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Abstract For many investors, such as mutual fund managers, the closing price of
a stock is an important benchmark. Closing prices for stocks traded at NASDAQ
and many other stock exchanges are determined through auctions. Each day and
for each stock traded at NASDAQ, the projected order imbalance of the auction is
announced beginning ten minutes before the close. We introduce a tractable model
for stock price dynamics that takes the order imbalance announcements into account.
In a mean-variance framework with the closing price as benchmark, we derive an
explicit formula for the optimal trading strategy. We find that it is not beneficial
for the investor to trade after the imbalance announcement. However, in addition to
participating in the auction, the investor trades before the imbalance announcement
to benefit from prices which do not reflect the later impact of the investor’s own
auction order.
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1 Introduction

Closing prices of stocks are important and often serve as reference points for investors
to determine their performance. Closing prices are particularly relevant to managers
of mutual funds. For mutual funds, flow trades correspond to inflows or outflows of
cash when clients decide to buy or sell shares of the fund. Regardless of the specific
time the transactions are taking place on a trading day, the mutual fund will receive
from or pay to the client the closing price on that day. Hence, managers of such funds
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use the closing price as their benchmark: they aim to achieve a price that is as close
as possible to the closing price and, if possible, more favourable than the closing
price.

At stock exchanges in many emerging markets and almost all developed markets
(see FTSE Russell [7] for an overview), the closing price is determined through an
auction. The auction mechanisms and rules are similar for different markets. For
this note, we focus on NASDAQ, where all traders are granted access to the same
information. Each day until 3:50 p.m. Eastern Time, traders can submit orders to
the closing auction at NASDAQ without any restriction. At 3:50 p.m., NASDAQ
publishes an initial imbalance announcement, with information on the projected
imbalance of the auction. Afterwards, NASDAQ publishes imbalance information
every five seconds until 4:00 p.m. Between 3:50 p.m. and 4:00 p.m., restrictions on
the possibility to submit orders to the closing auction apply, so to reduce the pro-
jected imbalance. At 4:00 p.m., the closing price is determined such that the most
orders submitted to the auction are matched. Figure1 gives an overview of the clos-
ing auction at NASDAQ. The goal of this note is to introduce a tractable stock price
model around the close and to study what an optimal execution strategy is for a
trader targeting the closing price. This work is in the area of algorithmic trading, the
analysis and implementation of mathematical and computational algorithms to con-
duct trading decisions and asset management. Mathematical studies for algorithmic
trading started with seminal papers by Bertsimas and Lo [3], who set up a discrete-
time model to minimize expected slippage, and by Almgren and Chriss [1], who
focused on the trading strategy targeting the arrival price benchmark including risk
considerations. An overview of trading algorithms targeting different benchmarks
can be found in the recent books by Cartea et al. [4], and Lehalle and Laruelle [9].
While trading strategies for many benchmarks, such as arrival price, VWAP (volume
weighted average price), TWAP (time weighted average price) and POV (percent-
age of volume), have been well studied, there is only sparse literature on execution
problems with a closing price benchmark. Frei and Westray [6] consider the partic-
ular situation in Hong Kong, where the closing price of stocks is computed as the
median of five prices over the last minute of trade. Kan and Park [8] derive an opti-

Fig. 1 Timeline of the closing auction at NASDAQ
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mal trading strategy in a continuous-time model with a mean-variance optimization
criterion. Also using a mean-variance optimization criterion, but in a discrete-time
setting, Labadie and Lehalle [10] find recursive formulae when considering arrival
and closing price benchmarks.

In contrast to all these works, we include in our model the imbalance announce-
ment, which provides crucial information when targeting the closing auction price.
We find an explicit formula for the optimal execution strategy, which trades a part
of the order before the imbalance announcement. This is because the trader bene-
fits from favourable prices before the imbalance announcement by front running the
impact of the trader’s own participation in the closing auction. After the imbalance
announcement, prices reflect the imbalance information so that, for our trader, it is
not favourable to execute further orders. This result of not trading after the imbalance
announcement is in line with observations in Bacidore et al. [2], who discuss issues
surrounding trading in and around the closing auction.

