
Error Expansion for a Symplectic
Scheme for Stochastic Hamiltonian
Systems

Cristina Anton

Abstract We consider a stochastic autonomous Hamiltonian system for which the
flowpreserves the symplectic structure. Numerical simulations show that for stochas-
tic Hamiltonian systems symplectic schemes produce more accurate results for long
term simulations than non-sysmplectic numerical schemes. We study the approxi-
mation error corresponding to a symplectic weak scheme of order one. A backward
error analysis is done at the level of the Kolmogorov equation associated with the
initial stochastic Hamiltonian system.We obtain an expansion of the error in terms of
powers of the discretization step size and the solutions of the modified Kolmogorov
equation.
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1 Introduction

Numerical simulations [5, 9, 11] show that for stochasticHamiltonian systems (SHS)
symplectic schemes give more accurate results for long term simulation that non-
symplectic schemes, but, to the best of our knowledge, no theoretical proof was done
in the stochastic case. For a SHS and a first weak order symplectic scheme, in [2] we
present an expansion of the global approximation error in powers of the discretization
step size. Comparing this expansion with the global error expansion obtained in
[13] for the Euler scheme (which has also weak order one), we justify the superior
performance of the symplectic scheme for the simple linear SHS corresponding to
the Kobo oscillator [2]. However, this justification can not be easily extended for
general non-linear SHSs. Here we use backward error analysis to find an expansion
of error for the symplectic scheme in terms of the powers of the discretization step
size and the solutions of the modified Kolmogorov equation [3].
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Backward error analysis was successfully applied to study long term behavior
of deterministic Hamiltonian systems [4]. Recently, backward error analysis was
extended to stochastic differential equations (SDE). Modified SDEs associated with
various numerical schemes are presented in [1, 10, 14]. A SDE defined on the n-
dimensional torus and its approximation by the explicit Euler scheme are studied
using backward error analysis in [3].

We follow the same approach as in [3], and we construct the modified equation
not at the level of the SDE, but at the level of the associated Kolmogorov equation.
Compared with [3] we consider a fully implicit scheme instead of an explicit one,
and we consider a SHSwith additive or multiplicative noise defined on R2n instead of
the compact n dimensional torus. Implicit numerical schemes are also considered in
[6, 7], but for Langevin SDEs on Rn with additive noise. Studying the multiplicative
noise case is more difficult, especially for a fully implicit numerical scheme.

In the next section we present some preliminary results regarding the solution
of the SHS and the approximate solution given by the numerical scheme. The steps
followed for the backward error analysis are included in Sect. 3. The last section
contains the conclusions.

2 Assumptions and Preliminary Results

We introduce a few definitions and notations. We denote N = {1, 2, . . .}, N ∗ =
{1, 2, . . .} and for any x = (x1, . . . , xn)T ∈ Rn, |x| represents the Euclidean norm.

For any multi-index α = (α1, . . . , αr) ∈ Nr with length |α| = α1 + · · · + αr , let
∂α = ∂ |α|

∂
α1
1 ···∂αr

r
denote the partial derivative of order |α|.

We define the following space of functions with polynomial growth:

C∞
pol(R

2n) =
{
f ∈ C∞(R2n) such that f and all its derivatives have polynomial growth

}

For any k, l ∈ N, we denote

Cl
k (R

2n) =
{
f ∈ Cl(R2n) : there exists Cl,k > 0 such that for all x ∈ R2n and any index

α ∈ N2n, |α| ≤ l, |∂α f (x)| ≤ Cl,k (1 + |x|2k )
}
.

