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Abstract Themain objective of this paper to design a robust reliableH∞ control and
a switching law for a class of uncertain switched systems under an average dwell time
switching signal that guarantees ISS not only when all the actuators are operational,
but also when some of them experience failure. The faulty actuator output is assumed
to be nonzero, which is treated as a disturbance signal that is augmented with the
system disturbance input. The input-to-state stability (ISS) property is analyzed by
the multiple Lyapunov functions and comparison principle approach. A numerical
example is introduced to illustrate the validity of the theoretical results.

Keywords Switched systems · ISS · Average dwell time · Reliable control
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1 Introduction

There has been a growing interest in studying switched systems in the last three
decades due to their widespread applications in different fields such as aircraft, auto-
motive industry, robotics, control systems, biological, epidemic disease models; see
[7, 8, 10] and the references therein. By a switched system we mean a special class
of hybrid systems that consist of a family of continuous- or discrete-time dynamical
subsystems (or modes), and a switching rule (or signal). The role of the switching
signal is to govern the jump among the subsystems. The stability of switched sys-
tems has received much attention and has been studied using either the common
Lyapunov function method [11], or the multiple Lyapunov function method [2]. It
has been realized that it is more convenient to use multiple Lyapunov functions than
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the common Lyapunov function since having only one Lyapunov function for all the
modes under study is not practical and is difficult to construct.

The reliable control is the controller that tolerates actuator and/or sensor fail-
ures. In reality, the failure of control components is frequently encountered, yet the
immediate repair may not be feasible, such as in the case of aerospace or submarine
system, etc. Therefore, designing a reliable controller to guarantee an acceptable
level of performance becomes crucial. The trend to design reliable controllers has
been increased; see for instance [4, 12, 15, 16, 18]. In most of the available results
about reliable control, the faulty actuators are modelled as outages i.e., the output is
assumed to be zero. In [1, 9, 12, 16], the output signal is considered as a disturbance
signal with boundedmagnitude that is augmentedwith the system disturbance signal.

The H∞ control has received a great deal of attention in control theory [3, 17].
It is a useful measure used to guarantee the performance of the plant when dealing
with control problems that involve robust design. However, in the event of control
component failures, the stability or performance of the plant may not be achieved by
such designs. Therefore, it would be advantageous if it is associated with a reliable
control design to handle such failureswhen they occur.Onemay refer to [1, 9, 12, 18].

In practice,most of the real control systems are subject to some disturbance inputs.
ISS notion, introduced in [13] which addresses the system response to a bounded
disturbance when the unforced system is asymptotically stable, is an efficient tool
to deal with these disturbances. As a result, it becomes important in the modern
nonlinear control theory and design [1, 13, 14].

This paper is organized as follows. Section 2 involves the problem description,
definitions, and a useful lemma. The main results and proofs are stated in Sect. 3. A
numerical example with simulations is presented in Sect. 4. The conclusion is given
in Sect. 5.

2 Problem Formulation and Preliminaries

Throughout this paper, Rn denotes the n-dimensional Euclidean space; R+ refers to
the nonnegative real numbers;Rn×m is the class of all n × m real matrices. A symmet-
ric matrix P is said to be positive definite if all its eigenvalues are positive. Moreover,
If P ∈ R

n×n, denote by λmax(P)(λmin(P)) the maximum (minimum) eigenvalue of P.
If V (x) = xTPx, the following inequalities are always true

c1||x||2 ≤ V (x) ≤ c2||x||2, (1)

where c1 = λmin(P), c2 = λmax(P). If x ∈ R
n, then ||x|| refers to the Euclidean

vector norm of x. L2[t0,∞) is the space of square integrable vector-valued func-
tions on [t0,∞) and || · ||2 denotes L2[t0,∞)-norm (i.e., w ∈ L2[t0,∞) means
||w||22 = ∫ ∞

t0
||w(t)||2 dt < ∞). Consider a class of uncertain switched systems given

by
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{
ẋ = (Aρ(t) + ΔAρ(t))x + Bρ(t)u + Gρ(t)w + fρ(t)(x),
z = Cρ(t)x + Fρ(t)u, x(t0) = x0,

