A General Method for Selection)
Function Optimization in Genetic oo
Algorithms

Nawar Ismail and Matthew Demers

Abstract Genetic algorithms are often used as a mechanism to solve complicated
problems in optimization. In the schemes that we are concerned with, a population
of members, which are each defined by a set of parameters, are used with the desire
to optimize some value called the fitness. The fitness of each member in a population
is measured and used during a selection process which defines a likelihood for any
member to carry on to the subsequent iteration (often called a generation) of the
algorithm. Mutations are then stochastically applied to the population. This alters
the parameters of the population members. Combining the effects of selection and
mutation tends to increase the average fitness of a population. Our principal concern
is in determining how to select members from one iteration to the next. Measuring
how well a selection mechanism performs is computationally demanding, making its
optimization difficult. We apply an additional genetic algorithm to a simplified model
to give an approximate optimization for the selection mechanism. In this paper, we
detail the general procedure for this optimization.

Keywords Genetic algorithms - Iterative methods - Optimization
Predictive models

1 Introduction

A genetic algorithm (GA) is, loosely, an iterative scheme designed with the purpose
of finding an optimal solution to a potentially very difficult or complex problem.
In general, large numbers of difficult evaluations impose time constraints. Many
techniques have been developed to improve the utility of the algorithm, such as func-
tional approximation and determining representative simulation run length which
both reduce the difficulty of evaluation, and fitness estimation which can reduce

N. Ismail - M. Demers (<)
University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
e-mail: mdemers @uoguelph.ca

N. Ismail
e-mail: nismail @uoguelph.ca

© Springer Nature Switzerland AG 2018 37
D. M. Kilgour et al. (eds.), Recent Advances in Mathematical

and Statistical Methods, Springer Proceedings in Mathematics & Statistics 259,
https://doi.org/10.1007/978-3-319-99719-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99719-3_4&domain=pdf

38 N. Ismail and M. Demers

evaluation numbers [1-3]. Additionally, the operators used can be designed to pro-
duce improvements more efficiently [4]. Finally, the parameters used in the algorithm
strongly influence the success of the output but the ideal values are often difficult
to determine [5, 6]. In this paper, we are concerned with optimizing a particular
parameter of these algorithms, the selection function (see Sect. 3) with a generally
applicable technique.

There are many parameters in genetic algorithm to be chosen, such as the num-
ber of members in a population, mutation rates, selection probabilities (as well as
application specific parameters). Often, these values are chosen through trial and
error, or “experimentally” [6]. Finding optimal parameters is difficult due to number
of possibilities and the generality of problems tackled by GAs [6]. This difficulty
suggests the use of a GA to optimize the parameters of the original GA. Howev-
er, directly applying a GA to the output of another GA would require an infeasible
amount computation time. We propose that a model can instead be used to optimize
the parameters of the algorithm.

We apply our investigation to a particular optimization problem; however, we
maintain that the procedures presented here are generally applicable. The goal of
our optimization problem is to obtain configurations of so-called “creatures” that
maximize their displacement on a flat planar surface by the end of a fixed time. These
sets of mechanical components operate in a physically simulated environment. Many
similar optimizations involving virtual creatures have been studied [7].

2 Optimization Setup

2.1 Creatures

In our framework, we define a creature as a set of mechanical components and how
they are connected. There are three possible component types in any creature: pistons,
rigid bars, and contact spheres, which will be referred to as muscles, bones, and nodes
respectively to remain consistent with the biological naming associated with genetic
algorithms.

The nodes act as anchors for the connecting muscles and bones, and are the
source of environment interaction. The bones will maintain a fixed length, while the
muscles oscillate their length sinusoidally with time, at different rates. With these
components, each creature will travel a deterministic displacement at the end of a
time, ¢t = t,,,,. The projection of this displacement on the plane is what we take to
be the creature’s fitness,'

f = \/xCOITL (tmax) 2 + yCUWL (thélX) 2 ’ (1)

I The goal is to travel across the plane. The height of a creature plays no (direct) role in this. So only
the displacement in the x-y plane is considered.

