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Preface

AMMCS-2017 was an international conference on Applied Mathematics, Modeling
and Computational Science held at Wilfrid Laurier University from August 20 to
25, 2017. The conference was intentionally interdisciplinary, aiming to promote
research and collaboration involving mathematical and computational sciences
across many fields, and to showcase recent advances within an international
community of researchers, practitioners, and students.

Mathematical methods have been fundamental components of human knowl-
edge for millennia. Now sophisticated mathematical and statistical methods make
essential contributions to progress in an amazing range of application areas—in the
natural and social sciences, engineering, and even the arts. Mathematics, statistics,
and the associated computational techniques play a fundamental role in the modern
world, addressing human problems and contributing to human well-being.

Today’s most challenging human problems have arisen not only in the tradi-
tional areas of mathematical application, physical sciences, and engineering, but
also in life, the social sciences, and finance. They are being addressed with
mathematical reasoning of great subtlety and power, augmented by data collection
on a scale so massive that only recently has statistical analysis been possible, and by
computation utilized not only to support analysis but also to explore new combi-
nations and structures. These developments have forged new connections among
disciplines that were once widely separated, and are expanding ever further the
horizons of mathematical and computational modeling.

AMMCS-2017 was a major international forum for the exchange of ideas in an
interdisciplinary setting with a focus on the mathematical and computational sci-
ences and their applications in natural and social sciences, engineering and tech-
nology, industry and finance. It followed the traditions of previous events in the
AMMCS series, particularly in its emphasis on the interdisciplinary aspects of
mathematical and statistical methodologies and the role of computational modeling.

This book exhibits a broad selection of examples of current research, all of
which was presented at AMMCS-2017. It illustrates how mathematics, statistics,
and modeling are contributing to a range of disciplines. The 57 selected contri-
butions are organized into eight parts, as follows:
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I. Advances in Mathematical and Statistical Modelling
II. Analytical and Computational Methods in Inverse Problems
III. Computational Methods and Modelling in Engineering and Mechanics
IV. Mathematical Modelling and Computation in Physical and Chemical Sciences
V. Mathematical Modelling in Biological and Environmental Sciences
VI. Mathematical Modelling in Medical and Health Sciences
VII. Mathematics and Computation in Finance, Economics, and Social Sciences
VIII. Theory and Applications of Dynamical Systems

The titles of the parts make the breadth of the topics clear. This wide-ranging
selection is appropriate to the emerging role of mathematical, statistical, and
computational sciences.

The editors of this volume extend their thanks to all of the contributors to
AMMCS-2017, to all of the attendees, to the Organizing, Scientific, and Technical
Committees, and to all of the volunteers, without whom the conference would never
have been held. We are also grateful to our sponsors and to Wilfrid Laurier
University. We give special thanks to the contributors who chose to submit their
papers to this volume, and the referees whose guidance was essential to us as we
evaluated the proposed contributions. We also thank Ruth Allewelt of Springer,
who assisted us with the editorial work and production. We are proud of this
volume, and pleased to acknowledge all of those who helped to bring it to fruition.
As always, however, views presented in each article are those of the authors and do
not necessarily reflect those of the editors of this volume or the referees. Any
remaining errors are the sole responsibilities of the authors.

Waterloo, ON, Canada D. Marc Kilgour
Guelph, ON, Canada Herb Kunze
Waterloo, ON, Canada Roman Makarov
Waterloo, ON, Canada Roderick Melnik
Waterloo, ON, Canada Xu Wang
July 2018
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Reuse Method for Quantum
Circuit Synthesis

C. Allouche, M. Baboulin, T. Goubault de Brugière and B. Valiron

Abstract The algebraic decomposition of a unitary operator is a key operation in the
synthesis of quantum circuits. If most methods factorize the matrix into products,
there exists a method that allows to reuse already existing optimized circuits to
implement linear combinations of them. This paper presents an attempt to extend
this method to a general framework of circuit synthesis. The method needs to find
suitable groups for the implementation of new quantum circuits. We identify key
points necessary for the construction of a comprehensivemethod andwe test potential
group candidates.

Keywords Circuit synthesis · Quantum computation · Reuse method

1 Introduction

The notion of quantum circuit has emerged from the beginning of the field of quantum
computing [3] and so far remains the most widespread description of a quantum
algorithm. Contrary to conventional algorithms that manipulate bits (0 or 1) using
boolean gates, a quantum algorithm operates on quantum bits, or qubits, using a
series of quantum gates which are generally desired as simple as possible. A quantum
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4 C. Allouche et al.

bit is formally a unit vector in C
2 (modulo a phase factor) and represents a linear

superposition of both states 0 and 1. Using the usual Dirac notation, the state |ψ〉 of
one qubit is the vector

|ψ〉 = α |0〉 + β |1〉 =
(

α

β

)
. (1)

We compose spaces of states for systems of several qubits by using the tensor product
of the spaces of states of each qubit. Then a system of n qubits is a unit vector
that belongs to C

2n . With this formalism, quantum gates are unitary matrices, i.e
matrices whose inverse are their own adjoint. Depending on the physical realization
of the quantum memory, some unitary matrices might be easier to implement than
others [11]: we refer to these gates as elementary. Among the elementary quantum
gates usually considered, we can mention the gates presented in Table 1: the Pauli
matrices X , Y and Z , the Hadamard gate H , the T -gate and the two-qubit gates
CNOT and SWAP.

A quantum circuit is then a series of elementary quantum gates operating on n
qubits for some n > 0. It represents a global quantum operator that corresponds to
a matrix of U(2n), where U(2n) denotes the set of unitary matrices of size 2n × 2n

(see, e.g., [10] for a comprehensive introduction to quantum computing).
A quantum circuit can be represented as in Fig. 1. Each wire corresponds to a

quantum bit and we read from left to right the gates that are applied to the system.
In this case, we first apply a Hadamard gate on the first qubit (tensored with the
identity on the second qubit), then the Pauli gate X is applied to the second qubit,
controlled by the first one. This means that if the first qubit was in state |0〉, the state
is unchanged, and if it was in state |1〉 the gate X is applied. One can check that the
controlled-X gate is equivalent to the CNOT gate. Finally, the overall operator U

Table 1 Usual elementary unitary matrices

(
0 1

1 0

)

X

(
0 −i

i 0

)

Y

(
1 0

0 −1

)

Z

1√
2

(
1 1

1 −1

)

H

(
1 0

0 eiπ/4

)

T

⎛
⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠

CNOT

⎛
⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠

SWAP

Fig. 1 Example of a
quantum circuit
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applied to the system is the product

U = Λ(X) × (H ⊗ I2), (2)

where Λ(X) denotes the fact that the gate X is controlled by the first qubit.
A set of gates is said to be universal when any unitary can be implemented via a

quantum circuit using these gates. Since the mid-1990s various universality results
have been shown (see, e.g. [5]). For example the set composed of all the 1-qubit
gates and the CNOT gate is sufficient to implement any operator. Another example
is the set of H, T and CNOT gates which is also universal. In order to implement a
general quantum operator on a concrete system, it is necessary to decompose it into
elementary gates. If these elementary gates are chosen from a universal set, then it
is theoretically possible to implement this operator.

Quantum computing yields several challenges. One of the problem is to actually
generate a quantum circuit from a textual description. Several programming lan-
guages have been developed to address this issue [6, 15, 17]. Another problem is to
optimize the generated quantum circuits by simplifying them as much as possible,
for example by using rewrite rules in order to minimize the number of elementary
gates [9]. Also many efforts have beenmade to provide software that simulates quan-
tum circuits on classical computers in order to help researchers to make progress in
view of a future quantum computer. In this case the optimization of circuits can be
understood as minimizing the simulation time.

In this paperweare instead interested in the synthesis of quantumcircuits. Contrary
to the casewhere the circuit is explicitly described, here a unitary operator is provided
as a matrix and the problem consists in finding a quantum circuit that implements it
optimally.

We can impose various constraints on the solution circuit such as the choice of the
considered elementary gates, the physical medium, the arrangement of qubits, the
memory properties, etc. We can evaluate the optimality of the solution by measuring

• the number of elementary gates,
• the time to find the circuit,
• the time to classically simulate the circuit,
• the error between the targeted operator and the implemented operator (for example
using the norm of the difference between the corresponding matrices).

Over the yearsmore andmore efficientmethods have been developed to synthesize
an arbitrary quantum operator [1, 8, 13, 16]. Most synthesis frameworks rely on
linear algebra methods to decompose unitary matrices. The first methods aimed at
decomposing the operator column by column [1, 8]. One can cite as example the
QR method, via Givens rotations [16]. Other decomposition methods have also been
proposed, for example the recent block-ZXZ decomposition [4], or the quantum
Shannon decomposition [13] that relies on the use of the sine cosine decomposition
of a unitary operator U ∈ U (2n):
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U =
(
A1 0
0 A2

)(
C −S
S C

) (
B1 0
0 B2

)
(3)

where A1, A2, B1, B2 ∈ U (2n−1) and C, S are diagonal real matrices such that C2 +
S2 = I2n−1 . For an overview of the history and links between these various methods,
refer to [12].

In this context, there exists a less typical method that focuses on a decomposition
of the operator as a linear combination of other operators chosen from a given set.
This method enables to reuse optimized circuits in order to implement more complex
operators [7]. To our knowledge, this is the only method using such a technique. This
method, which we informally call the reuse method, has been shown to be efficient
on specific cases [7]. Our objective in this paper is to determine whether this method
can be efficiently extended to a general framework for circuit synthesis.

The paper is organized as follows. In Sect. 2, we recall the main principles of
the reuse method. In Sect. 3, we select the groups that can be used in synthesizing
circuits via the reuse method. In Sect. 4, we study the potential group candidates.
We conclude in Sect. 5.

2 The Reuse Method

The reuse method has emerged from the following motivation: if we know how to
implement circuits (supposedly efficiently), can we directly reuse these circuits in
order to implement new operators?

Based on this idea, Klappenecker andRötteler replied in the affirmative [7]. Below
is a simplified version of [7, Th. 6].

Theorem 1 Let G ⊂ U(2m) be a group of order 2n, and T = (t1, . . . , tn) be a
transversal of G (i.e any member g of G can be written as g = tα1

1 . . . tαn
n with

αi ∈ {0, 1}). Suppose
A =

∑
g∈G

βgg (4)

with A ∈ U(2m) and define the coefficient matrix CA = (βg−1h)g,h∈G. Then the co-
efficients (βg)g∈G can be chosen such that CA is unitary and the operator A can be
implemented as depicted in Fig. 2.

This remains a simplified version, sufficient for the rest of our study.An illustration
of the method can be found in [7, Sect. 3], where there is an implementation of the
Hartley transform via a linear combination of powers of the Fourier transform.

A key point in the use of this method is the distribution of information between the
group and the matrix of coefficients. When the group contains sufficient information,
such as the Fourier transform powers group, the coefficient matrix is easy to compute
and the efficiency of the quantum Fourier transform synthesis is used to produce an
efficient circuit on non trivial operators. An alternative would be to consider the
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Fig. 2 Quantum circuit implementing a linear combination of operators

problem in the other direction: the group is simple, contains little information but the
matrix of coefficients—which now has a maximum of information—has a structure
that makes its implementation effective.

For example, if the group is circulant then the matrix of coefficients will be
circulant and diagonalizable in the Fourier basis. If the group is symmetric and its
elements are involutive, then the matrix will be diagonalizable in the Hadamard base.
In these cases, information can be predominantly contained in the coefficient matrix
but the implementation of the coefficient matrix, although inevitably costly in terms
of gates, is much simpler than for any generic operator (see the article by Bullock
and Markov for the implementation of diagonal operators [2]).

However among all the possible matrix groups, some are more suitable than
others for a generic synthesis method. In the next section we narrow our research by
investigating the theoretical properties of “good” groups for general synthesis.

3 Characterization of Candidate Groups G

In this section we discuss under which conditions the reuse method can be used as a
generic method for the synthesis of circuits.

We can already eliminate the case where the group G is Abelian. Indeed, in this
case the matrices of the group G commute in pairs and are therefore simultaneously
diagonalizable, just like any member of the span of G. One cannot reach all unitary
matrix but only those diagonalizable in a specific basis.

Ideally, the group G should be built easily for any number of qubits either with an
adaptable construction for any n or with a recursive approach. In fact, we can show
how to construct a solution group K and its matrix of coefficients for n + m qubits
from a solution group G for n qubits and a solution group H for m qubits.

We use can the properties of the tensor product to construct the group K . Indeed,
by setting K = G ⊗ H , provided that U (2n) ⊆ span(G) and U (2m) ⊆ span(H)

then we have U (2n+m) ⊆ span(G ⊗ H). Recall the identity

(g1 ⊗ g2)(h1 ⊗ h2) = (g1 h1) ⊗ (g2 h2) (5)
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which is used to provide an expression of the coefficient matrix associated with K :

CK = (βg−1h)g,h∈G⊗H = (β(g−1
1 ⊗h−1

1 )−1(g2⊗h2))g1,g2∈G,h1,h1∈H
= (β(g−1

1 g2)⊗(h−1
1 h2))g1,g2∈G,h1,h1∈H .

(6)

With an appropriate ordering of K , the matrix CK can be expressed as

CK =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β(g1g1,h1h1) . . . β(g1gn ,h1h1) β(g1g1,h1h2) . . . β(g1gn ,h1h2) . . .
...

...
...

...

β(gng1,h1h1) . . . β(gngn ,h1h1) β(gng1,h1h2) . . . β(gngn ,h1h2) . . .

β(g1g1,h2h1) . . . β(g1gn ,h2h1) β(g1g1,h2h2) . . . β(g1gn ,h2h2) . . .
...

...
...

...

β(gng1,h2h1) . . . β(gngn ,h2h1) β(gng1,h2h2) . . . β(gngn ,h2h2) . . .
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Thus, if a series of operations P factors CG and a series of operations Q factors CH ,
then (P ⊗ I ) block-factorizes CK and (I ⊗ Q) factorizes each block of CK . Thus a
priori (P ⊗ Q) factorizes CK .

Therefore, if a solution for one qubit has been found, we can generate a solution
for an arbitrary number of qubits by successive tensor products. Now, because the
available memory is limited,1 it is desired to minimize the number of auxiliary qubits
by logical qubits especially if additional qubits are necessary for error correcting
codes [14]. In our study the size of the group G has been fixed to a maximum of 8
elements so as to have only 3 auxiliary qubits per logic bit. This accounts for the fact
that quantum memory is expensive.

Only a few potential groups then satisfy the above restrictions:

• the projective Pauli group,
• the dihedral group over 3 qubits,
• the quaternion group.

4 Study of the Candidates

The two 8-element groups – quaternion and dihedral group – are very similar: we
only consider the latter. Indeed, the results on one of the two groups are immediately
transposable to the other group.

1Simulating quantum computation on a conventional computer is known to be expensive [10] since
a linear increase in the number of manipulated qubits yields an exponential increase in the size of
the required memory.
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This section analyzes first the base cases: the projective Pauli group and the dihe-
dral group. In a second step, we discuss the behavior of the factorization mentioned
in Sect. 3 for the case of two qubits in the context of the dihedral group.

4.1 The Projective Pauli Group

In the original publication, [7, Th. 6] has been extended to the case of projective
groups in [7, Th. 7]. The particular projective group that we consider is

G = {I, X, Z , X Z}. (8)

By setting A = a0 I + a1X + a2Z + a3X Z the associated coefficient matrix is

CA =

⎛
⎜⎜⎝
a0 a1 a2 a3
a1 a0 a3 a2
a2 −a3 a0 −a1
a3 −a2 a1 −a0

⎞
⎟⎟⎠ . (9)

Klappenecker and Rötteler [7, Eq. 12] gave the factorization

CNOT × CNOT (2,1) × (H ⊗ I2) × CA × (H ⊗ I2) × CNOT = A ⊗ I2 (10)

with

CNOT (2,1) =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ .

This shows that the synthesis of CA is as difficult as the synthesis of A. No improve-
ment can therefore be achieved with this group.

4.2 The Dihedral Group

The idea is to get rid of the projective character of the Pauli group by adding matrices
to the G group, i.e with

G = {I,−I, X,−X, Z ,−Z , X Z ,−X Z}. (11)
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The coefficient matrix then becomes

CA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 a4 a5 a6 a7
a1 a0 a3 a2 a5 a4 a7 a6
a2 a3 a0 a1 a7 a6 a5 a4
a3 a2 a1 a0 a6 a7 a4 a5
a4 a5 a6 a7 a0 a1 a2 a3
a5 a4 a7 a6 a1 a0 a3 a2
a7 a6 a5 a4 a2 a3 a0 a1
a6 a7 a4 a5 a3 a2 a1 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The best factorization that we have found is

P × CA × P† =

⎛
⎜⎜⎝
I
U

I
U

⎞
⎟⎟⎠ = I ⊗ Λ(U ) (13)

where
P = (SW AP ⊗ I ) × (I ⊗ SW AP) × (Λ(Z) ⊗ I ) × H⊗3 (14)

and whereU is some arbitrary 2 × 2 unitary matrix, a priori not simpler to synthesize
than the matrix A.

We can then conclude that no improvement can neither be found for this group.

4.3 Factorization for Two Qubits

In this section, we highlight the fact that the factorization procedure envisioned in
Sect. 3 is not so simple to use, and that it does not necessarily provide a usable
decomposition.

Consider indeed an operator A on 2 qubits. Using the dihedral group, the block
factorization on CA would then lead to

⎛
⎜⎜⎝
I
V

I
V

⎞
⎟⎟⎠ (15)

with V a 2 by 2 block-matrix with blocks of size 8 by 8. Applying the same factor-
ization on each block of V gives a matrix of the shape
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0
U1 U2

I 0
U1 U2

0 I
U3 U4

0 I
U3 U4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

with U1, U2, U3 and U4 arbitrary matrices of size 2 × 2, such that

(
U1 U2

U3 U4

)
is

unitary. Synthesizing A therefore corresponds to synthesizing this matrix, which
does not seem too less costly. This hints at the fact that extending the study to larger
groups might not trivially help in getting a working solution.

5 Conclusion

We have recalled the fundamentals of the synthesis of quantum circuits. We started
from an already existing method, aiming at implementing linear combinations of
known circuits in order to attempt to derive a generic synthesis method. By clarifying
how a generic synthesis method can be compositionally derived, we have illustrated
the complexity of the problem.We presented the issues encountered when restricting
the approach to small groups of one-qubit operators. This study calls for a more in-
depth analysis of larger groups of two- or three-qubit operators.
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Robust Reliable H∞ Control
and Input-to-State Stabilization
for Uncertain Hybrid Systems

Mohamad S. Alwan, Xinzhi Liu and Taghreed G. Sugati

Abstract Themain objective of this paper to design a robust reliableH∞ control and
a switching law for a class of uncertain switched systems under an average dwell time
switching signal that guarantees ISS not only when all the actuators are operational,
but also when some of them experience failure. The faulty actuator output is assumed
to be nonzero, which is treated as a disturbance signal that is augmented with the
system disturbance input. The input-to-state stability (ISS) property is analyzed by
the multiple Lyapunov functions and comparison principle approach. A numerical
example is introduced to illustrate the validity of the theoretical results.

Keywords Switched systems · ISS · Average dwell time · Reliable control
H∞ control

1 Introduction

There has been a growing interest in studying switched systems in the last three
decades due to their widespread applications in different fields such as aircraft, auto-
motive industry, robotics, control systems, biological, epidemic disease models; see
[7, 8, 10] and the references therein. By a switched system we mean a special class
of hybrid systems that consist of a family of continuous- or discrete-time dynamical
subsystems (or modes), and a switching rule (or signal). The role of the switching
signal is to govern the jump among the subsystems. The stability of switched sys-
tems has received much attention and has been studied using either the common
Lyapunov function method [11], or the multiple Lyapunov function method [2]. It
has been realized that it is more convenient to use multiple Lyapunov functions than
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the common Lyapunov function since having only one Lyapunov function for all the
modes under study is not practical and is difficult to construct.

The reliable control is the controller that tolerates actuator and/or sensor fail-
ures. In reality, the failure of control components is frequently encountered, yet the
immediate repair may not be feasible, such as in the case of aerospace or submarine
system, etc. Therefore, designing a reliable controller to guarantee an acceptable
level of performance becomes crucial. The trend to design reliable controllers has
been increased; see for instance [4, 12, 15, 16, 18]. In most of the available results
about reliable control, the faulty actuators are modelled as outages i.e., the output is
assumed to be zero. In [1, 9, 12, 16], the output signal is considered as a disturbance
signal with boundedmagnitude that is augmentedwith the system disturbance signal.

The H∞ control has received a great deal of attention in control theory [3, 17].
It is a useful measure used to guarantee the performance of the plant when dealing
with control problems that involve robust design. However, in the event of control
component failures, the stability or performance of the plant may not be achieved by
such designs. Therefore, it would be advantageous if it is associated with a reliable
control design to handle such failureswhen they occur.Onemay refer to [1, 9, 12, 18].

In practice,most of the real control systems are subject to some disturbance inputs.
ISS notion, introduced in [13] which addresses the system response to a bounded
disturbance when the unforced system is asymptotically stable, is an efficient tool
to deal with these disturbances. As a result, it becomes important in the modern
nonlinear control theory and design [1, 13, 14].

This paper is organized as follows. Section 2 involves the problem description,
definitions, and a useful lemma. The main results and proofs are stated in Sect. 3. A
numerical example with simulations is presented in Sect. 4. The conclusion is given
in Sect. 5.

2 Problem Formulation and Preliminaries

Throughout this paper, Rn denotes the n-dimensional Euclidean space; R+ refers to
the nonnegative real numbers;Rn×m is the class of all n × m real matrices. A symmet-
ric matrix P is said to be positive definite if all its eigenvalues are positive. Moreover,
If P ∈ R

n×n, denote by λmax(P)(λmin(P)) the maximum (minimum) eigenvalue of P.
If V (x) = xTPx, the following inequalities are always true

c1||x||2 ≤ V (x) ≤ c2||x||2, (1)

where c1 = λmin(P), c2 = λmax(P). If x ∈ R
n, then ||x|| refers to the Euclidean

vector norm of x. L2[t0,∞) is the space of square integrable vector-valued func-
tions on [t0,∞) and || · ||2 denotes L2[t0,∞)-norm (i.e., w ∈ L2[t0,∞) means
||w||22 = ∫ ∞

t0
||w(t)||2 dt < ∞). Consider a class of uncertain switched systems given

by



Robust Reliable H∞ Control and Input-to-State Stabilization … 15

{
ẋ = (Aρ(t) + ΔAρ(t))x + Bρ(t)u + Gρ(t)w + fρ(t)(x),
z = Cρ(t)x + Fρ(t)u, x(t0) = x0,

(2)

where x ∈ R
n is the system state, u ∈ R

q is the control input, w ∈ R
p is an input

disturbance, which is assumed to be bounded, and z ∈ R
r is the controlled output. ρ

is the switching lawwhich is a piecewise constant function defined by ρ : [t0,∞) →
S = {1, 2, · · · ,N }. The role of ρ is to switch among the system modes. For each
i ∈ S , Ai is a non Hurwitz matrix, Ki ∈ R

q×n is the control gain matrix such that
u = Kix, where (Ai,Bi) is assumed to be stabilizable, fi(x) ∈ R

n is somenonlinearity,
Ai, Bi, Gi, Ci and Fi are known real constant matrices, and ΔAi is a deterministic
piecewise continuous function of time t which represents parameter uncertainty with
bounded norm and it also gives the structure of the systemuncertainty. For any i ∈ S ,
the closed-loop system is

{
ẋ = (Ai + ΔAi + BiKi)x + Giw + fi(x),
z = Cicx, x(t0) = x0, where Cic = Ci + FiKi.

(3)

To analyze the reliable stabilization with respect to actuator failures, the q control
actuators are divided into two sets. � ⊆ {1, 2, . . . , q} the set of actuators that are
susceptible to failure, i.e., they may occasionally fail, and � ⊆ {1, 2, . . . , q} − �

the other set of actuators which are robust to failures and essential to stabilize the
given system. The elements of � are redundant in terms of the stabilization but
necessary to improve the system performance, while the elements of � are required
to stabilize the system and assumed that they never fail, i.e., the pair (Ai,Bi�) is
assumed to be stabilizable.

For i ∈ S , consider the decomposition of the control matrix Bi = Bi� + Bi�,

where Bi�, Bi� are the control matrices associated with �, � respectively, and
Bi�, Bi� are generated by zeroing out the columns corresponding to � and �,
respectively. For a fixed i ∈ S , let σ ⊆ � corresponds to some of the actuators
that experience failure, and assume that the output of faulty actuators is any arbitrary
energy-bounded signal (or disturbance input) which belongs to L2[t0,∞). Then, the
decomposition becomes Bi = Biσ + Biσ ,where Biσ and Biσ have the same definition
of Bi� and Bi� , respectively. Furthermore, the augmented disturbance input to the
system becomes

wF
σ = (wT (uFσ )T )T ,

where uFσ ∈ R
q is the failure vector whose elements corresponding to the set of faulty

actuators σ , and F here stands for “failure”. Since the control input u is applied to
the system through the normal actuators, and the outputs of the faulty actuators are
assumed to be arbitrary signals, the closed-loop system becomes

{
ẋ = (Ai + ΔAi + BiσKi)x + GicwF

σ + fi(x), i ∈ S = {1, 2, . . . ,N },
z = Cicx, x(t0) = x0, , where Gic = (Gi Biσ ).

(4)
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Definition 2.1 [6] (Class-K function) A function ρ : [0, r) → [0,∞) is said to
belong to classK (i.e., ρ ∈ K ) if it is continuous, strictly increasing, and ρ(0) = 0.

Definition 2.2 (Input-to-State Stability) System (3) is said to be robustly globally
exponentially ISS if there exist positive constants λ, λ and a function ρ ∈ K such
that, for any solution x(t) = x(t, t0, x0),

||x|| ≤ λ||x0||e−λ(t−t0) + ρ

(

sup
t0≤τ≤t

||w(τ )||
)

, ∀ t ≥ t0.

Definition 2.3 (input-to-state stability with an H∞-norm (ISS-H∞)) Given a con-
stant γ > 0, system (3) is said to be ISS-H∞ if there exists a state feedback law
u(t) = Kix(t), such that, for any admissible parameter uncertainties ΔAi, the closed
loop system (3) is globally exponentially ISS, and the controlled output z satisfies

||z||22 =
∫ ∞

t0

||z||2 dt ≤ γ 2||w||22 + m0,

for some positive constant m0.

Assumption A For i ∈ S , the admissible parameter uncertainties are defined by

ΔAi(t) = DiUi(t)Hi, ∀ t ∈ R+,

with Di, Hi being known real matrices with appropriate dimensions that give the
structure of the uncertainty, andUi(t) being unknown real time-varying matrix rep-
resenting the uncertain parameter and satisfying ||Ui(t)|| ≤ 1.

Lemma 2.4 For any arbitrary positive constants ξ1, ξ2 and ξ3, and a positive definite
matrix P, we have

(i) 2xTP (ΔA) x ≤ xT
(
ξ1PDDTP + 1

ξ1
HTH

)
x.

(ii) 2xTPGw ≤ xT
(
ξ2PGGTP

)
x + 1

ξ2
wTw.

(iii) 2xTPf (x) ≤ xT
(
ξ3P2 + 1

ξ3
δI

)
x such that || f (x)||2 ≤ δ||x||2 with δ > 0.

Proof For (i), we have

0 ≤ (
√

ξ1x
T (PDU ) − 1√

ξ1
xTHT )(

√
ξ1x

T (PDU ) − 1√
ξ1
xTHT )T

= ξ1x
TPDDTPx + 1

ξ1
xTHTHx − 2xT (PDU H )x,

which leads to 2xT (PDU H )x ≤ xT
(
ξ1PDDTP + 1

ξ1
HTH

)
x, which yields the

desired result. The inequalities in (ii) and (iii) can be proved similarly. �
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Average Dwell Time Condition (ADTC) [5]. The number of switches N (t0, t) in
the interval (t0, t) for a finite t satisfies N (t0, t) ≤ N0 + t−t0

τa
, where N0 > 0 is the

chatter bound, and τa is the average dwell time.
Here, by dwell time we mean the time between two consecutive switches, while

the chatter bound is an upper bound for the number of switches in an interval of
length smaller than τa.

3 Main Results

Theorem 3.1 Let the controller gain Ki and the constant γi > 0 be given, and
assume that Assumption A holds. Then, the switched control system (3) is robustly
globally exponentially ISS with an H∞-norm bound γ if the ADTC holds, and there
exist positive constants ξ1i, ξ2i, ξ3i , and a positive definite matrix Pi satisfying the
Riccati-like equation

(Ai + BiKi)
TPi + Pi(Ai + BiKi) + ξ1iPiDiD

T
i Pi + 1

ξ1i
HT

i Hi + CT
icCic

+ ξ2iPiGiG
T
i Pi + ξ3iP

2
i + 1

ξ3i
δiI + αiPi = 0, (5)

where δi > 0 such that || fi(x)||2 ≤ δi||x||2, and αi > 0 is the decay rate of mode i.

Proof Let x(t) = x(t, t0, x0) be the solution of system (3). For any i ∈ S , define
Vi(x) = xTPix as a Lyapunov function candidate for the ith mode. Then,

V̇i(x) = xT [(Ai + BiKi)
TPi + Pi(Ai + BiKi)]x + 2xTPi(ΔAi)x

+ 2xTPiGiw + 2xTPi fi(x)

≤ xT [(Ai + BiKi)
TPi + Pi(Ai + BiKi) + ξ1iPiDiD

T
i Pi

+ ξ2iPiGiG
T
i Pi + 1

ξ1i
HT

i Hi

+ ξ3iP
2
i + 1

ξ3i
δiI ]x + 1

ξ2i
wTw = −αiVi(x) + 1

ξ2i
wTw,

where we used || fi(x)||2 ≤ δi||x||2 and Lemma 2.4 in the second bottom line, and
condition (5) in the last line. Hence, for each subinterval [tk−1, tk) we have, after
adding-subtracting the term θiVi(x),

V̇i(x) ≤ −(αi − θi)Vi(x) − θiVi(x) + wTw/ξ2i

≤ −αiVi(x) − θiVi(x) + wTw/ξ2i,

where αi = αi − θi for some 0 < θi < αi. The foregoing inequality implies that
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V̇i(x) ≤ −αiVi(x), for all t ∈ [tk−1, tk),

provided that the sum−θiVi(x) + wTw/ξ2i < 0 or Vi(x) > 1
θiξ2i

||w||2. By (1), ||x|| >
||w||√
θic2ξ2i

=: ρi(||w||).Then, for all t ∈ [tk−1, tk),Vi(x(t)) ≤ Vi(x(tk−1))e−αi(t−tk−1) pro-
vided that ||x|| > ρ(||w||), where ρ(||w||) = maxi∈S {ρi(||w||)}. From (1), we have
for any i, j ∈ S

Vj (x(t)) ≤ μVi(x(t)), μ = c2/c1, (6)

where c1 = mini∈S {λmin(Pi)} and c2 = maxi∈S {λmax(Pi)}. Then, for i ∈ S and
t ∈ [tk−1, tk), we have Vi(x(t)) ≤ μk−1e−αi(t−tk−1)e−αi−1(tk−1−tk−2) · · · e−α1(t1−t0)V1(x0)
provided that ||x|| > ρ(||w||). Letting α∗ = min{αi; i ∈ S }, one may get

Vi(x(t)) ≤ μk−1e−α∗(t−t0)V1(x0) = e(k−1) lnμ−α∗(t−t0)V1(x0)

provided that ||x|| > ρ(||w||). Using the ADTC with N0 = η

lnμ
, τa = lnμ

α∗−ν
, (ν <

α∗), for some arbitrary positive constant η, we get

Vi(x(t)) ≤ eη−ν(t−t0)V1(x0) provided that ||x|| > ρ(||w||).

This implies that [6] ||x|| ≤ b||x0||e−ν(t−t0)/2 + γ (supt0≤τ≤t ||w(τ )||), t ≥ t0,

where b = √
eηc2/c1, and γ (s) =

√
c2
c1

ρ(s), which completes the proof of expo-

nential ISS.
To prove the upper bound on the output magnitude ||z||, for any i ∈ S , we intro-

duce the performance function Ji = ∫ ∞
t0

(zT z − γ 2
i w

Tw)dt. Then,

Ji ≤
∫ ∞

t0

(zT z − γ 2
i w

Tw) dt +
∫ ∞

t0

V̇i dt + Vi(x0)

≤
∫ ∞

t0

(zT z − γ 2
i w

Tw) dt + Vi(x0) +
∫ ∞

t0

{xT [(Ai + BiKi)
TPi + Pi(Ai + BiKi)

+ ξ1iPiDiD
T
i Pi + 1

ξ1i
HT

i Hi + ξ3iP
2
i + 1

ξ3i
δiI − γ −2

i PiGiG
T
i Pi

+ γ −2
i PiGiG

T
i Pi]x + 2xTPiGiw} dt

= Vi(x0) +
∫ ∞

t0

{xT [(Ai + BiKi)
TPi + Pi(Ai + BiKi) + ξ1iPiDiD

T
i Pi + 1

ξ1i
HT

i Hi

+ ξ3iP
2
i + 1

ξ3i
δiI + γ −2

i PiGiG
T
i Pi + CT

icCic]x} dt

−
∫ ∞

t0

γ 2
i (w − γ −2

i GT
i Pix)

T (w − γ −2
i GT

i Pix) dt.
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The last term is strictly negative, so, using condition (5) with γ −2
i = ξ2i, we get

Ji ≤ Vi(x0). Recalling the definition of Ji, we see that ||z||22 ≤ γ 2||w||22 + m0, where
m0 = maxi∈S {Vi(x0)}, and γ = maxi∈S {γi}. This completes the proof. �
Theorem 3.2 (Reliability) Let the constant γi > 0 be given. Assume that Assump-
tion A holds, the switched control system (4) is robustly globally exponentially
ISS-H∞ if the ADTC holds, the controller gain Ki = − 1

2εiB
T
iσPi, for some con-

stants εi > 0, and positive definite matrix Pi, and there exist positive constants
ξ1i, ξ2i, ξ3i, εi , and a positive definite matrix Pi satisfying the Riccati-like equation

AT
i Pi + PiAi + Pi(ξ1iDiD

T
i + ξ2iGicG

T
ic − εiBi�B

T
i�

+ ξ3iI)Pi

+ 1

ξ1i
HT

i Hi + CT
icCic + 1

ξ3i
δiI + αiPi = 0, (7)

where δi is a positive constant such that || fi(x)||2 ≤ δi||x||2 holds.
Proof Let x(t) = x(t, t0, x0) be the solution of system (4). For any i ∈ S , define
Vi(x) = xTPix as a Lyapunov function candidate for the ith mode. Then,

V̇i(x)

= xT [AT
i Pi + PiAi + 2Pi(ΔAi) + (BiσKi)

TPi + PiBiσKi]x
+ 2xTPiGicw

F
σ + 2xTPi fi(x)

= xT [AT
i Pi + PiAi + 2Pi(ΔAi) − εiPi(Biσ )(Biσ )TPi]x

+ 2xTPiGicw
F
σ + 2xTPi fi(x)

≤ xT [AT
i Pi + PiAi + ξ1iPiDiD

T
i Pi + ξ2iPiGicG

T
icPi

+ 1

ξ1i
HT

i Hi + ξ3iP
2
i + 1

ξ3i
δiI − εiPi(Biσ )(Biσ )TPi]x + 1

ξ2i
(wF

σ )TwF
σ

≤ xT [AT
i Pi + PiAi + Pi(ξ1iDiD

T
i + ξ2iGicG

T
ic − εiBi�B

T
i�

+ ξ3iI)Pi + 1

ξ1i
HT

i Hi

+ 1

ξ3i
δiI ]x + 1

ξ2i
(wF

σ )TwF
σ = −αiVi(x) + 1

ξ2i
(wF

σ )TwF
σ ,

where we used || fi(x)||2 ≤ δi||x||2 and Lemma 2.4 in the third bottom line, the fact
that [12] Bi�(Bi�)T ≤ Biσ (Biσ )T , and condition (5) in the last line. Then, for all
t ∈ [tk−1, tk), we have

V̇i(x) ≤ −αiVi(x) − θiVi(x) + (wF
σ )TwF

σ /ξ2i,

where αi = αi − θi and 0 < θi < αi. This implies that V̇i(x) ≤ −αiVi(x), for all t ∈
[tk−1, tk) provided that ||x|| >

||wF
σ ||√

θic2ξ2i
=: ρi(||wF

σ ||). As done in Theorem 3.1, one

may get Vi(x(t)) ≤ eη−ν(t−t0)V1(x0) provided that ||x|| > ρ(||w||), where ρ(||w||) =
maxi∈S {ρi(||w||)}. This also implies that [6]
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||x|| ≤ b||x0||e−ν(t−t0) + γ ( sup
t0≤τ≤t

||wF
σ (τ )||), t ≥ t0,

where b = √
eηc2/c1, γ (s) =

√
c2
c1

ρ(s). As for the upper bound on ||z||, we follow
the same steps in Theorem 3.1, where Ji = ∫ ∞

t0
(zT z − γ 2

i (wF
σ )TwF

σ )dt, to obtain
||z||22 ≤ γ 2||wF

σ ||22 + m0, where m0 = maxi∈S {Vi(x0)}, and γ = maxi∈S {γi}. �

4 Numerical Example

Example 1 Consider system (3) where S = {1, 2},

A1 =
[
0.2 0.1
0 −6

]

,B1 =
[−7 1
0.1 0.2

]

,C1 =
[
2 0.1
0 2

]

,F1 =
[
0.1 −2
0.1 0

]

,

D1 =
[
1
0

]

,H1 = [
0 1

]
,G1 =

[
1 0
0 1

]

, f1 = 0.01

[
sin(x1)
sin(x2)

]

,U1 = sin(t),

ε1 = 2, ξ11 = 0.2, γ1 = 0.1, α1 = 2, ξ21 = γ −2
1 , ξ31 = 1, and θ1 = 1 with t0 =

0. From || fi(x)||2 ≤ δi||x||2, one may get δ1 = 0.01. As for the second mode, we
take

A2 =
[−9 0.2

0 0.1

]

,B2 =
[
0.1 0.5
0.1 −8

]

,C2 =
[
1 0
0 0.5

]

,F2 =
[
0.1 0
−3 0.1

]

,

D2 =
[
0
1

]

,H2 = [
1 0

]
,G2 =

[
1 0
0 1

]

, f2 = 0.01

[
sin(x1)
sin(x2)

]

,U2 = sin(t),

ε2 = 0.5, ξ12 = 0.3, γ2 = 0.15, α2 = 2.5, ξ22 = γ −2
2 , ξ32 = 1, and θ2 = 1.5.

From || fi(x)||2 ≤ δi||x||2, one may get that δ2 = 0.01. Let the system input dis-
turbance be defined by w(t) = [sin(t) sin(t)]T .

Case 1 (All the actuators are operational) When all the control actuators are oper-
ational, from Riccati-like equation,

P1 =
[
1.6437 0.0149
0.0149 0.2499

]

,P2 =
[
0.1633 0.0859
0.0859 0.2724

]

,

with c11 = λmin(P1)= 0.2498, c12 = λmax(P1) = 1.6439, c21 = λmin(P2) = 0.1161,
c22 = λmax(P2) = 0.3197, so, c1 = 0.1161, c2 = 1.6439, and

K1 =
[
11.5047 0.0796
−1.6467 −0.0649

]

,K2 =
[−0.0062 −0.0090

0.1514 0.5342

]

.
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(b) Faulty actuators.

Fig. 1 Input-to-state stabilization

Thus, the matrices A1 + B1K1 and A2 + B2K2 are Hurwitz. The average dwell
time is τa = lnμ

α∗−ν
= 2.7898, with ν = 0.05.

Figure 1a shows the simulation results of ||x|| (top) andγ (||w||) = √
c2/c1ρ(||w||)

(bottom), where ρ(s) = max{ρ1(s), ρ2(s)} and ρi(s) = s/
√
c2θiξ2i, and τa = 3.

Case 2 (Failure in the second actuator in the first mode and first actuator in the
second mode) When there is a failure in the second actuator, i.e., B1� = {2} and

B1� =
[−7 0
0.1 0

]

, and B2� = {1} and B2� =
[
0 0.5
0 −8

]

, we have from Riccati-like

equation,

P1 =
[

1.1265 −0.1913
−0.1913 0.3110

]

, P2 =
[
0.1676 0.0980
0.0980 0.2436

]

,

with c11 = λmin(P1) = 0.2683, c12 = λmax(P1) = 1.1691, c21 = 0.1005, c22 =
0.3107, so c1 = 0.1005, c2 = 1.1691, and the control gain matrices

K1 =
[
7.9046 −1.3703

0 0

]

,K2 =
[

0 0
0.1751 0.4750

]

.

Thus, the matrices A1 + B1K1 and A2 + B2K2 are Hurwitz, and τa = 2.5834.
Figure 1b shows the simulation results of ||x|| (top) and γ (||w||) = √

c2/c1ρ(||w||)
(bottom), where ρ(s) = max{ρ1(s), ρ2(s)} and ρi(s) = s/

√
c2θiξ2i, τa = 3.

5 Conclusion

We have considered a time-varying parameter uncertainty in the system state, an L2
norm-bounded input disturbance, and a linearly bounded nonlinear term. The output
of the faulty actuators has been treated as a disturbing signal that has been augmented
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with the system disturbance. We have shown that, using the average dwell time with
multiple Lyapunov functions, the switched system is exponentially input-to-state
stabilizable, when every individual mode is exponentially input-to-state stabilized
by a reliable feedback controller.
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Exact Coloring of Sparse Matrices

Shahadat Hossain and Ahamad I. Khan

Abstract Given the sparsity pattern of a sparse matrix, we consider the problem of
partitioning its columns into fewest groups with the property that no two columns in
the samegrouphavenonzero entries in the same rowposition.Many efficient heuristic
algorithms approximately solve the partitioning problem as coloring the vertices of
a suitable graph associated with the matrix. In this paper we study exact methods for
minimumpartitioning (coloring) of columns based on a branch-and-bound approach.
We propose efficient sparse data structures to implement the coloring methodology
and present a new tie-breaking method for choosing columns to color at each branch-
ing step. Results from numerical experiments on standard test instances demonstrate
the benefit of our approach with regard to computational efficiency and coloring
quality.

Keywords Branch-and-bound · Column partitioning · Structural orthogonality
Data structures · Jacobian matrix

1 Introduction

Given an undirected graph G = (V,E), the optimization version of vertex coloring
problem (VCP) is to assign labels or colors to the vertices in V such that vertices
that are connected by an edge in E have different colors while the number of colors
is minimized. While VCP has many real-world applications it is also known to be
computationally intractable [1]. In this paper we study the problem of minimum
column partitioning of sparse matrices which is equivalent to coloring the vertices of
the column intersection graph [2–4]. Given the sparsity pattern (location of nonzero
entries) of a matrix A ∈ R

m×n we consider partitioning A’s columns into groups with
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the property that no two columns in the same group have nonzero entries in the
same row position. Formally, let Φ be a mapping defined as Φ : {1, 2, . . . , n} �→
{1, 2, . . . , p} such that Φ( j) = Φ(l), j �= l ⇒ �i for which ai j �= 0 and ail �= 0. In
other words, each column receives a color (group) label from the set {1, 2, . . . , p}
such that the columns receiving the same color label satisfy the property that they
are “structurally orthogonal” [2]. The problem we want to solve is to find a mapping
which minimizes the number of column groups or colors p. This problem and its
many variants arise in computational optimization where first- and/or higher-order
derivatives (gradients, Jacobians, Hessians) of some differentiable function need to
be evaluated in an iterative scheme e.g., in Newton’s method and is known to be
NP-hard [2, 4].

Many efficient heuristics have been proposed in the literature to approximately
solve large instances of VCP while there are only few exact methods and are usually
limited to solving small instance sizes. To avoid difficulties due to symmetry classical
integer linear program (ILP) formulations are usually strengthened with constraints
to cut down many symmetric solutions. A recent approach to solving exact VCP
is to apply a brach-and-price scheme on a set cover ILP formulation which allows
an exponential number of decision variables. Implicit enumeration methods color
the vertices successively and try to reuse the colors that have already been used. A
widely known implicit algorithm called DSATUR (exact algorithm) due to Brélaz
[5] is a modification of the original algorithm due to Brown [6]. For a recent survey
of exact and heuristic graph coloring methods we refer to the paper [7].

In this paper we give an exact column partitioning scheme based on DSATUR
algorithm and describe data structures thatmake the implementation computationally
efficient. The main contributions of this paper are the following.

1. In [8] authors use two publicly available exact graph coloring software on a set of
test matrix instances to obtain minimum partition. The column intersection graph
associated with the sparse matrix is generated first which is then input to the
coloring code. In our implementation the column intersection graph associated
with the sparsity pattern ofmatrixAwhich is isomorphic to the adjacency graph of
A�A is never explicitly formed. Instead, we store the sparsity pattern of A and A�
as compressed matrices: compressed sparse row (CSR) and compressed sparse
column (CSC). To the best of our knowledge this is the first implementation of
a branch-and-bound exact algorithm for optimal column partitioning that avoids
the generation of the graph associated with the potentially dense matrix A�A.

2. A maximal clique (a lower bound) is identified simply as columns in a row with
maximum number of nonzero entries.

3. Our computer implementation utilizes expressive power of graph-theoretic con-
cepts while exploiting the known sparsity of thematrix.We employ a special heap
data structure, namely the bucket heap, to allow efficient calculation and update
of saturation degree of columns. We also introduce a new tie-breaking strategy
to choose the next column to branch.

The remainder of the paper is structured in the following way. In Sect. 2 we give a
brief description of the DSATUR algorithm and introduce the main data structures.
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The new tie-breaking strategy is then presented along with the ones by Sewell [9] and
Segundo [10]. Section3 contains results fromnumerical experiments on a standard set
of test instances. The paper is concluded in Sect. 4with directions on further research.

2 Data Structures and Algorithm

The sparsity pattern of sparse matrix A is stored internally with compressed sparse
vectors corresponding to rows and columns. Compressed Sparse Row (CSR) storage
scheme is a popular data structure where the sparse row vectors are stored contigu-
ously. A simple implementation of CSR can be provided using three arrays: rowptr
array indexes into colind and value arrays, with rowptr(i) indicating the location
(index) of the first element of row i in the arrays colind and value. Thus, elements in
row i are accessed as

value(k) and are located in (i, colind(k)), k = rowptr(i) to rowptr(i + 1) − 1.

Compressed Sparse Column (CSC) is simply the transposed matrix stored using the
CSR. The array value is not needed if we are storing the sparsity pattern only. The
software package DSJM [11] enables access to columns and rows by maintaining
both CSR and CSC structures for a sparse matrix.

A frequently needed operation in our implementation is to identify the columns
that are structurally dependent on (or neighbors of) a given column :

N (A(:, j)) = {l | A(:, j) is structurally dependent on A(:, l)}

which is easily obtained using the sparse data structure as l = colind(indj)
whereindj = rowptr(i) to rowptr(i+1) - 1, i = rowind(indi),
indi = colptr(j) to colptr(j+1) - 1.

The saturation degree of an uncolored column j is the number of distinct colors
assumed by its neighbors N ( j). In our DSATUR-based exact coloring scheme, a
maximal clique is identified by iterating over the CSR data structure row by row.
The number of nonzeros in row i is obtained as ρi = rowptr(i + 1) − rowptr(i) and
ρmax = maxi{ρi} is the size of a maximal clique such that the columns in a row
with ρmax nonzeros determine a maximal clique which is used as a lower bound
(LB) in the algorithm. The columns in the maximal clique are assigned color labels
1, . . . , ρmax and are never recolored thus obtaining a partial coloring of the columns
of the sparse matrix. This forms the root node of the branch-and-bound tree (BBT).
A leaf node in the BBT corresponds to a coloring of all n columns of the matrix and
the number of colors in the coloring defines an upper bound (UB). The algorithm
works by selecting an uncolored column and sequentially trying each of the existing
colors in the current coloring and if none can be applied creates a new color label to
color the selected column and thus creating a new subproblem for each such feasible
color. Each subproblem thus created invokes a new recursive call to the algorithm.
A recursive call terminates under any one of the following conditions,
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1. the call corresponds to a leaf node in BBT
2. the number of colors in the current partial coloring is equal to or greater than the

current best coloring (UB)
3. the current best coloring (UB) is same as the lower bound (LB)

Figure 1 depicts our exact color algorithm exactColor. Parameters num-column
andnum-color denote, respectively, the number of colored columns and the number
of colors in current partial coloring. At the root node of BBTwe have num-color =
num-column = ρmax. A variable named maxSaturation is maintained to update
color information of uncolored columns and it is initialized to the value of ρmax at
the root node. Lines 1 to 4 check the terminating conditions as described above.

Function getColumn on line 5 returns an uncolored column (jcol) to be colored
next. The array handled keeps track of colored/uncolored status of columns. The
for−loop on line 7 sequentially considers each of the feasible colors (using function

EXACTCOLOR(NUM-COLUMN,NUM-COLOR)
1 if NUM-COLOR ≥ UB or NUM-COLUMN = N
2 then return NUM-COLOR
3 if UB= LB
4 then return UB
5 jcol ← getColumn()
6 handled[jcol] ← TRUE
7 for each color i from 1 to NUM-COLOR
8 do
9 if colorAvailable(jcol, i)
10 then
11 color[jcol] ← i
12 deleteColumn(head,next,previous,satDeg[jcol], jcol)
13 if i> maxSaturation
14 then maxSaturation ← maxSaturation+1
15 createNewColorClass()
16 IncSatDeg(jcol,color[jcol])
17 NColor ← EXACTCOLOR(NUM-COLUMN+1,NUM-COLOR)
18 if NColor < UB
19 then UB ← NColor
20 decSatDeg(jcol,color[jcol])
21 color[jcol] ← N
22 addColumn(head,next,previous,satDeg[jcol], jcol)
23 if UB ≤ NUM-COLOR
24 then handled[jcol] ← FALSE
25 return UB
26 if NUM-COLOR+1< UB
27 then color[jcol] ← NUM-COLOR+1
28 deleteColumn(head,next, previous,satDeg[ jcol], jcol)
29 if NUM-COLOR+1> maxSaturation
30 then maxSaturation ← maxSaturation+1
31 createNewColorClass()
32 incSatDeg(jcol,color[jcol])
33 NColor ← EXACTCOLOR(NUM-COLUMN+1,NUM-COLOR+1)
34 if NColor < UB
35 then UB ← NColor
36 decSatDeg(jcol,color[jcol])
37 color[jcol] ← N
38 addColumn(head,next,previous,satDeg[jcol], jcol)
39 handled[jcol] ← FALSE
40 return UB

Fig. 1 An exact algorithm for column partitioning
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colorAvailable) in the current coloring to be assigned to the selected column. Function
deleteColumn removes jcol from the list of uncolored columns. Once jcol is assigned
a color the function incSatDeg updates (increases by at most 1) the saturation degree
of the uncolored neighbors of jcol. A new subproblem gets created by making a
recursive call on line 17. On return from the call the value of upper bound (UB) is
updated if a better coloring was found. The steps from line 11 to line 15 must be
undone (lines 20 to 25) to try a new color on jcol. Lines 26 to 39 handles the case
when none of the existing colors is feasible for jcol. In this case the number of colors
gets increased in the recursive call.

Two most frequently used sparse matrix operations in the implementation of
algorithm in Fig. 1 are

1. an efficient tagging scheme to keep track of processed and unprocessed columns,
2. a bucket data structure (bucket heap) to efficiently find a column with maxi-

mal/minimal degree.

Due to space constraints we describe the bucket heap only briefly. A full description
of the data structures is given in [12]. The bucket heap is implemented with three
arrays of fixed size n: head, previous, and next. Each uncolored column belong to one
and only one saturation degree list. The first element in a degree list is stored in head
such that a nonzero value for head[sd] denotes the index of a column with saturation
degree sd; a zero value indicates an empty degree list. The algorithm maintains the
value of highest saturation degree in variable maxSaturation. To find a column with
largest saturation degree a linear scan of head is performed starting atmaxSaturation.
Columns in the same saturation degree list are efficiently accessed via the arrays next
and previous such that the next column of jcol in its list is next[jcol]; a value of zero
means that jcol is the last column in its list. Similarly, the previous column of jcol in
its list is previous[jcol]; a value of zero means that jcol is the first column in its list.
This structure ensures that insertion and deletion of a column can be performed in
amortized constant time [12].

We note that Healy and Ju [13] use an adjacency list representation of graphs (as
opposed to adjacency matrix in [14]) and define a priority queue data structure to
select the next vertex to be colored. In our implementation we work directly on the
sparse representation of the matrix given in CSR and CSC as implemented in [11]
and hence avoid the explicit construction or storage of the intersection graph.

2.1 Column Selection and Tie-breaking Strategies

The choice of the next uncolored column to be colored plays an important role in the
computational efficiencyof brach-and-bound exact algorithms.Anuncolored column
with maximum saturation degree [5] tends to minimize the number of branches in
the BBT at a tree node. However, this column selection heuristic makes use of
information gathered from only the immediate neighborhood of uncolored columns.
If there are more than one column with maximum saturation degree, the column
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chosen is one that is structurally dependent on largest number of uncolored columns.
On the other hand a better choice can be made for the next column to color by
utilizing information from an extended neighborhood of uncolored columns. Below
we describe two such strategies from the literature and a new tie-breaking rule.

Let J denote the set of uncolored columns with maximum saturation degree.
Also let F( j) denote the set of color labels that are feasible for column j and define

FN ( j) =
⋃

j ′∈N ( j) and j ′ is uncolored

F( j ′)

2.1.1 Sewell’s Rule [9] (Sewel)

Sewell’s rule to break tie is to select a column which has the maximum number of
common available colors in the neighborhood of uncolored columns:

max
j∈J

F( j) ∩ FN ( j)

This tie-breaking strategy reduces the number of subproblems because to break tie a
column is selected that has the maximum number of common available colors thus
leaving fewer choices for the uncolored columns in the neighborhood.

2.1.2 PASS Rule [10] (Segundo)

This tie-breaking approach due to Pablo San Segundo [10] is computationally less
expensive than Sewell’s rule. Column j is selected similarly as in Sewell’s, but while
calculating the common available colors it considers only the uncolored neighbors
that have maximum saturation degree:

max
j∈J

F( j) ∩ FN ( j), where FN ( j) =
⋃

j ′∈N ( j) and j ′ �= j, j ′∈J and j ′ is uncolored

F( j ′)

2.1.3 A New Tie-breaking Strategy (New)

We propose a new tie-breaking rule. It is slightly different than Sewell’s rule. Among
the uncolored columns with maximum saturation degree the search neighborhood is
restricted to columns with saturation degree of at least 1:

max
j∈J

F( j) ∩ FN ( j), where FN ( j)

=
⋃

j ′∈N ( j) and j ′ is uncolored and has at least one colored neighbor
F( j ′)
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This rule cuts down the search space by not considering columns with saturation
degree 0 since they do not contribute to the maximization criteria used to select the
column to be colored.

3 Numerical Experiments

In this section, we provide results from numerical experiments on selected test in-
stances. The data set for the experiments is obtained from The Matrix Market [15],
University of Florida Sparse Matrix Collection [16], and DIMACS coloring bench-
mark problems. Our exact coloring implementation was done in C++ and the code
was compiled using -O2 optimization flag with a g++ version 4.4.7 compiler. The
experiments were performed using a PC with 3.4 GHz Intel Xeon CPU, 8 GB RAM,
32 KB L1, 256 KB L2 and 8 MB L3 cache running Linux.

We perform two types of experiments. The purpose of the first set of experiments,
depicted in Tables 1, 2, and 3, is to assess the computational advantage of new data
structures that are discussed in Sect. 2 (identified as DSATURN) as compared with
a base implementation (identified as DSATURB) that uses adjacency matrix data
structure (see [17]). In the second experiment, depicted in Table 4 we compare the
effectiveness of tie-breaking strategies with DSATURN. Column labels m, n, nnz, χ
denote number of rows, number of columns, number of nonzero entries, and the size
of the minimum column partition (chromatic number of adjacency graph of A�A),
respectively.

Each of DSATURN and DSATURB first finds a maximal clique and its size is used
as a lower bound (listed in Tables 1, 2, and 3 under column labeled LB), assigns
colors to the columns of the respective clique, and calls the exact color algorithm
to assign colors to the remaining columns. Thus, larger maximal clique implies
better computational efficiency, in general. DSATURN identifies a maximal clique
by a linear scan of sparse data structure (column indices of a row with maximum
number of nonzero entriesρmax)whileDSATURB runs an exact algorithmbut explores
only a fixed number of subproblems. For instances lpireactor, robot24c1mat5, and
robot24c1mat5 of Table 1 and ash331GPIA, ash608GPIA , ash958GPIA of Table 2
DSATURB obtains larger maximal clique than DSATURN (ρmax value is indicated
within parentheses) while in Table 3 ρmax for instance named GL6D9 is 28 and the
maximal clique found by DSATURB is of size 17. On all other instances DSATURB

and DSATURN report identical maximal clique size.
Table 1 includes test instances for which optimal coloring is achieved by both

DSATURB and DSATURN. For each test instance the table depicts the clock time
in seconds (Time) and the number of subproblems (NSub) explored to obtain the
minimum partition. Time is rounded down to zero (0) if it is less than one-hundredth
of a second. On 19 out of 20 instancesDSATURN is found to be faster thanDSATURB

by an order of magnitude. Also, on a majority of instancesDSATURN explores fewer
subproblems to confirm optimality. Instances on which one of the implementation
terminateswhile the other does notwithin one hour of cpu time are reported inTable 2.
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Table 3 Number of subproblems for instances that cannot be solved by either

Name DSATURB DSATURN

m n nnz LB UB NSub UB NSub

abb313GPIA 50,463 1557 101,857 6 10* 2.76E+08 10* 7.24E+08

bcsstm07 420 420 3836 26 30* 1.02E+09 28* 1.14E+09

GL6D9 340 545 4349 28(B17) 30* 7.72E+08 29* 3.52E+08

n3c5b5 210 252 1260 6 10* 1.39E+09 10* 3.46E+09

plat1919 1919 1919 17159 19 24* 2.24E+08 23* 9.82E+08

sphere3 258 258 1026 7 9* 1.26E+09 9* 2.65E+09

steam1 240 240 3762 21 23* 1.56E+09 22* 1.27E+09

The column with labelUB/χ displays the the size of optimal partition (χ ) or the best
upper bound achieved (UB) on partition size (denoted by an asterisk *) within the
allotted time for nonterminating instances. Out of 7 instances, DSATURN terminates
on 6 of them. Remarkably, on 4 of the terminating instances optimal partition is
found very quickly by DSATURN while exploring fewer than 2000 subproblems.

Table 3 displays test results for instances on which bothDSATURN andDSATURB

fail to terminate within one hour. While the best partition obtained in the allotted
time is close (DSATURN is never worse thanDSATURB), the advantage of new sparse
data structure is quite evident. On most of the instances, DSATURN explores more
subproblems than DSATURB.

Instances with suffix GPIA are taken from DIMACS coloring benchmark collec-
tion; they arise in optimal direct determination of sparse Jacobian matrices [18]. In
the survey paper [7] authors use branch-and-price algorithm based on a set cover
formulation with column generation [17] and a branch-and-cut algorithm to instance
ash958GPIA. Neither of the algorithms could find optimal coloring (the chromatic
number is reported to be unknown in the paper). In Table 2 we see that DSATURN

solves the instance optimally.
In our second experiment, we study the effect of different tie-breaking strategies

with DSATURN on a subset of instances. In Table 4 Simple denotes the strategy
whence the column chosen to be colored next is head[sd] where sd is the maximum
saturation degree while Sewell, Segundo, and New, denote respective tie-breaking
strategies discussed in Sect. 2. For each test matrix, we report for each UB value the
time in seconds required and the number of subproblems explored to reach the UB.
For example, on test instance bcsstm07, examining the first row of Table 4 we see that
for Simple and Sewell the firstUB of 30 is achieved having explored 395 subproblems
in less than one-hundredth of a second (indicated by a 0; the corresponding entry for
each of Segundo and New is a dash (–) indicating that a better first UB = 29 ( shown
in the second row) is achieved having explored the same number of subproblems.
The second row corresponds to UB value of 29 and we see that Simple explores
16105 subproblems in 0.03 seconds and Sewell explores 7.11E+05 subproblems in
5.7 seconds, and that the best 4UB for Sewell andNew is 29; the asterisk (*) indicates
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that no improvement onUB could be achieved within one hour of total running time.
On the other hand, the best UB for Segundo and Simple is 28. Interestingly, on
jagmesh1 Simple finds optimal partition while the others do not terminate in the
allotted time. A similar situation is observed for Segundo on nos5. While no general
conclusion can be reached on the effectiveness of the four tie-breaking strategies, it
is clear that the running time is directly proportional to the subproblems explored.

4 Concluding Remarks

In this paper we have proposed an efficient implementation of a branch-and-bound
exact algorithm for coloring sparse matrices. We have presented results from numer-
ical experiments on an extensive set of test instances to validate the computational
effectiveness of our implementation as compared with a graph coloring implemen-
tation based on adjacency matrix representation. As an immediate application of the
method presented in the paper, we refer to the work [19] where a small critical sub-
matrix (subgraph) is colored exactly and the coloring is extended to the remaining
columns. Another promising research direction is to incorporate improving lower
bounds [20] as the algorithm progresses. Currently, a lower bound is computed at
the root node of the branch-and-bound tree which is never updated.
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A General Method for Selection
Function Optimization in Genetic
Algorithms

Nawar Ismail and Matthew Demers

Abstract Genetic algorithms are often used as a mechanism to solve complicated
problems in optimization. In the schemes that we are concerned with, a population
of members, which are each defined by a set of parameters, are used with the desire
to optimize some value called the fitness. The fitness of each member in a population
is measured and used during a selection process which defines a likelihood for any
member to carry on to the subsequent iteration (often called a generation) of the
algorithm. Mutations are then stochastically applied to the population. This alters
the parameters of the population members. Combining the effects of selection and
mutation tends to increase the average fitness of a population. Our principal concern
is in determining how to select members from one iteration to the next. Measuring
howwell a selection mechanism performs is computationally demanding, making its
optimization difficult.We apply an additional genetic algorithm to a simplifiedmodel
to give an approximate optimization for the selection mechanism. In this paper, we
detail the general procedure for this optimization.

Keywords Genetic algorithms · Iterative methods · Optimization
Predictive models

1 Introduction

A genetic algorithm (GA) is, loosely, an iterative scheme designed with the purpose
of finding an optimal solution to a potentially very difficult or complex problem.
In general, large numbers of difficult evaluations impose time constraints. Many
techniques have been developed to improve the utility of the algorithm, such as func-
tional approximation and determining representative simulation run length which
both reduce the difficulty of evaluation, and fitness estimation which can reduce
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evaluation numbers [1–3]. Additionally, the operators used can be designed to pro-
duce improvementsmore efficiently [4]. Finally, the parameters used in the algorithm
strongly influence the success of the output but the ideal values are often difficult
to determine [5, 6]. In this paper, we are concerned with optimizing a particular
parameter of these algorithms, the selection function (see Sect. 3) with a generally
applicable technique.

There are many parameters in genetic algorithm to be chosen, such as the num-
ber of members in a population, mutation rates, selection probabilities (as well as
application specific parameters). Often, these values are chosen through trial and
error, or “experimentally” [6]. Finding optimal parameters is difficult due to number
of possibilities and the generality of problems tackled by GAs [6]. This difficulty
suggests the use of a GA to optimize the parameters of the original GA. Howev-
er, directly applying a GA to the output of another GA would require an infeasible
amount computation time. We propose that a model can instead be used to optimize
the parameters of the algorithm.

We apply our investigation to a particular optimization problem; however, we
maintain that the procedures presented here are generally applicable. The goal of
our optimization problem is to obtain configurations of so-called “creatures” that
maximize their displacement on a flat planar surface by the end of a fixed time. These
sets of mechanical components operate in a physically simulated environment. Many
similar optimizations involving virtual creatures have been studied [7].

2 Optimization Setup

2.1 Creatures

In our framework, we define a creature as a set of mechanical components and how
they are connected. There are three possible component types in any creature: pistons,
rigid bars, and contact spheres, whichwill be referred to asmuscles, bones, and nodes
respectively to remain consistent with the biological naming associated with genetic
algorithms.

The nodes act as anchors for the connecting muscles and bones, and are the
source of environment interaction. The bones will maintain a fixed length, while the
muscles oscillate their length sinusoidally with time, at different rates. With these
components, each creature will travel a deterministic displacement at the end of a
time, t = tmax. The projection of this displacement on the plane is what we take to
be the creature’s fitness,1

f = √
xcom(tmax)2 + ycom(tmax)2, (1)

1The goal is to travel across the plane. The height of a creature plays no (direct) role in this. So only
the displacement in the x-y plane is considered.
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Fig. 1 A creature consists of three components: muscles (red) which provide a potential driving
force, bones (white) which provide structure, and nodes which interact with the environment. These
define a sufficient set of components that allows a creature to move, provided its configuration
allows it. A 2D creature is shown for simplicity, but simulations are run in 3D

where xcom and ycom are the center of mass coordinates. This fitness is the objective
function that we would like to maximize. For simplicity, the muscles and bones are
massless, making the nodes the only massive component (Fig. 1).

2.2 Evaluating Fitness

The are six forces responsible for the net force on each node are gravity, muscle
forces, bone forces, surface collision, ground friction and drag.

The net force on a node is then the sum of these six forces; namely:

Fnode = Fg + Fm + Fb + Fc + Ff + Fd . (2)

From F = mr̈, we get that

rj(t) = 1

mj

∫ ∫ ∑

forces

Fnode,j(t, r1, r2, ..., rmax)dt2, (3)

where rj is the position of node j, and Fnode,j is the net force acting on that node. This
coupled with Eq. 1 defines the mathematical function we are trying to optimize.

