ϕ1, s, ϕ2) ∈ S}
– FS = {qfalse}
– ∀qϕ ∈ QS θS(qϕ) = ϕ.

Note that this is indeed a Floyd-Hoare automaton according to Definition 1,
since S contains only valid Hoare triples.

The function β is a function from Floyd-Hoare automata to sets of valid
Hoare triples. Given a Floyd-Hoare automaton A = (Q,Σ, q0, δ, F, θ), β maps
A to the set {(θ(qi), s, θ(qj)) | (qi, s, qj) ∈ δ}. By Definition 1 (specifically, by
requirement number 1 of θ), this set contains only valid Hoare triples.

3.2 Automata-Based Verification

Next, we describe how Floyd-Hoare automata can be used to verify programs
via trace abstraction [16]. Formally, a trace abstraction is a tuple of Floyd-
Hoare automata (A1, . . . ,An) over the same alphabet Σ. The alphabet Σ is
referred to as the alphabet of the trace abstraction. We say that a program P is
covered by (A1, . . . ,An) if P and (A1, . . . ,An) are over the same alphabet and
L(P) ⊆ L(A1) ∪ . . . ∪ L(An).

Theorem 2 ([16, p. 7]). Given a program P, if there exists a trace abstraction
(A1, . . . ,An) s.t. P is covered by (A1, . . . ,An), then P is correct.
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Theorem 2 implies a way to verify a program P, namely, by constructing a
trace abstraction (A1, . . . ,An) s.t. P is covered by (A1, . . . ,An). This is realized
in [16] in an algorithm that is based on the counter-example guided abstrac-
tion refinement (CEGAR) paradigm (Fig. 2). Initially, the trace abstraction is
an empty sequence of automata, and then it is iteratively refined by adding
automata, until the program is covered by the trace abstraction

program P

P is correct P is incorrect

L(P ∩ A1 ∩ · · · ∩ An) = ∅ ? π is infeasible?

no

return error trace π
such that

π ∈ L(P ∩ A1 ∩ · · · ∩ An)

yes

return Floyd-Hoare automaton
An+1 such that π ∈ L(An+1)

yes no

n := 0

Fig. 2. [16] CEGAR-based scheme for non-incremental verification using trace
abstraction.

Each iteration consists of two phases: validation and refinement. During the
validation phase, we check whether the equation L(P ∩ A1 ∩ · · · ∩ An) = ∅ holds.
The overline notation stands for computing automata complementation and the
∩ notation stands for computing automata intersection. Note that complemen-
tation, intersection and emptiness checking, can all be done efficiently for finite
automata. Checking whether this equation holds is semantically equivalent to
checking whether L(P) ⊆ L(A1) ∪ . . . ∪ L(An), so if the answer is “yes”, we can
state that the program is correct (Theorem 2). If the answer is “no”, then we
get a witness in the form of a trace π s.t. π ∈ L(P ∩ A1 ∩ · · · ∩ An), which is
passed on to the refinement phase.

During the refinement phase, π is semantically analyzed to decide whether it
is infeasible or not. If it is not, we can state that the program is incorrect, since
π is a feasible error trace of P, i.e., an execution of P that leads to an error. If
it is, then the proof of its infeasibility can be used to construct a Floyd-Hoare
automaton An+1 that accepts π (in particular, the way this is done in [17], is by
obtaining a set of valid Hoare triples from the proof and applying α on it). This
automaton is then added to the produced trace abstraction, and the process is
repeated.
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Example 2. Recall program Pex1 from Fig. 1. We claim that an assertion viola-
tion is not possible in this program. A convincing argument for this claim can be
made by considering separately those executions that visit �3 at least once and
those who do not. For the later, p is never assigned during the execution, and
the assume statement makes sure that initially p does not equal 0, so every time
the assertion is reached the condition p!=0 must hold. For the former, since �3
is reached, the true branch of the if statement was taken during that iteration,
so n equals 0 at �4. Therefore, after the execution of n--, n will equal −1, and
thus the loop will be exited and the assertion will not be reached.

Program Pex1 is successfully verified using the scheme of Fig. 2. The trace
abstraction obtained is the tuple (A1,A2), presented in Fig. 3. Observe that the
language of A1 consists of all traces that contain the statement p!=0 followed
by the statement p==0 , without an assignment to p in between. The language
of A2 consists of all traces that contain the statement n==0 followed by the
statement n-- and the statement n>=0 , without an assignment to n between
any of these three statements. As we have just explained, all error traces of Pex1

fall into one of these categories (which one depends on whether or not �3 is
visited), so the inclusion L(APex1) ⊆ L(A1) ∪ L(A2) indeed holds.

q0true

q1p �= 0

q2false

Σ

Σ

p!=0

p==0

Σ\{ p:=0 }

(a) A1

p0true

p1n = 0

p2n = −1

p3false

n==0

n--

n>=0

Σ

Σ\{ n-- }

Σ\{ n-- }

Σ

(b) A2

Fig. 3. Floyd-Hoare automata A1 and A2 with their respective accepting states q2
and p3. The gray frames labeling transitions represent letters from Σ, where an edge
labeled with G ⊆ Σ means a transition reading any letter from G. The green frames
labeling states represent predicates assigned to states by the annotation θ.

4 Incremental Verification Using Trace Abstraction

In the previous section we saw a CEGAR-based algorithm for verification that
constructed a new trace abstraction. In this section, we show how incremental
verification can be done by reusing a given trace abstraction. For this incremen-
tal setting, in addition to the program P, the algorithm also gets as input a trace
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abstraction TAR, which we call the reused trace abstraction. We call the trace
abstraction TAC that is constructed by the algorithm the current trace abstrac-
tion. In addition to the verification result, the algorithm also returns TAC which
might be reused in subsequent verification tasks. The alphabet of the TAR, which
we call reused alphabet and denote by ΣR, may be different from the alphabet
of the program P. We call the alphabet of the program current alphabet and
denote it by ΣC . While there is no restriction on the reused alphabet ΣR, the
performance of the algorithm is expected to improve the more similar it is to
the current alphabet ΣC (i.e., the larger the set ΣR ∩ ΣC is).

4.1 Translation of Floyd-Hoare Automata

The rationale for reusing a trace abstraction TAR is that each Floyd-Hoare
automaton in it forms a proof that the set of traces it accepts is infeasible
(see Theorem 1), and therefore we do not need to analyze any trace in this set.
The organization of the information in the form of an automaton, gives us a
convenient way to get rid of all error traces of P that belong to this set: simply
by subtracting the automaton from the program (which is also an automaton).
Still, the above subtraction can not be done straight away, since the program P
and the reused trace abstraction TAR are not necessarily over the same alphabet.

Traces of the reused trace abstraction TAR that contain statements that
are not from the current alphabet ΣC are definitely not error traces of our
program and hence rather useless for us. Therefore, we would like to “translate”
the reused trace abstraction from the reused ΣR to the current alphabet ΣC .
We first define our notion of such a “translation” for valid Hoare triples and lift
the translation to Floyd-Hoare automaton afterwards.

Definition 2 (Translation of a set of valid Hoare triples). Given a set
of valid Hoare triples SΣR ⊆ HTΣR over the reused alphabet, we call a set of
valid Hoare triples SΣC ⊆ HTΣC over the current alphabet a translation of SΣR

to the current alphabet ΣC , if all valid Hoare triples in SΣR are also in SΣC .
In other words, SΣC ⊆ HTΣC is a translation if the following inclusion holds.

SΣR ∩ HTΣR∩ΣC ⊆ SΣC

In order to lift our notion of “translation” to Floyd-Hoare automata we use
function β which was defined in the previous chapter and maps a Floyd-Hoare
automata to a set of valid Hoare triples.

Definition 3 (Translation of a Floyd-Hoare automaton). Given a Floyd-
Hoare automaton AΣR over the reused alphabet ΣR, we call a Floyd-Hoare
automaton AΣC over the alphabet ΣC a translation of AΣR to ΣC , if the set of
valid Hoare triples β(AΣC ) is a translation of β(AΣR) to ΣC .

Given a Floyd-Hoare automaton AΣR over the reused alphabet ΣR and a set
SΣC of valid Hoare triples over the current alphabet ΣC , we use the procedure
depicted in Fig. 4 to translate AΣR to a Floyd-Hoare automaton AΣC over the
current alphabet ΣC .
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Input: A Floyd-Hoare automaton AΣR over ΣR and
a set of valid Hoare triples SΣC ⊆ HTΣC

Output: A Floyd-Hoare automaton AΣC over ΣC

1. Construct the set of valid Hoare triples S1 = β(AΣR).
2. Construct the set of valid Hoare triples S2 = (S1 \ HTΣR\ΣC ) ∪ SΣC .
3. Return the Floyd-Hoare automaton AΣC = α(S2).

Fig. 4. Procedure TranslateAutomaton.

Proposition 1. Every Floyd-Hoare automaton AΣC that is constructed using
the procedure TranslateAutomaton, is a translation of the reused Floyd-
Hoare automaton AΣR to the current alphabet ΣC .

Proof. Since all valid Hoare triples removed from S1 when creating S2 were
over ΣR \ ΣC , then S1 ∩ HTΣR∩ΣC ⊆ S2. Therefore, by Definition 2, S2 is
a translation of S1 to ΣC . Now, S1 = β(AΣR), so we conclude that S2 is a
translation of β(AΣR) to ΣC . Next, we want to claim that β(AΣC ) = S2. This
is correct because, according to the definitions of β and α, for every set S,
β(α(S)) = S, so in particular β(α(S2)) = S2. Thus, we conclude that β(AΣC )
is a translation of β(AΣR) to ΣC . By Definition 3, this means that AΣC is a
translation of AΣR to ΣC . ��

The procedure TranslateAutomaton enables us to translate the reused
trace abstraction TAR into the alphabet of the program, but the question that
remains is the choice of SΣC . I.e., the question how many and which valid Hoare
triples we should add in addition to the valid Hoare triples that are obtained
from TAR. The set SΣC can be any subset of HTΣC and obviously the larger
SΣC is, the more error traces of P (and other programs that occur in subsequent
verification tasks) are proven infeasible.

We note that we do not only have the costs for the construction SΣC itself. If
SΣC is larger, the automaton AΣC will have more transitions and the costs for
automata operations (e.g., complementation and intersection) and translations
in future verification tasks will be higher.

Thus, the choice of SΣC is a trade-off between how much effort we are willing
to spend on building the translated automata and using them, and how useful
they will be for proving the new program correct.

In our implementation we considered the following three options for SΣC :

Sempty
ΣC = ∅

Sunseen
ΣC = {{ϕ1}s{ϕ2} | s ∈ ΣC \ ΣR, ϕ1, ϕ2 ∈ ΦAΣR

}
Sall

ΣC = {{ϕ1}s{ϕ2} | s ∈ ΣC , ϕ1, ϕ2 ∈ ΦAΣR
}

(1)

Note that all three sets are indeed subsets of HTΣC , and all of them only
use predicates from ΦAΣR

. As a result, the procedure TranslateAutomaton
with either of these sets as SΣC yields an Floyd-Hoare automaton AΣC whose
states were also states of the input AΣR (i.e., states are only removed and not
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added). Also, in all three cases, transitions with irrelevant letters (i.e., letters
in ΣR \ ΣC) are removed, while transitions with relevant letters (i.e., letters in
ΣC) remain.

The difference between the three options for SΣC lies in the transitions that
are added to AΣR . In the case of Sempty

ΣC , no transitions are added at all. In this
case, translated automata are only useful to prove infeasibility of error traces
that remained unchanged from the previous version of the program P, but we do
not have any costs for the construction of SΣC . On the other end of the spectrum
there is Sall

ΣC , in which all valid Hoare triples over ΣC are added as transitions
to AΣC . Here, any error trace that can be proved infeasible using predicates
from ΦAΣR

will be accepted by AΣC . However, in this case the construction of
SΣC is expensive and the resulting automata are often rather large.

The option Sunseen
ΣC suggests an intermediate solution, by considering only

valid Hoare triples over the difference ΣC \ΣR. The rationale is that most valid
Hoare triples over the intersection ΣC ∩ΣR that are relevant to prove infeasibil-
ity of error traces were already added when the reused Floyd-Hoare automaton
AΣR was constructed. In pracitice, there are only error traces whose infeasibility
can be shown with option Sall

ΣC but not with option Sunseen
ΣC if statements in the

program P have been reordered or existing statements were also added at other
positions of the program.

We have performed experiments with all three of these options. The set
that gave the best overall results on average, was Sall

ΣC and hence we used as
SΣC := Sall

ΣC in our experimental evaluation (see Sect. 5.1). The fact that Sall
ΣC

outperforms Sunseen
ΣC suggests, perhaps, that changes such as reordering code and

adding preexisting code (i.e., copy-pasting), on which Sunseen
ΣC has bad results, are

frequent in software evolution.

4.2 Reuse Algorithms

We now present two schemes for incremental verification, that differ in the strat-
egy they use for subtraction of Floyd-Hoare automata from the program. In both
schemes, any subtraction P−A is replaced with P∩A, which results in the same
language but uses different automata operations that more faithfully represent
our implementation.

Eager Reuse. The first scheme, presented in Fig. 5, suggests an eager app-
roach for the reuse of Floyd-Hoare automata. Here, subtraction of Floyd-Hoare
automata is done straight away, and entirely (all Floyd-Hoare automata in the
trace abstraction are subtracted). Then, the CEGAR-based algorithm continues
as in the non-incremental case. The current trace abstraction, TAC , contains all
automata translated from the reused trace abstraction TAR along with all other
automata obtained during the CEGAR loop.

An advantage of this scheme is that all traces whose infeasibility is shown
by a Floyd-Hoare automaton from TAR are excluded right at the beginning.
On the other hand, we may have done some subtractions (or, in fact, inter-
sections) that did not change the language at all and hence were not useful.
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program P over ΣC

trace abstraction TAR =(AR
1 , · · · , AR

m) over ΣR

P is correct
TAC = (A1, · · · , An)

P is incorrect
TAC = (A1, · · · , An)

translate (AR
1 , · · · , AR

m)
to (AT

1 , · · · , AT
m) over ΣC

L(P ∩ A1 ∩ · · · ∩ An) = ∅ ? π is infeasible?

no
return trace π

such that
π ∈ L(P ∩ A1 ∩ · · · ∩ An)

yes

return Floyd-Hoare automaton
An+1 such that
π ∈ L(An+1)

yes no

∀1 ≤ i ≤ m Ai := AT
i

n := m

Fig. 5. Scheme for incremental verification using an eager approach.

For example, it is possible that for some automaton AT
i translated from TAR,

L(P ∩ AT
1 ∩ · · · ∩ AT

i ) = L(P ∩ AT
1 ∩ · · · ∩ AT

i−1) and so the computation of the
intersection with AT

i was done in vain. Note that all Floyd-Hoare automata are
added to TAC , regardless of whether they were useful or not, since retrieving
this information is prohibitively expensive due to technical reasons.

program P over ΣC

trace abstraction (AR
1 , · · · , AR

m) over ΣR

P is correct
TAC = (A1, · · · , An)

P is incorrect
TAC = (A1, · · · , An)

translate (AR
1 , · · · , AR

m)
to (AT

1 , · · · , AT
m) over ΣC

L(P ∩ A1 ∩ · · · ∩ An) = ∅ ? π is infeasible?

∃1 ≤ i ≤ m s.t. π ∈ L(AT
i )?

no

return trace π s.t.
π ∈ L(P ∩ A1 ∩ · · · ∩ An)

yes

return Floyd-Hoare automaton
An+1 such that
π ∈ L(An+1)

no

yes

An+1 = AT
i

yes no

n := 0

Fig. 6. Scheme for incremental verification using a lazy approach.
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Lazy Reuse. The second scheme, presented in Fig. 6, suggests a lazy approach for
the reuse of Floyd-Hoare automata. A Floyd-Hoare automaton is only subtracted
once we know that it is useful, i.e., that its subtraction will remove at least one
trace from the set of traces we have not yet proven infeasible.

In this scheme, the current trace abstraction is initially the empty sequence,
as in the non-incremental case. Then the CEGAR loop begins, but with an
additional phase, which we call the reuse phase, inserted between the validation
and refinement phases (which themselves are not changed). If the validation
phase finds a trace π in L(P ∩ A1 ∩ · · · ∩ An), then the reuse phase first checks
whether this trace is accepted by some automaton AT

i which was translated
from the reused TAR. If it is, then AT

i is added to the current trace abstraction
and we return to the validation phase again. If it is not, then we pass π to the
refinement phase and proceed as before. The current trace abstraction in this
case includes only those automata translated from the reused TAR that were
added to it during the reuse phase, in addition to all those created during the
refinement phase.

Example 3. Figure 7 presents the source code and the control-flow automaton of
a program Pex2. This program is an updated version of Pex1 (see Fig. 1), where
instead of assuming that p is initially different than 0, the variables n is set to
−2 if p equals 0. The alphabet ΣC of the control-flow automaton APex2 is the
set of Pex2’s statements (i.e., ΣC = ΣR ∪ { n:=-2 }, where the reused alphabet
ΣR is the alphabet of APex1).

You will notice that despite the changes made, the assertion still can not be
violated. For executions who visit �4 (formerly �3) at least once, we can make
the same argument as we did in Example 2. For executions who do not visit �4,
the argument we used in Example 2 relied on p being initially different than 0,
so now it only applies to those executions beginning in a transition from �0 to

�0: if(p==0) {
�1: n:=-2;

}
�2: while(n>=0) {
�3: assert p!=0;

if(n==0) {
�4: p:=0;

}
�5: n--;

}

�0

�2

�3

�4

�5

�6

�1

�e

p!=0

p==0

n:=-2

n>=0

n==0

p:=0

n != 0

p==0n--

n < 0

Fig. 7. Program Pex2, which is a modified version of program Pex1. Changes from Pex1

appear in red. (Color figure online)
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�2. For executions going from �0 to �1, we need a new argument. For them, we
can say that the visit in �1 guarantees n will be equal to −2 upon reaching �2,
and thus the loop will not be entered and the assertion will not be reached.

Figure 8 presents the current trace abstraction TAC = (AC
1 ,AC

2 ,AC
3 ) pro-

duced by our algorithm, in both the Eager and the Lazy variants, when using
the tuple (A1,A2) from Fig. 3 as the reused trace abstraction TAR. The first
two automata, AC

1 and AC
2 , are the translations of automata A1 and A2 to the

current alphabet ΣC , resp. The translation of the trace abstraction, in this case,
amounts to adding transitions with the new letter, n:=-2 , where appropri-
ate. Specifically, n:=-2 was added to the 3 self-loops in A1, and to the self
loops from p0 and p3 in A2. The third automaton, AC

3 , is a new Floyd-Hoare
automaton, obtained during the refinement phase.

q0true

q1p �= 0

q2false

ΣC

ΣC

p!=0

p==0

ΣC\{ p:=0 }

(a) AC
1

p0true

p1n = 0

p2n = −1

p3false

n==0

n--

n>=0

ΣC

ΣC\{ n-- ,
n:=-2

}

ΣC\{ n-- ,
n:=-2

}

ΣC

(b) AC
2

r0true

r1n = −2

r2false

n:=-2

n>=0

ΣC

ΣC\{ n-- }

ΣC

(c) AC
3

Fig. 8. Trace abstraction (AC
1 ,AC

2 ,AC
3 ), which is the output of our algorithm for Pex2,

when using the tuple (A1, A2) from Fig. 3 as TAR.

5 Evaluation

We have implemented our incremental verification algorithms on top of the Ulti-
mate Automizer software verification tool, which is part of the Ultimate
program analysis framework1. The source code is available on Github2. We cur-
rently support incremental verification of C and Boogie programs with respect
to safety properties (e.g., validity of assertions or memory-access safety).

On-the-fly Computation. For simplicity of presentation, schemes of our algo-
rithms in Figs. 5 and 6 show a stand-alone translation phase that precedes the
CEGAR loop. According to these schemes, each automaton AR

j in the reused

1 https://ultimate.informatik.uni-freiburg.de.
2 https://github.com/ultimate-pa.

https://ultimate.informatik.uni-freiburg.de
https://github.com/ultimate-pa
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trace abstraction is first translated into an automaton AT
j over the current alpha-

bet ΣC . In practice, computing AT
j entirely can be quite expensive, depending

on the set of valid Hoare triples SΣC , as previously discussed. Also, the computa-
tion of many transitions may turn out to be redundant, as we may not need these
transitions at any point during the CEGAR loop. Therefore, our implementa-
tion translates automata on-the-fly, adding transitions only as soon as the need
for them emerges. On-the-fly translation may happen during the reuse phase in
the Lazy reuse algorithm, and during the validation phase in both algorithms.
Additionally, creation of Floyd-Hoare automaton An+1 in case a trace is found
infeasible during the refinement phase is already done on-the-fly in the preex-
isting implementation of Ultimate Automizer. That is, transitions are added to
An+1 only if they are needed during the following validation phase.