A General Method for Selection Function Optimization in Genetic Algorithms 39

Fig. 1 A creature consists of three components: muscles (red) which provide a potential driving
force, bones (white) which provide structure, and nodes which interact with the environment. These
define a sufficient set of components that allows a creature to move, provided its configuration
allows it. A 2D creature is shown for simplicity, but simulations are run in 3D

where X, and y.,, are the center of mass coordinates. This fitness is the objective
function that we would like to maximize. For simplicity, the muscles and bones are
massless, making the nodes the only massive component (Fig. 1).

2.2 Evaluating Fitness

The are six forces responsible for the net force on each node are gravity, muscle
forces, bone forces, surface collision, ground friction and drag.
The net force on a node is then the sum of these six forces; namely:

Fnode=Fg+Fm+Fb+Fc+Ff+Fd' (2)

From F = m¥, we get that

1
B = [[X Fuestrvrovs i’ 3)

forces

where r; is the position of node j, and F,,,q, ; is the net force acting on that node. This
coupled with Eq. 1 defines the mathematical function we are trying to optimize.

We simulate the movement of each node by iteratively evaluating this equation
numerically. At the end of each simulation (consisting of 9000 unit time step itera-
tions), the displacement in the plane of the creature’s center of mass is recorded as
the creature’s fitness.

40 N. Ismail and M. Demers

3 Algorithm

3.1 Genetic Algorithm

Our genetic algorithm begins with an initial population of N members.? In our
scheme, each member of the population is a creature as defined in Sect. 2.1. Genetic
operators are then iteratively applied to the population. These operators act on a
population with the aim of increasing the average fitness of that population [8]. The
operators used are the selection function, and the mutations (see Sect. 3.2). An outline
of the algorithm used can be found in Algorithm 1.1. The algorithm can terminate on
many different end conditions. We mainly end our simulations when improvements
become negligible or at the end of a fixed number of generations.

Algorithm 1.1 Genetic Algorithm

P < INITIATEPOPULATION() > with creatures
while end condition not met do

EVALUATEFITNESSES(P)

P < SELECT(P)

P < MUTATE(P)
end while

3.2 Genetic Operators

3.2.1 Selection Function

Selection functions act on a population to select creatures from one iteration of the
algorithm to the next [8]. There are several types of selection functions [8]. We
specifically investigated a type of rank selection. After fitness evaluation, creatures
in the current generation are ordered from highest to lowest fitness. The creature with
the greatest fitness would have rank 0, the creature with the second greatest would
have rank 1, and so on. We could also consider a rank percentage which is bounded
by 0 and 1, regardless of population size.

We must balance the variance of the selection function with how strongly we
select for the best creatures. With too little variation, the probability of being trapped
at or near a local maximum would be very high [8]. Conversely, selecting uniform-
ly (without regard for fitness) would be a pointless exercise. Determining how to
distribute this balance in our selection function is our principal concern.

2Values of N between 100, and 1000 are typically used. This was determined through trial and
error. Future work may determine an ideal value through the techniques described here.

A General Method for Selection Function Optimization in Genetic Algorithms 41
3.2.2 Mutations

At the conclusion of each generation, all creatures may undergo one or more muta-
tions. Mutations alter the properties of a creature, which ultimately affects its fitness.
There are three mutation types in our scheme:

1. Modify Characteristic: Changes a property of a component. Examples include:
random node locations, modifying node mass, and modifying muscle contraction
rate.

2. Add Component: Add a node, muscle, or bone. Adding a node may generate
additional connections.

3. Remove Component: Remove a node, muscle, or bone. Removing a node will
also remove connected muscles and bones.

These essentially span the set of simple alterations, and provide a mechanism to
explore other creature configurations [8]. These are applied to creatures with some
small probability. Our simulations indicate that most mutations will decrease perfor-
mance, but a handful will cause improvements. Coupling mutations with the selection
function means that previously successful creatures are being modified, causing im-
provements in their design over time.