2 Problem Formulation

Our market model consists of T − 1 periods in the open market, with T the closing
time of the auction. Let τ < T be the time of the initial imbalance announcement. At
NASDAQ, τ and T correspond to 3:50 p.m. and 4:00 p.m., respectively. We consider
a trader with a buy order ofW units of some stock. The trader can split the order into
v1, v2, . . . , vT with

∑T
t=1 vt = W , where v1, v2, . . . , vT−1 are the volumes of orders

submitted to the open market and vT is submitted to the closing auction.
We suppose that the order imbalance is cleared immediately and there are no

orders in the closing auction after 3:50 p.m., which are stylized features close to
what we observe at NASDAQ. For a given initial price P̃0, the prices excluding our
market impact are modelled by

P̃t = P̃t−1 + Zt for t ∈ {1, . . . , τ − 1, τ + 1 . . . , T − 1},
P̃τ = P̃τ−1 + Zτ + αN ,

P̃T = P̃T−1 + Y,

where

• Zt , modelling the stock price fluctuations in the open market, are independent and
identically distributed with mean zero and finite variance σ 2

Z .• Y , modelling the fluctuations from the last price in the open market to the auction
price, is independent from Zt with mean zero and finite variance σ 2

Y .
• N = Ñ + vT is the auction imbalance (a positive value means more buy than sell
orders at the current stock price), consisting of our auction order submission, vT ,
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and that of all other market participants, Ñ . We assume that Ñ is independent from
Zt and Y , and it has mean zero and finite variance σ 2

Ñ
.

• α > 0 reflects the impact of the auction imbalance on stock prices.

Assumptions similar to the above independence between auction volume and price
increments have been made in the literature and are empirically justified; see for
example Fig. 1 in Frei and Westray [5].

We assume that the trader’s orders have a temporary market impact so that they
affect stock prices at the execution time, but have no influence on subsequent stock
prices. This means that the trader effectively pays a price

Pt = P̃t + βvt for t ∈ {1, 2, . . . , T − 1},

where β > 0 is the coefficient of temporary market impact. We set PT = P̃T because
our order placed in the closing auction, vT , is already reflected in the earlier price P̃τ

through N = Ñ + vT .
The trader targets the closing price PT . As is standard in the literature on algorith-

mic trading and in line with [1, 6, 8–10], we consider a mean-variance formulation.
Thus, the objective is to minimize, over vt ≥ 0 with

∑T
t=1 vt = W ,

E

[ T∑

t=1

vt Pt − WPT

]

+ λV AR

[ T∑

t=1

vt Pt − WPT

]

for a given mean-variance tradeoff parameter λ > 0, modelling the trader’s risk
aversion. Thismeans that weminimize a combination of average costs and deviations
to the closing price benchmark.

3 Main Result

Our main result gives an explicit formula for the optimal strategy.

Theorem 1 The optimal strategy is given by

v1 = αW

2(β + m1 + ∑τ−1
i=2 mi pi )

,

vt = ptv1 for t = 2, 3, . . . , τ − 1,

vk = 0 for k = τ, τ + 1, . . . , T − 1,

vT = W −
(

1 +
τ−1∑

i=2

pi

)

v1,
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where

mt := (T − t)λσ 2
Z + λσ 2

Y + λα2σ 2
Ñ

+ α,

pt :=
(

λσ 2
Z

β
+ 1 − x−

)
xt+

x2+ − 1
+

(
λσ 2

Z

β
+ 1 − x+

)
xt−

x2− − 1
,

x± := 1 + λσ 2
Z

2β
±

√
λσ 2

Z

β

(

1 + λσ 2
Z

4β

)

.

The theorem shows that the portion 2(β+m1+∑τ−1
i=2 mi pi )−α−α

∑τ−1
i=2 pi

2(β+m1+∑τ−1
i=2 mi pi )

W of the total

orderW is placed into the closing auction. The remaining part is submitted to the open
market before the initial imbalance announcement,with small orders v1, v2, . . . , vτ−1

that are exponentially increasing over time with basis x±. It is not optimal to trade
after the initial imbalance announcement.

Remark 1 (1) If the trader’s orders have no influence on the stock prices in the
closing auction (α = 0), then it is optimal to trade only in the closing auction,
that is, vT = W.