5.1 Experimental Results

We have performed an extensive experimental evaluation of our approach on a set
of benchmarks previously established in [4], available on-line3. This benchmark
set is based on industrial source code from the Linux kernel, and contains 4,193
verification tasks from 1,119 revisions of 62 device drivers. A verification task
is a combination of driver name, revision number, and specification, where the
specification is one of six different rules for correct Linux kernel core API usage
(more details can be found in [4]). We excluded those tasks where Ultimate
Automizer was unable to parse the input program successfully, and were left
with a total of 2,660 verification tasks.

Our experiments were made on a machine with a 4 GHz CPU (Intel Core i7-
6700K). We used Ultimate Automizer version 0.1.23-bb20188 with the default
configuration, which was also used in SV-COMP’184, [18]. In this configuration
Ultimate Automizer first uses SMTInterpol5 with Craig interpolation for
the analysis of error traces during the refinement phase, and if this fails, falls
back on Z36 with trace interpolation [11]. Validity of Hoare triples is also checked
with Z3. A timeout of 90s was set to all verification tasks and the Java heap size
was limited to 6 GB.

For each verification task we verified the revision against the specification
three times: first, without any reuse, and then with reuse, using both the Eager
and the Lazy algorithms. The output trace abstraction of each revision was
used as the input trace abstraction of the next revision. The results of these
experiments are summarized in Table 1.

These results clearly show that our method, both when used with the Eager
algorithm and with the Lazy one, manages to save the user a considerable amount
of time, for the vast majority of these benchmarks. The difference in performance

3 https://www.sosy-lab.org/research/cpa-reuse/regression-benchmarks.
4 https://sv-comp.sosy-lab.org/2018/.
5 https://ultimate.informatik.uni-freiburg.de/smtinterpol, version 2.1-441-gf99e49f.
6 https://github.com/Z3Prover/z3, version master 450f3c9b.

https://www.sosy-lab.org/research/cpa-reuse/regression-benchmarks
https://sv-comp.sosy-lab.org/2018/
https://ultimate.informatik.uni-freiburg.de/smtinterpol
https://github.com/Z3Prover/z3
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Table 1. The results of our evaluation. Each row contains the results for a series of
revisions of a driver and one type of specification. The table only shows those series
where we could parse all files, allowing for a comparison in speedup with [4]. We also
limited the display to the best 15 and the worst 10 series in terms of speedup. The
number of tasks specifies the number of files including the first revision. The settings
“Eager” and “Lazy” are divided in overall and analysis time, where analysis time is
the overall time without the time it took writing the output trace abstraction to file.
As the “Default” setting does not write an output trace abstraction, its analysis time
is the same as its overall time. All times are given as seconds of wall time and do not
include the time for the first revision. The speedup colums compare the relative speedup
between the Default setting and the Lazy setting. The rows “Sum” and “Mean” show
the sum and mean of all the series where we were able to parse all the tasks, whereas
the rows “Sum (All)” and “Mean (All)” show the sum and the mean of all the tasks we
could parse. We adjusted the mean speedup of [4] for our subset by recomputing their
speedup relative to our shared subset, but their mean speedup in the “Mean (All)”
row refers to the original 4,193 tasks.

Default Eager Lazy

Driver Spec Tasks Overall Overall Analysis Overall Analysis Speedup
Overall

Speedup
Analysis

[4]
Speedup

dvb-usb-rtl28xxu 08 1a 10 20.509 0.352 0.187 0.416 0.257 49.30 79.80 3.6
dvb-usb-rtl28xxu 39 7a 10 110.893 4.081 1.992 4.059 2.546 27.32 43.55 6.3
dvb-usb-rtl28xxu 32 7a 10 35.551 1.306 0.725 1.550 0.844 22.93 42.12 4.9
dvb-usb-az6007 08 1a 5 4.620 0.173 0.118 0.187 0.132 24.70 35.00 3.5
dvb-usb-az6007 39 7a 5 17.952 1.378 0.862 1.425 0.989 12.59 18.15 4.9
cx231xx-dvb 08 1a 13 3.330 0.303 0.206 0.323 0.228 10.30 14.60 1.8
panasonic-laptop 08 1a 16 3.466 0.337 0.222 0.384 0.257 9.02 13.48 2.4
spcp8x5 43 1a 13 5.531 0.632 0.437 0.618 0.432 8.94 12.80 1.6
panasonic-laptop 32 1 4 0.623 0.100 0.061 0.072 0.051 8.65 12.21 3.4
panasonic-laptop 39 7a 16 18.961 2.377 1.654 2.617 1.906 7.24 9.94 3.6
leds-bd2802 68 1 4 1.039 0.180 0.112 0.191 0.123 5.43 8.44 4.4
leds-bd2802 32 1 4 0.484 0.089 0.057 0.097 0.064 4.98 7.56 3.9
wm831x-dcdc 32 1 3 0.330 0.063 0.044 0.066 0.047 5.00 7.02 2.1
cx231xx-dvb 39 7a 13 17.536 3.389 2.425 3.464 2.517 5.06 6.96 3.2
ems usb 08 1a 21 2.334 0.502 0.327 0.543 0.362 4.29 6.44 2.9

. . . (for full results cf. http://batg.cswp.cs.technion.ac.il/publications/)

ar7part 32 7a 6 0.071 0.067 0.056 0.074 0.063 0.95 1.12 1.3
metro-usb 08 1a 25 0.394 0.497 0.330 0.518 0.356 0.76 1.10 2.1
rtc-max6902 32 7a 9 0.133 0.124 0.106 0.147 0.126 0.90 1.05 1.1
i2c-algo-pca 43 1a 7 0.012 0.018 0.018 0.019 0.019 1.00 1.00 1.0
dvb-usb-vp7045 43 1a 2 0.001 0.002 0.002 0.027 0.027 1.00 1.00 2.6
cfag12864b 43 1a 2 0.036 0.039 0.036 0.040 0.037 0.90 0.97 1.0
rtc-max6902 43 1a 5 0.278 0.273 0.262 0.303 0.291 0.91 0.95 1.1
magellan 32 7a 2 0.015 0.018 0.016 0.018 0.016 0.83 0.93 0.93
vsxxxaa 43 1a 2 0.030 0.037 0.033 0.036 0.032 0.83 0.93 6.8
ar7part 43 1a 2 0.036 0.043 0.038 0.044 0.039 0.81 0.92 1.2

Sum 1,177 529.258 142.856 107.543 146.275 112.225
Mean 13 5.881 1.587 1.195 1.625 1.247 3.618 4.716 3.17

Sum (All) 2,660 3, 048.373 434.853 334.603 448.424 349.69
Mean (All) 15 16.749 2.389 1.838 2.464 1.921 6.798 8.717 4.3
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between the Eager and Lazy algorithms on these benchmarks was quite negli-
gible; both obtain a nontrivial speedup of around ×4.7 in analysis time, and
×3.6 in overall time, on average. When comparing mean analysis speedups of
our approach and that of [4], we get a speedup that is ×1.5 larger. But, what is
additionally interesting to note, is that we do not succeed on the same bench-
marks as [4] does; the best 15 series in our work and theirs are completely
disjoint. This suggests that the two methods are orthogonal.

Slowdowns are demonstrated for our worst 7 results. On the other hand, our
top 7 results all demonstrate speedups of more than an order of magnitude, with
an impressive max value of ×79.80. For each pair of successive revisions, we have
computed their edit-distance by summing up the number of added, modified and
deleted lines, and dividing by the total number of lines in the file. To compute
the edit-distance of a series, we have computed the mean edit-distance of all
revisions in it. We expected to see a correlation between the edit-distance of a
series and the speedup obtained for it. In general, such a correlation does seems
to exist; a speedup of greater than 4 is achieved mostly for revisions where the
edit distance is small. But, this correlation is not definitive. For example, we had
one series where the mean edit-distance was over 90slowdowns distribute evenly
over the mean edit-distance size.

6 Related Work

The validation of evolving software has been the subject of extensive research
over the years (see the book by Chockler et al. [10]). Several different problems
have been studied in this context, e.g., analyzing the semantic difference between
successive revisions [26] or determining which revision is responsible for a bug
[1,21]. In this section, we will focus on the problem of formally verifying all
program revisions.

A dominant approach to solve this problem is to only verify the first revi-
sion, and then prove that every pair of successive revisions is equivalent. It
was suggested by Godlin and Strichman in [24], where they gave it the name
regression verification and introduced an algorithm that is based on the theory
of uninterpreted functions. Papers about regression verification are concerned
with improving equivalence checking and increasing its applicability. In [2], a
summary of program behaviors impacted by the change is computed for both
programs, and then equivalence is checked on summaries alone. Similarly, in [5],
checking equivalence is done gradually by partitioning the common input space
of programs and checking equivalence separately for each set in the partition. In
[13], a reduction is made from equivalence checking to Horn constraint solving.
In [25] applicability is extended to pairs of recursive functions that are not in
lock-step, and in [7] to multi-threaded concurrent programs. The work of [3] is
focused on Programmable Logic Controllers, which are computing devices that
control production in many safety-critical systems. Finally, [27] proposes a dif-
ferent notion of equivalence, which on top of the usual functional equivalence
also considers runtime equivalence.
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Another approach towards efficiently verifying all program revisions, which
is the one we follow in this paper, is to use during each revision verification
partial results obtained from previous revisions, in order to limit necessary anal-
ysis. Work in this field vary based on the underlying non-incremental verification
technique used, which determines what information can be reused and how effi-
ciently so. The work we find most closely related to ours is that of Beyer et al.
[4], which suggests to reuse the abstraction precision in predicate abstraction.

Other techniques for reuse of verification results include reuse of function
summaries for bounded model checking [7], contextual assumptions for assume-
guarantee reasoning [15], parts of a proof or counter-example obtained through
ic3 [9] and inductive invariants [12]. Also, incremental techniques for runtime
verification of probabilistic systems modeled as Markov decision processes are
developed in [14]. For the special case of component-based systems, [19] uses
algebraic representations to minimize the number of individual components that
need to be reverified. Last, the tool Green [28] facilitates reuse of SMT solver
results for general purposes, and authors demonstrate how this could be benefi-
cial for incremental program analysis.

7 Conclusion

We have presented a novel automata-based approach for incremental verification.
Our approach relies on the method of [16,17] which uses a trace abstraction as
a proof of correctness. Our idea is to reuse a trace abstraction by first trans-
lating it to the alphabet of the program under inspection, and then subtracting
its automata from the control-flow automaton. We have defined a procedure,
TranslateAutomaton, for automata translation, and two algorithms for reuse
of trace abstraction that differ in their strategy for automata subtraction. We
have evaluated our approach on a set of previously established benchmarks on
which we get significant speedups, thus demonstrating the usefulness of trace
abstraction reuse.
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Abstract. Static analysis of numeric programs allows proving impor-
tant properties of programs such as a lack of buffer overflows, division by
zero, or integer overflow. By using convex numeric abstractions, such as
polyhedra, octagons, or intervals, representations of program states are
concise and the analysis operations are efficient. Unfortunately, many
sets of program states can only be very imprecisely represented with
a single convex numeric abstraction. This means that many important
properties cannot be proven using only these abstractions. One solution
to this problem is to use powerset abstractions where a set of convex
numeric abstractions represents the union rather than the hull of those
state sets. This leads to a new challenge: when to merge elements of the
powerset and when to keep them separate. We present a new method-
ology for determining when to merge based on counting and volume
arguments. Unlike previous techniques, this heuristic directly represents
losses in precision through hull computations. In this paper we develop
these techniques and show their utility on a number of programs from
the SV-COMP and WCET benchmark suites.

1 Introduction

A significant problem with common numeric abstraction domains such as inter-
vals [11], octagons [31], and polyhedra [14] is that they are convex. A convex
abstraction is unable to represent the absence of one or more concrete states
within its volume. This causes problems, for instance, when attempting to prove
that a division by zero is not possible because the set of all integers except zero
is not representable with a single convex abstraction. To work around this prob-
lem, a common approach [34,36] is to use a powerset abstraction [13]. A powerset
abstraction represents a non-convex set of states as a finite set of convex abstrac-
tions. Since (linear) convex abstractions are representable as a conjunction of
hyperplanes, we refer to these powerset abstractions as disjunction abstractions.
For instance, we can represent that x is equal to any integer except zero using a
disjunction of two interval constraints: x ≤ −1 ∨ x ≥ 1.

While disjunction abstractions solve the problem of representing holes within
a convex numeric abstraction, they also introduce a new problem: performance.
c© Springer Nature Switzerland AG 2018
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Instead of performing an operation on a single convex abstraction, the analysis
must perform operations on each convex abstraction. Furthermore, if a disjunc-
tion is introduced at each branch in the program [35], the number of disjuncts
is exponential in the number of branches. Loops cause further problems because
they can effectively introduce an unbounded number of branches, leading to an
analysis that does not terminate.

To resolve this problem we turn to merging. A merge heuristic is responsible
for determining whether two convex numeric abstractions should be combined
using a hulling operation or maintained as separate disjuncts. In [36], the authors
propose a heuristic based on Hausdorff distance. In [34], the authors propose a
heuristic based on the number of common hyperplanes. The problem with both
of these approaches is that they do not relate directly to what the abstractions
represent: concrete states.

This paper studies merge heuristics based on the number of concrete states
that are affected by a potential merge. For instance, if two abstract states have
no concrete states in common, then perhaps they should not be merged. Alter-
natively, if hulling two abstract states yields the same set of concrete states as
taking their union, they should be merged as in [2].

In this paper we focus on bounded polytope abstractions, which are polytope
abstractions with finite bounds. We study polytopes because, unlike intervals
[20,39], appropriate merge heuristics for polytopes are non-obvious. Further-
more, operations on polytopes have higher complexity than operations on
octagons or intervals and thus make differences between merge heuristics more
obvious in empirical study. Regardless, we expect that the precision results would
extend to other convex numeric abstractions. In order to study volume-based
merge heuristics, we require computable volumes. Therefore we restrict poly-
topes to machine integer bounds with the assumption that integer overflow is
checked. We make the following contributions.

– In Sect. 3 we develop heuristics based on the volume of the intersection of two
polytopes relative to the volume of their union. We also develop heuristics
based on the volume of the hull of two polytopes relative to the volume of
their union.

– In Sect. 4 we describe how to use Markov Chain Monte Carlo algorithms to
incrementally approximate relative volumes of polytopes, and we show how
to use Barvinok’s algorithm [5] to count integer points in polytopes. We also
describe a segments-based affinity score that does not require a direct hull
computation.

– In Sect. 5 we present a disjunctive abstract domain that utilizes various heuris-
tics to determine which disjuncts to merge.

– In Sects. 6 and 7 we integrate the abstract domain into an analyzer and use
that analyzer to produce invariants for a range of programs in the SV-COMP
and WCET benchmark suites.

2 Overview and Example

Consider a typical forward abstract interpretation [12] of the program shown
in Fig. 1a. The analysis should establish as strong an invariant as possible at
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the point where the branches A, B, and C have been joined together. We want
to strike a balance between precision and performance: our invariant should be
strong enough to allow us to prove interesting properties of the program, but we
should not have to spend an unreasonable amount of computational power.

Fig. 1. Example of merging disjuncts. (a) Program that produces three disjuncts. (b)
Three disjuncts shown as three convex polytopes. Red (resp. blue) dashed lines show
the merge results of A and B (resp. B and C). Dots show integer points added in
merging. (Color figure online)

Figure 1b shows the situation that arises. There are three disjoint polytopes.
Each describes a range of values that can be assumed by x and y when the
branches are joined together at the end of Fig. 1a. Now consider a case where we
are allowed to describe the state using a disjunction of at most two polytopes.
Then we must choose to merge two of A, B, or C. The question is, which two will
result in the least loss of precision? The observation we make is that precision
loss is related to volume. When the volume increases as a result of a merge,
that represents a precision loss. The magnitude of the increase in volume is also
related to the magnitude of the loss of precision. It is therefore desirable to merge
the disjuncts that minimize the change in volume. In short: can we speculatively
calculate or estimate the volume increase from a proposed disjunctive merge,
and let that guide the management of our disjuncts? We will consider answering
this question using two different volume calculation methods.

First, we consider an integer point counting method. We can see in Fig. 1b
that merging A and B will cause four new points (shown in red) to be added
to the approximation of the state space, while merging B and C will not result
in any change in the number of integer points. Therefore we choose to merge
disjuncts B and C while keeping A distinct.

Second, we consider a real approximation of the integer points methods. We
can see that if we merge A and B, the volume increases by 7 (red dashed shape),
whereas if we merge B and C the volume increases by 3 (blue dashed shape).
Therefore we choose to merge disjuncts B and C while keeping A distinct.
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In the remainder of the paper we precisely describe the comparison techniques
used in this section. Both integer point methods and real approximation methods
are considered.

3 Semantic Comparison of Polytopes

This section develops affinity scores between polytopes. An affinity score is a
value in the range [0,1] assigned to a pair of polytopes where a 0 suggests that
the polytopes may not be related and a 1 suggests that the polytopes are def-
initely related. Polytopes with an affinity score higher than a (user-specified)
threshold will be merged. Table 1 summarizes the two affinity scoring mecha-
nisms evaluated in this paper.

Table 1. Affinity scores measure the similarity between two convex polytopes and can
be used to determine which polytopes to merge. We define |A|

Z
to be the cardinality

of
{
x ∈ Z

d
∣
∣ x ∈ A

}
and |A|

R
to be the volume of the polytope A.

Affinity score Integer Real

Intersection volume iZ(A, B) =
|A ∩ B|

Z

|A ∪ B|
Z

iR(A, B) =
|A ∩ B|

R

|A ∪ B|
R

Added hull volume hZ(A, B) =
|A ∪ B|

Z

|hull(A, B)|
Z

hR(A, B) =
|A ∪ B|

R

|hull(A, B)|
R

Each affinity score is defined in two ways: over integers and over reals. For
integers, the affinity score is given by the cardinality of point sets. For reals,
the affinity score is given by the volume of the solids. The computation of both
the cardinality of the point sets and the volume of the solids requires that the
polytopes are bounded to avoid infinite results. Integer affinity scores are given
a Z subscript and real affinity scores are given a R subscript.

To motivate the different affinity scoring systems, we use the examples shown
in Fig. 2. Figure 2a shows two polytopes that are similar because they have a large

Fig. 2. Example polytopes that motivate different affinity scoring systems
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overlap. Figure 2b shows two polytopes that are similar because they abut (and
hence merging them will result in no loss of precision). During static analysis,
we often encounter examples like the one in Fig. 2b because when we branch on
an if statement, for the ‘then’ branch we assume one half-space and for the ‘else’
branch we assume the other half-space (in this case separated by x = 3). We
also often encounter examples like Fig. 2c, which has a gap of size one. This is
due to branching on integer variables: if we branch on x ≥ 3, our else constraint
is x ≤ 2.

Definition 1 (Intersection volume affinity). Intersection volume affinity is
defined as the ratio between the volume of the intersection of the polytopes and
the volume of the union of the polytopes. It is defined in the first row of Table 1.

Intuitively, intersection volume is a good scoring mechanism because it
merges polytopes that have large overlaps. The hull of two polytopes with a
large intersection will not be significantly larger than the polytopes themselves.
However, a small or non-existent intersection between two polytopes does not
indicate anything about the size of their hull. What is particularly useful about
this scoring mechanism is that the hulling operation can be skipped if unneeded.
Since the hulling operation is potentially exponential time for arbitrary poly-
topes, this could lead to performance benefits.

Example 1 (Intersection volume affinity). For Fig. 2a, iZ is 9
23 ≈ 0.39 and iR is

4
14 ≈ 0.29. For Fig. 2b, iZ is 1

5 = 0.2 and iR is 0. For Fig. 2c, both iZ and iR are 0.

Definition 2 (Added hull volume affinity). Added hull volume affinity is
defined as the ratio between the volume of the union of the polytopes and the
volume of the hull of the polytopes. It is defined in the second row of Table 1.

Due to the situation that occurs in Figs. 2b and c, we also consider hull
volume affinity, which corresponds directly to the volume/number of points that
are gained through the hulling process. This scoring mechanism aims to minimize
the total number of points represented by an abstraction.

Example 2 (Added hull volume affinity). For Fig. 2a, hR is 14
15 ≈ 0.93. For Fig. 2b,

hR is 1. For Fig. 2c, hR is 12
16 = 0.75. For all three figures, hZ is 1.

Other affinity scores are documented in the literature. The simplest affin-
ity [23] is the null affinity, which always returns an affinity score of zero. Another
affinity score [34] is the ratio between the number of half planes preserved by
a hulling operation and the number of half planes in the two polytopes. This
is biased to preserve complexity in the representation, but shares with the hull
volume affinity the property that it tends to assign high scores to polytopes that
do not add too many points in hulling. In [36] there is an affinity score that is
based on the Hausdorff distance. This affinity tends to merge polytopes that are
not too far apart, but does not consider points gained by the hulling operation.
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4 Sampling and Counting Points

In this section we describe the techniques we use to implement affinity scores.
Affinity scores are computed with one of two general techniques. They are either
computed by counting integer points within polytopes or by calculating ratios
of volumes of polytopes.