4 Methods

4.1 Overview

To optimize the form of the selection function, it must be assigned a fitness. We use
the average fitness of the creatures produced after 300 generations to represent the
ability of a selection function.’

A statistical model of our creatures will be used to reduce the computational cost
required to evaluate the fitness of many selection functions. This model is imple-
mented by replacing creatures with their most representative statistic: their fitness.
The model will therefore deal with floating point numbers instead of a complicated
structure whose fitness is computationally expensive to measure. This is a sort of
Sfunctional approximation, where we use an alternate expression for the fitness [3].

The selection function acts identically except it considers fitnesses rather than
creatures (which would have those associated fitnesses). The mutation operator how-
ever, is intimately tied to the physical design of a creature. So reducing its structure
to a single value requires some careful considerations.

3This must be evaluated several times to obtain a proper statistic, which can be demanding.

42 N. Ismail and M. Demers

4.2 Estimating Impact

To emulate the mutation operator, we look at the distribution of how the mutations
tend to affect the creature’s fitness. It is straightforward to see that the change in
fitness after a creature is mutated (or impact), correlates to the fitness of the creature.
For example, creatures with a greater fitness would be likely to suffer negative effects
when a mutation occurs due to disruptions in their more specialized structures.

Combining the fact that each creature has its own distribution, with the fact that
these distributions depends on fitness, we conclude that each fitness has its own
distribution. To properly mimic it, we collect a sample of genomes with various
associated fitnesses, and apply this sampled distribution to our model.

We start by collecting a list of impact statistics. To do this, we first determine a set
of fitness levels that span the range of fitnesses typically seen. The genetic algorithm
is run until it produces a creature with a fitness within some margin of a desired
level. Mutations are applied to several copies of this creature. Measuring the change
in fitness for each creature provides us with a sample of impact statistics. If we
sample these impacts from many different creatures at each fitness level, we obtain
a reasonable sample of impact statistics grouped by fitness level.* This is outlined in
Algorithm 1.3 and gives us the required statistics for our model.

The fitnesses of the creatures typically range from 0-400. Based on our available
computational time, we chose our levels to be at 5 x 1.25 fori =0, ..., 20. 1000
impact statistics were collected from each of over 1800 creatures spanning these
fitness levels, providing us with nearly two million impact statistics.

Algorithm 1.2 Obtaining Impact Statistics

for all Fitness levels do
for M creatures found at this level do
Population < N copies of creature
fo < initial creature’s fitness
for all N creatures do
apply round of mutations
f < new fitness
record impact statistic as fo — f
end for
end for
end for

4Care should be taken as to not sample multiple creatures from the same instance of the algorithm.
Otherwise they will not be independent.

A General Method for Selection Function Optimization in Genetic Algorithms 43

4.3 Model

Our model aims to approximate the fitnesses produced by the genetic algorithm
that simulates creatures, without actually simulating them. The utility of this is not
creature optimization (at least not directly), since we remove any concept of creature,
but instead to greatly decrease the computational cost associated with measuring the
fitness of a selection function.” In our model, when the mutation operator is called
on a population of fitnesses, the fitness of each member is looked up and a random
impact corresponding to that fitness is applied to their fitness. Since the distribution of
impacts is contained in our sampling, this approximates the true nature of impacts.®
These changes to Algorithm 1.1 are shown in Algorithm 1.3.

Algorithm 1.3 Model Genetic Algorithm

function IMPACTMODEL(Y")
impacts < dataset with fitness closest to f
return uniformly selected value from impacts
end function

P <« INITIATEPOPULATION() > with fitnesses sampled from initial populations of creatures
while end condition not met do
P < SELECT(P)
for all population members do
f < f + IMPACTMODEL(f)
end for
end while

To demonstrate the validity of our model, we run both algorithms (the one which
simulates creatures, and the one which only considers their fitness) and measure the
fitness of the selection function (as described in Sect. 4.1). This is done for a selection
function of the form,

P(x) = (1 — x)?sin(mx) 4)

for several different values of p. This function was based on our intuition for how the
mass of the selection function should be distributed - essentially a reasonable guess
at a good selection function. As can be seen in Fig. 2, our simplified model follows
the general trend obtained by the algorithm which actually simulates the creatures.
Since the trends are similar, the maxima in both the real simulation and our model
would likely occur for similar selection functions.