We simulate the movement of each node by iteratively evaluating this equation
numerically. At the end of each simulation (consisting of 9000 unit time step itera-
tions), the displacement in the plane of the creature’s center of mass is recorded as
the creature’s fitness.
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3 Algorithm

3.1 Genetic Algorithm

Our genetic algorithm begins with an initial population of N members.2 In our
scheme, each member of the population is a creature as defined in Sect. 2.1. Genetic
operators are then iteratively applied to the population. These operators act on a
population with the aim of increasing the average fitness of that population [8]. The
operators used are the selection function, and themutations (see Sect. 3.2). An outline
of the algorithm used can be found in Algorithm 1.1. The algorithm can terminate on
many different end conditions. We mainly end our simulations when improvements
become negligible or at the end of a fixed number of generations.

Algorithm 1.1 Genetic Algorithm
P ← initiatePopulation( ) � with creatures
while end condition not met do

evaluateFitnesses(P)
P ← Select(P)
P ← Mutate(P)

end while

3.2 Genetic Operators

3.2.1 Selection Function

Selection functions act on a population to select creatures from one iteration of the
algorithm to the next [8]. There are several types of selection functions [8]. We
specifically investigated a type of rank selection. After fitness evaluation, creatures
in the current generation are ordered from highest to lowest fitness. The creature with
the greatest fitness would have rank 0, the creature with the second greatest would
have rank 1, and so on. We could also consider a rank percentage which is bounded
by 0 and 1, regardless of population size.

We must balance the variance of the selection function with how strongly we
select for the best creatures. With too little variation, the probability of being trapped
at or near a local maximum would be very high [8]. Conversely, selecting uniform-
ly (without regard for fitness) would be a pointless exercise. Determining how to
distribute this balance in our selection function is our principal concern.

2Values of N between 100, and 1000 are typically used. This was determined through trial and
error. Future work may determine an ideal value through the techniques described here.
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3.2.2 Mutations

At the conclusion of each generation, all creatures may undergo one or more muta-
tions. Mutations alter the properties of a creature, which ultimately affects its fitness.
There are three mutation types in our scheme:

1. Modify Characteristic: Changes a property of a component. Examples include:
random node locations, modifying node mass, and modifying muscle contraction
rate.

2. Add Component: Add a node, muscle, or bone. Adding a node may generate
additional connections.

3. Remove Component: Remove a node, muscle, or bone. Removing a node will
also remove connected muscles and bones.

These essentially span the set of simple alterations, and provide a mechanism to
explore other creature configurations [8]. These are applied to creatures with some
small probability. Our simulations indicate that most mutations will decrease perfor-
mance, but a handfulwill cause improvements. Couplingmutationswith the selection
function means that previously successful creatures are being modified, causing im-
provements in their design over time.

4 Methods

4.1 Overview

To optimize the form of the selection function, it must be assigned a fitness. We use
the average fitness of the creatures produced after 300 generations to represent the
ability of a selection function.3

A statistical model of our creatures will be used to reduce the computational cost
required to evaluate the fitness of many selection functions. This model is imple-
mented by replacing creatures with their most representative statistic: their fitness.
The model will therefore deal with floating point numbers instead of a complicated
structure whose fitness is computationally expensive to measure. This is a sort of
functional approximation, where we use an alternate expression for the fitness [3].

The selection function acts identically except it considers fitnesses rather than
creatures (whichwould have those associated fitnesses). Themutation operator how-
ever, is intimately tied to the physical design of a creature. So reducing its structure
to a single value requires some careful considerations.

3This must be evaluated several times to obtain a proper statistic, which can be demanding.
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4.2 Estimating Impact

To emulate the mutation operator, we look at the distribution of how the mutations
tend to affect the creature’s fitness. It is straightforward to see that the change in
fitness after a creature is mutated (or impact), correlates to the fitness of the creature.
For example, creatures with a greater fitness would be likely to suffer negative effects
when a mutation occurs due to disruptions in their more specialized structures.

Combining the fact that each creature has its own distribution, with the fact that
these distributions depends on fitness, we conclude that each fitness has its own
distribution. To properly mimic it, we collect a sample of genomes with various
associated fitnesses, and apply this sampled distribution to our model.

We start by collecting a list of impact statistics. To do this, we first determine a set
of fitness levels that span the range of fitnesses typically seen. The genetic algorithm
is run until it produces a creature with a fitness within some margin of a desired
level. Mutations are applied to several copies of this creature. Measuring the change
in fitness for each creature provides us with a sample of impact statistics. If we
sample these impacts from many different creatures at each fitness level, we obtain
a reasonable sample of impact statistics grouped by fitness level.4 This is outlined in
Algorithm 1.3 and gives us the required statistics for our model.

The fitnesses of the creatures typically range from 0-400. Based on our available
computational time, we chose our levels to be at 5 ∗ 1.25i for i = 0, . . . , 20. 1000
impact statistics were collected from each of over 1800 creatures spanning these
fitness levels, providing us with nearly two million impact statistics.

Algorithm 1.2 Obtaining Impact Statistics
for all Fitness levels do

for M creatures found at this level do
Population ← N copies of creature
f0 ← initial creature’s fitness
for all N creatures do

apply round of mutations
f ← new fitness
record impact statistic as f0 − f

end for
end for

end for

4Care should be taken as to not sample multiple creatures from the same instance of the algorithm.
Otherwise they will not be independent.
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4.3 Model

Our model aims to approximate the fitnesses produced by the genetic algorithm
that simulates creatures, without actually simulating them. The utility of this is not
creature optimization (at least not directly), since we remove any concept of creature,
but instead to greatly decrease the computational cost associated with measuring the
fitness of a selection function.5 In our model, when the mutation operator is called
on a population of fitnesses, the fitness of each member is looked up and a random
impact corresponding to that fitness is applied to their fitness. Since the distribution of
impacts is contained in our sampling, this approximates the true nature of impacts.6

These changes to Algorithm 1.1 are shown in Algorithm 1.3.

Algorithm 1.3Model Genetic Algorithm
function impactModel(f )

impacts ← dataset with fitness closest to f
return uniformly selected value from impacts

end function

P ← initiatePopulation( ) � with fitnesses sampled from initial populations of creatures
while end condition not met do

P ← Select(P)
for all population members do

f ← f + impactModel(f )
end for

end while

To demonstrate the validity of our model, we run both algorithms (the one which
simulates creatures, and the one which only considers their fitness) and measure the
fitness of the selection function (as described in Sect. 4.1). This is done for a selection
function of the form,

P(x) = (1 − x)p sin(πx) (4)

for several different values of p. This function was based on our intuition for how the
mass of the selection function should be distributed - essentially a reasonable guess
at a good selection function. As can be seen in Fig. 2, our simplified model follows
the general trend obtained by the algorithm which actually simulates the creatures.
Since the trends are similar, the maxima in both the real simulation and our model
would likely occur for similar selection functions.

5This decreased cost will then be used to optimize the selection function, which in turn improves
the creature optimization.
6More advanced statistics or added corrections can be implemented to improve the quality of our
model. As a basic implementation this will suit our purposes.
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Fig. 2 A comparison between the actual data obtained from simulating the creatures (red) and the
models predictions (black) for a selection function of the form,P(x) = (1 − x)p sin(πx). Each point
corresponds to the particular selection function’s fitness. Notice the relatively large fluctuations
found in the simulated data. This results not only from a large variance at each point, but also
demonstrates a limitation in acquiring large data sets due to the high computation cost that we aim
to eliminate. Under the considerations that ourmodel greatly simplifies the problem (by eliminating
the creature), the two graphs follow a similar trend and so we validate it as an approximation to the
actual selection function fitness

4.4 Selection Function Optimization

We can now approximate the fitness of a selection function in a feasible time scale
which allows us to optimize the selection function. To avoid assuming the form of
the ideal selection function, we define the function,

σn(a1, a2, . . . an) = n
∑

ai
·

n∑

i=0

{
ai

i
n < x < i+1

n
0 else

, (5)

which corresponds to a normalized set of n columns of height ain/
∑

ai that are
equally spaced on the domain [0, 1]. With sufficiently large n, this function can be
used to approximate any function we would be concerned with, and so it is used as
our selection function.

We use a third genetic algorithm to determine the parameters, ai of the selec-
tion function σn, to optimize our model of the fitness of a selection function.7

We fill our population with 300 members. Each member has a set of n number-
s corresponding to ai in 5. The selection function used in this third algorithm is
P(x) = (1 − x)27 sin(πx), since we have seen its validity when optimizing crea-
tures.8 Mutations consist of potentially reassigning some numbers with new random
values. With this, everything needed to optimize the selection function is set in place.

7The other two being: (1) the one used in creature optimization, and (2) the one used in our model.
8One could consider optimizing this selection function aswell.However, theywould find themselves
optimizing endlessly. At some point an educated guess must be made.
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Fig. 3 The average σn function outputted by the selection function optimization procedure (red).
The least squares exponential fit P(rp) = 1.08e−4.44rp was fitted to the σ function (black). Here,
P(rp) is the probability of a creature with rank percentage rp to be selected. We chose n = 10, but
higher values of n can be used, although this may make the optimization more difficult. Either the
σ function or the fitted curve can be taken to be an optimal selection function

5 Results

Our model aimed to approximate the fitnesses produced by the optimization of crea-
tures. It was able to generate trends similar to those that resulted from actually
simulating the creatures. This is shown in Fig. 2.

Taking our model to be a reasonable predictor of a selection function’s fitness,
it was used in an additional genetic algorithm. This genetic algorithm optimized
the parameters in the selection function defined by Eq. 5. The optimal selection
function that was produced was fitted to the exponential seen in Fig. 3. When this
selection function was used to optimize creatures, the selection function’s fitness
was 230 ± 10. Although this is likely not the highest possible fitness, it does surpass
all other tested selection functions. The best of those selection functions produced a
fitness of 200 ± 20. This means that the fitness of our optimized selection function
increased by (15 ± 2)%.

6 Discussion and Conclusion

Our primary concern was optimizing the selection function used in our optimization
of creatures. To overcome the excessive computational cost associated with this, we
developed a model capable of approximating selection function fitness. Our model
removed the need to simulate creatures by only considering their best representative
estimator, their fitness. To allow for this simplification, the mutation operator was
approximated by using a sample of impacts at various fitness levels. With this, our
model matched the general trend obtained when actually simulating the creatures,
validating our model as an approximation.
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Themodel was used to optimize a selection function with a general form. An ideal
solutionwas found to be an exponential decay and produced 15 ± 2%higher creature
fitness on average after 300 generations than other tested functions. The generality
of our method, would allow it to be applied in many different optimization problems.

The determination of the selection function form would be an unaccessible task
without similar considerations to those presented here. Brute force optimizations can
still be done, but may be limited to considering a handful of values [9]. The most
computationally demanding task in our technique is the acquisition of a sufficient
sample of creatures. Collecting the ∼2000 creatures used here required around 10
days of computation (on a single machine). However, we observed similar results
with ∼200 creatures, implying some robustness with regard to quantity. In addition,
the collecting of genomes - which amounts to recording the solutions to the problem
- has other uses like analysing solution behaviours and their characteristics, and can
be collected passively as the problem is studied. It does not have to be the focus of the
optimization, and can this technique can be applied after a sufficient set is collected.

Futurework could relate to improving the statisticalmethods applied to ourmodel,
the simplicity ofwhich amounts to our largest source of error. One could also consider
extensions such as: if and how the selection function should change as the algorithm
iterates, optimization of population size, or ideal mutation rates, as considered in [6].
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Exploring the Method of Colour
Stealing for Contractive Iterated
Function Systems

Eva Kasanda and Matthew Demers

Abstract Plotting fractals generated by an Iterated Function System (IFS) can be
challenging and computationally intensive, so an algorithm referred to as the chaos
game is employed. Here, given a seed point, IFS mappings are chosen at random
in sequence, with each subsequent point mapped from the one before it through the
newmapping. Utilizing this approach, wemay plot attractors accurately and quickly.
Attractors may be coloured in many ways, but of interest is the method of colour
stealing (Barnsley, Superfractals. Academic Press, London [1]; Barnsley, Theory
and Application of Fractal Tops, Fractals in Engineering, Tours. Springer, France
[2]; Kunze et al., Maple Conference 2006 Proceedings [3]). Complications to the
existing scheme arise in implementation, particularly when considering assigning
colour values to pixels. These lead us to explore some slight modifications of the
original framework, making use of the notions of finite code space and a metric for
use in practical computation. Further, we explore an extension of the notion of the
fractal top by defining a general projection function and showcase some resulting
attractors.

Keywords Fractal · Colour stealing · Chaos game · MATLAB · Code space
Fractal bottom

1 Introduction

The goal of this work is first to recall the technique of colour stealing, due to Barnsley
[1, 2]. Then, we generalise this method by considering a slightly modified formu-
lation, and create a related framework for practical implementation when creating
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these pictures using a computer. Similar implementations have been explored by
Barnsley in the past [4–7].

In order to talk about iterated function systems, we first need to discuss some
crucial definitions. Consider a metric, d , acting on a spaceX. A function f : X → X
on a completemetric space (X, d) is said to be contractive if there exists a contraction
factor 0 ≤ k < 1 such that

d( f (x), f (y)) ≤ k · d(x, y) ∀ x, y ∈ X. (1)

We denote the set of all contraction mappings on X as Con(X).
Banach’s fixed point theorem [1, 3] states that for a contraction mapping w ∈

Con(X), there is a unique globally attractive fixed point, x̄ ∈ X, such that

w(x̄) = x̄

lim
n→∞ d(w◦n(x), x̄) = 0 ∀ x ∈ X.

(2)

This theorem allows us to approximate a fixed point of a contraction mapping with
arbitrary precision. For a contraction mapping w ∈ Con(X) on the complete metric
space (X, d), we define a corresponding set-valued mapping as

ŵ(S) = {w(x) | x ∈ S}, S ⊆ X (3)

Given N set-valued contraction mappings, ŵ1(X), ŵ2(X), . . . ŵN (X), we define
Ŵ (X) as

Ŵ (X) =
N⋃

i=1

ŵi(X). (4)

This union ofN set-valued contractionmappings is called anN-map iterated function
system, or IFS. It can be shown that an IFS defined in this way is itself a contraction
mappingonH (X), the spaceof non-empty compact subsets ofXunder theHausdorff
metric. For more details, see [8].

Banach’s Fixed Point Theorem tells us that the IFS, Ŵ , has a fixed point inH (X),
and that this fixed point can be approached by iteratively applying Ŵ to any initial
point in X. However, since H (X) is a space of sets, the fixed point for a set-valued
contraction mapping will be not a single point, but a set of points called the attractor
of the IFS.

2 The Chaos Game

The attractor of a given IFS may be efficiently plotted by using a method which we
shall refer to as the Chaos game. The Chaos game is an algorithm which relies on
random selection of IFS mappings, one at a time in a sequence, and is carried out as
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Fig. 1 Attractor of the Sierpinski Triangle IFS (see Sect. 6), produced using a 100, b 1000, c
10,000, and d 100,000 iterations of the Chaos Game (see Sect. 6 for IFS mappings)

follows. First, a probability p is assigned to each mapping, ŵi, of the IFS such that

N∑

i=1

pi = 1, (5)

andwe select a single initial point, x0, to be our starting point for drawing the attractor.
A mapping wσi is randomly selected according to the associated probabilities. We
then define the next point in the iteration to be xi+1 = wσi (xi). We continue to select
randommappings and apply them to the previously obtained point until a satisfactory
image is obtained. The nth point plotted can be written as

xn = wσn(wσn−1(wσn−2(. . .wσ2(wσ1(x0))))) (6)

where σi is a randomly selected integer from 1 to N .
It can be proven [3] that a sequence of points obtained through using this method

densely approaches the attractor for almost every semi-infinite random sequence of
mappings chosen. Thus, we can obtain a good approximation of the attractor with
a tremendously reduced computational cost. The probabilities pi are selected based
on the point density achieved by each mapping selection in order to reduce the time
to obtain a dense approximation to the attractor (see Sect. 6). For more details on
this method, see [1], for example. With the Chaos Game, the exponential increase
in points resulting from iterative applications of the entire IFS to a set of points is
avoided as only one point needs be stored at a time. Figure 1 illustrates the resulting
attractor when using increasing numbers of iterations for the chaos game. For most
of the images obtained in this project, 100,000 points were used.

3 Colour Stealing

The concept of using an image to colour an attractor has been explored in previous
work [1–3, 5]. M. Barnsley had the idea of using the dynamics of another IFS in
order to colour a fractal such that the colours mimic a natural pattern. It was our
goal to first replicate this technique (called colour stealing) for ourselves and then
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to expand on it in interesting ways. This drawing technique involves keeping track
of the mappings chosen at each iteration of the chaos game. In doing so, we obtain
a “history” that tells us exactly how each point was obtained. Each point is thus
associated with a sequence of integers that acts as an address for that point. We call
these sequences codes, which help to form what we call a code space.

The code space ΩN for a given integer, N , is the space of all semi-infinite strings
whose elements are integers from 1 to N . ΩN represents the set of all possible codes
for an N-map IFS. In general, a code σ in a code space ΩN is given by

σ = lim
n→∞ σn σn−1 σn−2 σn−3 . . . σ3 σ2 σ1 {1 ≤ σi ≤ N | σi ∈ N ∀ i}. (7)

Note that the elements are numbered from right to left. This convention is chosen
in order to better convey the fact that the leftmost element of the code, the one
corresponding to the most recent iteration, is the most influential with regards to the
position of the resulting point. An example of a code in the space Ω4 might be

σ = . . . 1 4 3 1 1 2 4 3 2 2 2 3 (8)

Note that since we are dealing with a finite number of points, and thus a finite
number of mappings, in practice we do not consider semi-infinite strings. Instead, for
practical implementation, we present a modified definition of code space to consider
finite strings. Given an N-map IFS W , an initial point x0 ∈ X, and a code σ =
σn σn−1 . . . σ2 σ1 ∈ ΩN , we define an address map φW : ΩN → X as

φW (σ ) = wσn(wσn−1(wσn−2(. . .wσ2(wσ1(x0))))). (9)

Iterating the chaos game n times will always generate n distinct codes for n not
necessarily distinct points. The point generated by the ith iteration of the chaos game
will have a corresponding code of length i. Note that the address map φW (σ ) is
surjective but not injective, and so many distinct codes may lead to the same point
in X.

When dealing with images produced by a computer display, wemust consider that
images differ from Cartesian plots in that they are formed of a finite grid of discrete
pixels, rather than an uncountably infinite number of points. In order to steal colours
from an image with finite resolution, we consider an image with a discrete number
of pixels, Ptot . We can think of each pixel as a box-shaped collection of points. Any
given set of pixels must form a partition for X.

The chaos game can yield points which are arbitrarily close or even directly
on top of each other. When drawing an image of the resulting attractor, each pixel
containing at least one point will be coloured. In other words, the pixel Pj is coloured
as long as φW (σ ) ∈ Pjk for at least one code σ generated by the chaos game. To use
the previously discussed technique of colour stealing, we consider X = [0, 1]2 and
an image function, IQ(P), which maps a set of pixels, P, to a set of 3 × 1 vectors
representing the RGB triplets which define the colour of each pixel in the image Q.
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We also define a pixel mapping function, PQ(x), which maps a point x ∈ X =
[0, 1]2 to the pixel ( j, k) in which it is located. For a square image with square
pixels, that function can be written explicitly as

PQ(x, y)

=
{
( j, k)

∣∣∣ j + px ≤ x − xmin
ρ

< j + 1 + px, k + py ≤ y − ymin
ρ

< k + 1 + py
}

(10)

where px and py are pixel offsets, and xmin and ymin are the leftmost and lowermost
values of x and y, respectively, of all the plotted points on the attractor. Similarly, xmax
and ymax are respectively the rightmost and uppermost values of x and y. Together,
these six values serve to normalize and center the attractor on the square image. The
pixel size, ρ, is defined as

ρ = 1

D
max{(xmax − xmin), (ymax − ymin)} (11)

with D being the number of pixels in one dimension of the colouring image, Q. For
example, a 300 × 300 pixel image will have D = 300. For the sake of simplicity,
only square images with an equal number of pixels in each dimension were used.
The pixel offsets required to center the image are calculated such that the attractor
will fill the square image in the dimension in which it is largest, but will create black
bars on either side of the attractor in the other dimension to ensure that the attractor
remains appropriately scaled and centered on the square image.

To implement the aforementioned method of colour stealing, we first select a
square image, QV , and map the pixels in the image to X = [0, 1]2 such that D2

pixels of size ρ will completely fill X without overlapping. Next, we require two
N-map IFSs: V̂ and Ŵ with probabilities, pi associated with each mapping. Starting
from a single seed point, x0, we simultaneously play two chaos games using the
same random sequence of map selections for both. With the codes generated by
the randomly selected mappings, we plot the attractor for W , the “drawing IFS”
as before, except that it is now drawn as an image QW with pixel dimensions D2.
We add colour to this attractor using V , the aptly named “colouring IFS”. For each
point φW (σ ), the corresponding point φV (σ ) is mapped to a pixel ( j, k) ∈ P in QV .
The image mapping function IQV ( j, k) outputs the RGB triplet, corresponding to the
colour of the pixel ( j, k) inQV . This is the pixel colour corresponding to the code σ .

Finally,we paint each pixelPQ(φW (σ )) onQW with theRGB triplet corresponding
to σ , which is given by IQV (PQ(φV (σ ))) as described above. The new image, QW

will display the geometric shape of the attractor of the drawing IFS, W , but uses the
colours of the imageQV . It should be noted thatQW is drawn such that it has the same
pixel dimensions as QV and thus the same pixel mapping function, PQ can be used
for both images. The effect is this: As we execute the chaos game using a single code,
two (typically different) IFSs generate two (typically different) sets of points. Points
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Fig. 2 Illustration of the way the colours are stolen from an image QV and applied to the points
generated by the chaos game. Note the two points located in the same pixel ofQW which are causing
a conflict. How can we decide whether this pixel should be coloured blue or green?

visited by the “drawing” IFS, W , are plotted, but shaded with the colours overlying
the current point generated by the “colouring” IFS, V . In this way, the colours of the
attractor for W are “stolen” from whatever image is chosen to overlay the attractor
for V .

Figure 2 illustrates this process with a small-scale example.
The example described above illustrates a key problem encountered in this

method. Asmentioned previously, the chaos game can generatemultiple codeswhich
all lead to points within a single pixel.

Thus, after completing the chaos game, each pixel ( j, k) will, in general, be
associated with a set of codes, denoted σ̂ jk , that map to that pixel. As we require
only one colour to shade the pixel with, a single choice must be made from among
this set.

We first define the size of a code. Based around the concept of a norm, the size of
a code is defined to be

S(σ ) =
n−1∑

i=0

σn−i − 1

Ni
(12)

Recall that the first element of a code is the rightmost number. Therefore, the size of
a code σ = 1 2 2 1 1 2 in Ω2 would be

S(1 2 2 1 1 2) = 0

20
+ 1

21
+ 1

22
+ 0

23
+ 0

24
+ 1

25

= 0.78125
(13)

Asmentioned previously, the choice to represent codes as having the leftmost element
represent the mapping number corresponding to the most recent transformation is
rooted in the fact that the most recent mapping selection is most influential with
regards to the position of the resulting point. Thus, our notation convention parallels
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that of a base-N number, having the most significant digit on the left and the least
significant digit on the right. Now that we have a means for comparing the sizes of
codes, we can introduce the fractal top [1, 2]:

τ̄φ( j, k) =
{

max
S(σ∈ΩN )

∣∣∣P(φ(σ )) = ( j, k)

}
(14)

In words, the fractal top of a pixel ( j, k) is the largest code which is mapped to a point
within that pixel. The fractal top gives us the means to select a unique code as we
required earlier; however, the decision to select the largest code is not necessary, and
other methods of code discrimination could be explored. We generalize this notion
by instead using a function τ(σ̂ jk), which acts as a projection of the set of codes σ̂ jk

to a single code σ jk within that set.
Finally putting this all together, we can define our new image as

QW (Pjk) = IQV ◦ PQ ◦ φV ◦ τ ◦ σ̂ j . (15)

In this equation, σ̂ jk gives us the set of all codes which satisfy φW (σ ) ∈ Pjk , or the set
of all codes which the drawing IFS, W , maps to points within the pixel Pj . τ selects
a single code from this set, and φV maps that code to a point inX using the colouring
IFS, V . PQ determines the pixel in which said point belongs, and IQV gives the colour
of the overlaid image,QV , at that pixel. Some images obtained using colour stealing,
with the previously described “fractal top” used as our code projection function, τ ,
are illustrated in Fig. 3.

Fig. 3 Example of colour stealing. Image a depicts the colouring image, I , image b shows the end
result,QW , using the Golden Dragon IFS as a drawing IFS and the Twin Dragon IFS as a colouring
IFS (see Sect. 6)
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4 Discussion

It should be emphasized that using a different colouring attractor can yield a com-
pletely different colour scheme, as illustrated in Fig. 4b, c.

We now test some variations of the standard colour stealing technique. The first
variation we attempted was to set φW and φV to the same IFS. In this case, any given
code will result in the same point on both the drawing and colouring attractors. Thus,
the resulting image is simply a cutout ofQV , as if shape of the the drawing/colouring
attractor has been applied as a mask to QV . This is illustrated in Fig. 4d.

Given any sequence of mappings chosen during the chaos game, the same points
will be visited in the same order using both the “drawing” and “coloring” IFS. The
result is outlined in [3].

Suppose nowwe consider a drawing IFSW and a colouring IFS V but employ the
colour stealing application twice; the first time choosing the projection function to
be the fractal top as described before, and the second time choosing it to be defined
as follows:

τφ
¯
( j, k) =

{
min

S(σ∈ΩN )

∣∣∣P(φ(σ )) = ( j, k)

}
. (16)

We call this projection function the ‘fractal bottom’, as we are now selecting the
smallest code in the set. In Fig. 5, we compare the result of colour stealing using the
fractal top and using the fractal bottom.

Notice that while there is a distinct difference, not all the points change colour.
The colour will stay the same if the colour corresponding to the fractal top is equal
to that of the fractal bottom. This occurs in two cases: The first occurs when the
top and bottom codes coincidentally map to the same RGB colour. The second case
occurs when there is only one code that maps to that pixel. For a general projection
function, the colour of a given pixel will stay the same if all points within that pixel
are mapped to the same RGB colour. It would be interesting to explore the relation
between the number of points which change colour and the fractal dimension, since

Fig. 4 Illustration of the effect of the colouring IFS selection on the resulting image. Image a
depicts the colouring image, I , image b shows the result of colour stealing using the Golden Dragon
as a colouring IFS, while image c shows the result of colour stealing using the Levy Dragon as a
colouring IFS d shows the result of colour stealing using the Twin Dragon as a colouring IFS. All
images use the Twin Dragon as a drawing IFS (see Sect. 6)
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Fig. 5 Comparison of images obtained using b the fractal top c the fractal bottom with the Maple
Leaf attractor. Both images were obtained using the square fractal attractor as a colouring IFS (see
Sect. 6). Image a shows the colouring image, QV

they are both related to the density of the points on the attractor. A more detailed
discussion of the colour distribution obtained through colour stealing can be found
in Barnsley’s work [1, 2, 4–7].

5 Conclusion

The goal of this project was to explore Barnsley’s colour stealing technique and its
properties. In doing so, we made use of a generalised projection function in place
of the previously defined fractal top. Additionally, we defined a finite code space
and a way of comparing these finite codes for practical implementation. The results
showed that different choices of the projection function can lead to differences in the
final pictures. Another topic explored was the use of same IFS colour-stealing. The
images obtained using these techniques were very interesting and required further
examination in order to better understand their properties.

6 Appendix

Listed below are some of the IFSs used to obtain the images above. The IFS is
presented as a matrix of the form

⎡

⎢⎢⎢⎣

a1 b1 c1 d1 e1 f1 p1
a2 b2 c2 d2 e2 f2 p2
...

...
...

...
...

...
...

an bn cn dn en fn pn

⎤

⎥⎥⎥⎦ (17)
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where each row contains the parameters for one mapping, and first six columns
contain the parameters for a set-valued mapping of the form

ŵi(X) =
[
a b
c d

]
X +

[
e
f

]
. (18)

and pi is the probability associated with the mapping ŵi(X).

Sierpinski Triangle IFS =
⎡

⎣
0.5 0 0 0.5 1 1 0.33
0.5 0 0 0.5 1 50 0.33
0.5 0 0 0.5 50 50 0.34

⎤

⎦

Fern IFS =

⎡

⎢⎢⎣

0 0 0 0.16 0 0 0.01
0.85 0.04 −0.04 0.85 0 1.6 0.85
0.2 −0.26 0.23 0.22 0 1.6 0.07

−0.15 0.28 0.26 0.24 0 0.44 0.07

⎤

⎥⎥⎦

Maple Leaf IFS =

⎡

⎢⎢⎣

0.14 0.01 0 0.51 −0.08 −1.31 0.25
0.43 0.52 −0.45 0.5 1.49 −0.75 0.25
0.45 −0.49 0.47 0.47 −1.62 −0.74 0.25
0.49 0 0 0.51 0.02 1.62 0.25

⎤

⎥⎥⎦

Square IFS =

⎡

⎢⎢⎣

0.5 0 0 0.5 1 1 0.25
0.5 0 0 0.5 50 1 0.25
0.5 0 0 0.5 1 50 0.25
0.5 0 0 0.5 50 50 0.25

⎤

⎥⎥⎦

Golden Dragon IFS =
[
0.62327 −0.40337 0.40337 0.62367 0 0 0.5

−0.37633 −0.40337 0.40337 −0.37633 1 0 0.5

]

Levy Dragon =
[
0.5 −0.5 0.5 0.5 0 0 0.5
0.5 0.5 −0.5 0.5 0.5 0.5 0.5

]

Twin Dragon =
[
0.5 −0.5 0.5 0.5 0 0 0.5
0.5 −0.5 0.5 0.5 0.5 −0.5 0.5

]
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Infinite Products Involving Binary
Digit Sums

Samin Riasat

Abstract Let (un)n≥0 denote the Thue-Morse sequencewith values±1. TheWoods-
Robbins identity below and several of its generalisations are well-known in the
literature ∞∏

n=0

(
2n + 1

2n + 2

)un

= 1√
2
.

No other such product involving a rational function in n and the sequence un seems
to be known in closed form. To understand these products in detail we study the
function

f (b, c) =
∞∏

n=1

(
n + b

n + c

)un

.

We prove some analytical properties of f . We also obtain some new identities similar
to the Woods-Robbins product.

Keywords Prouhet-Thue-Morse sequence · Woods and Robbins product
Closed formulas for infinite products

1 Introduction

Let sk(n) denote the sum of the digits in the base-k expansion of the non-negative
integer n. Although we only consider k = 2, our results can be easily extended to
all integers k ≥ 2. Put un = (−1)s2(n). In other words, un is equal to 1 if the binary
expansion of n has an even number of 1’s, and is equal to −1 otherwise. This is the
so-called Thue-Morse sequence with values ±1. We study infinite products of the
form
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f (b, c) :=
∞∏

n=1

(
n + b

n + c

)un

.

The only known non-trivial value of f (up to the relations f (b, b) = 1 and
f (b, c) = 1/ f (c, b)) seems to be

f

(
1

2
, 1

)
= √

2,

which is the famousWoods-Robbins identity [7, 8]. Several infinite products inspired
by this identitywere discovered afterwards (see, e.g., [5, 6]), but none of them involve
the sequence un. In this paper we compute another value of f , namely,

f

(
1

4
,
3

4

)
= 3

2
.

In Sect. 2 we look at properties of the function f and introduce a related function
h. In Sect. 3 we study the analytical properties of h. In Sect. 4 we try to find infinite
products of the form

∏
R(n)un admitting a closed form value, with R a rational

function.
This paper forms the basis for the paper [3].While the purpose of [3] is to compute

new products of the forms
∏

R(n)un and
∏

R(n)tn , tn being the Thue-Morse sequence
with values 0, 1, we restrict ourselves in this paper to studying products of the form∏

R(n)un in greater depth.

2 General Properties of f and a New Function h

We start with the following result on convergence.

Lemma 1 Let R ∈ C(x) be a rational function such that the values R(n) are defined
and non-zero for integers n ≥ 1. Then, the infinite product

∏
n R(n)

un converges if
and only if the numerator and the denominator of R have same degree and same
leading coefficient.

Proof See [3], Lemma 2.1.

Hence f (b, c) converges for any b, c ∈ C \ {−1,−2,−3, . . . }. Using the defini-
tion of un we see that f satisfies the following properties.

Lemma 2 For any b, c, d ∈ C \ {−1,−2,−3, . . . },
1. f (b, b) = 1,
2. f (b, c) f (c, d) = f (b, d),

3. f (b, c) =
(
c + 1

b + 1

)
f

(
b

2
,
c

2

)
f

(
c + 1

2
,
b + 1

2

)
.
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Proof The only non-trivial claim is part 3. To see why it is true, note that u2n = un
and u2n+1 = −un, so that

f (b, c) =
∞∏

n=1

(
n + b

n + c

)un

=
(
1 + c

1 + b

) ∞∏

n=1

(
2n + b

2n + c

)un ∞∏

n=1

(
2n + 1 + c

2n + 1 + b

)un

=
(
1 + c

1 + b

) ∞∏

n=1

(
n + b

2

n + c
2

)un ∞∏

n=1

(
n + c+1

2

n + b+1
2

)un

=
(
c + 1

b + 1

)
f

(
b

2
,
c

2

)
f

(
c + 1

2
,
b + 1

2

)

as desired.

One can ask the natural question: is f the unique function satisfying these properties?
What if we impose some continuity/analyticity conditions?

Using the first two parts of Lemma 2 we get

f (b, c) f (d , e) = f (b, c) f (c, d) f (d , e) f (d , c)

f (c, d) f (d , c)
= f (b, e) f (d , c)

f (c, c)
= f (b, e) f (d , c).

Hence the third part may be re-written as

f (b, c) =
f

(
b

2
,
b + 1

2

)

b + 1

/ f

(
c

2
,
c + 1

2

)

c + 1
. (1)

This motivates the following definition.

Definition 1 Define the function

h(x) := f

(
x

2
,
x + 1

2

)
. (2)

Then Eqs. (1) and (2) give the following result.

Lemma 3 For any b, c ∈ C \ {−1,−2,−3, . . . },

f (b, c) = c + 1

b + 1
· h(b)
h(c)

. (3)

Sounderstanding f is equivalent to understandingh, in the sense that each function
can be completely evaluated in terms of the other. Moreover, taking c = b + 1

2 in
Eq. (3) and then using Eq. (2) gives the following result.



62 S. Riasat

Fig. 1 Approximate plot of h(x)

Lemma 4 The function h defined by Eq. (2) satisfies the functional equation

h(x) = x + 1

x + 3
2

h

(
x + 1

2

)
h(2x). (4)

Again one may ask: is h the unique solution to Eq. (4)? What about monoton-
ic/continuous/smooth solutions?

An approximate plot of h is given in Fig. 1 with the infinite product truncated at
n = 100.

3 Analytical Properties of h

The following lemma forms the basis for the results in this section.

Lemma 5 For b, c ∈ (−1,∞),

1. if b = c, then f (b, c) = 1.
2. if b > c, then (

c + 1

b + 1

)2

< f (b, c) < 1.

3. if b < c, then

1 < f (b, c) <

(
c + 1

b + 1

)2

.

Proof Using Lemma 2 it suffices to prove the second statement.
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Let b > c > −1 and put

an = log

(
n + b

n + c

)
, SN =

N∑

n=1

anun, UN =
N∑

n=1

un. (5)

Note that an is positive and strictly decreasing to 0. Using s2(2n) + s2(2n + 1) ≡ 1
(mod 2) it follows that Un ∈ {−2,−1, 0} and Un ≡ n (mod 2) for each n. Using
summation by parts,

SN = aN+1UN +
N∑

n=1

Un(an − an+1).

So−2a1 < SN < 0 for largeN . Exponentiating and takingN → ∞ gives the desired
result.

Lemmas 3–5 immediately imply the following results.

Theorem 1 h(x)/(x + 1) is strictly decreasing on (−1,∞) and h(x)(x + 1) is strict-
ly increasing on (−1,∞).

Theorem 2 For b, c ∈ (−1,∞), f (b, c) is strictly decreasing in b and strictly in-
creasing in c.

Theorem 3 For x ∈ (−2,∞),

1 < h(x) <

(
x + 3

x + 2

)2

.

We now give some results on differentiability.

Theorem 4 h(x) is smooth on (−2,∞).

Proof Recall the definition of h:

h(x) =
∞∏

n=1

(
2n + x

2n + 1 + x

)un

.

Then taking b = x/2 and c = (x + 1)/2 in Eq. (5) shows that the sequence Sn of
smooth functions on (−2,∞) converges pointwise to log h.

Differentiating with respect to x gives

S ′
N =

N∑

n=1

un
(2n + x)(2n + 1 + x)

=
N∑

n=1

un

(
1

2n + x
− 1

2n + 1 + x

)
.
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Hence

∣∣S ′
N − S ′

M

∣∣ ≤
N∑

n=M+1

(
1

2n + x
− 1

2n + 1 + x

)

≤
N∑

n=M+1

(
1

2n − 1 + x
− 1

2n + 1 + x

)

= 1

2M + 1 + x
− 1

2N + 1 + x

<
1

2M − 1
→ 0

as M → ∞, for any x ∈ (−2,∞) and N > M . Thus S ′
n converges uniformly on

(−2,∞), which shows that log h, hence h, is differentiable on (−2,∞).
Now suppose that derivatives of h up to order k exist for some k ≥ 1. Note that

S(k+1)
N = (−1)kk!

N∑

n=1

un

(
1

(2n + x)k+1
− 1

(2n + 1 + x)k+1

)
.

As before,

∣∣∣S(k+1)
N − S(k+1)

M

∣∣∣ ≤ k!
N∑

n=M+1

(
1

(2n + x)k+1
− 1

(2n + 1 + x)k+1

)

≤ k!
N∑

n=M+1

(
1

(2n − 1 + x)k+1
− 1

(2n + 1 + x)k+1

)

= k!
(2M + 1 + x)k+1

− k!
(2N + 1 + x)k+1

<
k!

(2M − 1)k+1
→ 0

as M → ∞, for any x ∈ (−2,∞) and N > M . Hence S(k+1)
n converges uniformly

on (−2,∞), i.e., h(k) is differentiable on (−2,∞).
Therefore, by induction, h has derivatives of all orders on (−2,∞).

Theorem 5 Let a ≥ 0. Then

log h(x) = log h(a) +
∞∑

k=1

(−1)k−1

k

( ∞∑

n=2

un
(n + a)k

)
(x − a)k

for x ∈ [a − 1, a + 1].
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Proof Let H (x) = log h(x). By Theorem 4,

H (k+1)(x) = (−1)kk!
∞∑

n=2

un
(n + x)k+1

.

Hence

|H (k+1)(x)| ≤ k!
∞∑

n=2

1

|n + x|k+1
≤ k!

∞∑

n=2

1

(n + a − 1)k+1

for x ∈ [a − 1, a + 1]. So by Taylor’s inequality, the remainder for the Taylor poly-
nomial for H (x) of degree k is absolutely bounded above by

1

k + 1

( ∞∑

n=2

1

(n + a − 1)k+1

)
|x − a|k+1

which tends to 0 as k → ∞, since a ≥ 0 and |x − a| ≤ 1. Therefore H (x) equals its
Taylor expansion about a for x in the given range.

4 Infinite Products

Recall that

f (b, c) =
∞∏

n=1

(
n + b

n + c

)un

.

From Lemma 2 we see that

∞∏

n=1

(
(n + b)(n + b+1

2 )(n + c
2 )

(n + c)(n + c+1
2 )(n + b

2 )

)un

= c + 1

b + 1
(6)

for any b, c 
= −1,−2,−3, . . . , and if b, c 
= 0,−1,−2, . . . , then

∞∏

n=0

(
(n + b)(n + b+1

2 )(n + c
2 )

(n + c)(n + c+1
2 )(n + b

2 )

)un

= 1. (7)

Some interesting identities can be obtained from Eqs. (6) and (7). For example, in
Eq. (6), taking c = (b + 1)/2 gives

∞∏

n=1

(
(n + b)(n + b+1

4 )

(n + b+3
4 )(n + b

2 )

)un

= b + 3

2(b + 1)
(8)
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while taking b = 0 gives

∞∏

n=1

(
(n + 1

2 )(n + c
2 )

(n + c)(n + c+1
2 )

)un

= c + 1 (9)

for any b, c 
= −1,−2,−3, . . . .
We now turn our attention to the functional Eq. (4). Recall that it reads

h(x) = x + 1

x + 3
2

h

(
x + 1

2

)
h(2x).

Taking x = 0 gives

h(0) = 2

3
h

(
1

2

)
h(0).

Since 1 < h(0) < 9/4 by Theorem 3, cancelling h(0) from both sides gives h(1/2) =
3/2. This shows that

∞∏

n=0

(
4n + 3

4n + 1

)un

= 2. (10)

Next, taking x = 1/2 in Eq. (4) gives

h

(
1

2

)
= 3

4
h(1)2

hence h(1) = √
2 (since 1 < h(1) < 16/9 by Theorem 3) andwe recover theWoods-

Robbins product
∞∏

n=0

(
2n + 2

2n + 1

)un

= √
2. (11)

Similarly, taking x = −1/2 in Eq. (4) gives

h

(
−1

2

)
= 1

2
h(0)h(−1) = 1

2
f

(
0,

1

2

)
f

(
−1

2
, 0

)
= 1

2
f

(
−1

2
,
1

2

)
,

i.e.,
∞∏

n=1

(
(4n − 1)(2n + 1)

(4n + 1)(2n − 1)

)un

= 1

2
. (12)

Taking x = 1 in Eq. (4) gives

h(1) = 4

5
h

(
3

2

)
h(2)
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hence h(3/2)h(2) = 5
√
2/4 and this gives

∞∏

n=0

(
(4n + 3)(2n + 2)

(4n + 5)(2n + 3)

)un

= 1√
2
. (13)

Taking x = 3/2 in Eq. (4) and using the previous result gives

h(2)2h(3) = 3√
2

which is equivalent to

∞∏

n=0

(
(2n + 2)(n + 1)

(2n + 3)(n + 2)

)un

= 1√
2
. (14)

Equations (10)–(14) can also be combined in pairs to obtain other identities.

5 Concluding Remarks

The quantity h(0) ≈ 1.62,816 appears to be of interest [1, 4]. It is not knownwhether
its value is irrational or transcendental. We give the following explanation as to why
h(0) might behave specially in a sense.

Note that the only way non-trivial cancellation occurs in the functional equation
Eq. (4) is when b = 0. Likewise, non-trivial cancellation occurs in Eq. (1) or property
3 in Lemma 2 only for (b, c) = (0, 1/2) and (1/2, 0). That is, the victim of any such
cancellation is always h(0) or h(0)−1. So one must look for other ways to understand
h(0).

Using the only two known values h(1/2) = 3/2 and h(1) = √
2, the following

expressions for h(0) can be obtained from Theorem 5.

• By taking x = 0 and a = 1,

h(0) = √
2 exp

(
−

∞∑

k=1

1

k

∞∑

n=2

un
(n + 1)k

)
.

• By taking x = 1 and a = 0,

h(0) = √
2 exp

( ∞∑

k=1

(−1)k

k

∞∑

n=2

un
nk

)
.
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• By taking x = 0 and a = 1/2,

h(0) = 3

2
exp

( ∞∑

k=1

1

k

∞∑

n=2

u2n+1

(2n + 1)k

)
.

• By taking x = 1/2 and a = 0,

h(0) = 3

2
exp

( ∞∑

k=1

(−1)k

k

∞∑

n=2

u2n
(2n)k

)
.

The Dirichlet series ∞∑

n=0

un
(n + 1)k

and
∞∑

n=1

un
nk

appearing in the above expressions were studied by Allouche and Cohen [2].
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Image-Driven Two-Point Boundary
Value Inverse Problems: A Case Study

Victoria Brott and Herb Kunze

Abstract The collage method for treating boundary value inverse problems, given
observational data values across the domain, is well-established in the literature.
Here, instead, we formulate an inverse problem where the information about the
dependent variable is given in the form of a greyscale image. The image gives no
actual values, but does give some comparative information across the domain. In this
paper, for the Sturm-Liouville two-point boundary value problem

(k(x)u′(x))′ + q(x)u(x) = f (x)

u(0) = u0
u(L) = uL,

we consider the inverse problem:

Given f (x), q(x), the BCs, and a 256-grayscale image of the level

values of u(x), recover an estimate of k(x).

For context, we can think of the greyscale image as representing the isotherms of
the steady-state heat distribution, concentrations in a chemical system, or population
densities. After summarizing the mathematical framework, we focus on a particular
example, considering several scenarios for which we can solve this inverse problem
and exploring the impact of observation noise and image resolution on the recovered
approximation.

Keywords Inverse problems · Sturm-Liouville two-point boundary value
problems · Image-driven · Collage theorem
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1 Introduction

In a typical differential equations inverse problem, one seeks to estimate parameters
in the model equation from observational data of the dependent variable. A funda-
mental inverse problem for the Sturm-Liouville two-point boundary value problem
(BVP) [1],

(k(x)u′(x))′ + q(x)u(x) = f (x) (1)

u(0) = u0 (2)

u(L) = uL, (3)

is:

Given f (x), q(x), the BCs, and the measurements of u(x), (p′)
0 ≤ x ≤ L, recover an estimate of k(x).

for N ≥ 1 most practical methods of solving this inverse problem begin with the
weak form of problem (P′) obtained by integrating both sides with respect to ele-
ments of a suitable set of basis functions. In one-dimension, for example, we use
the finite element “hat basis” functions. The integration process yields a linear sys-
tem of equations in the coefficients λi of k(x) with respect to this basis. Instead of
solving this system directly, one typical solves a minimization problem involving an
appropriate least squares function. Often, an addition penalty function is added for
the purpose of regularization. The process is described pleasantly in the book [2],
indeed for this specific problem. In [3–5], we illustrate that the collage method can
be used to solve problem (P′). In fact, we demonstrate that the collage method gives
results that compare well with other computationally more-expensive methods.

In this paper, we instead assume that the given information about the dependent
variable comes in the form of a greyscale image produced from level values of the
dependent variable and seek to solve the inverse problem.

Given f (x), q(x), the BCs, and a 256-grayscale image of the (P)

level values of u(x), recover an estimate of k(x).

(One motivation for studying this problem is the idea of extending the work to two
spatial dimensions, where the greyscale image could be a biomedical scan or a spatial
population density profile.)

In the next brief section, we present a summary of the collage method in the
context of two-point BVPs. The resulting minimization problem for the objective
function of the parameters λi, called the squared collage distance, is stated in (5). We
discuss problem (P) in the final section, illustrating via example how the solution
method plays out. The key question becomes: is it possible to shift from the greyscale
image values to u-values (and then use the collage method)?
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1.1 The Collage Method for Two-Point BVPs

We state Banach’s fixed point theorem.

Theorem 1 (Banach) Let (X , d) be a complete metric space and T : X → X be a
contraction map:

∃ c ∈ [0, 1) such that d(Tu,Tv) ≤ c d(u, v) for all u, v ∈ X .

Then there exists a unique fixed point ū ∈ X of T such that T ū = ū. Furthermore,
d(T ◦nu, ū) → 0 as n → ∞.

Many inverse problems can be recast in terms of approximating a target element
u ∈ X by a fixed point ū of some contractionmapT : findT such d(u, ū) is sufficiently
small. A simple consequence of Banach’s fixed point theorem is the collage theorem,
the key result in fractal imaging [6, 7]. The collage theorem allows us to shift to a
different minimization problem.

Theorem 2 (Collage) Let (X , d) be a complete metric space and T : X → X be a
contraction map with contraction factor c ∈ [0, 1). Then

d(u, ū) ≤ 1

1 − c
d(u,Tu)

where ū is the fixed point of T .

The collage theorem allows us to bound the fixed point approximation error d(u, ū)
by the factor 1

1−c times the “collage distance” d(u,Tu). In a practical problem, the
candidate contraction maps are typically selected from a family defined in terms of
some parameters, say Tλ for λ ∈ �, each with fixed point uλ and contractivity factor
cλ ∈ [0, 1). So we can minimize the penalized objective function

min
λ∈�

d
(
utarget,Tλutarget

) + γ1 max{0,−cλ} + γ2 max{0, cλ − 1},

where utarget is the target element in X , γ1 and γ2 are two positive parameters, and
the minimization in λmay be done over a suitable subset of�. The final two terms in
the objective function add a positive penalty when cλ lies outside of [0,1]. Note that
the regularity of the objective function depends strictly on the first term. In practice,
we often just solve

min
λ∈�

d
(
utarget,Tλutarget

)
.

In the case of Sturm-Liouville two-point BVPs, following [3], the role of T is played
by a Picard integral operator with an adjustment to replace the second boundary
condition (at x = L) with a condition at the other endpoint (x = 0). Integrate (1),
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divide by k(x) 
= 0 for all x, and integrate again. Reversing the order of integration
on the integral leads to the the definition of the Picard operator of interest:

(Tu)(x) = u0 + u′
0(x − 0) −

∫ x

0
(x − s)

[− f (s) + q(s)u(s) + k ′(s)u′(s)
k(s)

]
ds (4)

Note that a fixed point u of T satisfies u(0) = 0 and u′(0) = u′(0). In order for this u
to satisfy boundary condition at x = L, we impose that (Tu)(L) = uL; this equation
can be solved for u′(0),

u′
0 = 1

L

(
uL − u0 +

∫ L

0
(L − s)

[− f (s) + q(s)u(s) + k ′(s)u′(s)
k(s)

]
ds

)
,

and plugged back into (4) to give a Picard operator that depends on uL instead. For
our inverse problem, with k determined in terms of some parameters λ, we solve

min
λ∈�

�2 = min
λ∈�

d2
2

(
utarget,Tλutarget

) = min
λ∈�

∫ L

0

(
utarget(x) − (

Tλutarget
)
(x)

)2
dx,

(5)

setting γ1 and γ2 to 0. In [3], the contractivity of T on the interval [0, δ], δ small, is
established. Aswework on [0,L] here, with L imposed, we note that we can break the
larger interval up into perhaps many pieces each of small enough width for the earlier
result and then use some inequalities to return to a minimization problem for the
operator on the full interval. That is, letTi be thePicardoperator definedon the interval
[(i − 1)δ, iδ], i = 1, . . . ,N , with δ = 1

N ; then we have theoretical justification for
minimizing the collage distance on each interval, but this is undesirable since we do
not want a piecewise defined differential equation. Instead we note

min
λ∈�

d2
2 (u,Tu) = min

λ∈�

(
N∑

i=1

d2
2 (u,Tiu)

)

≥
N∑

i=1

min
λ∈�

d2
2 (u,Tiu) ,

and so we can minimize the collage distance on the entire interval to control the sum
of the errors on the individual intervals.

We mention that the occurrence of k(x) in both the numerator and denominator
of the integrand in (4) complicates the minimization of the squared collage distance.
In our work, we use Particle Swarm Ant Colony Optimization (PSACO) [8] to find
the minimizing parameter values.

1.2 A Case Study of the Inverse Problem

In order to set the stage for our academic study, we first choose “true” values for
the parameters in (1)–(3). In what follows, similar to the examples in [4, 5, 9, 10],
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we set ktrue(x) = 1 + 3x. In addition we always use q(x) = 0, L = 5, u0 = 0, and
uL = 100. We will consider two values for f (x). In all cases, we solve the BVP
numerically, sample the solution at N uniformly distributed data points (including
the two endpoints), add Gaussian (relative) noise with low amplitude ε, and, finally,
produce an N × 1 pixel greyscale image from the noised sample values. The color
black is assigned to the pixel with the highest sample value and the color white is
assigned to the pixel with the lowest sample value; all other pixels are coloured with
the appropriate shade of grey. In our work, we use N values of 128, 256, 512, and
1024. (When we display these images in a figure, we duplicate each pixel vertically
so that the shading is easier to see.) The generated image is the key input to the
updated inverse problem (P):

Given f (x), q(x), the BCs, and a 256-greyscale image of the level values (P)

of u(x), recover an estimate of k(x) in the f orm k(x) = λ1 + λ2x.

Our goal is to define a target function uTarget(x) from the input image and then
minimize the collage distance in (5). Of course, the amount of noise in the input
image (corresponding to ε) induces a corresponding level of imprecision in uTarget(x),
and in addition there are natural cases to consider.
Case 1: u0 
= uL, with min u = u0 and max u = uL, or vice-versa.
In this setting, we are able to approximate the change in u corresponding to a change
of one greyscale level: |uL−u0|

256 . As a result, we are able to produce an approximation
of the measured and noised u values. Interpolating these values produces utarget(x).
Case 2: u0 
= uL, not in Case 1.
We remain able to approximate the change in u corresponding to a change of one
greyscale level: |uL−u0|

|grey(0)−grey(N )| , where grey(p) gives the greyscale value of pixel
p. We are able to produce an approximation of the measured and noised u values.
Interpolating these values produces utarget(x).

As a case study, we set f (x) = x(1 − 3x). For sake of illustration, in Fig. 1, we
show plots of the data values for u recovered from the input image, along with the
original (unknown to the inverse problem) numerical solution, for two of the settings.
For Cases 1 and 2, we present in Figs. 2 and 3, respectively, the 256-greyscale images
obtained as input for the inverse problem, at each resolution and with different levels
of relative noise. Striations are present in all of the noised images, but are far more
visible in Fig. 3.

Tables 1 and 2 present the results for Cases 1 and 2, respectively, for each value
of N and the three values of relative noise. We can make some general observations.
In either case, for a fixed noise setting, increasing the value of N (which corresponds
to the number of data measurements and, hence, the image resolution) improves the
recovery. Also, for a fixed value of N , increasing the noise level worsens the results.

We also wish to observe that the magnitude of f (x) plays a significant role in the
quality of results. If we instead use f (x) = 10x(1 − 3x), enlarging the range of f
values by a factor of 10 compared to the earlier case study, we find the u values, of
course, enjoy a similar effect. As a result, the ability to approximate the change in u
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Fig. 1 Data values for u recovered from the 256-greyscale image for two settings

Fig. 2 Input 256-greyscale isotherm images for case 1
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Fig. 3 Input 256-greyscale isotherm images for case 2

Table 1 Recovered parameter values for Case 1. True values are (λ1, λ2) = (1, 3)

ε = 0 ε = 0.5% ε = 1%
N λ1 λ2 �2

1024 1.00 2.91 0.835
512 1.01 2.87 0.863
256 1.01 2.76 1.010
128 1.05 2.59 1.540

N λ1 λ2 �2

1024 1.01 2.95 0.839
512 1.02 2.89 0.865
256 1.03 2.79 1.017
128 1.05 2.61 1.552

N λ1 λ2 �2

1024 1.03 3.00 0.847
512 1.03 2.95 0.883
256 1.04 2.85 1.045
128 1.06 2.63 1.554

corresponding to a change of one grey-scale worsens, and the potential error in the
target function grows. In general, the error in our recovered parameters increases. In
addition, we can consider the following case.
Case 3: u0 = uL.
We are not able to approximate the change in u corresponding to a change of one
greyscale level. We need one additional bit of information.
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Table 2 Recovered parameter values for Case 2. True values are (λ1, λ2) = (1, 3)

ε = 0 ε = 0.5% ε = 1%
N λ1 λ2 �2

1024 1.03 3.00 1.588
512 1.05 2.98 1.640
256 1.08 2.95 1.920
128 1.17 2.88 2.930

N λ1 λ2 �2

1024 1.03 2.96 1.656
512 1.02 2.89 1.975
256 1.10 3.24 2.802
128 1.25 3.41 5.724

N λ1 λ2 �2

1024 1.03 2.91 2.009
512 1.01 2.90 2.217
256 1.12 3.59 4.091
128 1.35 3.97 9.044

In both Case 3 and the setting of an f with a large range, we benefit from the
ability to “run the experiment again” and gather new observations using a different
f . For these cases, we are exploring whether any theoretical tools and results for
PDEs can be helpful.

1.3 Conclusion

Wehave performed preliminary exploration of image-driven two-point inverse BVPs
using the collage method, with some success. We focused on an academic example
similar to those in the existing literature. In the case of different greyscale values at
the image endpoints, we demonstrated some reasonable outcomes for problem (P):
the larger the resolution of the input image, the better the recovered approximation
of k(x); the lower the amplitude ε of the relative noise in the input image, the better
the approximation of k(x); and the approximation of k(x) is reasonable in the case
of small ε.
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Circle Inversion IFS

Maxwell Fitzsimmons and Herb Kunze

Abstract Suppose C is a circle in R
2 with radius r > 0 and centre õ. We can

represent x̃ ∈ R
2 as x̃ = ar(cos(θ), sin(θ)) + õ, where θ is measured from any fixed

ray originating from õ and a ≥ 0. The circle inversion map τ with respect to C is
given by

τ(x̃) = 1

a
r(cos(θ), sin(θ)) + õ,

for x ∈ R
2 \ {õ}. Consider N circles and N associated circle inversion maps. In the

literature a modified version of the chaos game is played with these maps to generate
pictures [1, 2]. In this work we establish rigorously that there exists an attractor
to the iterated function system consisting of modified circle inversion maps, and
that the regular chaos game will generate the attractor. We do this by proving that
the iterated function systems consisting of certain compositions of these modified,
non-expansive circle inversion maps, are contractive.

Keywords Fractals · Iterated function systems · Chaos game · Circle inversion

1 Introduction

A common algorithm to generate fractals is to use the chaos game with an iterated
function system (IFS). Typical IFS theory states [3]

Theorem 1 Let (X, d) be a complete metric space and for i = 1, 2, . . . , N let fi :
X → X be contraction maps. Then there exists a non-empty compact subset A of X
satisfying
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A =
N⋃

i=1

fi (A).

We call A the attractor of the IFS.

We shall refer to the hypothesis of Theorem 1 as the “finite contractive IFS” hypoth-
esis. The typical way to “draw” an attractor is to play the chaos game.

Theorem 2 (Chaos Game Theorem) Let the hypothesis of Theorem 1 hold. Let
{in}∞n=1 be a sequence of numbers such that in ∈ {1, 2, . . . , N } for all n ∈ N and for
all n ∈ N in = k with probability pk > 0, where�N

k=1 pk = 1. Let A be the attractor
of the IFS and let x0 ∈ X. Then the sequence {xn}∞n=1 defined by xn = fin (xn−1)

satisfies limm→∞ dH ({xn}∞n=m, A) = 0, where dH is the Hausdorff metric induced by
(X, d). Furthermore if x0 ∈ A then {xn}∞n=1 = A.

Theorems 1 and 2 are verywell known and there has been large amount of research
in this area. For example see [4, 5] for some relevant material.

Let Ci = {x̃ ∈ R
2|d(õi , x̃) ≤ ri } be a closed circle in R

2 with radius ri > 0 and
centre õi , where d is the Euclidean metric. Let [N ] = {n ∈ N : n ≤ N }. Now let
X = ∪i∈[N ]Ci . Then (X, d) is a complete metric space. Let x̃ ∈ R

2 \ {õi }. Then
∀i ∈ [N ], x̃ = airi ω̃(θi ) + õi where ω̃(θi ) = (cos(θi ), sin(θi )) and θi ∈ [0, 2π) is
measured from some fixed ray starting at õi . We call ai ≥ 0 the radial scaling factor
of x̃ with respect to Ci .

Definition 1 The circle inversion map with respect to Ci is defined by

τi (x̃) = 1

ai
ri ω̃(θi ) + õi , ∀x̃ ∈ R

2 \ {õi }

Previous work concerning these circle inversion maps claim that use of the chaos
gamewill produce a non-random picture ofmathematical relevance [1, 2]; see Figs. 1
and 2 for an example of a circle inversion fractal. The authors of [1, 2] briefly justify
the use of the chaos game stating the maps are contractive, which they are not (with
respect to the Euclidean metric). In fact every point on ∂Ci is a fixed point of τi
violating the uniqueness of fixed points of contraction maps. Regardless, the authors
suggest the following modification to the chaos game.

Let xm ∈ Ci for some i ∈ [N ], where xm is the last point generated so far by
playing the chaos game. If the random number generator picks i , pick a new number
j until xm /∈ C j and let xm+1 = τ j (xm). This modification prevents the maps from
being used where they would be expansive. Using this insight we define the map

Definition 2 For x̃ ∈ X , define

Ti (x̃) =
⎧
⎨

⎩
x̃ x̃ ∈ Ci
1

ai
ri ω̃(θi ) + õi x̃ /∈ Ci
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Fig. 1 Example of a circle
inversion fractal

Fig. 2 Figure 1 without the
inverting circles
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Henceforth the reader should assume the term “circle inversion map” refers to
these Ti maps not the τi maps.

One can see that playing the (unmodified) chaos game with these Ti maps is
equivalent to playing the modified chaos game outlined above by noticing Ti ◦ Ti =
Ti . Using the Ti maps we will prove that there is a non-empty compact set A ⊆ X
that satisfies A = ⋃N

i=1 Ti (A) and show that the chaos game played with the Ti maps
will “draw” A.

2 Contractivity of Compositions of Circle Inversion Maps

Contractivity of an IFS is very important in the proof of Theorem 2. So it makes
sense that we try to recover this property in some way. As we will see the Ti maps
are not contractive, however certain compositions are. To see this we need a series
of intermediate results.

Proposition 1 For all x̃, ỹ ∈ X, where x̃ = ai ω̃(αi ) + õi and ỹ = biri ω̃(βi ) + õi ,
we have

d(Ti (x̃), Ti (ỹ)) ≤ wi (x̃, ỹ)d(x̃, ỹ),

where

wi (x̃, ỹ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 x̃, ỹ ∈ Ci
1
ai

x̃ /∈ Ci , ỹ ∈ Ci
1
bi

x̃ ∈ Ci , ỹ /∈ Ci

min{ 1
ai

, 1
bi

} x̃, ỹ /∈ Ci

Proof It is easy to show that x̃ ∈ Ci if and only if ai ≤ 1. Let x̃, ỹ ∈ X be as in the
statement of the Proposition. Then we have

d2(x̃, ỹ) = ||x̃ − ỹ||2
= ||(x̃ − õi ) − (ỹ − õi )||2
= r2i

(
a2i + b2i − 2aibi cos(αi − βi )

)
.

Suppose x̃, ỹ ∈ Ci then Ti (x̃) = x̃ and Ti (ỹ) = ỹ so d(Ti (x̃), Ti (ỹ)) = d(x̃, ỹ).
Without loss of generality let x̃ /∈ Ci and ỹ ∈ Ci . Then

d2(Ti (x̃), Ti (ỹ)) = r2i
(
1
a2i

+ b2i − 2 1
ai
bi cos(αi − βi )

)

= r2i
1
a2i

(
1 + a2i b

2
i − 2aibi cos(αi − βi )

)
.

If 1 + a2i b
2
i ≤ a2i + b2i we have our result. Indeed

1 + a2i b
2
i − a2i − b2i = (a2i − 1)(b2i − 1) ≤ 0
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as a2i ∈ (1,∞)and b2i ∈ [0, 1]. Thus

d2(Ti (x̃), Ti (ỹ)) ≤ r2i
1
a2i

(
a2i + b2i − 2aibi cos(αi − βi )

) = 1
a2i
d2(x̃, ỹ).

Now suppose x̃, ỹ /∈ Ci then

d2(Ti (x̃), Ti (ỹ)) = r2i

(
1

a2i
+ 1

b2i
− 2

1

aibi
cos(αi − βi )

)

= 1

a2i b
2
i

r2i
(
b2i + a2i − 2aibi cos(αi − βi )

)

= 1

a2i b
2
i

d2(x̃, ỹ).

Thus d(Ti (x̃), Ti (ỹ)) = 1

aibi
d(x̃, ỹ). Since

1

ai
,
1

bi
< 1 their product must be less

than either term. �

We can see that themaps satisfy d(Ti (x̃), Ti (ỹ)) ≤ d(x̃, ỹ).We say functions with
this property are non-expansive.

The following properties of the wi functions are not difficult to prove.

Proposition 2 For all x̃, ỹ ∈ X

1. wi (x̃, ỹ) is continuous on X × X
2. wi (x̃, ỹ) = 1 ⇐⇒ x̃, ỹ ∈ Ci

3. wi (x̃, ỹ) ≤ 1

We will now be working exclusively with compositions of the Ti maps, so it is
convenient to define a notation for them.

Definition 3 Let �M
N be the set of sequences of length M of numbers from 1 to N .

That is �M
N = {σ = σMσM−1 . . . σ1 : σi ∈ [N ], i ∈ [M]}.

Definition 4 For σ ∈ �M
N and for functions Ti , i ∈ [N ], define

Tσ = TσM ◦ TσM−1 ◦ · · · ◦ Tσ1 .

For example, let σ ∈ �2
3 be σ = 13. Then T13 = T1 ◦ T3.

Contractivity of the composition maps will be a consequence of the following
lemma.

Lemma 1 Let σ ∈ �M
N , σ = σMσM−1 . . . σ1 and x̃, ỹ ∈ X. Define x̃σi = Tσi (x̃σi−1),

x̃σ0 = x̃ and ỹσi = Tσi (ỹσi−1), ỹσ0 = ỹ. Let
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wσ (x̃, ỹ) =
M∏

i=1

wσi (x̃σi−1 , ỹσi−1).

Then
1. d(Tσ (x̃), Tσ (ỹ)) ≤ wσ (x̃, ỹ)d(x̃, ỹ),
2. wσ (x̃, ỹ) = 1 ⇐⇒ x̃, ỹ ∈ ⋂M

i=1 Cσi .