On Cl
k(R

2n) we define [7] the norm ‖ · ‖l,k and the semi norm | · |l,k :

‖ f ‖l,k = sup
α,|α|≤l

|∂α f (x)|
1 + |x|2k , | f |l,k = sup

α,1≤|α|≤l

|∂α f (x)|
1 + |x|2k . (1)

Notice that if φ ∈ C∞
pol(R

2n), then for all d ∈ N, there exists rd ∈ N such that φ ∈
Cd
rd (R

2n).
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We consider the following stochastic Hamiltonian system

dP = −∂QH0(P,Q)dt −
m∑
r=1

∂QHr(P,Q) ◦ dwr
t , P(0) = p

dQ = ∂PH0(P,Q)dt +
m∑
r=1

∂PHr(P,Q) ◦ dwr
t , Q(0) = q, (2)

whereP,Q,p, q aren-dimensional columnvectors,wr
t , r = 1, . . . ,m are independent

standardWiener processes, and for any function f defined on Rn × Rn, ∂P f and ∂Q f
denote the column vectors with components (∂ f/∂Pi), 1 ≤ i ≤ n and (∂ f/∂Qi), 1 ≤
i ≤ n, respectively. The stochastic flow (p, q) −→ (P,Q) of the SHS (2) preserves
the symplectic structure [9]: dP ∧ dQ = dp ∧ dq, where the differential 2-form dp ∧
dq = dp1 ∧ dq1 + · · · + dpn ∧ dqn.

The system (2) can be re-written in the Ito formulation:

dP = a(P,Q)dt +
m∑
r=1

σ r(P,Q)dwr
t , P(0) = p (3)

dQ = b(P,Q)dt +
m∑
r=1

γ r(P,Q)dwr
t , Q(0) = q, (4)

where

a = −∂QH0 + 1

2

m∑
r=1

n∑
j=1

(
∂Hr

∂Qj
∂Q

(
∂Hr

∂Pj

)
− ∂Hr

∂Pj
∂Q

(
∂Hr

∂Qj

))

b = ∂PH0 + 1

2

m∑
r=1

n∑
j=1

(
− ∂Hr

∂Qj
∂P

(
∂Hr

∂Pj

)
+ ∂Hr

∂Pj
∂P

(
∂Hr

∂Qj

))

σ r = −∂QHr, γ r = ∂PHr .

Here everywhere the arguments are (P,Q), and a, b, σ r , γ r , r = 1, . . . ,m are
n−dimensional column vectors.

The Kolmogorov generator L(p, q, ∂p, ∂q) associated with the SHS (3)–(4) has
the following form [12]

L(p, q, ∂p, ∂q)φ(p, q) =
n∑
j=1

(
a j

∂

∂p j
φ(p, q) + b j

∂

∂q j
φ(p, q)

)
+ 1

2

m∑
r=1

n∑
i, j=1

(
σ r
i σ

r
j

∂2

∂pip j
φ(p, q) + γ r

i γ r
j

∂2

∂qiq j
φ(p, q) + 2σ r

i γ
r
j

∂2

∂piq j
φ(p, q)

)
, φ ∈ C∞(R2n)

Throughout the paper we make the same assumptions as in [12, 13]:
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A1. The derivatives of any order of Hi ∈ C∞, i = 1, . . . ,m are bounded, and the
derivative of any order k ≥ 2 of H0 ∈ C∞ are bounded.

A2. The operator L is uniformly elliptic: there exists a constant α > 0 such that for
all x = (p, q)T ∈ R2n we have

α|x|2 ≤
m∑
r=1

n∑
i, j=1

(
σ r
i σ

r
j pip j + γ r

i γ r
j qiq j + 2σ r

i γ
r
j piq j

)
(5)

A3. There exists a constant β > 0 and a compact set K such that for all x = (p, q)T

∈ R2n − K we have p · a(x) + q · b(x) ≤ −β|x|2.
Notice that assumptionA1 implies that we have a Lipschitz condition, i.e. there exists
L1 > 0 such that for all X = (P,Q)T , x = (p, q)T ∈ R2n we have

m∑
j=0

∣∣∣∣
(
∂PHj , ∂QHj

)T
(X ) − (

∂pH j , ∂qH j
)T

(x)

∣∣∣∣≤ L1|X − x|. (6)

2.1 Results Regarding the Solution of the Stochastic
Hamiltonian System

Proceeding as in Proposition 3.1 in [12], under the assumptions A1-A3 we can prove
the following result regarding the solution

(
X 0,x0(t)

) = (
(P(t, p0, q0),Q(t, p0, q0))T

)
of the SHS (2) with the initial condition x0 = (p0, q0)T ∈ R2n.