(2)

where x ∈ R
n is the system state, u ∈ R

q is the control input, w ∈ R
p is an input

disturbance, which is assumed to be bounded, and z ∈ R
r is the controlled output. ρ

is the switching lawwhich is a piecewise constant function defined by ρ : [t0,∞) →
S = {1, 2, · · · ,N }. The role of ρ is to switch among the system modes. For each
i ∈ S , Ai is a non Hurwitz matrix, Ki ∈ R

q×n is the control gain matrix such that
u = Kix, where (Ai,Bi) is assumed to be stabilizable, fi(x) ∈ R

n is somenonlinearity,
Ai, Bi, Gi, Ci and Fi are known real constant matrices, and ΔAi is a deterministic
piecewise continuous function of time t which represents parameter uncertainty with
bounded norm and it also gives the structure of the systemuncertainty. For any i ∈ S ,
the closed-loop system is

{
ẋ = (Ai + ΔAi + BiKi)x + Giw + fi(x),
z = Cicx, x(t0) = x0, where Cic = Ci + FiKi.

(3)

To analyze the reliable stabilization with respect to actuator failures, the q control
actuators are divided into two sets. � ⊆ {1, 2, . . . , q} the set of actuators that are
susceptible to failure, i.e., they may occasionally fail, and � ⊆ {1, 2, . . . , q} − �

the other set of actuators which are robust to failures and essential to stabilize the
given system. The elements of � are redundant in terms of the stabilization but
necessary to improve the system performance, while the elements of � are required
to stabilize the system and assumed that they never fail, i.e., the pair (Ai,Bi�) is
assumed to be stabilizable.

For i ∈ S , consider the decomposition of the control matrix Bi = Bi� + Bi�,

where Bi�, Bi� are the control matrices associated with �, � respectively, and
Bi�, Bi� are generated by zeroing out the columns corresponding to � and �,
respectively. For a fixed i ∈ S , let σ ⊆ � corresponds to some of the actuators
that experience failure, and assume that the output of faulty actuators is any arbitrary
energy-bounded signal (or disturbance input) which belongs to L2[t0,∞). Then, the
decomposition becomes Bi = Biσ + Biσ ,where Biσ and Biσ have the same definition
of Bi� and Bi� , respectively. Furthermore, the augmented disturbance input to the
system becomes

wF
σ = (wT (uFσ )T )T ,

where uFσ ∈ R
q is the failure vector whose elements corresponding to the set of faulty

actuators σ , and F here stands for “failure”. Since the control input u is applied to
the system through the normal actuators, and the outputs of the faulty actuators are
assumed to be arbitrary signals, the closed-loop system becomes

{
ẋ = (Ai + ΔAi + BiσKi)x + GicwF

σ + fi(x), i ∈ S = {1, 2, . . . ,N },
z = Cicx, x(t0) = x0, , where Gic = (Gi Biσ ).

(4)
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Definition 2.1 [6] (Class-K function) A function ρ : [0, r) → [0,∞) is said to
belong to classK (i.e., ρ ∈ K ) if it is continuous, strictly increasing, and ρ(0) = 0.

Definition 2.2 (Input-to-State Stability) System (3) is said to be robustly globally
exponentially ISS if there exist positive constants λ, λ and a function ρ ∈ K such
that, for any solution x(t) = x(t, t0, x0),

||x|| ≤ λ||x0||e−λ(t−t0) + ρ

(

sup
t0≤τ≤t

||w(τ )||
)

, ∀ t ≥ t0.

Definition 2.3 (input-to-state stability with an H∞-norm (ISS-H∞)) Given a con-
stant γ > 0, system (3) is said to be ISS-H∞ if there exists a state feedback law
u(t) = Kix(t), such that, for any admissible parameter uncertainties ΔAi, the closed
loop system (3) is globally exponentially ISS, and the controlled output z satisfies

||z||22 =
∫ ∞

t0

||z||2 dt ≤ γ 2||w||22 + m0,

for some positive constant m0.