Proof 1. Can be shown by repeated application of Proposition 1.
2. (⇐) If x̃, ỹ ∈ ⋂M

i=1 Cσi then Tσi (x̃) = x̃ for all i ∈ [M]. The same results holds
for ỹ. By item 2 of Proposition 2 we have wσi (xσi−1 , yσi−1) = wσi (x̃, ỹ) = 1 for all
i ∈ [M]. Thus wσ (x̃, ỹ) = 1.
(⇒) By item 3 of Proposition 2 we can see that if wσ (x̃, ỹ) = 1 then for all i ∈ [M]
we have wσi (x̃σi−1 , ỹσi−1) = 1. Then by item 2 of Proposition 2 we have for all i ∈
[M] x̃σi−1 , ỹσi−1 ∈ Cσi . So for all i ∈ [M] x̃σi = Tσi (x̃σi−1) = x̃σi−1 and we conclude
x̃σi = x̃σ0 = x̃ . This means x̃σi−1 = x̃ ∈ Cσi for all i ∈ [M]. We can make the same
argument for ỹ and thus we conclude x̃, ỹ ∈ ∩M

i=1Cσi . �

It is now finally possible to establish contractivity of appropriate compositions of
the circle inversion maps.

Theorem 3 Let X = ∪N
i=1Ci and let σ ∈ �M

N . If ∩M
i=1Cσi = ∅ then Tσ is a contrac-

tion map on X.

Proof By item2 of Lemma1 and∩M
i=1Cσi = ∅,wσ (x̃, ỹ) �= 1. Furthermorewσ (x̃, ỹ)

is the product of numbers ≤ 1 so wσ (x̃, ỹ) ≤ 1. Thus wσ (x̃, ỹ) < 1 for all x̃, ỹ ∈ X
because wσ is continuous on X × X and hence achieves its maximum on X × X .
Let cσ = maxx̃,ỹ∈X wσ (x̃, ỹ) and we can conclude that cσ < 1. By item 1 of Lemma
1 we have d(Tσ (x̃), Tσ (ỹ)) ≤ cσd(x̃, ỹ). Therefore Tσ is contractive. �

It should be noted that the converse of the above theorem holds but is omitted due
to space constraints.

To avoid confusion, one should note that ∩N
i=1Ci = ∅ does not imply that there

there is i, j ∈ [N ] such that Ci ∩ C j = ∅.

3 Infinite IFS and the Chaos Game with Circle Inversion
Maps

Now, ifwe assume that∩N
i=1Ci = ∅, we have contractionmaps of appropriate compo-

sitions of circle inversionmaps. For notational conveniencewe introduce a definition.

Definition 5 Let M, N ∈ N and X = ∪N
i=1Ci . Then define

EM
N = {σ ∈ �M

N : Tσ such that ∩M
i=1 Cσi = ∅}.
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We can see that σ ∈ EM
N =⇒ Tσ is contractive by Theorem 3. We could apply

finite contractive IFS theory to say: for any M ∈ N with M ≥ N , there is a compact
non-empty set AM ⊆ X that satisfies

AM =
⋃

σ∈EM
N

Tσ (AM).

And we could play the chaos game with the composition maps in order to draw
AM . However we wish to play the chaos game with the the individual Ti maps. One
can show that if {x̃i }i∈N is the set of points made by the chaos game (with initial
point starting on the attractor) then {x̃i }i∈N ⊇ AM . In order to get {x̃i }i∈N ⊆ AM we
must have the result that for all i ∈ [N ], Ti (AM) ⊆ AM . We do not believe this result
holds (for general X with ∩N

i=1Ci = ∅) for any M).
Thus we appeal to infinite IFS theory, particularly [6]. But first we need the

following result.

Lemma 2 Let X = ∪N
i=1Ci with ∩N

i=1Ci = ∅. Let the set of contraction factors of
the Tσ maps be

C =
{
cσ : ∃M ∈ N, σ ∈ EM

N , cσ = max
x̃,ỹ∈X

wσ (x̃, ỹ)

}
.

Then 1 /∈ C .

Proof Aside: Let B ⊆ X then for all x ∈ X define d(x, B) = infb∈B d(x, b). Sup-
pose otherwise. Then there is a sequence of contraction factors {cσ n }n∈N → 1 where
each σ n ∈ EMn

N for some Mn ∈ N. Recall that each cσ n = maxx̃,ỹ∈X wσ n (x̃, ỹ). Since
X is compact, the max is achieved on X . For n ∈ N let cσ n = wσ n (x̃n, ỹn). Also recall
for all i ∈ [Mn]

wσ n (x̃n, ỹn) =
Mn∏

j=1

wσ n
j
(x̃σ n

j−1
, ỹσ n

j−1
) ≤ wσ n

i
(x̃σ n

i−1
, ỹσ n

i−1
) (1)

where x̃σ n
j
= Tσ n

j
(x̃σ n

j−1
) for j ∈ [Mn] and x̃σ n

0
= x̃n. Make the analogous definition

for the ỹσ n
j
.

We claim that ∀δ > 0 ∃K ∈ N such that ∀n ≥ K ∀i ∈ [Mn] d(x̃σ n
i−1

,Cσ n
i
) < δ and

d(ỹσ n
i−1

,Cσ n
i
) < δ. By assumption we have for all ε > 0 there is a K ∈ N such that

for all n ≥ K and for all i ∈ [Mn]
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|1 − wσ n (x̃n, ỹn)| < ε

1 − wσ n (x̃n, ỹn) < ε

1 − ε < wσ n (x̃n, ỹn) ≤ wσ n
i
(x̃σ n

i−1
, ỹσ n

i−1
) using (1)

1 − ε < wσ n
i
(x̃σ n

i−1
, ỹσ n

i−1
) (2)

Let δ > 0. Pick ε = min
{

δ
amax

, δ
rmaxamax

}
and amax = max j∈[N ] maxz̃∈X e j and e j ,

where is the radial scaling factor of z̃ with respect to C j and rmax = max j∈[N ] r j .
Let aσ n

i
be the radial scaling factor of x̃σ n

i−1
with respect to circle Cσ n

i
; similarly, let

bσ n
i
be the radial scaling factor of ỹσ n

i−1
with respect to circle Cσ n

i
.

Case 1: x̃σ n
i−1

, ỹσ n
i−1

∈ Cσi . Then d(x̃σ n
i−1

,Cσ n
i
) = 0 and d(ỹσ n

i−1
,Cσ n

i
) = 0. And we are

done.

Case 2: ỹσ n
i−1

∈ Cσi and x̃σ n
i−1

/∈ Cσi . Then d(ỹσ n
i−1

,Cσ n
i
) = 0 and wσ n

i
(x̃σ n

i−1
, ỹσ n

i−1
) =

1
aσni

. By (2) we have 1 − ε < 1
aσni

, so we can say that |1 − aσ n
i
| < εaσ n

i
< δ. Let

x̃ ′ = x̃σni−1
−õσni

aσni

+ õσ n
i
. Then x̃ ′ ∈ Cσi and d(x̃σ n

i−1
, x̃ ′) = |1 − aσ n

i
|rσ n

i
< ε rmaxamax <

δ. Thus d(x̃σ n
i−1

,Cσi ) < δ.

Case 3: x̃σ n
i−1

, ỹσ n
i−1

/∈ Cσi . Notice that

wσ n
i
(x̃σ n

i−1
, ỹσ n

i−1
) ≤ min

{
1

aσ n
i

,
1

bσ n
i

}
≤ max

{
1

aσ n
i

,
1

bσ n
i

}
.

From here the proof is identical to case 2.
Thus the claim is proved.
Now the sequence {x̃n}n∈N has a convergent subsequence by compactness, say

{x̃nk }k∈N → x̃∗. Since ∩ j∈[N ]C j = ∅ there is an i ∈ [N ] such that x̃∗ /∈ Ci . Let 0 <

q = min j∈[N ] x̃∗ /∈C j d(x̃∗,C j ) and pick δ <
q
2 . Then there is a K ∈ N such that for

all k ≥ K we have d(x̃∗, x̃nk ) < δ and for all j ∈ [N ] d(x̃σ
nk
j−1

,Cσ
nk
j

) < δ. Fix k

and pick j ∈ [Mn] such that it is the least such j with Tσ
nk
j

(x̃∗) �= x̃∗, implying

Tσ
nk
j−1σ

nk
j−2...σ

nk
1

(x̃∗) = x̃∗. Then we can see that

d(x∗, x̃σ
nk
j−1

) = d(Tσ
nk
j−1σ

nk
j−2...σ

nk
1

(x̃∗), Tσ
nk
j−1σ

nk
j−2...σ

nk
1

(x̃nk )) ≤ d(x̃∗, x̃nk ) < δ.

Now consider q ≤ d(x̃∗,Cσ
nk
j

) ≤ d(x̃∗, x̃σ
nk
j−1

) + d(x̃σ
nk
j−1

,Cσ
nk
j

) < 2δ < q. This is a
contradiction.

Thus there is no such sequence of contraction factors and we conclude that
1 /∈ C . �

Lemma 2 gives us this immediate result.
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Lemma 3 Let X = ∪N
i=1Ci with ∩N

i=1Ci = ∅. Then for all σ ∈ ⋃∞
M=N EM

N there is
a c ∈ [0, 1) for all x̃, ỹ ∈ X such that

d(Tσ (x̃), Tσ (ỹ)) ≤ cd(x̃, ỹ).

Proof ByLemma2weknow that c∗ = supc∈C c < 1. Thismeans that c∗ is the largest
contraction factor of any contractive composition map. And the result follows. �

Lemma 3 allows us to apply Theorem 1 of [6].

Theorem 4 Let X = ∪N
i=1Ci with ∩N

i=1Ci = ∅. Then there exists a non-empty set
A ⊆ X satisfying

A =
∞⋃

i=N

⋃

σ∈Ei
N

Tσ (A).

Proof There are countably many maps Tσ in the union. And by Lemma 3 we satisfy
the hypothesis of Theorem 1 from [6]. As X is bounded we trivially satisfy (i) of
Theorem 1. Thus from (iv) of Theorem 1, we have the result. �

Theorem 5 Let X = ∪N
i=1Ci with ∩N

i=1Ci = ∅. Then A as described in Theorem 4
satisfies the following:

1. ∀i ∈ [N ] Ti (A) ⊆ A
2. A = ⋃N

i=1 Ti (A).

Proof 1. Let i ∈ [N ]. By Theorem 3.3, Ti (A) = ⋃∞
k=N

⋃
σ∈Ek

N
Ti ◦ Tσ (A). For σ ∈

Ek
N for some k then we must have iσ = iσkσk−1 . . . σ1 ∈ Ek+1

N as the composition
of a non-expansive map with a contractive map is a contractive map. Thus we can
see that

Ti (A) ⊆
∞⋃

k=N+1

⋃

σ∈Ek
N

Tσ (A) ⊆
∞⋃

k=N

⋃

σ∈Ek
N

Tσ (A) ⊆ A

2.
⋃N

i=1 Ti (A) ⊆ A follows immediately from item 1. Let i ∈ [N ], j ∈ N and γ ∈
�

j
N . From item 1 it is easy to show that Tγ (A) ⊆ A. Applying Ti to both sides yields

Tiγ (A) ⊆ Ti (A). By picking j and γ carefully we can make iγ be any sequence σ

of Ek
N , for any k ∈ N, so long as σ ends with i . Thus we can say

∞⋃

k=N

⋃

σ∈Ek
N

Tσ (A) = A ⊆
N⋃

i=1

Ti (A).

Therefore A = ⋃N
i=1 Ti (A). �

Item 2 of Theorem 5 is an identity we usually see with finite contractive IFS as
in Theorem 1. It is a useful and conceptually pleasing result to have. As discussed
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earlier, item 1 of Theorem 5 is of immediate importance, since it is very useful in
regards to the chaos game.

Theorem 6 Let X = ∪N
i=1Ci with ∩N

i=1Ci = ∅, let A be as described in Theorem 4
and let {x̃n}∞n=1 be the sequence of points generated by the chaos game played with
the individual maps Ti , i ∈ [N ], with initial point x̃0 ∈ A. Then {x̃n}∞n=1 = A.

Proof Let {in}∞n=1 be the sequence of random numbers from 1 toN, with each number
from 1 to N picked with probability greater than zero, such that for all n ≥ 1 x̃n =
Tin (x̃n−1). We show that {x̃n}∞n=1 is dense on A. Let ã0 ∈ A. Then there is j1 ∈ N,
j1 ≥ N , σ 1 ∈ E j1

N and ã1 ∈ A such that ã0 = Tσ 1(ã1). Since ã1 ∈ Awe do this again.
Suppose we did this k ∈ N times. Thus there is a sequence of contraction maps Tσ �

satisfying ã0 = Tσ 1 ◦ Tσ 2 ◦ · · · ◦ Tσ k (ãk). The map Tσ 1 ◦ Tσ 2 ◦ · · · ◦ Tσ k is just some
composition of individual Ti maps, i ∈ [N ]. Thus there is an M ∈ N and a γ ∈ �M

N
such that Tσ 1 ◦ Tσ 2 ◦ · · · ◦ Tσ k = Tγ . A property of {in}∞n=1 is that, with probability
1, it will contain any finite sequence of the numbers 1 to N infinitely often (this is
sometimes referred to as the Infinite Monkey Theorem). Thus there are m1,m2 ∈ N

with m1 ≤ m2 such that x̃m2 = Tγ (x̃m1). So

d(x̃m2 , ã0) = d(Tγ (x̃m1), Tγ (ãk))
= d(Tσ 1 ◦ Tσ 2 ◦ · · · ◦ Tσ k (x̃m1), Tσ 1 ◦ Tσ 2 ◦ · · · ◦ Tσ k (ãk))
≤ ckd(x̃m1 , ãk)
≤ ckdiam(A),

where diam(A) is the diameter of A and c ∈ [0, 1) is the contraction factor from
Lemma 3. Thus {x̃n}∞n=1 ⊇ A. By item 1 of Theorem 5 Ti (A) ⊆ A. Since x0 ∈ A it
follows that {x̃n}∞n=1 ⊆ A. Therefore {x̃n}∞n=1 = A. �

The above Theorem can be extended to include a result involving the starting point
x0 ∈ X where x0 is not necessarily in A.

Corollary 1 Let X = ∪N
i=1Ci with ∩N

i=1Ci = ∅, A be as described in Theorem 4,
and {x̃n}∞n=1 be the sequence of points generated by the chaos game played with the
individual maps Ti , i ∈ [N ], with initial point x̃0 ∈ X. Then

lim
m→∞ dH ({x̃n}∞n=m, A) = 0.

This result follows by playing the chaos game twice with the one random infinite
string and two initial points x0 ∈ X and a0 ∈ A then recalling the Ti maps are non-
expansive.
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4 Conclusions

It can be seen now that the use of the modified chaos game in [1, 2] is justified. We
have shown that for X = ∪N

i=1Ci with ∩N
i=1Ci = ∅ there exists a non-empty set A

satisfying A = ∪N
i=1Ti (A) and that playing the chaos game with the Ti maps will

produce A.

Acknowledgements This research was partially supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) in the form of a Discovery Grant (HK).

References

1. Clancy, C., Frame, M.: Fractal geometry of restricted sets of circle inversions. Fractals 3(4)
(1995)

2. Frame, M., Cogevina, T.: An infinite circle inversion limit set fractal. Comput. Graph. 24(5)
(2000)

3. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)
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Inverse Problems and Total Variation
Minimization for Iterated Function
Systems on Maps

Herb Kunze and Davide La Torre

Abstract We consider the inverse problem associated with iterated function system
with greyscale maps (IFSM): Given a target function f , find an IFSM, such that its
fixed point f̄ is sufficiently close to f in the L p distance. In this paper, we extend
the collage-based method by adding a total variation term to the collage distance,
with the notion that the solution to this modified minimization problem turns out to
be less noisy than the one without this term. Numerical experiments are provided.

Keywords Iterated function systems on maps · Total variation · Inverse problem

1 Introduction

In fractal image coding based on Generalized Fractal Transforms (GFT), one seeks
to approximate a target image or signal by the fixed point of a contractive fractal
transform operator (see [9] and the references therein).

The usual formulation involves a fixed set of geometric contraction maps along
with a corresponding set of greyscale maps. The inverse problem, which involves
the determination of the best greyscale map parameters for a given target image, is
based on the so-called “collage theorem,” a simple consequence of Banach’s fixed
point theorem.

H. Kunze (B)
Department of Mathematics and Statistics, University of Guelph, N1G 2W1 Guelph, Canada
e-mail: hkunze@uoguelph.ca

D. La Torre
Department of Economics, Management and Quantitative Methods,
University of Milan, 20122 Milan, Italy
e-mail: davide.latorre@unimi.it

D. La Torre
Dubai Business School, University of Dubai, 14143 Dubai, UAE
e-mail: dlatorre@ud.ac.ae

© Springer Nature Switzerland AG 2018
D. M. Kilgour et al. (eds.), Recent Advances in Mathematical
and Statistical Methods, Springer Proceedings in Mathematics & Statistics 259,
https://doi.org/10.1007/978-3-319-99719-3_9

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99719-3_9&domain=pdf


94 H. Kunze and D. Le Torre

Another consequence of Banach’s fixed point result is that the approximation of
the target image or signal can be generated by iteration of the fractal transform. In [3]
and [4], the authors showed that one can find an iterated function system on greyscale
maps to approximate any target signal or image with arbitrary precision, and they
provided a suboptimal but systematic approach for doing so.

In [10] the authors extend the approach developed in [3] along two different
directions: first they search for a set of maps and greyscale map parameters that not
only minimizes the collage error but also maximizes the entropy of the parameter set
and, second, they try to maximize the sparsity of the set of greyscale parameters. In
their formulation, the minimization of the collage error is studied as a multi-criteria
problem. Three different and conflicting criteria are considered, namely collage error,
entropy and sparsity, and the problem is reduced to a single-criterion model by
means of a scalarization that combines all objective functions with different trade-
off weights.

In [12] the authors show that under certain hypotheses, an IFSM is a contraction
on the complete space of functions of bounded variation (BV). It then possesses a
unique attractor of BV. The authors also present some BV-based inverse problems
based on the collage theorem for contraction maps.

The notions of total variation (TV) or bounded variation have had several appli-
cations in image analysis and, in particular, in noise removal. The main justification
of this comes from the fact signals with spurious detail have high total variation (see
[16]). The process of reducing the total variation of the signal removes unwanted
detail whilst preserving important details such as edges. Several definitions of total
variation are available in the literature, one can see [5, 13] for an overview of many
of the most recently used ones and lengthy reference lists. In the classical approach
(see, for example, [2, 14], the total variation of a differentiable greyscale image
f : Rn → R is defined as follows,

‖ f ‖T V =
∫
X

‖∇ f (x)‖2 dx, (1)

that is, the integral of the ‖ · ‖2 norm of the gradient.
A typical TV-based denoising problem will have the following form: Given a

noisy image (function) f ∗, solve the following optimization problem,

min
f ∈F

dY ( f ∗, f ) + λ‖ f ‖T V

whereF denotes an appropriate space of functions representing the images. The first
term in the objective function is the the so-called data fitting term, which imposes the
condition that the denoised image f should be close to the noisy data f ∗. The second
term is the TV regularization term – higher values of the regularization parameter
λ > 0 will, in general, yield solutions f (λ) with lower TV.

In this paper, we examine the idea of TV-based denoising applied to the inverse
problem for iterated function systems on gresycale maps. In other words, the above
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space F turns out to be the space of all fractal fixed point solutions to an IFSM
operator. Because in general the solution to a fixed point equation involving the
IFSM operator are non-differentiable in nature, it makes no sense to calculate a TV-
norm. Instead we replace the TV norm with the distance from a ideally denoised
function: For our purposes we consider a flat and constant function f̃ that is equal
to the average of the target f ∗ over X , that is

f̃ = 1

μL(X)

∫
X
f ∗(x)dμL

where μL is the Lebesgue measure on X . The above TV-norm is then replaced by
the following term

dY ( f, f̃ )

and the inverse problem with total variation minimization problem takes the form

min
f ∈F

dY ( f ∗, f ) + λdY ( f, f̃ )

2 Iterated Function Systems on Maps

The action of a GFT T : X → X on an element u of the completemetric space (X, d)

can be summarized in the following steps. It produces a set of N spatially-contracted
copies of u and then it modifies the values of these copies by means of a suitable
range-mapping. Finally, it recombines them using an appropriate operator in order
to get the element v ∈ X , v = Tu [1, 6, 9, 11].

In all these cases, under appropriate conditions, the fractal transform T is a con-
traction and thus Banach’s fixed point theorem guarantees the existence of a unique
fixed point ū = T ū.

The inverse problem is a key factor for applications: given a “target” element
v ∈ X , we look for a point-to-point contraction mapping T with fixed point ū such
that d(v, ū) is as small as possible. In practical applications, however, it is difficult
to construct solutions to this problem and one relies on the following simple conse-
quence of Banach’s fixed point theorem, known in the fractal coding literature as the
collage theorem, which states that

d(v, ū) ≤ 1

1 − c
d(v, T v) (2)

(c is the contractivity factor of T ). Instead of trying to minimize the error d(v, ū),
one looks for a contraction mapping T that minimizes the collage error d(v, T v).

In this section we focus on the method of iterated function systems on greyscale
maps, as formulated in [3]. IFSMs extend the classical notion of iterated function
systems (IFS) to the case of space of functions [9] and can be used to generate
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integrable “fractal” functions (see [7], [8]). An IFSM can be used to approximate a
given element u of L2([0, 1]). We consider the case in which u : [0, 1] → [0, 1] and
the space

X = {
u : [0, 1] → [0, 1], u ∈ L2[0, 1]} . (3)

The ingredients of an N -map IFSM on X are

1. a set of N contractive maps w = {w1, w2, . . . , wN }, wi (x) : [0, 1] → [0, 1],
most often affine in form:

wi (x) = si x + ai , 0 ≤ si < 1, i = 1, 2, . . . , N ; (4)

2. a set of associated functions—the greyscale maps— φ = {φ1, φ2, . . . , φN }, φi :
R → R. Affine maps are usually employed:

φi (t) = αi t + βi , (5)

with the conditions
αi , βi ∈ [0, 1] (6)

and

0 ≤
N∑
i=1

αi + βi < 1. (7)

Associated with the N -map IFSM (w, φ) is the fractal transform operator T , the
action of which on a function u ∈ X is given by

(Tu)(x) =
N∑
i=1

′φi (u(w−1
i (x))), (8)

where the prime means that the sum operates on all those terms for which w−1
i is

defined.

Theorem 1 [3] T : X → X and for any u, v ∈ X we have

d2(Tu, T v) ≤ Cd2(u, v) (9)

where

C =
N∑
i=1

s
1
2
i αi (10)

and d2 is the L2 metric,
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d2(u, v) =
(∫ 1

0
(u(x) − v(x))2 dx

) 1
2

. (11)

When C < 1, then T is contractive on X , implying the existence of a unique fixed
point ū ∈ X such that ū = T ū.

The inverse problem associated with IFSM can, in principle, be solved to arbitrary
accuracy, using a procedure defined in Forte and Vrscay [3]. The squared collage
distance function associated with an N -map IFSM may be written as a quadratic
form,

Δ2
N (z) = zT Az + bT z + c, (12)

where z = (α1, . . . , αN , β1, . . . , βN ). The maps wk are chosen from an infinite set
W of fixed affine contraction maps on [0, 1] which satisfy the following properties.
Definition 1 We say that W generates an m-dense and nonoverlapping family A of
subsets of I if for every ε > 0 and every B ⊂ I there exists a finite set of integers
ik , ik ≥ 1, 1 ≤ k ≤ N , such that

1. A = ∪N
k=1wik (I ) ⊂ B,

2. m(B\A) < ε, and
3. m(wik (I ) ∩ wil (I )) = 0 if k = l,

where m denotes Lebesgue measure.

Let
WN = {w1, . . . wN } (13)

be the N truncations ofw. LetΦN = {φ1, . . . , φN }be the N -vector of affine greyscale
maps. Let Ω be a compact subset of set R2N which describes the set of all possible
constraints and let zN be the solution of the previous quadratic optimization problem
over Ω . Let Δ2

N ,min = Δ2
N (zN ). In Forte and Vrscay [3], the following result was

proved.

Theorem 2 [3]
Δ2

N ,min → 0 as N → ∞.

Using the collage theorem, the inverse problem may be solved to arbitrary accuracy.
A practical choice for the contraction maps w on X = [0, 1] is

wi j (x) = 2−i (x + j − 1), i = 1, 2, . . . , M, j = 1, 2, . . . , 2i , (14)

where

N =
M∑
i=1

2i .
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3 Iterated Function Systems on Functions of Bounded
Variation

In this section we show that, under some hypotheses, an IFSM operator is a contrac-
tion with respect to the usual norm introduced into the space of functions of bounded
variation.

Definition 2 The total variation of a function f : [a, b] → R is defined as

V b
a ( f ) = sup

P∈P

n∑
j=0

| f (x j+1) − f (x j )| , (15)

where the supremum is taken over the set of all partitions of [a, b],

P = {P = {x0, . . . , xn}|P is a partition of [a, b], x0 = a, xn = b} .

If f : [a, b] → R is differentiable and its derivative is Riemann-integrable, its total
variation is given by

V b
a ( f ) =

∫ b

a
| f ′(x)| dx . (16)

Definition 3 A real-valued function f : [a, b] → R is said to be of bounded varia-
tion (or a “BV function”) on [a, b] if its total variation is finite, i.e. V b

a ( f ) < +∞.
Let us denote by BV ([a, b]) the space of functions of bounded variation on [a, b].
Theorem 3 [15] The functional f → | f (a)| + V b

a f is a norm over BV ([a, b]).
We shall denote this norm as ‖ f ‖BV . The normed space (BV ([a, b]), ‖ f ‖BV ) is
complete.

In addition, the following covering condition on the wi is assumed:

[a, b] =
N⋃
i=1

wi ([a, b]) . (17)

Associated with the IFSM (w, Φ) is a so-called IFSM operator or fractal transform
on the space of L p integrable functions on [a, b] via the action

T f (x) =
N∑
i=1

φi ( f (w
−1
i (x))) , (18)

where the sum operates on all those terms for which w−1
i (x) is defined.
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For the remainder of this paper, we assume that the IFS mapswi : [a, b] → [a, b]
and associated maps φi : R → R are affine, i.e.,

wi (x) = si x + ai and φi (t) = αi t + βi so that Ki = |αi | . (19)

Theorem 4 [12] The operator T defined in Eq. (18) maps BV ([a, b]) into itself.
Theorem 5 [12] For f, g ∈ BV ([a, b]),

‖T f − Tg‖BV ≤ K‖ f − g‖BV where K =
N∑
i=1

Ki . (20)

Theorem 6 [12] If K in Eq. (20) satisfies K < 1, then the IFSM operator T pos-
sesses a unique fixed point f̄ ∈ BV ([a, b]). Moreover, for all f0 ∈ BV ([a, b]), the
sequence T n f0 converges to f̄ when n → +∞. Finally, the following estimate holds

‖ f ‖BV ≤
∑N

i=1 |βi |
1 − K

. (21)

Note that the condition K < 1 implies that f̄ ∈ L∞([a, b]), as expected.
Theorem 7 [12] If (i) the maps wi are non-overlapping, (ii) K = ∑N

i=1 Ki > 1,
and (iii)

∑N
i=1 c

1/p
i Ki < 1, then T possesses a unique fixed point f̄ ∈ L p[a, b]. If,

in addition, f̄ is not constant then f̄ /∈ BV ([a, b]).

4 Total Variation Minimization

The inverse problem for IFSM with total variation minimization can be formulated
as follows

min
f ∈F

dY ( f ∗, f ) + λdY ( f, f̃ ) (22)

As a reminder from the introduction, the novelty or idea of this work is to combine
the two competing objectives: the first term in the objective function represents the
true error in approximating a target element f ∗ by an element f , and the second
term in the objective function represents the total variation of f from the mean value
f̃ . Of course, we will use the collage theorem in (2) to switch to the minimization
problem

min
f ∈F

dY (T f, f ) + λdY ( f, f̃ ) (23)
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where T is the appropriate fractal transform, dY (T f, f ) is the collage distance, and
where the contractivity condition arising from Theorems 1 and 6 are satisfied. We
wish to see how the two objectives interact as we adjust the value of the nonnegative
constant λ.

To show how the method works, let us proceed with some numerical examples.
We consider the target function u(x) = 0.8x2 + 0.1 on [0, 1]. We divide the interval
[0, 1] into N = 16 subintervals Ii = [

i−1
N , i

N

]
, i = 1, . . . , N , and introduce the IFS

maps and corresponding greyscale maps

wi (x) = si x + bi = 1

N
x + i

N
and φ(t) = αi t + βi , i = 1, . . . , N .

The maps induce the fractal transform

(Tu)(x) = φi (u(w−1
i (x))), x ∈ Ii , i = 1, . . . , N .

To ensure that Tu has range inside [0, 1], we require

0 ≤ βi ≤ 1 and 0 ≤ αi + βi ≤ 1, i = 1, . . . , N , (24)

and to guarantee contractivity of T with respect to the L2 and T V norms (as per
Theorems 1 and 6) we also require respectively that

N∑
i=1

|si | 1
2 |αi | ≤ 1 and

N∑
i=1

|αi | ≤ 1. (25)

Let

u∗ =
∫ 1

0
u(x) dx,

and let lcollage and lT V be in [0, 1] satisfying lcollage + lT V = 1. Then we seek to solve

min
αi ,βi

Δ = lcollage‖Tu − u‖22 + lT V ‖Tu∗ − u∗‖T V subject to(24) and(25),

where we use the squared collage distance for convenience.
Table 1 reports the results for N = 16 and a selection of values for lcollage and

lT V . The table reports the values of each norm and the total variation of ū, the fixed
point of T . We see that the total variation of ū decreases as we increase the value of
lT V , that is, as we increase the impact of the total variation norm ‖Tu∗ − u∗‖T V .

Figure 1 presents the graphs of the target function u and the approximation of ū
produced after ten iterations of T on the zero function.

Table 2 presents the results for N = 64. We see a similar impact on the total
variation of the fixed point of T .

Figure 2 presents the graphs of u and ū
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Table 1 Results for 16 subintervals

lcollage lT V ‖Tu − u‖22 ‖Tu∗ − u∗‖T V ‖ū‖T V
1.00 0.00 0.0039616055 1.0156250000 0.8087506835

0.98 0.02 0.0399564088 0.5650510193 0.7460404293

0.95 0.05 0.0836060280 0.4113486842 0.7196455886

0.90 0.10 0.1492181030 0.2204860257 0.4997316128

0.85 0.15 0.2194616346 0.0444335170 0.0869439131

0.80 0.20 0.2379638705 0.0000000000 0.0000000000

Fig. 1 Results for 16 subintervals: from left to right, top to bottom, we increase the weight given
to the total variation minimization. The target curve is drawn in black, and the approximation of
the attractor is drawn in red

4.1 Conclusions

We introduced the notion of combining the two objectives of minimizing the collage
distance involving a map T (which controls the fixed point approximation error via
the collage theorem) and minimizing the total variation. In general, unless the target
function is flat, these objectives are in competition with each other. In the numerical
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Table 2 Results for 64 subintervals

lcollage lT V ‖Tu − u‖22 ‖Tu∗ − u∗‖T V ‖ū‖T V
1.00 0.00 0.0008700454 0.7875000000 0.7979003906

0.98 0.02 0.0407576429 0.5653117029 0.8360723869

0.95 0.05 0.0843533008 0.4112823848 0.7138321759

0.90 0.10 0.1493716297 0.2217555758 0.5255290848

0.85 0.15 0.2126053455 0.0612094378 0.1486163983

0.80 0.20 0.2384791094 0.0000000000 0.0000000000

Fig. 2 Results for 64 subintervals: from left to right, top to bottom, we increase the weight given
to the total variation minimization. The target curve is drawn in black, and the approximation of
the attractor is drawn in red

examples, we saw that total variation of the the fixed point of T decreases as we give
the total variation more weight in the combined objective function.
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Using the Collage Method to Solve
Inverse Problems for Vector-Valued
Variational Problems on a Perforated
Domain in Reflexive Banach Spaces

Herb Kunze, Davide La Torre and Manuel Ruiz Galán

Abstract Recent work establishes that the solution of the parameter estimation on
a perforated domain can be approximated by instead solving the inverse problem
on the much easier to work with associated solid domain. In this work, we consider
vector-valued variational problems on a perforated domain and show that the inverse
problems on the perforated and associated solid domains can be similarly connected.
The approach relies on a “generalized collage theorem” built from the vector-valued
Lax-MilgramTheorem in reflexive Banach spaces. Themethodwill be demonstrated
on a numerical example.

Keywords Collage theorem · Inverse problem · Perforated domain

1 Introduction

The inverse problem literature is rich with problems considering the estimation of
unknown parameters in a proposed governing model of a phenomenon of interest.
Many such problems can be cast in terms of the approximation of a target element in a
complete metric space by the fixed point of a contractionmap. A simple consequence
of Banach’s Fixed Point Theorem called the Collage Theorem can be employed to
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shift from the problem of directly minimizing the fixed point approximation error to
insteadminimizing a simpler quantity referred to as the “collage distance” (because of
its roots in fractal imaging) (see [1]). This approach and general philosophy has been
used to establish “generalized collage theorem” in various settings. Very recently,
in [2], it was shown that the vector-valued Lax-Milgram Theorem could be used to
generate such a result useful for solving related inverse problems.

In other recent work, we have considered inverse problems for partial differential
equations on perforated or porous domains [3–5]. A porous medium or perforated
domain is a material characterized by a partitioning of the total volume into a solid
portion often called the “matrix” and a pore space, usually referred to as“holes,” that
can be either materials different from that of the matrix or real physical holes. When
formulating differential equations over porous media, the term “porous” implies that
the state equation is written in the matrix only, while boundary conditions should
be imposed on the whole boundary of the matrix, including the boundary of the
holes. Porous media can be found in many areas of applied sciences and engineering
including petroleum engineering, chemical engineering, civil engineering, aerospace
engineering, soil science, geology, material science, and many more areas.

Since porosity inmaterials can take different forms and appear in varying degrees,
solving differential equations over porous media is often a complicated task and the
holes’ size and their distributionplay an important role in its characterization. Further-
more, numerical simulations over perforated domains need a very fine discretization
mesh which often requires a significant computational time. The mathematical the-
ory of differential equations on perforated domains is usually based on the theory of
“homogenization” in which heterogeneous material is replaced by a fictitious homo-
geneous one. Of course this implies the need of convergence results linking together
the model on a perforated domain and on the associated homogeneous one. In the
case of porous media, or heterogeneous media in general, characterizing the prop-
erties of the material is a tricky process and can be done on different levels, mainly
the microscopic and macroscopic scales, where the microscopic scale describes the
heterogeneities and the macroscopic scale describes the global behavior of the com-
posite.

The approach is to consider two related problems for steady-state reaction-
diffusion, problem (Pε) on a perforated domain Ωε and problem (P) on the related
solid domain Ω:

{∇ · (K λ(x, y)∇u(x, y)) = f λ(x, y), in Ωε,

u(x, y) = 0, on ∂Ωε,
(Pε)

and {∇ · (K λ(x, y)∇u(x, y)) = f λ(x, y), in Ω,

u(x, y) = 0, on ∂Ω.
(P)

The inverse problem of interest for (Pε) is to estimate λ given observational data for
a solution. The earlier work establishes a relationship between parameter values λ
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in the two problems: one can use the data from the solution to (Pε) in the inverse
problem for (P) to estimate λ, with the connection strengthening as ε decreases.

Our formulation of the inverse problem uses the (generalized) collage theorem,
based on the Lax-Milgram theorem, with derivatives being taken in the weak sense,
leading to a minimization problem for a function of the parameters λ one desires to
estimate. Letting u denote the observed solution, perhaps an interpolation of obser-
vational data values, we must solve

min
λ∈Λ

F(u, λ).

Other recent works used the vector-valued Lax-Milgram Theorem to generate a
version of a generalized collage theorem useful for solving inverse problems for
variational equations [6, 7] and related systems [2]. In other earlier works, in various
settings, it has been illustrated that the collage method compares quite favorably to
other inverse problem solution methods. The approach is typically far less computa-
tionally intensive, and, in any case, can be used as a first approach for methods that
require a good initial guess of parameter values.

The goal of this paper is to explore the extension of these ideas further by con-
sidering inverse problems for a system of boundary value problems on a perforated
domain in the reflexive Banach space setting.

In the next section, we briefly present the theory andmachinery for inverse bound-
ary value problems in reflexive Banach spaces. In the third section, we present an
example that shows that ourmethods can be extended to themore complicated setting
mentioned earlier.

2 Inverse Boundary Value Problems in Reflexive
Banach Spaces

The first result wemention is the following vector-valued version of the Lax-Milgram
theorem. Given a real normed space G, we write G∗ for its topological dual space.
The proofs and more details about these results can be found in [2].

Theorem 1 Suppose that E is a real reflexive Banach space, N ≥ 1, F1, . . . , FN

are real Banach spaces and that a1 : E × F1 −→ R, . . . , aN : E × FN −→ R are
continuous bilinear forms. Then, for all φ∗

1 ∈ F∗
1 , . . . , φ∗

N ∈ F∗
N there exists a unique

x0 ∈ E such that ⎧⎨
⎩

φ∗
1 = a1(x0, ·)

· · ·
φ∗
N = aN (x0, ·)

if, and only if,
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x ∈ E and
φ∗
1 = a1(x0, ·)

· · ·
φ∗
N = aN (x0, ·)

⎫⎬
⎭ ⇒ x = 0

and there exists ρ > 0 satisfying

(φ1, . . . , φN ) ∈ F1 × · · · × FN ⇒ ρ

N∑
k=1

‖φk‖ ≤
∥∥∥∥∥

N∑
k=1

ak(·, φk)

∥∥∥∥∥ .

Moreover, if these equivalent conditions hold and x0 ∈ E is the unique solution, then

‖x0‖ ≤ 1

ρ
max

k=1,...,N
‖φ∗

k ‖.

As a consequence, we derive this generalized collage theorem:

Corollary 1 Let E be a real reflexive Banach space, let N ≥ 1, let F1, . . . , FN be
real Banach spaces, letφ∗

1 ∈ F∗
1 , . . . , φ∗

N ∈ F∗
N and letΛ be a nonempty set such that

for all λ ∈ Λ there exist N continuous bilinear forms a1λ : E × F1 −→ R, . . . , aNλ :
E × FN −→ R and ρλ > 0 with

x ∈ E and
φ∗
1 = a1λ(x0, ·)

· · ·
φ∗
N = aNλ(x0, ·)

⎫⎬
⎭ ⇒ x = 0

and

(φ1, . . . , φN ) ∈ F1 × · · · × FN ⇒ ρλ

N∑
k=1

‖yk‖ ≤
∥∥∥∥∥

N∑
k=1

akλ(·, φk)

∥∥∥∥∥ .

Let us also suppose that for all λ ∈ Λ, xλ ∈ E is the unique solution of the variational
system

x ∈ E and

⎧⎨
⎩

φ∗
1 = a1λ(x, ·)

· · ·
φ∗
N = aNλ(x, ·)

.

Then for each x0 ∈ E and for all λ ∈ Λ the inequality

‖xλ − x0‖ ≤ 1

ρλ

max
k=1,...,N

‖φ∗
k − akλ(x0, ·)‖

is valid.

If one wants to approximate the solution x0 in the sense of the collage distance, that
is, minimize {‖xλ − x0‖ : λ ∈ Λ}, according to Corollary 1, it suffices to minimize
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{
1

ρλ

max
k=1,...,N

‖φ∗
k − akλ(x0, ·)‖ : λ ∈ Λ

}
,

although if
ρ := inf

λ∈Λ
ρλ > 0,

then we only need to minimize

{
max

k=1,...,N
‖φ∗

k − akλ(x0, ·)‖ : λ ∈ Λ

}
.

Under such an assumption, ρ > 0, we also suppose that each space Fk , (k =
1, . . . , N ) has a Schauder basis {Υki }i≥1, in such a way that if {Υ ∗

ki }i≥1 denotes
its sequence of biorthogonal functionals, then the non-restrictive condition

M := max
k=1,...,N

sup
i≥1

‖Υ ∗
ki‖ < ∞

holds. In order to discretize our optimization problem, let us also assume that E
admits a Schauder basis {Θi }i≥1 and define, for each n ≥ 1 and k = 1, . . . , N

En := span{Θ1, . . . , Θn}, Fkn := span{Υk1, . . . , Υkn}

and let Πn be the nth-projection of E onto En , that is, for all x ∈ E ,

Πnx :=
n∑

i=1

Θ∗
i (x)Θi .

We also suppose that for all λ ∈ Λ, k = 1, . . . , N and n ≥ 1

x ∈ En and

⎧⎨
⎩

0 = a1λ(x, ·)
· · ·

0 = aNλ(x, ·)
⇒ x = 0,

and there exists ρn
λ > 0 such that

(φ1, . . . , φN ) ∈ F1n × · · · × FNn ⇒ ρn
λ

N∑
k=1

‖φk‖ ≤
∥∥∥∥∥

N∑
k=1

akλ(·, φk)

∥∥∥∥∥ .

Then, Theorem 1 guarantees the existence of a unique xnj ∈ En such that

(φ1, . . . , φN ) ∈ F1n × FnN ⇒
⎧⎨
⎩

φ∗
1 (φ1) = a1(xnj , φ1)

· · ·
φ∗
N (φN ) = aN (xnj , φN )
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When we apply Corollary 1 to this vector-valued variational problem, we get

‖xnλ − Πnx0‖ ≤ M

ρn
λ

max
k=1,...,N

n∑
i=1

|φ∗
0 (Υki ) − akλ(Πnx0, Υki )|,

and if
γ := sup

λ∈Λ, n≥1
ρn

λ > 0,

then it is enough to minimize

ϕn( j) := max
k=1,...,N

n∑
i=1

|φ∗
0 (Υki ) − akλ(Πnx0, Υki )|,

or equivalently, the discrete objective function

Fn( j) :=
N∑

k=1

n∑
i=1

(φ∗
0 (Υki ) − akλ(Πnx0, Υki ))

2, (1)

which is quadratic and then easier to minimize.

3 Inverse Problems on Perforated Domains: An Example

Given a compact and convex set Ω , we denote by ΩB the collection of holes
∪m

j=1B(x j , ε j ) where x j ∈ Ω , ε j > 0, and the holes B(x j , ε j ) are nonoverlapping
and lie strictly in the interior of Ω . We let ε = max j ε j . If the holes are not circles
but compact and convex subsets of Ω , we can always embed these sets in circles
with ε being the largest diameter of them. We denote by Ωε the closure of the set
Ω\ΩB . As an example, we consider the 2D linear system

− ∇ · (κ(x, y)∇u) + Au = f, (x, y) ∈ Ωε (2)

u(x, y) = 0 on ∂Ωε (3)

with

κ(x, y) = 1 + x + y

2
, A =

[
0 1
7
10 0

]
, u =

[
u1
u2

]
, f (x, y) =

[
2x2 + y2

x− 3
5

]
, (4)

and Ωε is Ω = [0, 1]2 with 12 diamond-shaped holes (see Fig. 1a). We note that
this academic example has (at least) three interesting features: the system is strongly
coupled by the matrix A, we’ve chosen a hole shape other than a circle, and the
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Fig. 1 a The region Ωε , b Isotherms of the solution u1(x, y), and c Isotherms of the solution
u2(x, y)

second entry in f , f2, is an interesting function. Indeed, f2(x, y) = x− 3
5 satisfies

∫ 1

0

∫ 1

0
( f2)

2 dxdy = ∞, while
∫ 1

0

∫ 1

0
( f2)

3
2 dxdy = 10,

so f2 is not in the Hilbert space L2([0, 1]2) but is in the space L
3
2 ([0, 1]2). The

isotherms of the components of the solution u(x, y) are presented in Fig. 1b and c.
We sample each solution component at an array of uniformly-distributed data

points in Ω . If a sample point lies inside a hole, we discard it. We fit an 8th-degree
polynomial to each of the data sets to produce target functions u1(x, y) and u2(x, y).

We consider the inverse problem: Given the target u, A, and f (x, y), approximate
κ(x, y) = λ1 + λ2x + λ3y such that the resulting system admits u as an approximate
solution.

Multiplying component i of (2) with a test function (vk)i (x, y), integrating over
Ω , and using Green’s second identity, we arrive at, for i = 1, 2,

a1(u1, (vk)1) =
∫∫

Ω

(κ∇u1 · ∇(vk)1 + u2(vk)1) d A

a2(u2, (vk)2) =
∫∫

Ω

(κ∇u2 · ∇(vk)2 + 0.7u1(vk)2) d A

φi ((vk)i ) =
∫∫

Ω

fi (vk)i d A.

Using the collage method, we construct

Fn(λ) =
N∑

k=1

2∑
i=1

(φi ((vk)i ) − ai (ui , (vk)i ))
2, (5)

where N is the number of basis functions we use. We see that using a highly refined
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Fig. 2 Schauder basis elements of a L
3
2 ([0, 1]) and b and c L

3
2 ([0, 1]2)

The Banach space L
3
2 ([0, 1]) admits the Schauder basis {bp,q}, with the first few

elements illustrated in Fig. 2a. The Schauder basis for the Banach space L
3
2 ([0, 1]2)

consists of the functions bp,q(x)br,s(y). In aHilbert space setting, one typicallyworks
with afinite element basis characterized by basis functions ξi that are piecewise linear,
have value 1 at node i of the mesh, and have value 0 at all other nodes; this structure
produces the “hat basis” in one dimension, and a basis of hexagonally-based pyramids
in two dimensions. As a result, it is of interest to illustrate typical Schauder basis
elements for contrast. Figure2b and c presents some Schauder basis elements.

Table1 presents results for several values of N . We see that the results are quite
good in the case N = 5, remain good for N = 21, but worsen significantly for
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Table 1 Recovered parameter values. True values are λ = (
1, 1, 1

2

)
N bi, j (x)bk,l (y) Recovered λ

5
i, k = 1, j, l = 1

i, k = 2, j, l ∈ {1, 2} (1.0435, 0.8295, 0.5404)

21

i, k = 1, j, l = 1

i, k = 2, j, l ∈ {1, 2}
i, k = 3, j, l ∈ {1, 2, 3, 4}

(1.0909, 0.7984, 0.4297)

85

i, k = 1, j, l = 1

i, k = 2, j, l ∈ {1, 2}
i, k = 3, j, l ∈ {1, 2, 3, 4}
i, k = 4, j, l ∈ {1, . . . , 8}

(1.2298, 0.7006, 0.1549)

N = 85. This outcome makes sense when one considers that the finer basis cor-
responding to large N values will include elements that are supported on a domain
that is coincident with a hole. Indeed, shrinking the holes dramatically makes the
results improve for all N , as the impact of the perforations is marginalized and our
earlier work on unperforated domains takes hold. Alternatively, given knowledge of
the hole sizes and distributions, one could discard the basis functions that interact
with the holes, also improving results in the case that the pore space is small compared
to the matrix. We can also note that using the collage theorem that is appropriate in
a Hilbert space setting leads to incredibly poor results, since this example problem
does not live in such a space.

4 Conclusions

We have extended the use of the generalized collage theorem arising from the vector-
valued Lax-Milgram Theorem to vector-valued variational problems on perforated
domains in a Banach space setting. We presented a seemingly simple example that
is nonetheless very challenging due to several complexities. The example illustrates
that the method works. A priori knowledge of the hole sizes and distribution helps
improve results
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Inverse Problems Using Iterated
Function Systems with Place-Dependent
Probabilities

Davide La Torre, Erik A. Maki, Franklin Mendivil and Edward R. Vrscay

Abstract We are concerned with the approximation of probability measures on a
compactmetric space (X, d) by invariantmeasures of Iterated Function Systemswith
Place-Dependent Probabilities (IFSPDP). Using the Collage Theorem, we formulate
the corresponding inverse problem and look for an IFSPDPs which map a target
measure ν as close as possible to itself in terms of an appropriate metric onM (X),
the space of probability measures on X .

Keywords Iterated function systems · Place-dependent probabilities · Inverse
problem of measure approximation · Collage theorem · Moments of measures

1 Introduction

In this paper we are concerned with the problem of approximating probability
measures on a compact metric space (X, d) with invariant measures of iterated
function systems (IFS) with place-dependent probabilities (IFSPDP): systems of
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contraction mappings on X , w = {w1, w2, . . . , wN } with associated probabilities
p = {p1, p2, . . . , pN }, the latter of which are place-dependent, i.e., pi : X → R.
(This is in contrast to the case of IFS with constant probabilities which has usually
been assumed in the literature.) We consider the special case X = [0, 1] with affine
IFS maps and probabilities, i.e.,

wi (x) = ai x + bi , pi (x) = αi x + βi , 1 ≤ i ≤ N . (1)

The ideas and methods developed here can, at least in principle, be extended to
the general case [0, 1]n . This paper may be considered to be a place-dependent
extension of [2], in which the inverse problem of measure approximation using IFS
with constant probabilities was treated.

The paper is organized as follows: Sect. 2 recalls the classical definition of IFSwith
constant probabilities, Sect. 3 presents the definition of IFS with place-dependent
probabilities, and Sect. 4 deals with the inverse problem in terms of the Collage
Theorem.

2 IFS with Constant Probabilities

In what follows, we let (X, d) denote a compact metric space. An N -map Iterated
Function System (IFS) on X ,w = {w1, . . . , wN }, is a set of N contraction mappings
on X , i.e., wi : X → X , i = 1, . . . , N , with contraction factors ci ∈ [0, 1). (See [1,
4, 6].) Associated with an N -map IFS is the following set-valued mapping ŵ on the
space H ([a, b]) of nonempty compact subsets of X :

ŵ(S) :=
N⋃

i=1

wi (S) , S ∈ H ([a, b]). (2)

Theorem 1 [4] For A, B ∈ H (X),

h(ŵ(A), ŵ(B)) ≤ cH(A, B) where c = max
1≤i≤N

ci < 1 (3)

and h denotes the Hausdorff metric on H (X).

Corollary 1 [4] There exists a unique set A ∈ H ([a, b]), the attractor of the IFS
w, such that

A = ŵ(A) =
N⋃

i=1

wi (A). (4)

Moreover, for any B ∈ H ([a, b]), h(A, ŵn B) → 0 as n → ∞.
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An N -map Iterated Function System with (constant) Probabilities (IFSP) (w,p)

is an N -map IFS w with associated probabilities p = {p1, . . . , pN }, ∑N
i=1 pi = 1.

Let M (X) denote the set of probability measures on (Borel subsets of) X and dMK

the Monge-Kantorovich distance on this space: For μ, ν ∈ M (X), with Monge-
Kantorovich metric,

dMK (μ, ν) = sup
f ∈Lip1(X)

[∫
f dμ −

∫
f dν

]
. (5)

where Lip1(X) = { f : X → R | | f (x) − f (y)| ≤ d(x, y) }. The metric space
(M (X), dMK ) is complete [1, 4].

Associated with an N -map IFSP is a mapping M : M → M , often referred to
as theMarkov operator, defined as follows. Let ν = Mμ for any μ ∈ M (X). Then
for any measurable set S ⊂ X ,

ν(S) = (Mμ)(S) =
N∑

i=1

pi μ(w−1
i (S)). (6)

Theorem 2 [4] For μ, ν ∈ M (X),

dMK (Mμ, Mν) ≤ c dMK (μ, ν). (7)

Corollary 2 [4] There exists a unique measure ν̄ ∈ M (X), the invariant measure
of the IFSP (w,p), such that

μ̄(S) = (Mμ̄)(S) =
N∑

i=1

pi μ̄(w−1
i (S)). (8)

Moreover, for any ν ∈ M (X), dMK (μ̄, Mnν) → 0 as n → ∞.

Theorem 3 [4] The support of the invariant measure μ̄ of an N-map IFSP (w,p)

is the attractor A of the IFS w, i.e.,

supp μ̄ = A. (9)

Example 1 The following two-map IFS on X = [0, 1],

w1(x) = 1

2
x , w2(x) = 1

2
x + 1

2
, (10)

with attractor A = [0, 1]. We now consider two IFSP having these IFS maps. These
examples will be helpful for an understanding of IFS with place-dependent maps.
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Fig. 1 Left: Histogram approximation of invariant measure μ̄ (Lebesgue measure) of the IFSP in
Example 1, Case 1. Right: Approximation to cumulative distribution function F(x) of μ̄

1. Case 1: p1 = p2 = 1

2
. It is well known that the invariant measure μ̄ of this

IFSP is (uniform) Lebesgue measure on [0,1]. A histogram approximation to
this measure, obtained by using the “Chaos Game” [1], is shown in the left
plot of Fig. 1. (In all histogram approximations presented in this paper, 108

iterates were generated and placed into 1000 nonoverlapping bins on [0, 1].)
The histogram approximation may be used to generate an approximation to the
cumulative distribution function (CDF) for this measure, defined on X = [0, 1]
as follows,

F(x) =
∫ x

0
dμ̄. (11)

In this case, F(x) = x . The approximation to the CDF is shown in the right plot
of Fig. 1.

2 Case 2: p1 = 2

5
, p2 = 3

5
. A histogram approximation to the invariant measure

μ̄ of this IFSP is shown in the left plot of Fig. 2. Since p1 < p2, it follows that
μ̄([0, 1/2]) < μ̄([1/2, 1]). This asymmetry is then propagated in a self-similar
manner over smaller dyadic subintervals of [0,1]. The approximation to the CDF
of this invariant measure generated by the histogram is shown in the right plot
of the figure.
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Fig. 2 Left: Histogram approximation of invariant measure μ̄ (Lebesgue measure) of the IFSP in
Example 1, Case 2. Right: Approximation to cumulative distribution function F(x) of μ̄

3 IFS with Place-Dependent Probabilities

We now consider the case in which the probabilities, pi , 1 ≤ i ≤ N , associated with
an N -map IFS w are place-dependent, i.e., pi : X → R such that

N∑

i=1

pi (x) = 1 , for all x ∈ X. (12)

The result is an N -map Iterated Function Systems with Place-Dependent Probabil-
ities (IFSPDP) [1].

In the special case X ⊂ R and affine probabilities pi as given in Eq. (1), substitu-
tion into (12) along with the fact that the functions x and 1 are linearly independent
over [0,1] yields the following conditions on the αi and βi ,

N∑

i=1

αi = 0,
N∑

i=1

βi = 1. (13)

Two other conditionsmust be imposed, namely, (i) 0 ≤ pi (0) ≤ 1 and 0 ≥ pi (1) ≤ 1
for 1 ≤ i ≤ N , which lead to the following additional constraints,
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0 ≤ βi ≤ 1 , 0 ≤ αi + βi ≤ 1 , 1 ≤ i ≤ N . (14)

These constraints also imply that −1 ≤ αi ≤ 1. For N ≥ 1, we shall let �N ⊂ R
2N

denote the compact region defined by all of the above constraints. This region will
be important in our treatment of the inverse problem.

Note that in the special case αi = 0, 1 ≤ i ≤ N , the IFSPDP reduces to an IFSP
with constant probabilities pi = βi , 1 ≤ i ≤ N .

Associated with an N -map IFSPDP, (w,p), is a Markov operator M : M (X) →
M (X), defined as follows.Letν = Mμ for anyμ ∈ M (X). Then for anymeasurable
set S ⊂ X ,

ν(S) = (Mμ)(S) =
N∑

i=1

(pi ◦ w−1
i )(S)μ(w−1

i (S)). (15)

Lemma 1 [9]Given M as defined in Eq. (15), then M mapsM (X) to itself. In other
words, if μ ∈ M (X), then ν = Mμ ∈ M (X).

Wenow show that under appropriate conditions, the aboveMarkov operator can be
contractive. Our method begins in the same manner as that of Hutchinson [4] for the
constant probability case. Somemodifications are necessary in order to accommodate
the place-dependency of the probabilities. The following Lemma, which is easily
proved using a change-of-variable approach, will be useful. Its proof, which can be
found in [9], is omitted here.

Lemma 2 Let μ ∈ M (X) and ν = Mμ. Then for any f continuous function f :
X → R,

∫

X
f (x) dν(x) =

∫

X
f (x) d(Mμ)(x)

=
N∑

i=1

∫

X
pi (x) · ( f ◦ wi )(x) dμ(x). (16)

We shall also need the following Lemma.

Lemma 3 [9] Let (X, d) be a compact metric space and let f : X → R be Lipschitz
on X with Lipschitz constant K ≥ 0. If f (y0) = 0 for some y0 ∈ X, then | f (x)| ≤
Kdiam(X) for all x ∈ X.

Theorem 4 [9] Let (X, d) be a compact metric space and (w,p) an N-map IFSPDF
with IFS maps wi : X → X with contraction factors ci ∈ [0, 1). Furthermore, as-
sume that the probabilities pi : X → R are Lipschitz functions, with Lipschitz con-
stants Ki ≥ 0. Let M : M (X) → M (X) be the Markov operator associated with
this IFSPDP, as defined in (15). Then for any μ, ν ∈ M (X),
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dMK (Mμ, Mν) ≤ (c + K DN )dMK (μ, ν) , (17)

where c = max
i

ci , K = max
i

Ki and D = diam(X) < ∞.

Theorem 5 The support of the invariant measure μ̄ of an N-map IFSPDP (w,p)

is the attractor A of the IFS w, i.e.,

supp μ̄ = A. (18)

Example 2 We return to the two-map IFS on X = [0, 1] of Example 1,

w1(x) = 1

2
x , w2(x) = 1

2
x + 1

2
, (19)

and consider two two-map IFSPDP maps which are perturbations of the equal-
probability IFSP of Case 1 above, where μ̄ = uniform Lebesgue measure.

1 Case 1: p1(x) = − 1

10
x + 1

2
, p2(x) = 1

10
x + 1

2
. Note that p1(0) = p2(0) =

1

2
. For x ∈ (0, 1], p2(x) − p1(x) = 1

5
x > 0, i.e., the asymmetry in the proba-

bilities increases from 0 to its maximum value
1

5
at x = 1. As such, we expect

that there will be an asymmetry of the invariant measure μ̄, weighted toward
x = 1 at all scales. However, the asymmetry will be less “drastic” as compared

to the constant probability case p1 = 2

5
, p2 = 3

5
.

A histogram approximation to thismeasure, obtained by using a place-dependent
version of the “Chaos Game,” is shown in the left plot of Fig. 3. The approxima-
tion to the CDF F(x) of μ̄ yielded by this histogram is shown in the right plot
of the figure.

2 Case 2: p1(x) = 1

10
x + 1

2
, p2(x) = − 1

10
x + 1

2
. Once again, p1(0) = p2(0) =

1

2
. For x ∈ (0, 1], p1(x) − p2(x) = 1

5
x > 0, i.e., the asymmetry in the proba-

bilities is reversed from Case 1. We therefore expect that the asymmetry in the
invariant measure μ̄ will be weighted toward x = 0.
A histogram approximation to this measure is shown in the left plot of Fig. 4.
The approximation to the CDF F(x) of μ̄ yielded by this histogram is shown in
the right plot of the figure.
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Fig. 3 Left: Histogram approximation of invariant measure μ̄ of the two-map IFSPDP in Example
2, Case 1. Right: Approximation to cumulative distribution function F(x) of μ̄

Fig. 4 Left: Histogram approximation of invariant measure μ̄ of the IFSPDP in Example 2, Case
2. Right: Approximation to cumulative distribution function F(x) of μ̄
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4 Inverse Problem of Measure Approximation Using
IFSPDP

The formal inverse problem of measure approximation using IFSPDP may be posed
as follows: Given a target measure ν ∈ M (X) and an ε > 0, find an IFSPSP (w,p)

with invariant measure μ̄ such that dMK (μ̄, ν) < ε. Such inverse problems involving
fractal transforms are generally intractable so we consider a reformulated problem
based on the Collage Theorem, a simple consequence of Banach’s Fixed Point The-
orem.

Theorem 6 (Collage Theorem) [1] Let (Y, dy) be a complete metric space and T :
Y → Y a contraction mapping with contraction factor cT ∈ [0, 1) and fixed point
ȳ. Then for any y ∈ Y ,

dy(y, ȳ) ≤ 1

1 − cT
d(y, T y). (20)

From theCollageTheorem,wenowconsider the followingmodified inverse problem:
Given a target measure ν ∈ M (X) and a δ > 0, find an IFSPDP (w,p)with associat-
ed (contractive)Markov operator M : M (X) → M (X) such that dMK (Mν, ν) < δ.
Then, from the Collage Theorem, it follows that dMK (μ̄, ν) < δ(1 − c)−1.

As in [2], our strategy is to work with fixed sets of affine IFS maps wi : X → X ,
1 ≤ i ≤ N , optimizing over the unknown probability functions pi (x), 1 ≤ i ≤ N .
The IFS maps will be chosen from an infinite set of contraction maps on X which
satisfies the following refinement condition:

Definition 1 Let (X, d) be a compact metric space. An infinite set of contraction
maps, W = {w1, w2, . . .} is said to satisfy an ε-contractivity condition on X if for
each x ∈ X , and any ε > 0, there exists an i∗ ∈ {1, 2, . . .} such thatwi∗(X) ⊂ Nε(x),
where Nε(x) = {y ∈ X | d(x, y) < ε} denotes the ε-neighbourhood of x .

IfW satisfies the ε-contractivity condition on X , then inf i≥1 ci = 0,where ci is the
contractivity factor of wi . A useful set of affine maps on X = [0, 1] which satisfies
the ε-contractivity condition is given by the following wavelet-type functions (here
it is convenient to use two indices),

wi j (x) = 1

2 j
[x + j − 1] , i = 1, 2, . . . , 1 ≤ j ≤ 2i . (21)

The following result, proved in Theorem 3.9 of [2], provides the existence of a
solution to the inverse problem for measure approximation using IFSP, i.e., IFS with
constant probabilities (see also [5] and [7]).

Theorem 7 [2] Let (X, d) be a compact metric space and μ ∈ M (X) be a target
measure. Furthermore, letW be an infinite set of contraction maps on X and wN =
{w1, w2, . . . , wN }, N ≥ 1 denote an N-map IFS selected fromW . We now consider
the N-map IFSP (wN ,pN ) defined over the following compact region in R

N ,
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�N =
{

(pN
1 , pN

2 , . . . , pN
N ) ∈ R

N

∣∣∣∣ p
N
i ≥ 0, 1 ≤ i ≤ N and

N∑

i=1

pN
i = 1

}
, (22)

and let MN denote its associated Markov operator. Let qN ∈ �N be a point at which
the collage distance dMK (μ, MNμ) is minimized and let this minimum value be
denoted as �N

min. Then
lim
N→∞ �N

min = 0. (23)

The solution to the inverse problem for IFSPDP with affine probability functions
follows almost trivially from the above result.We replace the IFSP associatedwith an
N -map IFS,wN , selected from the infinite setW by an N -map IFSPDP (wN , αN , βN )

defined over the following compact region �N ⊂ R
2N . Since the special case α1 =

α2 = · · · = αN = 0 corresponds to the N -map IFSP considered in Theorem 3.5 of
[2], with pi = βi , 1 ≤ i ≤ N , it follows that the (non-negative) minimum collage

distance achievedon�N ⊃ 	N ,whichwedenote as�
N
min,must satisfy the inequality,

�
N
min ≤ �N

min , N ≥ 1. (24)

From (23), it follows that
lim
N→∞ �

N
min = 0 , (25)

thus proving the existence of a solution to the inverse problem for measure approxi-
mation for affine IFSPDP on X (for more details see [8]).

5 Conclusion

The new results of this paper are concerned with the problem of approximating
probability measures on a compact metric space (X, d) with invariant measures of
iterated function systems with place-dependent probabilities. This paper may be
considered to be a place-dependent extension of [2], in which the inverse problem of
measure approximation using iterated function systems with constant probabilities
was treated.
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Solving Inverse Problems for Fractional
ODEs via the Collage Theorem

Kimberly M. Levere and Brent Van De Walker

Abstract In this paper, we consider an inverse problem for a general class of frac-
tional ordinary differential equations. Using the collage theorem, a consequence of
Banach’s classical Fixed Point Theorem, we establish a “collage method” for solving
this inverse problem under certain restrictions. We apply this method to some model
fractional ordinary differential equations in which we only use solution data (perhap-
s adding relative noise to simulate experimental error) to recover other parameters
present in the model.

Keywords Fractional calculus · Fractional ordinary differential equations
Inverse problems · Applied analysis · Collage theorem · Numerical analysis

1 Introduction

A common goal of many methods for solving inverse problems is to minimize the
approximation error; the distance between the true solution y and the solution reached
when using parameters that have been found inversely, yλ. Computational expense
and the difficulty of expressing yλ in terms of the parameters of the problemmake this
a challenging task. One technique for tackling this challenge is a “collage method”
that bounds the approximation error above by the collage distance, ‖y − Ty‖. Here
T is an operator that depends on the parameters of the problem. A number of such
“collage methods” exist in the literature, see for instance, [7, 8].

In this paper we develop a collage-based method for solving inverse problems
for fractional ordinary differential equations (FODEs). We begin in Sect. 2 with
some required background knowledge, so that we can discuss and develop a collage
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method for FODEs in Sect. 3. In Sect. 4 we present some examples of this theory in
practice with closing remarks in Sect. 5.

2 Mathematical Preliminaries and Scope

In this paper, we will focus on scalar qth order FODEs of the form

CDq
ay(x) = f (x, y(x)) (1)

y(k)(a) = y(k)
0 , (2)

where f is a bounded and Lipschitz in its second argument and (x, y) are in the space
Ω = [0, β] × [y(0)

0 − α, y(0)
0 + α], for α, β > 0. Here we make use of a qth order

Caputo fractional derivative, defined by

CDq
af (x) = 1

Γ (n − q)

∫ x

a
(x − t)n−q−1f (n)(t) ,

for n − 1 < q ≤ n which results in physically meaningful initial conditions.
By appealling to a result from [10], we know that if f is continuous, then (1)–(2)

is equivalent to the nonlinear Volterra-type equation

y(x) =
n−1∑
k=0

xk

k! y
(k)(a) + 1

Γ (q)

∫ x

0
(x − t)q−1f (t, y(t)) dt. (3)

for n − 1 < q ≤ n. The following result establishes existence and uniqueness of
solutions to (1)–(2).

