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Abstract This paper studies the problem of asynchronous control of switched non-
linear systems. The asynchronous control means that the switchings between the can-
didate controllers and systemmodels are asynchronous. By using the piecewise Lya-
punov function and average dwell time approach, the asynchronously switched stabi-
lizing control problem for nonlinear systems is solved under the proposed switching
law, which allows us to have a stable or unstable subnonlinear system. Illustrative
examples are provided to show the effectiveness of the results.
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1 Introduction

Switched systems [1, 2], consisting of a family of subsystems and a switching rule
that orchestrates the switching between them, have been used tomodelmany physical
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or man-made systems displaying switching features. The diverse switching signals
differentiate switched systems fromgeneral time-varying systems, since the solutions
of the switched systems are dependent on not only the system’s initial conditions but
also the switching signals. This class of systems have numerous applications in the
control of mechanical systems, the automotive industry, air traffic control, switching
power converters and many other fields [2].

In switched systems, each subsystem is called a mode, and control problems are
said to design a set of mode-dependent controllers or mode-independent controllers
for the unforced system and find admissible switching signals such that the resulting
systems is stable or satisfies certain performance criteria [2–4]. As we know, mode-
dependent controller design is less conservative. However, for the control problem,
it inevitably takes some time to identify the system modes and apply the matched
controller. So, a very common assumption in the mode-dependent context, the con-
trollers are switched synchronously with the switching of system modes, is quite
unpractical. Therefore, the asynchronous phenomena between the system modes
and the controller modes always exists. Recently, some efforts have been made to
study asynchronous control problems [5–9]. In [5–8], each subsystem is stable. In
[5], desirable controller is designed such that the energy function is decreasing in
each switching interval (both mismatched period and matched period). This require-
ment is weakened in [6–8]. The energy function is not required decreasing in mis-
matched period any more. Most recently, in [9], the authors deal with asynchronous
stabilization problem of switched system, which contains stable and unstable sub-
systems. However, the condition inf t≥t0 [ T

−(t)
T+(t) ] ≥ − β

α
can not guarantee the condition

−γ t = T−(t)α + T+(t)β holds, which only can guarantee T−(t)α + T+(t)β < 0
holds, where, T−(t) and T+(t) represent, respectively, the total active time of sub-
systems that are stable, not stable subsystems over (0, t); α, β and γ are constants.
Therefore, a switching law is need.

In this paper, the problem of asynchronous control of switched nonlinear sys-
tems is studied. By using the piecewise Lyapunov function and average dwell time
approach, the asynchronously switched stabilizing control problem for nonlinear sys-
tems is solved under the proposed switching law , which allows us to have stable and
unstable subnonlinear system. Some examples are provided to show the effectiveness
of the results.

2 Problem Descriptions and Preliminaries

Consider the following switched nonlinear system:

ẋ(t) = fσ(t)(x(t), u(t)), (1)

where x(t) ∈ Rn is a state vector and u(t) ∈ Rm is a control input vector. fσ(t) are
a set of regularly nonlinear functions. σ(t) : [0,∞) → S is the switching signal,
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i.e., σ(t) = ik ∈ S for t ∈ [tk, tk+1), where tk is the kth switching time instant, S =
{1, 2, . . . , s}, s, k ∈ N. 0 = t0 < t1 < . . . < tk < . . ., lim

k→∞tk = ∞, which can rule

out Zeno behavior automatically.
In fact, for the control problem, it inevitably takes some time to identify the system

modes and apply the matched controller. Therefore, the asynchronous phenomena
between the system modes and the controller modes always exists. In this paper, we
assume that the time lag of controllers modes to systemmodes is td > 0 (td < tk+1 −
tk, k ∈ N ). The state feedback control input can be written as u(t) = Kσ(t−td )x(t).

Before proceeding further, the following definitions are introduced.

Definition 2.1 [10] For a switching signal σ(t) and any t
′′
> t

′
> t0, let Nσ (t

′
, t

′′
)

be the switching numbers of σ(t) over the interval [t ′
, t

′′
). If Nσ(t

′
, t

′′
)≤N0+ t

′′ − t
′

τa
holds for N0 ≥ 1, τa > 0, then N0 and τa are called the chatter bound and the average
dwell time, respectively.

Note that:When the active subsystems are changed at some time instant, a switching
happens. Therefore, switching numbers mean the total numbers of switching.