Assumption A For i ∈ S , the admissible parameter uncertainties are defined by

ΔAi(t) = DiUi(t)Hi, ∀ t ∈ R+,

with Di, Hi being known real matrices with appropriate dimensions that give the
structure of the uncertainty, andUi(t) being unknown real time-varying matrix rep-
resenting the uncertain parameter and satisfying ||Ui(t)|| ≤ 1.

Lemma 2.4 For any arbitrary positive constants ξ1, ξ2 and ξ3, and a positive definite
matrix P, we have

(i) 2xTP (ΔA) x ≤ xT
(
ξ1PDDTP + 1

ξ1
HTH

)
x.

(ii) 2xTPGw ≤ xT
(
ξ2PGGTP

)
x + 1

ξ2
wTw.

(iii) 2xTPf (x) ≤ xT
(
ξ3P2 + 1

ξ3
δI

)
x such that || f (x)||2 ≤ δ||x||2 with δ > 0.

Proof For (i), we have

0 ≤ (
√

ξ1x
T (PDU ) − 1√

ξ1
xTHT )(

√
ξ1x

T (PDU ) − 1√
ξ1
xTHT )T

= ξ1x
TPDDTPx + 1

ξ1
xTHTHx − 2xT (PDU H )x,

which leads to 2xT (PDU H )x ≤ xT
(
ξ1PDDTP + 1

ξ1
HTH

)
x, which yields the

desired result. The inequalities in (ii) and (iii) can be proved similarly. �
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Average Dwell Time Condition (ADTC) [5]. The number of switches N (t0, t) in
the interval (t0, t) for a finite t satisfies N (t0, t) ≤ N0 + t−t0

τa
, where N0 > 0 is the

chatter bound, and τa is the average dwell time.
Here, by dwell time we mean the time between two consecutive switches, while

the chatter bound is an upper bound for the number of switches in an interval of
length smaller than τa.

3 Main Results

Theorem 3.1 Let the controller gain Ki and the constant γi > 0 be given, and
assume that Assumption A holds. Then, the switched control system (3) is robustly
globally exponentially ISS with an H∞-norm bound γ if the ADTC holds, and there
exist positive constants ξ1i, ξ2i, ξ3i , and a positive definite matrix Pi satisfying the
Riccati-like equation

(Ai + BiKi)
TPi + Pi(Ai + BiKi) + ξ1iPiDiD

T
i Pi + 1

ξ1i
HT

i Hi + CT
icCic

+ ξ2iPiGiG
T
i Pi + ξ3iP

2
i + 1

ξ3i
δiI + αiPi = 0, (5)

where δi > 0 such that || fi(x)||2 ≤ δi||x||2, and αi > 0 is the decay rate of mode i.

Proof Let x(t) = x(t, t0, x0) be the solution of system (3). For any i ∈ S , define
Vi(x) = xTPix as a Lyapunov function candidate for the ith mode. Then,

V̇i(x) = xT [(Ai + BiKi)
TPi + Pi(Ai + BiKi)]x + 2xTPi(ΔAi)x

+ 2xTPiGiw + 2xTPi fi(x)

≤ xT [(Ai + BiKi)
TPi + Pi(Ai + BiKi) + ξ1iPiDiD

T
i Pi

+ ξ2iPiGiG
T
i Pi + 1

ξ1i
HT

i Hi

+ ξ3iP
2
i + 1

ξ3i
δiI ]x + 1

ξ2i
wTw = −αiVi(x) + 1

ξ2i
wTw,

where we used || fi(x)||2 ≤ δi||x||2 and Lemma 2.4 in the second bottom line, and
condition (5) in the last line. Hence, for each subinterval [tk−1, tk) we have, after
adding-subtracting the term θiVi(x),