Theorem 1 Let Ω = [0, β] × [y(0)
0 − α, y(0)

0 + α], for α, β > 0 and f : Ω → R be

K-Lipschitz in its second argument. If ‖f ‖∞ ≤ αΓ (q + 1)

βq
, then there exists at most

one function y(x) solving the initial value problem (1)–(2).

One way to prove Theorem 1 is using Banach’s Fixed Point Theorem, which we
state for completeness.

Theorem 2 (Banach’s Fixed Point Theorem) Let (X , ‖ · ‖X ) be a Banach space
and let T : X → X be a contractive operator with contraction factor c ∈ [0, 1).
Then there exists a unique fixed point x̄ ∈ X such that Ax̄ = x̄. Moreover, for any
x ∈ X , ‖A◦sx − x̄‖X → 0 as s → ∞.

Recall that an operator T : X → Y is contractive if for any x1, x2 ∈ X

‖Tx1 − Tx2‖Y ≤ c‖x1 − x2‖X ,
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for some c ∈ [0, 1).
Note: The assumption of 0 < q < 1 has been found to be the most useful in

practical applications (see [2], for instance).

Proof (of Theorem 1) Without loss of generality, we shift the initial conditions to
the origin, that is (a, y(k)

0 ) → (0, 0)). We also assume that 0 < q < 1 as it has been
found to be the most useful in practical applications (see [2], for instance). In light of
Banach’s Fixed Point Theorem and with these considerations in mind, we can prove
Theorem 1 by first defining a Picard-like operator T to be equal to the right-hand
side of (3) when 0 < q < 1. That is,

(Ty)(x) = 1

Γ (q)

∫ x

0
(x − t)q−1f (t, y(t)) dt. (4)

We must show that the hypotheses of Banach’s Fixed Point Theorem are satisfied
for this choice of T . That is,

1. (X , ‖ · ‖X ) is a Banach space;
2. T : X → X ; and
3. T is contractive with contraction factor c ∈ [0, 1).
We begin by defining the set X = {y ∈ C[0, β] : ‖y‖∞ ≤ α}, for α, β ≥ 0. This set
is non-empty as it contains y(0)

0 = 0, and is a closed subset ofC[0, β]. Equipped with
the sup norm, ‖ · ‖∞, it is well known that (X , ‖ · ‖∞) is a Banach space.

To show that T : X → X , we let y ∈ X , and exhibit that ‖Ty‖∞ ≤ α (thus proving
that Ty is also an element of X ).

‖Ty‖∞ = 1

Γ (q)
sup

x∈[0,β]

∣∣∣∣
∫ x

0
(x − t)q−1f (t, y(t)) dt

∣∣∣∣
≤ ‖f ‖∞

Γ (q)
sup

x∈[0,β]

∣∣∣∣
∫ x

0
(x − t)q−1 dt

∣∣∣∣
= ‖f ‖∞

Γ (q + 1)
sup

x∈[0,β]
xq

≤ ‖f ‖∞
Γ (q + 1)

βq

Utilizing the hypothesis that bounds f , ‖f ‖∞ ≤ αΓ (q + 1)

βq
, we get

‖Ty‖∞ ≤ ‖f ‖∞
Γ (q + 1)

βq

≤
αΓ (q+1)

βq

Γ (q + 1)
βq

= α.
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Thus, if y ∈ X then Ty ∈ X , so we have shown that T : X → X .
Finally, to show that the operator T is contractive, we must find a c ∈ [0, 1) such that
for u, v ∈ X , ‖Tu − Tv‖∞ ≤ c‖u − v‖∞.

‖Tu − Tv‖∞ = 1

Γ (q)
sup

x∈[0,β]

∣∣∣∣
∫ x

0
(x − t)q−1(f (t, u(t)) − f (t, v(t)) dt

∣∣∣∣

≤ 1

Γ (q)

(
sup

x∈[0,β]

∫ x

0
|(x − t)q−1| dt

)(
sup

x∈[0,β]

∫ x

0
|f (t, u(t)) − f (t, v(t))| dt

)

≤ K‖u − v‖∞
qΓ (q)

sup
x∈[0,β]

xq

≤ Kβq

Γ (q + 1)
‖u − v‖∞.

Defining c := Kβq

Γ (q + 1)
, we can either restrict our choices of f or the space Ω so

that βq is such that c ∈ [0, 1).
Having established all of the hypotheses of Banach’s Fixed Point Theorem, we must
have that T has a unique fixed point ȳ such that T ȳ = ȳ. This unique fixed point
serves as the unique solution to (1)–(2).

Diethelm and Ford present a similar, but more general result for existence and
uniqueness for this case in [2].

3 Inverse Problems via Collage Coding

We now concern ourselves with developing a method for solving an inverse problem
for the general FODE (1)–(2) discussed in Sect. 2. Recall the form of this FODE

CDq
ay(x) = f (x, y(x))

y(k)(a) = y(k)
0 ,

for n − 1 < q ≤ n. Suppose now that f depends on a set of unknown parameters,
λ ∈ R

dim λ. The goal of such an inverse problem is to find these unknown parameter
values such that the approximation error, ‖y − ȳ‖∞, is minimized. That is, parameter
values λ are chosen so that the solution to the FODE (1–2) is sufficiently close to
the fixed point of the operator T . A number of classical methods exist for solving
such problems, including regularization techniques and iteration schemes (see, for
instance, [3]). The collage coding method introduced in [7] and explored in several
different settings (see [5, 6, 8], for instance) takes a slightly different approach. Since
in practice, representing the fixed point ȳ in terms of the parametersλ can be a difficult
task in practical problems, the collage coding approach bounds the approximation
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error ‖y − ȳ‖∞ above by a more readily minimizable distance. This method gets its
name from “the Collage Theorem”, a simple consequence of Banach’s Fixed Point
Theorem, that exactly builds this upperbound on the approximation error.

Theorem 3 (Collage Theorem) Let (X , ‖ · ‖X ) be a Banach space and T : X → X
be a contractive operator with contraction factor c ∈ [0, 1) and unique fixed point
ȳ ∈ X . Then

‖y − ȳ‖X ≤ 1

1 − c
‖y − Ty‖X .

For a proof of Theorem 3, see [1]. Appropriately, we call the distance ‖y − Ty‖X the
collage distance.

The Collage Theorem says that by minimizing the collage distance, provided
that c is bounded away from 1, we can guarantee that that approximation error is
also controlled. While the collage method does provide a novel and robust method
for solving inverse problems, the collage distance is a suboptimal bound on the
approximation error, as the following theorem from [4] indicates.

Theorem 4 (Suboptimality of the collage theorem)Let (X , ‖ · ‖X ) beBanach space,
and let y ∈ X be a target function. Further, let λmin = argminλ‖y − Ty‖X be the
parameter values that minimize the collage distance, with corresponding fixed point
ȳ of the contractive map T . Let ȳλopt be the optimal fixed point that minimizes the
approximation error ‖y − ȳ‖X ; that is, ȳλopt satisfies ‖ȳλopt − y‖X ≤ ‖w − y‖X for all
w satisfying Tw = w and some parameters λ. Then

‖yλopt − ȳ‖X ≤ 2

1 − cλmin

‖y − Ty‖X ,

where cλmin is the contraction factor of T .

In practice, the collage distance is more easily minimized than the approximation
error as the parameters λ are imbedded in the operator T and thus we no longer need
to worry about finding ways to express the fixed point ȳ in terms of these parameters.
Depending on the complexity of the problem, a variety of techniquesmay be required
to execute this minimization.

Having shown the operator T given in (4) for the FODE (1)–(2) satisfies the condi-
tions of Banach’s Fixed Point Theorem, and thus also those of the Collage Theorem,
we may apply this methodology to an inverse problem for a FODE of this form.

4 Examples

Example 1 In an effort to connect to existing literature, the first simulation of the
collage method for FODEs comes from [2]
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D0.5y(x) = −y(x) + x2 + 2x1.5

Γ (2.5)
(5)

y(0) = 0, (6)

where x ∈ [0, 1]. One can easily show that the closed form solution to (5)–(6) is
y = x2.

For the inverse problem, we will use only sample data of this solution (as it is
unlikely that we would be afforded a closed-form solution) and assume that some of
the coefficients in the fully determined FODE (5)–(6) are unknown. We will attempt
to recover the constants λ0, λ1, and λ2 present in the related FODE

D0.5y(x) = y(x) + λ1x
2 + λ2x1.5

Γ (2.5)
(7)

y(0) = λ0. (8)

We begin by simulating N solution data values on the interval [0, 1] (perhaps adding
relative Gaussian noise to simulate experimental error). We then fit a polynomial
of desired degree M to our simulated data and use this polynomial fit as our target
solution, ytarget(x).

Note that while we only display the results for target solutions of degree 2, sim-
ulations with varying target polynomial degrees were run and produced comparable
results for degrees higher than 2 (as unnecessary degrees were identified by the min-
imization technique as zeros). When using a degree of 1, the simulation returned less
than desirable results, but we reason that a researcher seeing such a weak fit would
not deem it satisfactory and would attempt to improve the fit before proceeding with
the inverse problem.

Our Picard-like operator as in (4) has the form

Ty(x) = λ0 + 1

Γ (0.5)

∫ x

0
(x − t)−0.5

(
y(t) + λ1t

2 + λ2t1.5

Γ (2.5)

)
dt

We recall that Banach’s fixed point theorem (and also the collage theorem) requires
that we work on a Banach space. As we are working with the space of continuous
functions, it would stand to reason then that we would use the sup norm, ‖ · ‖∞.
However, this norm is computationally cumbersome in practice so instead we will
work with the L 2 norm. This is not cause for concern as the space of continuous
functions is a subset of the space ofL 2 functions. Thus our squared collage distance
is given by

Δ2 =
∫ 1

0
(ytarget(x) − Ty(x))2 dx

=
∫ 1

0

(
ytarget(x) − λ0 − 1

Γ (0.5)

∫ x

0
(x − t)−0.5

(
y(t) + λ1t

2 + λ2t1.5

Γ (2.5)

)
dt

)2

dx
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Table 1 Parameter estimates for Example 1 for various levels of relative noise, ε and data values,N

N ε λ0(λ0)true = 0 λ1(λ1)true = 1 λ2(λ2)true = 2 Δ

10 0 −3.9447 × 10−39 1.000 2.000 1.8439 × 10−21

0.01 0.3479 × 10−3 0.7020 1.4447 0.8167 × 10−4

0.02 0.6958 × 10−3 0.4040 0.8894 0.1633 × 10−2

20 0 −4.3817 × 10−39 1.000 2.000 0.1 × 10−20

0.01 0.2770 × 10−3 0.8898 1.8051 0.6848 × 10−6

0.02 0.5541 × 10−3 0.7796 1.6102 0.1370 × 10−4

30 0 −3.9447 × 10−39 1.000 2.000 2.9155 × 10−21

0.01 0.2416 × 10−3 0.9492 1.9164 0.6125 × 10−8

0.02 0.4832 × 10−3 0.8985 1.8327 0.1225 × 10−4

50 0 −3.9447 × 10−39 1.0000 2.0000 4.4721 × 10−21

0.01 0.2062 × 10−3 0.9857 1.9817 0.5468 × 10−10

0.02 0.4124 × 10−3 0.9714 1.9634 0.1094 × 10−7

We arrive at estimates of the parameters λi, i = 0, 1, 2 using least squares mini-
mization on Δ2. For more involved problems more exotic minimization techniques
may be necessary. The results of a number of simulations with various levels of
Gaussian noise applied to various numbers of data values are given in Table 1.

The results agree with our mathematical intuition; the more data we have, the
better our estimates are. The more noisy the data is, the less accurate our results are.
Even at 2% relative noise, our results strongly agree with the true parameter values.
Fifty digits were preserved in calculations of these values, so some accuracy may
have been lost due to this numerical choice as well.

In our next example, we explore a more difficult problem with a solution that is
trigonometric rather than polynomial. This gives rise to a much more complicated
forcing function and thus more exotic numerical methods will be necessary to solve
this inverse problem. It also begins to exhibit the robustness of this inverse problem
method.

Example 2 In this slightly more difficult example, we explore a FODE of the form

D
1
2 y(x) + 3y(x) + 2 = f (x) (9)

y(0) = 0, (10)

for x ∈ [0, 1], where

f (x) = √
2 cos(x)C

(√
2x

π

)
+ √

2 sin(x)S

(√
2x

π

)
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and

C(x) =
∫ x

0
cos(t2) dt and S(x) =

∫ x

0
sin(t2) dt

are the Fresnal cosine and sine integrals, respectively. This example recognizes that
many fractional problems contain particularly complicated forcing functions f (x) or
solution functions. It also exhibits the robustness of the method to non-polynomial
solutions as the solution to this FODE is y(x) = sin(x).
Our goal in this example will be to recover the unknown constants λ0, λ1 and λ2

present in the related FODE

D
1
2 y(x) + λ1y(x) + λ2 = f (x)

y(0) = λ0,

In this case, our Picard-like operator takes the form

Ty(x) = λ0 + 1

Γ
(
1
2

)
∫ x

0
(x − t)−

1
2
(
f (t) − λ1ytarget(t) − λ2

)
dt

As the true solution is not a polynomial and thus by fitting our data using a polynomial
target there will be some approximation error present (independent of experimental
or observational error). It will be of interest to investigate if a higher degree polyno-
mial for the target solution improves our results (as we would expect). Further, the
complexity of the right-hand side makes the integration and minimization needed to
solve this problem far more difficult than in previous examples. Since the collage
distance is a nonlinear function of the parameters, λi, the integration needed for the
computation of the collage distance is approximated using a midpoint Riemann sum.
We also note that we use a polynomial of degree 10 to fit our solution data. The
results of these simulations are listed in Table 2.

While the results in this example aren’t quite as good as what we saw in the
previous example, we note that given the complexity of the problem that our result-
s actually compare quite favourably. Upon experimenting with different numerical
integration techniques (such as Simpson, Trapezoid and Newton-Cotes) we see com-
parable results. It also appears that an increase in the degree of the target polynomial
used to fit the solution data has only a small effect on our results as the number
of data values used increases. Finally, the use of least squares and gradient descent
minimization schemes were both employed and we found little difference in the re-
sults that were reached. Increasing the number of data values sampled, N , continued
to improve our results (as was the trend in Table 2) with a negligible increase in
computing time.
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Table 2 Parameter estimates for Example 3 for various levels of relative noise, ε and data values,N

N ε λ0(λ0)true = 0 λ1(λ1)true = 3 λ2(λ2)true = 2 Δ

10 0 −0.1650 × 10−3 2.9672 1.9107 0.1673 × 10−3

0.01 −0.1590 × 10−2 2.7849 1.8821 0.1678 × 10−2

0.02 −0.1525 × 10−1 2.5409 1.8273 0.1710 × 10−1

20 0 −0.5154 × 10−3 2.9760 1.9581 0.8277 × 10−3

0.01 0.2284 × 10−1 2.8442 1.9045 0.1534 × 10−2

0.02 0.7658 × 10−1 2.6825 1.8476 0.2972 × 10−1

30 0 −0.1645 × 10−4 2.9942 1.9687 0.5518 × 10−4

0.01 −0.5523 × 10−2 2.9827 1.9248 0.3085 × 10−3

0.02 −0.9274 × 10−1 2.9660 1.8761 0.6415 × 10−2

50 0 −0.2494 × 10−5 3.0041 2.0311 0.3311 × 10−6

0.01 −0.4168 × 10−3 2.9660 1.9615 0.9131 × 10−4

0.02 0.6664 × 10−2 3.0609 1.8914 0.1808 × 10−3

5 Conclusions

We have derived and implemented a novel inverse problemmethod for treating some
fractional ordinary differential equations. With existence and uniqueness proven via
classical techniques, we have used Picard-like operators to build a collage distance
that we minimized in order to guarantee that the approximation error was controlled.
While this is a suboptimal method, we have exhibited the robustness of the method to
a few different complexities, including the presence of a (classical) derivative in the
collage distance, as well as a more complex forcing function, f (x). Through these
simulations,we have shown that themethod performs strongly evenwhen facing such
complexities. Certainly experimental error challenges this technique, as it does not
perform quite as well when the target solution is not exact. However, increasing the
number of data values sampled certainly decreases this effect, as we would expect.
More exotic numerical methods for integration and minimization can certainly assist
this technique in successfully finding solutions. Perhaps further investigation into
other such techniques might improve these results further.
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Characterization of Fluid Dynamics
in Capillary Vessels: Applications
for Drug Delivery

Seraphin C. Abou

Abstract The delivery of a sufficient dose of pharmaceutical composite inmicroves-
sels as to safely achieve its desired therapeutic care poses severe risks. Yet, no theory
is sufficiently expanded to portray the observed viscoelastic phenomena in variety
of fluid flow conditions in capillaries. In this study, the dynamics of non-Newtonian
pharmaceutical composite flow is explored bymapping its pathway as directly related
to lymph flow in live cells. We hypothesize descriptors of the pharmaceutical com-
posite flow can be elaborated at isobaric-isothermal non-Newtonian flow conditions
to acquire constitutive equations. Then, the mechanism and energetics associated
with such flow states, and the rheology effects due to the plasma-rich zones that
form near the wall in capillaries are numerically characterized. The model portrays
blood flowproperties at themesoscopic level and enables a computational framework
at microvessel levels for prediction of the rheology of pharmaceutical composite that
does not followNewtonian dynamics but is compatible to that of the blood at different
velocity profiles under both the normal and the pathological conditions.

Keywords Microsystems · Non-Newtonian · Rheology · Modeling and
simulation

1 Introduction

Classical fluidmechanics, which stands on the application of theNavier-Stokes equa-
tions, including the continuum equations of motion cannot elaborate many important
flow problems of practical significance. In this paper, the concept of non-Newtonian
fluid flow is applied to clinical settings for drug delivery. By no means, does the
analysis cover the dilution or solubility of pharmaceutical composite in live cells,
but it expounds upon inherent details of the particulate nature of non-Newtonian drug

S. C. Abou (B)
Mechanical Engineering Department, W.V.S. Tubman University,
PO Box. 3570, Harper, Maryland County, Republic of Liberia
e-mail: sabou@tubmanu.edu.lr; serchally@gmail.com

© Springer Nature Switzerland AG 2018
D. M. Kilgour et al. (eds.), Recent Advances in Mathematical
and Statistical Methods, Springer Proceedings in Mathematics & Statistics 259,
https://doi.org/10.1007/978-3-319-99719-3_13

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99719-3_13&domain=pdf


140 S. C. Abou

composite modeling and blood cell characteristics in a mathematical representation
of blood rheology features that might be considered to safely achieve desired thera-
peutic care and quality of life under both the normal and the pathological conditions.

We derive generic expressions ofNon-Newtonian flowwhich integrate a variety of
fluid mechanics phenomena. Although quantitative analysis has been performed for
understanding attributes of blood flow resistance in vitro based on basic ideas of fluid
flow, the simplifying assumptions as related to viscoelastic models have restricted
ourselves to the tenets that model fluids’ flow in ideal conditions – those that do not
exhibit any frictional properties or describe strain rate dependence of viscosity and
normal stress phenomena. Examples of prominent linear models are: The Bernoulli
equation which considers the forces present in moving fluid while the friction due to
viscous forces are neglected Eq. (1); The Jeffreys, andMaxwell models, respectively
Eqs. (2), and (3), which are not valid to satisfy the principle of frame invariance,
including models that obey the Newton law of viscosity, Eq. (4), to name a few:

�p + γ�z + ρ
v̄2

2
= 0 (1)

τ + α1
∂τ

∂t
= μ0

(
γ̇ + α2

∂γ̇

∂t

)
(2)

τ + α1
∂τ

∂t
= μ0γ̇ (3)

ρ
(

∂u
∂t + u.∇u + α1

) = −∇ρ + μ�u + f
∇.u = 0

}
(4)

where�p- is pressure loss, v̄- is the mean velocity,�z- is the head loss; ρ- is the fluid
density; α1 and α2- are relaxation and retardation time respectively; μ- is constant
fluid viscosity; γ̇ - is rate of strain tensor; τ - is the stress; u- is fluid velocity; ∇u- is
velocity gradient; p- is pressure; and f - is external body force.

The higher the strain rate, the shorter the time at which the critical strain’s depar-
ture from linear regime is reached, [3, 13, 14]. At the capillaries level, blood cell
membranes deform due to hematocrit properties – the volume fraction of the red
blood cells (RBCs) to the total blood volume [6, 15]. We come to the fact that nei-
ther the basic idea of the fluid flow, nor the knowledge of the bulk material properties
of blood cells provide insights to express blood flow through narrow cylindrical
tubes. Thus, reduction of viscosity decreases with decreasing tube size – Fahraeus-
Lindqvist effects, [7].

In this framework, to account for blood flow resistance observed in-vivo, we
argue that network modeling approach appears to be more realistic to modeling
non-Newtonian pharmaceutical composite flow in capillaries. Yet, these considera-
tions are still unable to account for all effective complexities and to make precise
determination to the extent we can predict with high accuracy the flow conditions.
However, to advance clinical care applications, the Biot number = hL/ks may be
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approximated to be small enough such that lumped capacitance model is applied to
small sized droplet fluid. Of particular interest is to find what kind of descriptors can
be used to acquire constitutive equations, and to analytically solve in safe manner
capillary fluid flow problems. Therefore, to balance the body fluids transport phe-
nomena, we examine the physical properties of the fluids within the body and pay
detailed attention to effects of the extracellular and transcellular fluids although we
are dealing with intracellular flow. Then, we emphasize on the characterization of
non-Newtonian rheology effects due to the plasma-rich zone that forms near the wall
in capillaries.

The physiological and the deformability properties of blood cells are factored to
map the non-Newtonian fluid flow models analogous to those in mechanistic behav-
iors. This enables to relate physical-mechanical properties to those of leaf spring
properties. Excluding the characteristic time dependence of at least one parameter
that accounts for the fluid memory, the constitutive equations in real space coordi-
nates which satisfy the Oldroyd’s admissibility criteria, [3, 10–12], is expressed. One
of the rationales which support this approach is that, when fluid suffers significant
deformation in time, comparable to the relaxation time of the fluid, elastic effects
become important to account for change of coordinate system and value invariant
under rheological descriptors of neighboring fluid including extracellular and tran-
scellular elements. These parameters are strongly influenced by the geometry of
vessels.

2 Physical-Rheological Considerations

The resistance to fluid flow within Microvessel channels depends on the physical
structure of the microvascular network and the rheological properties of the fluid.
We illustrate diverse ranges of the behavior involved in both, the nature and the
health care technology applications to deepen the analysis where most of the vari-
ables influence the fluid motion, including the versatile nature of the non-Newtonian
pharmaceutical composite. Evidence indicates that physics of the flow that does
not explicitly accounts for frictional properties or describe strain rate dependence
of viscosity and normal stress phenomena, would merely depict the complexities
of non-Newtonian fluids. As a result, we determine the pharmaceutical composite
flow across the capillary membranes by Starling forces – hydrostatic and the oncotic
forces which have been measured at well-defined steady states. But, yet, the molecu-
lar identity of capillary channels remains unknown [15]. Figure 1 depicts the capillary
membrane pressure distributions.

The variance between capillary oncotic pressure and interstitial oncotic pressure
determines the osmotic pressure gradient. It hastily induces decreasing apparent vis-
cosity along with decreasing capillaries diameter which obeys the Fahraeus-Linqvist
effect. Hence, flow resistance through capillaries is affected in many pathological
conditions,making quantitative approachmere indicators to characterize the complex
rheological properties of blood where apparent viscosity and relative viscosity relate
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Fig. 1 Capillary membrane
pressure distribution
d ≤ 9 × 10−6 m

blood flow to the Newtonian fluid – the plasma. However, for Newtonian laminar
flow, the Hagen-Poiseuille solution is satisfied to describe the viscosity:

�pL = 8μQ

πr4
⇒ μ = �pLr2

2va
(5)

where �pL is the pressure drop per unit of length; r is the radius of the tube;
va is the average velocity
Figure 2 indicates that fluid viscosity is explicitly related to the number of the red

cells concentration – hematocrit. Under physiological conditions, blood viscosity
appears to be about three times higher than the viscosity of water, [16, 18].

The dynamics of the pharmaceutical fluid flow within capillaries is compatible to
that of the blood. The fluid moves along with the blood from the bloodstream into the
body’s tissues and exhibits complex properties. Though, these states are referred to
those of non-Newtonian fluids in general, the fluid may exhibit antihypertensive drug
atenolol properties, attempt to staywithin the blood and surrounding cells’ interstitial
space, [9]. Due to the deformation in microcirculation, the two-phase nature of blood
results in non-Newtonian dynamics where vessel dimensions become comparable
to cell diameter and the interactions between blood cells. Therefore, the nonlinear
increase of viscosity with increasing hematocrit, as in Fig. 2, and the variation of the
shear rate would impact to a great magnitude the interpretation of physiological and
pathological behavior of the flow within microvessels.

Fig. 2 Fluid Viscosity
related to hematocrit
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2.1 Factors Influencing Viscosity

The literature review illustrates that blood is non-Newtonian fluid, [2, 9]. In most
of these references, however, the use of a capillary viscometer, has practical limita-
tions that make it difficult to express values of the viscosity of the pharmaceutical
composite over the lower ranges of shear rate. Moreover, the variation in shear rate
is not linear as the radius of the tube changes. Also, the admission of the compat-
ibility of the lymph to the pharmaceutical composite flow in capillaries adheres to
the notion that the viscosity is anomalous and the Poiseuille law may not be directly
applied to the conditions of the flow in the capillary circulation. The model of the
pharmaceutical composite flow is schematically depicted in Fig. 3, showing that the
flow of the pharmaceutical composite is explicitly influenced by blood and plasma
viscosities, as well as the rheological properties of blood cells (e.g., deformability
and aggregation of red blood cells in pathological conditions), including the disease
processes and extreme physiological conditions. Hence, considerations for advanced
factors which contribute to the variation of the viscosity of the flow in the capillaries
include the following:

(1) The discontinuity in pressure at a given point of an interface of vessels. This
results in product of the local value of surface tension, and twice the mean
values of the curvature at the interface. It is known as the Young-Laplace law.

(2) Themacromolecules of the blood on the inner endothelial surfacewhich obstruct
the pharmaceutical composite fluid flow in near-wall regions of microvessels
either by increasing the local viscosity or by temporally sticking to passing
blood cells, Fig. 3.

(3) The inner vessel contour which is irregular and may infer distortion of the red
blood cells and resistance to fluid flow. Though, each local branch point leads to
energy dissipation and perturbation of the velocity and concentration profiles in
the downstream vessels.

Due to clinical applications, the use of the network approach might have a prog-
nostic significance indicating more accurate profile of the pharmaceutical composite

a

r
r+dr

L

uFlow in pathological condition

u

Agglomeration of blood cells

Fluid flow

Fig. 3 Capillary fluid flow
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flow within capillaries. Thus, specific patterns of the flow exhibit non-Newtonian
behavior – time, spatial, and frictional force properties dependence of the viscosity,
including isobaric-isothermal and steady boundary conditions.

Consider the velocity, u- of the fluid layer at a distance, r- from the center line of
the capillary, the layer r + dr, the velocity gradient-ϑ , Fig. 3, can be expressed as:

ϑ = −du

dr
(6)

Eq. (6) gives the tangential stress -τs along the capillary wall and the viscous force fs

τs = ηϑ

fs = 2πτsrL

}
(7)

where L and r - are the length and the radius of the capillary, respectively.

3 Distorted Velocity Profile

Jean-Marie Poiseuille conducted experimental studies and determined the capillary
flow resistance as function of the geometry of the blood vessels network is directly
proportional to both the viscosity of blood and the length of the capillary segment,
and inversely proportional to the fourth power of the vessel radius [1, 7]. However,
this cannot be exhaustively sustained due to the strong influence of cellular pathology
theory. In line with these observations, notice that intensified red blood cells (RBC)
aggregation (i.e. erythrocyte) increases capillaries flow resistance (i.e. viscosity)
under low shear forces. Also, cellular content of blood varies over a wide range at
different levels of circulatory system. Scientists ignored the role of blood viscosity
in flow through a given vascular network for various reasons:

(1) The medical diagnoses using fixed tissues, static, and microscopic observations
of dead tissues have less basis to support blood viscosity factors, and the phar-
maceutical fluid attributes

(2) The viscosity factor was considered as constant, rather than variable as reported
in the Poiseuille equation and may not adhere to pharmaceutical fluid flow in
capillaries

(3) The fourth power factor of the blood vessel radius was negligible and less impor-
tant than the viscosity factor of first power.

These observations concur with the analysis portrayed in Fig. 4 and demonstrate
that, increasing the length of the capillaries, the fluid velocity profile approaches to
parabolic (Poiseuille) profile while the flow characteristics are laminar. Hence, the
derivation of the law related to network modeling may be used to expand the analysis
over specific aspects of local geometry of capillaries’ curves and surfaces.
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Fig. 4 Fluid velocity distribution

Equations which describe the unsteadily incompressible flow through capillaries
provide new insights to better understand the dynamic behavior of biological flu-
ids composite dependence on flow conditions through capillaries. These equations,
while solved in both temporal and spatial domains, suggest that, erythrocytes (i.e.
red blood cells) aggregate in a special way forming rouleaux, and reduce the phar-
maceutical composite fluid flow. However, in pathological conditions, it may not
always be possible to determine the extent to which changes in rheological parame-
ters effect the flow in the disease process. We argue that the fundamental governing
one-dimensional equation of the flow can be described first, and then solved using
the method of characteristics.

4 Model Description

Pharmaceutical composites flowat disparate scales across the capillarywalls, through
junctions between endothelial cells or through larger leaks in microvessel walls. We
can illustrate the fluid motion without portraying in-depth the flow representation
through interconnected lattices at a great degree of accuracy and physiological realm,
Fig. 5. Upon the flow characteristics and the configuration of the capillaries, we ide-
alized capillary wall for the flow patterns description based on the network modeling
approach. The method has several advantages, namely, reasonable accuracy for solv-
ing highly complex free surface flow conditions.

Notice that strong pressure gradientsmay occur andmay cause the pharmaceutical
fluid break up. The liquid break-up process awaits future investigation. Neither the
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Fig. 5 The capillary
networks

vascular system is geometrically challenged nor the breakup phenomenon is dealt
with in this paper. The rheological constitutive equation for pharmaceutical compos-
ite has not yet been fully explored. The main parameters considered are defined as:
μo, and μb- are the dynamic viscosities of pharmaceutical composite and the lymph,
respectively; ρo, and ρb- are the densities of fluid and the lymph, respectively; u- is
the mean fluid velocity; r - is the capillary radius at arbitrary time t; σo- is the surface
tension coefficient at the fluid-capillary interface.

The following assumption can be alleviated when a better rheological model is
formulated making the problem computationally more practical and verifiable:

(1) The pharmaceutical composite is non-Newtonian and possesses elastic and
thixotropic properties;

(2) The fluid layer is uniform throughout the capillary length;
(3) Surfactants of the fluid are evenly distributed throughout the interface. Therefore,

the Gibbs–Marangoni flow effects are not considered;
(4) The yield-stress values are properties of the fluid induced by various capillary

shape factors, [8, 17]. In addition, the fluid conductance pathway depends on
both the fluid and the geometry of the network of capillaries if less than 6µm
as shown in Fig. 5.

We derived equations that relate surface tension to surfactant concentration. Sur-
face tension σ has the units of energy over area and may be thought of as a negative
surface pressure, or as a line tension acting in all directions parallel to the capillary
surface. Thus, to map the gravitational assisted flow, the Bond number expresses the
ratio of capillary forces to gravitation force and accounts for the dominance of the
viscous forces over capillary forces. It is defined as:

Bo = �ρogR2

σo
(8)

where R is the radius of the capillary; g is gravitational acceleration.
More importantly, we account for the curvature, the viscosity, the density of the

fluid, and the length of the capillary. Due to the aggregation of the red blood cells
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on the capillary walls, a straightforward dimensional analysis yields that the average
radius of the fluid ro � R depends upon time and six dimensionless parameters:

R0

R
= f

(
Reo,

x

L
,
μo

μb
,Ca,

tu

R
,
ρo

ρb
,
ro
R

)
(9)

where Re0 is the Reynolds number for fluid flow; R0 is the radius of the curvature of
the capillary; and Ca is the capillary number

Ca = k

(
μbU

σ0

)ε

(10)

where k is the curvature coefficient of the fluid interface.
Besides the special hemodynamic mechanisms affecting the pharmaceutical com-

posite flow, the body autoregulation based on vascular control mechanisms further
complicates the dimensional analysis, Eq. (9), where the capillary number is defined
as the ratio of hydrodynamic shear forces to surface tension at a liquid–capillary and
agglomerated red interface. Notice that pressure gradient �p of the fluid is not an
independent parameter, [4], as it is related to the blood mean velocity - U.

4.1 Pathophysiological Consequence

As depicted in Fig. 3 we are submitting that the fluid zone closest to the capillary
wall has the greatest contribution to flow resistance, as the frictional energy loss in
this region is maximal. These conditions, in turn, affect the properties of the phar-
maceutical composite flow. While the agglomeration of red blood cells at a low rate
and the related drop in viscosity results in decreased local hydrodynamic resistance
affecting, the general hydrodynamic resistance in the capillary system, the patho-
physiological influences remain debatable because of the experimentally concluded
variance between in-vivo and ex-vivo rheological behaviors of blood tissue, [5, 7].
In healthy conditions, the phenomenological properties are invariable for a healthy
body where the hematocrit ratio is 45%, Fig. 2. Therefore, wemay disregard changes
in the density ratio, and the viscosity ratio in Eq. (9), which results in:

R0

R
= f

(
Reo,

x

L
,
tu

R
,
ro
R

,Ca

)
(11)

Hence the relative viscosity given by so called Fahraeus-Lindqvist effects based on
the tube diameter D is presented as:

μ0.45 = 220e−1.3D − 2.44e−0.06D0.645 + 3.2 (12)
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Fig. 6 Critical Capillary number

To account for relevant source of measurement errors, although the Eq. (12) has
been of great importance to ground knowledge about the flow characteristics, we
deduce the agglomeration of the red blood cells concentrated in the central flow
zone, while side branches from the main capillary line are fed by the plasma-rich
zone. This concentration has lower hematocrit values as shown in Fig. 3. As a result,
the manifestation of Eq. (11) implies the dependence of critical capillary number
Ca, cr upon the ratio of the capillary curvature and its diameter, R0

R as follows:

Ca, cr = k

(
R0

R

)ε

= 1.94

(
R0

R

)3/2

(13)

Figure 6 depicts the capillary number of the fluid as function of the curvature ratio.
The collective knowledge portrayed by Fig. 5, indicates that, while we strongly
adhere to the physical sense of the shear-rate dependence viscosity of the fluid, Eq.
(13) supports that the variation of the pharmaceutical fluid rheological law is more
obvious than those of the viscosity error law.

5 Discussion

Due to limited data, the analytical expression of the capillary ratio cannot provide
a systemic dependence of parameters affecting the pharmaceutical composite flow
distribution and the absorption rate through tissues. Further numerical and analyt-
ical investigation on curved, finite thin films, blood rheology is required to fully
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understand the effects of phenomenological coefficients on the flow, for example the
curvature coefficient. Neither the vascular system geometrical challenges, nor the
break-up phenomena are dealt with in this paper. In addition, in pathological condi-
tions, due the distance traveled, the absorption rate and non-neglectable quantity of
the volume may be dissipated before change of the direction occurs due to curvature
orientation. In this case, the fate of the Non-Newtonian flow must be re-evaluated
accounting for variable initial conditions.

6 Conclusion

Characterization of non-Newtonian rheology effects due to the plasma-rich zone
that forms near the wall in capillaries has been studied with the help of a network
model. Of particular interest this framework was to determine what kind of the flow
descriptors can be elaborated to acquire constitutive equation and analytically solve
in safemanner capillary fluid flow. For realistic predictions of the rheology of the fluid
that does not followNewtonian dynamics, themodel portrayed bloodflowdescriptors
at the mesoscopic level. The approach is capable to a greater extent of predicting the
trend of the fluid flow dynamics complexity. The fluid flow methodology shows an
appropriate step towards the generation of well-defined velocity profiles under both
the normal and the pathological conditions. In the future, the present study can be
improved by optimized numerics with inclusion of the absorption rate of the fluid to
predict the fluid transfer in more realistic live cell situation.
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Large Eddy Simulation of Turbulent
Flow Over a Hill Using a Canopy
Stress Model

Md. Abdus Samad Bhuiyan and Jahrul M. Alam

Abstract Mathematical modelling of a turbulent flow over hilly terrains is an impor-
tant topic in both mesoscale weather prediction and boundary layer meteorology. In
comparison to the classical terrain-following coordinate approach, the immersed
boundary technique on a Cartesian grid simplifies the implementation of the bound-
ary condition on the surface of the hill, and this approach alsomitigates discretization
errors which would occur due to the terrain-following coordinate transformation. In
the present research, we have extended a canopy stressmodel to formulate the bound-
ary condition on the surface of a hill and considered the large eddy simulationmethod
to predict the interaction between the near-surface coherent structures and a smooth
hill. In addition to the canopy stress model, the turbulent stress has also been varied
dynamically as the surface is approached, where the canopy stress model is derived
based on the experimental observation that the drag coefficient becomes indepen-
dent of the Reynolds number (Re)when Re is sufficiently large. The proposedmodel
has been tested by simulating a neutrally stratified atmospheric boundary layer over
a periodic array of smooth hills. The agreement among the results of the present
simulation, a dynamically similar experiment, and an equivalent numerical model
suggests the potential benefits of the proposed method of simulating turbulent flow
over hilly terrains.
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1 Introduction

An accurate mathematical modelling of subgrid-scale turbulence for Atmospheric
Boundary Layer (ABL) flows over a complex terrain is an important research topic.
Atmospheric modelling areas, such as mesoscale weather prediction, boundary layer
meteorology, exchange of energy between the surface and the atmosphere are influ-
enced by complex terrains (i.e. a hilly surface). To improve our understanding of
terrain-induced turbulence, a widely used Computational Fluid Dynamics (CFD)
technique is the large eddy simulation (LES) methodology in which the large eddies
are computed directly, and the subgrid scale (SGS) eddies are modelled. However, in
the presence of a complex terrain, LESmust be supplemented with an accurate stress
boundary condition on the surface of hills, without which an extremely refined mesh
is necessary to capture the viscous layer over the hilly surface [10]. In this article, we
investigate the canopy stress method for modelling the subgrid-scale effects of sur-
face topography and validate results of LES for the ABL flow over a hill using wind
tunnel measurements. In LES the eddy-viscosity ντ is obtained from the resolved
rate of strain, which is known as the Smagorinsky model. A better result may be
obtained by dynamically adapting ντ to the distance from the terrain (e.g. [12]).
Since turbulent eddies are affected by the length scale of uneven surface topography,
an implementation of the standard Dynamic Smagorinsky model for ABL flows over
a complex terrain is a challenging endeavour (see [7, 10]). In [12], ντ was obtained
from both the rate of strain and the rate of rotation. In other words, the Smagorinsky
model can be modified by considering the rate of rotation. This approach – known
as the wall adaptive eddy viscosity (WALE) model – adapts ντ dynamically with
the local distance from the surface topography (e.g. see [12] for details). One of
our arguments in this research is that neither the Dynamics Smagorinsky model nor
the WALE model correctly accounts for the terrain-induced SGS stress experienced
by eddies passing over a complex terrain. In this article, we consider the LES of a
turbulent flow over a hill in which a canopy stress method accounts for the terrain-
induced SGS stress in addition to the standard SGS stress computed by the WALE
model. To validate the results of such an LES, we consider experimental data from
a reference (e.g. [8]) providing wind tunnel measurements of a flow over a smooth
hill, which is an important aspect of this article.

Canopy stress methods for LES of forest canopies can be found in [2]. However,
in Ref. [5] the canopy stress formulation of the pressure drag was examined to
simulate the flow over ridges of varying heights. Reference [1] considered the canopy
formulation of the viscous stress experienced by mesoscale eddies passing over an
Agnesi hill. In the present work, a canopy stress formulation of both the viscous
stress and the pressure drag has been verified along with the WALE model, where
ντ is dynamically adjusted to the vertical distance from the hill. As discuss by [5],
a goal of the canopy stress method is to bypass the computational workload of the
terrain following mesh that would resolve the viscous layer (see also [6, 7, 9]).
For a complex terrain, resolving the viscous layer by an adaptive mesh produces
inaccurate turbulence statistics [7]. Reference [11] illustrates that such errors are
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due to the terrain following mesh, and the error deteriorates if the mesh is refined in
order to resolve the terrain. Such errors may be minimized with immersed boundary
method [10] or by employing a mixed model based on an explicitly filtered LES.
Nevertheless, the present validation of the canopy stress method against wind tunnel
measurement is a significant improvement of the LES methodology for complex
terrain.

The governing equations for LES, subgrid-scale WALE model, and the canopy
stress method are discussed in Sect. 2. Numerical methods are briefly outlined in
Sect. 3. The LES results and verification with wind tunnel measurements are outlined
in Sect. 4, where the LES results have also been compared with that of another
reference numerical model.

2 Mathematical Model

To simulate a neutrally stratified atmospheric boundary layer over a smooth hill, we
solve the filtered Navier-Stokes equations (e.g. [7]),

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ ∂(uiu j )

∂x j
= − ∂p

∂xi
− ∂τi j

∂x j
+ fs, (2)

where τi j is the usual SGS stress (force per unit area divided by density), which
can be calculated by the WALE model and fs denotes the divergence of SGS stress
exerted by the hill, which can be calculated by the canopy stress method.

Here, ui is the filtered velocity in the xi direction, p is the pressure (divided by
density), ξ(x, y, z, t) is an indicator function representing the terrain.

2.1 Canopy Stress Parameterization

To parameterize the stress experienced by the hill, we assume that the hill can bemod-
elled as a porous canopy. In (2), the canopy stress term fs vanishes on all grid points
which are not in the canopy region (or hill). Thus, we define an indicator function
such that ξ(x, y, z) = 1 if the point (x, y, z) is inside the canopy, and ξ(x, y, z) = 0
if (x, y, z) is outside the canopy. Let us consider

fs = fdsξ (x, y, z) ui + fd f ξ (x, y, z) |ui |ui , (3)

where on the right-hand side of (3), the first term represents the viscous stress experi-
enced by an eddy passing over a hill [1], and the second term represents the pressure
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loss experienced by an eddy passing through a porous canopy [2]. There are several
empirical methods to determine the coefficients fds and fd f .

2.1.1 Skin Friction Drag

The skin friction drag is generated in the viscous boundary layer, which develops due
to the viscous stress as the air flows over a solid body. To parameterize the viscous
stress, let us model the porous canopy as a collection of smooth spheres of radii d and
the void fraction ε. Similar to the model considered in Refs. [3, 4], a mathematical
formulation of the viscous stress in (3) is

fds = −150 ν (1− ε)2

d2 ε3
. (4)

Using ε = 0.02, d = �x
2 = 4.5m , and the kinematic viscosity ν = 0.06345 m2 s−1,

we get fds = −1128.5 s−1.

2.1.2 Pressure Drag

A detailed discussion of the pressure drag associated with a forest canopy is given
by [2]. Here, we model the hill as a canopy of spheres and consider the formulation
of fd f that is applied for a forest canopy. Based on the canopy region formed by
spheres,

fd f = −1.75(1− ε)

d ε3
, (5)

which takes a value of ρ fd f = 47,638.89 m−1 for ε = 0.02, d = �x
2 = 4.5 m.

For clarity, the canopy stress parameterization of the last term in (2) can be written
as

fs = −150 ν (1− ε)2

d2 ε3
ξ (x, y, z, t) ui − 1.75(1− ε)

d ε3
ξ (x, y, z, t) |ui |ui . (6)

In addition tomodelling a component of the SGS stress by (6), theWALE formulation
of the SGS stress τi j is examined in the present work.

2.2 Subgrid Scale Model for τi j

In LES the Smagorinsky model filters all eddies of a scale that is smaller than the
grid size such that
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τi j − 1

3
τkkδi j = 2ντ Si j and ντ = (Cs�)2|S|,

where Cs is the Smagorinsky constant, � = (�x�y�z)1/3 is the LES filter width,
|S| = √

2Si j Si j , and the strain rate tensor is

Si j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
.

Note that the velocity gradient tensor is

∂ui
∂x j

= Si j + 1

2

(
∂ui
∂x j

− ∂u j

∂xi

)

and the rate of rotation tensor 1
2

(
∂ui
∂x j

− ∂u j

∂xi

)
is not considered by the Smagorinsky

model. In Ref. [12], it was shown that the inaccurate near-wall scaling of SGS
dissipation with respect to classical Smagorinsky model can be improved by the
WALE formulation of the eddy viscosity

ντ = (Cs�)2 = (Sdi j S
d
i j )

3/2

(Sdi j S
d
i j )

5/4 + (Si j Si j )5/2

where we engage both the rate of strain and the rate of rotation through the velocity
gradient tensor such that

Sdi j =
1

2

[(
∂ui
∂x j

)2

+
(

∂u j

∂xi

)2
]

− 1

3
δi j

(
∂uk
∂xk

)2

.

Based on numerical tests with the WALE model, Cs = 0.325 was adopted for the
simulations reported in this article.

3 Computational Methods

An implementation of the canopy stress method is given by [1]. In the present work,
the canopy stress method has been implemented within the Open source Field Oper-
ation and Manipulation (OpenFOAM) code, which is an object-oriented C++ library
for solving the Navier-Stokes equation. A finite volume discretization of LES equa-
tions (1–2) has been implemented through the OpenFOAM library. OpenFOAM
is released with a Navier-Stokes solver, buoyantBoussinesqPimpleFoam,
which has been modified into a new solver, topographyFOAM for the purpose
of testing the canopy stress method presented in this article. Our implementation of
the canopy stress method has been tested with OpenFOAM 3.0.x and OpenFOAM
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4.x. We have compared the results with two methods of time integration, such as
the Crank-Nicolson method and the second order backward Euler method. Results
obtained by the backward Euler method has been reported. For coupling the pressure
with the velocity, i.e. for solving the continuity equation (1), we have adopted the
‘Pressure Implicit with a Splitting of Operators (PISO)’ algorithm. It is worth men-
tioning that themesh is decomposed amongmultiple processors based on themessage
passing interface (MPI) routines implemented through the OpenFOAM library.

The boundary conditions in both horizontal directions are periodic, which mimics
a simulation for a periodic array of hills. In the vertical direction, a standard wall
boundary condition is considered at z = 0, and the boundary at z = zmax is considered
a plane of symmetry, where the vertical gradient of all quantities are zero.

4 Verification

Wehave considered two sets reference data for the validation ofmodelling a turbulent
flow past a hill based on the canopy stress method. One of them is the result of a
wind tunnel measurement conducted by [8] and the other is the result of another LES
conducted by [9].

4.1 Periodic Array of a Smooth Hill

To mimic the Large Eddy Simulation of a neutrally stratified boundary layer flow
over a periodic array of a smooth hill, let us consider the surface with a Gaussian
shape defined by (7); i.e.

zs = h exp

(
− (x − c1)2

L2
− (y − c2)2

L2

)
, (7)

where (c1, c2) is the centre of the hill.
Using h = 30m and L = 50m in (7), the hill height is 30mand the hill half-length

(the distance from the centre to a point whose height is half the hill height) is 42 m.
The computational domain is given by Lx × Ly × Lz = 600 m × 600 m × 510 m,
and themesh contains Nx × Ny × Nz = 64× 64× 88 finite volume cells, where Nx ,
Ny , and Nz denote the number of cells in x , y, and z directions, respectively. Note that
the cells are of uniform size, �x = �y = 9.375 m, in the horizontal directions, but
stretched in the vertical direction with �zmin = 0.96 m near the boundary at z = 0,
which is increased gradually to �zmax = 10.625 m until half the model height is
reached, and is left constant in the top half of the domain. A vertical cross section
of the mesh is shown in Fig. 1 (left). The shapes of the hills defined by (7) and
that considered in Ref. [9] have been compared in Fig. 1 (right), where the shape is
normalized by hill height h in both cases.
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Fig. 1 (left) Vertical slice of the grid is shown. (right) The vertical cross-section of the hill that
compared with the Fig. 6 of [9]. Two hill equations are scaled by the vertical height of the hill and
the shapes are similar

The flow is driven by a pressure gradient dp
dx that is adjusted dynamically so

that the mean velocity in the stream-wise direction is about 7 ms−1. The kinematic
viscosity is varied from ν = 5× 10−2 ms−2 to ν = 10−5 ms−2 for testing the result.
Note that the time step �t = 0.01 s, in our simulation, is larger than the time step
�t = 0.0001 s considered in the LES of Ref. [9].

A comparison for the vertical distribution of the stream-wise velocity u(z)/ur
that is obtained from the present LES with that was obtained by the wind-tunnel
measurement of [8] is presented in the bottom panel of Table 1 (experimental).
Similarly, a comparison with respect to the LES results of [9] is presented in the top
panel of Table 1 (numerical). We can see an excellent agreement between our LES
results with the results of wind-tunnel measurements, and similarly for the reference
LES. The relative errors reported in Table 1 indicate that the hill can be modelled
accurately if the canopy stress method is incorporated in LES. The large error at the
point (10, 10, 1.04) for the experimental case in Table 1 is due to the fact that the
size of the hill in the wind-tunnel measurement was O(mm), which is O(10 m) in
our simulation. With such a scale gap, the LES resolution need be high enough to
capture the scales that are equivalent to what was captured in the experiment.

A graphical comparisons of the mean velocity distribution u(z)/ur along five
vertical lines located at five stream-wise positions are presented in Fig. 2a. The
standard deviation σ(z)/ur of the time averaged stream-wise velocity is presented in
Fig. 2b. Figure 3 presents a time series of the turbulent kinetic energy (TKE), where
TKE is the sum of the variances of stream-wise, span-wise, and vertical velocities.
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Table 1 Velocity differences at the different locations of the three-dimensional hill (Eq. 7) along
with the absolute and relative differences in the numerical [9] and experimental [8]) analysis

Location Velocity Difference

Numerical x/h y/h z/h Present
(u/ur )

[9]
(u/ur )

Absolute Relative
(%)

10 10 1.04 0.4183 0.3842 0.0296 8.49

10 10 1.2020 1.0304 0.8445 0.1919 20.53

10 10 1.5455 1.0045 0.8617 0.1424 14.85

10 10 2.2323 0.9800 0.8596 0.1204 13.08

10 10 3.0909 0.9697 0.8813 0.0884 9.55

10 10 4.00 0.9719 0.9026 0.0693 7.39

Experimental x/h y/h z/h Present
(u/ur )

[8]
(u/ur )

Absolute Relative
(%)

10 10 1.04 0.4183 0.8449 0.4226 67.54

10 10 1.2020 1.0304 0.8449 0.1859 19.83

10 10 1.5455 1.0045 0.8678 0.1367 14.60

10 10 2.2323 0.9800 0.8657 0.1143 12.38

10 10 3.0909 0.9697 0.8755 0.0942 10.21

10 10 4.00 0.9719 0.9210 0.0509 5.37

0 5 10 15 20

x/h

0

0.5

1

1.5

2

2.5

3

3.5

4

z/
h

Present(LES)
Liu et. al 2016(LES)
Ishihara et. al.(Exp.) 2001

(a) (b)

Fig. 2 Comparison with the previous researches of the LES simulations of a different turbulent
stress model of [9] and experimental results of [8] for (left) normalized mean velocity and (right)
normalized standard deviations σ

5 Conclusions

A goal of the research is to validate a mathematical model of representing moun-
tains/hills in LES. As mentioned in the introduction, LES aims to employ a relatively
coarse mesh to capture the large eddies, where small eddies can be filtered with an
SGSmodel, such as the Smagorinskymodel or theWALEmodel. Due to such a crite-
rion of LES, accurately capturing the effects ofmountains is a challenging endeavour.
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Fig. 3 A time series of the turbulent kinetic energy (TKE) which represents the strength of eddies
passing a fixed point above the hill

In this investigation, we show that the canopy stress method is an accurate model for
representing a hill without requiring a complex mesh around the hill. However, the
accuracy of our methodology as it is reported in this article must be interpreted care-
fully. The agreement between the LES results and the experimental results encourage
further investigations in this direction. In particular, there is a gap in the literature
dealing with the LES of atmospheric boundary layer flows over mountains or com-
plex terrain. There is a growing interest in the canopy stress method [1, 2, 5] and
similar methods dealing with complex terrains [9, 10]. Our results encourage further
investigation of the canopy stress method for simulating atmospheric turbulence over
complex terrain. Such work is currently underway.
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A Computational Model for Adjusting
Surface Tension Coefficient in
Pseudo-potential Lattice Boltzmann
Method

Mahmud Ashrafizaadeh and Seyyed Meysam Khatoonabadi

Abstract In the present study, an adjustable coefficient is introduced in order to
make the pseudo-potential multiphase model more flexible for the simulation of a
wide range of surface tensions. This coefficient can be utilized for different density
ratios without any limitation. First, the effect of this coefficient is evaluated by the
Laplace test. Then, density and pressure profiles along the interface are plotted which
indicate that the major influence of the surface tension coefficient is localized along
the interface. In other words, no negative influence is observed either for the density
of two phases or for their pressures elsewhere. Hence, using the proposed surface
tension coefficient, it is now possible to adjust the surface tension in multiphase
Lattice Boltzmann flow simulations in a wider range. However, as the surface tension
coefficient increases to increase the value of the fluid surface tension, the maximum
spurious velocity might increase.

Keywords Surface tension coefficient · Pseudo potential · Lattice Boltzmann
method

1 Introduction

The Lattice Boltzmannmethod (LBM) has attracted a lot of attentions in recent years
due to its various capabilities and merits. In particular, it has gained a popularity in
simulating complex flows such as multi-component and multiphase flows as well as
flows through porous media in a wide range of scales from macro to micro. Despite
the rapid adoption of LBM for simulating complex flows, it still has some drawbacks
and deficiencies, specially when dealing with practical applications [1].
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The pseudo-potential model is the most prevalent model due to its efficiency in
terms of being easy to employ and less computational costs [2]. Originally, Shan and
Chen [3] introduced a model that had the capability of simulating multiphase and
multicomponent flows. Nonetheless, the original model was not applicable to real
physical problems. This limitation was due to a rather small achievable density ratio,
thermodynamic inconsistency, and large spurious currents. Later, Yuan and Schaefer
[4] incorporated several real equations of state (EOS) into the pseudo-potential func-
tion in order to reduce these limitations. Although the developed pseudo-potential
model had numerous advantages, its application for real problems still had some
limitations since some parameters like surface tension, density ratio, and tempera-
ture were tightly coupled to each other. To solve this problem some approaches have
been suggested. Sbragaglia et al. [5] proposed a multi-range approach to adjust the
surface tension and density ratio independently, but their model could not handle
cases with density ratios over 100. Force schemes were also taken into account by
some researchers. The most widely used one is the exact difference method (EDM)
proposed by Kupershtokh et al. [6]. They claimed that with the use of the EDM and
a proper EOS the stability of the model is improved and many of the aforementioned
deficiencies could be alleviated to some extent [7, 8], but the problemwith the surface
tension continued to exist.

To overcome this obstacle, Sun et al. [9] suggested an extra term reflecting the
surface tension influence in the LB equation. However, they did not provide ample
results to indicate the limitations and strengths of their model. Among all these
models, the EDMmethod [10] seems to be more promising for further development
due to its higher stability. Recently, Hu et al. [7] incorporated a constant parameter
which is proportional to the surface tension. It is easier to be used, but the surface
tension parameter is still restricted and does not follow any particular rule to be
adjusted at different temperatures. Furthermore, in all these approaches, the surface
tension can only be adjusted indirectly and implicitly.

In this paper, the EDM in pseudo-potential model is modified to improve its
applicability for multiphase flow simulations with different surface tensions. The
proposedmodification is implemented by introducing a surface tension parameter, k ′,
into the pseudo-potential function using a non-dimensional real EOS. The proposed
model is successfully applied for the simulation of a flat interface and the Laplace
test. It is shown that the introduction of this new parameter has no adverse effects
on the accuracy of the calculated densities of the two phases. By adjusting this
parameter the surface tension could be specified in a wider range up to an order of
magnitude larger. However, by increasing the surface tension the spurious velocities
might increase.
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2 Pseudo-potential Model

In the LatticeBoltzmannmethod, an equation including the collision and propagation
steps with the Bhatnagar-Groos-Krook (BGK) [11] operator and an external force
term is given by

fi (x + eiδt, t + δt) − fi (x, t) = (1/τ)[ fi (x, t) − f eqi (x, t)] + ΔFi (x, t) (1)

in which, f is the particle distribution function at a specific location and time. The τ

represents the relaxation time, ΔF is the bulk force, f eqi indicates the equilibrium
distribution function given by [12]

f eqi (x, t) = ωiρ(x, y)[1 + ei .u

c2s
+ (ei .u)2

c4s
+ u2

2c2s
] (2)

In Eq. (2), Cs is the lattice sound velocity, ωi are the weighting factors, and ei are
the discrete velocities. Moreover, ρ and u indicate the macroscopic density and
velocity. Most constant parameters are related to the lattice structure. For example,
in aD2Q9 lattice (Fig. 1),Cs = C/

√
3 inwhichC = δx/δt . Therefore,with choosing

δx = δt = 1, the C value becomes unity. The ωi and ei for a D2Q9 lattice are given
by

ei =

⎧
⎪⎪⎨

⎪⎪⎩

0 α = 0

cos
[

(α−1)π
2

]
.sin

[
(α−1)π

2

]
α = 1, 2, 3, 4

√
2cos

[
(α−5)π

2 + π
4

]
.sin

[
(α−5)π

2 + π
4

]
α = 5, 6, 7, 8

(3)

Fig. 1 The schematic figure
of a two dimensional lattice
with nine velocities



164 M. Ashrafizaadeh and S. M. Khatoonabadi

ωi =
⎧
⎨

⎩

4/9 i = 0
1/9 i = 1, 2, 3, 4

1/36 i = 5, 6, 7, 8
(4)

In this method, the macroscopic density and momentum are obtained by

ρ =
∑

i

fi (5)

ρu =
∑

i

ei fi (6)

and the viscosity is related to the relaxation time by ν = (τ − 0.5)/3. In the EDM,
the bulk force is considered as (7) [6]

ΔFi (x, t) = f eqi

(
ρ, u + (Fi (x, t)δt)/ρ

)
− f eqi (ρ, u) (7)

The force term in Eq. (7) is the inter-particle interaction force written as [3]

Fi (x, t) =
(

(1 − 2A)ψ(x)
∑

i

(
ωiψ(x, x ′)ei

)
+ A

∑

i

(
ωiψ

2(x, x ′)ei
))

/αh,

(8)
where A is a constant parameter that improves the accuracy of the model. The α for
the D2Q9 lattice is equal to 1.5. This force term is an approximation of two other
force terms, local approximation and mean-value approximation. In addition, ψ(x)
is the pseudo-potential function. To adjust the surface tension as an independent
parameter, an extra coefficient, k ′, is introduced in this study, which is shown in the
following equation.

ψ =
√

(k ′ p̄ − ρ̄c2s ). (9)

If k ′ is set to 1 the original model, suggested by Kupershtokh et al. [6], is obtained.
In the following sections, the influences of this parameter on the model applicabil-
ity, accuracy and stability are further investigated. Similarly, Kupershtokh et al. [6]
proposed a non-dimensional EOS to be used in the pseudo-potential function.

p̄ = k(
cρ̄RT̄ (1 + b ρ̄ + (b ρ̄)2 − (b ρ̄)3)

(1 − b ρ̄)3
− aρ̄2), (10)

where T̄ = T/Tcr , p̄ = p/pcr and ρ̄ = ρ/ρcr are non-dimensional temperature,
pressure and density, respectively and Tcr , pcr and ρcr are the corresponding crit-
ical values. Since water is one of the most abundant fluids in nature and is used
frequently in the literature as the working fluid, it is more convenient to compare
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our results with those reported by others. Hence, water is chosen for present simu-
lations. The EOS constant parameters, a, b and c are set to a = 3.852462257, b =
0.130443884, and c = 2.785855166 [6]. The details of non-dimensionalisation
form of the Carnahan-Starling [13] are provided in reference [6]. Furthermore,
the corresponding critical values for water are pcr = 0.004416, ρcr = 0.1341, and
Tcr = 0.09433 in the lattice unit. For instance, equivalent water critical temperature
in physical unit is 647.15 degree Kelvin. It is worth mentioning that in the present
model other fluids could also be used instead of water, provided that the EOS can
predict their properties. The proposed EOS also includes an extra term, k, which is
related to the critical parameters of the given EOS as follows:

k = pcr Δt2/ρcr h2, where Δt and h are the lattice time and space units, respec-
tively. For most fluids k ≈ 0.01 [6]. Based on water critical values, the exact value
would be k = 0.03293.

3 Results

3.1 The Laplace Test

The Laplace test is a standard benchmark to validate multiphase models. In this test
a blob of liquid is located inside its saturated vapour. After the simulation is done,
a circular droplet (in two dimensional simulations) of fluid is formed for which the
following relation holds:

σ = R(Pin − Pout ), (11)

where Pin and Pout are the pressure inside and outside of the droplet, respectively,
R is the droplet radius and σ is the surface tension.

In the pseudo-potential model, in spite of surface tension importance in numerous
phenomena such as bubbles or droplets merging [14], it could not be specified a
priori, rather, it can only be calculated after the simulation is done. This fact limits
the applicability of the multiphase model. The proposed coefficient in this study
(k ′), removes this limitation and provides the user with an adjustable parameter to
explicitly manipulate the value of the surface tension.

To perform the Laplace test, a 200 × 200 lattice is used and the computational
domain is a square box with periodic boundary conditions. Fluids are at rest at the
beginning of the simulation. The Carnahan-Starling EOS is used with a constant
reduced temperature of 0.5.

To determine the influence of the k ′ coefficient on the surface tension, a series
of simulations is done with a range of k ′ from 0.1 to 4. Figure2 shows the results.
The horizontal and vertical axes represent 1/R and p∗ = Δp/pcr , respectively. As
it is shown in Fig. 2, p∗ varies linearly versus 1/R for each k ′ as expected (Eq.11)
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Fig. 2 The Laplace test
using different k′ value in
(Tr = 0.5)
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and the slope of each line can be interpreted as the surface tension for the assumed
temperature.

It is evident that by employing the k ′ coefficient, different values for the sur-
face tension can be obtained, which is a desired capability for realistic applications
of the multiphase model. Theoretical manipulation of the proposed model shows
that the resultant surface tension should be directly proportional to the employed k ′
value. However, numerical results show that finer lattices are required to capture this
behaviour.

3.2 Effects on the Interface Thickness

The employment of the proposed coefficient, k ′, shows some effects on the interface
thickness. To investigate these effects, a droplet with a radius of 50 lattice units is
placed at the center of the computational domain.

Three k ′ values are used in the simulations. The variation of the calculated density
along the centerline of the computational domain is shown in Fig. 3.As it can be found
from this figure, the parameter k does not noticeably alter the densities of the two
phases.

However, the density variations are different right at the interface. It is shown that
the thickness of the interface is adapted to the employed k ′ value. Figure3 shows
when a smaller k ′ value is used, the interface thickness increases.
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Fig. 3 Density profile for
three k′ = 0.5, 1, 2
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3.3 Effects on Phase Pressures

Basically, surface tension parameter impacts on density distribution in the interface
between two phases. As the density distribution changes, the corresponding pressure
alters; and consequently, a different surface tension can be obtained. Therefore, the
resultant surface tension is directly proportional to the employed k ′ value, and it is
expected that the computed pressure difference across the interface is also multi-
plied by k ′. To numerically investigate this behaviour, a two phase flow with a flat
interface is simulated. It should be noted that in this simulation, a layer of liquid is
placed between two layers of its saturated vapour. A reduced temperature of 0.7 is
used. Figure4 shows the variation of the pressure distribution across the flat inter-
face. As shown in Fig. 4, the pressure within both phases remains equally constant
which is consistence with the Maxwell Construction [8]. Moreover, the value of the
pressure for k ′ = 0.5 is approximately reduced by half compared to that of k ′ = 1.
A nonphysical pressure overshoot is also observed within the gas layers adjacent to
the interface, which increases as the k ′ value increases.

3.4 Spurious Velocity

The term “spurious velocity” refers to a nonphysical velocity field which exists in
almost all LBM multiphase models due to the force term added to the equilibrium
velocity. Figure5 demonstrates the maximum spurious velocity magnitude in a static
droplet simulation at Tr = 0.7. From Fig. 5 it is evident that with the increase of the
surface tension coefficient, the maximum spurious velocity within the computational



168 M. Ashrafizaadeh and S. M. Khatoonabadi

Fig. 4 Pressure distribution
across two flat interfaces
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domain also increases. Physically, this observation can be explained by noting the
fact that a higher force gradient at the interface occurs when the surface tension is
larger. In fact, in all multiphase LBM models, with an increase in surface tension
or density ratio the induced spurious velocity increases no matter what approach is
utilized [15]. Consequently, a higher spurious velocity is produced as an outcome
of a greater surface tension at interface. It is worth mentioning that a value of 0.01
for the surface tension is high enough for most simulations in comparison with that
of used in other multiphase models. For most cases, a smaller value (in the order
of 0.001) would be required [15]. In spite of favorable influences of surface tension
parameter when k ′ is smaller than unity in terms of reducing the spurious velocity,
for k ′ larger than 4 the magnitude of spurious velocity is high, so using other methods
like the Multirange pseudo-potential approach [5, 16] seems to be necessary.