(2) If the trader’s orders have no influence on the stock prices in the open market
(β = 0), then the optimal trading in the open market occurs only at the moment
before the initial imbalance announcement. In particular, we have vt = 0 for all
t �= τ − 1, T and

vτ−1 = αW

2
(
(T − τ + 1)λσ 2

Z + λσ 2
Y + λα2σ 2

Ñ
+ α

) , vT = W − vτ−1.

(3) The value of the mean-variance tradeoff parameter λ determines how much
focus the trader puts on minimizing deviations to the benchmark compared to
minimizing average costs. If λ is big, the trader will submit most of the order
to the closing auction so to minimize deviations to the closing price. Indeed, in
the limit as λ → ∞, the theorem implies that vt → 0 for t = 1, 2, . . . , T − 1
and vT → W , using that mt → ∞ for any t as λ → ∞. By contrast, for λ → 0,
we have vt → αW

2β+2α(τ−1) for t = 1, 2, . . . , τ − 1 and vT → (2β+α(τ−1))W
2β+2α(τ−1) , as we

can show that mt → α and pt → 1 as λ → 0. In this case of λ → 0, the trader
minimizes average costs.

(4) In a generalized setting when the assumptions that Ñ , Zt and Y have zero means
are relaxed, we can find a recursive algorithm for the optimal strategy, general-
izing the explicit formula from Theorem 1; see Yan [11] for details.

4 Sketch of the Proof of Theorem 1

Using the assumptions that Ñ , Zt andY have zeromeans,we can rewrite the objective
function as
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min β

T−1∑

t=1

v2
t + α

τ−1∑

t=1

vt

T−1∑

t=1

vt − αW
τ−1∑

t=1

vt + λσ 2
Z

T−1∑

t=2

( t−1∑

i=1

vi

)2

+ λσ 2
Y

( T−1∑

t=1

vt

)2

+ λα2σ 2
Ñ

( τ−1∑

t=1

vt

)2

subject to W −
T−1∑

t=1

vt ≥ 0 and vt ≥ 0 for all t ∈ {1, . . . , T − 1}.

We analyze the corresponding Lagrange function given by

L(v1, v2, . . . , vT−1; δ) = β

T−1∑

t=1

v2t + α

τ−1∑

t=1

vt

T−1∑

t=1

vt − αW
τ−1∑

t=1

vt + λσ 2
Z

T−1∑

t=2

( t−1∑

i=1

vi

)2

+λσ 2
Y

( T−1∑

t=1

vt

)2
+ λα2σ 2

Ñ

( τ−1∑

t=1

vt

)2
+ δ

( T−1∑

t=1

vt − W

)

and examine its first-order condition with respect to the execution order vt at each
point in time. Tominimize the objective function, the followingKarush-Kuhn-Tucker
(KKT) conditions must hold:

vt
∂L

∂vt
= 0, vt ≥ 0,

∂L

∂vt
≥ 0 for t ∈ {1, 2, . . . , T − 1},

δ
∂L

∂δ
= 0, δ ≥ 0,

∂L

∂δ
≤ 0.

By using the KKT conditions, we can show that it is not optimal to trade after the
initial imbalance announcement based on a proof by contradiction.

Using vt = 0 for t = τ, τ + 1, . . . , T − 1, we can reduce the level of complexity
in the system of equations from the KKT conditions. We solve the system of KKT
equations recursively, that is, we rewrite it such that each of its equations gives a
linear relation between vt , vt−1 and vt−2. By applying the concept of characteristic
equation to this recursive system of equations, we can derive the explicit optimal
trading strategy for every period before the initial imbalance announcement, given
in Theorem 1.