4.1 Integer-Point-Based Affinity

To implement iZ and hZ we need to be able to compute answers to problems
of the form |A|

Z
/ |B|

Z
. We accomplish this by computing individually |A|

Z
and

|B|
Z

and then dividing. The key to doing this is the use of the Barvinok algo-
rithm [5] and its corresponding tool [41]. The Barvinok algorithm has complexity
LO(d log d) for L input constraints and dimension d [33]. The Barvinok library
(developed from PolyLib [30]) is an optimized implementation of this algorithm
and can efficiently compute the precise cardinality of integer polytopes. The
details of this algorithm are beyond the scope of this paper.

4.2 Volume-Ratio-Based Affinity

To implement iR and hR we need to be able to compute ratios of volumes of high-
dimension polytopes. Directly computing the volume of high-dimension poly-
topes is a computationally complex problem and we need to do the operation
twice for each merge candidate. Therefore, we develop the methodology used
here more carefully.

For our purposes, it is not strictly necessary to compute volumes because the
end result is not a volume, but rather a ratio of volumes. Exploiting this reduces
the amount of computation that we have to do. If we can sample uniformly
from the polytope in the denominator, we can count the number of samples that
occur in the numerator to iteratively approximate the ratio of the volumes of the
polytopes. To sample from a polytope, we borrow from techniques for approxi-
mating the volume of polytopes [17,27], which use Markov Chain Monte Carlo
(MCMC) [28] sampling algorithms to produce a Markov chain whose limiting
distribution is equal to a given distribution.

Definition 3 (Sampling intersection volume affinity). Let R(A)n be an
n-cardinality set of random points uniformly distributed in a polytope A. The
sampling intersection volume ratio of polytopes A and B given n samples is

in
R
(A,B) =

|{ x ∈ R(A ∪ B)n | x ∈ A ∩ B }|
n

Definition 4 (Sampling added hull volume affinity). Given R(A)n as
above, the sampling hull volume ratio of polytopes A and B given n samples
is

hn
R
(A,B) =

|{ x ∈ R(hull(A,B))n | x ∈ A ∪ B }|
n
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These definitions give iterative approximations of the affinity functions that
become closer to the actual function as the number of samples increases. In the
limit they compute the precise volume ratios given in Table 1.

The complexity of MCMC sampling is polynomial in the dimension of the
polytope. Generating each sample is polynomial, and typically a polynomial
number of samples is sufficient to get decent coverage of the polytope. However,
the complexity of the hull operation is potentially exponential in the dimension
of the polytope. Therefore the dominating factor in the complexity of the sam-
pling hull volume affinity is the hull operation. The sampling intersection volume
affinity is attractive because it does not incur this exponential cost. However,
it does require uniform sampling from a union of two convex polytopes, which
basic MCMC sampling does not support. We get around this with the following
modification:

in
R
(A,B) =

∣
∣
{

x ∈ R(A)n/2 ∪ R(B)n/2
∣
∣ x ∈ A ∩ B

}∣
∣

n

This only requires sampling from convex polytopes and is thus polynomial time,
but results in increased sample density in the smaller polytope and in the inter-
secting region.

4.3 Segment-Sample Volume-Ratio-Based Affinity

To avoid the complexity of the hull operation used in the sampling hull volume
affinity, we also define a segment-sample-based affinity. This affinity is inspired
by the definition of convex hull, where every point on every line segment between
points in the two polytopes is included in the hull.

Definition 5 (Segment-sample volume-ratio-based affinity). Let
S(A,B)n = R(A)n × R(B)n|n where R(A)n is as given above and ·|n randomly
picks n elements of the set. Let �((x, y), A) be the length of the line segment
between x and y contained within the polytope A. Define |x − y| to be the dis-
tance between x and y. The segment-sample volume-ratio-based affinity is

sn
R
(A,B) =

∑

s̄∈S̄ �(s̄, A) + �(s̄, B) − �(s̄, A ∩ B)
∑

(x,y)∈S̄ |x − y| where S̄ = S(A,B)n.

This affinity’s main interesting property is that it approximates the hull with-
out actually computing the hull. As a result it has a polynomial time bound as
opposed to an exponential time bound like other hull-based techniques. Unfor-
tunately, this approximation is poor as the sampling is not uniform. Sampling
end points uniformly from two polytopes individually does not yield a uniform
sampling of segments between those polytopes. Because the segments on average
end in the middle of each polytope, the portion of the polytopes that are farther
away from each other may be underrepresented in the calculation. We include
this heuristic here because we believe that it is an interesting approach despite
its shortcomings.
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x

y

A

C

Fig. 3. The sampled segments approximate the hull of A and C non-uniformly. Note
that the upper portion is underrepresented.

Example 3 (Segment-sample volume-ratio-based affinity). If we sample 300 seg-
ments, we get a picture like the one shown in Fig. 3. The segments in this figure
do not cover the topmost part of hull of A and C (shown by dashed lines), but
instead repeatedly cover the center of the hull. However, these segments can be
computed without computing the hull itself, which means that hulling is not
necessary to reason about the volume introduced by hulling.

4.4 Inflating Polytopes

With the volume-ratio-based affinities, there is the problem of abutment. When
a conditional branch is interpreted, this splits the abstract state into two sepa-
rate abstract states that may be re-merged with a disjunction. Identifying when
these branches have come back together is important for reducing the number
of disjuncts. Unfortunately, there are cases where an integer gap may be intro-
duced, as shown in Fig. 2c. In this case, if the two abutting polytopes have a
low total volume, the volume of the gap may outweigh the volume of the poly-
topes in the computation of the hR affinity, and the two polytopes will be given
a low score. Regardless of an integer gap, two abutting (but not intersecting)
polytopes will be assigned a iR affinity score of zero because their intersection
volume is zero.

To avoid these issues, we use an inflation technique, which takes every face
of the polytope and pushes it out by some amount. For example, in Fig. 2c,
inflating by one will cause the two polytopes to have an intersection of width
one. Now the hR affinity score will be one, which is the same as hZ, and iR
will be nonzero. An inflation of 0.5 is sufficient to bridge the integer gap, but
larger inflation values may be beneficial. For instance, in the case of intersection
volume, a larger inflation can boost the affinity of nearby (but not intersecting)
polytopes without boosting the affinity of far apart polytopes. This naturally
biases closer polytopes to be merged.
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5 Disjunctive Abstract Domain

A concrete state is a point in d-dimensional space Z
d. Convex polytope abstract

states q, r ∈ D# are instances of an abstract domain. The concretization of an
abstract state γ(q) is a set of concrete states. An abstract domain is a lattice
ordered by inclusion 	 that defines least upper bound 
. An abstract domain
defines monotone transfer functions f that map abstract states to other abstract
states. Abstract domains also define a widening operator ∇ that predicts possible
post-fixpoints and guarantees termination of the analysis.

We employ a typical disjunctive abstract domain. Disjunctive abstract states
Q = (q1, . . . , qk), R = (r1, . . . , rk) ∈ D#k are k-element vectors of underlying
convex numeric abstract states. The concretization is given as function of the
underlying domain’s concretization: γ(Q) =

⋃

i∈[1,k] γ(qi) for qi ∈ Q. Figure 4c
shows the basic domain operations including join, a naive widening algorithm
(for simplicity, not [1]), transfer function, and inclusion.

Following [19,36], we define disjunctive abstract domain operations using a
selection function σ. The selection function shown in Fig. 4b determines which
among a set of abstract states is most similar to another abstract state. To
do this it makes three comparisons. The first two check if the parameter q is
contained in any of the ri ∈ R or if any of the ri ∈ R are contained in q. If so,
the least index is chosen. This takes care of initialization because ⊥ is trivially
contained in any q. The last comparison checks if some affinity score a indicates
that the two abstract states have a similarity higher than some threshold Θ.
The threshold Θ is a parameter to the analysis. If all three comparisons fail, the
index containing the most similar abstract state will be selected. The threshold
check is important to ensure that similar, but not contained, abstract states do
not fill up all k positions first and then force dissimilar abstract states to choose
the best of several poor choices.

Fig. 4. (a) Compaction function K and (b) corresponding selection function σ, where
a is the affinity function. These are responsible for reducing the number of disjuncts in
an abstract state down to k. (c) Domain operations join, widening, transfer function,
and inclusion defined using K.
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The σ function is then used by a compaction function K, which is shown in
Fig. 4a, to reduce an overly large set of disjuncts down to a smaller set. This
is necessary to ensure termination of abstract interpretation by preventing the
number of disjunctions from growing indefinitely. The compaction function works
by iteratively inserting elements from Q into a result disjunction R according
to the selection function σ. All of the abstract domain operations are defined
using this compaction function. They are implemented in the obvious way for
a disjunctive abstract domain, and are compacted if too many disjuncts are
produced by an operation. The soundness of this domain follows from definitions
in prior work on disjunctive domains [36].

Example 4 (Compacting a disjunction). Consider the example shown in Fig. 1b.
There are three disjuncts A, B, and C, but we wish to compact that to k = 2
disjuncts with a threshold Θ = 0.8 and an affinity score a = hZ. To begin, A is
placed into r1 because ⊥ 	 A. Next, B is placed into r2 because ⊥ 	 B and
the affinity score assigned to A and B is 0.75 < 0.8. Finally, C is merged into
r2 because the affinity score of r2 and C is 1.0 > 0.8. This is significantly higher
than the affinity score of r1 and C, which is approximately 0.77.

6 Implementation

We implemented a disjunctive abstract domain in the CRAB C++ abstract
interpretation framework [32], which builds upon Clang and LLVM version 3.8.0.
C and C++ programs are compiled into LLVM IR and then optimized with a
set of optimizations targeted at static analysis, such as pointer to array conver-
sion [29]. The resulting LLVM IR files are then converted into a CRAB-specific
intermediate representation for analysis with a selectable domain.

The disjunctive abstract domain is parameterized by the maximum number
of disjuncts k, the similarity threshold Θ, and the choice of affinity scoring
function a. The underlying numeric abstraction is the NewPolka abstraction
from the APRON abstract domain library [26]. NewPolka is convenient because
it provides fairly low-level access to the constraint matrix and separates equality
constraints from inequality constraints. To circumvent problems with infinite
volume polytopes, we impose reasonable machine integer bounds. All variables
are restricted to be in the range −263 to 264−1 to cover both signed and unsigned
machine integers.

The null affinity scoring function 0 is trivially implemented: new polytopes
are merged with either an existing polytope that wholly subsumes the new one,
or if no such polytope is found the new polytope is added to the end. If there is
no more room, the new polytope is merged with the last element in the disjunct.
We also implemented an affinity measure that counts the number of common
hyperplanes, c, as described in [34]. The iZ and hZ affinity functions are imple-
mented as described in Sect. 4 using the Barvinok library [41] to implement inte-
ger counting within polytopes. The iR, hR and sR affinity scoring functions are
implemented as described in Sect. 4 using our own implementation of polytope
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sampling (described in the next section). The iR, hR and sR scoring functions are
additionally parameterized by the number of samples n. We scale the number of
samples taken linearly with the number of dimensions in the polytope to ensure
better coverage.

6.1 Random Sampling Within Polytopes

To implement the R(A)n operation we use a Markov Chain Monte Carlo
(MCMC) technique called hit-and-run sampling [9,38], which performs a ran-
dom walk to generate points within a polytope. We use hit-and-run sampling
because of its relative ease of implementation. Note that hit-and-run sampling
only guarantees uniformity in the limit, so our implementation, which uses a
limited number of samples, does not provide completely uniform random sam-
pling.

One challenge with hit-and-run sampling (or any technique that randomly
explores the interior of a polytope) is how to handle zero-volume polytopes,
which occur often in abstract interpretation. Zero-volume polytopes inhibit ran-
dom walks because the probability of selecting a valid direction in which to step
is zero. To get around this, we do a dimension reduction that converts a zero-
volume polytope to a non-zero-volume polytope of lower dimension [10,16]. The
lower-dimension polytope can then be sampled and each point mapped back to
a point in the original polytope. These mapped points can then be used in one
of the affinity scoring algorithms.

We also encounter difficulties with the representation of coefficients in the
constraint matrices. For performance reasons it is desirable to use floating-point
numbers in the constraint matrix. However, because the dynamic range of coef-
ficients is very large, floating-point precision is insufficient and during sampling,
rounding error may cause the invariant of the hit-and-run algorithm (that the
current point is always inside the polytope) to be violated. To get around this,
we represent coefficients using rational numbers. This gives us the precision we
need, but adds significant overhead and makes it more difficult to do certain
operations required by the hit-and-run algorithm, such as generating random
points on a line segment.

We solve the problem of generating random points by introducing a new
parameter m, which fixes the number of points that we can choose during any
iteration of hit-and-run. To generate a random point on a line segment, we first
split the segment into m sub-segments, and then choose an endpoint of a ran-
domly selected sub-segment. Note that for a fixed number of samples, this limits
the granularity of our samples. To get around some of the performance problems
caused by using rational values we introduce another parameter, b, which is the
batch size. The batch size determines how many points to sample from a segment
once a hit-and-run direction has been chosen. This reduces the total number of
directions sampled, and thus decreases the uniformity in exchange for increased
performance.
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7 Evaluation

In this section we evaluate the various affinity scores detailed in this paper. This
evaluation attempts to answer the following research questions.

– RQ1: Does merging the most similar polytopes increase analysis precision?
– RQ2: Does sampling provide better performance characteristics than exact

computation?
– RQ3: Is exact computation efficient enough for large-scale analysis?
– RQ4: Is sampling efficient enough for large-scale analysis?

7.1 Experimental Setup

To answer these research questions, we evaluate our implementation of the affin-
ity scores listed in Table 2 on the SV-COMP [6] and WCET [21] benchmark
suites. Specifically, we used the subset of programs from SV-COMP described in
Table 3. We chose these benchmarks because they focus on numeric properties
(e.g. loops) and represent interesting and significant programs (e.g. busybox).
In total, we analyzed 170,090 lines of C code.

Table 2. Descriptions of the different affinity scores considered.

Affinity score Description

0 Null affinity

c Common hyperplanes [34]

iZ Integer intersection volume

hZ Integer added hull volume

iR Sampling intersection volume

hR Sampling added hull volume

sR Segment-sample volume ratio

The benchmarks were executed on a 36-core, 72-thread Intel Xeon E5-2699
system with 512GB of RAM. We evaluated 72 benchmarks at a time and ran
each benchmark five times to get an average for performance. Each benchmark
was allowed up to 60 min of run time before being declared a time out.

We fixed the parameters in the following way based on a handful of small
examples before evaluating on the full benchmark suite. The number of disjuncts
k was limited to 3. The number of samples per dimension parameter n was set
to 10. The number of segments parameter m was set to 1024. The batch size
parameter b was set to 4. The threshold parameter Θ was set to 0.4. The inflation
parameter was set to 0.5 for hR and sR, 1.0 for iR, and 0 for hZ and iZ. Recall
that m and b are parameters used by our sampling implementation as described
in Sect. 6. The evaluation proceeds with these settings.
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Table 3. WCET and SV-COMP benchmark sets used for evaluation. Lines of code
counted with cloc.

Dataset LOC

wcet 907

loops 2866

ssh 60463

ntdrivers 39173

busybox-1.22.0 58997

loop-invgen 441

loop-acceleration 637

loop-industry-pattern 3114

array-industry-pattern 551

array-examples 2941

Total 170090

To evaluate precision, we compared the invariants inferred for each program
point across all of the different analyses. For each pair of analyses M , N , we
queried the number of program points where M 	 N and M = N . This com-
parison gives us a fine grained measurement of the relative precision of different
analyzers. Instead of asking, for example, how many array bounds checks or
other assertions were proven, we ask how about precision at every point in the
program. An increase in precision would be valuable to any downstream client
that sought to prove some numeric property of the program. We used the Yices
SMT solver [15] to answer these queries. This query time is not counted as part of
analysis time. Some M , N might be incomparable, and those are not represented
in the table. One choice we have made in this experimental measurement is to
not determine if either M or N are sufficient to prove a property about the pro-
gram, but to instead compare the relative precision between the two invariants
when they can be related. This choice was made due to the impact of improving
precision early in an analysis and due to the relatively few properties to prove
compared to the number of program points.

7.2 Results

The precision results are presented in Table 4. The performance results are pre-
sented in Table 5 and shown graphically in Fig. 5. We use this information to
address the research questions.

RQ1. Does merging the most similar polytopes increase analysis precision?
Table 4 shows that on average, yes. Both of the precise counting affinities pro-
duce more precise results 25% of the time, whereas the null affinity is more
precise only 8% of the time. The sampling-based techniques fare slightly worse
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Table 4. Ratio of program points where M is more precise than N . The upper diagonal
is augmented with the percentage of when M = N .

M

0 c iZ hZ iR hR sR

� � = � = � = � = � = � =

0 - .05 .64 .25 .42 .25 .42 .07 .79 .20 .43 .19 .45

c .18 - - .31 .36 .31 .36 .19 .58 .23 .42 .24 .43

N iZ .08 .03 - - - 0 1 .07 .45 .05 .33 .04 .42

hZ .08 .03 - 0 - - - .07 .45 .05 .33 .04 .42

iR .02 .05 - .23 - .23 - - - .18 .43 .18 .49

hR .19 .14 - .29 - .29 - .22 - - - .12 .64

sR .18 .13 - .26 - .26 - .19 - .08 - - -

Table 5. Aggregate performance of different analyzer configurations across all pro-
grams. Each program was analyzed 5 times. We took the mean of 5 runs and report
on that mean when aggregating across all programs. Times reported are in seconds.

Analyzer Mean Min Max Median

0 5.375 0.242 79.291 0.866

c 7.883 0.254 240.350 0.786

iZ 19.058 0.250 806.325 0.581

hZ 33.202 0.250 1493.689 0.605

iR 29.522 0.241 1204.348 4.013

hR 56.186 0.243 932.781 7.236

sR 86.074 0.254 1928.718 8.367

c iZ hZ iR hR
sR
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Fig. 5. Runtime performance of analyzer configurations relative to null affinity.

against the null affinity, scoring 7%, 20%, and 19% better, whereas the null affin-
ity performs better 2%, 19%, and 18% of the time. However, the sampling-based
techniques perform better against the c affinity measure in all cases. This sug-
gests that when the volumetric comparison is precise (i.e. either iZ or hZ), there
is a significant benefit over the basic strategy. This also suggests that either
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the number of samples or the specific samples that we chose were insufficient to
identify the truly related polytopes.

RQ2. Does sampling provide better performance characteristics than exact com-
putation? No. With the parameters that we have chosen, the performance is
roughly comparable with the precise counting techniques generally being faster.
Table 5 shows that the sampling techniques on average take twice as long as the
precise counting techniques. However, for the added hull volume affinity scores
(hZ and hR), the maximum run time for the sampling technique is significantly
better than the maximum run time for the precise counting technique. This
suggests that the asymptotic complexity advantage of sampling pays off when
the problem gets particularly difficult for precise counting. Even so, with the
implementation we have developed and the parameters that we have chosen, the
sampling techniques are generally not worth using.

RQ3. Is exact computation efficient enough for large-scale analysis? Yes.
Table 5 shows that the exact computation techniques have non-trivial overhead
over the null affinity case. However, depending on the situation, iZ may provide
a fair trade-off: a 4x increase in analysis time in exchange for invariants that are
stronger 25% of the time. hZ is less favorable: a 6x increase in analysis time for
exactly the same 25% improvement in invariant strength.

RQ4. Is sampling efficient enough for large-scale analysis? Yes, though in its
current state it is probably not worth using. Like iZ and hZ, iR and hR are more
expensive than the null affinity. In general a 6x overhead of iR is not necessarily
too expensive, although it depends on the situation. The 10x and 17x overheads
of hR and sR are probably too expensive, especially as they seem to provide no
precision benefit over the precise methods.

7.3 Limitations and Discussion

There are a number of limitations to our implementation, experimentation, and
analysis. The most significant is the choice of parameters for the analysis. Ideally
we would have chosen parameters for the sampling-based approaches on a large
set of benchmarks. This limitation shows because, in the limit, the sampling
should be similar to the exact counting methods. Due to the fact that the results
are quite different, this suggests that we are not yet approaching that limit.
We should probably increase the number of samples, increase the number of
segments, or decrease the batch size to improve this result.

The choice of Θ is somewhat arbitrary. While the exact counting techniques
do show a benefit with a Θ of 0.4, it is not clear that this is an optimum value. It is
also not clear whether the sampling approaches should have different thresholds
than the exact computation. It seems like that should be unnecessary, but we
have not explored that space.
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The results are somewhat unfairly biased against the sampling technique.
The library for exact computation has been under development in some form
for around 20 years. As a result it employs careful memory management for
all of its computations to ensure that no extra memory is being allocated or
freed. Furthermore it enjoys an optimized matrix library that has been custom
built for this application and caching of intermediate results so that it can both
avoid re-computation and re-allocation. In spot checks we have observed that the
sampler is spending nearly 50% of its time doing memory allocation or freeing.
If the sampler could manage memory more efficiently it may be possible to get
it into the same realm of performance as the exact counting method.

We are currently using a fairly naive coordinate direction hit-and-run sam-
pler. The reason for this was to increase the number of samples we could collect
per second. It might be a fair trade to use a more advanced algorithm that is
slower if it yielded more uniformly distributed samples. In particular, the coordi-
nate direction hit-and-run sampler can get stuck in corners if a polytope is long
and narrow and there is no coordinate direction that covers a large percentage
of the space.