4 Conclusion

The proposed surface tension coefficient is applicable to the pseudo-potential model
for adjusting the surface tension as an independent, initial parameter. The Laplace
test illustrates that a wide range of surface tension could be achieved by employing
this new coefficient. Using fine meshes could improve the accuracy of the computed
surface tension to obtain precise surface tension values consistent with that of pre-
dicted by theory. Moreover, pressure and density profiles indicate that there the use
of this new coefficient does not deteriorate the accuracy of the numerical results
except within the region at the interface. Due to the undesired effect of the surface
tension coefficient on the spurious velocity field, especially when large values are
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Fig. 5 Maximum spurious
velocity magnitude for
different k′
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used, the use of extra techniques might be necessary to reduce the magnitude of the
nonphysical spurious velocities.
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Magnetohydrodynamic Flow
in a Rectangular Duct

Canan Bozkaya

Abstract The magnetohydrodynamic (MHD) flow of an incompressible, viscous
and electrically conducting fluid in a rectangular duct with insulated and perfectly
conducting walls is investigated numerically in the presence of hydrodynamic slip.
The flow is fully developed and driven by a constant pressure gradient in the axial
direction under the effect of an externally applied uniform and inclined magnetic
field. A direct boundary element method (BEM) using a fundamental solution which
enables to treat the governing MHD flow equations in their original coupled form is
employed and the validity of the code is also ascertained. The numerical simulations
are carried out for several values of slip length, Hartmann number and the inclination
angle of the external magnetic field. It is well-observed from the equivelocity and
induced current lines that the velocity increases through the duct and the Hartmann
layers weaken while the side layers become thicker with an increase in slip length
especially at low values of Hartmann number irrespective of the conductivity of the
walls.

Keywords MHD · Duct flow · BEM

1 Introduction

The magnetohydrodynamic flow investigating the motion of electrically conducting
fluid in the presence of a magnetic field, has enormous engineering applications in
MHD pumps, generators, magnetic flow meters, plasma confinement for the fusion
reactors, propulsion and flight control for rockets and hypersonic aerodynamic vehi-
cles. Thus, the classic MHD flow considering the effect of induced magnetic field
in rectangular ducts with no-slip conditions has been intensively studied for various
wall conductivities [2–4, 7, 12]. However, there have been very few works on the
solution ofMHDflowwith slip condition although a slip boundary conditionmust be
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employed in some applications, such as microfluid and nanofluid devices, in which
the slip behavior is typical when the surface to volume ratio is large and the viscous
effect on the boundary is negligible [16]. In these works, besides a closed form of
analytical solutions derived to the flow of incompressible fluids subject to Navier’s
slip on the boundary [9], a special case of MHD flow in rectangular ducts under the
influence of an horizontal external magnetic field when the vertical walls are con-
ducting with slip on horizontal walls [11] and when all walls are insulated with slip
on vertical walls [16] are solved analytically by using a series expansion. As men-
tioned in [16], the proposed analytical technique can not be employed under more
general boundary conditions, e.g. slip on all walls, and a numerical or asymptotic
approach is required.

On the other hand, MHD flow subject to slip velocity conditions has been con-
sidered mainly over infinite surfaces and channels [1, 6, 10, 14, 15], and rarely in
rectangular ducts [13, 17]. They have conducted a parametric study to analyze the
effects of slip condition and the magnetic field on the flow field. In these studies
the magnetic Reynolds number is taken so small that the induced magnetic field is
neglected, however, the present work focuses on the effect of slip conditions on both
the induced magnetic field and the velocity.

In the present study, we investigate the influence of the hydrodynamic slip on
the numerical solution of the MHD duct flow with general boundary conditions
involving both the insulated and/or perfectly conducting walls and the mixed type
slip boundary condition constructed as a linear combination of the slip velocity and
the tangential stress. An effective numerical technique is utilized for the solution
of MHD slip flow. That is, the governing partial differential equations coupled in
velocity and induced magnetic field are discretized in their original coupled form by
adirect approachof boundary elementmethodusing the fundamental solutionderived
in [4]. The resulting system of discretized BEM equations rearranged according to
the given boundary conditions, which involves the unknown values of velocity and
induced magnetic field only on the boundary of the duct, is small in size and can
be solved at one stroke with no iteration. Thus, the BEM results are obtained with
considerably less computational effort which is one of the basic advantage of the
boundary element method. This technique has already been used in the works [4, 5,
18] for the solution of MHD flow problems in rectangular ducts with no-slip velocity
conditions. However, the insertion of the slip velocity condition, which is the basis of
the present work, needs a special treatment that leads tomodifications in the resulting
BEM system obtained in the previous works [4, 5, 18]. Thus, it can be counted as a
contribution of the present study in terms of the application of the numerical method.
In addition, the effect of the direction of the magnetic field is further investigated by
considering an external magnetic field which makes a positive angle with the vertical
axis.
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2 Mathematical Model

The steady, laminar flow of a viscous, incompressible electrically conducting fluid is
investigated in a rectangular duct subject to a constant and uniform inclinedmagnetic
field. The flow is driven by a constant pressure gradient in a sufficiently long pipe
in the z-direction and becomes two-dimensional for a fully developed flow in the
rectangular cross-section of the pipe. The equations governing the MHD duct flow
are derived by the interaction of Navier-Stokes equations of fluid dynamics and
the Maxwell’s equations of electromagnetism through Ohm’s law. Thus, the non-
dimensional form of the MHD flow equations are given as [8]

∇2V + Mx
∂B

∂x
+ My

∂B

∂y
= −1

∇2B + Mx
∂V

∂x
+ My

∂V

∂y
= 0

in Ω (1)

which are coupled in velocity V (x, y) and the induced magnetic field B(x, y) in
z-direction through the rectangular duct Ω = {(x, y) : −a ≤ x ≤ a, −b ≤ y ≤ b}.
The externally applied uniform magnetic field of intensity B0 is M = (Mx , My)

with the components Mx = M sin γ and My = M cos γ , where the norm of M is
the Hartmann number M(= B0L0

√
σ/

√
μ, L0: characteristic length, σ : electrical

conductivity, μ: viscosity coefficient); and γ is the angle between the magnetic
field and the positive y-axis (see Fig. 1). The walls of the cavity are considered to
be either insulated (B = 0) or perfectly conducting (∂B/∂n=0) in the presence of
slip. The boundary condition for the velocity through the slipping walls is given by
(V + α∂V /∂n = 0), where α is the dimensionless slip length (see [16]).

The corresponding homogeneous equations to Eq.1 are obtained by using the par-
ticular solution up = [Vp Bp]T where Vp = 0 and Bp = −x/Mx (or Bp = −y/My

when themagnetic field is applied vertically i.e. γ = 0). Thus, by takingu = uh + up
the homogeneous solution uh = [Vh Bh]T satisfies

Fig. 1 The rectangular
cross-section of the pipe
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∇2Vh + Mx
∂Bh

∂x
+ My

∂Bh

∂y
= 0

∇2Bh + Mx
∂Vh

∂x
+ My

∂Vh

∂y
= 0

in Ω (2)

with the corresponding boundary conditions:

On insulated walls: Bh = x

Mx
(or Bh = y

My
), Vh + α

∂Vh

∂n
= 0,

On conducting walls:
∂Bh

∂n
= nx

Mx
(or

∂Bh

∂n
= ny

My
), Vh + α

∂Vh

∂n
= 0

(3)

where n = (nx , ny) is the outward unit normal on the duct walls and α = 0 corre-
spondences to the no-slip condition (i.e. Vh = 0). To keep the notation simple in
the equations obtained through the application of the boundary element method, the
homogeneous solution uh = [Vh Bh]T will be taken as u = [V B]T .

3 Application of the Numerical Method

A direct boundary element method is used for the discretization of the homoge-
neous MHD flow equations. BEM is a boundary only nature technique which trans-
forms the differential equations into equivalent boundary integral equations by inher-
ent use of the fundamental solution of the governing equations. Thus, Eq. (2) is
weighted with the fundamental solution (W = [w1 w2 ], wherew1 = [V ∗

1 B∗
1 ]T and

w2 = [V ∗
2 B∗

2 ]T) of the coupledMHD equations via Galerkin principle to obtain the
boundary integral equations for the velocity and induced magnetic field. The com-
ponents of the fundamental solution derived in [4] are

V ∗
1 = B∗

2 = 1

2π
K0(

Mr

2
) cosh (

M.r
2

), V ∗
2 = B∗

1 = 1

2π
K0(

Mr

2
) sinh (

M.r
2

)

where K0 is the modified Bessel function of the second kind of order zero, r is the
distance from the source point to the field point and is also the magnitude of vector
r = (rx , ry). Then, the discretization of the boundary Γ with N constant boundary
elementsΓ j , j = 1, . . . , N , leads to the followingmatrix boundary integral equation

− cA

{
V (A)

B(A)

}
+

[
H G
G H

] {
V
B

}
+

[
H̄ Ḡ
Ḡ H̄

]⎧⎨
⎩

∂V /∂n

∂B/∂n

⎫⎬
⎭ =

{
0
0

}
(4)

where cA is either 1/2 or 1 when the fixed point A is on the boundary or inside,
respectively, and the entries of H , G, H̄ and Ḡ are as given in [4]. However, Eq. (4)
is rearranged according to the given boundary conditions taking into account the



Magnetohydrodynamic Flow in a Rectangular Duct 175

slip. Once the obtained new system is solved, the unknown values for homogeneous
velocity, induced magnetic field and their normal derivatives are obtained on the
boundary, however, one can easily obtain the values of V and B inside the compu-
tational domain Ω by taking cA = 1 in Eq. (4). The solution to the inhomogeneous
equation (1) is further calculated by adding the particular solution to the obtained
homogeneous solution.

4 Results and Discussions

The MHD flow subject to an external inclined magnetic field is considered in a
rectangular duct with various types of wall conditions involving insulated or con-
ducting walls which exhibit slip. The computational domain is determined by taking
the lengths of the rectangle a = b = 1 and boundary is discretized by a maximum
number of N = 160 constant boundary elements when M = 100. The flow char-
acteristics under the influence of the slip are examined for the values of Hartmann
number M = 10, 100 and the inclination angle γ = 0, π/4, π/3, π/2. The effect of
the slip on the velocity field is measured by the slip ratio s which is defined by the
ratio of the slip length α to the thickness of the boundary layer δ, i.e. s = α/δ. In
MHD duct flows, the walls perpendicular to the applied magnetic field are called
Hartmann walls while the parallel ones are called side walls. It is well-known that
with no-slip velocity conditions theMHDflow exhibits boundary layers whose thick-
ness scales as δHa = 1/M along the Hartmann walls and δside = 1/

√
M along the

side walls. Hence, the slip ratio becomes, s = αM and s = α
√
M for the Hartmann

and side walls, respectively. Slip ratio is an important parameter which determines
the relative contribution of the magnetic field effect and the slip itself. In the strong
slip s > 1, the flow is fully controlled by the slip phenomenon. However, if s < 1,
the effect of magnetic field is dominant. When the slip ratio is unity, both MHD and
slip effects are important.

4.1 Problem 1: MHD Flow in an Insulated Duct with Slip on
the Vertical Walls

MHD flow in an insulated duct of which the vertical walls exhibit slip is studied in
the presence of an inclined magnetic field. First, the case when the magnetic field is
applied horizontally, that is γ = π/2, is considered to compare the present results
with the analytical results reported by Smolentsev [16]. The effect of the slip length
α on the velocity distribution V/Vm (Vm is the mean bulk velocity of the flow) is
visualized in Fig. 2 and the obtained results are in very well agreement with the ones
given in the work of Smolentsev (see Fig. 7 in [16]). It is observed that the velocity
at the core of the cavity increases with an increase in slip length.
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Fig. 2 Effect of slip length
on velocity profile V/Vm at
M = 100, γ = π/2

V
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Figures3 and 4 show the equivelocity and the induced current lines, respectively,
for the slip ratio s = αM = 0, 0.4, 4 at M = 10, 100. The velocity decreases and
becomes stagnant at the center of the duct, and as a result the equivelocity lines are
concentrated towards thewalls formingboundary layerswith an increase inHartmann
number. The velocity increases and the thickness of the side layers becomes thicker
as s increases; and hence the core of the uniform velocity becomes vertically thinner
compared to no-slip (α = 0) case. However, the increase rate in velocity is less at high
M = 100 compared toM = 10 since the slip effect on the core velocity is suppressed
by the strong magnetic field at high M . The thickness of the Hartmann layer is not
significantly affected when s < 1, however, it diminishes for small M = 10 when
s > 1 since flow is fully controlled with the slip phenomenon. On the other hand,
the slip ratio has no significant effect on the profiles of current lines especially at
M = 10. However, at M = 100 the side layers weaken when s > 1 and the core of
current lines shrinks vertically. An increase in slip length results in a slight decrease
in the magnitude of current lines when M = 10 whereas at M = 100 the magnitude
is same at each α. Moreover, themagnitude of current lines decreases asM advances,
which is the well-known flattening tendency in MHD flow.

The effects of the inclination angle γ = 0, π/4, π/3 and slip length α = 0, 0.01,
0.3 on the velocity distribution at M = 100 are shown in Fig. 5. Equivelocity lines
extend in the direction of the appliedmagnetic fieldwhere the flowbecomes stagnant.
As α advances velocity increases and the core of the uniform velocity becomes
smaller compared the no-slip case whereas it enlarges as γ increases form π/4 to
π/3. The boundary layers are concentrated near the corners in the direction of the
applied magnetic field when γ = π/4, π/3. The magnetic field is applied vertically
when γ = 0, so that the horizontal walls become Hartmann walls while the vertical
walls are side walls. Thus, the slip is on the side walls. The side layers weaken and
finally vanishes following the formation of a flow circulation as α increases due to
the strong slip effect opposite to the case when γ = π/2. On the other hand, the
thickness of Hartmann layers remains almost the same for each α at M = 100 while
it slightly diminishes in the case of horizontally applied magnetic field γ = π/2.
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Fig. 3 Effect of slip ratio s on equivelocity lines at M = 10, 100, γ = π/2
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Fig. 4 Effect of slip ratio s on current lines at M = 10, 100, γ = π/2
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Fig. 5 Effects of the inclination angle γ and slip length α on equivelocity lines at M = 100

4.2 Problem 2: MHD Flow in Duct with Perfectly
Conducting Walls and Slip on Vertical Walls

MHDflow in aduct all ofwhichwalls are perfectly conducting is considered under the
influence of an horizontally applied magnetic field. That is, the boundary conditions
for the inducedmagnetic field are ∂B/∂n = 0 on all walls, and the vertical Hartmann
walls exhibit slip as in Problem 1. The effect of the slip ratio s = αM on the velocity
and induced magnetic field is displayed, respectively, in Figs. 6 and 7 when M =
10, 100 and γ = π/2. Similar to the insulated duct case, an increase in α leads
to the enhancement of the velocity in the core of the duct and the side layers get
thicker while Hartmann layers diminish at M = 10. However, when compared to
insulated duct case the profile of equivelocity lines alters significantly at M = 100,
that is, two circulations are formed along the side walls. As slip gets stronger the
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Fig. 6 Effect of slip ratio s on equivelocity lines at M = 10, 100, γ = π/2
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Fig. 7 Effect of slip ratio s on current lines at M = 10, 100, γ = π/2
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circulations start to vanish following a slight increase in the thickness of the side
layers. Moreover, the thin Hartmann layers almost vanish when s > 1. On the other
hand, due to the conducting walls the current lines become perpendicular to walls
and distribute smoothly especially at M = 100 irrespective of the values of slip ratio.

5 Conclusion

The MHD flow subject to an inclined magnetic field in a duct with insulated and
conducting walls which exhibit slip on vertical walls (i.e. on Hartmann walls when
γ = π/2) is solved numerically by using the direct boundary element method. It is
observed that the slip and the wall conductivities essentially influence the flow in
ducts. The velocity increases in the duct and the side layers become thicker while
Hartmann layers weaken with an increase in slip length for both insulated and con-
ducting duct walls especially at a low value of Hartmann number. Thus, the core
of the uniform velocity gets smaller compared to no-slip case. On the other hand,
both the velocity and the induced magnetic field decrease in magnitude as Hartmann
number increases as in the classic MHD duct flow with no-slip.
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The Effects of Thermal Radiation
on a Reactive Hydromagnetic Internal
Heat Generating Fluid Flow Through
Parallel Porous Plates

Anthony R. Hassan, Jacob A. Gbadeyan and Sulyman O. Salawu

Abstract This study analyses the influence of thermal radiation on an electrically
conducting, incompressible and steady flow of a reactive hydromagnetic fluid with
heat sourcewithin two parallel porous plates; under the reaction of different chemical
kinetics. The dimensionless nonlinear governing equations are determined using the
modified Adomian decomposition Method (mADM). The velocity and the tempera-
ture profiles are investigated for different physical parameters, especially the porous
medium and thermal radiation parameters.

Keywords Thermal radiation · Reactive fluid · Porous plates
Internal heat generation · Modified Adomian decomposition method (mADM)

1 Introduction

In view of quantity in applications of fluid mechanics in industries, engineering
and technology; the interest in the study has tremendously increased during the last
few years with different physical properties. This development has been strongly
influenced by its numerous applications to engineering, environment and biological
sciences which can be modeled or approximated as stated in [1]; as a matter of fact,
many deep perceptive studies have been done on reactive hydromagnetic fluid flow,
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few of those studies arementioned in [2–4]. In their study, [5] observed that due to the
diversity of fluids in nature, surveys through investigative studies explained that a lot
of models have been proposed to describe fluid behavior in different circumstances
and physical properties such as fluid flowing through porous media [1, 6]. Also, fluid
flowing with the impact of an internal heat source or sink was investigated in [3, 4,
7]. In addition to that, fluid flowing under the influence of thermal radiation were
investigated in [1, 8, 9]. Other physical properties like the impact of the magnetic
field intensity were studied in [2–4, 10, 11] and it also plays another important role
in fluid behaviour.

Meanwhile, compound effects of physical properties may determine fluid
behaviour. These effects have been examined by various researchers in stating the
effects that range from magnetic influence, heat transfer, heat source/sink, viscosity
and thermal radiation effects to mention few. Comprehensive survey for some of
these effects are discussed extensively in [1, 2] and references therein. Additionally,
[10] extended [2] by respectively investigating the thermal stability and entropy gen-
eration analysis of a reactive fluid flow through a channel under various chemical
kinetics and further extended the investigation in [3, 4] by respectively analysing the
effect of internal heat generation on the entropy generation in a reactive hydromag-
netic fluid flow only under Arrhenius kinetics and for various chemical kinetics.

In order to have clear and more understanding on the fluid behaviour, there exists
a need to investigate the thermal radiative effects on the fluid flow through parallel
porous plates earlier examined in [2–4, 10] because of its importance in engineering,
industries and physics applications which are investigated as stated in [12]. This
study in [12] revealed the importance of radiation heat transfer in space technology
and the role it plays to control polymer processing in industries where the quality of
the final product depends on the heat controlling factors to some extent.

Hence, in this present study, the studies in [2–4, 10] are further extended to
investigate the impact of thermal radiation on an internal heat generating reactive
hydromagnetic fluidflowwithin parallel porous plates under different chemical kinet-
ics. The dimensionless governing equations of the fluid flow are obtained using the
mADM. The momentum and energy distributions are investigated for different phys-
ical parameters especially with respect to the impact of thermal radiation.

2 Mathematical Formulation

The steady flow of an incompressible reactive hydromagnetic fluid flow through
parallel porous plates is investigated, with the given width as (a) and length (L)

under constant wall temperature together with the impact of transversely applied
magnetic field (B0) and thermal radiation (qr). The horizontal parallel porous walls
are at a distance of 2a located at y = −a and y = a as shown in Fig. 1. Following [2,
10], the differential equations governing the fluid flow in non-dimensionless forms
is given as:
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Fig. 1 Geometry of the problem
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with the symmetric conditions along the channel centreline given as

du

dy
= dT

du
= 0 on y = 0 and u = T = 0 on y = a (3)

Note that the bar on any of the variables signify the dimensionless version of
the variable. Here p represents pressure, μ is fluid viscosity, u is the fluid velocity,
T is the fluid temperature, σ0 represents electrical conductivity and K is Darcy’s
permeability constant. Also, Q is the heat of the reaction term, k is the thermal
conductivity coefficient, C0 is the reactant species initial concentration, ν denotes
vibration frequency, E is the activation energy and � is Planck’s number. Meanwhile,
A and R respectively stand for the constants of reaction rate and universal gas. Also,
Q0 is the dimensional heat generation coefficient, qr is the radiative heat flux and
T0 is the wall temperature. The numerical exponents m ∈ {−2, 0, 0.5} respectively
represent the rate of chemical reaction for sensitized, Arrhenius and bimolecular
kinetics.

Notably, the last term in (1) and fifth in (2) are formulated from Darcy’s law of
porosity modified by Brinkman [13, 14]. The sixth term in (2) is the effect of internal
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heat source as in [4, 7, 15] and the last term in (2) is with respect to the impact of
thermal radiation within the flow system as described in [1, 16].

According to the Rosseland approximation for the effect of radiation qr as
described in [1, 16] is given as:

qr = − 4σ

3k∗
dT

4

dy
(4)

such that σ is the Stefan-Boltzmann constant and k∗ represents the mean absorption
coefficient where the difference in temperature within the flow system is described
in such a way that T 4 is expanded using Taylor series on the free-stream temperature
(T∞) and neglecting higher orders as done in [1, 16], yield:

T 4 ≡ 4T 3
∞T − 3T 4

∞ (5)

such that
dqr
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= −16σT 3∞
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dy2
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Therefore (2) becomes
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We thereby introduce non-dimensional variables and parameters as follows:
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such that, G represents the pressure gradient, a stands for the channel half width, U
is the mean velocity. H and Br are respectively Hartmann and Brinkman numbers.
In addition to that, γ , λ, Rd , α, δ, and β respectively represent parameters for viscous
heating, Frank–Kamenettski, conduction-radiation, porous permeability, activation
energy and the heat source.
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With the introduction of (8) in (1), (3) and (7), we obtain equations governing the
fluid flow under the influence of thermal radiation in dimensionless form as:

d2u

dy2
− (

H 2 + α
)
u + G = 0 (9)

d2T

dy2
+ λ
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[
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)
u2

)
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]
= 0

(10)

together with the boundary conditions

du

dy
= dT

dy
= 0 on y = 0 and u = T = 0 on y = ±1. (11)

3 Modified Adomian Decomposition Method (mADM)

The momentum and energy profiles (9)–(10) with the boundary conditions (11) that
govern the flow system with the effect of thermal radiation are solved using mADM
as in [3, 4, 10, 17]. Themomentum equation (9) has a general exact solution obtained
as:
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To solve the energy equation (10) with the boundary condition (11), Eq. (12) shall
be used to solve Eq. (10) as follows:
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We now solve Eq. (13) with the numerical exponent (m), for different chemical
kinetics by integrating equation (13) twice together with boundary conditions (11),
we obtain:
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where a0 = T (0). This will be determined with the other boundary condition in (11).
The mADM requires the introduction of a series solution such that:

T (y) =
∞∑
n=0

Tn(y) (15)

where the components T0, T1, T2, . . . , Tk are to be determined. Thus, substitute (15)
into (14) gives
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However, the following series can be used to represent the non–linear term in (16)
to determine the components T0, T1, T2, . . . , Tk .
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The expression in (17) is binomially expanded in such a way that the following are
obtained:
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Here, the components A0, A1, A2, . . ., are referred to asAdomian polynomials. Then,
(16) reduces to
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Taking the zeroth component of (19), we obtain the following:
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T0(y) = 0 (20)
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Finally, the solution of the energy equation is approximately given as:

T (y) =
k∑

n=0

Tn(y) (23)

With the use of Mathematica software package, Eqs. (20)–(22) are solved to obtain
the approximate solution in (23) together with (12) which are then in presenting the
numerical results in tables and graphs in Sect. 5.

4 Discussion of Results

The respective solutions of velocity and temperature distributions in (12) and (23)
are used to obtain figures to show the impact of thermal radiation and other physical
properties on a reactive hydromagnetic heat generating fluid flow within parallel
porous plates under different chemical kinetics. The rapid convergence for the series
solution of temperature profile in (23) is shown in Table1. This shows the efficiency
of the mADM used for the given values.

Also, Table 2 displays the numerical results of the temperature distribution of
[2] where perturbation method was used and the present result where mADM is
used. Notably, our results shall be equivalent to [2] when β, α, Rd and the numerical

Table 1 Rapid convergence for the series solution

H = G = λ = 1, γ = δ = β = 0.1, α = y = 0.5,m = 0

n Tn
∑k

n=0 Tn(y)

0 0 0

1 0.448552 4.48552 × 10−1

2 −0.475575 4.001 × 10−1

3 −0.008249 3.927 × 10−1

4 −0.0004900387 3.922 × 10−1

5 0.000060615 3.922 × 10−1

6 −0.000130686 3.922 × 10−1
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Table 2 Numerical results for the temperature distribution

H = G = δ = γ = 1, λ = 0.5,m = 0

−1.0 0 −1.59595 × 10−15 1.596 × 10−15

−0.75 0.1556934861 0.1554686717 2.2481 × 10−4

−0.50 0.2660663845 0.2657578071 3.0858 × 10−4

−0.25 0.3323243479 0.3319573254 3.6702 × 10−4

0 0.3544502181 0.3540586156 3.9160 × 10−4

0.25 0.3323243479 0.3319573254 3.6702 × 10−4

0.50 0.2660663845 0.2657578071 3.0858 × 10−4

0.75 0.1556934861 0.1554686717 2.2481 × 10−4

1.0 0 −1.596 × 10−15 1.596 × 10−15

Fig. 2 Effect of α on u(y)

exponent (m) are all zero. The results showed that the approximate solution is with
average difference of order 10−4.

The velocity profile for variations in the porous permeability parameter (α) and
magnetic field parameter (H) are shown in Figs. 2 and 3. It is observed that the
maximum velocity occurred at the least values of the porous permeability parameter
(α) in Fig. 2 andmagnetic field parameter (H) in Fig. 3. The retardation is caused due
to the electromagnetic force and the resistance encountered within the flow system.

The temperature profile for variations in the numerical exponent (m) represent-
ing each chemical kinetics, is displayed in Fig. 4. The observation is that the fluid
temperature increases with respect to the increasing values of m from −2 to 0.5.
This is normal as the temperature measures the average amount of kinetic energy
present in the fluid particles and the more the particles vibrates, the greater the tem-
perature of the fluid. In this sense, energy is transfer from the centreline causing the
average kinetic energy of the fluid to increase and hereby causing the temperature
to rise as the chemical kinetics exponent m increases as shown in Fig. 4. Moreover,
the temperature profile for variations in conduction–radiation parameter (Rd ) under
Arrhenius chemical kinetics (m = 0) is displayed in Fig. 5. It is clearly noticed that
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Fig. 3 Effect of H on u(y)

Fig. 4 Different chemical
kinetics for T (y)

Fig. 5 Effect of Rd on T (y)
when m = 0
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maximum temperature occurred with the least value which is due to the transfer of
energy from the centreline to the plate walls symmetrically until thermal equilibrium
is maintained.

5 Conclusion

The present study extends extensively the work in [2, 4, 10] to investigate the signif-
icance of thermal radiation on an electrically conducting, incompressible and steady
flow of a reactive hydromagnetic heat generating fluid flow within parallel porous
plates; under different chemical kinetics. The energy equation is obtained using the
modified Adomian decomposition method (mADM). However, the present results
showed that the maximum velocity occurred at the least values of the porous perme-
ability parameter (α) and magnetic field parameter (H). Also, temperature increases
with respect to increasing values of chemical kinetics exponents, m from −2 to 0.5
while a reduction in temperature is noticed with variations in conduction-radiation
parameter under Arrhenius kinetics.
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Exponential Stability of Discrete
Impulsive Switched Singular Systems
with Time Delay

Humeyra Kiyak, Mohamad S. Alwan and Xinzhi Liu

Abstract This paper addresses the exponential stability problem for discrete
impulsive switched singular systems with time delay where the impulsive effects
occur as a result of switching among the subsystems. Some sufficient conditions
on the exponential stability of the system are established. The stability conditions
are investigated by using the multiple Lyapunov functions along with the average
dwell time switching signal and by resorting the Halanay lemma. Finally, numerical
examples with simulations are provided.

Keywords Discrete singular systems · Impulsive systems · Switched systems
Time delay · Exponential stability · Average dwell time

1 Introduction

Singular systems are also referred to as descriptor systems or differential algebraic
systemswhose behaviours are described bydifferential equations (or difference equa-
tions) and algebraic equations. Readers may refer to [1, 2].

Time delay inevitably exists in various engineering systems and is themain source
for causing instability and poor performance of dynamical systems. As a special class
of time delay systems, singular time delay systems have attractedmuch attention from
the mathematics and control community (see [3–5]).

In addition, physical systems can be characterized by the fact that they exhibit
switching from one operating mode to another at a certain moment of time. Such
systems are modeled as switched systems consisting of multi-dynamical subsystems
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and a switching signal to manage switching between subsystems. When subsystems
of a switched system are singular systems, the switched system becomes a class of
switched singular systems (SSS).

Impulsive systems are dynamical systems subject to sudden jumps or changes
(often called impulses) in the system states at specific time moments. The presence
of these impulses in the systems of differential equations results in different circum-
stances. For instance, they may destabilize some stable system (i.e., considered as
a perturbation), they may stabilize some other unstable systems (i.e., play as a sta-
bilizing role for the system and the system, in this case, might be called “impulsive
control system”), or they may violate some fundamental features of the system, such
as existence of a global unique solution, and vice versa. On the other hand, impulses
may arise as a result of mode (or subsystem) switching. For these reasons, the study
of impulsive control systems have become very important. The coexistence of “mode
switching” and “impulsive effects” in one system leads to impulsive switched sys-
tems. In this paper, we consider impulsive switched singular systems (ISSS); that is,
the system modes are considered to be singular systems. Readers may refer to [6–9]
for further study of the system.

Stability analysis of linear discrete impulse-free SSS has been investigated in [10–
12]. Particularly, in [10] the stability result was established for systems switch among
all stable modes, where the matrices of the system modes are required to satisfy
the matrix commutative property. The latter condition, in fact, is very restrictive
from practical, theoretical perspectives. In [11], a time delay was considered in
the system states where the method of Lyapunov functional was used to study the
stability property. In this work, we consider time-delayed ISSS consisting of stable
and unstable modes subject to nonlinear perturbing terms. To investigate the stability
property, we apply the Halanay lemma to obtain the decay rates of the stable modes,
and, as for the unstable ones, we have developed a new result that enables us to
calculate the growth rates. Also, we use the methodology of multiple Lyapunov
functions along with the average dwell-time (ADT) switching signal. The ADT has
the role of switching among the system modes and it has been proven to be more
practical and efficient in analyzing the stability property.

The rest of the paper is organized as follows: In Sect. 2, the problem formulation
and some preliminaries are introduced. In Sect. 3, we state and prove the main theo-
rems. Numerical examples are presented in Sect. 4 to clarify the proposed approach.
Finally, a conclusion is given in Sect. 5.

2 Problem Formulation and Preliminaries

Let RN be the N -dimensional real space, RN×N denote the set of all N × N square
matrices, C the complex numbers, Z+ the positive integers, N the natural numbers,
and for some positive integer d, let N−d = {−d,−d + 1, . . . ,−1, 0}. Let C = {φ :
N−d → R

N }. Let ‖ · ‖ be the Euclidean norm. The Euclidean norm of x ∈ R
N is

‖x‖ = √
xT x . For any φ ∈ C , we define ‖φ‖d = maxθ∈N−d {‖φ(θ)‖}. Consider the
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impulsive switching singular discrete system with time delay:

Eσ(n)x(n + 1) = Aσ(n)x(n) + fσ(n)(n, x(n − d)), n+
k−1 < n ≤ nk

�x(n) = Bkx(n), n = nk, k ∈ N

xn+
0

= φ,

(1)

where x ∈ R
N , n0 ∈ Z

+, fσ(n)(n, x(n − d)) : Z+ × R
N → R

N , φ ∈ C and xn0 ∈
C is defined by xn0(s) = x(n0 + s) for any s ∈ N−d with d ∈ N representing the
delay in system (1). Aσ(n), Bk, Eσ(n) ∈ R

N×N are system coefficient matrices where
Eσ(n) being singular with rank(Eσ(n)) = r < N , Aσ(n) being invertible, and Bk being
constant matrices. σ(n) : N → S is a switching rule taking values σ(n) = i in a
finite compact set S = {1, 2, . . . , M} for some M ∈ N. {nk}∞k=0 are the impulsive
times that form an increasing sequence satisfying nk−1 < nk and limk→∞ nk = ∞.
Δx(nk) = x(n+

k ) − x(nk) where x(n+
k ) is the value of x at nk with impulse, and

x(nk) is the value of x at nk without impulse. We assume fσ(n)(n, 0) ≡ 0 and for all
(n, x), (n, x∗) ∈ Z

+ × R
N

‖ fσ(n)(n, x) − fσ(n)(n, x∗)‖ ≤ ‖Fσ(n)(x − x∗)‖ (2)

where Fσ(n) are constant matrices with appropriate dimension.

Assumption 1 Suppose that the matrix pairs (Ei , Ai ) for any i ∈ S are regular.

Definition 1 The solution of system (1) is said to be exponentially stable if for
any initial condition xn+

0
(s) = φ(s) for s ∈ N−d there exist constants 0 < ε < 1 and

M ≥ 1 such that ‖x(n; n0, φ)‖ ≤ M‖Eφ‖dεn−n0 for any n ≥ n0.

Definition 2 ([1, 6]) Matrix pair (Ei , Ai ) for any i ∈ S is regular if there exists
a constant scalar γ ∈ C such that det (γ Ei − Ai ) �= 0. The matrix pair (Ei , Ai ) is
said to be impulse free if deg(det (γ Ei − Ai )) = rank(Ei ).

Definition 3 ([1, 6]) System (1) is admissible if it is stable and impulse-free.

Lemma 1 ([1, 6]) If for any i ∈ S thematrix pairs (Ei , Ai ) in system (1) are regular

and impulse free, then there exist nonsingular matrices Q̃i , P̃i such that Q̃i =
[
Q̃1

i

Q̃2
i

]

and P̃i = [
P̃1
i P̃2

i

]
where Q̃1

i ∈ R
r×N , Q̃2

i ∈ R
(N−r)×N , P̃1

i ∈ R
N×r , P̃2

i ∈ R
N×(N−r)

and the following standard decomposition holds: Q̃i Ei P̃i = diag (Ir , 0), Q̃i Ai P̃i =
diag

(
A1i , IN−r

)
, Q̃i fi (n, xn) =

[
Q̃1

i fi (n, xn)
Q̃2

i fi (n, xn)

]
, and P̃−1

i x(n) =
[
x1(n)

x2(n)

]
, where

r = rank(Ei ), A1i ∈ R
r×r , x1 ∈ R

r , and x2 ∈ R
N−r .

Lemma 2 (DiscreteHalanay) ([13])Let d > 0 be a natural number, and {xn}n≥−d be
a sequence of real numbers satisfying the inequality�xn ≤ −axn + bmax{xn, xn−1,

. . . , xn−d}, n ≥ 0, where �xn = xn+1 − xn. If 0 < b < a ≤ 1, then there exists a
constant λ0 ∈ (0, 1) such that xn ≤ max{0, x0, x−1, . . . , x−d}λn

0, n ≥ 0. Moreover,
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λ0 can be chosen as the smallest root in the interval (0, 1) of the equation λd+1 +
(a − 1)λd − b = 0.

Since we consider unstable modes in this paper, we have developed the following
lemma which enables us to evaluate the growth rate of the unstable modes.

Lemma 3 Let d > 0 be a natural number, and {xn}n≥−d be a sequence of positive
real numbers satisfying the inequality�x(n) ≤ ax(n) + bmaxs∈N−d {x(n + s)}, n ≥
n0,where�x(n) = x(n + 1) − x(n). Assume that 0 < a and 0 < b, then there exists
a constantλ0 ≥ 1 such that x(n) ≤ maxs∈N−d {x(n0 + s)}λn−n0

0 ,whereλ0 = a + b +
1.

Proof Consider

�y(n) = ay(n) + b max
s∈N−d

{y(n + s)}, n ≥ n0 (3)

with the initial condition y(n) = x(n), for all n ∈ {n0 − d, . . . , n0 − 1, n0}. Since
a > 0 and b > 0 in difference equation (3), y(n) is increasing. Thus,maxs∈N−d {y(n +
s)} = y(n) for all n ≥ n0. As a result, equation (3) becomes �y(n) = (a + b)y(n),

where �y(n) = y(n + 1) − y(n). Thus, the solution of this delay difference equa-
tion is y(n) = (a + b + 1)n−n0 maxs∈N−d {y(n0 + s)}, n ≥ n0. Claim that x(n) ≤
y(n) for all n ≥ n0. If this were not true, there would exist n∗ such that x(n∗ +
1) > y(n∗ + 1) and x(n) ≤ y(n) for all n0 ≤ n ≤ n∗. Thus, �y(n∗) < �x(n∗) ≤
ay(n∗) + bmaxs∈N−d {y(n∗ + s)}. That is, �y(n∗) < ay(n∗) + bmaxs∈N−d {y(n∗ +
s)}which contradictswith equation (3). Thatmeans the claim x(n) ≤ y(n) for all n ≥
n0 is correct. In otherwords,weobtain that x(n) ≤ (a + b + 1)n−n0 maxs∈N−d {y(n0 +
s)}, n ≥ n0. By using the initial condition, we conclude the solution of delay differ-
ence equation as x(n) ≤ (a + b + 1)n−n0 maxs∈N−d {x(n0 + s)} for all n ≥ n0.

3 Main Results

Theorem 1 For any i ∈ S , assume that each subsystem of (1) is admissible. Then,
the trivial solution of (1) is exponentially stable if the following assumptions hold:

(i) For any i, j ∈ S there exists γk > 1 (k ∈ N) such that

(I + Bk)
T ET

j X j E j (I + Bk) ≤ γk E
T
i Xi Ei , (4)

where Xi > 0 satisfying the Lyapunov equation AT
i Xi Ai − ET

i Xi Ei = −Yi , for
any Yi > 0.

(ii) For any n0, the switching law satisfies ADT which is N (n0, n) ≤ N0 + n−n0
Ta

where N (n0, n) denotes the number of switchings in (n0, n), Ta is the average
dwell time and N0 is the chatter bound.
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Proof Let x (n) = x(n; n0, φ) be the solution of the system (1). For n ∈ (nk−1, nk],
define Vi (x(n)) = xT (n)ET

i Xi Ei x(n), i = σ(n) as a Lyapunov function candidate
for the i th subsystem. Thus, the variation of Vi relative to system (1) is

�Vi (x(n)) = −xT (n)Yi x(n) + 2 f Ti (n, x(n − d))Xi Ai x(n)

+ f Ti (n, x(n − d))Xi fi (n, x(n − d))

where −Yi = AT
i Xi Ai − ET

i Xi Ei for any Yi > 0 since each subsystem of (1) is
stable. Using Lipschitz condition (2), we obtain that

2 f Ti (n, x(n − d))Xi Ai x(n) ≤ 1

εi
‖Fi x(n − d)‖2 + εi‖Ai x(n)‖2λmax(X

2
i ), and

f Ti (n, x(n − d))Xi fi (n, x(n − d)) ≤ λmax(Xi )‖Fi x(n − d)‖2.

Thus, we obtain

�Vi (x(n)) ≤
[

− λmin(Yi ) + εi‖Ai‖2λmax(X
2
i )

]
‖x(n)‖2

+
[ 1

εi
+ λmax(Xi )

]
‖Gi‖2‖Ei xn‖2d ≤ −αi Vi (x(n)) + βi max

s∈N−d

Vi (x(n + s))

(5)

where αi = λmin(Yi )−εi‖Ai‖2λmax(X2
i )

λmax(ET
i Xi Ei )

> 0, βi = [1+εiλmax(Xi )]‖Gi‖2
εiλmin(Xi )

> 0, and Fi = Gi Ei

such that Ex(n + s) �= 0 for s ∈ N−d . By Lemma 2 we obtain the solution of (5) for
n ∈ (n+

k−1, nk] as

Vi (x(n)) ≤ max
θ∈N−d

{Vi (x(n
+
k−1 + θ))}λ(n−nk−1)

0i (6)

where λ0i is the smallest root in the interval (0, 1) of the equation λd+1 + (αi −
1)λd − βi = 0. On the other hand, for n = nk , k = 1, 2, . . . , suppose σ(nk) = j , it
follows from (1) and (4) that

Vj (x(n
+
k )) = xT (nk)(I + Bk)

T ET
j X j E j (I + Bk)x(nk) ≤ γkVi (x(nk)). (7)

Using (6) and (7) successively on each subinterval leads to the following general
result for n ∈ (n+

k−1, nk]:

Vik (x(n)) ≤ γ1γ2 . . . γk−1 max
θ∈N−d

{Vi1(x(n
+
0 + θ))}λ(n1−d−n0)

0i1
λ

(n2−d−n1)
0i2

. . . λ
(n−nk−1)

0ik
.

Let λ = max{λ0i j
, i ∈ N, j = 1, 2, . . . , k}, so the last inequality becomes

Vik (x(n)) ≤ γ1λ
−d
0i1

γ2λ
−d
0i2

. . . γk−1λ
−d
0ik−1

max
θ∈N−d

{Vi1(x(n
+
0 + θ))}λ(n−n0). (8)
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Let γ = max{γi , i = 1, 2, . . . , k − 1} and λ̃ = min{λ0i j
, i ∈ N, j = 1, 2, . . . , k −

1}, so by (8) we obtain

Vik (x(n)) ≤ λ
(n−n0)

[
(k−1) lnμ

(n−n0) ln λ
+1

]
max
θ∈N−d

{Vi1(x(n
+
0 + θ))} where μ = γ λ̃−d . (9)

For simplicity, if we choose N0 = 0 in assumption (ii), then we obtain N (n0,n)

n−n0
≤ 1

Ta
where N (n0, n) = k − 1. Thus, using this we can write down inequality (9) as

Vik (x(n)) ≤ λρ(n−n0) max
θ∈N−d

{Vi1(x(n
+
0 + θ))} where ρ = lnμ

Ta ln λ
+ 1 > 0. (10)

Let

P̃−1
i x(n) =

[
x1(n)

x2(n)

]
, and Q̃−T

i Xi Q̃
−1
i =

[
X1i X2i

XT
2i X3i

]
(11)

where x1(n) and x2(n) are called slow and fast sub-state of system (1), respectively.
Then, it follows from the standard decomposition form system (1) is equivalent to

x1(n + 1) = A1i x1(n) + Q̃1
i fi (n, x(n − d)) (12)

0 = x2(n) + Q̃2
i fi (n, x(n − d)) (13)

where i = 1, 2, . . . , M , x1 ∈ R
r , x2 ∈ R

N−r , Q̃i = [
Q̃1

i Q̃2
i

]T
, Q̃1

i ∈ R
r×N , Q̃2

i ∈
R

(N−r)×N , P̃i = [
P̃1
i P̃2

i

]
, P̃1

i ∈ R
N×r , and P̃2

i ∈ R
N×(N−r).

Using the relationship (11), the Lyapunov function can be rewritten as

Vi (x(n)) = xT1 (n)X1i x1(n) > 0, ∀x1(n) �= 0. (14)

Then, one can obtain from (10) by using (14) that

‖x1(n)‖ ≤
√

λmax(Xi1)

λmin(X1ik )
max
θ∈N−d

{‖Ei x(n
+
0 + θ)‖}λρ(n−n0)/2, n ≥ n0

which shows x1 is exponentially stable.We need to show that x2 is also exponentially
stable. It follows from the Lipschitz condition (2) and (13) that

‖x2(n)‖ ≤ ‖Q̃2
i ‖‖Fi P̃1

i ‖
1 − ‖Q̃2

i ‖‖Fi P̃2
i ‖

√
λmax(Xi1)

λmin(X1ik )
max
θ∈N−d

{‖Ei x(n
+
0 + θ)‖}λρ(n−d−n0)/2

where 1 > ‖Q̃2
i ‖‖Fi P̃2

i ‖. Thus, the entire system is exponentially stable.

Theorem 2 For any i ∈ S = SU ∪ SS , whereSU andSS represent the index
sets of unstable and stable subsystems, respectively, assume that each subsystem
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of (1) is impulse free. Then, the trivial solution of (1) is exponentially stable if the
following assumptions hold:

(A1) For any i, j ∈ S there exists γk > 1 (k ∈ N) such that

(I + Bk)
T ET

j X j E j (I + Bk) ≤ γk E
T
i Xi Ei , (15)

where Xi is positive definitematrix satisfying theLyapunov equation AT
i Xi Ai −

ET
i Xi Ei = −Yi for any Yi > 0.

(A2) Let λ+ = max{λ∗
0i j

: j = 1, 2, . . . , l}, λ− = max{λ0i p : p = l + 1, l + 2,

. . . , k} where λ∗
0i j

= α∗
i + β∗

i + 1 with α∗
i , β∗

i are positive numbers defined

later in the proof, and λ0i p is the smallest root in the interval (0, 1) of the equa-
tion λd+1 + (αi − 1)λd − βi = 0with αi , βi are positive numbers defined later
in the proof as well. Let also T+(n0, n) be the total activation time of unstable
modes, T−(n0, n) be the total activation time of stable modes, and for any

n0, assume that the switching law guarantees that
T−(n0, n)

T+(n0, n)
>

ln λ+ − ln λ∗
ln λ∗ − ln λ−

where 0 < λ− < λ∗ < 1. Furthermore, for any n0, the switching law satisfies
the ADT condition.

Proof Let x (n) = x(n; n0, φ) be the solution of the system (1). Similar to the proof
of Theorem 1, the variation of Lyapunov function candidate for ith subsystem Vi

relative to system (1) is obtained as

�Vi (x(n)) = xT (n)
[
AT
i Xi Ai − ET

i Xi Ei
]
x(n) + 2 f Ti (n, x(n − d))Xi Ai x(n)

+ f Ti (n, x(n − d))Xi fi (n, x(n − d)) (16)

In the proof of Theorem 1, we already obtain the variation of Vi for i ∈ SS as

�Vi (x(n)) ≤ −αi Vi (x(n)) + βi max
s∈N−d

Vi (x(n + s)) (17)

where αi = λmin(Yi )−εi‖Ai‖2λmax(X2
i )

λmax(ET
i Xi Ei )

> 0, βi = [1+εiλmax(Xi )]‖Gi‖2
εiλmin(Xi )

> 0 and Fi = Gi Ei

such that Ex(n + s) �= 0 for s ∈ N−d , and the solution of (17) for n ∈ (n+
k−1, nk]

as

Vi (x(n)) ≤ max
s∈N−d

{Vi (x(n
+
k−1 + s))}λ(n−nk−1)

0i , (18)

where λ0i is the smallest root in the interval (0, 1) of the equation λd+1 +
(αi − 1)λd − βi = 0.
Let δi (i ∈ Su) be a positive constant such that all eigenvalues of the matrix
pairs (Ei + δi Ei , Ai ) are located in the unit circle. Then, for each Yi > 0 there
exists Xi > 0 satisfying AT

i Xi Ai − (Ei + δi Ei )
T Xi (Ei + δi Ei ) = −Yi . Plugging
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this equation into (16) we obtain

�Vi (x(n)) ≤ xT (n)
[−Yi + δ2i E

T
i Xi Ei + 2δi E

T
i Xi Ei

]
x(n)

+ 2 f Ti (n, x(n − d))Xi Ai x(n) + f Ti (n, x(n − d))Xi fi (n, x(n − d)).

(19)

Following the similar steps in stable subsystems case, for any εi > 0 and ζi > 0,
inequality (19) becomes

�Vi (x(n)) ≤ α∗
i Vi (x(n)) + β∗

i max
s∈N−d

Vi (x(n + s)) (20)

whereα∗
i = −λmin(Yi )+εi‖Ai‖2λmax(X2

i )+(δ2i +2δi )λmax(Xi )‖Ei‖2
‖Ei‖2λmin(Xi )

andβ∗
i = [1+εiλmax(Xi )]‖Gi‖2

εiλmin(Xi )
. By

Lemma 3 the solution of (20) is obtained for n ∈ (n+
k−1, nk] as

Vi (x(n)) ≤ max
s∈N−d

{Vi (x(n
+
k−1 + s))}λ∗(n−nk−1)

0i , where λ∗
0i = α∗

i + β∗
i + 1. (21)

On the other hand, we have

Vj (x(n
+
k )) ≤ γkVi (x(nk)). (22)

Using (18) and (22) successively on each subinterval leads to the following gen-
eral result for n ∈ (n+

k−1, nk], Vik (x(n)) ≤ γ1γ2 . . . γk−1 maxθ∈N−d {Vi1(x(n
+
0 + θ))}

λ
(n1−d−n0)
0i1

λ
(n2−d−n1)
0i2

. . . λ
(n−nk−1)

0ik
.

Now, using (21) and (22) successively on each subintervalwe obtain the general result
for n ∈ (n+

k−1, nk], Vik (x(n)) ≤ γ1γ2 . . . γk−1 maxs∈N−d {Vi1(x(n
+
0 + s))}λ∗(n1−n0)

0i1

λ∗(n2−n1)

0i2
. . . λ∗(n−nk−1)

0ik
.

To obtain a general estimate, let us run l unstable modes and switch l times from an
unstable mode, and runm − l stable modes and switchm − l − 1 times from a stable

mode. Then, for n ∈ (nk−1, nk], Vmk (n) ≤
l∏

j=1

γ jλ
∗(n j−n j−1)

0m j
×

m−1∏
p=l+1

γpλ
−d
0mp

λ
(np−np−1)

0mp

×maxs∈N−d {Vm1(x(n
+
0 + s))}λ(n−nm−1)

0mk
.Letλ+ = max{λ∗

0i j
: j = 1, 2, . . . , l}, λ− =

max{λ0i p : p = l + 1, l + 2, . . . , k} and denote by T+(n0, n) and T−(n0, n) the total
activation time of unstable and stable modes, respectively. Then, for n ∈ (nk−1, nk],
we have Vmk (n) ≤

l∏
j=1

γ jλ
T+
+ ×

m−1∏
p=l+1

γpλ
−d
0mp

λT−
− × max

s∈N−d

{Vm1(x(n
+
0 + s))}. Choose

λ∗ such that 0 < λ− < λ∗ < 1, and assume that the switching law satisfies (A2), then
we obtain
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Vmk (n) ≤ λ
(n−n0)

[
(m−1) lnμ

(n−n0) ln λ∗ +1

]
∗ max

θ∈N−d

{Vm1(x(n
+
0 + θ))} (23)

where μ = γ λ̃−d , γ = max{γp, p = 1, 2, . . . ,m − 1}, and λ̃ = min{λ0mp
, m ∈

N, p = 1, 2, . . . ,m − 1}. By following the same ADT concept as in Theorem 1,
we can write down inequality (9) as

Vmk (x(n)) ≤ λρ(n−n0)∗ max
θ∈N−d

{Vm1(x(n
+
0 + θ))} where ρ = lnμ

Ta ln λ∗
+ 1 > 0. (24)

By using decomposition of the system (1), we can similarly obtain following inequal-
ities which show the sub-states x1 and x2 are exponentially stable

‖x1(n)‖ ≤
√

λmax(Xm1)

λmin(X1mk )
max
θ∈N−d

{‖Emx(n
+
0 + θ)‖}λρ(n−n0)/2∗ ,

‖x2(n)‖ ≤ ‖Q2
m‖‖Fm P̃1

m‖
1 − ‖Q2

m‖‖Fm P̃2
m‖

√
λmax(Xm1)

λmin(X1mk )
max
θ∈N−d

{‖Emx(n
+
0 + θ)‖}λρ(n−d−n0)/2∗ .

4 Numerical Examples

Example 1 Consider the discrete ISSSDgivenby (1)where x = [
x1(n) x2(n) x3(n)

]T
,

σ(n) ∈ S = {1, 2}, E1 = E2 =
⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦, Bk = 1.005I , A1 =

⎡
⎣−1.1 0.2 0.1

−0.3 −2.3 0
−0.5 1 1

⎤
⎦,

f1(n, x(n − 1)) = [
1
10 tanh(x1(n − 1)) 1

10 tanh(x2(n − 1))
]T
, A2 =⎡

⎣ 1 −0.1 0
0.2 0.6 0
0.05 0.01 −1

⎤
⎦ f2(n, x(n − 1)) = [

1
15 tanh(x1(n − 1)) 1

15 tanh(x2(n − 1))
]T

.

The initial function is given by φ(n) = [5 − n 4 + n 2 + n]T . The Lipschitz con-
dition (2) is satisfied with F1 = 1

10 I in stable subsystem 1 and F2 = 1
15 I in unstable

subsystem 2. X1 =
⎡
⎣14.2547 −2.7361 0

−2.7361 2.2984 0
0 0 1

⎤
⎦ > 0 satisfies AT

1 X1A1 − ET
1 X1E1 =

−Y1 for Y1 =
⎡
⎣−1.6445 6.0722 1.9859

6.0722 −13.9475 −1.9144
1.9859 −1.9144 −1.1425

⎤
⎦. Similarly, X2 =
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Fig. 1 State responses of the discrete ISSSD

⎡
⎣ 1.0503 −0.0932 0

−0.0932 1.1942 0
0 0 1

⎤
⎦ > 0 satisfying (A2 − E2)

T X2(A2 − E2) − ET
2 X2E2 =

−Y2 for any Y2 =
⎡
⎣ −0.013 −0.0779 0.05

−0.0779 0.7425 0.01
0.05 0.01 −1

⎤
⎦. Thus, we compute that α1 = 0.8666,

β1 = 0.3485, α∗
1 = 2.0886 and β∗

1 = 0.9995. By Lemmas 2 and 3, we computed
λ01 = 0.6608 and λ∗

01 = 4.0881. Also, γk = 4.0200 so that the inequality (I +
Bk)

T ET X j E(I + Bk) ≤ γk ET Xi E is satisfied. Thus, the system is exponentially
stable under ADT switching with Ta > 4.3592 seconds. The simulation is shown in
Fig. 1.

5 Conclusion

Wediscussed discrete ISSSD in twomode cases; in the first case, the switching occurs
between all stable modes, while in the second case, the system consists of stable and
unstablemodes. The focus is on establishing the problemsof stability of these systems
by designing switching laws to organize the switching among either all stable or a
mix of stable and unstable subsystems. In the stability analysis, we considered ADT
approach together with the technique of multiple Lyapunov functions.
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Experimental Investigation of ABB
Effect on Unbalanced Rotor Vibration

Michael Makram, Mohamed K. Khalil, Ahmed F. Nemnem
and Guirguis Samer

Abstract Rotor vibration due to unbalance causes a lot of problems during oper-
ation. Passive balancing devices represent one of the simplest ways to reduce rotor
vibration. A (2 + n) degrees of freedommathematical model is derivedwith respect to
a Cartesian co-ordinate system for the unbalanced rotor with the automatic ball bal-
ancer. The model equations are expressed as state equations then solved numerically.
Experimental rig is developed with a data acquisition system to enable measuring the
rotor vibration amplitudes. A four balls automatic ball balancer (ABB) is designed,
manufactured, and attached to the rotor. The numerical solutions of rotor vibration
with and without the balancer are obtained and compared to the measured data to
validate the mathematical model. The applied effect of the automatic ball balancer
on vibration amplitudes is presented at different speed ranges.

Keywords Rotor vibrations · Online balancing · Passive balancing
Automatic ball balancer · Dynamic balancer

1 Introduction

Rotors are commonly used in several systems including vehicle wheels, electrical
motors, machine tools, turbo machinery, helicopter blades, and so on. Vibrations
affects all these systems. Vibrations have many causes, but mass imbalance is still
one of the primary sources of vibrations, which occurs when the principal inertia axis
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Rotor balancing methods

On-line Balancing

Active balancing Passive balancing

Pendulum balancerBall balancerLeblanc balancerRing balancer

Off-line balancing

Rigid rotor Flexible rotor

Fig. 1 Balancing methods classification

of the rotor does not coincide with its rotational axis. An imbalance can arise through
imperfections in the manufacturing process or resulting from wear, missing balance
weights or damage. A heavy spot in a rotating component will cause vibration when
the unbalanced weight rotates around the rotor axis, creating a centrifugal force. As
rotor speed changes, the effects of imbalance may become higher. In some cases,
imbalances can be factors in poor performance, high noise levels, reduced bearing
life, and reduced human comfort.
Balancing techniques can be classified to two common balancing methods as shown
in Fig. 1, one method is off-line balancing in which the rotating machine stops, and
masses are redistributed. Where the second method is on-line balancing in which the
mass distribution rearrangement occurs during rotation. On-line balancing method is
more effective especially if balancing of machine components is usually needed to be
done, or in case of difficult machine assembly and disassembly. There are two types
of automatic balancers, active and passive. Active devices utilize computers and sen-
sors which continuously read the vibrations, then apply control laws to counteract
these vibrations. But its complexity, expensive cost and high weight reduce its usage
in some applications. Where the passive balancers depend on the automatic balanc-
ing phenomenon of the free balancing masses without any interference. Simplicity,
reliability, and relatively low cost of passive balancing systems make them a very
attractive solution, and thus they have been significant subjects for past research.
Passive balancing techniques especially pendulum and ball automatic balancers have
received a great deal of attention. Pendulum balancers tend to be costlier to construct
than ball balancers, and the weight of the pendulums must be supported in special
ways,which leads to additionalmechanical complexity. The ball balancer is stillmore
popular than the pendulum balancer and successfully applied to different fields. A
traditional ball-type balancer is composed of several balls moving only in tangential
direction along a fixed circular orbit. The ball balancer which was first designed in
a detailed experimental study by Thearle [1] in 1932.
Thearle [2] also compared several different types of automatic dynamic balancers,
such as a ring, pendulum and ball balancers and concluded that ball balancers were a
superior system. Balancer applications include optical disc drives [3, 4], and rotary
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machinery. In 1998, Rajalingham [5] examining a vertical rotor with anABB.A band
of instability that decreased in size as the operating speed increased was showed.
However, the unstable operation appeared at speeds below the critical speed of the
rotor, the balancer was seen to improve rotor performance.

2 Mathematical Model

The rotor shaft system is considered as a 2 degree of freedom system taking in to
consideration Jeffcott model assumptions. The model, as shown in Fig. 2, consists
of: a vertical simply-supported massless flexible shaft, and a disk mounted at the mid
span of the shaft rotating in a horizontal plane with a radial mass imbalance causing
a shift between its geometry center and its center of gravity. The disk model has two-
degrees of freedom, x and y, which are mutually orthogonal linear displacements in
the same horizontal plane. The model is symmetric, having the same spring stiffness
kx , ky and damping coefficient (cx , cy) in both directions, and ideal friction bearing
is assumed.

Fig. 2 Jeffcott model
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The differential equations of motion:

mẍ + cẋ + kx = −meω2cos(ωt)

mÿ + cẏ + ky = −meω2sin(ωt) (1)

C = Cx = Cy, k = kx = ky (2)

The analytical solution of the radially unbalanced system is:

A(t) = ω2e√(
k
ω
− ω2

)2 + (
cω
m

)2 (3)

Each ball in the ABB reaches its own angular coordinate (θ), and this coordinate is
independent on the linear coordinates of the rotor. So that the rotor and the ABB can
be modeled by a (2 + n) DOF system, where (n) is the number of balancing balls.
An eccentric rotating disc is studied with an ABB consisting of several balls free to
move in a race filled partially with a viscous fluid, and positioned at (a) fixed distance
from the center of rotation of the disc. This set-up is shown schematically in Fig. 3.
Point (G) represents the center of mass of the disc (without the balancing balls) and
is located a distance (e) from the center of rotation (C).
The equations of motion of the proposed model are derived, where the assumption
that all motion is confined to the two-dimensional plane. Also, it is assumed that no
interactions between the balls. This assumption is valid provided the balls are in an
equilibrium state. Note that neglecting impacts between the balls makes this study
similar to that of an ABB with double ball races [9].

Fig. 3 Schematic drawing
of an ABB
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mẍ + cẋ + kx = −meω2cos(ωt)

−
∑i

n=1
mbna

[
θbnsin(ωt + θbn + (ω + θbn)

2cos(ωt + θbn))
]

(4)

mÿ + cẏ + ky = −meω2sin(ωt)

−
∑i

n=1
mbna

[
θ̈bncos(ωt + θ̈bn + (ω + θ̇bn)

2
sin(ωt + θbn))

]
(5)

mbna
2θ̈bn + cbna

2θ̇bn = −mbna [ẍ sin(ωt + θ) − ÿ cos(ωt + θbn)] (6)

Equations (4) and (5) describe the horizontal and vertical displacements in the same
plane. Equation (6) is the moment equation of ball about the center, and for more
than one ball ABB this equation is repeated for each ball.

3 Numerical Solution

The state equations can be conveniently used in solving the model equations, and
these equations are solved numerically using MATLAB software (ode-45). Let us
rewrite the model equations in the form of state equations. To do this, it is necessary
to denote new symbols as shown:
Let:

x1 = x x2 = y x2+i = θbi . . . . . . . . . ..x2+n = θbn

x3+n = ẋ x4+n = ẏ x4+n+i = θ̇bi . . . . . . . . . ..x4+2n = θ̇bn (7)

The equations of motion can be expressed as the state equations which are (2n +
4) first order differential equations. The state equations may be written in a matrix
vector equation.

x = Ȧ(x)x + B (8)

x = [
x1x2x2+i . . . . . . . . . ..x2+nx3+n . . . . . . . . . x4

]

ẋ2n =
[
ẋ1 ẋ2 ẋ2+i . . . . . . . . . ..ẋ2+n ẋ3+n . . . . . . . . . ẋ4+2n

]

A(x) =
[
I 0
0 M

]
(9)
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where
I is (2 + n) (2 + n) identity matrix,
M is (2 + n) (2 + n) matrix determined from the above equations,
B is (4 + 2n) (4 + 2n) matrix determined from the model equations.

4 Experimental Investigation

4.1 Experimental Rig

Rotor Kit Tm620 is used after some modification to suit the aim of experiment as
shown in Fig. 4. The rotor consists of an elastic 6mm thick shaft of high-strength
steel. One steel disc is clamped at mid span of the shaft. To prevent impermissibly
high oscillation amplitudes which may lead to the rotor being destroyed, the mass
discs are provided with safety bearings. The bearing gap is large enough that no
contact takes place between the disc lug and the safety bearing during measuring
rotor amplitudes. Angularly movable self-aligning ball bearing is used. The driven
motor has sufficient power to be able to run through critical speeds quickly. The speed
measurement takes place via an inductive sensor on the motor shaft. The speed is
displayed digitally in the switchbox.

Fig. 4 Rotor Kit
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The rotor kit is modified to be used in investigating the effect of the ABB on unbal-
anced vertical rotor vibration, so that two main adaptations were needed, the first
is to support the kit in vertical position in a safe way taking in to consideration the
measurement accuracy. The totor kit is vertically supported on a test rig using four
screw bolts with rubber spacers for vibration damping not to transfer the resulted
vibration to the rig. And the second was a fixation of two orthogonal displacement
sensors to enable the measurement of vibration amplitudes. A manufactured part is
added to the kit to enable the clamping of two orthogonal displacement sensors as
shown in Fig. 5, so that the vibration amplitude value can be measured.
A four balls ABB is designed and manufactured according to the rotor parameters.
It is attached fine to the rotor with avoiding any relative rotation. ABB design enable
the usage of balls of different diameters and masses. Also, the required imbalance
mass can be clamped by two bolts as shown in Fig. 6.
Adata acquisition system is built up to enable a simpleway in vibrationmeasurement;
the system consists of: two inductive non-contact displacement sensors are connected
to the sensor supply module TM 151 then to a module in the cDAQ-1988 then
to PC via USB port. A simple program is resolved using LabVIEW software as
shown in Fig. 7. By deducing sensor transfer function from calibration curves, the
voltage signal transferred to the measured values in mm. By measuring the vibration
maximum amplitude at several speeds, it is being able to draw the resonance diagram
for the rotor which shows a relation between angular speed (in rpm) and vibration
amplitudes (in meters).

Fig. 5 Sensors clamping

Fig. 6 Manufactured ABB
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Fig. 7 Measuring resolved software

5 Critical Speed Calculation

The critical speeds are calculated first to be passed quickly on rotor operating. As
known that the critical speed is accompanied by high dynamic load and great vibra-
tion which make it too difficult to be determined practically. So, it is very important
to determine the value of the critical speeds. Two methods are used to calculate the
critical speeds of proposed model, the first is the transfer matrix method which is
analytical method, where the other is computational method using ANSYS pack-
age. The calculated first critical speed (ωcr ) equals to 85 rad/s which corresponds to
811 rpm. So, that the all measurements can be taken at fixed speeds away from the
critical speed, some are below the critical speed and the others are above the critical
speed.

5.1 Model Validation

All measurements are taken at fixed speeds away from the calculated critical speed.
These speeds are shown in Table 1. The first three speeds are below the critical speed,
and the other speeds are above the critical speed.