V̇i(x) ≤ −(αi − θi)Vi(x) − θiVi(x) + wTw/ξ2i

≤ −αiVi(x) − θiVi(x) + wTw/ξ2i,

where αi = αi − θi for some 0 < θi < αi. The foregoing inequality implies that
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V̇i(x) ≤ −αiVi(x), for all t ∈ [tk−1, tk),

provided that the sum−θiVi(x) + wTw/ξ2i < 0 or Vi(x) > 1
θiξ2i

||w||2. By (1), ||x|| >
||w||√
θic2ξ2i

=: ρi(||w||).Then, for all t ∈ [tk−1, tk),Vi(x(t)) ≤ Vi(x(tk−1))e−αi(t−tk−1) pro-
vided that ||x|| > ρ(||w||), where ρ(||w||) = maxi∈S {ρi(||w||)}. From (1), we have
for any i, j ∈ S

Vj (x(t)) ≤ μVi(x(t)), μ = c2/c1, (6)

where c1 = mini∈S {λmin(Pi)} and c2 = maxi∈S {λmax(Pi)}. Then, for i ∈ S and
t ∈ [tk−1, tk), we have Vi(x(t)) ≤ μk−1e−αi(t−tk−1)e−αi−1(tk−1−tk−2) · · · e−α1(t1−t0)V1(x0)
provided that ||x|| > ρ(||w||). Letting α∗ = min{αi; i ∈ S }, one may get

Vi(x(t)) ≤ μk−1e−α∗(t−t0)V1(x0) = e(k−1) lnμ−α∗(t−t0)V1(x0)

provided that ||x|| > ρ(||w||). Using the ADTC with N0 = η

lnμ
, τa = lnμ

α∗−ν
, (ν <

α∗), for some arbitrary positive constant η, we get

Vi(x(t)) ≤ eη−ν(t−t0)V1(x0) provided that ||x|| > ρ(||w||).

This implies that [6] ||x|| ≤ b||x0||e−ν(t−t0)/2 + γ (supt0≤τ≤t ||w(τ )||), t ≥ t0,

where b = √
eηc2/c1, and γ (s) =

√
c2
c1

ρ(s), which completes the proof of expo-

nential ISS.
To prove the upper bound on the output magnitude ||z||, for any i ∈ S , we intro-

duce the performance function Ji = ∫ ∞
t0

(zT z − γ 2
i w

Tw)dt. Then,

Ji ≤
∫ ∞

t0

(zT z − γ 2
i w

Tw) dt +
∫ ∞

t0

V̇i dt + Vi(x0)

≤
∫ ∞

t0

(zT z − γ 2
i w

Tw) dt + Vi(x0) +
∫ ∞

t0

{xT [(Ai + BiKi)
TPi + Pi(Ai + BiKi)

+ ξ1iPiDiD
T
i Pi + 1

ξ1i
HT

i Hi + ξ3iP
2
i + 1

ξ3i
δiI − γ −2

i PiGiG
T
i Pi

+ γ −2
i PiGiG

T
i Pi]x + 2xTPiGiw} dt

= Vi(x0) +
∫ ∞

t0

{xT [(Ai + BiKi)
TPi + Pi(Ai + BiKi) + ξ1iPiDiD

T
i Pi + 1

ξ1i
HT

i Hi

+ ξ3iP
2
i + 1

ξ3i
δiI + γ −2

i PiGiG
T
i Pi + CT

icCic]x} dt

−
∫ ∞

t0

γ 2
i (w − γ −2

i GT
i Pix)

T (w − γ −2
i GT

i Pix) dt.
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The last term is strictly negative, so, using condition (5) with γ −2
i = ξ2i, we get

Ji ≤ Vi(x0). Recalling the definition of Ji, we see that ||z||22 ≤ γ 2||w||22 + m0, where
m0 = maxi∈S {Vi(x0)}, and γ = maxi∈S {γi}. This completes the proof. �
Theorem 3.2 (Reliability) Let the constant γi > 0 be given. Assume that Assump-
tion A holds, the switched control system (4) is robustly globally exponentially
ISS-H∞ if the ADTC holds, the controller gain Ki = − 1