SThis decreased cost will then be used to optimize the selection function, which in turn improves
the creature optimization.

%More advanced statistics or added corrections can be implemented to improve the quality of our
model. As a basic implementation this will suit our purposes.

44 N. Ismail and M. Demers
300

i-—- Model
250f| == Simulated

200

150

Average Fitness

100

50

N 10 20 30 40 50 60 10 80
Distribution Parameter 'p'

Fig. 2 A comparison between the actual data obtained from simulating the creatures (red) and the
models predictions (black) for a selection function of the form, P(x) = (1 — x)? sin(rx). Each point
corresponds to the particular selection function’s fitness. Notice the relatively large fluctuations
found in the simulated data. This results not only from a large variance at each point, but also
demonstrates a limitation in acquiring large data sets due to the high computation cost that we aim
to eliminate. Under the considerations that our model greatly simplifies the problem (by eliminating
the creature), the two graphs follow a similar trend and so we validate it as an approximation to the
actual selection function fitness

4.4 Selection Function Optimization

We can now approximate the fitness of a selection function in a feasible time scale
which allows us to optimize the selection function. To avoid assuming the form of
the ideal selection function, we define the function,

n " a L <y< il

o.(ay,ar, ...a =—~E Lo n 5

n(1, 42, n) Zai 0{0 else) ()
i

which corresponds to a normalized set of n columns of height a;n/ Y a; that are
equally spaced on the domain [0, 1]. With sufficiently large n, this function can be
used to approximate any function we would be concerned with, and so it is used as
our selection function.

We use a third genetic algorithm to determine the parameters, a; of the selec-
tion function o,, to optimize our model of the fitness of a selection function.’
We fill our population with 300 members. Each member has a set of n number-
s corresponding to a; in 5. The selection function used in this third algorithm is
P(x) = (1 — x)* sin(mrx), since we have seen its validity when optimizing crea-
tures.® Mutations consist of potentially reassigning some numbers with new random
values. With this, everything needed to optimize the selection function is set in place.

7The other two being: (1) the one used in creature optimization, and (2) the one used in our model.

80ne could consider optimizing rhis selection function as well. However, they would find themselves
optimizing endlessly. At some point an educated guess must be made.

A General Method for Selection Function Optimization in Genetic Algorithms 45

1.2
| = Exponential Fit

1.0\ — Optimal Selection Function
2 J
S 08
[+
o
2
o 06
c
2
o 04
o
w

0.2

%85 02 04 06 0.8 1.0

Selection Rank Percentage

Fig. 3 The average o, function outputted by the selection function optimization procedure (red).
The least squares exponential fit P(r,) = 1.08¢~**¥» was fitted to the o function (black). Here,
P(rp) is the probability of a creature with rank percentage r, to be selected. We chose n = 10, but
higher values of n can be used, although this may make the optimization more difficult. Either the
o function or the fitted curve can be taken to be an optimal selection function

5 Results

Our model aimed to approximate the fitnesses produced by the optimization of crea-
tures. It was able to generate trends similar to those that resulted from actually
simulating the creatures. This is shown in Fig. 2.

Taking our model to be a reasonable predictor of a selection function’s fitness,
it was used in an additional genetic algorithm. This genetic algorithm optimized
the parameters in the selection function defined by Eq. 5. The optimal selection
function that was produced was fitted to the exponential seen in Fig. 3. When this
selection function was used to optimize creatures, the selection function’s fitness
was 230 £ 10. Although this is likely not the highest possible fitness, it does surpass
all other tested selection functions. The best of those selection functions produced a
fitness of 200 = 20. This means that the fitness of our optimized selection function
increased by (15 + 2)%.