5.1.1 Rotor Without ABB

The rotor without ABB includes the unbalanced rotor itself with the main body of the
balancer, without balls and oil inside the balancer track as shown in Fig. 8a. This to

Table 1 Angular speeds of practical measuring

0.25ωcr 0.5ωcr 0.75ωcr 1.5ωcr 2ωcr 2.5ωcr 3ωcr 3.5ωcr

202 rpm 404 rpm 606 rpm 1217 rpm 1623 rpm 2029 rpm 2435 rpm 2840 rpm
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(a)  (b) 

Fig. 8 a Rotor without ABB b Rotor with four balls ABB

Table 2 Experimental model parameters

Parameter Value Parameter Value

Rotor mass [m] 1kg Imbalance radial distance [a] 3 cm

Rotor thickness [t] 2.5 cm Balancing ball mass [mb] 3gm

Rotor inner radius [ri ] 3mm Shaft length [l] 45cm

Rotor outer radius [ro] 4 cm Shaft diameter 6mm

Imbalance mass [mim ] 10.14gm

avoid adding any residual imbalance may be resulted during balancer manufacture,
the model and balancer parameters are shown in Table2.
The vibration amplitudes are measured and recorded for the unbalanced rotor model
without ABB. Then these readings are compared to the rotor response curve obtained
from the proposed mathematical model. This comparison is shown in Fig. 9. The
numerical solution is represented by a continuous curve, where the green points
represent the experimental reading and the error bars for each point represent the
uncertainty range with 99.8% level of confidence.
With zooming the curve at the speeds above the critical speed, it is observed that all
the numerical results of the proposed model lie in the measured experimental ranges.

5.1.2 Rotor with Four Balls ABB

After adding four balls each of mass three grams and little amount of low viscous
fluid as shown in Fig. 8b. This fluid has two effective functions, the first is reducing
the friction between balancing balls and balancer walls, where the second is damping
motions of the balancing ball. Vibration amplitudes aremeasured and recorded for the
unbalanced rotor model with the four balls ABB. Then these readings are compared
to the rotor response curve obtained from the proposed mathematical model (at c =
0.4, and cb = 0.00002).
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Fig. 9 Rotor response curve without ABB

Figure10 shows a comparison between the numerical solution represented by a con-
tinuous curve, and the experimental reading represented by the thick points with
error bar for each reading which denotes the uncertainty range with 99.8% level
of confidence. With zooming the curve at the speeds away the critical speed. It is
observed that all the numerical results of the proposed model lie in the measured
experimental ranges except the point indicated with a circle in Fig. 10, as the safety
bearing prevent the rotor from exceeding this vibration value.

6 Effect of ABB

From the above figures, the experimental results for vibration amplitudes of the
unbalanced rotor model without ABB and the rotor with a four balls ABB can be
presented.
Figure11 compares the results to show the experimental effect of the ABB. The
range of speed out of reading represents the range of the critical speed. Figure11
shows clearly the effect of a four ball ABB on the vibration of unbalanced rotor. ABB
decreases vibration amplitude at angular speeds above the critical speed. Where this
role is opposed at speeds below the critical speeds. This experimental reflection
agrees greatly with the numerical solutions, and both accept the theory.
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Fig. 10 Rotor with a four balls ABB validation curves. aResonance diagram. b Zooming at speeds
away from critical speeds
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Fig. 11 ABB effect on rotor vibrations
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7 Conclusion

The aim of this paper is to investigate experimentally the role of ABB on rotor vibra-
tions. First A mathematical model is proposed and solved numerically using MAT-
LAB. For experimental investigation, an experimental rig was created and setup to
assess the suitability of ABB at improving the vibration characteristics of the rotor.
The intended measuring system can sense the effect of the attached ABB in rotor
vibration characteristics.

(1) A proposed model is validated to be used in rotor shaft systems with ABB simu-
lation. This model can be used in ABB design and best chosen of its parameters.

(2) Experimental investigation with accurate intended measuring system is done
to the ABB effect on unbalanced vertical rotor. The practical effect of ABB is
presented by the difference between the experimental measurements of rotor
vibration with and without the balancer. The ABB effectively reduced the vibra-
tions above the critical speed. While it increases vibrations below the critical
speed. This result is approved practically and agreed greatly with the numerical
solutions.

(3) More studies should take place in the future work on the mechanisms that can
be combined with the ABB to improve its performance and cancel its effect on
low speeds.

References

1. Thearle, E.L.: A new type of dynamic-balancing machine. Trans. ASME (Appl. Mech.) pp.
131–141 (1932)

2. Thearle, E.L.: Automatic dynamic balancers (part 2- ring, pendulum, ball balancers). Machine
Des. 22, 103–106 (1950)

3. Kim,W., et al. Three-dimensionalmodeling and dynamic analysis of an automatic ball balancer
in an optical disk drive. J. Sound Vib. (2005)

4. Huang, W.Y., Chao, C.P.: The application of ball-type balancers for radial vibration reduction
of high-speed optic disk drives. J. Sound Vib. 250, 415–430 (2002)

5. Rajalingham, C., et al.: Automatic balancing of flexible vertical rotors using a guided ball. Int.
J. Mechanical Sci. (1998)

6. Yang, Q., et al.: Study on the influence of friction in an automatic ball balancing system. J.
Sound vib. (ELSEVIER) (2005)

7. Royzman, V., Drach, I.: Improving theory for automatic balancing of rotating rotors with liquid
self-balancers. MECHANIKA (2005)

8. Kim, T., Na, S.: New automatic ball balancer design to reduce transient-response in rotor
system. Mechanical Syst. Signal Process. pp. 265–275 (2013)

9. Hwang, C.H., Chung, J.: Dynamic analysis of an automatic ball balancer with double races.
Jsme Int. J. pp. 265–272 (1999)

10. Evaluation of measurement data — Guide to the expression of uncertainty in measurement.
JCGM (2008)



Optimization of a Flanged DAWT Using
a CFD Actuator Disc Method

Mohammad Hassan Ranjbar, Seyyed Abolfazl Nasrazadani
and Kobra Gharali

Abstract For improving the efficiency of horizontal axis wind turbines, shrouded
or ducted wind turbines have become state of the art research topics. Getting energy
from a wind turbine more than the Betz limit is a great motivation for researchers.
Recent Computational Fluid Dynamics (CFD) simulations and experimental tech-
niques show the effects of dominant factors such as the length of the duct, the angle
of the diffuser, the height of the flange. In the current study, a ducted wind turbine is
simulated numerically combined with an Actuator Disc (AD) method. The first step
is to find the maximum velocity in the duct by improving the angles of the flange
to finalize the geometry of the duct. Then, the power of the bare wind turbine and
the Diffuser Augmented Wind Turbine (DAWT) are compared numerically while an
AD method is used for modeling the rotor of the horizontal axis wind turbine. For
the numerical simulation, the K − ω turbulent model is applied. For the 2D axisym-
metric geometry, more than 0.5 million cells are used. The results show that the axial
velocity can be enhanced more than 60%. The CFD analysis proves that the angle
of the flange dominates the efficiency of the DAWTs and DAWT plays a key role
in the enhancement of the power extraction of horizontal axis wind turbines. With a
DAWT more power from a low wind speed can be extracted.
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1 Introduction

A well-known and fundamental concept in wind turbines is that the wind power is
proportional to the cube of wind speed. To enhance the power extraction, one of
the main focuses is to increase the velocity near the wind turbine by using nozzles,
diffusers, ducts, and flanges. Hjort and Larsen [3] studied the coefficient of perfor-
mance a ductedwind turbinewith the numerical and computational approaches.Also,
Hjort and Larsen [4] focused on Hansen Diffuser AugmentedWind Turbine (Hansen
DAWT) using Actuator Disc (AD) theory. Moeller and Visser [8] combined the
AD and computational methods. Govindharajan [12] observed that the low-pressure
region is more pronounced bumped configuration with brim by CFD method and
found a significant increase in mass flow rate available for the wind turbine. Kale
and Sapali [5] indicated that the inclined flange DAWT produce approximately 2.23
times more power than that of the bare wind turbine for the tested velocity range.
Many specifications of the DAWT were studied by them such as the length of the
duct, the angle of the diffuser, the height of the flange. It was showed by Ohya et al.
that a wind turbine equipped with a flanged diffuser shroud can augment the power
by a factor of about 4–5 compared to a standard (bare) wind turbine [9, 10]. The angle
of a flange was investigated by El-Zahaby et al. and Kale et al. [1, 6]. El-Zahaby et
al. study [1] indicated an optimum flange angle of 15◦ (between the vertical axis and
the flange) with an enhanced entrance air velocity; also, the generated power was
increased about 5% due to optimum flange angle. Kale et al. [6] examined different
geometries of a diffuser. They found that the diffuser with an inclined flange shows
40.3% increase, the diffuser with a vertical flange shows 34.28% increase and the
diffuser without a flange shows 18.57% increase in the velocity along the central
axis of the rotor. They excluded the effects of the inlet geometry. Lipian Michal et
al. [7] compared two direct and actuator-based models for analyzing the DAWT.
The actuator model showed a good correlation with the experiment method in terms
of wind turbine power prediction. Ghenai et al. [2] modeled shrouded horizontal
axis wind turbine using the RANS method. They calculated induction factor and
the power coefficient (Cp) from the computed velocity profiles. Also, the shrouded
turbine power increased by a four folds compared to the unshrouded turbine power.
Sorribes-Palmer et al. [13] used a one dimensional analytical model. The model pre-
dicted the DAWT performance coefficients and to compare with the Betz limit. In
the present study, first, a DAWT is simulated without inlet and the results are com-
pared with available experimental data [10]. Then, the DAWT is simulated to find
the optimal angle of the flange with the presence of the inlet. Finally, the maximum
available power based on the AD theory and the CFD method are calculated. The
effects of the inlet and the optimum flange geometry are discussed in details.

2 Theory

Werle and Presz [15] provided the equations of the power in the ducted wind turbine
based on theActuatorDisc (AD) theory. The equationswere based on themomentum,
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pressure losses and the kinetic energy. By assuming an inviscid incompressible flow,
any axial pressure changes due to the energy extraction by a wind turbine expanded
or contracted the flow streamlines which results in rising the velocity component
normal to the shroud. Because of this, the Kutta−Joukowski theorem which used for
the calculation of the force of any two-dimensional bodies required an axial induced
force (Fs) on the shroud [15]. On the other hand, Fs comes from the interaction
between the induced velocity component normal to the shroud axis and the ring-
vortex vector associated with the aerodynamic circulation. Axial force coefficient,
Cs , was defined as:

Cs ≡ Fs

Ap(pp2 − pp1)
. (1)

By setting ∂P
∂V0

to zero, the maximum power was

Pmax = −16

27
(1 + Cs)(

1

2
ρApV

3
a ) (2)

which gives,

CPmax = −16

27
(1 + Cs). (3)

IfCs = 0, Eq. (3) recovers the classical Betz limit of 16
27 . For the DAWT the extracted

power passes the Betz limit [15]. The results of these formulations will be used in
the CFD post-processing.

3 Case Study

The aim of the present work is to analyze numerically the aerodynamic behaviors
of a DAWT operating at different flange angles with a constant wind speed of 5m/s.
For the validation purpose, the geometry and all assumptions agree with those of the
experimental study of Ohya et al. [10]. The geometrical details [10] are summarized
in Table1.

Table 1 Main geometrical features of the experimental geometry, see Fig. 1 [10]

Parameter Value (cm) Explanations

D1 20 The throat diameter

D2 24 The major diameter

h 10 The height of the flange

L 30 The length of the diffuser
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Fig. 1 Schematic of a wind turbine equipped with a flanged diffuser shroud, adapted from [10]

4 Numerical Approach

4.1 Computational Grid, Solver and Validation

Different mesh sizes, from 1.2 × 105 to 0.5 × 107 cells, were examined considering
the y-plus, y+, and the convergence criteria.With 2.8 × 105 elements, y+ is less than
2.6. The mentioned pattern of mesh selection is used for all simulations. The growth
rate of boundary cells is 1.15. The width and height of the computational domain
are set about 30 and 20 times the rotor radius, respectively. The inlet and outlet
boundary conditions are the velocity inlet and the pressure outlet. The symmetry
boundary condition is used for the upper wall. The bottom boundary is defined as
the axis. The final mesh and the boundary conditions are shown in Fig. 2.

The partial differential equations are solved based on the SIMPLE (Semi-Implicit
Method) algorithm introduced by Patanker [11]. The second order upwind spatial
discretization is used. The flow is assumed to be 2D axisymmetric, steady, turbulent,

Fig. 2 The final mesh of the 2D DAWT (left) and the boundary conditions of the domain (right)



Optimization of a Flanged DAWT Using a CFD Actuator Disc Method 223

incompressible. In this part, considering experimental setup [10], the geometry con-
sists of the flange and the diffuser (Fig. 3). Both K − ε and K − ω SST turbulence
models were used. The results have a good agreement with those of the experimental
data but the K − ω SST turbulence model shows a better agreement; so, the K − ω

SST turbulence model is used. The maximum relative error of the velocity ratio is
%5. Figure4 shows the velocity ratio in the central axis of the DAWT versus the
length ratio ( XL ). The maximum value of the velocity ratio using the K − ω SST
turbulence model is 1.532.

Fig. 3 Velocity contours (m/s) for the validation with no inlet

Fig. 4 Maximum velocity in
the central axis of the
DAWT; +-+-+: experimental
data [10]; the rest: the
current simulations
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4.2 Angle of Flange

To optimize the angle of the flange, the DAWT consists of an inlet, a diffuser and
a flange. All simulations run with the K − ω SST turbulence model, the SIMPLE
algorithm and the second order upwind spatial discretization. The domain is axisym-
metric. The angle of the flange, θ , is varied from 0◦ to 15◦ by the step of 2.5◦. The
wind speed is 5m/s in all cases.

4.3 Maximum Power of DAWT

According to Eq. (3), the maximum power of a DAWT is more than that of a bare
turbine. In this section, the axial force coefficient, Cs , and the power coefficient,
CPmax , will be obtained. The numerical setup is the same as previous sections. The
ADs are used for generatingwake velocity deficits. The concept can be applied to both
experimental and numerical techniques. The flow field behind the wind turbine rotor
is simulated to mimic the energy extraction from a wind turbine without modeling
a specific rotor [14]. The AD is modeled by a porous jump. In the post-processing,
the magnitude of the velocity and the pressure drop in the vicinity of the AD were
used to calculate Cs and CPmax .

5 Results and Discussion

First the AD was simulated without a duct in the free stream which gave the power
coefficient of 0.592 as expected. Then, the DAWT is simulated for the maximum
ideal power extraction. The velocity contours of the DAWT with AD are illustrated
in Fig. 5. Various angles of the flange from 0◦ to 15◦ by the step of 2.5◦ are tried.
The maximum velocity ratios in the central axis direction of the DAWT versus the
length ratio are illustrated in Fig. 6 for the all angles. Also, the maximum velocity
ratio magnitude for each angle of the flange is shown in Fig. 7.

Considering the optimum angle of the flange, the AD is modeled using the porous
jump method. The results of Cs and CPmax (Eq. (3)) based on the AD theory with
the duct and without the duct are reported in Table2. The streamlines are shown in
Fig. 8.

In Fig. 7, initially the velocity ratio increases up to 5◦ then it falls down until
15◦. For the vertical flange (θ = 0), the maximum velocity ratio is 1.604 and the
optimum (maximum) velocity ratio is 1.615 in 5◦. The minimum velocity ratio is
1.596 in 15◦. For the first geometry of the DAWTwithout any inlet or nozzle (Fig. 3),
the maximum velocity ratio is 1.532. By adding inlet or nozzle, the velocity ratio
can increase up to 4.7% with the vertical flange and to 5.4% with the optimum
angle of the flange (θ = 5). Figures3, 5 and 8 illustrate that by adding an inlet or a
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Fig. 5 The velocity contours with an AD

Fig. 6 Velocity ratio for different angles of the flange

small nozzle to the DAWT, a new vortex is generated which can change the pressure
differences. Adding the nozzle influences the stream lines; also, the angle of the
nozzle can change the DAWT efficiency by changing the strength of the vortex. The
streamlines are expanded in the downwind of the DAWT (Fig. 8). That means, the
velocity magnitude decreases in the large area and a low pressure region is generated
in comparison with the bare wind turbine. This results in more power extraction.
Based on the AD theory, the maximum power coefficients are 0.59 and 1.44 for the
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Fig. 7 Velocity ratio versus angle of the flange

Table 2 Results of the Cs and CPmax

Parameters DAWT Bare

Cs 1.43 0

CPmax 1.44 0.59

Fig. 8 Streamlines for the DAWT, obtained with the AD method

bare wind turbine and the DAWT, respectively. That means for the mentioned DAWT
geometry, it is not possible to increase the coefficient of the power more than 1.44.
Results of the AD simulation show that the combination of the inlet, diffuser and the
flange can increase the maximum power coefficient 2.44 times. The axial velocity
can be enhanced more than 60% in the flange type of a DAWT.
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6 Conclusion

Using a DAWT enhances the power extraction from a small scale wind turbine
especially in the low wind speed since a common wind turbine cannot work properly
under low wind speed. The CFD analysis proved that the angle of the flange can
dominate the efficiency of the DAWT.An optimized combination of a inlet, a diffuser
and aflangeplays a key role in the enhancement of the power extraction of a horizontal
axis wind turbine. The DAWT was modeled based on the AD theory. Comparing the
experimental data with the numerical results (the K − ω SST turbulence model)
confirms the reliability of the simulation with the maximum relative error of 5% for
the velocity ratio. The optimum angle of the flange was determined 5◦ with the inlet.
The inlet or the small nozzle increased themaximum velocity ratio up to 5.4%. Using
the DAWT with the optimum angle of the flange, the maximum available coefficient
of performance was increased 2.44 times. Also, the axial velocity can be enhanced
more than 60%.
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Axisymmetric Simulations of Nonlinear
Sound Propagation in a Trumpet

Janelle Resch, Andrew Giuliani, Lilia Krivodonova
and John Vanderkooy

Abstract An axisymmetric model to simulate the evolution of nonlinear waves
through a trumpet is presented. In particular, we simulate the time pressure wave-
form of a musical note as it travels through the instrument. The flare expansion and
curvature of the initial tubing near the mouthpiece shank is carefully modeled. For
themathematical model, we chose the compressible Euler equations and solved them
numerically using a GPU implementation of the discontinuous Galerkin method. We
compare our numerical results with a full three-dimensional model. We find that
axisymmetric simulations exhibit less numerical diffusion while providing better
resolution without additional mesh refinement. Moreover, axisymmetric simulations
significantly reduce runtime and required memory.

Keywords Nonlinear acoustics · Sound wave propagation
Compressible Euler equations · Discontinuous Galerkin method · Axisymmetric
Three-dimensional · Brass instruments · Sound pressure measurements

1 Introduction

We present results of axisymmetric simulations of sound propagation in a trumpet
and compare them to full three-dimensional simulations. The main advantage of
axisymmetric simulations is the reduction in computing time and required memory.
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Axisymmetric formulations exploit the axial symmetry of the problem, in our case,
the trumpet. With this, five equations in the Euler system describing the motion of an
inviscid compressible fluid reduce to four equations and the three-dimensional (3D)
domain is simplified to a two-dimensional (2D) one. The reduction of one spatial
dimension allows us to create finer meshes and improve the solution’s resolution.
Conversely, the required number of elements is reduced by several orders of mag-
nitude for the same resolution. This might be of importance for graphic processing
unit (GPU) computing where memory is limited.

While 3D and axisymmetric equations are the same from an analytical point of
view, the simulation results can be different due to the presence of numerical artifacts.
For instance, unstructured tetrahedralmeshes lack axial symmetry.As a result, the 3D
numerical solution will also lack axial symmetry. This is due to numerical diffusion
which depends on the size and orientation of the tetrahedra in the mesh. For the flows
we are interested in, the differences should be small. A more important numerical
artifact is due to imperfect approximation of the physical domain by a computational
one. The surface of the computational domain in 3D consists of triangular faces of
tetrahedra, i.e., it is not smooth when straight faced tetrahedra discretization is used.
It is well known that the accuracy of the simulations will then suffer from spurious
entropy production at the vertices and edges of themesh. The proper way to treat such
geometry is to use higher ordermesh elements. But this does not alwaysworkwell for
complicated geometries and is difficult to deal with numerically. Axisymmetric sim-
ulations do not suffer from this problem, except possibly at the expansion of the flare.

In this paper, we present some findings of comparing 3D and axisymmetric finite
element simulations of wave propagation through a simplified trumpet geometry.We
take a similar approach to the work presented in [1] and assume nonlinear effects can
be examined separately from viscothermal losses. However, instead of only simulat-
ing acoustic pulses within musical instruments (e.g., [2–4]) or an approximation of a
musical note (e.g., [1]), we present numerical results of generating a realistic musical
note recorded in the lab. In particular, comparisons are made on simulations of the
Bb
3 musical note [5]. For our study, we created a geometric trumpet that attempts to

accurately model the flare expansion and initial tubing variations near the mouth-
piece shank (instead of assuming the initial bore is of uniform diameter. In order
to maintain the axial symmetry, the bends and valves will not be included. As we
argued in [5], the bends do not greatly influence the sound production for the Bb

3 note.

2 Numerical Setup

We write the general conservation law in a domain Ω as

∂u
∂t

+ ∇ · f(u) = 0, x ∈ Ω, t > 0, (1a)

u = u0, t = 0, (1b)
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where f(u) is the flux function and the solution is u(x, t) = (u1, u2, ..., um)t , (x, t) ∈
Ω × [0,T ]. The solutionu(x, t)oneach element is approximatedby avector function
U j whose components are written as a linear combination of the orthogonal basis
functions {ϕ j }.

We model nonlinear sound wave propagation through a trumpet using the com-
pressible Euler equations in which we describe the flow as an inviscid, isentropic
fluid. The equations of motion will be written using the 3D Cartesian coordinate
system (x, y, z) as well as the 2D axisymmetric system (x, r) where r is the radial
component and x is the horizontal. For the formulations which will be defined below,
wewrite the variables as so: ρ is the gas density; ρu = (ρu, ρv, ρw) are themomenta
in the x, y and z direction, respectively; p is the internal pressure; and E is the total
energy. For the axisymmetric model, the momenta in the axial and radial directions
are described by ρx and ρr, respectively. The specific heat ratio γ ≈ 1.4 for air [6].

2.1 Three-Dimensional Formulation

The 3D compressible Euler equations in Cartesian coordinates (x, y, z) are given by

∂U
∂t

+ ∂F(U)

∂x
+ ∂G(U)

∂y
+ ∂H(U)

∂z
= 0, (2)

where U is the vector of conserved variables and the flux vectors are

F(U) =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

, G(U) =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

ρv2 + p
ρvw

v(E + p)

⎤
⎥⎥⎥⎥⎦

, H(U) =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + p
w(E + p)

⎤
⎥⎥⎥⎥⎦

. (3)

The equation of state for an ideal gas connects E to the other variables and closes
the system

E = p

γ − 1
+ ρ

2
(u2 + v2 + w2). (4)

2.2 Axisymmetric Formulation

We can also formulate the problem by exploiting the axial symmetry in which the
solution is independent from the angular coordinate θ . To avoid the singularity at



232 J. Resch et al.

r = 0, the surface integral is not computed along the axis of symmetry and U is
multiplied by r. The system (2–4) in (x, r) coordinates is now written as

∂[rU]
∂t

+ ∂[rF(U)]
∂x

+ ∂[rG(U)]
∂r

= S(U), (5)

where the source term is
S(U) = [

0, 0, p, 0
]T

. (6)

2.3 Numerical Test Case

We simulated the time pressure waveform of the recorded Bb
3 musical note (see [5]

for details) shown in the left plot of Fig. 1. This pressure measurement was obtained
by mounting a quarter-inch microphone on a Bb Barcelona BTR-200LQ trumpet
approximately 4.5cm from the beginning of the mouthpiece. This area of the trumpet
is known as themouthpiece shank. Thewave profile (Fig. 1, left) was prescribed as the
boundary condition on pressure at the inlet boundary of the computational trumpet
for the simulations presented in Sect. 3. We wrote an expression for the pressure by
applying Fourier synthesis to one period of the recorded waveform. The series was
truncated at the 31st term and is written as

p = A0 + 2
30∑
i=1

Aicos (2π fit + φi) , (7)

Fig. 1 Left: Measured pressure waveform of the Bb
3 at the mouthpiece. Right: Measured pressure

waveform of the Bb
3 outside the bell
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where fi denotes an integer multiple of the fundamental frequency f1 ≈ 242Hz;
Ai and φi is the amplitude and phase corresponding to each harmonic component,
respectively; and A0 is the term corresponding to the direct current.

We locally related pressure and velocity at the mouthpiece boundary using the
planar expression derived from linear acoustic theory. This relation between pressure
and velocity reproduced the measured mouthpiece pressure waveform accurately.
Finally, the density was prescribed assuming the adiabatic relation between pressure
and density from compressible flow theory. In summary, the dimensionless boundary
conditions at the mouthpiece of the computational trumpet are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̂ = Â0 + ∑N f

i=1 2Âicos
(
2π f̂i t + φ̂i

)
,

ρ̂ = γ p̂
1
γ ,

û = p̂−po
ρoc

,

v̂ = 0.0,

ŵ = 0.0,

Ê = p̂
γ−1 + ρ̂

2 (û2 + v̂2 + ŵ2),

(8)

where Âi, f̂i, and φ̂i denote the amplitude, frequency and phase shift, respectively,
for the harmonics of the measured note [5].

The simulated pressure was sampled 16cm outside the computational trumpet.
This corresponds to the position where another microphone was placed along the
central axis of the real instrument. The microphones simultaneously recorded the Bb

3
pressure profile so we could examine the evolution of the waveform as it traveled
through the instrument. One period of the pressure measurement outside the flare is
shown in the right plot of Fig. 1. Comparing the experimental waveform outside the
bell with our numerical outputs allowed us to test the validity of our model.

2.4 Initial and Boundary Conditions

We modeled a trumpet where the flare opens into an open domain. We assumed
that the flow initially was at rest. For all simulations, the flow (8) is introduced
into the domain at the left vertical boundary of the bore which corresponds to the
mouthpiece boundary. Along the far-field, pass-through boundary conditions were
used in which the ghost state was prescribed to be the free flow state, i.e., the initial
state. We experimentally determined the size of the computational domain so that
reflections at the far-field would not influence the waveform solution. We prescribed
reflective boundary conditions (i.e., solid wall boundary conditions) on the inner and
outer walls of the computational trumpet. At the ghost state, the normal velocity was
taken to be the inner value with a negative sign. The density, pressure and tangential
velocity were unchanged from the corresponding values inside the cell (see [7] for
more details).
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2.5 Computational Trumpet Geometries

We now present the computational trumpet that was used for our numerical sim-
ulations. The computational geometry describes the physical shape of the 1.48m
long trumpet where the initial 24cm of tubing and the flare expansion are careful-
ly measured and approximated. Slight inaccuracies in these regions can produce
exaggerated discrepancies in numerical simulations as we discusssed in [8].

For our trumpet geometry, the tubing between x ∈ [0 cm, 24 cm]was reconstruct-
ed from measurements taken at eight points. The outline of the inner trumpet tubing
whose cross-section is shown in Fig. 2 was interpolated using these measurements.
This was followed by a cylindrical bore in the region x ∈ [24 cm, 102 cm] and then
the flare expansion for x ∈ [102 cm, 148 cm]. To obtain a realistic flare shape, a pho-
tograph of the trumpet bell was taken. The grabit software (Math Works Inc.) was
then used to trace out the trumpet flare by a series of points. We used these points
to interpolate the bell shape by cubic splines. The resulting curve is shown in Fig. 3
and was passed to the mesh generating software GMSH.

We added vertical lines about the axis of symmetry r = 0 and at the far-field
boundary r = 2.5 m to the curve depicted in Fig. 3. A rotational extrusion about the
x-axis was then carried out on the axisymmetric geometry to obtain the equivalent
3D trumpet geometry. For convenience, the axisymmetric and 3D geometry will be
referred to as Geoaxi and Geo3D, respectively. We used adaptive element sizes to
accurately resolve the geometric features of the trumpet. The refinement chosen in
GMSHwas defined to be the same for both Geoaxi and Geo3D.We generated a second

Fig. 2 A longitudinal cross-section of the 3D geometric shape of the tubing near the mouthpiece
boundary used to construct the computational trumpet

Fig. 3 The profile used in GMSH to create the computational trumpet meshes and surrounding
area via a rotational extrusion about the x-axis
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Table 1 Number of cells and L2 errors associated with the Geoaxi and Geo3D simulations sampled
16cm outside the trumpet bell

Name of geometry Number of cells Min. inscribed circle L2 error (%)

Geoaxi 70,595 2.198080e−04 6.5649

Geoaxi-ref 368,361 8.418355e−05 6.3915

Geo3D 1,317,219 2.668689e−05 5.8741

axisymmetric mesh that had over five times as many cells. We will refer to this mesh
as Geoaxi-ref. Theminimum inscribed radius or circle and the total number of triangles
or tetrahedra for each mesh can be found in Table1. We ran the additional simulation
on Geoaxi-ref to determine if the mesh was sufficiently fine along the central axis.

3 Simulation Results

The 2D axisymmetric and 3DCartesian compressible Euler equationswere solved on
Geoaxi, Geoaxi-ref and Geo3D. All three simulated pressure waveforms were sampled
outside the trumpet bell and plotted along with the experimental profile in Fig. 4.

We observe that the numerical and experimental waveforms match rather well,
especially Geo3D. The relative error between the experimental and numerical curves
was computed using the L2 norm

error(%) =
( ||pexperimental − pnumerical||2

||pexperimental||2
)

∗ 100 % (9)

Fig. 4 Pressure waveform of experimental data with the Geoaxi, Geoaxi-ref and Geo3D simulation
results sampled outside of the instrument
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Fig. 5 Frequency spectra of experimental data and the Geoaxi, Geoaxi-ref and Geo3D simulations

Fig. 6 Phase angle in frequency domain of experimental data and Geoaxi, Geoaxi-ref and Geo3D
simulations

and reported in Table1. We see that the errors in the simulations are similar, with
Geo3D computations being slightly more accurate. In addition, although Geoaxi-ref is
much finer than Geoaxi, the difference in relative error is only 0.1734%.

The spectral components of the pressure waveforms shown in Fig. 4 are plotted
in Fig. 5. The corresponding phase angles as a function of frequency are plotted in
Fig. 6.

We find that the 3D result aligns slightly better with the experimental data for
frequencies lower than 2800Hz; but only by a decibel at most. The axisymmetric
simulations better match the experiment for the remaining range. Comparing the
Geoaxi and Geoaxi-ref SPLs only, we see the results are almost identical with the
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exception of the last harmonic. There are very small variations (<0.5 dB) between
these numerical solutions, specifically for frequencies in the 4800–6900Hz range.

As seen in Fig. 6, Geo3D and Geoaxi/axi-ref phases are very similar. Furthermore,
there is little difference between the Geoaxi and Geoaxi-ref phase angles. In particular,
they are in better agreement with each other than with the experimental data. For
all simulated waveforms, the phase angles best match the experiment for harmonics
whose frequencies are lower than approximately 1500 Hz. These are the harmonic
waves that reflect the most at the trumpet bell [9].

4 Conclusion

Computational results presented in Figs. 4, 5 and 6 indicate that the proposed ax-
isymmetric and 3D models produce similar results for the first five frequencies in
(7). Variations between the models are observed for the remaining spectra.

The differences between the models may be partly due to the use of straight-
side mesh elements. Such elements better approximate the complex geometry of the
trumpet in 2D than in 3D for reasons discussed in Sect. 1. Assuming the Geoaxi mesh
was sufficiently refined, this would explain why the Geoaxi and Geoaxi-ref results are
almost the same. However, true comparison between the models is difficult to make,
especially when using nonuniformmeshes. Axial symmetry is not guaranteed for 3D
meshes and hence, 3D simulations. Furthermore, mesh generation slightly differs in
2D and 3D, particularly for local refinement [7].

Nonetheless, if the computational trumpet is bettermodeled in 2D, the axisymmet-
ric simulations in principle should have less numerical diffusion. From comparing
our results presented in Fig. 5, we see some evidence of this: the harmonic distribu-
tion of the Geo3D and Geoaxi/axi-ref numerical curves (i.e., the shape of the numerical
outputs) is the same, but the distance between the solutions slowly increases as a
function of frequency. Since higher frequencies are usually diffused more, and this is
what we see in our results, we believe the gap between our results is due to numerical
diffusion. This would also be consistent with the similarity seen in the phase shifts
in Fig. 6.

Comparing the experimental data to the numerical solutions reveals that the evo-
lution of the higher harmonics is well modeled. However, the second and third har-
monics in the numerical curves deviate from the measured SPLs. This discrepancy
could be due to neglecting the valves as their geometry is quite complex and would
preferentially influence the lower frequencies (since a large portion of the energy
is reflected from the bell and hence, confined within the bore). Another possible
explanation for the observed variation is the plane wave approximation for velocity
that was prescribed for the inlet boundary condition. This simplification was made
since accurately measuring velocity in the narrow mouthpiece shank in the lab is
technically difficult.

In conclusion, our results demonstrate that axisymmetric simulations can offer
better resolution for our problem while greatly reducing runtimes and memory re-
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quirements. Runtime for the Geoaxi simulation is faster than the corresponding 3D
simulation, with equivalent mesh refinement and runtimes of 4165.8 and 39328.7 s,
respectively. Runtime for the Geoaxi simulation is over nine times shorter than the
corresponding 3D simulation, with equivalent mesh refinement.
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Turbulent Diffusion of Inertial Particle
Pairs Such as in Pollen and Sandstorms

Syed M. Usama and Nadeem A. Malik

Abstract We explore the concept of local and non-local diffusion processes [Malik
N. A., PLoS ONE 12(12): e0189917 (2017)] in application to the diffusion of iner-
tial particle pairs in the limit of Stoke’s drag. Inertial particles are arguably more
important than fluid particles because most real world applications are related to
inertial particle motion, from hail and pollen to sandstorms. The inertial pair dif-
fusion regimes depend upon the local Stokes’ number St (l), where l is the pair
separation distance. For St (l) � 1, the inertia dominates and we observe ballistic
motion for inertial pair separation. For St (l) � 1, the turbulent energy dominates
the diffusion process which asymptotes to the fluid non-local pair regime for very
large inertial ranges. A numerical model, Kinematic Simulations, is used to gener-
ate inertia particle trajectories and we observe the predicted inertial pair diffusion
regimes in the limit of large inertial subranges.

Keywords Turbulence · Diffusion · Pair diffusion · Inertial particles
Stokes drag · Kinematic Simulation · Modeling and simulation

1 Introduction

The transport of particles in turbulent flows is ubiquitous in industrial applications
and in natural phenomena such as in atmospheric dust storms, the dispersion of
pollens, and in suspensions of droplets, bubbles, and finite-size particles convected
by turbulent flows [1–5].

Understanding the transport processes governing inertial particle motion and their
statistical properties is therefore of paramount importance in many areas of science
and engineering. This is especially true in todays’ world where climate, pollution,
and bio-diversity are major concerns for the future of the planet. In all of these areas,
the motion of inertial particles plays important roles. The movement of water laden
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clouds, hail, snow, and other forms of percipitation are central to the ecological cycle
and climatemodeling. Pollution fromsoot, andplastics, and the like in the atmosphere
and oceans are mostly in the form of small particles, sometimes chemically reacting.
Pollens and seeds, also inertial particles carried by the wind and ocean currents, are
essential for life.

Fluid particles follow streamlines, but inertial particles deviate from streamlines
which makes theoretical and numerical modeling of inertial particle transport espe-
cially difficult. Fluid particle motion is easy to compute if the flow field is known, but
the transport equations that describe the motion of individual inertial particles (par-
ticles with weight, friction, size, and density) is not fully developed yet, although
simplified descriptions in specific contexts have been proposed, in particular by
Maxey and Riley [6]. Furthermore, the suspended particles have finite size, and den-
sity different from that of the carrier fluid. As a consequence, interactions between the
particle and the underlying flow structures plays an important role; it is well known,
for instance, that heavy particles are expelled out of vortical structures, while light
particles tend to concentrate in their cores, leading to preferential concentration and
the formation of strong inhomogeneities in the particle spatial distribution [7].

2 Turbulent Pair Diffusion

The relative motion of groups of particles is important to understand phenomena
such as dust storms, and pollen dispersion, and the like. This can usually be related
to the relative motion of two particles, or pair diffusion. In 1926 Richardson [8]
proposed a theory of pair diffusion of fluid particles based upon the idea of a scale
dependent pair diffusivity, K f (l), where l is the distance between two particles, and
on the locality hypothesis in which only energy in the turbulent scales which are of
a similar size to the pair separation itself is effective in further increasing the pair
separation. This yields the 4/3-scaling for the diffusion coefficient, K f (l) ∼ l4/3.
Obukhov [9] showed that this is equivalent to σ 2

l = 〈l2〉 ∼ t3 known as the t3−
regime. 〈·〉 is the ensemble average. In the ensuing discussions, we follow the usual
convention of replacing the scaling on l with its rms value, i.e. l ∼ σl .

However, recent studies in turbulent particle pair diffusion [10–13] has suggested
that both local and non-local processes govern pair diffusion in high Reynolds num-
ber turbulence. For Kolomogrov energy spectrum, E(k) ∼ k−5/3 , k1 < k ≤ kη, in
the limit of very large inertial subrange, Rk = kη/k1 → ∞, the theory predicts the
scalings, K f (l) ∼ σ

γ

l where γ > 4/3; in [10] simulations yielded K f (l) ∼ σ 1.53
l .

2.1 Inertial Particles

A natural extension of this new non-local theory is to inertial particles. Diffusion of
inertial particle pairs has received less attention than pair diffusion of fluid particles
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in the past, although a few recent works have appeared such as the DNS of Bec et al.
[14] in the limit of Stoke’s drag, and Kelken et al. [15] who consider inertial particle
pair diffusion in the presence of gravity. Bragg et al. [16, 17] consider the form of the
diffusion coefficient in forward and backward time dispersion. Other recent works
include [18–21].

In [17], the diffusion coefficient for inertial particles is derived using PDF phase-
space theories, and it involves two contributions, one of which is the second order
inertial particle-pair relative velocity structure function, which dominates the behav-
ior of the diffusion coefficient for St ≥ O(1) in the dissipation range. This structure
function is known to have a power law behavior in the dissipation range, where
the exponent is related to the correlation dimension for the inertial particle spatial
distribution.

Here, our interest is the inertial subrange scalings for the inertial pair diffusion
coefficient. We want to examine the extension of the local-non-local concept which
was first developed for fluid pair diffusion in the inertial subrange in [10, 12] to
inertial particles. As such, we will not be considering dissipation range scaling.

A complete theory of inertia particle transport is unknown, but the theory of
Maxey and Riley [6] has gained widespread acceptance. However, even this theory
contains up to seven terms, dealing with added mass, density differences, and gravity
and memory effects.

LikeBec et al. and others, we consider the simplest casewherewe neglect all terms
except the Stoke’s drag term. We investigate numerically turbulent pair diffusion of
inertial particles in high Reynolds number turbulence in the limit of large inertial
subrange, Rk → ∞, and in the Stokes drag limit. The particle trajectory is then
obtained by integrating,

dx
dt

= v(t) (1)

dv
dt

= − 1

τp
(v(t) − u(x, t)) (2)

where u(x, t) is the fluid velocity at (x, t), and v(t) is the particle velocity at the
same location and time, and τp is the particle relaxation time which accounts for the
particle inertia.

The global Stokes number is,

St = τp

tη
(3)

where tη ∼ ε−1/3η2/3 is the Kolmogorov time scale of the turbulence. A local Stoke’s
number depending on the local separation can also be defined,

St = τp

tl
(4)
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where tl ∼ ε−1/3l2/3 is the turbulence time scale at lengths scale ∼ 1/ l. ε is the rate
of energy dissipation per unit mass, and η is the Kolmogorov length scale.

Equations (1) and (2) are particle transport equation for inertial particles in a
fluid flow – they are not field equations like that for diffusion of a scalar in fluid
flow. It is an assumption that turbulent particle transport can be described by a
diffusion equation with a scale dependent diffusion coefficient. Similar concerns
have been expressed about the correctness of a diffusion equation for turbulent fluid
pair diffusion; however, it is accepted that in the limit of point source release, then
fluid particle pair diffusion can be described by a diffusion equation.

We extend this idea to inertial particle pair diffusion. We consider an effective
point source release of inertial particles and assume that inertial pair diffusion can
also be described by a diffusion equationwith a scale dependent diffusion coefficient.
In the limit to Stoke’s drag, the diffusion coefficient will then be a function of two
variables, Kp = Kp(l, St).

For small separations, the particle inertia is expected to dominate over the small
scale turbulent energy, thus we should observe ballistic motion, and the inertia pair
diffusivity should be linear in the separation,

Kp(l, St) ∼ σ 1
l , σl � σ ∗

l (5)

where σ ∗
l is the scale where the inertia and turbulent energies are balanced, which

is expected to occur when the timescales are equal, i.e. when St (σ ∗
l ) = 1, so that

tσ ∗
l

= τp, [14].
At very large times, the turbulent energy is expected to be dominant, andwe expect

the inertia pair diffusion to asymptote towards the fluid pair diffusion provided that
the inertial subrange is big enough for the pair separation to still remain within the
subrange. Thus,

Kp(l, St) → K f (l) ∼ σ 1.53
l , σl � σ ∗

l . (6)

As the Stokes’ number increases, we expect the ballistic regime to penetrate
further in to the inertial subrange before transition.

3 Numerical Simulations

The Lagrangian diffusion model Kinematic Simulations (KS) was used to obtain
the statistics of particle pair diffusion. In KS one specifies the second order Eule-
rian structure function through the power spectrum, [10, 22, 23]. In principle, you
can specify any form of spectra, like E(k) ∼ k−p, k1 ≤ k ≤ kη for any p; although
here we examine Kolmogorov turbulence with p = 5/3. KS can generate inertial
subranges sufficiently large to test pair diffusion scaling laws over extended inertial
subranges.
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KS generates turbulent-like non-Markovian particle trajectories by releasing par-
ticles in flow fields which are prescribed as sums of energy-weighted random Fourier
modes. By construction, the velocity fields are incompressible and the energy is dis-
tributed among the different modes by a prescribed Eulerian energy spectrum, E(k).
The essential idea behind KS is that the flow structures in it - eddying, straining,
and streaming zones - are similar to those observed in turbulent flows, although not
precisely the same, which is sufficient to generate turbulent-like particle trajectories.

KS has been used to examine single particle diffusion [24, 25], and pair diffusion
[23, 26–29].KShas also beenused in studies of turbulent diffusionof inertial particles
[30, 31]. Meneguz and Reeks [30] found that the statistics of the inertial particle
segregation in KS generated flow fields for statistically homogeneous isotropic flow
fields are similar to those generated by DNS.

KS pair diffusion statistics have been found to produce close agreement with DNS
at low Reynolds numbers, incuding the flatness factor of pair separation [28].

However, in the past KS has been criticised for producing pair diffusion scalings
that are not consistent with Richardson’s 4/3-scaling law [29, 32, 33]. It has been
speculated by these authors that this is because KS does not possess the correct
dynamical sweeping of the small inertial scales by the large convective scales, leading
to larger than expected power law scalings for the diffusion coefficient. However,
these concerns have recently been addressed in [10] where a detailed mathematical
analysis has shown that such errors are in fact very small, and therefore it is the
hypothesis of locality that is in error not KS, an issue that was never addressed by
the cited authors.

3.1 The KS Velocity Fields and Energy Spectra

An individual Eulerian turbulent flow field realization in KS is generated as a trun-
cated Fourier series,

u(x, t) =
Nk∑

n=1

(
(An × k̂n) cos(kn · x + ωnt) + (Bn × k̂n) sin(kn · x + ωnt)

)
(7)

where Nk is the number of representative wavenumbers, typically hundreds for
very long spectral ranges, Rk � 1. k̂n is a random unit vector; kn = knk̂n and
kn = |kn|. The coefficients An and Bn are chosen such that their orientations are
randomly distributed in space and uncorrelated with any other Fourier coefficient
or wavenumber, and their amplitudes are determined by 〈A2

n〉 = 〈B2
n〉 ∝ E(kn)dkn ,

where E(k) is the energy spectrum in some wavenumber range k1 ≤ k ≤ kη. The
angled brackets 〈·〉 denotes the ensemble average over space and over many ran-
dom flow fields. The associated frequencies are proportional to the eddy-turnover
frequencies, ωn = λ

√
k3n E(kn). There is some freedom in the choice of λ, so long

as 0 ≤ λ < 1. The construction in Eq. (7) ensures that the Fourier coefficients are
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normal to their wavevector which automatically ensures incompressibility of each
flow realization, ∇ · u = 0. The flow field ensemble generated in this manner is
statistically homogeneous, isotropic, and stationary.

The energy spectrum E(k) can be chosen freely within a finite range of scales,
even a piecewise continuous spectrum, or an isolated single mode are possible. To
incorporate the effect of large scale sweeping of the inertial scales by the energy
containing scales, the simulations are carried out in the sweeping frame of reference
by setting E(k) = 0 in the largest scales, for k < k1 [10]. We choose the energy
spectrum in the inertial subrange,

E(k) = Ckε
2/3k−5/3, k1 ≤ k ≤ kη (8)

where Ck is a constant. The largest represented scale of turbulence is 2π/k1 and
smallest is the Kolmogorov micro-scale η = 2π/kη. A particle trajectory, x(t), is
obtained by solving Eqs. (1) and (2) in time. Pairs of trajectories are harvested from
a large ensemble of flow realizations and pair statistics are then obtained from it for
analysis.

4 Results

We ran KS with the spectrum of E(k) ∼ k−5/3, for an ensmeble of about 30,000
inertial particle pairs, and the results are presented below for several inertial subranges
and for different Stoke’s numbers.

Figure1 shows the pair diffusion coefficient, Kp/ηvη, against the rms separation,
σl/η. The inertial subrange size is Rk = 101. Cases for Stokes number of, St =
0.1, 0.5, 1, 5 are shown. The St = 0.1 case is close to fluid particles, while the
St = 5 case is far from it. A line of slope 1 is shown for comparison with ballistic
motion, and a line of slope 4/3 is shown for comparisonwith theRichardson’s locality

Fig. 1 Log-log of the
inertial pair diffusion
coefficient Kp/ηvη against
the rms pair separation σl/η

from KS simulations with
energy spectrum
E(k) ∼ k−5/3 and inertial
subrange of size Rk = 101,
and for different Stokes
numbers St = 0.1, 0.5, 1.0,
and 5.0
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hypothesis. The inertial subrange is short and we observe an approximate inertial
subrange scaling only for the smallest Stoke’s number; for larger Stoke’s number
and the ballistic regime penetrates through almost the entire inertial subrange.

Figures2, 3, and 4 are similar except for the inertial subrange sizes of, Rk = 102,
103 and Rk = 104 repectively.

Fig. 2 Log-log of the
inertial pair diffusion
coefficient Kp/ηvη against
the rms pair separation σl/η

from KS simulations with
energy spectrum
E(k) ∼ k−5/3 and inertial
subrange of size Rk = 102,
and for different Stokes
numbers St = 0.1, 0.5, 1.0,
and 5.0

Fig. 3 Log-log of the
inertial pair diffusion
coefficient Kp/ηvη against
the rms pair separation σl/η

from KS simulations with
energy spectrum
E(k) ∼ k−5/3 and inertial
subrange of size Rk = 103,
and for different Stokes
numbers St = 0.1, 0.5, 1.0,
and 5.0

Fig. 4 Log-log of the
inertial pair diffusion
coefficient Kp/ηvη against
the rms pair separation σl/η

from KS simulations with
energy spectrum
E(k) ∼ k−5/3 and inertial
subrange of size Rk = 104,
and for different Stokes
numbers St = 0.1, 0.5, 1.0,
and 5.0
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The results show initial ballistic regimes, Eq. (5) that penetrate further in to the
inertial subrange as Stoke’s number increases. The long time fluid pair diffusion, Eq.
(6) is less clear – it will require bigger subrange to fully confirm – nevertheless the
diffusion coefficient appears to be asymptoting in the correct manner towards the
fluid non-local regime Kp → K f ∼ σ 1.53

L as Rk → ∞, [10, 12].
The results also show that between the two asymptotic cases, there exists a tran-

sition over an extended range of scales which is so long that it qualifies as a third
regime in own right – the transition regime.

5 Discussion

A theory of inertial particle pair diffusion has been developed in which we predict a
short time ballistic regime where the inertia is dominant, and a long time asymptotic
regime approaching fluid particle pair diffusionwhere the turbulent energy dominates
over the inertia.

These regimes forKolmogorov energy spectrum, E(k) ∼ k−5/3, havebeenbroadly
observed using KS, although it will take larger inertial subranges to fully confirm.
For very large inertial subranges, the long time regime approches the fluid particle
non-local scaling predicted in [10, 12], which vindicates our inital assumption of
extending the concept of local and non-local diffusional processes to inertial particle
pair diffusion.

This study is important because of its possible application to the theory and
modeling of inertial particle transport and to the spreading of groups of inertial
particles. Such phenomena are ubiguitous in nature such as in, the spread of clouds,
percipitation, dust storms, and pollen dispersion, and much more.

In the future we will complete the paramteric study for larger inertial subranges,
and for more generalised inverse power law energy spectra.
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Coupled Axial, In Plane and Out of Plane
Bending Vibrations of Cable Harnessed
Space Structures

Karthik Yerrapragada and Armaghan Salehian

Abstract A distributed parameter model is presented to study the effect of a cable
harness on the vibration characteristics of space structures. A cable is attached at an
offset distance along the beam. Positioning the cable at an offset position induces
coupling between various coordinates of motion such as the in plane bending, out of
plane bending and the axial modes. The system ismodeled using energymethods and
the governing coupled partial differential equations of the cable harnessed beam are
developed using theExtendedHamilton’s principle. The natural frequencies obtained
from the coupled and decoupled partial differential equations are compared to the
natural frequencies obtained from the Finite Element Analysis formulation.

Keywords Cabled beam · Coupled vibrations · Straight cable harness

1 Introduction

Cables account for about 10–30% of the total weight of modern day spacecraft [1].
Many researchers in the recent past reported that these cables play a significant role
on the dynamic behaviour of the whole structure. To obtain a deeper physical insight
into the problem, Refs. [1, 2] model both the host structures and cables as beams.
Goodding et al. [3] attached the cable to the beamwith the help of tie-down structures
and determined the dynamic response of the cabled-beam using the Finite Element
Analysis (FEA).

The goal of current work is to develop a distributed parameter model as they are
computationally less expensive and can be used for feedback control applications.
Choi et al. [4] and Spak et al. [5] developed distributed parameter models to study
the out-of-plane bending vibrations of cable harnessed beams. Continuum model
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developed by Martin et al. [6, 7] assume the host structure behaves as a Euler-
Bernoulli beamand the authors include the effect of pre-tension andYoung’smodulus
of the cable. The bending stiffness of the cable is assumed negligible by Martin et al.
[6–8]. The analytical models of Refs. [4–8] neglect the effect of coupling between
various coordinates of motion.

This research builds on the continuum model developed by Martin et al. [6–8]. In
the current work, the cable is attached at an offset distance along the beam and we
seek to investigate the effect of coupling in the structure between various vibration
degrees of freedom such as the in-plane bending, out-of-plane bending and the axial
modes using Euler Bernoulli (EB) theory. The continuum model is developed using
linearized displacement field and higher degree strain tensor. Hamilton’s principle
[9] is used to develop the coupled partial differential equations of the cable-harnessed
beam. Complex exponential method developed by Salehian et al. [10–16] is used to
find the natural frequencies of the cabled structure from the coupled partial differen-
tial equations. Finally, the natural frequencies obtained from the decoupled analytical
model and coupled analytical model are compared to the Finite Element Analysis
(FEA) results.

2 Mathematical Modeling

Figure 1 shows the schematic of cable harnessed structure along with the coordinate
axes. The cable is positioned, at an offset distance along the y-axis. To develop the
continuum model of the cable-harnessed structure, the following assumptions [7]
apply:

1. The cable stays in contact with the beam at all times while the structure vibrates.
2. The strain and kinetic energies of the cable at the centroid of the cross-section

are equal to the strain and kinetic energies at other points of its cross-section.

Fig. 1 Representation of the cable harness beam along with the coordinate axes
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3. The cable is assumed to be pre-tensioned and it is also assumed that the tension
in the cable induces pre-compression in the beam.

The procedure to develop the continuum model for the cable-harnessed beam is
outlined in the next few steps. The linearized three-dimensional displacement field
using Euler-Bernoulli (EB) beam theory is given by Stoykov et al. [17] and shown
in Eq. (1)

X (x, y, z, t) = u (x, t) − y ∂v(x,t)
∂x − z ∂w(x,t)

∂x

Y (x, y, z, t) = v (x, t)

Z (x, y, z, t) = w (x, t) (1)

where u (x, t), v (x, t), w (x, t) are the motions in the axial, in-plane bending and out-
of-plane bending respectively. The expressions for Green-Lagrange strain tensor are
as [17] (Eq. 2). A beam is a structure whose length is significantly larger than the
width and thickness, the direct strains in the y and z directions can be neglected [18].

εxx = ∂X

∂x
+ 1

2

(
∂X

∂x

)2

+ 1

2

(
∂Y

∂x

)2

+ 1

2

(
∂Z

∂x

)2

(2)

where εxx is the direct strain in the x direction.

U = 1

2
[
∫∫∫

V
Ec(εxx)c

2]dV + 1

2
[
∫∫∫

V
Eb(εxx)b

2]dV (3)

The strain induced in the cable and beam as result of pre-tension T in the cable and
pre-compression in the beam are (εxx)c = T/EcAc + εxx and (εxx)b = −T/EbAb +
εxx respectively.The negative sign in (εxx)b is because of pre-compression induced
in the beam due to tension in the cable. Eb is the Young’s Modulus of the beam.
Ec is the Young’s Modulus of the cable. T is the pre-tension in the cable. Ab is the
area of the cross-section of the beam and Ac is the area of cross-section of the cable.
where Izz and Iyy are the area moment of inertia of the beam about z-axis and y-axis
respectively. ρb is the density of the beam. ρc is the density of the cable. yc and zc
are the position coordinates of the cable. The strain and kinetic energy expressions
for a cable harnessed Euler-Bernoulli are as follows.

U = 1

2

∫ l

0
[b1(u′)2 + b2(v

′′)2 + b3(w
′′)2 + 2b4(v

′′)(w′′) + 2b5(u
′)(v′′)

+ 2b6(u
′)(w′′)]dx (4)

T = 1

2

∫ l

0
[k1(u̇)2 + k2(v̇)

2 + k3(ẇ)2]dx (5)
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The constants of the above strain and kinetic energy expressions are as follows:

b1 = EbAb + EcAc

b2 = EbIzz + EcAcyc2 + Tyc2 − TIzz
Ab

b3 = EbIyy + EcAczc2 + Tzc2 − TIyy
Ab

b4 = EcAcyczc + Tyczc
b5 = (EcAc + T ) (−yc)

b6 = (EcAc + T ) (−zc)

k1 = ρbAb + ρcAc

k2 = ρbAb + ρcAc

k3 = ρbAb + ρcAc (6)

where superscript dash ()′denotes partial derivative with respect to spatial coordinate
x( ∂

∂x ) and superscript dot (̇) denotes partial derivative with respect to time t( ∂
∂t ).

It is assumed there are no external loads acting on the system. Therefore, the
Lagrangian of the system is L = T −U . As per Hamilton’s principle, δ

∫ t2
t1
L dt = 0

gives the governing partial differential equations of the system.

− k1ü + b1u
′′ + b5v

′′′ + b6w
′′′ = 0 (7)

− k2v̈ − b2v
′′′′ − b5u

′′′ − b4w
′′′′ = 0 (8)

−k3ẅ − b3w
′′′′ − b6u

′′′ − b4v
′′′′ = 0 (9)

The boundary conditions for a simply-supported end are as follows.

u = v = w = 0|x=0 or l

b2v′′ + b4w′′ + b5u′ = 0|x=0 or l

b3w′′ + b4v′′ + b6u′ = 0|x=0 or l (10)

The general solution to the coupled PDEs is assumed as follows.

⎧⎨
⎩

u
v
w

⎫⎬
⎭ =

⎧⎨
⎩

U
V
W

⎫⎬
⎭ eαxeiωt (11)

The temporal solution of the PDEs is assumed to be harmonic (represented by the
complex exponential eiωt) and the spatial solution is assumed to be of the form eαx.
Whereω is the frequency and α is the mode shape parameter. Substituting Eq. (11) in
Eqs. (7)–(9), we obtain three simultaneous algebraic equations which are converted
into matrix form as follows.
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[A]3 X 3

⎧⎨
⎩

U
V
W

⎫⎬
⎭

3 X 1

= {0}3 X 1 (12)

where [A] is given by:

⎡
⎣b1α2 + k1ω2 b6α

3 b5α
3

b5α
3 −b2α4 + k2ω2 −b4α4

b6α
3 −b4α4 −b3α4 + k3ω2

.

⎤
⎦

For non-trivial solution, the determinant |A(α, ω)| = 0, we then get a polynomial in
terms of mode shape parameter α and frequency ω. Solving the above polynomial,
we get ten roots for α in terms of ω.
We know from Eq. (12) that

a31U + a32V + a33W = 0 (13)

where a3i for i → 1 to 3 represent the elements of the third row of matrix [A].
For the linear dependency between U, V and W to be satisfied, the spatial solutions
for different coordinates of motion should be as follows.

Un = ∣∣(−1)3+1M31

∣∣
Vn = ∣∣(−1)3+2M32

∣∣
Wn = ∣∣(−1)3+3M33

∣∣ (14)

where M3i for i → 1 to 3 represent the minors of the elements a3i for i → 1 to 3 of
matrix [A]. The general solution of the coupled PDEs is expanded as follows.

⎧⎨
⎩

u(x, t)
v (x, t)
w (x, t)

⎫⎬
⎭ =

10∑
n=1

dn

⎧⎨
⎩

Un(α = αn)

Vn(α = αn)

Wn(α = αn)

⎫⎬
⎭ eαnxeiωt (15)

where dn is a solution constant for n → 1 to 10. At each end of the beam, we need
five boundary conditions. The boundary conditions for a simply-supported end is
given by Eq. (10). After applying the boundary conditions, we would end up with
ten simultaneous algebraic equations and after casting them into matrix form, we
obtain

[L(ω)]10 X 10

{−→
d

}
10 X 1

= {0}10 X 1 (16)

where
−→
d = {d1, d2, d3, d4, d5, d6, d7, d8, d9, d10}T .

For non-trivial solution, the determinant of the matrix [L(ω)]10 X 10 should be set to
zero. The determinant results in a transcendental equation in terms of ω, the roots of
which give the natural frequency.
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3 Results and Discussions

In this section, for the cable-harnessed beam shown in Fig. 1, the natural frequencies
of the coupled analytical model, decoupled analytical model and the finite element
analysis are presented and compared against each other.

The cross-section of the beam is assumed to be rectangular and the cross-section of
the cable is assumed to be circular. The structure is assumed to be simply-supported
at both the ends. The parameters used in the numerical simulations are presented in
Table 1.Where l is the length of the beam. b is thewidth of the beam. h is the thickness
of the beam. rc is the radius of the cable. As depicted in Fig. 1, the cable is positioned
at an offset distance of yc = b

2 − r. First, using the parameters shown in Table 1, the
natural frequencies corresponding to the out-of-plane, the in-plane bending and the
axial modes are calculated by solving the decoupled partial differential equations
and are presented in the first column of Table 2.

The notations in the Table 2 OP, IP and A stand for out of plane bending, in-
plane bending and the axial degrees of freedom respectively. The natural frequencies
obtained from coupled set of partial differential equations are presented in the third
column of Table 2. The results obtained from the finite element analysis are presented
in column 4 of Table 2. The frequencies obtained from the coupled and decoupled
analytical are compared to those of finite element analysis and the resulting error
percentages are presented in the last two columns of Table 2. The mode shapes cor-
responding to all the natural frequencies are shown in Fig. 2. For the first two modes,
the out-of-plane bending is dominant and for the third mode, the in-plane bending is
dominant. The mode shape for higher frequency where the axial mode is dominant

Table 1 Numerical parameters of the cable and the beam

Beam parameters Cable parameters

l = 0.25m; b = 0.01m; h = 0.0015m;
Eb = 68.9 × 109N/m2; ρb = 2700 kg/m3

T = 25N; rc = 0.7mm;
Ec = 150 × 109N/m2;
ρc = 1400 kg/m3;
zc = h

2
+ rc; yc = b

2
− rc

Table 2 Natural frequencies, simply supported boundary condition

Decoupled
nat. Frequency
(Hz)

Mode no Coupled nat.
Frequency
(Hz)

FEA nat.
Frequency
(Hz)

Error %
decoupled and
FEA

Error %
coupled and
FEA

100.29 OP1 1 86.3575 86.32 13.9296 0.0434

401.18 OP2 2 334.243 334.03 16.7381 0.0637

436.76 IP1 3 436.562 434.98 0.4075 0.3624

10889.0 A1 Higher 10797.1 10783.9 0.9652 0.1223
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Higher Mode

Fig. 2 Coupled vibration mode shapes for a simply supported boundary condition
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is also shown in Fig. 2.The frequencies obtained from the coupled partial differential
equations are lower than that of the decoupled model. The natural frequencies of the
coupled model match very well with that of finite element analysis when compared
to the decoupled model.

4 Conclusion

A distributed parameter model was presented to study the vibrations of a cable-
harnessed structure. Themathematical model took into account the effect of coupling
between various coordinates of motion such as the in-plane, out-of-plane bending
and the axial modes. The coupled set of partial differential equations were solved for
the natural frequencies using the analytical method for a simply supported boundary
condition. The natural frequencies obtained from the coupled model and decoupled
model were compared to the finite element model. The results demonstrate that when
the cable is positioned at an offset distance, the coupling between various coordinates
of motion is significant and the coupled distributed parameter model predicted the
natural frequencies better than the decoupled model.
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A Comparison of the Magnus Expansion
and Other Solvers for the Chemical
Master Equation with Variable Rates

Khanh Dinh and Roger Sidje

Abstract Many traditional approaches for solving the chemical master equation
(CME) cannot be used in their basic form when reaction rates change over time,
for instance due to cell volume or temperature. One technique is to use the Magnus
expansion to represent the solution to the CME as the action of a matrix exponential,
for which Krylov-based approximation methods can be applied. In this paper, we
compare two variants of the Magnus scheme with some popular ordinary differential
equations (ODE) solvers, such as Adams-Bashforth, Runge-Kutta and Backward-
differentiation formula (BDF). Our numerical tests show that the Magnus variants
are remarkably efficient at computing the transient probability distributions of a tran-
scriptional regulatory system where propensities vary over time due to cell volume
increase.

Keywords Chemical master equation · Magnus expansion · Matrix exponential

1 Introduction

Consider a chemical reaction system consisting of N molecular species S1, . . . , SN
that interact through M reactions. The reaction rates ck(t) are time-dependent scale
factors for how likely the reaction k occurs at time t . The state vector of the system
is defined as

x(t) = (x1, . . . , xN )T ,
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where xl is the count for species Sl at time t . The propensity function αk(x(t), t) of
reaction Rk at the current state x(t) and current time t is defined so that the probability
of such a reaction occurring during the infinitesimal time interval [t, t + dt) is equal
to αk(x(t), t)dt . If the reaction occurs, the state vector is updated as x(t) := x(t) +
νk, where the stoichiometric vector νk stores the changes in species counts.

The chemical master equation (CME) [1] seeks P(x, t) = Prob{x(t) = x}, the
probability that the system is in state x at time t :

dP(x, t)

dt
=

M∑

k=1

αk(x − νk, t)P(x − νk, t) −
M∑

k=1

αk(x, t)P(x, t). (1)

Let X = {x1, . . . , xn} be the ordered set of n possible states, where xi =
(x1i , . . . , xNi )

T . We can rewrite (1) as a system of ordinary differential equations
(ODEs) governing the change in p(t) = (P(x1, t), . . . , P(xn, t))T from the known
initial distribution p0: {

ṗ(t) = A(t) · p(t),
p(0) = p0,

(2)

where the transition rate matrix A(t) = [ai j (t)] ∈ R
n×n is defined as

ai j =

⎧
⎪⎨

⎪⎩

−∑M
k=1 αk(x j , t), if i = j,

αk(x j , t), if xi = x j + νk,

0, otherwise.

Note that A changes over time due to the time-dependency of the reaction rates ck .
The state space X can be infinite in theory, but is kept finite in practice, although n

can be very large. In this case, we can apply the finite state projection (FSP) [2], which
reduces the state space to only the probable states during the time period of interest.
The vectors p(t), p0 and matrix A(t) in (2) are then truncated to only values of this
reduced finite state space. It is important to note that the CME is traditionally solved
indirectly by drawing a large number of trajectories fromMonte Carlo methods, such
as the stochastic simulation algorithm (SSA) [3] or first reaction method (FRM) [4],
and then computing the frequency at the desired time point. Their resulting error is
statistical, in contrast to the analytical bound on the error when the CME is solved
directly by employing the FSP. We only consider solving the CME directly in this
study, and the results are compared against the frequencies from a large number of
FRM trajectories.

We will discuss different approaches for solving the ODE system (2) in the next
sections. For convenience, we will denote the ODE problem as

ṗ(t) = f (t, p(t)) ≡ A(t) · p(t).
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2 ODE Solvers

2.1 Adams

Adamsmethods form a family of linearmulti-stepmethods, amongwhich are explicit
Adams-Bashforth and implicit Adams-Moulton.We use theADAMS-PECE scheme
by Shampine and Gordon [5], which implements the implicit Adams-Moulton
according to

tk+1 = tk + hk,

pk+1 = pk + hk
(
β AM
r f k+1 + β AM

r−1 f k + · · · + β AM
0 f k−r+1

)
,

f k+1 = f (tk+1, pk+1),

where
{
β AM
i

}r
i=0 are given analytically. The unknown pk+1 ≈ p(tk+1) is involved

in both sides of the formula, leading to a nonlinear problem that is solved with a
fixed-point scheme starting from the solution of the explicit Adams-Bashforth.