Finally, these results are dependent on the widening strategy. A poor choice
when performing widening could easily cause one disjunct to go to top or close
to top. Future disjuncts would be trivially merged with that particular disjunct
resulting in an overall loss of precision. It is unclear how to account for this when
analyzing results. While a loss of precision during widening is acceptable, it would
be interesting to know how an ideal strategy would compare. Unfortunately, this
is not possible.

8 Related Work

Disjunctions have been a widely studied topic. In abstract interpretation they
were introduced with powerset domains in [13]. Jeannet [25] explored partition-
ing schemes for disjunctive invariants. More generally, the theory of disjunc-
tive invariants is explored in [35]. This, along with [36], develops a relationship
between disjunctive invariants and control flow path refinement. In effect, refin-
ing control flow such that multiple paths are presented for a single syntactic path
is equivalent to a disjunctive analysis. This leads a significant quantity of work
on control flow refinement [3,7,18,22,37], which can be viewed as applications
of disjunctive techniques.

In [19] a theorem is given that a best disjunction merge policy can be stati-
cally computed. This theorem assumes that widening is not required and thus is
not generally applicable to abstract interpretation. Furthermore, it is not obvi-
ous how to statically compute a merge policy in the context of a general abstract
interpreter. [23] claims to do this but instead implements the null affinity score.

Model checking procedures [4,24] typically produce disjunctive invariants.
The way they do this is different in its operation than what we present. They
first analyze programs without any disjunctions and then introduce them by
learning where a coarse abstraction has caused a property to not be proven.
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While this approach is quite effective, it does not work for unguided analysis
such as program understanding and it may not scale as well as non-refinement-
based analyses such as Astrée [8].

We are most related to work that performs forward disjunctive analyses using
numeric domains and no refinement. In [36], the authors use a similar formulation
of the abstraction. The key difference is in the choice of merge heuristic. The
choice in [36] is to merge according to a simplified Hausdorff distance, which is
shown by [34] to be less desirable than other heuristics. In [34], the authors use
a syntactic property of polytopes to decide merging. This technique counts the
number of hyperplanes in common between an input polytope and the result of
a join. Another possible merge heuristic is the similarity of Boolean variables.
In [39], a binary decision diagram is used to determine which numeric domains
should be merged and which should not.

Our merging heuristics are based on volume and counting computations
for polytopes. Barvinok develops the core theory [5] for counting procedures.
Approximate volume computations based on sampling are alternatively used
[17,27]. The idea of using the Barvinok algorithm came from [40].

9 Conclusion

In this paper we have shown a number of new affinity scoring algorithms for
determining which disjuncts should be merged in a disjunctive abstraction. The
new affinity scoring algorithms are all based on points within the polytopes.
Those points are either sampled or counted in order to compute proxies for
polytope volume. We demonstrated that these techniques work by analyzing a
large selection of benchmark programs. In the future we would like to further
optimize sampling to make it more performant to determine if the difference
in complexity yields tangible differences in performance. We would also like to
explore adaptations of the segment sampling approach to find something that
has some degree of uniformity.
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Abstract. CTL is a temporal logic commonly used to express program
properties. Most of the existing approaches for proving CTL properties
only support certain classes of programs, limit their scope to a subset of
CTL, or do not directly support certain existential CTL formulas. This
paper presents an abstract interpretation framework for proving CTL
properties that does not suffer from these limitations. Our approach auto-
matically infers sufficient preconditions, and thus provides useful infor-
mation even when a program satisfies a property only for some inputs.
We systematically derive a program semantics that precisely captures
CTL properties by abstraction of the operational trace semantics of a
program. We then leverage existing abstract domains based on piecewise-
defined functions to derive decidable abstractions that are suitable for
static program analysis. To handle existential CTL properties, we aug-
ment these abstract domains with under-approximating operators. We
implemented our approach in a prototype static analyzer. Our experi-
mental evaluation demonstrates that the analysis is effective, even for
CTL formulas with non-trivial nesting of universal and existential path
quantifiers, and performs well on a wide variety of benchmarks.

1 Introduction

Computation tree logic (CTL) [6] is a temporal logic introduced by Clarke and
Emerson to overcome certain limitations of linear temporal logic (LTL) [33]
for program specification purposes. Most of the existing approaches for prov-
ing program properties expressed in CTL have limitations that restrict their
applicability: they are limited to finite-state programs [7] or to certain classes of
infinite-state programs (e.g., pushdown systems [36]), they limit their scope to a
subset of CTL (e.g., the universal fragment of CTL [11]), or support existential
path quantifiers only indirectly by considering their universal dual [8].

In this paper, we propose a new static analysis method for proving CTL
properties that does not suffer from any of these limitations. We set our work
in the framework of abstract interpretation [16], a general theory of semantic
approximation that provides a basis for various successful industrial-scale tools
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 402–422, 2018.
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while 1( rand() ) {
2x := 1
3n := rand()
while 4( n > 0 ) { 5n := n − 1 }
6x := 0

}
while 7( true ) {}8

Fig. 1. Standard lock acquire/release-style program [12], where rand() is a random
number generation function. Assignments x := 1 and x := 0 are acting as acquire and
release, respectively. We want to prove the CTL property AG(x = 1 ⇒ A(true U x = 0))
expressing that whenever a lock is acquired (x = 1) it is eventually released (x = 0).
We assume that initially x = 0.

(e.g., Astrée [3]). We generalize an existing abstract interpretation framework
for proving termination [18] and other liveness properties [41].

Following the theory of abstract interpretation [14], we abstract away from
irrelevant details about the execution of a program and systematically derive
a program semantics that is sound and complete for proving a CTL property.
The semantics is a function defined over the programs states that satisfy the
CTL formula. The value of the semantics for a CTL formula that expresses a
liveness property (e.g., A(true U φ)) gives an upper bound on the number of
program execution steps needed to reach a desirable state (i.e., a state satisfying
φ for A(true U φ)). The semantics for any other CTL formula is the constant
function equal to zero over its domain. We define the semantics inductively on
the structure of a CTL formula, and we express it in a constructive fixpoint form
starting from the functions defined for its sub-formulas.

Further sound abstractions suitable for static program analysis are derived
by fixpoint approximation [14]. We leverage existing numerical abstract domains
based on piecewise-defined functions [39], which we augment with novel under-
approximating operators to directly handle existential CTL formulas. The
piecewise-defined function for a CTL formula is automatically inferred through
backward analysis by building upon the piecewise-defined functions for its sub-
formulas. It over-approximates the value of the corresponding concrete semantics
and, by under-approximating its domain of definition, yields a sufficient precon-
dition for the CTL property. We prove the soundness of the analysis, meaning
that all program executions respecting the inferred precondition indeed satisfy
the CTL property. A program execution that does not respect the precondition
might or might not satisfy the property.

To briefly illustrate our approach, let us consider the acquire/release-style
program shown in Fig. 1, and the CTL formula AG(x = 1 ⇒ A(true U x = 0)).
The analysis begins from the atomic propositions x = 1 and x = 0 and, for
each program control point, it infers a piecewise-defined function that is only
defined when x is one or zero, respectively. It then continues to the sub-formula
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A(true U x = 0) for which, building upon the function obtained for x = 0, it
infers the following interesting function at program point 4:

λx.λn.

⎧
⎪⎨

⎪⎩

0 x = 0
2 x �= 0 ∧ n ≤ 0
2n + 2 otherwise

(1.1)

The function indicates that the sub-formula x = 0 is either satisfied trivially
(when x is already zero), or in at most 2 program execution steps when n ≤ 0
(and thus the loop at program point 4 is not entered) and 2n + 2 steps when
n > 0 (and thus the loop is entered). The analysis then proceeds to x = 1 ⇒
A(true U x = 0), i.e., x �= 1 ∨ A(true U x = 0). The inferred function for the
sub-formula x �= 1 is only defined over the complement of the domain of the
one obtained for x = 1. The disjunction combines this function with the one
obtained for A(true U x = 0) by taking the union over the function domains
and the maximum over the function values. The result at program point 4 is the
same function obtained for A(true U x = 0). Finally, the analysis can proceed
to the initial formula AG(x = 1 ⇒ A(true U x = 0)). The function at program
point 4 remains the same but its value now indicates the maximum number of
steps needed until the next state that satisfies x = 0. The function inferred at
the beginning of the program proves that the program satisfies the CTL formula
AG(x = 1 ⇒ A(true U x = 0)) unless x has initial value one. Indeed, in such a
case, the program does not satisfy the formula since the loop at program point 1
might never execute. Thus, the inferred precondition is the weakest precondition
for the CTL property AG(x = 1 ⇒ A(true U x = 0)).

We implemented our approach in the prototype static analyzer FuncTion
[13]. Our experimental evaluation demonstrates that the analysis is effective,
even for CTL formulas with non-trivial nesting of universal and existential path
quantifiers, and performs well on a wide variety of benchmarks.

2 Trace Semantics

We model the operational semantics of a program as a transition system 〈Σ, τ〉
where Σ is a (potentially infinite) set of program states, and the transition
relation τ ⊆ Σ × Σ describes the possible transitions between states. The set of
final states of the program is Ω

def= {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 �∈ τ}.
Given a transition system 〈Σ, τ〉, the function pre : P (Σ) → P (Σ) maps a

given set of states X to the set of their predecessors with respect to τ :pre(X) def=
{s ∈ Σ | ∃s′ ∈ X : 〈s, s′〉 ∈ τ}, and the function p̃re : P (Σ) → P (Σ) maps a
given set of states X to the set of states whose successors with respect to τ are
all in X: p̃re(X) def= {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 ∈ τ ⇒ s′ ∈ X}.

In the following, given a set S, let Sn def= {s0 · · · sn−1 | ∀i < n : si ∈ S} be
the set of all sequences of exactly n elements from S. We write ε to denote
the empty sequence, i.e., S0 def= {ε}. Let S∗ def=

⋃
n∈N

Sn be the set of all finite
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sequences, S+ def= S∗ \ S0 be the set of all non-empty finite sequences, Sω be
the set of all infinite sequences, S+∞ def= S+ ∪ Sω be the set of all non-empty
finite or infinite sequences and S∗∞ def= S∗ ∪ Sω be the set of all finite or
infinite sequences of elements from S. We write σσ′ for the concatenation of
two sequences σ, σ′ ∈ S∗∞ (with σε = εσ = σ, and σσ′ = σ if σ ∈ Sω),
T+ def= T ∩ S+ for the selection of the non-empty finite sequences of T ⊆ S∗∞,
Tω def= T ∩ Sω for the selection of the infinite sequences of T ⊆ S∗∞, and
T ; T ′ def= {σsσ′ | s ∈ S, σs ∈ T, sσ′ ∈ T ′} for the merging of sets of sequences
T ⊆ S+ and T ′ ⊆ S+∞, when a finite sequence in T terminates with the initial
state of a sequence in T ′.

Given a transition system 〈Σ, τ〉, a trace is a non-empty sequence of program
states described by the transition relation τ , that is, 〈s, s′〉 ∈ τ for each pair
of consecutive states s, s′ ∈ Σ in the sequence. The set of final states Ω and
the transition relation τ can be understood as sets of traces of length one and
two, respectively. The maximal trace semantics Λ ∈ P (Σ+∞) generated by a
transition system is the union of all non-empty finite traces that are terminating
with a final state in Ω, and all infinite traces. It can be expressed as a least
fixpoint in the complete lattice 〈P (Σ+∞) ,�,�,�, Σω, Σ+〉 [14]:

Λ = lfp� λT.Ω ∪ (τ ; T ) (2.1)

where the computational order is T1 � T2
def= T+

1 ⊆ T+
2 ∧ Tω

1 ⊇ Tω
2 .

The maximal trace semantics carries all information about a program and
fully describes its behavior. However, reasoning about a particular property
of a program is facilitated by the design of a semantics that abstracts away
from irrelevant details about program executions. In the paper, we use abstract
interpretation [16] to systematically derive, by abstraction of the maximal trace
semantics, a sound and complete semantics that precisely captures exactly and
only the needed information to reason about CTL properties.

3 Computation Tree Logic

CTL is also known as branching temporal logic; its semantics is based on a
branching notion of time: at each moment there may be several possible suc-
cessor program states and thus each moment of time might have several differ-
ent possible futures. Accordingly, the interpretation of CTL formulas is defined
in terms of program states, as opposed to the interpretation of LTL formulas
in terms of traces. This section gives a brief introduction into the syntax and
semantics of CTL. We refer to [1] for further details.

We assume a set of atomic propositions describing properties of program
states. Formulas in CTL are formed according to the following grammar:

φ ::= a | ¬φ | φ ∧ φ | φ ∨ φ | AXφ | AGφ | A(φ U φ) | EXφ | EGφ | E(φ U φ)

where a is an atomic proposition. The universal quantifier (denoted A) and
the existential quantifier (denoted E) allow expressing properties of all or some
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traces that start in a state. In the following, we often use Q to mean either
A or E. The next temporal operator (denoted X) allows expressing properties
about the next program state in a trace. The globally operator (denoted G)
allow expressing properties that should hold always (i.e., for all states) on a
trace. The until temporal operator (denoted U) allows expressing properties
that should hold eventually on a trace, and always until then. We omit the
finally temporal operator (denoted F) since a formula of the form QFφ can be
equivalently expressed as Q(true U φ).

The semantics of formulas in CTL is formally given by a satisfaction relation
|= between program states and CTL formulas. In the following, we write s |= φ if
and only if the formula φ holds in the program state s ∈ Σ. We assume that the
satisfaction relation for atomic propositions is given. The satisfaction relation
for other CTL formulas is formally defined as follows:

s |= ¬φ ⇔ ¬(s |= φ)
s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2

s |= φ1 ∨ φ2 ⇔ s |= φ1 ∨ s |= φ2

s |= Aϕ ⇔ ∀σ ∈ T (s) : σ |= ϕ
s |= Eϕ ⇔ ∃σ ∈ T (s) : σ |= ϕ

(3.1)

where T (s) ∈ P (Σ+∞) denotes the set of all program traces starting in the state
s ∈ Σ. The semantics of trace formulas ϕ is defined below:

σ |= Xφ ⇔ σ[1] |= φ
σ |= Gφ ⇔ ∀0 ≤ i : σ[i] |= φ
σ |= φ1 U φ2 ⇔ ∃0 ≤ i : σ[i] |= φ2 ∧ ∀0 ≤ j < i : σ[j] |= φ1

(3.2)

where σ[i] denotes the program state at position i on the trace σ ∈ Σ+∞. We
refer to [1] for further details.

4 Program Semantics for CTL Properties

In the following, we derive a program semantics that is sound and complete for
proving a CTL property. We define the semantics inductively on the structure
of a CTL formula. More specifically, for each formula φ, we define the CTL
abstraction αφ : P (Σ+∞) → (Σ ⇀ O) which extracts a partial function f : Σ ⇀
O from program states to ordinals from a given set of sequences T ∈ P (Σ+∞)
by building upon the CTL abstractions of the sub-formulas of φ. The domain
of f coincides with the set of program states that satisfy φ. Ordinal values are
needed to support programs with possibly unbounded non-determinism [18]. The
definition of αφ for each CTL formula is summarized in Fig. 2 and explained in
more detail below. We use the CTL abstraction to define the program semantics
Λφ : Σ ⇀ O for a formula φ by abstraction of the maximal trace semantics Λ.

Definition 1. Given a CTL formula φ and the corresponding CTL abstraction
αφ : P (Σ+∞) → (Σ ⇀ O), the program semantics Λφ : Σ ⇀ O for φ is defined
as Λφ

def= αφ(Λ), where Λ is the maximal trace semantics (cf. Eq. 2.1).
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Fig. 2. CTL abstraction αφ : P (
Σ+∞) → (Σ ⇀ O) for each CTL formula φ. The

function transQ stands for pre, if Q is E, or p̃re, if Q is A (cf. Sect. 2). The state

function st : P (
Σ+∞) → P (Σ) collects all states of a given set of sequences T : st(T )

def
=

{s ∈ Σ | ∃σ′ ∈ Σ∗, σ′′ ∈ Σ∗∞ : σ′sσ′′ ∈ T}. The ranking abstraction αrk
Q : P (

Σ+
) →

(Σ ⇀ O) is defined in Eq. 4.1, while the subsequence abstraction αsq
QFφ : P (

Σ+∞) →
P (

Σ+
)

is defined in Eqs. 4.2 and 4.3. In the last two rows, f1
def
= αφ1(T ) and f2

def
=

αφ2(T ).

Remarks. It may seem unintuitive to define Λφ starting from program traces
rather than program states (as in Sect. 3). The reason behind this deliberate
choice is that it allows placing Λφ in the hierarchy of semantics defined by
Cousot [14], which is a uniform framework that makes program semantics eas-
ily comparable and facilitates explaining the similarities and correspondences
between semantic models. Specifically, this enables the comparison with existing
semantics for termination [18] and other liveness properties [41] (cf. Sect. 7).

It may also seem unnecessary to define Λφ to be a function. However, this
choice yields a uniform treatment of CTL formulas independently of whether
they express safety or liveness properties (or a combination of these). Addition-
ally, it allows leveraging existing abstract domains [38,39] (cf. Sect. 5) to obtain
a sound static analysis for CTL properties. In particular, the proof of the sound-
ness of the static analysis (cf. Theorem 2 and [38] for more details) requires
reasoning both about the domain of Λφ as well as its value.
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Atomic Propositions. For an atomic proposition a, the CTL abstraction
αa : P (Σ+∞) → (Σ ⇀ O) simply extracts from a given set T of sequences
a partial function that maps the states of the sequences in T (i.e., s ∈ st(T ))
that satisfy a (i.e., s |= a) to the constant value zero, meaning that no program
execution steps are needed until a is satisfied for all executions starting in those
states. Thus, the domain of the corresponding program semantics Λa : Σ ⇀ O

is (cf. Definition 1) is the set of program states that satisfy a (since st(Λ) = Σ).

Next-Formulas. Next-formulas QXφ express that the next state of all traces
(if Q is A) or at least one trace (if Q is E) satisfies φ.

The CTL abstraction αQXφ : P (Σ+∞) → (Σ ⇀ O) for a next-formula QXφ
(cf. Fig. 2) maps a set T of sequences to a partial function defined over the
states of the sequences in T (i.e., s ∈ st(T )) that are the predecessors of the
states that satisfy φ, that is, the predecessors of the states in the domain of the
CTL abstraction for φ (i.e., s ∈ transQ(dom(αφ(T )))). The function has constant
value zero over its domain, again meaning that no program execution steps are
needed until QXφ is satisfied for all executions starting in those states.

Thus, the domain of the program semantics ΛQXφ : Σ ⇀ O is the set of states
inevitably (for ΛAXφ) or possibly (for ΛEXφ) leading to a state in the domain
dom(Λφ) of the program semantics of the sub-formula φ (cf. Definition 1).

Until-Formulas. Until-formulas Q(φ1 U φ2) express that some desired state
(i.e., a state satisfying the sub-formula φ2) is eventually reached during program
execution, either in all traces (if Q is A) or in at least one trace (if Q is E), and the
sub-formula φ1 is satisfied in all program states encountered until then. Thus, we
can observe that an until-formula is satisfied by finite subsequences of possibly
infinite program traces. To reason about subsequences, we define the subsequence
function sq : P (Σ+∞) → P (Σ+) which extracts all finite subsequences of a
given set of sequences T : sq(T ) def= {σ ∈ Σ+ | ∃σ′ ∈ Σ∗, σ′′ ∈ Σ∗∞ : σ′σσ′′ ∈ T}.
In the following, given a formula Q(φ1 U φ2), we define the corresponding sub-
sequence abstraction αsq

Q(φ1Uφ2)
: P (Σ+∞) → P (Σ+) which extracts the finite

subsequences that satisfy Q(φ1 U φ2) from of a set of sequences T . We can then
use αsq

Q(φ1Uφ2)
to define the CTL abstraction αQ(φ1Uφ2) : P (Σ+∞) → (Σ ⇀ O)

as shown in Fig. 2. The ranking abstraction αrk
Q : P (Σ+) → (Σ ⇀ O) is:

αrk
Q (T ) def= αv

Q(
→
α (T )) (4.1)

where
→
α : P (Σ+) → P (Σ) × P (Σ × Σ) extracts from a given set of non-

empty finite sequences T the smallest transition system 〈S, r〉 that generates
T :

→
α (T ) def= 〈st(T ), {〈s, s′〉 ∈ Σ × Σ | ∃σ ∈ Σ∗, σ′ ∈ Σ∗∞ : σss′σ′ ∈ T}〉 and the

function αv
Q : P (Σ) × P (Σ × Σ) → (Σ ⇀ O) provides the rank of the elements
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in the domain of the transition relation of the transition system:

αv
Q〈S, r〉s def=

⎧
⎪⎨

⎪⎩

0 ∀s′ ∈ S : 〈s, s′〉 �∈ r

bndQ

{

αv
Q〈S, r〉s′ + 1

∣
∣
∣
∣
∣

s �= s′, 〈s, s′〉 ∈ r,

s′ ∈ dom(αv
Q〈S, r〉)

}

otherwise

where bndQ stands for sup, if Q is A, or inf, if Q is E. The CTL abstraction
αA(φ1Uφ2) (resp. αE(φ1Uφ2)) maps the states st(T ) of a given set of sequences T
that satisfy Q(φ1 U φ2) to an upper bound (resp. lower bound) on the number
of program execution steps until the sub-formula φ2 is satisfied, for all (resp. at
least one of the) executions starting in those states.