2εiB
T
iσPi, for some con-

stants εi > 0, and positive definite matrix Pi, and there exist positive constants
ξ1i, ξ2i, ξ3i, εi , and a positive definite matrix Pi satisfying the Riccati-like equation

AT
i Pi + PiAi + Pi(ξ1iDiD

T
i + ξ2iGicG

T
ic − εiBi�B

T
i�

+ ξ3iI)Pi

+ 1

ξ1i
HT

i Hi + CT
icCic + 1

ξ3i
δiI + αiPi = 0, (7)

where δi is a positive constant such that || fi(x)||2 ≤ δi||x||2 holds.
Proof Let x(t) = x(t, t0, x0) be the solution of system (4). For any i ∈ S , define
Vi(x) = xTPix as a Lyapunov function candidate for the ith mode. Then,

V̇i(x)

= xT [AT
i Pi + PiAi + 2Pi(ΔAi) + (BiσKi)

TPi + PiBiσKi]x
+ 2xTPiGicw

F
σ + 2xTPi fi(x)

= xT [AT
i Pi + PiAi + 2Pi(ΔAi) − εiPi(Biσ )(Biσ )TPi]x

+ 2xTPiGicw
F
σ + 2xTPi fi(x)

≤ xT [AT
i Pi + PiAi + ξ1iPiDiD

T
i Pi + ξ2iPiGicG

T
icPi

+ 1

ξ1i
HT

i Hi + ξ3iP
2
i + 1

ξ3i
δiI − εiPi(Biσ )(Biσ )TPi]x + 1

ξ2i
(wF

σ )TwF
σ

≤ xT [AT
i Pi + PiAi + Pi(ξ1iDiD

T
i + ξ2iGicG

T
ic − εiBi�B

T
i�

+ ξ3iI)Pi + 1

ξ1i
HT

i Hi

+ 1

ξ3i
δiI ]x + 1

ξ2i
(wF

σ )TwF
σ = −αiVi(x) + 1

ξ2i
(wF

σ )TwF
σ ,

where we used || fi(x)||2 ≤ δi||x||2 and Lemma 2.4 in the third bottom line, the fact
that [12] Bi�(Bi�)T ≤ Biσ (Biσ )T , and condition (5) in the last line. Then, for all
t ∈ [tk−1, tk), we have

V̇i(x) ≤ −αiVi(x) − θiVi(x) + (wF
σ )TwF

σ /ξ2i,

where αi = αi − θi and 0 < θi < αi. This implies that V̇i(x) ≤ −αiVi(x), for all t ∈
[tk−1, tk) provided that ||x|| >

||wF
σ ||√

θic2ξ2i
=: ρi(||wF

σ ||). As done in Theorem 3.1, one

may get Vi(x(t)) ≤ eη−ν(t−t0)V1(x0) provided that ||x|| > ρ(||w||), where ρ(||w||) =
maxi∈S {ρi(||w||)}. This also implies that [6]
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||x|| ≤ b||x0||e−ν(t−t0) + γ ( sup
t0≤τ≤t

||wF
σ (τ )||), t ≥ t0,

where b = √
eηc2/c1, γ (s) =

√
c2
c1

ρ(s). As for the upper bound on ||z||, we follow
the same steps in Theorem 3.1, where Ji = ∫ ∞

t0
(zT z − γ 2

i (wF
σ )TwF

σ )dt, to obtain
||z||22 ≤ γ 2||wF

σ ||22 + m0, where m0 = maxi∈S {Vi(x0)}, and γ = maxi∈S {γi}. �

4 Numerical Example

Example 1 Consider system (3) where S = {1, 2},

A1 =
[
0.2 0.1
0 −6

]

,B1 =
[−7 1
0.1 0.2

]

,C1 =
[
2 0.1
0 2

]

,F1 =
[
0.1 −2
0.1 0

]

,

D1 =
[
1
0

]

,H1 = [
0 1

]
,G1 =

[
1 0
0 1

]

, f1 = 0.01

[
sin(x1)
sin(x2)

]