2.2 Runge-Kutta

Runge-Kutta methods form a class of multistage, one-step iteration ODE solvers.
The explicit Runge-Kutta of order r proceeds with

tk+1 = tk + hk,

yi = pk + hk
∑i−1

j=1 m
RK
i j f (tk + hkcRKj , y j ); i = 1, . . . , r,

pk+1 = pk + hk
∑r

j=1 b
RK
j f

(
tk + hkcRKj , y j

)
,

in which the coefficients
{
mRK

i j

}s

i, j=1
,
{
bRK
i

}s
i=1 and

{
cRKi

}s
i=1 are defined by the

Butcher-tableau.
In this comparison, we use the solver RK78 from the RKSUITE by Brankin et

al. [6], which is a reputed Runge-Kutta method that controls the error and stepsize
by using embedded Runge-Kutta formulae with orders 7 and 8.

2.3 Backward-Differentiation Formula

Backward-differentiation formula (BDF) methods are linear multi-step and follow
the formula of order r :
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tk+1 = tk + hk,

pk+1 = hkβBDF
r f (tk+1, pk+1) + αBDF

r−1 f k + · · · + αBDF
0 f k−r+1,

f k+1 = f (tk+1, pk+1),

where the coefficients
{
αBDF
i

}r−1
i=0 and βBDF

r are given analytically. The formula
forms a nonlinear problem, because pk+1 appears on both sides.

We use the VODPK/BDF implementation [7] which has different options for
solving the nonlinear problem:

1. BDF-FI: directly by functional iteration.
2. BDF-GM-LU: Newton root finding scheme; each linear system during the

scheme is solved by SPIGMR (Scaled Preconditioned Incomplete GMRES),
preconditioned by the LU decomposition.

3. BDF-GM-LU0: Newton root finding scheme; SPIGMR preconditioned by the
incomplete LU decomposition, which discards elements not in the sparsity pat-
tern of A.

4. BDF-LU: each linear system during the Newton scheme is solved directly by
LU decomposition.

5. BDF-LU0: the linear system is solved directly by incomplete LUdecomposition.

3 The Magnus-Based Methods

3.1 Magnus Expansion

The Magnus expansion [8] seeks to express the solution to (2) in the form of

p(t) = exp(Ω(t)) · p0, (3)

where Ω(t) is an infinite series consisting of integrals and matrix commutators of
A(t).

Originally a theoretical method in physics, there has been increasing interest to
transform the Magnus expansion into a numerical solver for initial value problems
(IVPs) in the form of (2). One such approach [9, 10], denoted MAGNUS in our
comparative tests, truncates the Magnus series after 4 terms and approximates the
integrals by the Gauss-Legendre quadrature, resulting in a fourth-order numerical
scheme with constant stepsize h:

tk+1 = tk + h,

A1 = A
(
tk +

(
1
2 −

√
3
6

)
h
)

, A2 = A
(
tk +

(
1
2 +

√
3
6

)
h
)

,

σ = h
2 (A1 + A2) + h

√
3

12 (A2A1 − A1A2) ,

pk+1 = exp(σ ) · pk,
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We approximate pk+1 by the matrix-free Krylov technique of EXPOKIT that only
uses the action of σ on vectors. See [11] for more details, and also [12] for a com-
parison with traditional ODE solvers in the context where A is time-independent,
i.e. constant, in (2).

3.2 Magnus with an Adaptive SSA-based State Space

During the integration time of any ODE solver for (2), most of the values in p(t)will
be extremely small and therefore computing the full distribution can be expensive
without gaining much accuracy. For CME problems with time-independent rates,
the FSP-SSA method [13] reduces the state space X at each step to only states with
potentially large probabilities during the small interval [tk, tk + h]. This is done by
running SSA trajectories [3] from states in the current state space, and updating the
state space to contain all states that the SSA trajectories travel through. The ‘holes’
in the state space are then patched by the r -step reachability [2], which seeks all
states that can be connected to the state space with r reactions or less, and expands
the state space to include those. We incorporate this adaptive SSA-based state space
expansion scheme into the MAGNUS-SSA method:

tk+1 = tk + h,

X is reduced to states with probability > 10−16,

X is expanded by SSA over [tk, tk + h] and r -step reachability with r = 5,

A1 = A
(
tk +

(
1
2 −

√
3
6

)
h
)

, A2 = A
(
tk +

(
1
2 +

√
3
6

)
h
)

,

σ = h
2 (A1 + A2) + h

√
3

12 (A2A1 − A1A2) ,

pk+1 = exp(σ ) · pk .

Note that the SSA only serves here as a method for expanding the state space over
the small time-stepping interval, and accounts for less than 5% of the computational
runtime in the numerical tests. Computing pk+1 via EXPOKIT is the most time-
consuming part of the algorithm. In this initial implementation, the stepsize h is
constant. We developed this method further in another work [14] to control the error
and allow for adaptive stepsizes that can be either rejected or accepted.

4 Numerical Comparisons

4.1 The Alabama Supercomputer

All numerical tests reported here utilized resources of the Alabama Supercomputer,
which houses two supercomputers called SGI UV and DMC. The user can request
a job to be executed on either of them, or can simply let the operating system select
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the more suitable system depending on the workload and availability. All codes were
written in FORTRAN 77 and were run on the large queue of the SGI UV with 1
processor core (Xeon E5-4640 CPU operating at 2.4GHz), 360hr time limit and
120GB memory limit.

4.2 The Transcriptional Regulatory Problem

The biological problem for comparing the ODE solvers depicts a transcriptional
regulatory system [15]. The problem consists of six species:

M : protein (monomer),

D : transcription factor (dimer),

DNA : DNA template, free of dimers,

DNA.D : DNA template, bound at one binding site,

DNA.2D : DNA template, bound at both binding sites,

RNA : mRNA produced by transcription,

which can interact through ten reactions:

RNA
c1−→ RNA + M; M

c2−→ ∅;
DNA.D

c3−→ RNA + DNA.D; RNA
c4−→ ∅;

DNA + D
c5−→ DNA.D; DNA.D

c6−→ DNA + D;
DNA.D + D

c7−→ DNA.2D; DNA.2D
c8−→ DNA.D + D;

M + M
c9−→ D; D

c10−→ M + M.

The reaction rates are:

c1 = 0.043s−1; c2 = 0.0007s−1;
c3 = 0.078s−1; c4 = 0.0039s−1;
c5 = 0.012·109

A·V (t) s−1; c6 = 0.4791s−1;
c7 = 0.00012·109

A·V (t) s−1; c8 = 0.8765 · 10−11s−1;
c9 = 0.05·109

A·V (t) s
−1; c10 = 0.5s−1,

where A is the Avogado’s constant, and V (t) is the cell volume at time t , which
increases from the initial value V (0) = 10−15 in accordance to

V (t) = V (0)eln(2)t/τ

during the entire cell cycle time period τ = 35 minutes until the cell divides.
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We wish to follow the distributions of the count of each species from the initial
state where the cell has two dimers and the DNA is unbound:

M = 0; D = 2;
DNA = 1; DNA.D = 0;

DNA.2D = 0; RNA = 0.

The distributions from solving (2) by the ODE solvers are compared with the fre-
quency from 100,000 FRM trajectories. The fixed FSP state space for the ODE
solvers is found by finding the maximum and minimum of each species count during
these trajectories, except for MAGNUS-SSA, which does not require a priori fixed
FSP bounds and changes the state space adaptively instead. In practice, these bounds
can be defined based on the knowledge of the biological problem or the experimental
data, and may not require stochastic simulations.

As noted before, both MAGNUS and MAGNUS-SSA schemes were imple-
mented here with constant stepsize, taken as h = 1 s in the reported numerical exper-
iments. We also compared the actual execution times of the methods with that of the
100,000 trajectories of the FRM method (which obviously becomes more time-
consuming as more trajectories are sampled, and is used here instead of the standard
SSA because the reaction rates are time-dependent), and we observed that the FRM
runtime was comparable to the Magnus-based methods.

4.3 Numerical Results

Weperformed twonumerical tests. Thefirst test has small end timepoint and therefore
results in a small state space, whereas the second one has longer end time point with
a much larger state space and poses a large stiff problem for the ODE solvers. The
error tolerance for all ODE solvers is tol = 10−5.

4.3.1 Numerical Test 1

We seek the probability distribution at t f = 30s. The FRM trajectories suggest the
FSP bounds:

0 ≤ M ≤ 8; 0 ≤ D ≤ 3;
0 ≤ DNA ≤ 1; 0 ≤ DNA.D ≤ 1;
0 ≤ DNA.2D ≤ 1; 0 ≤ RNA ≤ 4.

X has n = 1440 states and A has nz = 8233 nonzero elements.
The probability distributions at t f from all ODE solvers are displayed in Fig. 1.

Their results agree with each other and fit the frequency from FRM.
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Fig. 1 Probability distributions at t f = 30s from the ODE solvers in test 1

4.3.2 Numerical Test 2

Wenowattempt to find the probability distribution at t f = 10m.Because of the larger
time range, the FSP bounds suggested by the FRM trajectories are more extensive:

0 ≤ M ≤ 46; 0 ≤ D ≤ 59;
0 ≤ DNA ≤ 1; 0 ≤ DNA.D ≤ 1;
0 ≤ DNA.2D ≤ 1; 0 ≤ RNA ≤ 12,

resulting in n = 293280 states in X and nz = 2091993 nonzero elements in A. The
results from the ODE solvers are listed in Table1.

Among the ODE solvers, ADAMS-PECE and RK78 did not finish, detecting that
the problem was stiff. BDF-LU and BDF-FI also did not finish and reported that they
are not appropriate solvers for the problem. BDF-SPGMR-LU failed before reaching
t f because there was not sufficient storage, even though the work array was extended
to the maximum size allowed on the Alabama Supercomputer.

The probability distributions from MAGNUS, MAGNUS-SSA and BDF-
SPGMR-LU0, BDF-LU0 are compared in Fig. 2. While BDF-SPGMR-LU0 and
BDF-LU0 produce wrong results, the distributions from MAGNUS and MAGNUS-
SSA agree with the FRM frequencies. The Magnus-based methods are therefore the
only reliable ODE solvers for this biological problem.

Table 1 Reports from the ODE solvers in test 2

ODE solver Results

MAGNUS Distributions at t f are in agreement with FRM frequencies

MAGNUS-SSA Distributions at t f are in agreement with FRM frequencies

ADAMS-PECE Fails before reaching t f (stiff problem detected - flag 5)

RK78 Fails before reaching t f (stiff problem detected - flag 4)

BDF-SPGMR-LU0 Distributions at t f do not fit the FRM frequencies

BDF-LU0 Distributions at t f do not fit the FRM frequencies

BDF-SPGMR-LU Reports that there is insufficient storage

BDF-LU Reports that it is a wrong solver for this problem

BDF-FI Reports that it is a wrong solver for this problem
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Fig. 2 Probability distributions at t f = 10m from the ODE solvers in test 2

5 Conclusion

The ODE solvers in this comparison have been tested in [12] across problems in
the form of (2) where A is time-independent, in which case the solution is p(t) =
exp(t A) · p0. The authors showed that EXPOKIT [11] and BDF-LU0 [7] are the
most efficient among the ODE solvers. We have considered solvers for the CME
with time-dependent rates, with EXPOKIT embedded in the Magnus schemes. To
our knowledge, such numerical comparisons ofMagnus-basedmethods against other
ODE solvers for large biological problems are just starting to appear in the literature.

ThatAdams,Runge-Kutta andBDF-FI solvers fail for t f = 10m is to be expected.
The reaction rates in the transcriptional regulatory problem differ greatly in magni-
tude, suggesting that the ODE system is stiff. These ODE solvers behave like explicit
methods and therefore are not suitable choices.

Among the remaining four BDF implementations, those relying on the complete
LU decomposition are too expensive for this large problem. The incomplete LU0
decomposition, on the other hand, loses important information along the integration
and therefore their solutions are unreliable.

The Magnus-based methods were the only solvers to successfully predict the
probability distributions at t f = 10m, suggesting that they can be a powerful tool for
solving stiff CME problems with time-dependent rates. Especially, the MAGNUS-
SSA possesses the powerful advantage of flexibly changing the state space to follow
the probability mass. It therefore does not demand the FSP bounds from the user,
which are problem-dependent and require knowledge about the biological problem,
and does not follow the entire probability distribution, which is expensive without
offering meaningful accuracy. Disadvantages in current Magnus implementations,
however, include the lack of an adaptive time-step scheme and the fact that the
constant stepsize h for the Magnus methods has to be chosen efficiently. We pur-
sued adaptive time-stepping strategies in [14], which also contains more numerical
comparisons.
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Temperature Effect on Sound Scattering
by Fine Bubbles in Viscoelastic Liquid

S. Levitsky

Abstract Effect of liquid temperature on nonlinear sound scattering by small gas
bubbles in a polymeric solution is studied.The analysis is basedon themodel account-
ing for liquid rheology manifestation in a close vicinity of the liquid-gas interface
where themain velocity gradients at the bubble pulsations are developed. The normal-
ized scattering cross-section of a bubble at the basic frequency and nonlinear cross-
section at the frequency of second harmonics are calculated and studied numerically
for macromolecular liquids with different polymer concentrations in a temperature
range far from the liquid boiling temperature. The temperature dependence of the
rheological parameters is accounted for on the basis of Spriggs approximation for
relaxation times distribution and the time-temperature superposition principle. The
results indicate that the main effect of the temperature is localized in the vicinity
of the bubbles resonance frequency and reveals itself in the scattering enhancement
with temperature. Temperature dependence of the resonant frequency and the impact
of polymer concentration are discussed as well.

Keywords Gas bubble · Sound scattering · Viscoelastic liquid
Temperature effect · Second harmonics

1 Introduction

The presence of fine bubbles is a characteristic feature of polymeric solutions and
melts because self-evacuation of free gas in such systems is complicated by usually
high viscosity [1]. Final properties of polymeric products are sensitive to small gas
inclusions; therefore, diagnostics of microbubbles is an important part of different
technological processes [2]. One of the potentially efficient diagnostic methods is
based on the acoustic technique, using registration of sound waves scattered by
bubbles [3, 4]. Theoretical background of such technique for polymeric fluidswith an
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emphasis on the liquid rheology impact on bubble dynamics and sound propagation
in non-Newtonian two-phase systems was developed in a number of studies starting
from the paper [5]. Basic publications in the field until 1995 were summarized in [6];
more recent results were reported in [7–9], etc. Nonlinear scattering of sound by gas
bubbles with an account for liquid viscoelasticity was described in [10] in quadratic
approximation; the important contribution [11] should be noted also. The existing
results relate to isothermal conditions, so the question of the liquid temperature
influence on sound scattering by bubbles is still open. The current analysis is focused
on this question; it is supposed that in the studied temperature range the interface
mass transfer can be neglected.

2 Thermorheological Description of Liquid

It is supposed hereafter, similar to [3, 10] that rheological, thermal and acoustic losses
at bubble pulsations in the acoustic field can be accounted for as additive factors.
Rheological behavior of polymeric liquid, surrounding the bubble, is described by
generalized linear Maxwell model [12]:

τi j = 2
∫ t

− ∞

∫ ∞

0
F(θ)e−(t−t1)/θ si j (t1)dθdt1 + 2ηssi j , (1)

si j = ei j − 1

3
(∇ · v)I, ei j = 1

2
(
∂vi

∂x j
+ ∂v j

∂xi
).

Here F(θ) describes the spectrum distribution of relaxation times θ ; τi j , si j - devi-
ators of stress and rate-of-strain tensors, respectively; ηs - low-molecular solvent
viscosity; v - liquid velocity. Rheological Eq. (1) doesn’t account for relaxation fea-
tures at bulk deformations of liquid in the sound wave. It is shown in [6] that the
input of liquid volume viscoelasticity in bubble dynamics is small in a wide range
of conditions, as compared with other sources of dispersion and dissipation.

Dynamic behavior of viscoelastic liquid at periodic deformationswith a frequency
ω of the sound wave is described by complex dynamic module [12]. To write it in a
non-dimensionless form, suppose that the pressure in the incident wave is described
by the relation p = p0 + pa , where p0 and pa are the equilibrium pressure and its
disturbance, proportional to eiωt . Introducing dimensionless variables with charac-
teristic time defined as t0 = a0

√
ρ/p0, where a0, ρ are equilibrium bubble radius

and liquid density, we come, in the case of a discrete spectrum, to the following
relation for the non-dimensional complex dynamic module G∗:

(iΩ)−1G∗ = η̄′ − i η̄′′ = η̄p − η̄s

z(α)

∞∑
k = 1

kα − iΩθ̄1

k2α + (Ωθ̄1)2
, (2)

θ̄ = θ/t0, Ω = ωt0, η̄p,s = ηp,s/(p0t0),
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where ηp is Newtonian (low-frequency) viscosity of the polymeric solution, which
can be estimated from theMartin relation ηp = (1 + β exp (kMβ))ηs , and η̄′ , η̄′′ are
frequency-dependent components of dynamic viscosity. Here kM is the Martin con-
stant, φ - polymer concentration, β = φ [η]- reduced polymer concentration, RG -
the universal gas constant, T - the absolute temperature and [η] - characteristic vis-
cosity of solution calculated below from the Mark-Houwink relation [η] = KMb,
where M is the polymer molecular mass and K , b are constants for a given polymer-
solvent pair at a given temperature over a certain range of molecular mass variation.
The parameter b (Mark-Houwink exponent) lies in the range 0.5–0.6 for solutions of
flexible chains polymers in thermodynamically bad solvents and in the range 0.7–0.8
for good solvents [1]. For the former ones the constant K ≈ 10−2 (if the intrinsic
viscosity [η] is measured in cm3/g), while for the latter K ≈ 10−3. The Spriggs law
θk = θ1/kα is used below [12]; in this case z(α) is the Riemann zeta function of the
spectral distribution parameter α. The main relaxation time in the spectrum θ1 can
be estimated from the Rouse formula:

θ1 = 0.608
(ηp − ηs)M

φRGT
. (3)

The temperature dependence of viscosity is described by the activation theory:

ηp = ηp0 exp[Ep(RGT0)
−1(T0/T − 1)], (4)

ηs = ηs0 exp[Es(RGT0)
−1(T0/T − 1)].

where Ep, Es are activation energies of the solution and the solvent, respectively;
ηp0 = ηp(T0), ηs0 = ηs(T0) and T0 is the reference temperature. The Es value
is usually about 10–20 kJ/mol. For low-concentrated solutions of polymers with
moderate molecular masses, the difference between these two activation energies,
ΔE = Ep − Es , does not exceed usually 10kJ/mol [1]. Temperature dependence
of the relaxation characteristics of polymeric liquids is described by the time-
temperature superposition (TTS) principle [12], which states that with a change
in temperature the spectrum of relaxation times shifts as a whole in a self-similar
manner along the T axis, according to the value of the temperature-shift factor aT :

aT = ρ(T0)T0(ηp(T ) − ηs(T ))

ρ(T )T (ηp(T0) − ηs(T0))
. (5)

With ΩaT for an argument, it becomes possible to use the temperature-invariant
description of the complex dynamic module G∗ dependency from frequency.
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3 Second Harmonics Generation by Bubble in
Temperature-Dependent Polymeric Solution

As it is well known, a spherical bubble in liquid is a monopole scatterer with promi-
nent nonlinearity. It is supposed that thermodynamic behavior of gas within the
bubble follows the polytropic law with exponent γ , dissipation and nonlinearity at
sound propagation in a quiescent liquid have an only minor impact [13]. Then the
equation of bubble dynamics with an account for liquid rheology and the relation for
pressure in the wave scattered by a bubble can be defined in the form [10]:

ρ(aä + 3/2ȧ2) = Δpg − pa + 2σa−1
0 (1 − a0a

−1) (6)

−4
∫ t

−∞

∫ ∞

0
F(θ) exp(− t − t ′

θ
)ȧ(t ′)a−1(t ′)dθ dt ′ − 4ηs ȧa

−1,

ps(r, t) = ρ

(
a2(tr )ä(tr ) + 2a(tr )ȧ2(tr )

r
− a4(tr )ȧ2(tr )

2r4

)
, (7)

Δpg = pg − pg0, pg0 = p0 + 2σa−1
0 .

Here σ - surface tension coefficient, index g refers to gas, r is the radial coordinate
with the origin in the bubble center, and retarded time tr = t − r/c0 is introduced to
account for finite sound speed c0 in liquid. Further analysis is based on the volume
approach [3], according to which the disturbance of the bubble’s volume ΔV =
(4π/3)(a3 − a30) is introduced instead of the radius a. Equations (6) and (7), are
written in the far-field approximation [3], keeping all terms up toΔV 2, and using non-
dimensional variables v = ΔV (4/3πa30)

−1, τ = t/t0, r̄ = r/R0, p̄s = ps/p0, τr =
tr/t0. The solution of the resulting system of equations is searched in the form v =
v1 + v2, p̄s = p̄1 + p̄2, {v1, p̄1} = 1

2 {V1, P1}eiΩτ + c.c., {v2, p̄2} = {V20, 0} +
1
2 {V2, P2}e2iΩτ + c.c., p̄a = 1

2 Pae
iΩτ + c.c., V1 ∼ Pa, V2 ∼ P2

a . The calculations
follow the procedure described in detail in [3, 14] and yield the following relations
for the pressure amplitudes of the basic and second harmonics and the normalized
scattering cross-sections σ1, σ2 of the bubble for the basic and second harmonics:

|P1| = Ω2 |V1| (3r̄)−1, |V1| = 3Pa((Ω
2 − β1)

2 + Ω2μ2
1)

− 1/2, (8)

|P2| = Ω2
∣∣Ω2 − ω̄2

0(γ + 1)
∣∣ |V1|2 {3r̄ [(4Ω2 − β2)

2 + 4Ω2μ2
2]1/2}−1,

β1 = ω̄2
0σ + 4Ωη̄′′

Ω, ω̄2
0σ = ω̄2

0 − 2σ̄ , ω̄2
0 = 3γ (1 + 2σ̄ ), μ1 = 4(η̄s + η̄′

Ω)

+Ω2/c̄0 + Re{H(Ω)}, H(Ω) = 3(pg0/p0)�Pe(iΩPe − 3(1 − �)z)−1,

z = (iΩPe)1/2cth ((iΩPe)1/2 − 1, c̄0 = c0t0R
−1
0 , Pe = a−1

g R0(p0/ρ)1/2,

β2 = ω̄2
0σ + 8Ωη̄′′

2Ω, μ2 = 4(η̄s + η̄′
2Ω) + 4Ω2/c̄0 + Re{H(2Ω)},

ag = χg(ρg0cgp)
−1, σ1 = 4r̄2(|P1|/Pa)2, σ2 = 4r̄2(|P2|/Pa)2.
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Here � is the ratio of gas specific heats, ρg0 - equilibrium gas density, χg - heat
conductivity of gas, cgp - specific heat capacity of gas at a constant pressure, η̄′

Ω, η̄′′
Ω

and η̄′
2Ω, η̄′′

2Ω are dimensionless components of dynamic viscosity of the polymeric
liquid at frequencies Ω and 2Ω , respectively, μ1,2 is the total loss constant of a gas
bubble in a compressible polymeric liquid at frequencies Ω and 2Ω , respectively
[6]. Note that rheological parameters in Eq. (8) are supposed to be temperature-
dependent, according to the relations (3)–(5).

4 Results and Discussion

Nonlinear scattering of sound by gas bubble was studied numerically. The values
of the system parameters in the relations (8), chosen for simulations, are collected
below. Note that physical properties of polymeric liquids are extremely diverse and
their complex estimation represents a separate problem, sketched in Sect. 2 and dis-
cussed in more detail in [1, 6]. The data, used in simulations, were calculated in
accordance with this discussion, and can be approximately related to the solution of
high molecular polystyrene (M ∼ 106) in Aroclor:

p0 = 105 Pa, ηs = 0.1 Pa · s, ρ = 103 kg/m3, c f = 1500 m/s, kM = 0.4, (9)

Es = 12 kJ/mol, Ep = 16 kJ/mol, A = 500, σ̄ = 0.03, T0 = 293K, α = 2

The studied temperature range is equal approximately 60K. The chosen value of
the Spriggs distribution parameter α corresponds to Rouse distribution.

Results of simulations are presented in the Figs. 1, 2, 3 and 4. For all plots a0 =
5 · 10−4 m, the studied non-dimensional frequency range for the chosen parameter
values corresponds approximately to dimensional frequency1.5 < f < 11 kHz, f =
ω/2π .

As it follows from the Fig. 1, scattering cross-section of the bubble at the incident
wave frequency undergoes drastic changes with polymer concentration – the bubble
ability to scatter sound becomes less inmore concentrated solution. This result relates
both to linear and second harmonics and is explained by the rheological dissipation
increase with β. The temperature effect is localized mainly in the linear resonance
region; the temperature rise yields the scattering enhancement. The data indicate
that despite the absolute value of the scattering cross section for second harmonics
is less than for the basic one, the relative impact of liquid temperature on nonlinear
sound scattering is more pronounced. This conclusion follows also from the plots on
the Fig. 2, where the projection of the 3D plot σ = σ(Ω, T ) on the σ − Ω plane is
presented. The figure illustrates the range of changes in the scattering cross-section
with temperature; it can be seen that for second harmonics this range is larger. Both
basic and second resonance frequencies decrease slightly with temperature.

The plots in Fig. 3 aim to illustrate the manifestation of liquid viscoelasticity at
nonlinear sound scattering by a bubble. We can conclude that the relative amplitude
of second harmonics (with respect to the basic one) in polymeric liquid exceeds
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Fig. 1 Temperature effect on the scattering cross-section for basic and second harmonics. 1 - T = 1;
2 - T = 1.08; 3 - T = 1.2

Fig. 2 Temperature effect on the scattering cross sections for basic and second harmonics (projec-
tion of the 3D plot σ = σ(Ω, T ) on the σ − Ω plane). For both plots β = 3.6

essentially that one for a similar pure viscous liquid, which is explained by dynamic
viscosity reduction with frequency. Temperature rise yields an increase in the relative
amplitude of the scattered signal at any frequency, but especially near the frequency
of linear resonance.

The amplitude of the signal scattered at the frequency of second harmonics is
always less than at the basic frequency, besides a narrow region near the second
resonance. Note that for pure viscous liquid the temperature rise in this region may
change monotonic dependence of the relative pressure amplitude from frequency
to the resonance-like one. As a result, the amplitude of the second harmonics may
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Fig. 3 Temperature and rheology effect on the relative pressure amplitude of the basic and second
harmonics. For both plots β = 3.6; a – viscoelastic liquid, b – pure viscous liquid with η = ηp

Fig. 4 Normalized pressure
amplitudes of the basic and
second harmonics versus
polymer concentration at
sub-resonance frequencies.
T∗ = 1.1, dashed lines
correspond to pure viscous
liquid with η = ηp

exceed the amplitude of the basic one and to reverse the relation between |P1| and |P2|.
The data in Fig. 4 describes the dependence of normalized amplitudes of the basic
and second harmonics from polymer concentration at sub-resonance frequencies
and a fixed temperature. Increase in β value yields a decrease in the scattered wave
intensity; however, for viscoelastic liquid, this effect is less than in pure viscous
one with an equivalent viscosity. Interesting to note that at the frequency Ω = 1,
which is close to the second resonance, the amplitude of the second harmonics is
more sensitive to polymer concentration than that one of the basic harmonics. It is
explained by the fact that dependence of |P1|on polymer concentration, the same as
on temperature, is localized mainly in the first resonance range which is sufficiently
far from Ω = 1.

It can be summarized that the study has revealed an essential impact of liquid
temperature on nonlinear sound scattering by bubbles in the polymeric liquid. The
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main effect is localized in the vicinity of basic and second resonances and consists
in the scattering enhancement with the temperature growth.

Acknowledgements The study was supported by the Shamoon College of Engineering (SCE).

References

1. Levitsky, S.P.: Shulman, Z.P. In: Wypych, G. (eds.) Handbook of Solvents, vol. 1 pp. 367–399.
ChemTec Publishing, Toronto (2014)

2. Astarita, G., Maffettone, P.L.: Polymer devolatilization: State of the art. Macromol. Symp. 68,
1–12 (1993)

3. Zabolotskaya, E.A., Soluyan, S.I.: Emission of harmonic and combination frequency waves
by air bubbles. Sov. Phys. Acoust. 18, 396–398 (1972)

4. Leighton, T.G., Ramble, D.G., Phelps, A.D., Morfey, C.L., Harris, P.P.: Acoustic detection of
gas bubbles in a pipe. Acta Acust. 84, 801–814 (1998)

5. Yang, W.J., Yeh, H.C.: Approximate method for the determining of bubble dynamics in non-
Newtonian fluids. Phys. Fluids. 8, 758–760 (1965)

6. Levitsky, S.P., Shulman, Z.P.: Bubbles in Polymeric Liquids. Dynamics, Heat and Mass Trans-
fer. Technomics Publish. Co., Lancaster (1995)

7. Allen, J.S., Roy, R.A.: Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity.
J. Acoust. Soc. Am. 107, 3167–3178 (2000)

8. Warnez,M.T., Johnsen, E.: Numerical modeling of bubble dynamics in viscoelastic media with
relaxation. Phys. Fluids. 27, 063103.1–063103.28 (2015)

9. Zhang,Y., Li, S.:Mass transfer during radial oscillations of gas bubbles in viscoelasticmediums
under acoustic excitation. Int. J. Heat Mass. Transfer. 69, 106–116 (2014)

10. Levitsky, S.: On nonlinear scattering of sound by small bubble in polymeric liquid. In: Rudenko,
O., Sapozhnikov, O. (eds.) Nonlinear Acoustics at the Beginning of the 21st Century, vol. 2,
pp. 927–930. MSU, Moscow (2002)

11. Khismatullin, D.B.: Resonance frequency of microbubbles: effect of viscosity. J. Acoust. Soc.
Am. 116, 1463–1473 (2004)

12. Bird R.B., Armstrong R.C., Hassager O.: Dynamics of Polymeric Liquids. Fluid Mechanics,
vol. 1. Wiley, NY (1987)

13. Nakoryakov, V.E., Pokusaev, B.G., Shreiber, I.R.: Wave Propagation in Gas-Liquid Media.
CRC Press, NY (1993)

14. Sutin, A.M., Yoon, S.W., Kim, E.J., Didenkulova, I.N.: Nonlinear acoustic method for bubble
density measurements in water. J. Acoust. Soc. Am. 103, 2377–2384 (1998)



A Fourth-Order Compact Numerical
Scheme for Three-Dimensional Acoustic
Wave Equation with Variable Velocity

Wenyuan Liao and Ou Wei

Abstract In this paper we proposed an accurate and efficient numerical algorithm
for solving the acoustic wave equation in three-dimensional heterogeneous media.
Numerical solution of the wave equation has been used in various science and engi-
neering applications, such as the seismic full waveform inversion (FWI) problem.
FWI is a computationally intensive procedure, in which the acoustic wave equation
is numerically solved (forward modelling) repeatedly during the iterative process.
Therefore, efficiency and accuracy of the numerical method for solving the acous-
tic wave equation is critical in the success of seismic full waveform inversion. The
new method is obtained by combining the Padé approximation and a novel algebraic
manipulation with the Alternative Directional Implicit (ADI) method. Numerical
experiments have shown that the new method is accurate, efficient and stable.

Keywords Alternative Direction Implicit · Compact finite difference
Acoustic wave equation

1 Introduction

Finite difference (FD) method has been widely used in various science and engineer-
ing applications since the analytical solution is not available in general. In particular,
the high-order FD methods have attracted the interests of many researchers work-
ing on seismic modelling (see [1–4] and references therein) due to the high-order
accuracy and effectiveness in suppressing numerical dispersion.
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Recently, a great deal of efforts have been devoted to develop high-order FD
schemes for the acoustic equations, and many accurate and efficient methods have
been reported. Levander [5] addressed the cost-effectiveness of solving real problems
using high-order spatial derivatives to allow a more coarse spatial sample rate. In [3],
the authors used a plane wave theory and the Taylor series expansion to develop a low
dispersion time-space domain FD scheme with error O(τ 2 + h2M) for 1-D, 2-D and
3-D acoustic wave equations, where τ and h represent the time step and spatial grid
size, respectively. It was then shown that, along certain fixed directions the error can
be improved toO(τ 2M + h2M). In [2], Cohen andPoly extended theworks ofDablain
[6], Shubin and Bell [7] and Bayliss et al. [8] and developed a fourth-order accurate
explicit scheme with error of O(τ 4 + h4) to solve the heterogeneous acoustic wave
equation. Moreover, it has been reported that highly accurate numerical methods are
very effective in suppressing the annoying numerical dispersion [9, 10]. High-order
FD method is of particular importance for large-scale 3D acoustic wave equation, as
it requires less grid points [11].

These methods are accurate but are non-compact, which give rise to two issues:
efficiency and difficulty in boundary condition treatment. To resolve these issues, a
variety of compact higher-order FD schemes to approximate the spatial derivatives
have been developed for hyperbolic, parabolic and elliptical partial differential equa-
tions. In [12], the authors developed a family of fourth-order three-point combined
difference schemes to approximate the first- and second-order spatial derivatives.
For more recent compact higher-order difference methods, the readers are referred
to [13].

For three-dimensional problems, an implicit scheme results in a block tri-diagonal
system, which is required to be solved at each time step. Direct solution of such large
block linear system is very inefficient, therefore, some operator splitting techniques
are used to convert the three-dimensional problem into a sequenceof one-dimensional
problems. One widely used method is the ADI method, which was originally intro-
duced by Peaceman and Rachford [14]. Combined with Padé approximation, some
efficient and high-order compact finite difference methods have been developed to
solve the acoustic wave equations in 2D and 3D with constant velocity [15, 16].
However when the velocity is a spatially varying function, it is difficult to apply this
technique because the algebraic manipulation is not applicable here. Nevertheless,
some research work on accurate and low-dispersion numerical simulation of acous-
tic wavefields in heterogeneous media have been reported [10, 17], although these
methods are either non-compact or focus on special case only, such as layered media.

Recently a new fourth-order compact ADI FD scheme was reported in [18] for
solving the 2D case. Here we extend this method and the Padé approximation based
high-order compact FD scheme in [15] to the 3D acoustic wave equation with non-
constant velocity. The new method is compact and efficient, with fourth-order accu-
racy in both time and space.

The rest of the paper is organized as follows. We first give a brief introduction
of the acoustic wave equation and some standard second-order central FD schemes,
compact higher-order FD schemes for spatial derivatives and some other related
high-order method in Sect. 2, then derive the new compact fourth-order ADI FD
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scheme in Sect. 3, which is followed by two numerical examples in Sect. 4. Finally,
the conclusions are discussed in Sect. 5.

2 Acoustic Wave Equation and Existing Algorithms

Consider the 3D acoustic wave equation

utt = ν2(x, y, z)(uxx + uyy + uzz) + s(x, y, z, t), (x, y, z, t) ∈ Ω × [0, T ],
(1)

u(x, y, z, 0) = f1(x, y, z), (x, y, z) ∈ Ω, (2)

ut (x, y, z, 0) = f2(x, y, z), (x, y, z) ∈ Ω (3)

u(x, y, z, t) = g(x, y, z, t), (x, y, z, t) ∈ ∂Ω × [0, T ], (4)

where u(x, y, z, t) represents the acoustic pressure at the location (x, y, z) and time
t , ν(x, y, z) represents the wave velocity. Here f1, f2 and g are sufficiently smooth
functions that specify the initial and boundary conditions of the acoustic wave equa-
tion.Ω ⊂ R3 is a finite computational domain and s(x, y, z, t) is the source function.
We denote c(x, y, z) = ν2(x, y, z) for the sake of simple notation.

First assume that Ω is a 3D rectangular box : [x0, x1] × [y0, y1] × [z0, z1],
which is discretized into an Nx × Ny × Nz grid with spatial grid sizes hx , hy and
hz , where Nx , Ny and Nz are numbers of grid points in x−, y− and z− directions,
respectively. Therefore, the grid sizes are given by

hx = x1 − x0
Nx − 1

, hy = y1 − y0
Ny − 1

, hz = z1 − z0
Nz − 1

.

Let τ be the time stepsize, uni, j,k denotes the numerical solution at the grid point
(xi , y j , zk) and time level nτ . The standard second-order central FD schemes are
given by

utt (xi , y j , zk, tn) ≈ δ2t u
n
i, j,k/τ

2 = (un−1
i, j,k − 2uni, j,k + un+1

i, j,k)/τ
2, (5)

uxx (xi , y j , zk, tn) ≈ δ2xu
n
i, j,k/h

2
x = (uni−1, j,k − 2uni, j,k + uni+1, j,k)/h

2
x , (6)

uyy(xi , y j , zk, tn) ≈ δ2yu
n
i, j,k/h

2
y = (uni, j−1,k − 2uni, j,k + uni, j+1,k)/h

2
y, (7)

uzz(xi , y j , zk, tn) ≈ δ2z u
n
i, j,k/h

2
z = (uni, j,k−1 − 2uni, j,k + uni, j,k+1)/h

2
z . (8)

To improve the method to fourth-order accurate in space, we can approximate
these derivatives with high-order accuracy. The conventional high-order FD method
was derived by approximating the spatial derivatives using more than three points in
one direction, which results in larger stencil. The conventional high-order FDmethod
is accurate in space but suffers severe numerical dispersion. Another issue is that it
requires more points near the boundary.



282 W. Liao and O. Wei

To improve the accuracy in time, a class of time-domain high-order FD methods
have been derived by Liu and Sen [3]. The idea of the time-domain high-order FD
method is to determine coefficients using time-space domain dispersion. As a result,
the coefficient will be a function of vτ

h .
To develop high-order compact ADI FD scheme, we apply Padé approximation

to the second-order central FD operators defined in Eqs. (5)–(8). Let λx = τ 2/h2x ,
λy = τ 2/h2y , λz = τ 2/h2z . Substituting the fourth-order Padé approximations into
Eq. (1) gives

δ2t

(1 + 1
12δ

2
t )
uni, j,k =

[
λxci, j,k δ2x

(1 + 1
12δ

2
x )

+ λyci, j,k δ2y

(1 + 1
12δ

2
y)

+ λzci, j,k δ2z

(1 + 1
12δ

2
z )

]
uni, j,k + τ 2sni, j,k .

(9)
Truncation error analysis shows that the algorithm is fourth-order accurate in time
and space with the truncation error O(τ 4 + h4x + h4y + h4z ), provided the solution
u(x, y, z, t) and c(x, y, z) satisfy certain smooth conditions. As shown in [18], the
difficulty to develop high-order compact scheme for wave equation with variable
velocity is that the operator

(
1 + δ2t /12

) (
1 + δ2x/12

) (
1 + δ2y/12

) (
1 + δ2z /12

)
can-

not be multiplied to both sides of Eq. (9) to cancel the operators (1 + δ2t /12)
−1,

(1 + δ2x/12)
−1, (1 + δ2y/12)

−1 and (1 + δ2z /12)
−1.

3 Derivation of the Compact High-Order ADI Method

Nowweextend the novel algebraicmanipulation introduced in [18] to the 3Dacoustic
wave equation with heterogeneous velocity. The obtained method is fourth-order
accurate in time and space and compact, which allows efficient ADI implementation.

Multiplying (1 + δ2t
12 ) to Eq. (9) yields

δ2t u
n
i, j,k = ci, j,k

[
λx

(
1 + δ2t

12

)
δ2x

(1 + δ2x/12)
+ λy

(
1 + δ2t

12

)
δ2y

(1 + δ2y/12)
+

λz

(
1 + δ2t

12

)
δ2z

(1 + δ2z /12)

]
uni, j,k + τ 2 (

1 + δ2t /12
)
sni, j,k . (10)

Collecting the term δ2t u
n
i, j,k , we have
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[
1 − λxci, j,k

12

δ2x

(1 + 1
12δ

2
x )

− λyci, j,k
12

δ2y

(1 + 1
12δ

2
y)

− λyci, j,k
12

δ2z

(1 + 1
12δ

2
z )

]
δ2t u

n
i, j,k =

ci, j,k

[
λxδ

2
x

(1 + δ2x/12)
+ λyδ

2
y

(1 + δ2y/12)
+ λzδ

2
z

(1 + δ2z /12)

]
uni, j,k + τ 2

(
1 + δ2t

12

)
sni, j,k .

(11)

Factoring the left-hand side of Eq. (11) yields

[
1 − ci, j,k

12

λxδ
2
x

1 + 1
12δ

2
x

]
·
[
1 − ci, j,k

12

λyδ
2
y

1 + 1
12δ

2
y

]
·
[
1 − ci, j,k

12

λzδ
2
z

1 + 1
12δ

2
z

]
δ2t u

n
i, j,k =

ci, j,k

[
λxδ

2
x

1 + 1
12δ

2
x

+ λyδ
2
y

1 + 1
12δ

2
y

+ λzδ
2
z

1 + 1
12δ

2
z

]
uni, j,k + τ 2

(
1 + δ2t

12

)
sni, j,k + ERR,

(12)

where the factorization error is given by

ERR = λx

144
ci, j,k

δ2x

(1 + δ2x/12)
λy ci, j,k

δ2y

(1 + δ2y/12)
δ2t u

n
i, j,k +

λy

144

ci, j,k δ2y

1 + δ2y/12
λz

ci, j,k δ2z

1 + δ2z /12
δ2t u

n
i, j,k + λx

144

ci, j,k δ2x

1 + δ2x/12
λz

ci, j,k δ2z

1 + δ2z /12
δ2t u

n
i, j,k

− λx

1728

ci, j,k δ2x

(1 + δ2x/12)
λy

ci, j,k δ2y

(1 + δ2y/12)
λz

ci, j,k δ2z

(1 + δ2z /12)
δ2t u

n
i, j,k . (13)

Using Taylor series, it is easy to verify that ERR = O(τ 6), provided that c(x, y, z)
and u(x, y, z, t) satisfy certain smooth conditions.

Ignoring ERR leads to the following compact fourth-order FD method

[
1 − λx ci, j,k

12

δ2x

1 + δ2x/12

]
·
[
1 − λyci, j,k

12

δ2y

1 + δ2y/12

]
·
[
1 − λzci, j,k

12

δ2z

1 + δ2z /12

]
δ2t u

n
i, j,k

= ci, j,k

[
λx δ

2
x

1 + δ2x/12
+ λyδ

2
y

1 + δ2y/12
+ λzδ

2
z

1 + δ2z /12

]
uni, j,k + τ2

(
1 + δ2t /12

)
sni, j,k . (14)

Using ADI method, Eq. (14) can be efficiently solved in three steps
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(
1 − λxci, j,k

12

δ2x

1 + δ2x/12

)
u∗∗
i, j,k =

[
ci, j,k λxδ

2
x

1 + δ2x/12
+ ci, j,k λyδ

2
y

1 + δ2y/12
+ ci, j,k λzδ

2
z

1 + δ2z /12

]
uni, j,k

+ τ 2
(
1 + δ2t /12

)
sni, j,k, 2 ≤ j ≤ Ny − 1, 2 ≤ k ≤ Nz − 1, (15)(

1 − λyci, j,k
12

δ2y

1 + δ2y/12

)
u∗
i, j,k = u∗∗

i, j,k, 2 ≤ i ≤ Nx − 1, 2 ≤ k ≤ Nz − 1,

(16)(
1 − λzci, j,k

12

δ2z

1 + δ2z /12

)
δ2t u

n
i, j,k = u∗

i, j,k, 2 ≤ i ≤ Nx − 1, 2 ≤ j ≤ Ny − 1.

(17)

However all three equations are difficult to implement due to the fractional oper-
ators

(
1 + δ2x/12

)−1
,
(
1 + δ2y/12

)−1
and

(
1 + δ2z /12

)−1
. To implement Eq. (15), we

divide by ci, j,k then multiply
(
1 + δ2x/12

)
to both sides,

[(
1 + δ2x

12

)
1

ci, j,k
− λx

12
δ2x

]
u∗∗
i, j,k = τ 2

(
1 + δ2x

12

) (
1 + δ2t

12

)
sni, j,k
ci, j,k

+
[
λxδ

2
x + λy

(
1 + δ2x/12

) δ2y

1 + δ2y/12
+ λz

(
1 + δ2x/12

) δ2z

1 + δ2z /12

]
uni, j,k . (18)

Substituting
δ2y

1+δ2y/12
uni, j,k with δ2y(1 − δ2y/12)u

n
i, j,k ,

δ2z
1+δ2z /12

uni, j,k with δ2z (1 −
δ2z /12)u

n
i, j,k , respectively, we obtain

[(
1 + δ2x

12

)
1

ci, j,k
− λx

δ2x

12

]
u∗∗
i, j,k = τ 2

(
1 + δ2x

12

) (
1 + δ2t

12

)
sni, j,k
ci, j,k

+[
λxδ

2
x + λy

(
1 + δ2x

12

)
δ2y

(
1 − δ2y

12

)
+ λz

(
1 + δ2x

12

)
δ2z

(
1 − δ2z

12

)]
uni, j,k . (19)

Note the difference between Eqs. (18) and (19) is O(h6y + h6z ) [18], thus the method
is fourth-order in space. Similarly, Eqs. (16) and (17) can be transformed into

[(
1 + δ2y/12

)
(1/ci, j,k) − λy δ2y/12

]
u∗
i, j,k = (

1 + δ2y/12
)
(u∗∗

i, j,k/ci, j,k) (20)

and

[(
1 + δ2z /12

)
(1/ci, j,k) − λz δ2z /12

]
δ2t u

n
i, j,k = (

1 + δ2z /12
)
(u∗

i, j,k/ci, j,k). (21)

Note that Eq. (21) is a three-level FD scheme since δ2t u
n
i, j,k = un+1

i, j,k − 2uni, j,k + un−1
i, j,k .

All three linear systems given in Eqs. (19)–(21) can be efficiently solved using
Thomas algorithm. Here some one-sided fourth-order approximations are needed
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for boundary condition approximations in these equation systems. For example,
in Eq. (21), the following fourth-order one-sided approximations will be used to
approximate u∗

i, j,1 and u∗
i, j,Nz

, respectively:

u∗
i, j,1 = 4u∗

i, j,2 − 6u∗
i, j,3 + 4u∗

i, j,44 − u∗
i, j,5,

u∗
i, j,Ny

= 4u∗
i, j,Nz−1 − 6u∗

i, j,Nz−2 + 4u∗
i, j,Nz−3 − u∗

i, j,Nz−4,

for i = 2, 3, · · · , Nx − 1, j = 2, 3, · · · , Ny − 1.
The boundary conditions needed by Eq. (20) can be obtained by setting j = 1

and j = Ny in Eq. (21), respectively.

(
1 + δ2z

12

)
u∗
i,1,k

ci,1,k
=

[(
1 + δ2z

12

)
1

ci,1,k
− λz

12
δ2z

]
δ2t u

n
i,1,k, (22)

(
1 + δ2z

12

) u∗
i,Ny ,k

ci,Ny ,k
=

[(
1 + δ2z

12

)
1

ci,Ny ,k
− λz

12
δ2z

]
δ2t u

n
i,Ny ,k . (23)

Solving the two tri-diagonal linear systems we can get the boundary conditions for
Eq. (20). Similarly, the boundary conditions needed by Eq. (19) can be obtained by
letting i = 1 and i = Nx , respectively.

Equation (21) is a three-level FD scheme, which requires two initial conditions.
However only the first initial condition is explicitly specified. To approximate the
second initial condition with fourth-order accuracy, we expand u(xi , y j , zk, t) by
Taylor series at t = 0 to obtain the following fourth-order approximation

u1i, j,k = u0i, j,k + τ
∂u

∂t
|0i, j,k + τ 2

2

∂2u

∂t2
|0i, j,k + τ 3

6

∂3u

∂t3
|0i, j,k + τ 4

24

∂4u

∂t4
|0i, j,k + O(τ 5),

(24)
where the high-order derivatives are derived using the method in [18].

4 Numerical Examples

In this section two numerical examples are solved by the newmethod to demonstrate
the efficiency and accuracy. The exact solution of the first example is available, so the
numerical error can be calculated to validate the order of convergence. In the second
example, a problem with the Ricker’s wavelet source is solved to demonstrate the
effectiveness of the new method.

Example 1 In this example we solve Eq. (1) on the rectangular domain [0, π ] ×
[0, π ] × [0, π ], and t ∈ [0, 1], with the coefficient c(x, y, z) = 1 + sin2(x) + sin2

(y) + sin2(z). The analytical solution isu(x, y, z, t) = e−t cos(x) cos(y) cos(z). The
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Table 1 Maximal errors for Example 1 with τ = 0.0025 at T = 1

h π/16 π/20 π/25 π/32 π/40

EM (h) 5.2701e−05 2.5026e−05 1.1060e−05 4.3147e−06 1.8719e-06

Conver. Order – 3.3374 3.6593 3.8132 3.7422

Table 2 Maximal errors for Example 1 with various h and τ

(h, τ ) (π/16, 1/20) (π/32, 1/40) (π/64, 1/80) (π/128, 1/160)

EM (h, τ ) 5.1391e−05 4.2849e−06 3.9569e−07 2.9088e−08
EM (h,	t)

EM (h/2,	t/2) – 11.9935 10.8289 13.6032

Conver. Order – 3.5842 3.4368 3.7659

initial condition, boundary condition and source function are chosen accordingly to
satisfy the equation. To simplify the discussion, uniform grid size h is used in x , y and
z directions. To validate the fourth-order convergence in space, we fixed τ = 0.0025
so the temporal truncation error is negligible. The maximal errors obtained by using
different h are included in Table1, which clearly show that the newmethod is fourth-
order accurate in space. We notice that the convergence order is slightly lower than
fourth-order, due to the round-off errors.

To show that the method is fourth-order accurate in time, h and τ are simultane-
ously reduced by the same factor to ensure that the CFL condition is satisfied. We
mention that using very small h to verify the order in time will violate the stability
condition. Instead we verify the order of convergence in time using contradiction.
Suppose the numerical scheme is pth-order accurate in time and fourth-order in
space, with p < 4, halving h and τ several times, the truncation error in time will
become the dominating error, thus the total error will be reduced by a factor of
2p < 16 when h and τ been halved. In the following numerical test cases, we start
from h = π/16, τ = 1/20 (the parameters are chosen to satisfy the stability condi-
tion) and each time we halve both h and τ . The result in Table2 clearly indicates that
the total error is reduced by a factor 16 (roughly) when h and τ are halved, which
confirmed that the convergence order in time is fourth-order. It is worthy to point
out that, the new method is an implicit scheme, the computational cost in each time
step is higher than that of the explicit method, however the overall computational
efficiency has been greatly improved due to the high-order convergence.

Example 2 In this example we solved the wave equation with a point source located
inside a [0, 600m] × [0, 600m] × [0, 600m] domain. The velocity model is
ν(x, y, z) = 800 + 400(x/xmax )

2 + 100(y/ymax )
2 + 800(z/zmax )

2. Therefore, the
Max and Min wave speeds are 2100m/s and 800 m/s, respectively. The Ricker’s
source s(x, y, z, t) = δ(x − x0, y − y0, z − z0)

[
1 − 2π2 f 2p (t − dr )2

]
e−π2 f 2p (t−dr )2

is used to generate the wave, where f p = 10Hz is the peak frequency, dr = 0.5/ f p
is the temporal delay to ensure zero initial conditions. (x0, y0, z0) is the centre of the
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Fig. 1 Wavefields of x-, y- and z- sections at t = 0.18, 0.21 s
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domain. For all numerical simulations, the uniform grid h = 5m and τ = 0.001s are
used to ensure stability.

We plot the wavefields snapshots for x-, y- and z- sections at t = 0.18s and
t = 0.21s in Fig. 1. We first observed that there is no visible numerical dispersions,
which indicated that the numerical algorithm is accurate and effective in suppressing
numerical dispersion. Secondly, we observed that the wave fronts accurately match
the velocitymodel. For example, as shown in Fig. 1a–b, it clearly shows thewavefront
moves faster in z-direction, since the wave speed is higher in z-direction than in y-
direction.Moreover, the wave speed increase with y and z increase, so the wavefronts
hit the right and bottom boundary earlier. Similar phenomena about the y-, z- sections
of the wavefields can be observed in Fig. 1c–f.

5 Conclusion and Future Work

A compact fourth-order ADI FD scheme has been developed to solve the three-
dimensional acoustic wave equation in heterogeneous media. The new method over-
comes the difficulty that were encountered by the existing compact higher-order
ADI methods. The fourth-order convergence is validated by a numerical example
for which the exact solution is available. Numerical example also demonstrated that
the new method is robust, accurate and efficient for numerical seismic modelling on
complex geological models. In the future we plan to take more realistic boundary
conditions, such as the absorbing boundary condition, into consideration.
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On Global Properties of Gowdy
Spacetimes in Scalar-Tensor Theory

Makoto Narita

Abstract Recent results show that standard singularity theorem that holds when an
energy condition is applied in general relativity also holdswhen that energy condition
is applied to the Bakry-Emery-Ricci tensor which naturally arises in the scalar-tensor
theory of gravity. The theory is one of the generalized theories of gravitation and is
a low energy effective superstring theory. Thus it is important to investigate global
behavior of solutions to the gravitational field equations in the theory. We study
the global properties of the Gowdy metrics generated by Cauchy data on T 3 in the
Brans-Dicke theory which is one of the scalar-tensor theory of gravity. We show that
the past boundaries of the maximal Cauchy developments of Gowdy initial data sets
are asymptotically velocity-terms dominated singularities. The Kretschmann scalar
blows up on the boundary. Thus the maximal Cauchy development cannot extend
beyond the boundary and our result shows that the validity of the strong cosmic
censorship conjecture.

Keywords General relativity · Spacetime singularity
Strong cosmic censorship conjecture · BKL conjecture

1 Singularity Theorems and Two Conjectures

General theory of relativity is a gravitational theory. The fundamental equations
are the Einstein equations, which say relation between spacetime curvature and
distribution of matter fields:

Rμν = κ

(
Tμν − 1

2
Tgμν

)
, (1)

∇μT
μν = 0, (2)
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where gμν is a (3 + 1)-dimensional metric tensor of spacetime with Lorentzian sig-
nature, Rμν is the Ricci tensor and Tμν is the energy-momentum tensor. The Einstein
equations consists of six (four constraints and two evolution equations) 2nd-order
(3 + 1)-dimensional nonlinear PDEs. In this theory, important theoremswere proved
concerning spacetime singularity.

Theorem 1 (Penrose [1]) Suppose the following conditions hold: (1) a Cauchy sur-
face Σ is noncompact, (2) the null convergence condition (for any future-directed
null vector field N , RμνNμN ν ≥ 0), (3) Σ contains a closed trapped surface. Then
the corresponding maximal future development D+(Σ) is incomplete.

Here, given a Lorentzian manifold, if Σ is a spacelike surface, then D+(Σ) is the
future of Σ which means that, for any point p in spacetime, every inextensible, past-
directed, non-spacelike curve through p intersects Σ . SimilarlyD−(Σ) is the past of
Σ . If D(Σ) := D+(Σ) ∪ Σ ∪ D−(Σ) is the entire spacetime, then Σ is a Cauchy
surface. Closed trapped surfaces mean that compact spacelike two-surfaces in space-
time such that outgoing null rays perpendicular to the surfaces are not expanding.

Theorem 2 (Hawking-Penrose [2]) Suppose the following conditions hold: (1) a
Cauchy surfaceΣ is compact, (2) the timelike convergence condition (for any future-
directed timelike vector field T , RμνTμT ν ≥ 0), (3) the generic condition. Then the
corresponding maximal Cauchy development D(Σ) is incomplete.

Here, the generic conditionmeans ξ[αRρ]μν[σ ξβ]ξμξν �= 0 at some point of each causal
geodesic with tangent vector ξ .

Remark 1 The convergence conditionsmean the positivity of Ricci curvature, which
is the positivity of energy density viaEinstein equations. Thegeneric conditionmeans
physically that there exists tidal force.

These theorems say physically reasonable spacetimes have spacetime singularities
(incomplete geodesics) in general. However, the theorems do not say us nature
of singularity, i.e. asymptotic behavior of spacetimes. In addition, predictability
is breakdown if singularity can be seen. For these problems, two conjecture were
proposed as follows.

Conjecture 1 (Belinskii-Khalatnikov-Lifshitz (BKL) conjecture) Solutions to the
Einstein(-matter) equations should be Kasner-like ones near spacetime singularity.

In other word, spacetimes would become homogeneous and the Einstein equations
would consist of ODEs in time near spacetime singularity. In this case, the curvature
of spacetimes should be blow up.

Conjecture 2 (Strong cosmic censorship (SCC) conjecture) Generic Cauchy data
sets havemaximalCauchy developmentswhich are locally inextendible as Lorentzian
manifolds.
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This conjecture was proposed by Penrose and its mathematical formulation was
given by Moncrief and Klainerman [3–5]. Roughly speaking, this conjecture says
that spacetime singularity cannot be seen by any observer. The most magnificent
results of the SCC are the nonlinear stability of the Minkowski space [3, 6, 7] and
inextendibility of T 3-Gowdy spacetimes [8]. To prove these conjectures, we need to
show

• global existence theorems of solutions to theEinstein(-matter) equations in suitable
coordinates,

• existence of Kasner-like solutions near spacetime singularity in generic,
• and inextendibility of spacetimes.

2 Singularity Theorems in Scalar-Tensor Theories

Recently, singularity theorems for Bakry-Emery-Ricci (BER) tensor

RBER
μν := Rμν + ∇μ∇ν f,

which is the Ricci tensor with another term given by the Hessian of a weight function
f , have been proved [9]. The BER tensor naturally arises in scalar-tensor (ST) grav-
itational theories in the conformal gauge (e.g. Jordan-Brans-Dicke (JBD) theory in
the Jordan frame) [10, 11].1 Now we have a question: “Can the SCC and BKL con-
jectures be solved in the ST theories, which are generalization of the general theory
of relativity?” The purpose of the present paper is to answer the above question.

To solve global problems for the (generalized) Einstein equations, some assump-
tions will be needed, because the equations are very complicated nonlinear PDEs
and then we have less mathematical tools to analyze such equations. The ansatz are
as follows:

• The JBD theory, which is the simplest ST theory, is considered,
• Existence of two spacelikeKillingvectorswill be assumed (so calledGowdy space-
times, which are the simplest inhomogeneous ones including dynamical degree of
freedom of gravity),

• Topology of spacelike hypersurfaces is three-torus,
• No matter (vacuum) will be assumed.

New results are to show the validity of the SCC and BKL conjectures in the JBD
theory which includes the Einstein theory. Methods used here are standard energy
estimates, so-called light cone estimate [4], and Fuchsian technique developed by
Kichenassamy-Rendall [16].

1In the Einstein frame, we have a global existence theorem for the Gowdy symmetric spacetimes
with stringy matter [12–15].
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3 Vacuum Einstein Equations in Gowdy Symmetric
Spacetimes

The action for the JBD theory is

S =
∫

d4x
√−g

[
−φR + ω

∂μφ∂μφ

φ

]
, (3)

where φ is the JBD scalar field and ω > 0 is a constant. Varying the action with
respect to the metric and scalar field, we have the Einstein equations and the JBD
scalar field equation as follows:

Rμν = ω

φ2
∂μφ∂νφ + 1

φ
∂2
μνφ, (4)

(
∂2

∂t2
− Δ

)
φ = 0. (5)

Note that if φ is a constant, the above equations are equal to the vacuum Einstein
equations.

The Gowdy metric is given by

g = t−1/2eλ/2(−dt2 + dθ2) + R[eP(dσ + Qdδ)2 + e−Pdδ2], (6)

where λ, R, P and Q are functions of t ∈ (0,∞) and θ ∈ T 1. We also assume

φ = eψ(t,θ).

From one components of the Einstein equations,

R̈ − R′′ = 0, (7)

one can put R = t, which called areal time coordinate. Here, dot and prime denote
derivative with respect to t and θ , respectively. The constraint equations are

λ̇ = t

[
Ṗ2 + P′2 + e2P(Q̇2 + Q′2) +

(
ω + 1

2

)
ψ̇2 + 1

2
ψ ′2 + ψ̈

]
, (8)

λ′ = 2t
[
ṖP′ + e2PQ̇Q′ + (ω + 1) ψ̇ψ ′ + ψ̇ ′] . (9)
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The evolution equations are

P̈ + Ṗ

t
− P′′ = e2P(Q̇2 − Q′2), (10)

Q̈ + Q̇

t
− Q′′ = −2(ṖQ̇ − P′Q′), (11)

ψ̈ + ψ̇

t
− ψ ′′ = ψ̇2 − ψ ′2. (12)

We call this system JBD-Gowdy system.

Remark 2 Thanks to areal time coordinate, the evolution equations decouple with
the constraint equations. Then, we can only solve the evolution equations and after
that, λ can be determined by using the constraint equations.

To analyze the JBD-Gowdy system, a wave map u : (M 2+1,G) 
→ (N 3, h) is
defined. The system of the evolution equations is equivalent with nonlinear wave
equations given by varying the following action:

SJBDG =
∫
S1
dtdθ

√−G
(
GαβhAB∂αu

A∂βu
B
)
, (13)

where

G = −dt2 + dθ2 + t2d�2, 0 ≤ θ,� ≤ 2π,

and

h = dP2 + e2PdQ2 + e2ψψ2.

Every functions depend on time t and θ . From the action, the energy-momentum
tensor Tαβ for this system is given of the form:

Tαβ = hAB

(
∂αu

A∂βu
B − 1

2
Gαβ∂λu

A∂λuB
)

. (14)
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As useful mathematical tools to prove our theorems, the energies are defined as
follows:

E(t) =
∫
S1
Tttdθ

= 1

2

∫
S1

[
hAB

(
∂tu

A∂tu
B + ∂θu

A∂θu
B
)]
dθ

=
∫
S1
E dθ,

F(t) =
∫
S1
Ttθdθ

= 1

2

∫
S1

[
hAB

(
∂tu

A∂θu
B + ∂tu

A∂θu
B
)]
dθ

=
∫
S1
Fdθ,

where E and F are defined as follows:

E := Ṗ2 + P′2 + e2P
(
Q̇2 + Q′2) + ψ̇2 + ψ ′2, (15)

and

F := 2
[
ṖP′ + e2PQ̇Q′ + ψ̇ψ ′] . (16)

4 Global Existence Theorem

The following is the main theorem:

Theorem 3 Let (M , g) be the maximal Cauchy development of C∞ initial data for
the JBD-Gowdy system. Then, M can be covered by compact Cauchy surfaces of
constant areal time t with each value in the range (0,∞).

The main part of the proof of Theorem 3 is the following energy estimates:

Step 1 (Bounds on first derivatives)

Lemma 1 (Light cone estimate [4]) E is bounded on (T−,T+) × S1.

Proof Define derivaties into the null directions ∂ζ := ∂t − ∂θ and ∂ξ := ∂t + ∂θ .

∂ζ (tE + tF ) = L, (17)
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and

∂ξ (tE − tF ) = L, (18)

where

L := 1

2

(−Ṗ2 − e2PQ̇2 − ψ2 + P′2 + e2PQ′2 + ψ ′2) .

Note that |L| ≤ CE , where C is a positive constant.
Consider a point (t, θ) ∈ [ti,T+) × S1. Integrating the both sides of Eqs. (18) and

(18) along null passes, ∂ζ and ∂ξ , from points (ti, θ+) and (ti, θ−) to the point (t, θ),
respectively, we have

∫
∂ζ (tE + tF )dζ = tE (t, θ) + tF (t, θ) − tE (ti, θ+) − tF (ti, θ+)

=
∫

L+dζ,

and
∫

∂ξ (tE − tF )dξ = tE (t, θ) − tF (t, θ) − tE (ti, θ−) + tF (ti, θ−)

=
∫

L−dξ.

Adding these equations and using the inequality |F | ≤ E ,

tE (t, θ) ≤ tE (ti, θ+) + tE (ti, θ−) + 1

2

[∫
|L+| dζ +

∫
|L−| dξ

]
. (19)

Taking supremums over all values of the space coordinate θ ∈ [0, 2π ] on the both
sides of the inequality (19), we have

sup
θ

tE (t, θ) ≤ 2 sup
θ

tE (ti, θ)

+
∫ t

ti

1

s

[
C sup

θ

sE

]
ds. (20)

We now apply Gronwall’s lemma to this inequality (20), we have boundedness for
E on [ti,T+) × S1. We can apply the same argument for t ∈ (T−, ti] × S1, and then
we have the conclusion of this lemma. Q.E.D.
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Step 2 (Bounds on second derivatives)
If we take time derivatives of the evolution Eqs. (10)–(12) for P,Q, ψ , then we
have evolution equations for Pt := Ṗ,Qt := Q̇, ψt := ψ̇ , which we can write in the
following form:

P̈t + Ṗt

t
− P′′

t = G1, (21)

Q̈t + Q̇t

t
− Q′′

t = G2, (22)

ψ̈t + ψ̇t

t
− ψ ′′

t = G3, (23)

where G1,G2,G3 consist of terms of the first derivatives below and P̈, Q̈, ψ̈ . Note
that all of the quantities in G1,G2,G3 except P̈, Q̈, ψ̈ have been shown in the pre-
vious step to be controlled. Now we find the following quantities

E2 := Ṗt
2 + P′2

t + e2P
(
Q̇t

2 + Q′2
t

)
+ ψ̇t

2 + ψ ′2
t , (24)

and

F2 := 2
[
ṖtP

′
t + e2PQ̇tQ

′
t + ψ̇tψ

′
t

]
. (25)

satisfy equations of the form

∂ζ (tE2 + tF2) = L1, (26)

and

∂ξ (tE2 − tF2) = L2, (27)

where L1,L2 involve nothing but controlled quantities, together with terms quadrat-
ic in Ṗt,P′

t, Q̇t,Q′
t, ψ̇t, ψ

′
t . Then we repeat the light cone estimate and verify that

Ṗt,P′
t, Q̇t,Q′

t, ψ̇t, ψ
′
t are all bounded. Furthermore, using evolution Eqs. (10)–(12),

we get boundedness on P′′,Q′′, ψ ′′.

Step 3 (Bounds on λ)
Finally, we have bounds on λ by using the constraint Eqs. (8)–(9) because the right
hand side in these equations consist of controlled quantities.