6 Discussion and Conclusion

Our primary concern was optimizing the selection function used in our optimization
of creatures. To overcome the excessive computational cost associated with this, we
developed a model capable of approximating selection function fitness. Our model
removed the need to simulate creatures by only considering their best representative
estimator, their fitness. To allow for this simplification, the mutation operator was
approximated by using a sample of impacts at various fitness levels. With this, our
model matched the general trend obtained when actually simulating the creatures,
validating our model as an approximation.

46 N. Ismail and M. Demers

The model was used to optimize a selection function with a general form. An ideal
solution was found to be an exponential decay and produced 15 £ 2% higher creature
fitness on average after 300 generations than other tested functions. The generality
of our method, would allow it to be applied in many different optimization problems.

The determination of the selection function form would be an unaccessible task
without similar considerations to those presented here. Brute force optimizations can
still be done, but may be limited to considering a handful of values [9]. The most
computationally demanding task in our technique is the acquisition of a sufficient
sample of creatures. Collecting the ~2000 creatures used here required around 10
days of computation (on a single machine). However, we observed similar results
with ~200 creatures, implying some robustness with regard to quantity. In addition,
the collecting of genomes - which amounts to recording the solutions to the problem
- has other uses like analysing solution behaviours and their characteristics, and can
be collected passively as the problem is studied. It does not have to be the focus of the
optimization, and can this technique can be applied after a sufficient set is collected.

Future work could relate to improving the statistical methods applied to our model,
the simplicity of which amounts to our largest source of error. One could also consider
extensions such as: if and how the selection function should change as the algorithm
iterates, optimization of population size, or ideal mutation rates, as considered in [6].

References

1. Sun, C, Zeng, J., Pan, J., Xue, S., Jin, Y.: A new fitness estimation strategy for particle swarm
optimization (2013)

2. Branke, J., Asafuddoula, M., Bhattacharjee, K.S., Ray, T.: Efficient use of partially converged
simulations in evolutionary. Optimization (2017). https://doi.org/10.1109/TEVC.2016.2569018

3. Regis, R., Shoemaker, C.: Local function approximation in evolutionary algorithms for the
optimization of costly functions. IEEE Trans. Evol. Comput. 8, 490-505 (2004). https://doi.org/
10.1109/TEVC.2004.835247

4. Rasheed, K., Hirsh, H.: Informed operators: speeding up genetic-algorithm-based design opti-
mization using reduced models (2000)

5. Eiben, A.E., Smit, S.K.: In Autonomous Search, p. 1536. Springer, Torino (2011)

6. Aine, S., Kumar, R., Chakrabarti, P.P.: Adaptive parameter control of evolutionary algorithms
to improve quality-time trade-off (2009)

7. Lehman, J., et al.: The surprising creativity of digital evolution: a collection of anecdotes from
the evolutionary computation and artificial life research communities (2018)

8. Kumar, R.: Blending roulette wheel selection and rank selection in genetic algorithms. Int. J.
Mach. Learn, Comput (2012)

9. Pongcharoen, P., Hicks, C., Braiden, P., Stewardson, D.: Determining optimum genetic algorithm
parameters for scheduling the manufacturing and assembly of complex products. Int. J. Prod.
Econ. 78, 311 (2002)

https://doi.org/10.1109/TEVC.2016.2569018
https://doi.org/10.1109/TEVC.2004.835247
https://doi.org/10.1109/TEVC.2004.835247

	A General Method for Selection Function Optimization in Genetic Algorithms
	1 Introduction
	2 Optimization Setup
	2.1 Creatures
	2.2 Evaluating Fitness

	3 Algorithm
	3.1 Genetic Algorithm
	3.2 Genetic Operators

	4 Methods
	4.1 Overview
	4.2 Estimating Impact
	4.3 Model
	4.4 Selection Function Optimization

	5 Results
	6 Discussion and Conclusion
	References