Existential Until-Formulas. The subsequence abstraction αsq
E(φ1Uφ2)

for a formula
E(φ1 U φ2) extracts from a given a set of sequences T the finite subsequence of
states that terminate in a state satisfying φ2 and all predecessor states satisfy
φ1 (and not φ2). It is defined as follows:

αsq
E(φ1Uφ2)

(T ) def= αE(φ1Uφ2)[dom(αφ1(T ))][dom(αφ2(T ))]T

αE(φ1Uφ2)[S1][S2]T
def= {σs ∈ sq(T ) | σ ∈ (S1 \ S2)∗, s ∈ S2}

(4.2)

where S1 is the set of states that satisfy the sub-formula φ1 (i.e., dom(αφ1(T ))),
and S2 is the set of desired states (i.e., dom(αφ2(T ))).

Universal Until-Formulas. A finite subsequence of states satisfies a universal
until-formula A(φ1 U φ2) if and only if it terminates in a state satisfying φ2, all
predecessor states satisfy φ1, and all other sequences with a common prefix also
terminate in a state satisfying φ2 (and all its predecessors satisfy φ1), i.e., the
program reaches a desired state (via states that satisfy φ1) independently of the
non-deterministic choices made during execution. We define the neighborhood of
a sequence of states σ in a given set T as the set of sequences σ′ ∈ T with a
common prefix with σ: nbhd(σ, T ) def= {σ′ ∈ T | pf(σ) ∩ pf(σ′) �= ∅}, where the
prefixes function pf : Σ+∞ → P (Σ+∞) yields the set of non-empty prefixes of a
sequence σ ∈ Σ+∞: pf(σ) def= {σ′ ∈ Σ+∞ | ∃σ′′ ∈ Σ∗∞ : σ = σ′σ′′}.

We can now defined the subsequence abstraction αsq
A(φ1Uφ2)

:

αsq
A(φ1Uφ2)

(T ) def= αA(φ1Uφ2)[dom(αφ1(T ))][dom(αφ2(T ))]T

αA(φ1Uφ2)[S1][S2]T
def=

⎧
⎨

⎩
σs ∈ sq(T )

∣
∣
∣
∣
∣

σ ∈ (S1 \ S2)∗, s ∈ S2,

nbhd(σ, sf(T ) ∩ S2
+∞

) = ∅,
nbhd(σ, sf(T ) ∩ Z) = ∅

⎫
⎬

⎭

(4.3)

where the suffixes function sf : P (Σ+∞) → P (Σ+∞) yields the set of non-empty
suffixes of a set of sequences T : sf(T ) def=

⋃
{σ ∈ Σ+∞ | ∃σ′ ∈ Σ∗ : σ′σ ∈ T}, and

Z
def=

{
σsσ′ ∈ Σ+∞ | σ ∈ Σ∗ ∧ s ∈ S1 ∪ S2 ∧ σ′ ∈ Σ+∞}

is the set of sequences
of states in which at least one state satisfies neither φ1 nor φ2. The last two
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conjuncts in the definition of the helper function αA(φ1Uφ2)[S1][S2] ensure that
a finite subsequence satisfies A(φ1 U φ2) only if it does not have a common
prefix with any subsequence of T that never reaches a desired state in S2 (i.e.,
nbhd(σ, sf(T )∩S2

+∞
) = ∅) and with any subsequence that contains a state that

does not belong to S1 and S2 (i.e., nbhd(σ, sf(T ) ∩ Z) = ∅).

Example 1. Let us consider again the acquire/release program of Fig. 1 and let
T be the set of its traces. The suffixes starting at program point 2 of the traces
in T can be visualized as follows:

x = 1

. . . n = −1 n = 0
n = 1 n = 2

. . .

x = 0

Observe that these sequences form a neighborhood in the set sf(T ) of suffixes of
T (i.e., the set of all these sequences is the neighborhood nbhd(σ, sf(T )) of any
sequence σ in the set). In the following, we write xi and ni for the states denoted
above by x = i and n = i, respectively.

Let us consider the universal until-formula A(x = 1 U x = 0). The set of
desired states is S2 = {x0} and S1 = {x1} ∪ {ni | i ∈ Z} is the set of states that
satisfy x = 1. All sequences in the neighborhood have prefixes of the form σs
where σ = x1 · · · ∈ (S1 ∩ S2)∗ and s = x0 ∈ S2. Thus, the neighborhood of any
subsequence σs does not contain sequences in S2

+∞
that never reach the desired

state x0 (i.e., nbhd(σs, sf(T ) ∩ S2
+∞

) = ∅). Furthermore, the neighborhood
does not contain sequences in Z in which at least one state neither satisfies
x = 1 nor x = 0 (i.e., nbhd(σ, sf(T ) ∩ Z) = ∅). Therefore, the until-formula
A(x = 1 U x = 0) is satisfied at program point 2.

Let us consider now the formula A(x = 1 ∧ 0 ≤ n U x = 0). Again, all
sequences in the neighborhood eventually reach the desired state x0. However,
in this case, the set S1 is limited to states with non-negative values for n, i.e.,
S1 = {x1} ∪ {ni | 0 ≤ i}. Thus, the neighborhood also contains sequences in
which at least one state satisfies neither x = 1 ∧ 0 ≤ n nor x = 0 (e.g., the
sequence x1n−1 . . . ). Hence A(x = 1 ∧ 0 ≤ n U x = 0) is not satisfied at program
point 2 since nbhd(σ, sf(T )∩Z) �= ∅. Instead, the existential until-formula E(x =
1 ∧ 0 ≤ n U x = 0) is satisfied since, for instance, the subsequence σs where
σ = x1n1 and s = x0 satisfies (x = 1 ∧ 0 ≤ n U x = 0).

Until Program Semantics. We now have all the ingredients that define the pro-
gram semantics ΛQ(φ1Uφ2) : Σ ⇀ O for an until-formula Q(φ1 U φ2) (cf. Defini-
tion 1). Let 〈Σ ⇀ O,�〉 be the partially ordered set for the computational order
f1 � f2 ⇔ dom(f1) ⊆ dom(f2) ∧ ∀x ∈ dom(f1) : f1(x) ≤ f2(x). The program
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semantics ΛQ(φ1Uφ2) can be expressed as a least fixpoint in 〈Σ ⇀ O,�〉 as:

ΛQ(φ1Uφ2) = lfp�
∅̇ ΘQ(φ1Uφ2)[dom(Λφ1)][dom(Λφ2)]

ΘQ(φ1Uφ2)[S1][S2]f
def= λs.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 s ∈ S2

bndQ {f(s′) + 1 | 〈s, s′〉 ∈ τ} s ∈ S1 ∧ s �∈ S2 ∧
s ∈ transQ(dom(f))

undefined otherwise
(4.4)

where ∅̇ is the totally undefined function. The program semantics ΛA(φ1Uφ2) (resp.
ΛE(φ1Uφ2)) is a well-founded function mapping each program state in dom(Λφ1)
inevitably (resp. possibly) leading to a desirable state in dom(Λφ2) to an ordinal,
which represents an upper bound (resp. lower bound) on the number of program
execution steps needed until a desirable state is reached.

Globally-Formulas. Globally-formulas QGφ express that φ holds indefinitely
in all traces (if Q is A) or at least one trace (if Q is E) starting in a state.

The definition of the CTL abstraction αQGφ : P (Σ+∞) → (Σ ⇀ O) for
QGφ given in Fig. 2 retains the value of the CTL abstraction corresponding to
the sub-formula φ. Intuitively, each iteration discards the states that satisfy
φ (i.e., the states in dom(αφ(T ))) but branch to (sub)sequences of T that do
not satisfy QGφ. Preserving the value of αφ provides more information than just
mapping each state to the constant value zero. For instance, the CTL abstraction
αAGAFφ for a globally-formula AGAFφ provides an upper bound on the number
of program execution steps needed until the next occurrence of φ is satisfied, for
all executions starting in the corresponding state.

The corresponding program semantics ΛQGφ : Σ ⇀ O (cf. Definition 1) pre-
serves the value of Λφ for each state satisfying the sub-formula φ and inevitably
(if Q is A) or possibly (if Q is E) leading only to other states that also satisfy φ.

Other Formulas. We are left with describing the CTL abstraction of ¬φ,
φ ∧ φ, and φ ∨ φ defined in Fig. 2. For a negation ¬φ, the CTL abstraction α¬φ

maps each program state that does not satisfy φ to the value zero. The CTL
abstraction for a binary formula φ1 ∧ φ2 or φ1 ∨ φ2 retains the largest value of
the functions Λφ1 and Λφ2 for each program state satisfying both φ1 and φ2; for
a disjunction φ1 ∨ φ2, it also retains the value of the function for each program
state satisfying either sub-formula.

Theorem 1. A program satisfies a CTL formula φ for all traces starting from
a given set of states I if and only if I ⊆ dom(Λφ).

Proof. The proof proceeds by induction over the structure of the CTL formula
φ. The base case are atomic propositions a for which the proof is immediate.

For a next-formulas QXφ, by induction hypothesis, dom(Λφ) coincides with
the set of states that satisfy φ. By Definition 1 and the definition of αQXφ in Fig. 2,
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the domain of ΛQXφ coincides with transQ(dom(αφ(T ))). Thus, by definition of
transQ, we have that dom(ΛQXφ) coincides with the set of states that satisfy
QXφ (cf. Eqs. 3.1 and 3.2).

For an until-formula Q(φ1 U φ2), by induction hypothesis, dom(Λφ1) and
dom(Λφ2) coincide with the set of states that satisfy φ1 and φ2, respectively.
We have ΛQ(φ1 U φ2) = ΘQ(φ1Uφ2)[dom(Λφ1)][dom(Λφ2)](ΛQ(φ1 U φ2)) from
Eq. 4.4. Therefore, by definition of ΘQ(φ1Uφ2), dom(ΛQ(φ1 U φ2)) coincides with
the states that satisfy φ2 and all states that satisfy φ1 and inevitably (if Q is
A) or possibly (if Q is E) lead to states that satisfy φ2. So dom(ΛQ(φ1 U φ2))
coincides with the states that satisfy Q(φ1 U φ2) (cf. Eqs. 3.1 and 3.2).

For a globally-formula QGφ, by induction hypothesis, dom(Λφ) coincides with
the set of states that satisfy φ. By Definition 1 and the definition of αQGφ in Fig. 2,
we have that ΛQGφ = ΘQGφ(ΛQGφ). Therefore, by definition of ΘQGφ, we have
that dom(ΛQGφ) coincides with the states that satisfy φ inevitably (if Q is A) or
possibly (if Q is E) lead to other states that satisfy φ. So dom(ΛQGφ) coincides
with the states that satisfy QGφ (cf. Eqs. 3.1 and 3.2).

Finally, all other cases (¬φ, φ1 ∧ φ2, and φ1 ∨ φ2) follow immediately from
the induction hypothesis, the semantics of the CTL formulas (cf. Eq. 3.1) and
the definition of the corresponding program semantics (cf. Definition 1 and the
CTL abstractions in Fig. 2). ��

The program semantics for a CTL formula is not computable when the pro-
gram state space is infinite. In the next section, we present decidable abstractions
by means of piecewise-defined functions [38,39].

5 Static Analysis for CTL Properties

We recall here the features of the abstract domain of piecewise-defined functions
[39] that are relevant for our purposes, and describe the new elements that we
need to introduce to obtain a static analysis for proving CTL properties. We
refer to [38] for an exhaustive presentation of the original abstract domain.

For illustration, we model a program using a control flow graph 〈L, E〉, where
L is the set of program points and E ⊆ L × A × L is the set of edges in the
control flow graph. Each edge is labeled by an action s ∈ A; possible actions are
skip, a boolean condition b, or an assignment x := e. In the following, we write
out(l) to denote the set of outgoing edges from a program point l.

Piecewise-Defined Functions Abstract Domain. An element t ∈ T of the
abstract domain is a piecewise-defined partial function represented by a deci-
sion tree, where the decision nodes are labeled by linear constraints over the
program variables, and the leaf nodes are labeled by functions of the program
variables. The decision nodes recursively partition the space of possible values
of the program variables, and the leaf nodes represent the value of the func-
tion corresponding to each partition. An example of (simplified) decision tree
representation of a piecewise-defined function is shown in Fig. 3.
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x = 0

n ≤ 0

2 2n+ 2

0

Fig. 3. Simplified decision tree representation of the piecewise-defined function inferred
at program point 4 of the program of Fig. 1 (cf. Eq. 1.1). Each constraint is satisfied
by the left subtree of the decision node, while the right subtree satisfies its negation.
The leaves represent partial functions whose domain is determined by the constraints
satisfied along the path to the leaf.

Specifically, the decision nodes are labeled by linear constraints supported
by an existing underlying numerical domain, i.e., interval [15] constraints (of the
form ±x ≤ c), octagonal [30] constraints (of the form ±xi±xj ≤ c), or polyhedral
[19] constraints (of the form c1 · x1 + · · · + ck · xk ≤ ck+1). The leaf nodes are
labeled by affine functions of the program variables (of the form m1 ·x1+· · ·+mk ·
xk + q), or the special elements ⊥ and �, which explicitly represent undefined
functions. The element � is introduced to manifest an irrecoverable precision
loss of the analysis. We also support lexicographic affine functions (fk, . . . , f1, f0)
in the isomorphic form of ordinals ωk · fk + · · · + ω · f1 + f0 [29,40].

The partitioning is dynamic: during the analysis of a control flow graph,
partitions (i.e. decision nodes and constraints) are modified by assignments and
split (i.e., added) by boolean conditions and when merging control flows. More
specifically, for each action s ∈ A, we define sound over-approximating abstract
transformers �s�o : T → T as well as new under-approximating abstract trans-
formers �s�u : T → T . These transformers always increase by one the value
of the functions labeling the leaves of a given decision tree to count the num-
ber of executed program steps (i.e., actions in the control flow graph). The
transformers for boolean conditions and assignments additionally modify the
decision nodes by building upon the underlying numerical abstract domain. For
instance, the abstract transformer �b�o (resp. �b�u) for a boolean condition b
uses the underlying numerical domain to obtain an over-approximation (resp.
an under-approximation) of b as a set of linear constraints; then it adds these
constraints to the given decision tree and discards the paths that become unfea-
sible (because they do not satisfy the added constraints). Let {n ≤ 0} (resp.
{n = 0}) be the set of constraints obtained by �b�o (resp. �b�u) for the boolean
condition b ≡ n ≤ 0∧n%2 = 0; then, given the right subtree in Fig. 3, �b�o (resp.
�b�u) would discard the path leading to the leaf with value 2n+2 by replacing it
with a leaf with undefined value ⊥ (resp. replace n ≤ 0 with n = 0 and replace
2n+2 with ⊥). Decision trees are merged using either the approximation join �
or the computational join �. Both join operators add missing decision nodes from
either of the given trees; � retains the leaves that are labeled with an undefined
function in at least one of the given trees, while � preserves the leaves that are
labeled with a defined function over the leaves labeled with ⊥ (but preserves the
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leaves labeled with � over all other leaves). To minimize the cost of the analysis
and to enforce termination, a (dual) widening operator limits the height of the
decision trees and the number of maintained partitions.

Fig. 4. Abstract program semantics Λ�
φ for each CTL formula φ. The join operator

⊔
Q

and the abstract transformer �s�Q respectively stand for � and �s�u, if Q is E, or �
and �s�o, if Q is A. With abuse of notation, we use ⊥ to denote a decision tree with a
single undefined leaf node.

Abstract Program Semantics for CTL Properties. The abstract program
semantics Λ�

φ : L → T for a CTL formula φ maps each program point l ∈ L to an
element t ∈ T of the piecewise-defined functions abstract domain. The definition
of Λ�

φ for each CTL formula φ is summarized in Fig. 4 and explained in some
detail below. More details and formal definitions can be found in [37,38].

The analysis starts with the totally undefined function (i.e., a decision tree
that consists of a single leaf with undefined value ⊥) at the final program points
(i.e., nodes without outgoing edges in the control flow graph). Then it proceeds
backwards through the control flow graph, taking the encountered actions into
account, and joining decision trees when merging control flows. For existential
CTL properties, the analysis uses the under-approximating abstract transform-
ers �s�u for each action s, to ensure that program states that do not satisfy
the CTL property are discarded (i.e., removed from the domain of the current
piecewise-defined function), and joins decision trees using the computational join
�, to ensure that the current piecewise-defined function remains defined over
states that satisfy the CTL property in at least one of the merged control flows.
Dually, for universal CTL properties, the analysis uses the over-approximating
abstract transformers �s�o and joins decision trees using the approximation join
�, to ensure that the current piecewise-defined function remains defined only
over states that satisfy the CTL property in all of the merged control flows.
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At each program point, the analysis additionally performs operations that
are specific to the considered CTL formula φ. For an atomic proposition a (cf.
Eq. 5.1), the analysis performs a reset �a� operation, which is analogous to
the under-approximating transformer for boolean conditions but additionally
replaces all the leaves that satisfy a with leaves labeled with the function with
value zero. For example, given the atomic proposition n = 0 and the right sub-
tree in Fig. 3, reset �n = 0� would replace the constraint n ≤ 0 with n = 0, the
leaf 2n + 2 with ⊥ and the leaf 2 with 0. For a next-formula QXφ (cf. Eq. 5.2),
the analysis approximates the effect of the transition from each program point
l to each successor program point l′ and performs a zero operation to replace
all defined functions labeling the leaves of the so obtained decision tree with
the function with value zero. For an until-formula Q(φ1 U φ2) (cf. Eq. 5.4), the
analysis performs an ascending iteration with widening [13]. At each iteration,
the analysis approximates the effect of the transition from each program point
l to each successor program point l′ and performs an until operation to model
the until temporal operator: until replaces with the function with value zero
all leaves that correspond to defined leaves in the decision tree Λ�

φ2
(l) obtained

for φ2, and retains all leaves that are labeled with an undefined function in both
Λ�

φ1
(l) and Λ�

φ1
(l). For a globally-formula QGφ (cf. Eq. 5.5), the analysis performs

a descending iteration with dual widening [41], starting from the abstract seman-
tics Λ�

φ obtained for φ. At each iteration, the mask operation models the globally
temporal operator: it discards all defined partitions in Λ�

φ(l) that become unde-
fined as a result of the transition from each program point l to each successor
program point l′; at the limit, the only defined partitions are those that remain
defined across transitions and thus satisfy the globally-formula. For a negation
formula ¬φ (cf. Eq. 5.5), the analysis performs a complement operation on the
decision tree Λ�

φ(l) obtained for φ at each program point l; complement replaces
all defined functions labeling the leaves of a decision tree with ⊥, and all ⊥ with
the function with value zero. Note that Λ�

φ is an abstraction of Λφ and thus not
all undefined partitions in Λ�

φ necessarily correspond to undefined partitions in
Λφ. Leaves that are undefined in Λ�

φ due to this uncertainty are labeled with
�, and are left unchanged by complement to guarantee the soundness of the
analysis. Finally, for binary formulas φ1 ∧ φ2 and φ1 ∨ φ2, the abstract seman-
tics Λ�

φ1∧φ2
and Λ�

φ1∨φ2
(cf. Eqs. 5.6 and 5.7) merge the decision trees obtained

for φ1 and φ2 using the approximation join � and the computational join �,
respectively.

The abstract program semantics Λ�
φ for each CTL formula φ is sound with

respect to the approximation order f1 � f2 ⇔ dom(f1) ⊇ dom(f2) ∧ ∀x ∈
dom(f1) : f1(x) ≤ f2(x), which means that the abstract semantics Λ�

φ over-
approximates the value of the concrete semantics Λφ and under-approximates
its domain of definition dom(Λφ). In this way, the abstraction provides sufficient
preconditions for the CTL property φ: if the abstraction is defined for a state
then that state satisfies φ.
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Theorem 2. A program satisfies a CTL formula φ for all traces starting from
a given set of states I if I ⊆ dom(γ(Λ�

φ)).

Proof. (Sketch). The proof proceeds by induction over the structure of the for-
mula φ. The base case are atomic propositions for which the proof is immediate.

For a next-formula QXφ, by induction hypothesis, dom(Λ�
φ) is a subset of

the set of states that satisfy φ. Using the over-approximating transformers �s�o

together with the approximation join � (resp. the under-approximating trans-
formers �s�u together with the computational join �) ensures that Λ�

QXφ soundly
under-approximates the set of states that satisfy QXφ.

For an until-formula Q(φ1 U φ2), by induction hypothesis, dom(Λ�
φ1

) and
dom(Λ�

φ2
) are a subset of the set of states that satisfy φ1 and φ2, respectively. By

definition, ΛQ(φ1Uφ2) is the limit of an ascending iteration sequence using widen-
ing. Again, using the over-approximating transformers �s�o together with the
approximation join � (resp. the under-approximating transformers �s�u together
with the computational join �) guarantees the soundness of the analysis with
respect to each transition. The soundness of each iteration without widening
is then guaranteed by the definition of the until operation. The iterations
with widening are allowed to be unsound but the limit of the iterations (i.e.,
ΛQ(φ1Uφ2)) is guaranteed to soundly under-approximate the set of states that
satisfy (φ1 U φ2). We refer to [38] for a detailed proof for formulas of the form
(true U φ2). The generalization to (φ1 U φ2) is trivial.