Lemma 1 The Markov process
(
X 0,x0(t)

)
is ergodic. The unique invariant proba-

bility measure μ has finite moments of any order and a density ρ ≥ 0. Moreover, for
any k ∈ N there exist Ck , γk > 0 such that for any x0 = (p0, q0)T ∈ R2n, and any
t ≥ 0 we have:

E(|X 0,x0(t)|k) ≤ Ck
(
1 + |x0|k exp(−γk t)

)
. (7)

We consider any function φ ∈ C∞
pol(R

2n), and for all x = (p, q)T ∈ R2n and all t > 0
we define u(t, p, q) := E[φ(X 0,x(t)]. Notice that Lemma 1 implies that u is well
defined. It is well known [12] that u(t, p, q) is a classical solution of the Kolmogorov
equation

du

dt
(t, p, q) = Lu(t, p, q), u(0, p, q) = φ(p, q), (p, q)T ∈ R2n, t > 0. (8)

For any function f ∈ C∞
pol(R

2n) we denote the average

< f >:=
∫

f (x)dμ(x)
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The results included in the following lemma show the exponential convergence of
u and its derivatives and are essential for the backward error analysis presented in
this paper. The proof is an extension of the proof of Theorem 3.4 in [12], based on
Theorem 2.5 in [8].

Lemma 2 Let k ∈ N, k ≥ 1, and φ ∈ C∞
pol(R

2n) ∩ Ck+n+1
rk+n+1

(R2n), rk+n+1 ∈ N. Then
there exist γk > 0, Ck > 0 and lk ∈ N such that lk > rk+n+1 and for any 0 < γ < γk
and all t ≥ 0 we have

|u(t, x)|k,lk ≤ Ck ‖φ− < φ >‖k+n+1,rk+n+1
exp(−γ t). (9)

‖u(t, x)− < φ > ‖0,l0 ≤ C0 ‖φ− < φ >‖n+1,rn+1
exp(−γ t). (10)

2.2 Results Regarding the Symplectic Scheme

We consider the following one-step approximation [9] for the system (2):

Pk+1 = Pk − h

(
∂QH0 + 1

2

m∑
r=1

∂QG(r,r)

)
− √

h
m∑
r=1

ςrk∂QHr, P0 = p0 (11)

Qk+1 = Qk + h

(
∂PH0 + 1

2

m∑
r=1

∂PG(r,r)

)
+ √

h
m∑
r=1

ςrk∂PHr Q0 = q0 (12)

where G(r,r) = ∑n
i=1

∂Hr
∂Qi

∂Hr
∂Pi

, the random variables ςrk are mutually independent
identically distributed according to the law, P(ςrk = ±1) = 1/2, and everywhere the
arguments are (Pk+1,Qk).

Notice that the first equation (11) is implicit. Let denote δ := √
h and F(p, q) =(

H0(p, q) + 1
2

∑m
r=1 G(r,r)(p, q)

)
. Then we can reformulate the scheme (11)–(12) as

follows:

Pk+1 = Pk − δ2∂QF(Pk+1,Qk) − δ

m∑
r=1

ςrk∂QHr(Pk+1,Qk) (13)

Qk+1 = Qk + δ2∂PF(Pk+1,Qk) + δ

m∑
r=1

ςrk∂PHr(Pk+1,Qk) (14)

Using the Lipschitz condition (6) and proceeding as in the proof of Theorem 4.6.1
in [9] we can show that the scheme (13)–(14) is well defined:

Lemma 3 There exist h01 > 0, C > 0 such that for any 0 < h ≤ h01 and any
(p, q)t ∈ R2n there exists a unique z ∈ Rn such that z = p − h∂qF(z, q) − √

h
∑m

r=1

ςrk∂qHr(z, q) which satisfies |z − p| ≤ C(1 + |p|)√h.