Definition 2.2 [6] The equilibrium point of system (1) is globally uniformly expo-
nentially stable under certain switching signals σ(t) if, for u(t), there exist con-
stants K > 0 and δ > 0 such that the solution of the system satisfies ‖x(t)‖ ≤
Ke−δ(t−t0)‖x(t0)‖, ∀t ≥ t0.

3 Main Results

In this section, we first proposed a switching law for the system (1). Under this
switching law, the sufficient condition is given to guarantee the system (1) with-
out control input is exponentially stable by using average dwell time. Second, the
obtained result is extended to the system with control input.

3.1 Exponential Stability for the System (1) Without
Control Input

Switching law 3.1 [11] Let 0= t0< t1< t2<. . . (lim j→∞ t j =∞) be a specified
sequence of time instants satisfying sup j {t j+1−t j }=T <∞. Determine the switching
signal σ(t) such that the inequality T−(t j , t j+1)/T+(t j , t j+1)≥−(β + α∗)/(α + α∗)
holds on every time interval [t j , t j+1)( j = 0, 1, . . .), where 0 < α∗ < −α, α and
β are given constants, T−(t j , t j+1) and T+(t j , t j+1) denote the total active time of
stable and unstable subsystems respectively over (t j , t j+1).

Based on the given switching law 3.1, the following theorem is presented to
guarantee the system is exponentially stable.
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Theorem 3.1 For the given scalars ασ(t) and μ ≥ 1, the system (1) with u(t) = 0,
under the switching law 3.1, is exponentially stable if there exist Lyapunov functions
Vσ(t)(t) : Rn → R, and two positive constants K1 and K2 such that ∀σ(t) = i ∈ S

the following inequalities hold

K1‖x(t)‖2 ≤ Vi (t) ≤ K2‖x(t)‖2, (2)

V̇i (t) ≤ αi Vi (t), t ∈ [tk, tk+1) (3)

Vσ(tk )(tk) ≤ μVσ(t−k )(t
−
k ), (4)

τa >
lnμ

α∗ . (5)

Proof When ∀t ∈ [tk, tk+1), for σ(t) = i ∈ S, k ∈ N , it means the switched system
is active within the i th subsystem. From (3) and (4), we have

Vσ(t)(t) ≤ eαi (t−tk )Vσ(tk )(tk)

≤ μeαi (t−tk )Vσ(t−k )(t
−
k )

≤ μeαi (t−tk )+ασ(tk−1)(tk−tk−1)Vσ(tk−1)(tk−1)

≤ μ2eαi (t−tk )+ασ(tk−1)(tk−tk−1)Vσ(t−k−1)
(t−k−1)

≤ ...

≤ μNσ (t0,t)Vσ(t0)(t0)e
αT−(t0,t)+βT+(t0,t), (6)

where α = supi∈S{αi : αi < 0}, β = supi∈S{αi : αi ≥ 0}, T−(t0, t) and T+(t0, t)
denote the total active time of those subsystems that are stable, not stable subsystems
over (t0, t), respectively.

Suppose 0= t0< t1< t2<. . . (lim j→∞ t j =∞) be a specified sequence of time
instants satisfying Switching law 3.1. For any t , we have two cases:

(1) For t0 and t satisfying t j−1 < t0 ≤ t j < t j+1 < . . . < t k ≤ t , one has

T−(t j , t j+1)
T+(t j , t j+1)

≥−β + α∗

α + α∗

⇒T−(t j , t j+1)(−α − α∗) ≥ T+(t j , t j+1)(β + α∗)

⇒ − α∗(T−(t j , t j+1) + T+(t j , t j+1)) ≥ αT−(t j , t j+1) + βT+(t j , t j+1)

⇒ − α∗(t j+1 − t j ) ≥ αT−(t j , t j+1) + βT+(t j , t j+1), (7)

T−(t j , t j+1)
T+(t j , t j+1)

≥−β + α∗

α + α∗

⇒T−(t j , t j+1)(−α − α∗) ≥ T+(t j , t j+1)(β + α∗)

⇒T−(t j , t j+1)(−α − α∗) + T+(t j , t j+1)(−α − α∗)
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≥ T+(t j , t j+1)(β + α∗) + T+(t j , t j+1)(−α − α∗)

⇒T+(t j , t j+1) ≤ −α − α∗

β − α
T, (8)

and whether or not the activated subsystems over the interval [t0, t j ] and [t k, t]
are stable subsystems, we consider that the activated subsystems over the interval
[t0, t j ] and [t k, t] are unstable subsystems. Then, one obtain

eαT−(t0,t)+βT+(t0,t) ≤eβ(t j−t0)+∑k−1
q= j [βT+(tq ,tq+1)+αT−(tq ,tq+1)]+β(t−t k )

According to (7) and (8), one obtains

eαT−(t0,t)+βT+(t0,t) ≤ eβ(t−t k )−α∗ ∑k−1
q= j (t

q+1−tq )+β(t j−t0)

= eβ(t−t k )−α∗(t k−t j )+β(t j−t0)

= e(β+α∗)(t−t k+t j−t0)−α∗(t−t0)

≤ e(β+α∗)(T+(t k ,t k+1)+T+(t j−1,t j ))−α∗(t−t0)

≤ eγ−α∗(t−t0), (9)

where γ = −2(β+α∗)(α+α∗)
β−α

T .