For a globally-formula QGφ, ΛQGφ is the limit of a descending itera-
tion sequence with dual widening, starting from Λ�

φ, which soundly under-
approximates the set of states that satisfy φ. The soundness of each iteration
is guaranteed by the definition of the mask operation and the dual widening
operator (see [38]).

The case of a negation ¬φ is non-trivial since, by induction hypothesis,
dom(Λ�

φ) is a subset of the set of states that satisfy φ. Specifically, Λ�
φ maps

each program point l ∈ L to a decision tree whose leaves determine this under-
approximation: leaves labeled with ⊥ represent states that do not satisfy φ
while leaves labeled with � represent states that may or may not satisfy φ.
The complement operation performed by Λ�

¬φ only considers leaves labeled by
⊥ and ignores (i.e., leaves unchanged) leaves labeled by �. Thus, Λ�

¬φ soundly
under-approximates the set of states that satisfy ¬φ.

Finally, for binary formulas φ1∧φ2 and φ1∨φ2, the proof follows immediately
from the definition of the approximation join � and the computational join �
used in the definition of Λ�

φ1∧φ2
and Λ�

φ1∨φ2
, respectively. ��

6 Implementation

The proposed static analysis method for proving CTL properties is implemented
in the prototype static analyzer FuncTion [13].

The implementation is in OCaml and consists of around 9K lines of code.
The current front-end of FuncTion accepts non-deterministic programs written
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in a C-like syntax (without support for pointers, struct and union types).
The only basic data type is mathematical integers. FuncTion accepts CTL
properties written using a syntax similar to the one used in the rest of this
paper, with atomic propositions written as C-like pure expressions. The abstract
domain of piecewise-defined functions builds on the numerical abstract domains
provided by the Apron library [24], and the under-approximating numerical
operators provided by the Banal static analyzer [31].

The analysis is performed backwards on the control flow graph of a pro-
gram with a standard worklist algorithm [32], using widening and dual widening
at loop heads. Non-recursive function calls are inlined, while recursion is sup-
ported by augmenting the control flow graphs with call and return edges. The
precision of the analysis can be tuned by choosing the underlying numerical
abstract domain, by activating the extension to ordinal-value functions [40], and
by adjusting the precision of the widening [13] and the widening delay. It is also
possible to refine the analysis by considering only reachable states.

Experimental Evaluation. We evaluated our technique on a number of test cases
obtained from various sources, and compared FuncTion against T2 [8] and
Ultimate LTL Automizer [20] as well as E-HSF [4], and the prototype
implementation from [10]. Figs. 5 and 6 show an excerpt of the results, which
demonstrates the differences between FuncTion, T2 [8] and Ultimate LTL
Automizer. The first set of test cases are programs that we used to test our
implementation. The second and third set were collected from [25] and the web

Fig. 5. Evaluation of FuncTion on selected test cases collected from various sources.
All test cases were analyzed using polyhedral constraints for the decision nodes, and
affine functions for the leaf nodes of the decision tree.
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Fig. 6. Differences between FuncTion, T2, and Ultimate LTL Automizer.

interface of Ultimate LTL Automizer [20]. The fourth set are examples from
the termination category of the 6th International Competition on Software Veri-
fication (SV-COMP 2017). The experiments were conducted on an Intel i7-6600U
processor with 20 GB of RAM on Arch Linux with Linux 4.11 and OCaml 4.04.1.

FuncTion passes all test cases with the exception of 2.4, 3.9, 3.14, and
3.15, which fail due to imprecisions introduced by the widening, and 1.8 and 4.1,
which fail due to an unfortunate interaction of the under-approximations needed
for existential properties and non-deterministic assignments in the programs.
However, note that for these test cases we still get some useful information. For
instance, for 3.15, FuncTion infers that the CTL property is satisfied if x < 0.

In Fig. 6, the missing results for T2 are due to a missing conversion of the test
cases to the T2 input format. The comparison with Ultimate LTL Automizer
is limited to the test cases where the CTL property can be equivalently expressed
in LTL (i.e., universal CTL properties). The results show that only FuncTion
succeeds on numerous test cases (1.2, 1.4, 1.7, 1.11, 1.12, 4.3, 4.4, and 4.5).
Ultimate LTL Automizer performs well on the supported test cases, but
FuncTion still succeeds on most of the test cases provided by Ultimate LTL
Automizer (not shown in Fig. 6, since there are no differences between the
results of FuncTion and Ultimate LTL Automizer). Overall, none of the
tools subsumes the others. In fact, we observe that their combination is more
powerful than any of the tools alone, as it would succeed on all test cases.

Finally, FuncTion only succeeds on two of the industrial benchmarks from
[10], while T2, E-HSF and [10] fare much better (see [8, Fig. 11]). The reason
for the poor performance is that in these benchmarks the effect of function



Abstract Interpretation of CTL Properties 419

calls is modeled as a non-deterministic assignment and this heavily impacts the
precision of FuncTion. We are confident that we would obtain better results
on the original benchmarks, where function calls are not abstracted away.

7 Related Work

In the recent past, a large body of work has been devoted to proving CTL
properties of programs. The problem has been extensively studied for finite-state
programs [7,26, etc.], while most of the existing approaches for infinite-state
systems have limitations that restrict their applicability. For instance, they only
support certain classes of programs [36], or they limit their scope to a subset
of CTL [11], or to a single CTL property such as termination [27,34, etc.] or
non-termination [2,5, etc.]. Our approach does not suffer from these limitations.

Some other approaches for proving CTL properties do not reliably support
CTL formulas with arbitrary nesting of universal and existential path quanti-
fiers [23], or support existential path quantifiers only indirectly by building upon
recent work for proving non-termination [22], or by considering their universal
dual [8]. In particular, the latter approach is problematic: since the universal dual
of an existential until formula is non-trivial to define, the current implementa-
tion of T2 does not support such formulas (see Fig. 6). Other indirect approaches
[4,10] perform unnecessary computations that result in slower runtimes (see [8,
Fig. 12]). In comparison to all these approaches, our approach provides strictly
more information in the form of a ranking function whose domain gives a pre-
condition for a given CTL property and whose value estimates the number of
program execution steps until the property is satisfied.

In [17], Cousot and Cousot define a trace-based semantics for a very gen-
eral temporal language which subsumes LTL and CTL; this is subsequently
abstracted to a state-based semantics. The abstraction has been later shown to
be incomplete by Giacobazzi and Ranzato [21]. In contrast to the work of Cousot
and Cousot, we do not define a trace-based semantics for CTL. The semantics
that we propose is close to their state-based semantics in that their state-based
semantics coincides with the domain of the functions that we define. Note that
Theorem 1 is not in contrast with the result of Giacobazzi and Ranzato because
completeness is proven with respect to the state-based semantics of CTL.

Finally, our abstract interpretation framework generalizes an existing frame-
work [41] for proving guarantee and recurrence properties of programs [28]. Guar-
antee and recurrence properties are equivalently expressed in CTL as A(true U φ)
and AGA(true U φ), respectively. In fact, we rediscover the guarantee and recur-
rence program semantics defined in [41] as instances of our framework: the guar-
antee semantics coincides with ΛA(trueUφ) (cf. Sect. 4) and the recurrence seman-
tics coincides with ΛAGA(trueUφ) (cf. Sect. 4). The common insight with our work
is the observation that CTL (sub)formulas are satisfied by finite subsequences
(which can also be single states) of possibly infinite sequences. The program
semantics for these (sub)formulas then counts the number of steps in these sub-
sequences. Our work generalizes this idea to all CTL formulas and integrates the
corresponding semantics in a uniform framework.
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8 Conclusion and Future Work

In this paper, we have presented a new static analysis method for inferring
preconditions for CTL properties of programs that overcomes the limitations of
existing approaches. We have derived our static analysis within the framework
of abstract interpretation by abstraction of the operational trace semantics of
a program. Using experimental evidence, we have shown that our analysis is
effective and performs well on a wide variety of benchmarks, and is able to prove
CTL properties that are out of reach for state-of-the-art tools.

It remains for future work to investigate and improve the precision of the anal-
ysis in the presence of non-deterministic program assignments. We also plan to
support LTL properties [20] or, more generally, CTL∗ properties [9]. This requires
some form of trace partitioning [35] as the interpretation of LTL formulas is
defined in terms of program executions instead of program states as CTL.
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Abstract. Transition invariants are a popular technique for automated
termination analysis. A transition invariant is a covering of the transi-
tive closure of the transition relation of a program by a finite number of
well-founded relations. The covering is usually established by an induc-
tive proof using transition predicate abstraction. Such inductive termi-
nation proofs have the structure of a finite automaton. These automata,
which we call transition automata, offer a rich structure that has not
been exploited in previous publications. We establish a new connection
between transition automata and the size-change abstraction, which is
another widespread technique for automated termination analysis. In
particular, we are able to transfer recent results on automated complex-
ity analysis with the size-change abstraction to transition invariants.

1 Introduction

The last decade has seen considerable interest in automated techniques for
proving the termination of programs. Notably, the Terminator termination
analyzer [14] has been able to analyze device drivers with several thousand
lines of code. The analysis in [14] uses the termination criterion suggested by
Rybalchenko and Podelski in [25] (for a discussion of earlier work that implicitly
used the same principle we refer the reader to [6]): In order to show the well-
foundedness of a relation R, it is sufficient to find a finite number of well-founded
relations R1, . . . , Rk with

R+ ⊆ R1 ∪ · · · ∪ Rk (∗)

where R+ denotes the transitive closure of R.
An essential difficulty in using the above criterion lies in establishing the

condition (*), as reasoning about the transitive closure R+ usually requires
induction. For this reason, not only the above criterion but also an inductive
argument for establishing (*) was suggested in [25]. The inductive argument
was further developed in [26], where the use of transition predicate abstraction
(TPA) has been suggested for establishing condition (*). TPA is the basis for
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 423–444, 2018.
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the termination analysis in Terminator. The starting point of our research are
the inductive termination proofs with TPA, which have the structure of finite
automata (as already observed in [26]). These automata, which we call tran-
sition automata, offer a rich structure that has not been exploited in previous
publications. It is precisely this automaton structure, which allows us to con-
nect inductive termination proofs with TPA to the size-change abstraction, and
transfer recent results on automated complexity analysis.

We contrast our approach with the fascinating line of work [6,30,32], which
aims at bounding the height of the relation R in terms of the height of the
relations R1, . . . , Rk. In order to derive such bounds, [6,30] replace Ramsey’s
theorem, which has been used to prove (*) in [25], by more fine-grained Ramsey-
like arguments. In this paper, we show that inductive termination proofs with
TPA do not need to rely on Ramsey’s theorem and can be analyzed solely by
automata-theoretic techniques.

Size-change abstraction (SCA), introduced by Ben-Amram, Lee and Jones
in [22], is another wide-spread technique for automated termination analysis.
SCA has been employed for the analysis of functional [22,23], logical [31] and
imperative [3,10] programs and term rewriting systems [9], and is implemented
in the industrial-strength systems ACL2 [23] and Isabelle [20]. Recently, SCA
has also been used for resource bound and complexity analysis of imperative
programs [34]. SCA is attractive because of several strong theoretical results
on termination analysis [22], complexity analysis [12,33] and the existence of
ranking functions [5,33]. The success of SCA has also inspired generalizations
to richer classes of constraints [4,5,7]. The connection between TPA and SCA
has been the subject of previous research [19], which contains first results but
does not exploit the automaton structure of inductive termination proofs. In this
paper, we make the following contributions:

Result 1: Our main result (Theorem 7) makes it possible to transfer recent
results on automated complexity analysis with the size-change abstraction [12]
to transition automata. In particular, we obtain a complete and effective char-
acterization of asymptotic complexity analysis with transition automata. This
result holds the potential for the design of new automated complexity analyzers,
for example, by extracting complexity bounds from the inductive termination
proofs computed by Terminator. We illustrate our result in the following. We
consider the programs P1 and P2 given by Examples 1 and 2 in Fig. 1. One
can model the transition relation of P1 by the predicate x′ = x − 1 ∧ y′ =
N ∨ x′ = x ∧ y′ = y − 1 and the transition relation of P2 by the predicate
x′ = x − 1 ∧ y′ = y ∨ x′ = x ∧ y′ = y − 1. The two relations R1 and R2 given by
the predicates x′ < x resp. y′ < y are a transition invariant for both programs;
we give an inductive proof which establishes condition (*) for both programs in
Sect. 3. For motivation of our results we state here the relation to [6]: With the
program invariant x ≤ N ∧ y ≤ N (which can be computed by standard tech-
niques such as Octagon analysis [24]), the result of [6] allows us to obtain the
quadratic bound O(N2) on the complexity of both programs from the transition
invariant given by the relations R1 and R2. However, this bound is imprecise for
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Example 1.
main(nat N) {

nat x = N; nat y = N;

while (x>0 ∧ y>0) {
if(?){ //transition a1

x--; y = N;

}
else { //transition a2

y--;

} } }

Example 2.
main(nat N) {

nat x = N; nat y = N;

while (x>0 ∧ y>0) {
if(?){ //transition a1

x--;

}
else { //transition a2

y--;

} } }

Fig. 1. The ? in the condition represents non-deterministic choice.

P2, which has linear complexity. There is no hope in improving the bound for P2,
because the result of [6] just relies on R1 and R2. In this paper, we demonstrate
that the inductive termination proof offers more structure. We show that just by
analyzing the automaton structure of the proof we can deduce the linear bound
O(N) for P2.

Result 2: Following [26] we examine a first termination criterion based on the
universality of transition automata and show that the universality of the tran-
sition automaton implies the termination of the program under analysis (Theo-
rem 2). We then show that transition automata admit a more general termina-
tion criterion based on the definition of an associated Büchi-automaton (Theo-
rems 1 and 3). This more general termination criterion has the advantage that
fewer predicates are needed for the termination proof (Example 7). We finally
show that this new criterion is in fact the most general termination criterion
admitted by transition automata (Theorem4).

Result 3: We connect transition automata to the size-change abstraction in
Sect. 6. In particular, we show how to transfer several results from the size-
change abstraction to transition automata, demonstrating that techniques from
SCA are applicable for the analysis of inductive termination proofs with transi-
tion predicate abstraction. This is of fundamental interest for understanding the
relationship of both termination principles, because transition invariants have
been suggested in [25] as a generalization of size-change termination proofs (and
indeed later work has formally established that every size-change termination
proof can be mimicked by a transition invariant termination proof [19]).

Organization of the Paper. Section 2 gives the basic definitions. Section 3 reviews
transition predicate abstraction as introduced in [26]. Section 4 introduces tran-
sition automata and gives termination criteria. Section 5 reviews the size-change
abstraction. Section 6 defines ‘canonical’ programs for transition automata
and transfers results from the size-change abstraction to transition automata.
Section 7 concludes.
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2 Basic Definitions

We use ◦ to denote the usual product of relations, i.e., given two relations
B1, B2 ⊆ A×A we define B1◦B2 = {(a1, a3) | there is an a2 ∈ A with (a1, a2) ∈
B1 and (a2, a3) ∈ B2}. Let B ⊆ A × A be a relation. B is well-founded if there
is no infinite sequence of states a1a2 · · · with (ai, ai+1) ∈ B for all i. The tran-
sitive closure of B is defined by B+ =

⋃
i≥1 Bi, where B0 = {(a, a) | a ∈ A},

Bi+1 = Bi ◦ B. Let B ⊆ A × A be a well-founded relation. For every ele-
ment a ∈ A we inductively define its ordinal height ‖a‖B by setting ‖a‖B =
sup(a,b)∈B ‖b‖B + 1, where sup over the empty set evaluates to 0. We note that
‖·‖B is well-defined because B is well-founded. We define the ordinal height of
relation B as ‖B‖ = supa∈A ‖a‖B + 1.

2.1 Automata

A finite automaton A = 〈Q,Σ, δ, ι, F 〉 consists of a finite set of states, a finite
alphabet Σ, a transition relation δ : Σ → 2Q×Q, an initial state ι ∈ Q, and a
set of final states F ⊆ Q. Automaton A is deterministic if for every τ ∈ Q and
a ∈ Σ there is at most one τ ′ ∈ Q such that (τ, τ ′) ∈ δ(a). We also write τ

a−→ τ ′

for (τ, τ ′) ∈ δ(a). We extend the transition relation to words and define δ(w) =
δ(a1) ◦ · · · ◦ δ(al) for every w = a1 · · · al ∈ Σ∗. A run of A is a finite sequence
r = ι

a1−→ τ1
a2−→ τ2 · · · al−→ τl. r is accepting if τl ∈ F . Automaton A accepts a

finite word w ∈ Σ∗ if there is an accepting run r = ι
a1−→ τ1

a2−→ τ2 · · · al−→ τl such
that w = a1 · · · al. We denote by L(A) = {w ∈ Σ∗ | A accepts w} the language
of words accepted by A. Automaton A is universal if L(A) = Σ∗.

A Büchi automaton A = 〈Q,Σ, δ, ι〉 consists of a finite set of states, a finite
alphabet Σ, a transition relation δ : Σ → 2Q×{≥,>}×Q, and an initial state
ι ∈ Q. We also write τ

a−→
d

τ ′ for (τ, d, τ ′) ∈ δ(a). A run of A is an infinite

sequence r = ι
a1−→
d1

τ1
a2−→
d2

τ2 · · · . r is accepting if di = > for infinitely many i.

Automaton A accepts an infinite word w ∈ Σω if there is an accepting run
r = ι

a1−→
d1

τ1
a2−→
d2

τ2 · · · such that w = a1a2 · · · . We denote by L(A) = {w ∈
Σω | A accepts w} the language accepted by A. Automaton A is universal if
L(A) = Σω.

Remark. We use this slightly unusual presentation of automata in order to conve-
niently represent the connection between automata and the size-change abstrac-
tion later on. In particular, this connection is the reason for using the symbols
{≥, >} instead of {0, 1} for (non-)accepting transitions.

2.2 Programs

A program P = 〈St , I , Σ, ρ〉 consists of a set of states St , a set of initial states
I ⊆ St , a finite set of transitions Σ, and a labeling function ρ : Σ → 2St×St ,
which maps every transition a ∈ Σ to a transition relation ρ(a) ⊆ St × St .
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We extend the labeling function ρ to finite words over Σ and set ρ(π) = ρ(a1) ◦
ρ(a2)◦ · · · ◦ρ(al) for a finite word π = a1a2 · · · al. A computation of P is a (finite
or infinite) sequence s1

a1−→ s2
a2−→ · · · such that s1 ∈ I and (si, si+1) ∈ ρ(ai) for

all i. Program P terminates if there is no infinite computation of P . A relation
T ⊆ St × St is a transition invariant for P if (

⋃
a∈Σ ρ(a))+ ⊆ T . For a finite

computation s1
a1−→ s2

a2−→ · · · sl+1 we call l the length of the computation.

Automaton A1

ι τ1

τ2

a1

a2

a1, a2

a2

a1

Automaton A2

ι τ1

τ2

a1

a2

a1, a2

a1, a2

Automaton A3

ι τ1

τ2

a1

a2

a1, a2

a2

Fig. 2. Pictures of proof structures/transition automata.

Variables and Predicates. A common program model is to consider some finite
set of variables Var and define the set of states St = Var → α as the mappings
from Var to some domain α. Sets of states can then be described by predicates
over Var and transition relations by predicates over Var ∪ Var ′, where Var ′

denotes the set of primed versions of the variables in Var . Given a predicate p
over Var , we write σ |= p for σ ∈ St if p is true when each variable x ∈ Var
is replaced by σ(x); given a predicate p over Var ∪ Var ′, we write σ, ς |= p for
σ, ς ∈ St if p is true when each variable x ∈ Var is replaced by σ(x) and each
variable x′ ∈ Var ′ is replaced by ς(x). Given a set of predicates Pred over Var ,
we write Rel(Pred) = {σ ∈ St | σ |= p for all p ∈ Pred} for the states which
satisfy all predicates in Pred . Given a set of predicates Pred over Var ∪ Var ′,
we write Rel(Pred) = {(σ, ς) ∈ St × St | σ, ς |= p for all p ∈ Pred} for the pairs
of states which satisfy all predicates in Pred . We will also write Relα(Pred) in
case we want to highlight the domain α.

Example 3. We now express the two programs from Fig. 1 in the above notation.
For both programs, we consider the set of variables Var = {x, y} and treat N
as a symbolic constant. We choose the domain α = ω according to the type nat
of x and y. For both programs we model each branch of the if-statement as one
transition. We set Pi = 〈{x, y} → α,Relα({x = N, y = N}), {a1, a2}, ρi〉, for
i = 1, 2, where we define the labeling functions ρi using C = {x > 0, y > 0}:

ρ1(a1)=Relα(C ∪ {x′ = x − 1, y′ =N}), ρ1(a2)=Relα(C ∪ {x′ =x, y′ = y − 1}),
ρ2(a1)=Relα(C ∪ {x′ = x − 1, y′ =y}), ρ2(a2)=Relα(C ∪ {x′ = x, y′ = y − 1}),
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3 Transition Predicate Abstraction

In this section, we review the definitions and results from [26] in order to motivate
our generalizations in Sect. 4. The development in [26] also considers fairness
requirements, which are not relevant for this paper and therefore left out.