Moreover, Theorem 4.6.1 in [9] shows that implicit method (13)–(14) is symplec-
tic and of first weak order: for any T > 0, and any φ ∈ C∞

pol(R
2n) we have
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|E(φ(Pk ,Qk)) − E(φ(X 0,x0(kh)))| ≤ c(φ,T )h, k = 0, . . . , T/h�, c(φ,T ) > 0.
(15)

We define the function φδ which associate to (q, p) ∈ R2n the solution z =
(z1, z2)T ∈ R2n of f (δ, q, p, z1, z2) = 0, where

f (δ, q, p, z) =
[
z1 − p + δ2∂qF(z1, q) + δ

∑m
r=1 ςr∂qHr(z1, q)

z2 − q − δ2∂pF(z1, q) − δ
∑m

r=1 ςr∂pHr(z1, q)

]
(16)

where the random variables ςr are mutually independent identically distributed
according to the law, P(ςr = ±1) = 1/2, Since the scheme (13)–(14) is well defined,
the function φδ is also well defined for any δ ∈ (0,

√
h01). Using A1 it is easy to

show that there exists h03 ≤ h01 such that ∂z f (δ, q, p, z) = I − B(δ, p, q, z) where
‖B(δ, p, q, z)‖ < 1 for any (δ, p, q, z) ∈ (0,

√
h03) × R2n ×R2n. Thus, ∂z f (δ, q, p, z)

is invertible, and from the Implicit Functions Theorem we obtain that the func-
tion defined by (δ, p, q) → φδ(p, q) is C∞ on a neighborhood of each point of
(0,

√
h03) × R2n.

Following the same approach as in the proof of Proposition 7.1 in [12]we can show
that the moments of the approximating process (Pk ,Qk) satisfy a similar property
with (7):

Lemma 4 There exist 0 < h02 ≤ h01 such that the symplectic scheme (11)–(12)with
any initial condition (p, q)t ∈ R2n and any 0 < h ≤ h02 satisfies for any l ∈ N∗

Ep,q(|Pk |2l + |Qk |2l) ≤ Cl
(
1 + (|p|2l + |q|2l) exp(−αlkh)

)
, Cl > 0, αl > 0.

(17)

3 Asymptotic Expansion of the Weak Error

Using a Taylor expansion and the fact that u is a solution of the Kolmogorov equation
(8) we obtain the following expansion.

Proposition 1 Let consider any N ∈ N and any φ ∈ C∞
pol(R

2n) ∩ C2N+n+3
r2N+n+3

(R2n),
r2N+n+3 ∈ N. There exist c(N ) > 0 and lN ∈ N, lN > r2N+n+3 such that for all h > 0
and (p, q)T ∈ R2n we have

|u(h, p, q) −
N∑

k=0

hk

k! L
kφ(p, q)| ≤ c(N )hN+1‖φ− < φ > ‖2N+3+n,r2N+3+n

(1 + |p|2lN + |q|2lN ) (18)

Let h0 = min{h02, h03}.We study the first step of the approximating process (Pk ,Qk),
and later we will use the Markov property to extend the results at all steps. The
following result gives an expansion for the symplectic scheme, similar with the
expansion (18).
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Proposition 2 For any k ∈ N there exists an operatorAk of order 2k with coefficients
in C∞

pol(R
2n) such that for any N ∈ N and any φ ∈ C∞

pol(R
2n) ∩ C2N+2

r2N+2
(R2n), r2N+2 ∈

N, there exist CN > 0 and lN ∈ N such that for all 0 < h ≤ h0 and (p, q)T ∈ R2n we
have A0 = I , A1 = L, and

|E(φ(Q1,P1)) −
N∑

k=0

hkAk(p, q)φ(p, q)| ≤ CNh
N+1(1 + |p|2lN + |q|2lN )|φ|2N+2,r2N+2

Proof Firstly we use Taylor expansions to obtain expansions for P1 andQ1 (see also
the proof of Lemma 3.4 in [6]). Then the proof can be done using the same approach
as in the proof of Proposition 3.2 in [6].