,U1 = sin(t),

ε1 = 2, ξ11 = 0.2, γ1 = 0.1, α1 = 2, ξ21 = γ −2
1 , ξ31 = 1, and θ1 = 1 with t0 =

0. From || fi(x)||2 ≤ δi||x||2, one may get δ1 = 0.01. As for the second mode, we
take

A2 =
[−9 0.2

0 0.1

]

,B2 =
[
0.1 0.5
0.1 −8

]

,C2 =
[
1 0
0 0.5

]

,F2 =
[
0.1 0
−3 0.1

]

,

D2 =
[
0
1

]

,H2 = [
1 0

]
,G2 =

[
1 0
0 1

]

, f2 = 0.01

[
sin(x1)
sin(x2)

]

,U2 = sin(t),

ε2 = 0.5, ξ12 = 0.3, γ2 = 0.15, α2 = 2.5, ξ22 = γ −2
2 , ξ32 = 1, and θ2 = 1.5.

From || fi(x)||2 ≤ δi||x||2, one may get that δ2 = 0.01. Let the system input dis-
turbance be defined by w(t) = [sin(t) sin(t)]T .

Case 1 (All the actuators are operational) When all the control actuators are oper-
ational, from Riccati-like equation,

P1 =
[
1.6437 0.0149
0.0149 0.2499

]

,P2 =
[
0.1633 0.0859
0.0859 0.2724

]

,

with c11 = λmin(P1)= 0.2498, c12 = λmax(P1) = 1.6439, c21 = λmin(P2) = 0.1161,
c22 = λmax(P2) = 0.3197, so, c1 = 0.1161, c2 = 1.6439, and

K1 =
[
11.5047 0.0796
−1.6467 −0.0649

]

,K2 =
[−0.0062 −0.0090

0.1514 0.5342

]

.
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(a) Operational actuators.
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(b) Faulty actuators.

Fig. 1 Input-to-state stabilization

Thus, the matrices A1 + B1K1 and A2 + B2K2 are Hurwitz. The average dwell
time is τa = lnμ

α∗−ν
= 2.7898, with ν = 0.05.

Figure 1a shows the simulation results of ||x|| (top) andγ (||w||) = √
c2/c1ρ(||w||)

(bottom), where ρ(s) = max{ρ1(s), ρ2(s)} and ρi(s) = s/
√
c2θiξ2i, and τa = 3.

Case 2 (Failure in the second actuator in the first mode and first actuator in the
second mode) When there is a failure in the second actuator, i.e., B1� = {2} and

B1� =
[−7 0
0.1 0

]

, and B2� = {1} and B2� =
[
0 0.5
0 −8

]

, we have from Riccati-like

equation,

P1 =
[

1.1265 −0.1913
−0.1913 0.3110

]

, P2 =
[
0.1676 0.0980
0.0980 0.2436

]

,

with c11 = λmin(P1) = 0.2683, c12 = λmax(P1) = 1.1691, c21 = 0.1005, c22 =
0.3107, so c1 = 0.1005, c2 = 1.1691, and the control gain matrices

K1 =
[
7.9046 −1.3703

0 0

]

,K2 =
[

0 0
0.1751 0.4750

]

.

Thus, the matrices A1 + B1K1 and A2 + B2K2 are Hurwitz, and τa = 2.5834.
Figure 1b shows the simulation results of ||x|| (top) and γ (||w||) = √

c2/c1ρ(||w||)
(bottom), where ρ(s) = max{ρ1(s), ρ2(s)} and ρi(s) = s/

√
c2θiξ2i, τa = 3.

5 Conclusion

We have considered a time-varying parameter uncertainty in the system state, an L2
norm-bounded input disturbance, and a linearly bounded nonlinear term. The output
of the faulty actuators has been treated as a disturbing signal that has been augmented
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with the system disturbance. We have shown that, using the average dwell time with
multiple Lyapunov functions, the switched system is exponentially input-to-state
stabilizable, when every individual mode is exponentially input-to-state stabilized
by a reliable feedback controller.
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