Abstract-Transition Programs. We fix some program P = 〈St , I , Σ, ρ〉. We split
up the definition of abstract-transition programs (see Definition 3 of [26]) into
two parts: proof structures and proof labelings. A proof structure is a finite
automaton A = 〈Q,Σ, δ, ι, 〉, where δ(a) ⊆ Q × (Q \ {ι}) for all a ∈ Σ. For
the moment, we ignore the acceptance condition; we will use it later on. A proof
labeling rel : Q → 2St×St maps every state τ ∈ Q of a proof structure to a
transition relation rel(τ) ⊆ St × St . A proof labeling is inductive if

rel(ι) = IdSt , and
rel(τ) ◦ ρ(a) ⊆ rel(τ ′), for all (τ, τ ′) ∈ δ(a) and for all a ∈ Σ,

where IdSt is the identity relation over St . An abstract-transition program P# =
(A, rel) is a pair of a proof structure A and an inductive proof labeling.

Abstract-transition program are constructed from a fixed finite set of transi-
tion predicates that describe transition relations (see Sect. 4 of [26]). The result-
ing abstract-transition programs have the following properties:

– (P1) The proof structure is a deterministic automaton (see Sect. 5.1 of [26]).
– (P2) For every word a1a2 · · · an with ρ(a1a2 · · · an) �= ∅ there is a run ι

a1−→
τ1

a2−→ τ2 · · · an−−→ τn of A (see Lemma 1 from [26]).
– (P3) Every state τ ∈ Q \ {ι} is reachable from ι (the reader can check that

the abstraction algorithm of [26] starts from the initial state ι and adds only
states which are reachable from ι).

We now state the core theorem of [26]; for illustration purposes, we also state
its proof, which is based on condition (*), in the notation of this paper:

Theorem 1 (Theorem1 of [26]). Let P# = (A, rel) be an abstract program
with property (P2). Then,

⋃
τ∈Q\{ι} rel(τ) is a transition invariant for P . If

rel(τ) is well-founded for every state τ ∈ Q \ {ι}, then P terminates.

Proof. For the first claim, we consider some (s, s′) ∈ ρ(a1a2 · · · an) for some
word a1a2 · · · an with n ≥ 1. By property (P2) we have that there is a run
ι

a1−→ τ1
a2−→ τ2 · · · an−−→ τn of A. By the definition of an inductive proof labeling

we have ρ(a1a2 · · · an) ⊆ rel(τn). Thus, we get that (s, s′) ∈ rel(τn). Hence,
we get (

⋃
a∈Σ ρ(a))+ ⊆ ⋃

τ∈Q\{ι} rel(τ). The second claim then directly follows
from the first claim based on condition (*). ��
Example 4. We will define an abstract-transition program for P1. Let A1 be the
proof structure from Fig. 2. Let rel1 be the proof labeling defined by rel1(τ1) =
Relα({x′ < x}) and rel1(τ2) = Relα({x′ = x, y′ < y}), where α = ω. It is easy
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to verify that rel1 is inductive. Hence, P#
1 = (A1, rel1) is an abstract-transition

program. Moreover, rel1(τ1) and rel1(τ2) are well-founded due to the predicates
x′ < x and y′ < y. The abstraction algorithm of [26] precisely computes P#

1

when called with the set of predicates Pred = {x′ < x, x′ = x, y′ < y}.

Example 5. We will define an abstract-transition program for P2. Let A2 be the
proof structure from Fig. 2. Let rel2 be the proof labeling defined by rel2(τ1) =
Relα({x′ < x}) and rel2(τ2) = Relα({y′ < y}), where α = ω. It is easy to verify
that rel2 is inductive. Hence, P#

2 = (A2, rel2) is an abstract-transition program.
Moreover, rel2(τ1) and rel2(τ2) are well-founded due to the predicates x′ < x

and y′ < y. The abstraction algorithm of [26] precisely computes P#
2 when called

with the set of predicates Pred = {x′ < x, y′ < y}.

Remark. The above proof of Theorem 1 only relies on property (P2). However,
properties (P1) and (P3) explain the requirement that every non-initial state
needs to be labelled by a well-founded relation: by (P3) every state τ ∈ Q \ {ι}
is reachable by some word a1a2 · · · an; by (P1) the word a1a2 · · · an necessarily
reaches τ ; hence, τ needs to be labelled by some well-founded relation. In this
paper, we will generalize Theorem 1 of [26] to non-deterministic proof structures;
for such proof structures it will make sense to also consider proof labelings where
not every state is labelled by some well-founded relation.

Remark. We further note that we can w.l.o.g. strengthen property (P2) to prop-
erty (P2’): For every word a1a2 · · · an there is a run ι

a1−→ τ1
a2−→ τ2 · · · an−−→ τn of

A. We show the following: Let P# = (A, rel) be an abstract-transition program
with property (P2). Then we can extend P# to some abstract-transition pro-
gram (A′, rel ′) with property (P2’). Further, if rel(τ) is well-founded for every
non-initial state τ , then rel ′(τ) is well-founded for every non-initial state τ .

We extend A to A′ by adding a sink state τ∅, which has self-loops for every
a ∈ Σ; for every state τ and a ∈ Σ we add an a-transition from τ to τ∅ if τ does
not have a a-successor. We extend rel to rel ′ by setting rel ′(τ∅) = ∅. It is easy to
see that (P1)–(P3) ensure that rel ′ is inductive and that (A′, rel ′) has property
(P2’). Further rel ′(τ∅) = ∅ is well-founded; hence, the second claims holds.

Invariants. An invariant for a program P = 〈St , I , Σ, ρ〉 is a set Inv ⊆ St such
that (1) I ⊆ Inv and (2) {σ ∈ St | there is a σ′ ∈ Inv with (σ′, σ) ∈ ρ(a)} ⊆ Inv
for all a ∈ Σ. For example, Inv = Relα({x ≤ N, y ≤ N}) is an invariant
for P1 and P2. Invariants can be used to strengthen the transition relations of
a program by restricting the transition relations to states from the invariant:
Given an invariant Inv for P we define Pstrengthen = 〈St , I , Σ, ρstrengthen〉, where
ρstrengthen(a) = ρ(a) ∩ (Inv × Inv) for all a ∈ Σ. Clearly, P and Pstrengthen

have the same computations. However, working with Pstrengthen for termination
resp. complexity analysis is often beneficial because of the restricted transition
relations. Indeed, strengthening the transition relation is often necessary to find
a termination proof. For example, the Terminator termination analyzer [14]
alternates between strengthening the transition relation and constructing a tran-
sition invariant. Similarly, complexity analyzers from the literature commonly
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employ invariant analysis as a subroutine either before or during the analy-
sis [1,2,16–18,29,34]. The problem of computing invariants is orthogonal to the
development in this paper. In our examples on complexity analysis we assume
that appropriate invariants – such as Inv = Relα({x ≤ N, y ≤ N}) for P1 and
P2 – can be computed by standard techniques such as Octagon analysis [24].

4 Transition Abstraction

In this section, we take another view on the result of [26] that we presented in
the last section. On the one hand we aim at generalizing the termination analysis
of [26] to non-deterministic proof structures. On the other hand we do not only
want to reason about a single proof labeling but all possible proof labelings; to
this end we will define a minimal inductive proof labeling. We fix a program
P = 〈St , I , Σ, ρ〉 for the rest of this section.

A transition automaton A = 〈Q,Σ, δ, ι, F 〉 is a finite automaton, where
δ(a) ⊆ Q × (Q \ {ι}) for all a ∈ Σ and F ⊆ Q \ {ι}. We point out that a
transition automaton is a proof structure with final states.

Let A = 〈Q,Σ, δ, ι, F 〉 be a transition automaton. We define a proof label-
ing relmin : Q → 2St×St which precisely follows the structure of A: We set
relmin(ι) = IdSt , and for each τ ∈ Q \ {ι} we set

relmin(τ) =
⋃

word π with (ι,τ)∈δ(π)

ρ(π),

i.e., relmin(τ) is the union of the transition relations along all words with a run
from the initial state to τ .

We now state the central definition of this section:

Definition 1 (Transition Abstraction). A transition automaton A is a tran-
sition abstraction of program P if relmin(τ) is well-founded for each τ ∈ F .

The notion of transition automata is motivated by Theorem2, which extends
the termination criterion of [26] to non-deterministic proof structures. Proposi-
tion 3 below states that Theorem 2 indeed is an extension of Theorem 1 of [26].

Theorem 2. Let A be a transition automaton that is a transition abstraction
of program P . If A is universal, then P terminates.

Proof (Sketch). The theorem can be proved in the same way as Theorem 1 of [26]
whose proof we presented in Sect. 3 based on an application of condition (*); we
will later give a proof purely based on automata-theoretic techniques. ��

We first show that relmin is the minimal inductive proof labeling:

Proposition 1. relmin is inductive.

Proof. We consider some (τ, τ ′) ∈ δ(a). We consider some word π with (ι, τ) ∈
δ(π). Then, πa is a word with (ι, τ ′) ∈ δ(πa). Hence, ρ(πa) ⊆ relmin(τ ′). Because
this holds for all such words π, we get relmin(τ) ◦ ρ(a) ⊆ relmin(τ ′). ��
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Proposition 2. Let rel : Q → 2St×St be some inductive proof labeling. Then,
relmin(τ) ⊆ rel(τ) for all τ ∈ Q.

Proof. We note that relmin(ι) = rel(ι) = IdSt . We will show that for all non-
empty words π that (ι, τ) ∈ δ(π) implies ρ(π) ⊆ rel(τ). The proof proceeds
by induction on the length of the word. For the induction start, we consider
a word π = a consisting of a single letter: Because rel is inductive, we have
ρ(a) = IdSt ◦ ρ(a) = rel(ι) ◦ ρ(a) ⊆ rel(τ) for all (ι, τ) ∈ δ(a). For the induction
step, we consider a word π = π′a with non-empty π′: We fix some (ι, τ) ∈
δ(π′a). There is some (τ, τ ′) ∈ δ(a) with (τ ′, τ) ∈ δ(a) and (ι, τ ′) ∈ δ(π′). By
induction assumption we have ρ(π′) ⊆ rel(τ ′). Because rel is inductive, we have
rel(τ ′) ◦ ρ(a) ⊆ rel(τ). Thus, ρ(π′a) = ρ(π′) ◦ ρ(a) ⊆ rel(τ). ��

With Proposition 2 we are now able to relate transition automata to the
abstract-transition programs presented in the last section:

Proposition 3. Let A = 〈Q,Σ, δ, ι, 〉 be a proof structure with property (P2’).
Let rel be an inductive proof labeling such that rel(τ) is well-founded for every
state τ ∈ Q \ {ι}. With the set of final states F = Q \ {ι}, the proof structure A
is a transition abstraction of program P ; further, A is universal.

Proof. By Proposition 2 we have relmin(τ) ⊆ rel(τ) for all τ ∈ Q. Hence, A is a
transition automaton. By property (P2’), the automaton A has a run for every
word; with F = Q \ {ι} each such run is accepting. Hence, A is universal. ��

Example 6. In Examples 4 and 5 we have argued that P#
1 = (A1, rel1) and P#

2 =
(A2, rel2) are abstract-transition programs for P1 resp. P2. We now consider
A1 and A2 as transition automata, defining the final states by F = {τ1, τ2}.
By Proposition 3, A1 and A2 are transition abstractions for P1 resp. P2 and
Theorem 2 can be applied.

We now define a transition automaton for program P1 that is different from
the transition automaton A1 considered in Example 6:

Example 7. Let A3 be the automaton from Fig. 2 with the set of final states
F = {τ1, τ2}. We now argue that the transition automaton A3 is a transition
abstraction of P1. In order to reason about the well-foundedness of relmin(τ1) and
relmin(τ2), which are required by the definition of transition abstraction, we make
use of Proposition 2 as a proof principle: it is sufficient to define an inductive
proof labeling rel3 and argue that rel3(τ1) and rel3(τ2) are well-founded.

We define rel3 by setting rel3(τ1) = Relα({x′ < x}) and rel3(τ2) =
Relα({y′ < y}) with α = ω. It is easy to verify that rel3 is inductive. More-
over, rel3(τ1) and rel3(τ2) are well-founded due to the predicates x′ < x and
y′ < y. We conclude that A3 is a transition abstraction of P1. We observe that
automaton A3 (resp. A′

3) is not universal, and Theorem2 cannot be applied.

Remark. We relate A3 to the abstraction algorithm of [26]. We extend A3 to the
automaton A′

3 by adding a non-final state τtrue ; we add an a1-transition from τ2
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to τtrue and self-loops to τtrue for a1 and a2. We set rel3(τtrue) = Relα({true}) =
St ×St (note that St ×St is not well-founded). The abstraction algorithm of [26]
will exactly compute the abstract-transition program P#

3 = (A′
3, rel3) when

called with the set of predicates Pred = {x′ < x, y′ < y}; we work with automa-
ton A3 instead of A′

3 because it has one state less and is easier to represent.

Remark. In the next subsection, we will establish the more general criterion of
factor-termination, which is satisfied by automaton A3 (resp. A′

3). Hence, we
obtain a new termination proof for the program P1, which has the advantage
to use fewer predicates than the termination proof in Example 4: we contrast
the set of predicates Pred = {x′ < x, y′ < y} used in Example 7 with the set
Pred = {x′ < x, x′ = x, y′ < y} used in Example 4.

4.1 Factor Termination

In this section, we introduce the criterion of factor-termination. We first intro-
duce the criterion and then argue that factor-termination is a more general
termination criterion than universality. Finally, we state that factor-termination
is in fact the most general termination criterion based on transition abstraction.

The intuition behind the criterion of factor-termination is as follows: Given a
transition automaton A = 〈Q,Σ, δ, ι, F 〉, we directly use the well-foundedness of
the relations relmin(τ), for final state τ ∈ F . We check for every infinite word π ∈
Σω if there is a τ ∈ F and a factorization π = π0π1π2 · · · into finite words πi such
that A has a run from ι to τ on πi for all i ≥ 1. Such a factorization implies that
there cannot be an infinite sequence of states s1s2 . . . with (si, si+1) ∈ δ(πi) ⊆
relmin(τ) because this would contradict the well-foundedness of relmin(τ).

We implement the above idea with Büchi-automata. We fix some transition
automaton A = 〈Q,Σ, δ, ι, F 〉 for which we will define a Büchi-automaton F(A),
which is composed of Büchi-automata Aτ , for every τ ∈ F , and an additional
initial state κ. F(A) can non-deterministically wait in κ a finite amount of time
before moving to one of the automata Aτ . Each Aτ checks for a factorization
with regard to τ ∈ F . We first formally define the automata Aτ and then F(A).

We start with an intuition for the construction of Aτ . We take a copy of A
where all copied transitions are non-accepting. We obtain Aτ by adding addi-
tional accepting transitions that allow the automaton Aτ to move back to the
initial state whenever it could move to τ . The additional transitions allow Aτ

to guess the beginning of a new factor; the Büchi-condition guarantees that an
accepting run factorizes an infinite word into infinitely many finite words.

Formally, we define Aτ = 〈Q × {τ}, Σ, δτ , (ι, τ)〉, where for all a ∈ Σ we set

δτ (a)= {((τ ′, τ),≥, (τ ′′, τ)) | (τ ′, τ ′′)∈ δ(a)} ∪ {((τ ′, τ), >, (ι, τ)) | (τ ′, τ)∈ δ(a)}.

We state the main property of the automata Aτ :

Proposition 4. Aτ accepts π ∈ Σω iff there is a factorization π = π1π2 · · ·
into finite words πi such that A has a run from ι to τ on πi for all i.
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Proof. Let r be an accepting run of Aτ on π. Hence, we can factor π = π1π2 · · ·
into finite words πi such that the accepting transitions of r exactly correspond
to the last letters of the words πi. We observe that the only accepting transitions
are of shape ((τ ′, τ), >, (ι, τ)) for (τ ′, τ) ∈ δ(a) (we denote this condition by (#)).
Further, automaton Aτ mimics A on the non-accepting transitions. Hence, on
each word πi the run r mimics a run of A except for the last transition; however,
the condition (#) guarantees that A can move to τ with the last letter of πi. ��

The factorization automaton is the Büchi-automaton F(A) = 〈G,Σ, Γ, κ〉,
where the set of states G = (Q×F )∪{κ} consists of pairs of an automaton state
and a final state plus a fresh initial state κ. We define the transition relation Γ
by Γ (a) = Γ1(a) ∪ Γ2(a) ∪ Γ3(a) for all a ∈ Σ, where

Γ1(a) =
⋃

τ∈F

δτ (a), Γ2(a) = {(κ,≥, κ)}, and Γ3(a) = {(κ,≥, (ι, τ)) | τ ∈ F}.

The factorization automaton F(A) can be understood as the disjoint union
of the initial state κ and the Büchi-automata Aτ ; the state κ allows F(A) to
wait in κ a finite amount of time before moving to the initial state of some Aτ .

κ (ι, τ1) (τ1, τ1)

(τ2, τ1)
(ι, τ2) (τ1, τ2)

(τ2, τ2)

a1, a2

a1, a2

a1, a2

a1

a1

a1, a2

a2

a1, a2

a2

a1

a2
a2

a1

a2

a1, a2

a2

a1

κ (ι, τ1) (τ1, τ1)

(ι, τ2) (τ2, τ2)

a1, a2

a1, a2

a1, a2

a1

a1

a1, a2

a1, a2

a2
a2

a1, a2

a1, a2

Fig. 3. On the left: Automata F(A1) and F(A3), which have the same states and
transitions except for the dashed transitions which only belong to F(A1). On the
right: Automaton F(A2). Bold arrows denote accepting transitions.
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Example 8. We draw the factor-automata of A1, A2 and A3 in Fig. 3.

We are now able to formally state our new termination criterion: Transition
automaton A satisfies the factor-termination criterion if F(A) is universal. This
notion is justified by Theorem3 below:

Theorem 3. Let A = 〈Q,Σ, δ, ι, F 〉 be a transition automaton and let P =
〈St , I , Σ, ρ〉 be a program such that A is a transition abstraction of P . If A
satisfies the factor-termination criterion, then P terminates.

Proof. We assume that F(A) is universal and that P does not terminate. Then
there is an infinite computation t = s1

a1−→ s2
a2−→ · · · of P . We consider the

associated word π = a1a2 · · · . Because F(A) is universal, the word π is accepted
by some run r. Word π = πaπb can be split in a finite prefix πa and an infinite
suffix πb such that F(A) stays in κ while reading πa before leaving κ and then
reading πb. We further see that while reading πb, F(A) stays within Aτ for some
τ ∈ F . By Proposition 4, there is a factorization πb = π1π2 · · · such that A has
a run on each πj from ι to τ . We split t into corresponding subcomputations

tj = sij

aij−−→ · · · sij+1−1

aij+1−1−−−−−→ sij+1

with πj = aij · · · aij+1−1. Hence, we have (sij , sij+1) ∈ ρ(πj) ⊆ relmin(τ) for
all j. This gives us an infinite sequence si1si2 . . . with (sij , sij+1) ∈ relmin(τ).
However, this results in a contradiction, because relmin(τ) is well-founded by
the assumption that A is a transition abstraction of P . ��

Next, we show that the universality of a transition automaton A implies
the factor-termination of A; the proof uses the fundamental fact that a Büchi-
automaton is universal iff it accepts all ultimately-periodic words:

Lemma 1. Let A be a transition automaton. If A is universal, then A satisfies
the factor-termination criterion.

Proof. We assume that A is universal. We will show that F(A) accepts all
ultimately-periodic words. Let u, v be two finite words over Σ and consider the
ultimately-periodic word uvω. Since A is universal there is an accepting run of A
ending in some final state τ ∈ F . We will use this run to construct an accepting
run of F(A). In order to accept uvω, the automaton F(A) reads the word u
staying in the initial state κ and moving to (ι, τ) with the last letter of u (we
tacitly assume here that the length of u is at least one; however this is without
loss of generality as we can consider the word uv instead of u); F(A) then reads
the word v, mimicking the accepting run of A in Aτ , and moving to state (ι, τ)
with the last letter of v; Aτ then reads the next occurrence of v in the same way;
we note that the last transition, with which the automaton returns to the initial
state (ι, τ), is accepting; thus the constructed run on uvω is accepting. ��
Remark. The combination of Theorem 3 and Lemma 1 provides an alternative
proof of Theorem2. We highlight that the proof of Lemma1 proceeds purely
by automata-theoretic techniques and does not make use of condition (*); in
particular, Ramsey’s theorem is not needed to prove Theorem 1 of [26].
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We now establish that factor-termination is a strictly more general termina-
tion criterion than universality:

Example 9. Let A3 be the automaton from Example 7, where we have established
that A3 is a transition abstraction of P1 and that A3 is not universal. We have
drawn F(A3) in Fig. 3. It remains to argue that F(A3) is universal.