3.1 The Modified Generator

Following the same approach as in [3], we want to construct a formal series L =
L + hL1 + · · · + hkLk + · · · such that formally the solution v(h, p, q) of the equation

∂tv(t, p, q) = L v(t, p, q), t > 0, v(0, p, q) = φ(p, q), (p, q)T ∈ R2n,

coincides in the sense of asymptotic expansionwith the transition semigroupE(φ(P1,
Q1)) studied in Proposition 2. In order to have

exp(hL )φ = φ +
∑
k≥1

hkAkφ

we define the Lk operator as

Lk = Ak+1 +
k∑

l=1

Bl

l!
∑

k1+···+kl+1=k−l

Lk1 . . . LklAkl+1+1 (19)

Bl are the Bernoulli numbers and Lk is an operator of order 2k + 2 with coefficients
in C∞

pol(R
2n) and Lk1 = 0. We also have

Ak =
k∑

l=1

1

l!
∑

k1+···+kl=k−l

Lk1 . . . Lkl . (20)

We define the modified generator

L(N ) = L +
N∑

k=1

hkLk , N ∈ N∗. (21)
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Since we do not know if the modified equation

∂tv
(N )(t, p, q) = L(N )v(N )(t, p, q), t > 0, v(N )(0, p, q) = φ(p, q), (p, q)T ∈ R2n,

has a solution, we construct an approximate solution associated to (21).

Proposition 3 Let φ ∈ C∞
pol(R

2n). For all k ∈ N there exist functions vk(t, ·) ∈
C∞
pol(R

2n) defined for all t ≥ 0 such that v0(0, ·) = φ(·), vk(0, ·) = 0, k ≥ 1, and

∂tvk(t, p, q) − Lvk(t, p, q) =
k∑

l=1

Llvk−l(t, p, q), t ≥ 0. (22)

Moreover, for all k ∈ N, j ∈ N∗ there exist γk, j > 0 and positive integers αk, j and
lk,0 such that for all t ≥ 0 we have

|vk(t)| j,αk, j ≤ Qk, j (t)e
−γk, j t‖φ− < φ > ‖ j+(n+1)(k+1)+4k,r j+(n+1)(k+1)+4k , (23)

‖vk(t)‖0,lk,0 ≤ C0,k‖φ− < φ > ‖(n+1)(k+1)+4k,r(n+1)(k+1)+4k , (24)

HereQk, j : [0,∞) → [0,∞) are polynomial functions with positive coefficients and
the constants C0,k do not depend on t.

Proof The proof is similar with the proof of Theorem 4.1 in [6]. Inequalities (23)–
(24) are a consequence of the results presented in Lemma 2.

For any N ≥ 0, we define the approximate solution of the modified flow as:

v(N )(t, p, q) =
N∑

k=0

hkvk(t, p, q). (25)

We can easily show that for all t ≥ 0 we have

∂tv
(N )(t, p, q) = L(N )v(N )(t, p, q) − R(N )(t, p, q), v(N )(0, p, q) = φ(p, q), (26)

where

R(N )(t, p, q) =
2N∑

i=N+1

hi
N∑

k=i−N

Lkvi−k (27)

is of order O(hN+1). The following result can be proved similarly with Theorem 4.1
in [3].
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Proposition 4 Let φ ∈ C∞
pol(R

2n). For any N ∈ N∗ there exist CN > 0 and lN ,

k2N+2 ∈ N such that for all t ≥ 0, 0 < h ≤ h0, (p, q) ∈ R2n we have

∣∣∣∣E(v(N )(t,P1,Q1) − v(N )(t + h, p, q))

∣∣∣∣
≤ hN+1CN (1 + |p|2lN + |q|2lN ) sup

s∈[0,h]
k=0,...,N

|vk(t + s, ·)|2N+2,k2N+2 . (28)

3.2 Main Result

We now study the long time behavior of the numerical solution. We obtain an expan-
sion similar with the one for the exact solution, given in Proposition 1.