(2) For t0 and t satisfying tq ≤ t0 < t ≤ tq+1, one has

eαT−(t0,t)+βT+(t0,t) ≤ eβ(t−t0)

= e(β+α∗)(t−t0)−α∗(t−t0)

≤ eγ−α∗(t−t0), (10)

where γ has the same value as the one above.

Based on (6), (9) and (10) and average dwell time, for any t , the following inequality
holds

Vσ(t)(t) ≤ μNσ (t0,t)Vσ(t0)(t0)e
αT−(t0,t)+βT+(t0,t)

≤ eN0 lnμ+γ e(
lnμ

τa
−α∗)(t−t0)Vσ(t0)(t0). (11)

From (2) and (5), we have

‖x(t)‖ ≤ Ke−κ(t−t0)‖x(t0)‖, (12)

where K = ( K2
K1
eN0 lnμ+γ )1/2 and κ = 1

2 (α
∗ − lnμ

τa
).

Therefore, the system (1) without control input is exponentially stable.
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3.2 Exponential Stability for the System (1)
With Control Input

Switching law 3.2 Let 0 = t0 < t1 < t2 < . . . (lim j→∞ t j = ∞) be a specified
sequence of time instants satisfying sup j {t j+1−t j }=T <∞. Determine the switching
signal σ(t) such that the inequality (T−(t j , t j+1) −N−

σ (t j , t j+1)td)/(T+(t j , t j+1) +
N−

σ (t j , t j+1)td)≥−(β + α∗)/(α + α∗) holds on every time interval [t j , t j + 1)( j =
0, 1, ...), where 0 < α∗ < −α, α and β are given constants. T−(t j , t j+1), T+(t j , t j+1)
and N−

σ (t j , t j+1) denote the total active time of those subsystems that are stable,
not stable subsystems and the total switching numbers of stable subsystems over
(t j , t j+1), respectively.

Based on the given switching law 3.2, the following theorem is presented to
guarantee the system is exponentially stable.

Theorem 3.2 For the given scalars ασ(t),σ (t−td ) and μ ≥ 1, the system (1) with
u(t) = Kσ(t−td )x(t), under the switching law 3.2, is exponentially stable if there exist
Lyapunov functions Vσ(t),σ (t−td )(t) : Rn → R, and two positive constants K̂1 and K̂2

such that ∀σ(t) = i , σ(t − td) = p, ∀i, p ∈ S the following inequalities hold

K̂1‖x(t)‖2 ≤ Vi,p(t) ≤ K̂2‖x(t)‖2, (13)

V̇i,p(t) ≤
{

αi,pVi,p(t), t ∈ [tk, tk + td), i �= p,

αi,i Vi,i (t), t ∈ [tk + td , tk+1), i = p,
(14)

Vσ(tk ),σ (tk−td )(tk) ≤ μ̂Vσ(t−k ),σ (t−k −td )(t
−
k ), (15)

Vσ(tk+td ),σ (tk )(tk + td) ≤ μ̂Vσ(t−k +td ),σ (t−k )(t
−
k + td), (16)

τa >
2 ln μ̂

α∗ . (17)

Proof When ∀t ∈ [tk + td , tk+1), σ(t) = i ∈ S; ∀t ∈ [tk, tk + td), σ(t − ts) = p ∈
S, k ∈ N . From (14), (15) and (16), we have

Vσ(t),σ (t−td )(t) ≤ eαi,i (t−tk−td )Vσ(tk+td ),σ (tk )(tk + td)

≤ μ̂eαi,i (t−tk−td )Vσ(t−k +td ),σ (t−k )(t
−
k + td)

≤ μ̂eαi,i (t−tk−td )+αi,ptd Vσ(tk ),σ (tk−td )(tk)

≤ μ̂2eαi,i (t−tk−td )+αi,ptd Vσ(t−k ),σ (t−k −td )(t
−
k )

≤ ...