We show that F(A3) is universal by a case distinction: Assume a word con-
tains infinitely many a1. F(A3) waits for the first a1 and moves to (ι, τ1) just
before the first a1; with the first a1, F(A3) moves to (τ1, τ1); then F(A3) again
waits for the next a1, moving to (ι, τ1) just before the next a1, and so on. An
infinite word that does not contain infinitely many a1, only contains a2 from
some point on; F(A3) accepts such a word by waiting in the initial state κ until
there are only a2 left and then moves to (ι, τ2); F(A3) then can stay in (ι, τ2)
while continuing to read the letters a2.

We finally state that factor-termination is the most general termination cri-
terion based on transition abstraction:

Theorem 4. Let A be a transition automaton that does not satisfy the factor-
termination criterion. Then there is a program P such that A is a transition
abstraction of P , but P does not terminate.

We prove Theorem 4 (see Corollary 2) and further results in Sect. 6 based on
the close relationship of factorization automata and the size-change abstraction.
We first introduce the size-change abstraction in the next subsection.

5 Size-Change Abstraction

Size-change abstraction (SCA) can be seen as an instantiation of (transition-)
predicate abstraction with a restricted class of predicates: a size-change predicate
over some set of variables Var is an inequality x � y′ with x, y ∈ Var , where �
is either > or ≥ (recall that y′ ∈ Var ′ denotes the primed version of y). A size-
change relation (SCR) is a set of size-change predicates over Var . A size-change
system (SCS) S = 〈Var , Σ, λ〉 consists of a set of variables Var , a finite set of
transitions Σ and a labeling function λ, which maps every transition a ∈ Σ to a
SCR λ(a) over Var .

The SCA methodology requires an abstraction mechanism that abstracts
programs to SCSs. Various static analyzes have been proposed in the literature
which perform such an abstraction [3,9,10,20,22,23,31,34]. In this paper, we
are not concerned with how to abstract programs to SCSs (and thus we do not
describe an abstraction mechanism for programs). Rather, we will use results on
the strength of SCA [12,21] for the analysis of transition automata.

Results on the strength of SCA directly interpret SCSs as (abstract) pro-
grams, which can be seen as ‘most general programs’ that satisfies all the size-
change predicates. We now state the interpretation of SCSs as programs for which
we make use of the variable mappings and predicate interpretations defined in
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Sect. 3. An SCS S = 〈Var , Σ, λ〉 defines a program Pα(S) = 〈St ,St , Σ, ρ〉, where
St = Var → α and ρ(a) = Relα(λ(a)) for all a ∈ Σ; the program Pα(S) is
parameterized by some domain α that we require to be well-founded.

We will build on theoretical results for SCA which have been obtained
by automata-theoretic techniques (we refer the interested reader to [13] for
an overview). We begin by stating the syntactic termination criterion of [22].
Let S = 〈Var , Σ, λ〉 be an SCS. We define the Büchi-automaton DESC (S) =
〈D,Σ, μ, κ〉, where the set of states D = Var ∪ {κ} consists of the variables and
a fresh initial state κ, the alphabet Σ is the same as the alphabet of S, the tran-
sition relation μ is defined by μ(a) = μ1(a) ∪ μ2(a) ∪ μ3(a) for all a ∈ Σ, where
μ1(a) = λ(a), μ2(a) = {(κ,≥, κ)} and μ3(a) = {(κ,≥, x) | x ∈ Var}. Intuitively
the automaton DESC (S) waits a finite amount of time in the initial state κ and
then starts to trace a chain of inequalities x1 �1x2 �2x3 · · · between the variables
of S. The Büchi-acceptance condition ensures that �i = > infinitely often. Now
we are ready to define the syntactic termination criterion of [22]: SCS S has
infinite descent if DESC (S) is universal. This criterion is sound and complete:

Theorem 5 ([21,22]). S has infinite descent iff Pα(S) terminates over all
domains α. Moreover, if S does not have infinite descent, then Pα(S) does not
terminate for some domain α < ω (i.e., Pα(S) does not terminate when variables
take values in some initial segment α = [0, N ] of the natural numbers).

While the original motivation for studying SCA has been termination analy-
sis, we recently extended the theoretical results on SCA to complexity analysis:

Theorem 6 ([12]). Let S be an SCS that is size-change terminating. Then there
effectively is a rational number z ≥ 1 such that the length of the longest run of
P[0,N ](S) is of asymptotic order Θ(Nz) for natural numbers N .

Our result provides a complete characterization of the complexity bounds
arising from SCA and gives an effective algorithm for computing the exact
asymptotic bound of a given abstract program. The proof of Theorem6 pro-
ceeds by rephrasing the question of complexity analysis for SCSs as a question
about the asymptotic behaviour of max-plus automata. The main induction of
the proof relies on the Factorization Forest Theorem [28], which is a power-
ful strengthening of Ramsey’s Theorem for finite semigroups that offers a deep
insight into their structure (see [11] for an overview).

6 Canonical Programs for Transition Automata

In this section, we will relate transition abstraction and SCA. We will describe
the extraction of a size-change system S = S(A) from a transition automaton
A. We will argue that the associated program Pα(S) is canonical for A. We will
prove three results that justify the use of the word ‘canonical’:

1. We show that the criterion of factor-termination for A agrees with the crite-
rion of infinite descent for S (Corollary 1).
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2. We show that A is a transition abstraction of Pα(S) for all domains α (Propo-
sition 5). This result allows us to establish that factor-termination is the most
general termination criterion (Corollary 2).

3. If A is a transition abstraction for some program P , then every run of P can
be mimicked by a run of Pα(S), where the domain α depends on P and needs
to be chosen appropriately (Lemma 3). This result allows us to transfer the
result on complexity analysis for SCSs (see Theorem 6) to transition automata
(Theorem 7).

6.1 Extracting Size-Change Systems from Transition Automata

We fix some transition automaton A = 〈Q,Σ, δ, ι, F 〉. Let F(A) = 〈G,Σ, Γ, κ〉
be the associated factorization automaton, where G = Q × F ∪ {κ} and Γ (a) =
Γ1(a)∪Γ2(a)∪Γ3(a) for all a ∈ Σ. We extract the associated size-change system
from F(A) and define S(A) = 〈Var , Σ, λ〉 by setting Var = Q × F and λ(a) =
Γ1(a) for all a ∈ Σ (i.e., S(A) is obtained from automaton F(A) by restriction
to the non-initial states).

Example 10. We consider the transition automaton A2. We have drawn F(A2)
in Fig. 3. We now state the size-change system extracted from F(A2): We have
S(A2) = 〈{ι, τ1, τ2} × {τ1, τ2}, {a1, a2}, λ〉, where λ is given by

– λ(a1) = {(ι, τ1) ≥ (τ1, τ1)′, (τ1, τ1) ≥ (τ1, τ1)′, (τ2, τ2) ≥ (τ2, τ2)′,
(ι, τ1) > (ι, τ1)′, (τ1, τ1) > (ι, τ1)′, (τ2, τ2) > (ι, τ2)′},

– λ(a2) = {(τ1, τ1) ≥ (τ1, τ1)′, (ι, τ2) ≥ (τ2, τ2)′, (τ2, τ2) ≥ (τ2, τ2)′,
(τ1, τ1) > (ι, τ1)′, (ι, τ2) > (ι, τ2)′, (τ2, τ2) > (ι, τ2)′}.

Example 11. We consider the transition automaton A3. We have drawn F(A3)
in Fig. 3. We now state the size-change system extracted from F(A3). We have
S(A3) = 〈{ι, τ1, τ2} × {τ1, τ2}, {a1, a2}, λ〉, where λ is given by

– λ(a1) = {(ι, τ1) ≥ (τ1, τ1)′, (τ1, τ1) ≥ (τ1, τ1)′, (ι, τ2) ≥ (τ1, τ2)′,
(τ1, τ2) ≥ (τ1, τ2)′, (ι, τ1) > (ι, τ1)′, (τ1, τ1) > (ι, τ1)′},

– λ(a2) = {(τ1, τ1) ≥ (τ1, τ1)′, (ι, τ1) ≥ (τ2, τ1)′, (τ2, τ1) ≥ (τ2, τ1)′,
(τ1, τ2) ≥ (τ1, τ2)′, (ι, τ2) ≥ (τ2, τ2)′, (τ2, τ2) ≥ (τ2, τ2)′,
(τ1, τ1) > (ι, τ1)′, (ι, τ2) > (ι, τ2)′, (τ2, τ2) > (ι, τ2)′}.

We comment on the intuition behind the definition of the SCS S = S(A). The
underlying idea has been to obtain a close correspondence between DESC (S)
and F(A). Indeed, DESC (S) and F(A) are almost identical, the only difference
is that the initial state of DESC (S) allows moving to every state, whereas the
initial state of F(A) only allows moving to the initial states of the components
Aτ . However, this difference does not change the set of accepted words, as we
prove in the next lemma:

Lemma 2. Let S = S(A) be the SCS extracted from A. Then L(F(A)) =
L(DESC (S)).
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Proof. We recall DESC (S) = 〈D,Σ, μ, κ〉, where D = Var ∪ {κ} and μ(a) =
μ1(a) ∪ μ2(a) ∪ μ3(a) for all a ∈ Σ. We see that both automata have the same
set of states G = D = Q × F ∪ {κ}. From the definition of F(A) and DESC (S)
we further have that Γ1(a) = μ1(a), Γ2(a) = μ2(a) and Γ3(a) ⊆ μ3(a) for all
a ∈ Σ.

Thus, we get L(F(A)) ⊆ L(DESC (S)) because every run of A is also a
run of DESC (S). We now show L(F(A)) ⊇ L(DESC (S)): Let π be some word
accepted by DESC (S) and let r be an accepting run of DESC (S) on π. We
can choose some factorization π = π1π2 such that the last transition in r when
reading π1 is accepting. We note that after reading π1, DESC (S) must be in
some state (ι, ) because accepting transition always move to some state where
the first component is ι. We further note that while reading π2, DESC (S) only
uses transitions from μ1, because there is no transition returning to κ. Hence,
the accepting run r of DESC (S) can be mimicked by F(A) as follows: F(A)
waits in the initial state κ while reading π1 and then moves to the state (ι, )
with the last letter of π1. After that F(A) follows the accepting run of DESC (S)
on π2, which can be done because of Γ1 = μ1. ��

As immediate corollary we get the equivalence of the termination conditions:

Corollary 1. A has factor termination iff S has infinite descent.

6.2 Factor-Termination Is the Most General Termination Criterion

We consider the size-change system S = S(A) extracted from transition automa-
ton A. Our next result is that A is a transition abstraction for the program Pα(S)
associated to S. The crucial insight is that S exactly implements the minimal
requirements to satisfy the condition of transition abstraction: the inequalities
of S exactly follow the transition relation of A, where strict inequalities ensure
that the value of variable (ι, τ) decreases iff A visits an accepting state τ .

Proposition 5. A is a transition abstraction of Pα(S) for all domains α.

Proof. Let α be some well-founded domain. We will show that A is a transition
abstraction of Pα(S) using Proposition 2 as proof principle. For this we define a
size-change relation Tτ for each τ ∈ Q \ {ι}. We set Tτ = {(ι, τ ′) ≥ (τ, τ ′) | τ ′ ∈
F} ∪ T dec

τ , where T dec
τ = {(ι, τ) > (ι, τ)}, if τ ∈ F , and T dec

τ = ∅, otherwise. It
is easy to check that we have Relα(Tτ ) ◦ Relα(λ(a)) ⊆ Relα(Tτ ′) for all (τ, τ ′) ∈
δ(a). We now apply Proposition 2 and get relmin(τ) ⊆ Relα(Tτ ) for all τ ∈ Q.

It remains to argue that the relations relmin(τ) are well-founded for all
τ ∈ F . This follows from relmin(τ) ⊆ Relα(Tτ ) and the fact that Relα(Tτ )
is well-founded due to the predicate T dec

τ , which ensures the decrease of
variable (ι, τ). ��
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We are now in a position to prove Theorem4, i.e., that factor termination is
the most general termination criterion for transition abstraction:

Corollary 2. Let A be a transition automaton that does not satisfy the factor-
termination criterion. Then A is a transition abstraction of Pα(S) for all
domains α, but Pα(S) does not terminate for some α < ω.

Proof. From Corollary 1 we get that S does not satisfy the infinite descent crite-
rion because A does not satisfy the factor-termination criterion. By Theorem5
we know that the program Pα(S) does not terminate for some α < ω because
S does not size-change terminate. We have that A is a transition abstraction of
Pα(S) by Proposition 5. ��

6.3 Complexity Analysis with Transition Automata

Let A = 〈Q,Σ, δ, ι, F 〉 be a transition automaton and P = 〈St , I , Σ, ρ〉 be a
program such that A is a transition abstraction of P . Let S = S(A) = 〈Var , Σ, λ〉
be the SCS extracted from A. We will show that every run of P can be mimicked
by a run of Pα(S), where the domain α depends on P and needs to be chosen
appropriately. We first introduce the machinery necessary to define α.

We define the height of a transition abstraction as the maximum of the
heights of the well-founded relations relmin(τ), i.e., we set

height(A,P ) = max
τ∈F

‖relmin(τ)‖ .

We set height•(A,P ) = height(A,P ) + 1; we work with height•(A,P ), which
differs from height(A,P ) by plus one for technical convenience; however, the
difference of plus one is not important for our results on asymptotic complexity
analysis.

We introduce another auxiliary definition. For every pair (τ ′, τ) ∈ Q × F we
define a relation SuccP (τ ′, τ) ⊆ St × St by setting

SuccP (τ ′, τ) =
⋃

word π with (τ ′,τ)∈δ(π)

ρ(π).

We note that SuccP (ι, τ) = relmin(τ) for all τ ∈ F .
For every pair (τ ′, τ) ∈ Q × F we define a function rankτ ′,τ : St →

height•(A,P ) that maps a state s ∈ St to an ordinal below height•(A,P ), by
setting

rankτ ′,τ (s) = sup
(s,s′)∈SuccP (τ ′,τ)

‖s′‖relmin(τ)
+ 1,

where the sup over the empty set evaluates to 0. The following proposition is
immediate from the definitions:

Proposition 6. We have rank ι,τ (s) = ‖s‖relmin(τ)
for all s ∈ St.
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Proof. Let s ∈ St be some state. From the definition of SuccP we get SuccP (ι, τ)
= relmin(τ). Thus, we get rank ι,τ (s) = sup(s,s′)∈SuccP (ι,τ) ‖s′‖relmin(τ)

+ 1 =
sup(s,s′)∈relmin(τ) ‖s′‖relmin(τ)

+ 1 = ‖s‖relmin(τ)
. ��

For every s ∈ St we define a valuation σs : Q×F → height•(A,P ) by setting
σs(τ ′, τ) = rankτ ′,τ (s).

Lemma 3. Let α = height•(A,P ). For all pairs of states (s, s′) ∈ ρ(a), where
a ∈ Σ, we have (σs, σs′) ∈ Relα(λ(a)).

Proof. Let a ∈ Σ be some transition and let (s, s′) ∈ ρ(a) be a pair of states in
the associated transition relation.

We consider an inequality (τ, τ ′′) ≥ (τ ′, τ ′′)′ ∈ λ(a). By definition of
λ(a) we have (τ, τ ′) ∈ δ(a). From this we get {(s, s′)} ◦ SuccP (τ ′, τ ′′) ⊆
SuccP (τ, τ ′′) because for every word π such that (τ ′, τ ′′) ∈ δ(π) we have
that (τ, τ ′′) ∈ δ(a · π) and thus (s′, s′′) ∈ ρ(π) implies (s, s′′) ∈ ρ(a · π).
Hence, we get σs(τ, τ ′′) = rankτ,τ ′′(s) = sup(s,s′′)∈SuccP (τ,τ ′′) ‖s′′‖relmin(τ ′′) +1 ≥
sup(s′,s′′)∈SuccP (τ ′,τ ′′) ‖s′′‖relmin(τ ′′) + 1 = rankτ ′,τ ′′(s′) = σs′(τ ′, τ ′′).

We consider an inequality (τ ′, τ) > (ι, τ)′ ∈ λ(a). By definition of λ(a)
we have (τ ′, τ) ∈ δ(a). From this we get (s, s′) ∈ ρ(a) ⊆ SuccP (τ ′, τ). From
Proposition 6 we have rank ι,τ (s′) = ‖s′‖relmin(τ)

. Hence, we get σs(τ ′, τ) =
rankτ ′,τ (s) = sup(s,s′′)∈SuccP (τ ′,τ) ‖s′′‖relmin(τ)

+ 1 > ‖s′‖relmin(τ)
= rank ι,τ (s′) =

σs′(ι, τ). ��
We immediately obtain the following corollary:

Corollary 3. Let α = height•(A,P ). Let s1
a1−→ s2

a2−→ · · · be a computation of
P . Then, σs1

a1−→ σs2

a2−→ · · · is a computation of Pα(S).

Finally, we are in a position to transfer Theorem6:

Theorem 7. Let A be a transition automaton that satisfies the factor-
termination termination criterion. Let S = S(A). Let z be the rational number
obtained from Theorem6 for S.

Let P = 〈St , IN , Σ, ρ〉 be a program whose set of initial states IN is param-
eterized by natural number N ∈ N, such that A is a transition abstraction of P
and height(A,P ) = O(N). Then, the length of the longest computation of P is
of asymptotic order O(Nz).

Moreover, A is a transition abstraction for P[0,N ](S) and the length of the
longest computation of P[0,N ](S) is of asymptotic order Θ(Nz).

Proof. By Proposition 5, A is a transition abstraction of P[0,N ](S) for all N ∈
N. From Theorem 6 we have that the longest computation of P[0,N ](S) is of
asymptotic order Θ(Nz).

Because of height(A,P ) = O(N), we can find some a, b ∈ N such that
height(A,P ) ≤ a · N + b for all N ∈ N. By Corollary 3, for every computa-
tion of PN there is a computation of P[0,a·N+b](S) of equal length. Hence, the
longest computation of PN is of asymptotic order O((a · N + b)z) = O(Nz). ��
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We highlight that Theorem7 gives a complete characterization of the com-
plexity bounds obtainable with transition abstraction and provides an effective
algorithm for computing these complexity bounds.

Theorem 7 allows us to derive the precise complexity for P1 and P2:

Example 12. We consider the size-change system S = S(A2), which we have
extracted in Example 10 from transition automaton A2. Theorem 6 allows us
to derive that P[0,N ](S) has complexity Θ(N). In Example 5 we defined an
abstract-transition program (A2, rel2) for P2; the inductive proof labeling rel2
in conjunction with the invariant Inv = Relα({x ≤ N, y ≤ N}) implies that
height(A2, P2) = N . Hence, we can apply Theorem 7 and infer that P2 has com-
plexity O(N), which is the precise asymptotic complexity of P2.

We consider the size-change system S = S(A3), which we have extracted in
Example 11 from transition automaton A3. Theorem 6 allows us to derive that
P[0,N ](S) has complexity Θ(N2). In Example 4 we defined an abstract-transition
program (A1, rel1) for P1; the inductive proof labeling rel1 in conjunction with
the invariant Inv = Relα({x ≤ N, y ≤ N}) implies that height(A1, P1) = N .
Hence, we can apply Theorem 7 and infer that P2 has complexity O(N2), which
is the precise asymptotic complexity of P2.

7 Future Directions and Conclusion

In this paper, we have established a new connection between transition automata
and the size-change abstraction. Our results suggest that all tools which imple-
ment termination analysis with transition invariants based on an inductive argu-
ment (such as Terminator) can be retro-fitted to be complexity analyzers,
which is an interesting direction for further research: While this paper has inves-
tigated what information can be extracted from a fixed proof (i.e., from a fixed
set of transition predicates), there is also the question of what strategy for predi-
cate selection gives the best results. We have seen that the predicates x′ < x and
y′ < y allow inferring the linear complexity of P2; these predicates are simple
and can be extracted from the if- resp. else branch of P2 by simple heuristics.
On the other hand, the predicate x′ + y′ < x + y allows establishing the linear
complexity of P2 using a single predicate; this predicate, however, is more com-
plex and requires more complicated heuristics for extraction. Finding the right
balance in predicate selection is an interesting topic for future research.

Ranking function construction is an alternative technique for termination
proofs: [33] states a complete construction for deterministic size-change systems.
[8,15] describes practical but incomplete constructions for general programs
based on transition predicate abstraction. [15] states an example which has a
transition invariant but no lexicographic ranking function over linear expres-
sions; it is interesting to better understand the connection between the different
termination proof techniques and investigate under which conditions ranking
functions can be constructed.

Our results on transition abstraction and the previous results on size-change
abstraction heavily rely on automata-theoretic techniques. We speculate that
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the study of the automaton structure of other inductive proofs, such as cyclic
proofs [27], might also yield interesting results.

Acknowledgements. This article is dedicated to the memory of Helmut Veith who
proposed to me the PhD topic of automatic derivation of loop bounds. Our initial idea
was to extend the termination analysis of Terminator. With this article I managed
to return to this original idea.
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