Theorem 1 Let N ∈ N be fixed, and let (Pk ,Qk) be the discrete process defined
by the symplectic scheme. Let 0 < h ≤ h0, αN = 6N + 8 + (n + 1)(N + 2) and φ ∈
C∞
pol(R

2n) ∩ CαN
rαN

. Then there exist CN > 0 and lN ∈ N such that for all k ∈ N

|E(φ(Pk ,Qk)) − v(N )(kh, p, q)| ≤ hN+1CN (1 + |p|2lN + |q|2lN )‖φ− < φ > ‖αN ,rαN
.

Proof Let tk = kh. By the Markov property of (Pk ,Qk) we have

|E(φ(Pk ,Qk ) − v(N+1)(tk , p, q)| = |E(v(N+1)(0,Pk ,Qk )) − v(N+1)(tk , p, q)| =∣∣∣∣∣∣
E

⎛
⎝
k−1∑
j=0

E

(
v(N+1)(t j ,Pk− j ,Qk− j ) − v(N+1)(t j+1,Pk− j−1,Qk− j−1)

∣∣∣∣Pk− j−1,Qk− j−1

)⎞
⎠

∣∣∣∣∣∣

≤
k−1∑
j=0

∣∣∣∣E
(
E

(
v(N+1) (

t j ,P1(Pk− j−1,Qk− j−1),Q1(Pk− j−1,Qk− j−1)
) − v(N+1)(t j+1,

Pk− j−1,Qk− j−1)

∣∣∣∣Pk− j−1,Qk− j−1

))∣∣∣∣,

where (P1(p, q),Q1(p, q)) is the first step of the scheme (11)–(12) when the ini-
tial condition is (p, q). Using inequalities (17), (23), and (28), with t = t j , j =
0, . . . , k − 1, we deduce that there exist positive integers lN , kN such that

‖E(v(N+1)(0,Pk ,Qk ) − v(N+1)(tk , p, q)‖0,lN ≤ hN+2c
k−1∑
j=0

sup
s∈[0,h]

i=0,...,N+1

|vi(t j + s, ·)|2N+4,kN

≤ hN+2c‖φ− < φ > ‖αN ,rαN

k−1∑
j=0

Q2N+4(t j )e
−λ2N+4t j

≤ hN+2c‖φ− < φ > ‖αN ,rαN

k−1∑
j=0

e−λ̃2N+4t j ,
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where c > 0, 0 < λ̃2N+4 < λ2N+4 and Q2N+4 is a polynomial function with positive
coefficients. Notice that for a fixed constant λ > 0 we have

k−1∑
j=0

e−λt j ≤ 1

1 − e−λh
≤ c1

h
,

where the constant c1 depends on λ and h0. Hence, using the previous inequality and
(24) we get

‖E(φ(Pk ,Qk) − v(N )(tk , p, q)‖0,lN = ‖E(v(N+1)(0,Pk ,Qk) − v(N+1)(tk , p, q)

+ hN+1vN+1(tk , p, q)‖0,lN ≤ hN+1c2‖φ− < φ > ‖αN ,rαN
+ hN+1‖vN+1(tk , p, q)‖0,lN

≤ hN+1c2‖φ− < φ > ‖αN ,rαN
+ hN+1C0,N+1‖φ− < φ > ‖(n+1)(N+2)+4(N+1),rαN

≤ hN+1CN‖φ− < φ > ‖αN ,rαN

4 Conclusions and Future Work

We have presented a weak backward error analysis for a SHS system and a symplec-
tic scheme of first weak order. The main tools are the exponential convergence to
equilibrium of the solution of theKolmogorov equation, and the uniform ellipticity of
the associated operator.We plan to do a backward error analysis under less restrictive
assumptions. The main difficulty is that the symplectic schemes are fully implicit,
and for SDEs with multiplicative noise and unbounded coefficients, methods from
Malliavin calculus are needed.
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