5 Implementation Example

In this section,we use data on intraday stock prices and imbalance volumes during the
closing auction to estimate input parameters, and then illustrate the optimal trading
strategies for an investment in Amazon.com Inc. (AMZN). We choose the time
increment in trading periods to be one second. The overall trading horizon consists
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of the last half hour before market close, which means the considered trading begins
at 3:30 p.m. To estimate model parameters, we use a date set from Nov. 1, 2016 to
Jan. 27, 2017, with intraday stock price, volume and imbalance data fromNASDAQ.
In this estimation,wefindα = 5.72 × 10−6,σ 2

Ñ
= 6.6 × 109,σ 2

Z = 1.96 × 10−8 and

σ 2
Y = 3.21 × 10−8 while we set λ = 5 × 10−4 and β = 10−6 in line with Sect. 3.4 of

Almgren and Chriss [1]. We assume that the goal is to purchaseW =100,000 shares
of the AMZN stock on January 30, 2017.

Figure2 shows the cumulative trading volume based on the strategy of Theorem 1.
After the initial imbalance announcement, the cumulative trading volume remains
constant, until a spike occurs at 4:00 p.m., which reflects the order placed in the
closing auction.

Figure3 shows the different paths for AMZN’s stock prices. The blue path corre-
sponds to the actual historical stock prices on Jan. 30, 2017. We added two different
price paths that incorporate our trading decisions. The red path models the stock
prices if we purchased the entire 100,000 shares in the closing action while the green
path displays the prices under our optimal strategy fromTheorem 1. The price impact
induced by the proposed strategy is considerably lower than that of the benchmark
strategy. In this example, implementation costs of the strategy using only the clos-
ing auction are $83,095,241 while the optimal strategy entails implementation costs
of $82,846,209, which reflects a cost reduction of $249,032, or 30 basis points. A
more extensive analysis of the performance across 15 stocks listed at NASDAQ is
contained in Yan [11]. In that study, the proposed strategy yields a positive and sta-

Fig. 2 Cumulative trading volume for AMZN based on the strategy of Theorem 1
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Fig. 3 AMZN price dynamics for the different scenarios: observed prices (blue: ‘Actual’), prices
with an additional order entirely submitted to the closing auction (red: ‘Only C.A.’), and prices
with an additional order submitted based on the strategy of Theorem 1 (green: ‘Strategy’)

ble performance across different stocks. While the strategy may lead to temporary
losses on some trading days, it showed an outperformance compared to trading in
only the closing auction for all tested stocks over a one-month test period. Because
the trading strategy is available in explicit form, its computation time for one stock
and one trading day is only a couple of seconds on a standard personal computer.

The optimal strategy depends also on the chosen values for the mean-variance
tradeoff parameter λ and the coefficient β of temporary market impact. A higher
value of λ means that the trader is more risk averse, and thus, trades a bigger portion
in the closing auction. This is indeed the case, aswe observe in Fig. 4 for a comparison
with different values of λ: 10−4 (low), 5 × 10−4 (default), and 10−3 (high), using the
same other parameters as described at the beginning of this section. A higher value
of the coefficient β means that the trader has a bigger impact on prices in the open
market. When β is high, the trader will spread the orders more evenly during the
period of the open market to reduce price impact while taking more risk from price
fluctuations. This is confirmed in Fig. 5, which shows a comparison for different
values of β: 10−7 (low), 10−6 (default), and 10−5 (high), with the other parameters
the same as described at the beginning of this section.
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Fig. 4 Cumulative trading volume for AMZN compared for different values of λ: 10−4 (low;
green), 5 × 10−4 (default; blue), and 10−3 (high; red)

Fig. 5 Cumulative trading volume for AMZN compared for different values of β: 10−7 (low;
green), 10−6 (default; blue), and 10−5 (high; red)

6 Conclusion

In this note,we derived an explicit optimal strategy for a traderwho targets the closing
prices of stocks listed at NASDAQ. The trader attempts to minimize a combination
of average costs and deviations to the closing price benchmark. We introduced a
tractable model, which takes the key microstructural features into account, namely,
fluctuations in stock prices and the impact of the order imbalance announcement. The
optimal strategy puts a major part into the closing auction and smaller, exponentially
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increasing fractions in the open market before the imbalance announcement. No
execution is done after the imbalance announcement. Using historical imbalance
volume and intraday stock prices, we showed an example of how our optimal strategy
canbe implemented. Further statistical analysis done inYan [11] indicate, persistently
across different stocks of NASDAQ and different levels of the trader’s risk aversion,
an improvement compared to trading in the closing auction only; in particular, our
optimal strategy has lower average costs.
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