≤ μ̂2Nσ (t0,t)eα(T−(t0,t)−N−
σ (t0,t)td )+β(T+(t0,t)+N−

σ (t0,t)td )×
Vσ(t0),σ (t0−td )V (t0), (18)
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whereα = supi∈S{αi,i , αi,i < 0},β = supi,p∈S,i �=p{αi,p, αi,i > 0},T−(t0, t),T+(t0, t)
and N−

σ (t0, t) denote the total active time of those subsystems that are stable, not
stable subsystems and the total switching numbers of stable subsystems over (t0, t),
respectively.

Combining Switching law 3.2 and following the similar proof procedure, we can
conclude that the system (1) with u(t) = Kσ(t−td )x(t), under the switching law 3.2,
is exponentially stable.

4 Numerical Examples

Example 1 Consider the following switched nonlinear system without control input
Switching Region 1: σ(t) = 1

ẋ1(t)=0.2x1(t)+0.1x2(t)−0.15|sin(10x2(t))|e−sin(10x2(t))x2(t)

ẋ2(t)=0.7x1(t)+0.02x2(t) (19)

Switching Region 2: σ(t) = 2

ẋ1(t) = −x1(t)

ẋ2(t) = −0.2|cos(10x1(t))|x1(t) − x2(t) (20)

Here, let α1 = 1.5, α2 = −0.6, α∗ = 0.3 and μ = 1.2. According to Switching
law 3.1, for t ∈ [0, 12], the switching signal σ(t) is given as follows:

σ(t) = 1 : t ∈ [0, 0.3), [2.9, 3.4), [6.8, 7.1), [8.9, 9.4),
σ (t) = 2 : t ∈ [0.3, 2.9), [3.4, 6.8), [7.1, 8.9), [9.4, 12],

where the specified sequence of time instants {tn}4n=0 is given as {0, 3, 6, 9, 12}. Note
that the condition 1.5 = τa ≥ lnμ

α∗ = 0.6077 also holds. The simulation results are
shown in Figs. 1 and 2, which well illustrate Theorem 3.1.

Example 2 Consider the following switched nonlinear system
Switching Region 1: σ(t) = 1

ẋ1(t) = x1(t)+0.1x2(t)+0.15|sin(6x1(t))|e−sin(6x1(t))x2(t)

+ (0.1 + 0.4

e
|sin(6x1(t))|e−sin(6x1(t)))u1(t)

ẋ2(t) = 0.7x1(t)+0.2x2(t), (21)
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Fig. 1 The switching signal
σ(t)
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Fig. 2 The state trajectories
of the system (3)
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Switching Region 2: σ(t) = 2

ẋ1(t) = 0.6x1(t) + 0.3u1(t) + 0.7|cos(6x2(t))|u1(t)
ẋ2(t) = 0.2|cos(10x2(t))|x1(t) − 0.7x2(t), (22)

Here, let α11 = 0.2, α12 = 0.5, α21 = 0.1, α22 = −0.3, α∗ = 0.2, μ = 1.1 and
td = 0.2. According to Switching law 3.2, for t ∈ [0, 12], the switching signal σ(t)
and σ(t − td) are given as follows:

σ(t) = 1 : t ∈ [0, 0.3), [2.9, 3.4), [6.8, 7.1), [9.0, 9.4),
σ (t) = 2 : t ∈ [0.3, 2.9), [3.4, 6.8), [7.1, 9.0), [9.4, 12],
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σ(t − td) = 1 : t ∈ [0, 0.5), [3.1, 3.6), [7.0, 7.3), [9.2, 9.6),
σ (t − td) = 2 : t ∈ [0.5, 3.1), [3.6, 7.0), [7.3, 9.2), [9.6, 12],

where the specified sequence of time instants {tn}4n=0 is given as {0, 3, 6, 9, 12}. Note
that the condition 1.5 = τa ≥ 2 lnμ

α∗ = 0.9532 also holds. The simulation results are
shown in Figs. 3 and 4, which well illustrate Theorem 3.2.

Fig. 3 The switching signal
σ(t)
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Fig. 4 The state trajectories
of the system (3)
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5 Conclusion

In this paper, the piecewise Lyapunov function and average dwell time approach have
been used to investigate the problem of asynchronous control of switched nonlinear
systems. By using the proposed switching law, the asynchronously switched stabiliz-
ing control problem for nonlinear systems has been solved, which allows us to have
stable and unstable subnonlinear system. Illustrative examples have been provided
to show the effectiveness of the results.
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