Thus, the proof of the Theorem 3 complete.
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5 Existence Theorem of Kasner-Like Solutions Near
Spacetime Singularity

Let us begin with a brief review of the Fuchsian algorithm, which is a method
to construct exact singular solutions to a PDE system near a singularity (t = 0).
The algorithm is based on the following idea: near the singularity, decompose the
singular formal solutions into a singular part, which depends on a number of arbitrary
functions, and a regular part u. If the system can be written as a Fuchsian system of
the form

[D + N (x)] u = t f (t, x, u, ∂xu), (28)

whereD := t∂t and f is a vector-valued regular function, then the following theorem
can be apply:

Theorem 4 (Kichenassmy-Rendall [16]) Assume thatN is an analytic matrix near
x = x0 such that there is a constant C with ‖�N ‖ ≤ C for 0 < � < 1. In addition,
suppose that f is a locally Lipschitz function of u and ∂xu which preserves analyticity
in x and continuity in t. Then, the Fuchsian system (28) has a unique solution in a
neighborhood of x = x0 and t = 0 which is analytic in x and continuous in t and
tend to zero as t → 0.

Thus, the regular part goes to zero and the singular part of the formal solution
becomes an exact solution to the original PDE system near the singularity. Now we
construct the singular part of the formal solution (Kasner-like solution) by solving
asymptotically velocity-terms dominated (AVTD) equations:

P̈ + Ṗ

t
= e2PQ̇2, (29)

Q̈ + Q̇

t
= −2ṖQ̇, (30)

ψ̈ + ψ̇

t
= ψ̇2. (31)

Now we put the formal solution as follows:

P = P∗(θ) ln t + P∗∗(θ) + tεα(t, θ), (32)

Q = Q∗(θ) + t2−2P∗(θ)(Q∗∗(θ) + β(t, θ)), (33)

ψ = ψ∗(θ) + tδ(ψ∗∗(θ) + γ (t, θ)), (34)
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where α, β, γ are regular parts and others are singular part, which are Kasner solu-
tions and ε > 0, δ > 0, 2 − 2P∗ > 0. We can get them by assuming independence
of θ in the JBD-Gowdy system. Put

u = (α,Dα, t∂θα, β,Dβ, t∂θβ, γ,Dγ, t∂θγ ),

then we have a system consisting of the nine first-order PDEs (Fuchsian system) with
N such that

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 0 0 0 0
ε2 2ε 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 2P∗ 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 δ2 2δ 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0 < ε, 0 < δ, 0 < P∗ < 1.

We have the following theorem:

Theorem 5 Choose data ε > 0, δ > 0, 0 < P∗ < 1 are satisfied. For any choice of
the analytic singular data P∗(θ), P∗∗(θ), Q∗(θ), Q∗∗(θ), ψ∗(θ), ψ∗∗(θ), the BD-
Gowdy system has a solution of the form (32)–(34), where α, β and γ tend to zero
as t → 0.

This theorem means that the Kasner-like solution exists near spacetime singularity.

Remark 3 TheKretschmann scalarRμνκλR
μνκλ goes to infinity as t → 0. Thus, JBD-

Gowdy spacetimes are inextendible into the past direction.

Remark 4 We can generalize this theorem to more generic function space, i.e. ana-
lytic to smooth or suitable sovolev space by using theorems in [17–19].

6 Summary

We proved the global existence theorem and the existence theorem for Kasner-like
solutions to the vacuum Einstein equations with Gowdy symmetric spacetimes in the
Jordan-Brans-Dicke theory. These results support the validity of the SCC and BKL
conjectures.
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A Computational Resolution
of the Inverse Problem of Kinetic
Capillary Electrophoresis (KCE)

József Vass and Sergey N. Krylov

Abstract Determining kinetic rate constants is a highly relevant problem in bio-
chemistry, so various methods have been designed to extract them from experimental
data. Such methods have two main components: the experimental apparatus and the
subsequent analysis, the latter dependent on the mathematical approach taken, which
influences the effectiveness of constant determination.A computational inverse prob-
lem approach is hereby presented, which does not merely give a single rough approx-
imation of the sought constants, but is inherently capable of determining them from
exact signals to arbitrary accuracy. This approach is thus not merely novel, but opens
a whole new category of solution approaches in the field, enabled primarily by an
efficient direct solver.

Keywords Inverse problems · Parameter estimation · Kinetic rate constants
Biochemical interactions · Convection-diffusion equations

1 Introduction

1.1 Aims and Overview

The direct problem of efficiently generating accurate numerical solutions to the set of
partial differential equations of Kinetic Capillary Electrophoresis (KCE) [1] has been
resolved earlier via a multimesh algorithm [2], which fully overcomes the typical
instability arising from the interaction of the diffusion and convection terms. This
potent solution to the direct problem allows the effective resolution of the inverse
problem on a reasonable timescale, as we shall hereby discuss and demonstrate.
The inversion essentially entails the optimization of a non-linear error objective
function, computed between the experimental target signal and the signals generated
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numerically at each iteration. Estimating the starting point for the optimization, posed
a challenge in itself [3]. Furthermore, control of the error in the sought parameters is
demonstrated, enabling the resolution of this inverse problem to arbitrary accuracy
for exact target signals.

The KCE system of equations includes kinetic rate constants in the reaction term,
which can be viewed as parameters that the solution functions of this system of
partial differential equations depend on. The aim of the inverse problem is to find
or approximate certain parameters – the rate constants of complex formation and
dissociation – that induce an a priori given exact solution. If such a method can
arbitrarily approximate an exact solution, then it can be applied to experimental data
reliably. Therefore, the goal becomes to minimize an error function between the
given solution and the approximating solutions, which must be generated for each
set of test parameters as the optimization progresses.

Themain objective of our researchwas to develop a robust software [4] that can be
used reliably to analyze experimental data. Our focus was therefore on what works
well, rather than aiming for mathematical rigour. A number of theoretical questions
arose from this computational study, some also mentioned in the concluding remarks
as potential future directions of research. Various other experimental–computational
approaches have been taken in the literature to approximating rate constants, though
not to arbitrary accuracy, which differentiates our method in its novelty. For other
methods see [5–10], and for a survey of KCE-based ones see [3].

1.2 The Physical Model

We adopt the physical model and the notations covered in earlier articles [2, 3],
originally introduced in [1, 11, 12].

The concentration vector of reactants c = (L, T , C) : R2+ → R
3+ is a mapping

defined over spacetime points (t, x) ∈ [0, tmax] × [0, xdet]. It satisfies the equation

∂tc + v · ∂xc = D · ∂2
x c + R(c)

where v = (vL, vT , vC) ∈ R
3+ and D = (DL,DT ,DC) ∈ R

3+, and · denotes the
Hadamard product. The reaction term takes the form

R(c) = (−konLT + koffC, −konLT + koffC, konLT − koffC) : R2
+ → R

3

where k = (kon, koff) ∈ R
2+. Lastly, define Kd := koff/kon.

Since as it will become apparent in Sect. 2, the scope of this paper is constrained
by the parameter estimation methods introduced earlier [3], so we only consider
the initial and boundary conditions for the Nonequilibrium Capillary Electrophore-
sis of Equilibrium Mixtures (NECEEM) [1, 2, 11] for the above partial differential
equations. These initial conditions are given by IC(x) = c(0, x) = c̄ · �(x/l), where
c̄ = (L̄, T̄ , C̄) ∈ R

3+ (note: Kd = L̄T̄/C̄) and � : R+ → R
3+ is a vector of asymmet-
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ric Gaussian density functions, and l > 0. The left boundary condition is c(t, 0) = 0,
while the right one is ∂xc(t, xdet) = 0, for computational purposes.

The signal is defined as the function

S[k, γ ](t) := (L + C)(t, xdet), t ∈ [0, tmax]

parametrized by the above k and the asymmetric Gaussian plug parameters

γ = (μL, σ 1
L , σ 2

L , hL, μT , σ 1
T , σ 2

T , hT , μC, σ 1
C, σ 2

C, hC)

which denote the center, the left and right standard deviations, and the height of the
Gaussian initial conditions (dependent on c̄).

See our previous articles for further details [1–3], such as the physical meaning
of the above constants.

2 The Inverse Problem of KCE

2.1 Problem Statement

The direct problem of generating a solution to the KCE equations, introduced above,
can be inverted to inquire what parameters (k∗, γ∗) ∈ R

14+ induced a given signal
S∗ : [0, tmax] → R+, meaning S∗ = S[k∗, γ∗] by the earlier notations, which we
refer to as the “target signal”. Since as we shall see in the next section, the values
of k∗ and γ∗ are not independent, we will only need to invert over some of these
parameters, denoted by ω ∈ R

10+ , while updating the definition of the signal mapping
S[ω] to eliminate the redundant parameters.

Define the error function as E(ω) := D(S∗, S[ω]) (ω ∈ R
10+ ) where D is any

metric, typically the Euclidean. This E is the target function to be minimized during
inversion, below some required threshold ε > 0. The problem is thus the following.

Problem 2.1 (KCE Inverse Problem) Given a threshold ε > 0 and an S∗ : [0, tmax]
→ R+ function, induced by unknown KCE parameters ω∗ and defined as S∗ :=
S[ω∗], find an ω parameter vector such that E(ω) < ε.

This inverse problem may appear at first to be ill-posed, meaning its solution is
not necessarily unique, and E(ω) = 0 doesn’t trivially imply thatω = ω∗. The signal
mapping S is not only a superposition, but also a slice of a surface, resulting in a
significant loss of information relative to the full solution vector c = (L, T , C).
However, our computational experiments strongly suggest well-posedness, making
it a worthwhile conjecture, equivalent to asserting that the error function possesses
a unique minimum.
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2.2 The Optimization Space

In this section, we clarify how the optimization space over ω ∈ R
10+ reduces from

the seemingly straightforward variables (k, γ ) ∈ R
14+ . As mentioned, this reduction

is partly necessitated by the interdependencies between the coordinates of the latter
vector, which originate in the physicochemical model of KCE [1].

Another reason for the reduction, is that the variation in theT -plug parameters in γ

does not really affect the simulated signal. The standard deviations are not particularly
relevant for the effectiveness of the computational inversion. The quantity of the T
substance in this chemical reaction can be controlled solely via the height of the T -
plug, while the plug center may be allowed to vary within 1–2 orders of magnitude.
Though the height is in fact dependent on some other parameters, as stated below.

Furthermore, it must be noted that kon typically has little bearing on the NECEEM
signal, as reasoned in earlier papers [3, 13], so the optimization process may place
a greater emphasis on optimizing in koff .

The full vector of parameters

(k, γ ) = (kon, koff , μL, σ 1
L , σ 2

L , hL, μT , σ 1
T , σ 2

T , hT , μC, σ 1
C, σ 2

C, hC)

is reduced to the vector of optimization parameters

ω = (koff , μL, σ 1
L , σ 2

L , hL, μT , μC, σ 1
C, σ 2

C, hC).

Tomake up for the missing coordinates kon, σ 1
T , σ 2

T , hT , which are still necessary
to generate signals S[ω] for the calculation of the errorE, some relationships between
the coordinates must be observed. Firstly

L̄ = √
2π

hL
l

σ 1
L + σ 2

L

2

and similarly for C̄, while T̄ = 1000Tini − C̄ where Tini is the initial pre-equilibrium
concentration of the T -plug. Its height can then be calculated as

hT = lT̄√
2π

/ σ̂ 1
T + σ̂ 2

T

2

where σ̂
1,2
T are the standard deviation estimates for the asymmetric Gaussian T -

plug [3]. Using mere estimates does not significantly affect the effectiveness of
inversion, as reasoned heuristically above, i.e. the minimization of the error function
E below a given threshold. Lastly, kon = koff C̄/(L̄T̄ )which is simply the relationship
mentioned in Sect. 1.2.

Lastly, we remark that the inversion using any optimization algorithm we tested,
proved to be significantly more efficient when carried out in logarithmic space, in all
independent variables.
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2.3 Error Control

As stated in the KCE Inverse Problem 2.1, the inversion is formulated as the min-
imization of the error function ω → E(ω) below some threshold ε > 0, where the
signal error is calculated asE(ω) = D(S∗, S[ω]), typically with the Euclideanmetric
D and some target signal S∗ = S[ω∗].

It remains unclear, how this minimization can be made practical. For the purpose
of scientific applications, our inevitable aim must be to ensure that the error in the
k = (kon, koff) parameter is minimized below a threshold δ > 0, prescribed a priori.
Therefore, the task becomes to determine – or estimate – what ε threshold above is
necessary to ensure this δ.

The matter can be resolved under the rather weak hypothesis that there is a local
Lipschitz constant L for some metric d , satisfying

d(k∗, k) ≤ d(ω∗, ω) ≤ L · D(S[ω∗], S[ω]) = L · E(ω)

in a neighborhood of the point ω∗ in the optimization space. Since this point is
unknown, computationally we ensure a large enough neighborhood in logarithmic
space around our estimate – derived earlier [3] – likely to contain the sought ω∗.
Typically, the neighborhood is taken within two orders of magnitude, which proved
to be sufficient according to our computational experiments.

The Lipschitz constant L can then be estimated within this neighborhood, by
taking random pairs of points ω1, ω2 in it, and taking the maximum of the ratios
d(ω1, ω2)/D(S[ω1], S[ω2]).

Using this estimated L, the threshold in the signal error E(ω) must be taken to
be δ := ε/L, in order to ensure that the error in k falls below the prescribed signal
threshold ε > 0.

2.4 Implementation

The inverse solver [4] is essentially a non-linear optimization process, which mini-
mizes the error function introduced in Sect. 2.1. At each evaluation of this function,
the direct solver must be called to generate a signal S[ω] for the current iteration of
parametersω. Thus the runtime of the inverse solver is fundamentally implied by that
of the direct solver. The stability and efficiency of the direct solver was established
in our earlier article [2].

Finding a well-functioning – or perhaps even “ideal” – optimization algorithm,
was in itself a challenge, andwe have tested several. The fminconMATLAB function
with the interior-point algorithm proved to be the most robust and efficient. The
bfgs Hessian approximation option (a dense quasi-Newton approximation [14]) is
typically sufficient, but occasionally the lbfgs option (a limited-memory, large-scale
quasi-Newton approximation [15]) must also be run, in case the bfgs option fails to
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converge below the required signal error threshold within the allocated time. Other
tested algorithms include Cuckoo Search [16], Flower Pollination [17], andHarmony
Search [18], each ofwhich proved to be less robust than fmincon, but are nevertheless
available in our package [4].

Each inverter – i.e. error minimization subroutine, with a particular optimization
algorithm – was tested for simulated signals induced by known parameters, and
then compared to the output parameters in terms of relative error (see Figs. 1 and
3). In practice, the inverters are executed on experimental signals (from unknown
parameters), in which case, the accuracy of the result can be gauged via the error
control method described in Sect. 2.3, and demonstrated in Sect. 3.

3 Performance Analysis

Figure1 depicts the performance analysis of the primary inverter, running the BFGS
and L-BFGS [14, 15] interior point optimization algorithms of MATLAB (fmincon
with the interior-point algorithm, and Hessian approximation methods bfgs and
lbfgs). The target threshold of 0.0001% in the signal error tends to ensure two correct
decimal places in k in scientific notation. This threshold is reached by the inverter
up to log10(kon) ≈ 3.45 on the horizontal axis, but it fails to converge above that
value. The ca. 4200 evaluations is the default upper iteration bound that each opti-
mization algorithm is allowed to run, at this t-mesh size. The ca. 5000 evaluations at
ca. 2.75 results from running the inverter twice, trying both settings (bfgs and lbfgs).

Figure2 accompanies Fig. 1, for reference. Apparently for log10(kon) > 3.45 the
C-peak vanishes, visually elucidating the divergence of the inverter. The necessity of
a prominent C-peak thus becomes a practical rule of thumb for the reliable inversion
of experimental signals.

Figure3 is a log-log graph (with decreasing horizontal axis), which demonstrates
a definite power law relationship on average, with an exponent of ca. 0.7 between
the optimization threshold in the signal relative error and the relative error between
the original kon value and the one determined by the inverter. The error in koff tends
to be close to the same value, or less, so it is not plotted. For lower kon values, the
relative error in k apparently stagnates for higher threshold errors in the signal, but
does begin to decrease later. The demonstrated power law may be different for other
experimental parameter sets.

Interestingly, the fmincon optimization subroutine also exhibits a power law rela-
tionship between its runtime and the error threshold in the signal, with a negligible
exponent of ca. −0.07, not considering the outlier. In the outlier log10(kon) ≈ 2.95
case, the parameters appear to conspire so that only the lbfgs option is able to tackle
the inversion (the plotted runtimes include the failed attempts with the bfgs option).
Nevertheless, the overall linear relationship ensures that the runtime remains pre-
dictable for various thresholds.
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Fig. 1 Variation of the relative error in k with respect to increasing log10(kon) values, at constant
Kd = 2 × 10−6mol/m3. The t-mesh size is 300, and the error threshold is ε = 0.0001%

Fig. 2 Simulated electropherogram signals for increasing log10(kon), at a t-mesh size of 300
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Fig. 3 Illustration of the correlation between the decrease in the optimization threshold in the signal
relative error and the decrease in the kon relative error, for various log10(kon) cases (labeled in the
legend). The corresponding runtimes are also plotted. Only the log10(kon) ≤ 3.45 cases are plotted,
where convergence of the inverter was ensured (see Fig. 1)

Fig. 4 Illustration of the variation of runtime with increasing temporal mesh size (to which the
spatial is proportional). Only the log10(kon) ≤ 2.7 cases are plotted, where convergence of the
inverter was ensured within a reasonable timeframe for a temporal mesh size of 300 (see Fig. 1)
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Based on Fig. 4, we can conclude that for all the log10(kon) ≤ 2.7 test cases, and
for all testedmesh sizes, the interior point inverter was successful. The case runtimes,
however, did not follow a clear relationship with the increasing mesh size. Taking the
average among all cases (in black), however, does exhibit a somewhat clear trend.

4 Concluding Remarks

This article aimed to resolve the inverse problem of Kinetic Capillary Electrophore-
sis, involving a set of partial differential equations, parameterized in the initial and
boundary conditions, as well as the equations themselves. The problem was refor-
mulated as the non-linear minimization of a certain error function, each evaluation
of which required the generation of a solution with the direct solver.

The main challenge thus became to identify an optimization algorithm capable of
carrying out this minimization to arbitrary accuracy, robustly and efficiently, which
was accomplished. Furthermore, a local Lipschitz condition was utilized to relate
the error in the signal to the error in the sought parameters, in order to control the
accuracy in the latter. This is a definite novelty relative to earlier work on this topic.

While this article focused on the design of a computational method and its prac-
tical robust implementation, the implied theoretical questions nevertheless project
avenues for future research. The most relevant problems being: (1) uniqueness of the
global minimizer of the error function; (2) continuous differentiability of the error
function. There is strong consistent computational evidence of a unique minimizer,
according to our experiments. The second property would imply local Lipschitz con-
tinuity (hypothesized inSect. 2.3), andvalidate the use of gradient-basedoptimization
algorithms.

Acknowledgements This work was supported by the Natural Sciences and Engineering Research
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A Simulation Study of the Effect
of Meso-Scopic Sinusoidal Surface
Roughness on Biofilm Growth

Md. Afsar Ali, Hermann J. Eberl and Rangarajan Sudarsan

Abstract A two-dimensional single species biofilm model is solved under
nutrient-rich and nutrient-low conditions to study the effect of mesoscale substratum
roughness on biofilm growth activity. Our results indicate that under nutrient-rich
conditions, the substratum roughness does not have a pronounced effect on the sub-
strate fluxes and on biofilm growth, leading to formation of biofilms as compact
layers. However, under low substrate conditions, substratum roughness has a pro-
nounced effect on both biofilm activity and structure. The overall conclusion is that
under low substrate conditions full 2D or 3D simulations are needed to accurately
simulate biofilms on irregular surfaces, whereas under nutrient rich conditions, the
assumption of flat substrata and 1Dmodels might provide a sufficiently good approx-
imation.

Keywords Biofilm structure · Diffusion · Non-orthogonal grid
Surface roughness

1 Introduction

Bacterial biofilms are depositions of micro-organisms growing on wetted inter-
faces, encased in self-secreted slimy glue-like polymeric matrices. They can be
found throughout natural and man-made systems wherever environmental con-
ditions are favorable for bacterial growth. For example, in many environmental
engineering technologies, biofilms play an important role in degrading pollutants.
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Mathematical modelling has evolved into an effective tool to study biofilm processes
and to understand the effect that different reactor operating conditions can have on
biofilm performance [1]. In biofilm models, spatio-temporal equations for bacterial
growth are coupled with diffusion-reaction equations for nutrients.

The effect of meso-scopic roughness of the surface, on which the biofilm grows
(a.k.a substratum), on nutrient diffusivity in the biofilm, as well as on the structure of
the biofilm is not well understood. Some experimental studies have been conducted,
often with a focus on initial adhesion and early stages growth of biofilms. It was
reported that on rough surfaces higher bacterial cell counts are observed than on
smooth surfaces [2]. In the food industry, this poses a problem for effective cleaning
and sanitizing [3]. It was shown that the adhesion of bacteria to rough surfaces
is stronger than to flat surfaces [4, 5]. In [6] it is reported that surface curvature
and substrate availability affect biofilm coverage and structure in the early stage of
biofilm formation. Based on these observations, to further our understanding, we
will systematically address the following two questions in our work:

A. How do mesoscale surface irregularities of the substratum affect the diffusion
of substrate into the biofilm, and thus biofilm activity?

B. How do different environmental conditions such as different substrate loadings
affect biofilm growth and structure on an irregular substratum?

To answer these questions we use the two-dimensional biofilm model of [7] and
simulate biofilm growth in an irregular domain, using a body-fitted grid as introduced
in [8]. The traditional biofilm growthmodel that is used in engineering applications is
the one-dimensional Wanner-Gujer model [9], which by construction is able only to
describe completely stratified biofilms. Therefore, the answers to the above questions
will also shed light on whether one-dimensional mathematical models can be used
to adequately model biofilm activity on irregular surfaces.

2 Method

2.1 Mathematical Model

Wemake the following modeling assumptions: (i) A single growth limiting substrate
diffuses through the aqueous phase into the biofilm and is consumed by bacteria in
the biofilm. (ii) Spatial biofilm expansion is due to biomass growth. (iii) The biofilm
grows on an impermeable and nonreactive irregular surface.

We use a diffusion-reaction biofilm model that was first proposed in [7]. The
dependent variables u and c are the biomass density and substrate concentration.
The equations that govern growth and expansion of bacterial biomass, and nutrient
distribution in a domain Ω ⊂ R

2 for t > 0 are
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ut = ∇ · (Du(u)∇u) + ru(u, c) − rdu, (1)

ct = ∇ · (Dc(u)∇c) − rc(u, c). (2)

Here, Du(u) is the diffusion coefficient for biomass, ru(u, c) is the rate of biomass
accumulation, and rd is the natural decay rate of bacteria. The rate of biomass pro-
duction ru(u, c) is described by Monod kinetics as

ru(u, c) = μu
cu

κ + c
, (3)

where μu is the maximum specific growth rate and κ is the half saturation concen-
tration. Following [7], the density dependent motility function for biomass is

Du(u) = δu

(
u

umax − u

)4

, (4)

where δ is the biomass motility coefficient, and umax is the maximum biomass cell
density. In (2), Dc(u) is the diffusion coefficient of the substrate. Diffusion in the
biofilm is slower than in the aqueous phase [10]. This is expressed by the convex
combination of diffusion coefficient dc(0) in water and dc(1) in a fully occupied
biofilm

Dc(u) = dc(0) + u/umax (dc(1) − dc(0)). (5)

The local substrate consumption rate, rc(u, c) depends on the local concentration of
dissolved limiting substrate and is given, in accordance with (3) by

rc(u, c) = μuumax

γ

cu

κ + c
= κs

cu

κ + c
= umax

γ
ru(u, c), (6)

where γ is the yield coefficient of biomass on the substrate, and κs is the maximum
substrate consumption rate.

Equations (1) and (2) are defined in the computational domainΩ ⊂ R2. The aque-
ous phase is Ω1(t) = {(x, y) ∈ Ω : u(t, x, y) = 0}. The biofilm phase is Ω2(t) =
{(x, y) ∈ Ω : u(t, x, y) > 0}. These are separated by the biofilm/water interface,
�(t) : Ω1(t) ∩ Ω̄2(t). Both regions change over time as the biofilm grows. The sub-
stratum, on which the biofilm grows, is the bottom surface of the domain.

Equations (1) and (2) are completed by initial and boundary conditions. At time
t = 0, the substrate is distributed uniformly in the domain and assumed to be at
its maximum concentration Cbulk . To pose initial data for biomass we prescribe the
region Ω2(0) ⊂⊂ Ω and assume that the biomass density there is initially constant
with a value u0 < umax , whereas it is nil outside this region. We then have

c(0, x, y) = Cbulk, (x, y) ∈ Ω, u(0, x, y) =
{
0, (x, y) ∈ Ω1(0),
u0, (x, y) ∈ Ω2(0).

(7)
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We impose homogeneousNeumannboundary conditions for biomass at all bound-
aries, ∂nu = 0, on ∂Ω , where n is the outward normal direction. For the substrate,
we specify the non-homogeneous Dirichlet boundary condition c = Cbulk at the top,
and homogeneous Neumann boundary conditions at the other boundaries.

The model is non-dimensionalized using the dimensionless variables

x̄ = x

L
, t̄ = μut, ȳ = y

L
, c̄ = c

Cbulk
, ū = u

umax
. (8)

Here, L is the characteristic length scale, μu is the maximum specific growth rate of
biomass and Cbulk is the substrate bulk concentration. We obtain

ū t̄ = ∇̄ · (D̄u(ū)∇̄ū) + r̄u(ū, c̄) − r̄du, (9)

c̄t̄ = ∇̄ · (D̄c(ū)∇̄ c̄) − r̄c(ū, c̄), (10)

where

D̄u(ū) = Du(ū)

L2μu
, D̄c(ū) = Dc(ū)

L2μu
, κ̄ = κ

Cbulk
, r̄d = rd

μu
, μ̄u = 1, κ̄s = umax

γCbulk
.

We consider domains with straight lateral and top boundaries and sinusoidal sub-
stratum, parameterized by wavelength λ and amplitude A. The average distance of
the substratum to the top of the domain where the substrate is added is in all cases
kept the same. For A = 0 this describes a rectangular domain which we will use as
a reference. A schematic diagram of the domain is depicted in Fig. 1.

The simulation parameters that we use are summarized in Table1. The ratio of
biomass growth rate to substrate transport rate is a crucial dimensionless number to
describe biofilm growth and structure [11]. It is given by

Fig. 1 Schematic of the
computational domain with
definition of shape
parameters wavelength λ and
amplitude A. In all
geometries the average
height of the domain is the
same
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Table 1 Model parameters

Parameter Symbol Value Unit Source

Height of system Ly 0.0004 m Assumed

Amplitude of cavity A 0.00004, ∼
0.0001

m Assumed

Wavelength of cavity/length of the
domain

λ 0.0002–
0.0006

m [11]

Monod half saturation constant κ 3.5 × 10−4 kg m−3

Maximum specific growth rate μu 1.52 × 10−5 s−1 [11]

Decay rate of bacteria rd 2.3 × 10−6 s−1 [11]

Yield coefficient γ 0.35 – [11]

Maximum cell density umax 70 kg m−3 [11]

Bulk concentration Cbulk Variable
around
4.0 × 10−3

kg m−3 [11]

Diffusion coefficient of c in water Dc(0) 1.6 × 10−9 m2s−1 [11]

Ratio of oxygen diffusion coeffi-
cient in biofilm and water : Dc(1) :
Dc(0)

δc 0.9 – [11]

Biomass motility coefficient δ 8.64 × 10−9 m2s−1 [7]

G = maximum biomass growth rate

maximum substrate transport rate
= L2

y

μuumax

dc(0)Cbulk
. (11)

Here Ly is a characteristic length scale for diffusive transport. On flat substrata,
under low G-number regimes homogeneous biofilms are formed, whereas high G-
numbers lead to irregular biofilm morphologies [7]. We pick for Ly the average
system height, i.e., the average of the vertical distance between the top and bottom
boundary.This value is kept constant across all simulations.Changes in theG-number
in our simulations are obtained by changing Cbulk .

2.2 Numerical Method

The biomass Eq. (1) includes two interacting nonlinear diffusion effects, namely a
porous medium type degeneracy for u = 0 and a super-diffusion singularity for u =
1. A semi-implicit numerical method that can handle these two types of degeneracy
has been developed in [12] to solve the biofilm model on an orthogonal grid in a
rectangular domain. We extended and modified this semi-implicit formulation in [8]
for non-orthogonal grids, which allows us to solve the equations on a body-fitted
grid in our sinusoidal domain. For our simulations, the transformation is carried out
using an elliptic grid generation method [13], as described in [8].
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3 Results and Discussion

3.1 Simulation Setup

In our numerical simulation experiments, we vary the system length Lx , whence
the dimensionless wave length λ, and the dimensionless peak-to-peak amplitude
of the sinusoidal surface irregularity, A. For each of these two parameters, five
values are tested, namely λ ∈ {0.50, 0.75, 1.0, 1.25, 1.50}, corresponding to Lx ∈
{200, 300, 400, 500, 600µm}, and A ∈ {0, 0.10, 0.15, 0.20, 0.25}. A = 0 is the ref-
erence case of a flat substratum. The average system height Ly is held constant at
400µm for all simulations. Each simulation is carried out for two different bulk
substrate concentrations Cbulk = 52 g m−3 and Cbulk = 5.4 g m−3, corresponding to
G = 2.05 and G = 19.7, respectively. In total, this requires 50 simulations.

The focus of our study is on the effects of substratum irregularity. To avoid effects
of irregular inoculation of the substratum overshadowing this, we assume that ini-
tially, the entire substratum is covered by a thin film that extends over the first two
grid layers, which is Ω2(0). To ensure comparability of results between simulations,
the initial biomass density in each simulation is constant and determined such that
the initial total biomass is the same for all simulations. The simulations are stopped
when the size of Ω2(t) reaches half of the size of the computational domain.

In order to analyse the results of the numerical simulations, we will present two
dimensional visualizations. Furthermore, we report as output quantity the substrate
flux into the system, Fd(t), normalised with respect to system length. Since homo-
geneous Neumann boundary conditions are specified at the bottom and the lateral
boundaries, the only contribution to this flux is across the top boundary. Hence,

Fd(t) := 1

λ

Lx∫
0

Dc(0)
∂c

∂y
(x, Ly, t)dx .

3.2 Effect of Surface Roughness on Biofilm Activity

The substrate flux Fd(t) measures the removal of substrate from the system, i.e.,
biofilm performance. The characteristic time-scales of substrate diffusion and uptake
by the biofilm are orders of magnitude smaller than the characteristic time scales for
biofilm growth [7]. Therefore, the substrate flux into the system is a good indicator
for biofilm activity.

The substrate flux for the lower G-number in Fig. 2 shows that in cases of high
substrate availability, surface roughness does not have a pronounced effect on biofilm
activity before the stopping criterion is reached. In the case of the higher G-number,
cf Fig. 3, the substrate flux is the same for all geometries initially but then starts
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Fig. 2 Substrate flux into the domain for various wave lengths and amplitudes. The bulk substrate
concentration is Cbulk = 52 g m−3 (i.e. G = 2.05)

diverging at approximately t = 4. The flux into the system is larger for geometries
with higher amplitude and system wavelength. The substrate flux into the system
translates into biomass produced (data not shown).

3.3 Effect of Surface Roughness on Biofilm Structure

To investigate the effect of surface roughness on biofilm structure we visualize the
simulations in Figs. 4 and 5, where we plot biofilm structure and substrate concen-
tration for different time steps. For all wavelengths similar qualitative results are
obtained, but there are quantitative differences. Due to space limitations, not all
results can be shown here. We include in detail those for the smallest wavelength,
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Fig. 3 Substrate flux into the domain for various wave lengths and amplitudes. The bulk substrate
concentration is Cbulk = 5.4 g m−3 (i.e. G = 19.7)

λ = 0.5, for which the effects are most pronounced. For λ = 0.75 and λ = 1.50, we
show the results for amplitude A = 0.25 at time T = 19.45 for the case G = 20 in
Fig. 6 as examples.

In the case of the flat surface, the biofilm develops as a homogeneous flat layer. In
cases of high substrate availability (low G, Fig. 4), a compact biofilm layer covering
the substratum develops. In an initial period, the biofilm forms a layer of nearly
homogeneous thickness along the substratum. For larger t , in the case of small
amplitudes, the biofilm overgrows the surface irregularity. For larger wavelengths,
biofilm growth remains limited in the deeper regions in the pockets, whereas in the
case of smaller wavelength the pockets fill up (simulation data not shown).

In cases of low substrate availability (highG, Fig. 5), after an initial period biofilm
growth dominates on the hump, closest to the substrate source. Substrate diffusion
into the pockets is limited, not allowing biofilm formation. For smaller wavelengths,
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Fig. 4 Substrate concentration and biofilm structure (shown by biomass density isolines) at various
time instances for wavelength λ1 = 0.50 and a range of roughness amplitudes. Bulk substrate
concentration Cbulk = 52 g m−3 (G = 2)

the biofilm colony resembles a mushroom architecture, whereas for larger wave-
lengths, the local biofilm height is correlated with the distance of the substratum to
the substrate source (simulation data not shown).

4 Conclusion

Our simulations show that mesoscopic surface irregularity can increase the het-
erogeneity of biofilm structures. Depending on substrate loading and geometrical
parameters of the domain, biofilm growth in pockets can be limited. In many engi-
neering applications, one-dimensional biofilm models are used to simulate biofilm
processes and to assess biofilm activity and performance. Our simulation results sug-
gest that such a 1D description might suffice to capture biofilm growth and substrate
removal in cases of high substrate availability, particularly, if the surface roughness
is mild. On the other hand, if growth conditions are poorer, surface irregularities
cannot be neglected, and a full 2D simulation is required to describe biofilm activity
and structure correctly.
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Fig. 5 Substrate concentration and biofilm structure (shown by biomass density isolines) at various
time instances for wavelength λ1 = 0.50 and a range of roughness amplitudes. Bulk substrate
concentration Cbulk = 5.4 g m−3 (G = 20)

Fig. 6 Substrate
concentration and biofilm
structure (shown by biomass
density isolines) for two
different wavelengths at
amplitude A = 0.25 and
time T = 19.45 with
Cbulk = 5.4 g m−3

(G = 20)
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Dynamics of a Stage Structured
Intraguild Predation Model

Juancho A. Collera and Felicia Maria G. Magpantay

Abstract In this paper, we consider a three-species intraguild predation (IGP)model
which includes a predator (IG predator) and its prey (IG prey) that share a common
resource, and where the IG prey population is partitioned into juvenile and adult
stages. The juvenile IG prey are assumed to have little ability for predation and
are able to avoid the IG predators by taking refuge. The maturation age of the IG
prey population is reflected by a time delay. Conditions for the existence and local
stability of all non-negative equilibria are given using the delay as themain parameter.
In particular, we show that the positive equilibrium may switch stability at some
critical delay value where a Hopf bifurcation occurs. However, this does not lead
to destabilization of the system since the stability of the positive equilibrium is
passed on to the limit cycle that is created via the Hopf bifurcation. In other words,
the introduction of stage structure on the IG prey population enhances the species
coexistence through the emergence of limit cycles.

Keywords Stage structure · Intraguild predation · Stability switches
Hopf bifurcation · Delay differential equations · Limit cycles

1 Introduction

Intraguild predation (IGP), as defined in [9], is killing and eating of potential com-
petitors. An example of IGP is the tri-trophic community module which includes a
predator (IG predator) and its prey (IG prey) that share a common resource. Because
the IG predator feeds on more than one trophic level, it is a called omnivorous. IGP
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is a combination of predation and competition. An IGPmodel of Lotka-Volterra type
considered in [6] showed that IGP could have a destabilizing effect, and a criterion
for co-existence of all three species is that the IG prey must be superior than the IG
predator in competing for the shared basal resource while the IG predator must gain
significantly from its consumption of the IG prey. The following three-species IGP
model was examined in [6]:

ẋ(t) = x(t) [ a0 − a1x(t) − a2y(t) − a3z(t)] ,

ẏ(t) = y(t) [−b0 + b1x(t) − b3z(t)] , (1)

ż(t) = z(t) [−c0 + c1x(t) + c2y(t)] ,

where x(t), y(t), and z(t) denote the densities of the basal resource, the IG prey, and
the IG predator, respectively. The parameter a0 represents the basal resource’s intrin-
sic growth rate, while b0 and c0 are, respectively, the death rates of the IG prey and the
IG predator. The intraspecific competition or self-regulation coefficient is given by
a1; consumption rates are given by a2, a3, and b3; and reproduction rates of the con-
sumer from consumption of the victim are given by b1, c1, and c2. All parameters are
assumed tobenon-negative, and the initial condition (x(0), y(0), z(0)) = (x0, y0, z0)
where x0, y0, z0 ≥ 0 is used. Discussions on boundedness of solution and perma-
nence of system (1) can be found in [14]. Here, the IG predator depends both on the
IG prey and on the basal resource for its sustenance, while the IG prey feeds on the
basal resource exclusively [9]. Figure1a shows a diagram of the interactions between
these three species.

IGP models are shown to exhibit rich and interesting dynamics such as multiple
stability switches [2, 3], multitype bistability [10], and chaos even if the functional
responses are linear [7, 8, 12]. Recent works such as [14] considered a three-species
IGPmodel, like in (1),with stage structure in the IGpredator population. In this paper,
we study a three-species IGPmodel of Lotka-Volterra typewith stage structure on the
IG prey population and use the prey maturation age as the main parameter. Figure1b
shows the diagram of the interactions between species in our stage-structured IGP
model. We show that as we vary the maturation age, a stable positive equilibrium
may become unstable. However, this does not lead to destabilization of the system
since the stability of the positive equilibrium is passed on to the limit cycle that is
created by the Hopf bifurcation. That is, all three species still coexist but in a cyclic
manner. The introduction of stage structure on the IG prey population enhances the
species coexistence.

In the following,we discuss howourmodel is derived.We use similar assumptions
as [13] in incorporating stage structure on the IG prey population. Starting at the
equations in (1), we first partition the IG prey population y(t) into immature stage
y1(t) and mature stage y2(t) where τ ≥ 0 is the maturation age with the following
assumptions: (i) the immature IG prey have little ability of predation, and (ii) the
immature IG prey are able to avoid predation by the IG predators by taking refuge.
We obtain the following system
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Fig. 1 a Three-species IGP
model. b IGP model with
stage structured IG prey
population

ẋ(t) = x(t) [a0 − a1x(t) − a2y2(t) − a3z(t)] ,

ẏ1(t) = −μy1(t) − b1e
−μτ x(t − τ)y2(t − τ) + b1x(t)y2(t), (2)

ẏ2(t) = −b0y2(t) + b1e
−μτ x(t − τ)y2(t − τ) − b3y2(t)z(t),

ż(t) = z(t) [−c0 + c1x(t) + c2y2(t)] ,

where μ > 0 is the death rate of immature IG prey, b1e−μτ x(t − τ)y2(t − τ) is the
number of immature IG prey that was born at time (t − τ) which still survives at
time t and is transferred from the immature stage to the mature stage at time t , and
b1x(t)y2(t) is number of immature IG prey that are born at time t . Note that the
equation for the immature IG prey can be separated from the rest of system (2).
Renaming y2(t) to just y(t), we obtain the following system

ẋ(t) = x(t) [a0 − a1x(t) − a2y(t) − a3z(t)] ,

ẏ(t) = −b0y(t) + b1e
−μτ x(t − τ)y(t − τ) − b3y(t)z(t), (3)

ż(t) = z(t) [−c0 + c1x(t) + c2y(t)] .

Observe that when τ = 0, then (3) reduces to (1).
System (3) has five possible non-negative equilibrium solutions: the bound-

ary equilibria E0 = (0, 0, 0), E1 = (K , 0, 0), E2 = (A, B, 0), and E3 = (C, 0, D)

where K = a0/a1, A = b0/b1e−μτ , B = (a0b1e−μτ − a1b0)/a2b1e−μτ , C = c0/c1,
and D = (a0c1 − a1c0)/a3c1, and the positive equilibrium E4 = ( P

S , Q
S , R

S )where in
S = a1b3c2 − a2b3c1 + a3b1c2e−μτ , R = (a0c2 − a2c0)b1e−μτ − a1b0c2 + a2b0c1,
Q = −a0b3c1 + a1b3c0 − a3b0c1 + a3b1c0e−μτ , and P = a0b3c2 − a2b3c0 + a3b0c2.

Theorem 1 For system (3), the equilibrium solutions E0 and E1 always exist, while
the boundary equilibria E2 and E3 exist provided B > 0 and D > 0, respectively.
The positive equilibrium E4 exists if the components P/S, Q/S, and R/S are all
positive.
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2 Results

We now examine the local stability of the equilibria of system (3). The linearized
system around an equilibrium solution E∗ = (x∗, y∗, z∗) of system (3) has corre-
sponding characteristic equation given by

det(λI − M1 − e−λτ M2) = 0 (4)

where [M1 | M2] is given by

⎡
⎣
a0 − 2a1x∗ − a2y∗ − a3z∗ −a2x∗ −a3x∗ 0 0 0

0 −b0 − b3z∗ −b3y∗ b1e
−μτ y∗ b1e

−μτ x∗ 0
c1z∗ c2z∗ −c0 + c1x∗ + c2y∗ 0 0 0

⎤
⎦ .

Here the roots λ of Eq. (4) depend on τ and when we want to emphasize this we
write λ = λ(τ).

At the trivial equilibrium E0, the characteristic Eq. (4) reduces to the polyno-
mial equation (λ − a0)(λ + b0)(λ + c0) = 0 with roots λ = a0 > 0, λ = −b0 <

0, and λ = −c0 < 0. Thus, E0 is a saddle and is unstable. At E1 = (K , 0, 0),
Eq. (4) becomes (λ + a0)(λ − a3c1D/a1)(λ + b0 − b1Ke−μτ e−λτ ) = 0whose roots
include λ = −a0 < 0 and λ = a3c1D/a1 which is negative if D < 0. Now, notice
that if λ is a root of h1(λ, τ ) = 0 where h1(λ, τ ) = λ + b0 − b1Ke−μτ e−λτ with
Re λ ≥ 0, then b0 ≤ |λ + b0| = ∣∣b1Ke−μτ e−λτ

∣∣ = b1Ke−μτ
∣∣e−λτ

∣∣ ≤ b1Ke−μτ , or
equivalently, B ≥ 0. That is, if B < 0, then the roots of h1(λ, τ ) = 0 have negative
real parts. Hence, E1 is locally asymptotically stable (LAS) if B < 0 and D < 0, or
equivalently if both E2 and E3 do not exist.

Theorem 2 For system (3), the trivial equilibrium E0 is an unstable saddle while
the boundary equilibrium E1 = (K , 0, 0) is LAS whenever B < 0 and D < 0.

We now examine the local stability of the remaining boundary equilibria. Sup-
pose E2 = (A, B, 0) exists, that is, A > 0 and B > 0. At E2, Eq. (4) becomes
(λ − Reμτ /a2b1)

(
λ2 + (a1A + b0)λ + a1b0A − (λ + a1A − a2B)b0e−λτ

) = 0
whose roots include λ = Reμτ /a2b1 which is negative if R < 0. Now, consider the
equation

h2(λ, τ ) := λ2 + (a1A + b0)λ + a1b0A − (λ + a1A − a2B)b0e
−λτ = 0. (5)

If τ = 0, then (5) reduces toλ2 + a1Aλ + a2b0B = 0whose roots both have negative
real part since both A and B are positive. Consider now the case where τ > 0. First,
notice that λ = 0 is not a root Eq. (5) for any τ since B > 0. Suppose now that λ = iω
with ω > 0 is a root of (5). Then, the imaginary part of the equation h2(iω, τ) = 0
is (a1A + b0)ω − b0ω cos(ωτ) + b0(a1A − a2B) sin(ωτ) = 0. Thus,
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a1Aω + b0ω = |b0ω cos(ωτ) − b0(a1A − a2B) sin(ωτ)|
≤ b0ω| cos(ωτ)| + b0(a1A + a2B)| sin(ωτ)|
≤ b0ω + b0(a1A + a2B)ωτ

since | cos(ωτ)| ≤ 1 and | sin(ωτ)| ≤ |ωτ | = ωτ . Hence, a1A ≤ b0(a1A + a2B)τ,

or equivalently a1
a0b1

≤ τe−μτ . That is, if we assume that a1
a0b1

> τe−μτ , then all roots
of (5) have negative real parts. Now suppose that the boundary equilibrium E3 =
(C, 0, D) exists, that is, C > 0 and D > 0. At E3, the characteristic Eq. (4) reduces
to

(
λ2 + a1Cλ + a3c0D

) (
λ + b0 + b3D − b1Ce−μτ e−λτ

) = 0. Since C > 0 and
D > 0, the roots of λ2 + a1Cλ + a3c0D = 0 both have negative real part. Now, let
λ be a root of h3(λ, τ ) := λ + b0 + b3D − b1Ce−μτ e−λτ = 0 with Re λ ≥ 0. Then,
(b0 + b3D) ≤ |λ + b0 + b3D| = |b1Ce−μτ e−λτ | = b1Ce−μτ |e−λτ | ≤ b1Ce−μτ .

Observe that if (b0 + b3D) ≤ b1Ce−μτ , then Q/a3c1 ≥ 0. Hence, if Q < 0, then
all roots of h3(λ, τ ) = 0 have negative real part. We have the following results.

Theorem 3 For system (3), the boundary equilibrium E2 = (A, B, 0) is LAS if R <

0 and a1
a0b1

> τeμτ , while the boundary equilibrium E3 = (C, 0, D) is LAS if Q < 0.

We now examine the local stability of the positive equilibrium. Suppose that
E4 = (

P
S , Q

S , R
S

)
exists. That is, P

S , Q
S , R

S > 0. At E4, Eq. (4) reduces to

[
λ3 + a(τ )λ2 + b(τ )λ + c(τ )

] + [
p(τ )λ2 + q(τ )λ + r(τ )

]
e−λτ = 0 (6)

where ina(τ ) = (
a1P + b1e−μτ P

)
/S,b(τ ) = (

a1b1e−μτ P2 + a3c1PR + b3c2QR
]

/S2, and c(τ ) = [
(a1b3c2 − a2b3c1)PQR + a3b1c1e−μτ P2R

)
/S3; p(τ ) = −b1e−μτ

P/S,q(τ ) = [
(a2Q − a1P)b1e−μτ P

]
/S2, and r(τ ) = [

(c2Q − c1P)a3b1e−μτ PR
]

/S3. These coefficients depend on the time delay τ . For ease of notation, we
drop the τ on these coefficients. We follow the discussions and notations used in
[1] in analyzing the roots of characteristic equations with delay-dependent coef-
ficients. Note that (a + p) = a1 · P

S , (b + q) = a2b1e−μτ · P
S · Q

S + a3c1 · P
S · R

S +
b3c2 · Q

S · R
S , and (c + r) = (

a1b3c2 − a2b3c1 + a3b1c2e−μτ
) · P

S · Q
S · R

S = S · P
S ·

Q
S · R

S . Since the components P
S ,

Q
S , and

R
S of E4 are all positive, both (a + p)

and (b + q) are positive, while (c + r) is positive (resp. negative) if S is positive
(resp. negative). Also, notice that (a + p)(b + q) − (c + r) is given by

a1

(
a2b1e

−μτ · Q
S

+ a3c1 · R
S

) (
P

S

)2

+ (
a2b3c1 − a3b1c2e

−μτ
) · P

S
· Q
S

· R
S

.

So that if
(
a2b3c1 − a3b1c2e−μτ

)
is positive, then (a + p)(b + q) − (c + r) is pos-

itive. At τ = 0, characteristic Eq. (6) reduces to λ3 + ρλ2 + σλ + ϕ = 0 where the
coefficients ρ = (a + p)|τ=0, σ = (b + q)|τ=0, and ϕ = (c + r)|τ=0. The Routh-
Hurwitz criterion requires ρ, σ , ϕ, and (ρσ − ϕ) to be all positive so that all roots
of this cubic polynomial equation λ3 + ρλ2 + σλ + ϕ = 0 have negative real part.

Theorem 4 Let τ = 0 in system (3). If S(0) > 0and (a2b3c1 − a3b1c2) > 0, then the
positive equilibrium E4 is LAS. If S(0) < 0 or if (ρσ − ϕ) < 0, then E4 is unstable.
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Consider now the case τ > 0. Since S �= 0, (c + r) = S · P
S

Q
S

R
S �= 0, and thus

λ(τ) = 0 is not a root of (6). If λ(τ) = iω(τ), with ω(τ) > 0, is a root (6),
then

[−iω3(τ ) − aω2(τ ) + ibω(τ) + c
] + [−pω2(τ ) + iqω(τ) + r

]
e−iω(τ)τ = 0.

Separating the real and imaginary parts of this equation, we obtain

[
qω(τ) −(pω2(τ ) − r)

(pω2(τ ) − r) qω(τ)

] [
sin(ω(τ)τ )

cos(ω(τ)τ )

]
=

[
aω2(τ ) − c

(ω2(τ ) − b)ω(τ)

]
,

which then gives

(aω2(τ ) − c)2 + (ω2(τ ) − b)2ω2(τ ) = (pω2(τ ) − r)2 + q2ω2(τ ). (7)

Following [1], we write (7) into the following form

F(ω, τ) := ω6 + αω4 + βω2 + γ = 0 (8)

where α = a2 − p2 − 2b, β = b2 − q2 + 2(pr − ac), and γ = c2 − r2. If we let
u = ω2, then (8) can be written as

H(u, τ ) := u3 + αu2 + βu + γ = 0. (9)

Note that if (9) has a positive root u0, then (8) has a positive root ω0 = √
u0 and

consequently, (6) has a pair of purely imaginary roots λ = ±iω0. That is, if (9) has a
positive root, then stability switches may occur as τ is varied. Let I ⊂ R+0 be the set
where ω(τ) is a positive root of (8). Define the angle θ(τ ) ∈ [0, 2π ] to be solution
to the following

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin θ(τ ) = (pω2(τ ) − r)(ω2(τ ) − b)ω(τ) + qω(τ)(aω2(τ ) − c)

p2ω4(τ ) + (q2 − 2pr)ω2(τ ) + r2
,

cos θ(τ ) = qω2(τ )(ω2(τ ) − b) − (pω2(τ ) − r)(aω2(τ ) − c)

p2ω4(τ ) + (q2 − 2pr)ω2(τ ) + r2
.

For τ ∈ I , that is ω(τ) is a positive root of (8), we have ω(τ)τ = θ(τ ) + 2nπ for
n ∈ N0.Hence,we candefine the functions Sn(τ ) = τ − τn(τ ), for τ ∈ I andn ∈ N0,
where τn(τ ) = (θ(τ ) + 2nπ) /ω(τ). In [1], it was shown that the functions Sn(τ )

are continuous and differentiable.

Theorem 5 (Beretta and Kuang [1]) Assume that ω(τ) is a positive root of (8)
defined for τ ∈ I ⊂ R+0, and at some τ ∗ ∈ I , Sn(τ ∗) = 0 for some n ∈ N0. Then a
conjugate pair of simple purely imaginary roots λ±(τ ∗) = ±iω(τ ∗) of (6) exists at
τ = τ ∗ which crosses the imaginary axis from left to right (resp. from right to left) if
δ(τ ∗) > 0 (resp. δ(τ ∗) < 0), where
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δ(τ ∗) = sign

{
dReλ

dτ

∣∣∣∣
λ=iω(τ ∗)

}
= sign

{
F ′

ω(ω(τ ∗), τ ∗)
} · sign

{
dSn(τ )

dτ

∣∣∣∣
τ=τ ∗

}
.

From (8) and (9), we get F ′
ω(ω(τ), τ ) = 2ω(τ) · H ′

u(u(τ ), τ )|u(τ )=ω2(τ ). Since
ω(τ) > 0 for τ ∈ I , the expression for δ(τ ∗) in Theorem 5 can be written as

δ(τ ∗) = sign
{
H ′

u(u(τ ∗), τ ∗)
} · sign

{
dSn(τ )

dτ

∣∣∣∣
τ=τ ∗

}
. (10)

Also, note that if such τ ∗ in Theorem 5 exists and δ(τ ∗) �= 0, then at τ = τ ∗ system
(3) undergoes a Hopf bifurcation at the positive equilibrium E4. See [5, 11] for a
statement of the Hopf bifurcation theorem for functional differential equations.

3 Numerical Simulations

We use the following parameter values a0 = 5.00, a1 = 0.40, a2 = 1.00, a3 = 0.85,
b0 = 1.00, b1 = 1.00, b3 = 1.00, c0 = 1.20, c1 = 0.10, c2 = 1.00, and μ = 0.01.
At τ = 0, we get the positive equilibrium E4 = (4.0435, 0.7957, 3.0435). From
Theorem 4, E4 is unstable because (ρσ − ϕ) < 0. We want to know if stability
switches will occur as τ is increased from zero. Recall that if the cubic equation
H(u, τ ) = u3 + α(τ)u2 + β(τ)u + γ (τ) = 0 given in (9) has a simple positive root,
then (6) has a pair of simple purely imaginary roots. Figure2a shows that for values
of τ immediately to the right of zero, the coefficients

α(τ) < 0, β(τ ) < 0, and γ (τ) > 0. (11)

If the coefficients of H(u, τ ) satisfy (11), then Eq. (9) has exactly 2 positive simple
roots provided the relative minimum point (ū, H(ū, τ )) of the graph of H satisfies
the following condition

H(ū, τ ) < 0. (12)

Observe, from Fig. 2a, b that (11) and (12) are satisfied whenever τ ∈ (0, τend)where
the value of τend is approximately 17.1276.

Consider the set I = { τ > 0 | α(τ) < 0, β(τ ) < 0, γ (τ ) > 0, and H(ū, τ ) < 0} .

For τ ∈ I , conditions (11) and (12) are satisfied. Thus, Eq. (9) has 2 positive roots,
say u(τ ) = u±(τ ) with u+(τ ) > u−(τ ) > 0. Consequently, Eq. (8) has 2 positive
roots ω(τ) = ω±(τ ) = √

u±(τ ). Note that the graph of H(u(τ ), τ ) is decreasing at
u(τ ) = u−(τ ) and is increasing at u(τ ) = u+(τ ). That is, we have

H ′
u(u−(τ ), τ ) < 0 and H ′

u(u+(τ ), τ ) > 0. (13)
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Fig. 2 aGraphs of the coefficients α(τ), β(τ), and γ (τ) in the cubic polynomial H(u(τ ), τ ). bThe
relative minimum point (ū(τ ), H(ū(τ ), τ )) of the graph of H(u(τ ), τ ) has H(ū(τ ), τ ) < 0 for τ ∈
(0, τend ), where τend = 17.1276 approximately. c The graph of the cubic polynomial H(u(τ ), τ )

when τ = 10. d The graph of the functions S+
n (τ ) (in blue) and the graph of the functions S−

n (τ )

(in red) for n = 0, 1, 2, 3, 4, 5, 6

Figure2c shows the graph of the cubic polynomial H(u, 10) whose coefficients
satisfy (11) and (12). The positive roots u−(10) and u+(10) of H(u, 10) = 0 are
indicated alongwith the relativeminimumpoint (ū, H(ū, 10)).Observe that (11) tells
us that the graph of the cubic polynomial intersects the vertical axis at a point above
the horizontal axis (γ (τ) > 0), and where the graph is decreasing (β(τ) < 0) and
concave downwards (α(τ) < 0). Meanwhile, (12) assures us that the cubic equation
has 2 simple positive roots if the relative minimum point is below the horizontal axis
(i.e. H(ū, τ ) < 0).
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In this example, Eq. (6) has 2 conjugate pairs of simple purely imaginary roots
λ(τ ∗−) = ±iω−(τ ∗−) and λ(τ ∗+) = ±iω+(τ ∗+). To find the critical delay values τ ∗± in
Theorem 5, where stability switches may occur, we look at the zeros of the functions
S±
n (τ ). Figure2d shows the graph of these functions on the interval (0, τend) for

n = 0, 1, 2, 3, 4, 5, 6. In Fig. 3a, we look closer at the graph of the first few S±
n (τ ) and

observe that S+
0 (τ ) has no zeros in the interval (0, τend) while S

−
0 (τ ), S+

1 (τ ), S+
2 (τ ),

and S−
1 (τ ) has exactly one zero each given approximately by τ−

0 = 1.0515, τ+
1 =

2.4002, τ+
2 = 4.9575, and τ−

1 = 5.8070, respectively. To determine the direction
of the stability switch at the critical delay value τ ∗, we compute δ(τ ∗) using (10).
From Fig. 2d, we see that the functions S±

n (τ ) are all increasing at their respective

zeros τ = τ±
n , so that sign

{
dS±

n (τ )

dτ

∣∣∣
τ=τ±

n

}
= +1. Meanwhile, from (13), we know

Fig. 3 aGraphs of S+
0 (τ ), S−

0 (τ ), S+
1 (τ ), S+

2 (τ ), and S−
1 (τ ).bStability of E4 changes at τ = τ−

0 =
1.0515 and at τ = τ+

1 = 2.4002 marked with black (∗) where Hopf bifurcation occurs. Stable parts
are in green while unstable parts are in magenta. c Stable branches of periodic solutions (shown in
green) emanating from the Hopf bifurcations. The vertical axis gives a measure of the maximum
value of x(t). d Time series of x(t) for different delay values illustrating the existence of a stable
periodic solution for τ < τ−

0 and τ > τ+
1 , and the local stability of E4 for τ ∈ (τ−

0 , τ+
1 )
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that sign
{
H ′

u(u(τ±
n ), τ±

n )
} = ±1. Therefore, we have δ(τ±

n ) = ±1. At τ = τ−
0 =

1.0515, we have a switch from unstable to stable, while at τ = τ+
1 = 2.4002 we

have a switch from stable to unstable.
Numerical continuation, using DDE-Biftool [4], also confirms these switches on

the stability of the positive equilibrium E4 as shown in Fig. 3b. We also mention that
at τ = τ−

0 and at τ = τ+
1 , system (3) undergoes a Hopf bifurcation at the positive

equilibrium E4. Figure3c shows the branches of periodic solutions that emerged
from these Hopf bifurcation points. In Fig. 3d, we select three different values of the
time delay to show that for τ < τ−

0 and for τ > τ+
1 , where E4 is unstable, a stable

periodic solution exists, while for τ ∈ (τ−
0 , τ+

1 ), E4 is locally asymptotically stable.

4 Conclusion

In this paper, we considered a three-species IGP model with stage structure in the IG
preypopulation, that is, the IGpreypopulation is divided into juvenile and adult stages
with maturation age reflected by a delay parameter. We assumed that the juvenile IG
prey have little ability of predation and are able to avoid the IG predators by taking
refuge. Conditions for the existence and local stability of all non-negative equilibrium
solutions are given using the time delay as parameter. In particular, we showed that
the positive equilibriummay switch stability at some critical delay value where Hopf
bifurcation occurs. Numerical continuation in DDE-Biftool is used to illustrate our
results and examine the bifurcating branch of periodic solutions emerging from the
Hopf bifurcation. Our results tell us that as we vary the delay parameter, which is
the maturation age of the IG prey population, a stable positive equilibrium may lose
stability at some critical delay value. However, this does not lead to destabilization
of the system since the stability of the positive equilibrium is being passed on to the
limit cycle that is created via Hopf bifurcation. The introduction of stage structure
on the IG prey population enhances the species coexistence through the emergence
of limit cycles.
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A Conceptual Model for the Pliocene
Paradox

Brady Dortmans, William F. Langford and Allan R. Willms

Abstract In the Pliocene Epoch (5.3–2.6million years ago), there was an abrupt
cooling of the Arctic, from an ice-free to an ice-covered climate state. A simple
conceptual mathematical model of Arctic climate is used to explore the potential role
of forcing factors, such as CO2 concentration and ocean heat transport to the Arctic,
as well as nonlinear feedback mechanisms, such as ice-albedo feedback and water
vapour feedback, in the climate change of the Pliocene Arctic. The mathematical
model provides a plausible explanation for this abrupt climate change, involving
both of these forcing factors and both of the nonlinear feedback mechanisms. The
model also sheds light on the fact that modern general circulation models have been
unable to reproduce this dramatic change in Arctic climate.

Keywords Climate change · Pliocene paradox · Slab model · Water vapour
Carbon dioxide

1 Introduction

Better understanding of climate changes that have occurred in the geological record
of the Earth may enable us to predict climate change that will occur in the future. The
Pliocene Epoch (5.3–2.6MYa) was a time of dramatic climate change in the Arctic
region on Earth. The Arctic cooled from ice-free to ice-covered, while the climate
of the remainder of the planet changed relatively little. The major climate “forcing
mechanisms” such as solar radiation, CO2 concentration, Earth orbital parameters
and geography were all very close to today’s values. Therefore, it is a challenge
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for climate scientists to explain why the early Pliocene Arctic climate was so much
warmer than today, even though the forcing mechanisms were little different from
today. This question is known as the Pliocene Paradox [4]. Climate scientists have
developed powerful computer models of weather and climate, known as General
Circulation Models (GCM), which accurately reproduce today’s climate. When a
modern GCM is adjusted to the forcing mechanisms of the Pliocene, the predicted
climate is little different from today’s climate [4]. The conceptual model presented
here explains the difficulty for GCM’s to reproduce the warm Arctic climate of the
early Pliocene and provides a simple resolution of the Pliocene Paradox.

In this paper we present a preliminary analysis of a conceptual model of Arctic
climate, with emphasis on the role of greenhouse gases and ocean heat transport
(OHT). The model is built on basic physical laws such as: the Stefan-Boltzmann law,
Beer’s law, the ideal gas equation, and the Clausius-Clapeyron equation. No weather
data are used. The geometry of the Arctic is simplified to an absolute minimum. The
atmosphere of the Arctic is represented as a column of unit cross-section, centred on
the North Pole, with uniform temperature TA. The surface temperature is TS . These
are the only two state variables in the model. Similar conceptual models have been
studied by many authors, see [2, 3, 8, 9, 11] and further references therein. This
paper extends previous uniform slab models, by investigating the interplay between
two climate forcing mechanisms (CO2 concentration and ocean heat transport) and
two climate feedback mechanisms (ice-albedo feedback and water vapour feedback).

Rather than isolating the climate forcing and feedback parameters pertinent to the
Pliocene itself, thismodel brackets thePliocene conditions usingpublishedparameter
values for thewarmEoceneEpoch (56–34MYa) [5, 12] and the pre-industrialmodern
era [6]. As the forcing parameters sweep fromEocene values to pre-industrial values,
themodel exhibits an abrupt change (bifurcation point or tipping point) in the climate
state, homologous to what occurred in the Pliocene.

2 Conceptual Model of Arctic Climate

Only a summary of the mathematical model is presented here. For a complete deriva-
tion of the model, see [3]. The Arctic atmosphere is represented as a uniform column
of air, of unit cross-section, vertically above the surface at the North Pole. The total
mass of air in this uniform column is equal to the total mass of a (non-uniform)
column of the actual atmosphere, from the surface to the tropopause, at the North
Pole. This model is based on the model used in Payne et al. [9], modified as shown
in Fig. 1. The symbols in Fig. 1 are defined in Table 1. The incoming solar radiation
is denoted FS , ocean heat transport is FO and atmospheric heat transport is FA. The
surface emits longwave radiation with intensity IS , of which a fraction η is absorbed
by the greenhouse gases in the atmosphere. The atmosphere is assumed to emit long-
wave radiation with intensity IA upwards and downwards, with half going in each
direction. The primary difference between our model and Payne’s model is that the
absorptivity of the greenhouse gases in our model are expressed as functions of the
CO2 concentration and the atmospheric temperature.
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Fig. 1 A visualization of the conceptual model. Symbols are defined in Table 1

Table 1 Summary of variables and parameters used in the model. For details see [3]

Variables Symbol Values

Mean temperature of the surface TS −50 to +20 ◦C
Infrared radiation from the surface IS = σT 4

S 141 to 419 Wm−2

Mean temperature of the atmosphere TA −70 to 0 ◦C
Infrared radiation from the atmosphere IA = εσT 4

A 87 to 219 Wm−2

Parameters and Constants Symbol Values

Stefan-Boltzmann constant σ 5.670 × 10−8 Wm−2K−4

Emissivity of dry air ε 0.9

Greenhouse gas absorptivity η 0 to 1

Absorptivity for CO2 ηC 0 to 1

Absorptivity for H2O ηW 0 to 1

Ocean heat transport FO 20 to 60 Wm−2

Atmospheric heat transport FA 70 to 127Wm−2

Absorption of solar radiation FS (1 − α)Q

Incident solar radiation at North Pole Q 173.2Wm−2

Molar concentration of CO2 in ppm μ 270 to 600 ppm

Relative humidity of H2O δ 0 to 1

Absorption coefficient for CO2 kC 0.0474 m2/kg

Absorption coefficient for H2O kW 0.016 m2/kg

Warm surface Albedo for ocean αW 0.04

Cold surface Albedo for ice/snow αC 0.7
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In the model it is assumed that both the surface and the atmosphere are at equilib-
rium; that is, energy in = energy out for each, and the two temperatures TS and TA

are determined by these two equilibrium equations. From Fig. 1, the energy balance
equations for the surface and the atmosphere are, respectively,

0 = FS + FO + 1

2
IA − IS, (1)

0 = FA + ηIS − IA. (2)

2.1 Radiation Balance

It is assumed that the shortwave radiation from the sun passes through the atmosphere
without being absorbed. At the surface, the amount of solar radiation absorbed FS is
determined by the annually averaged intensity of solar radiation striking the surface,
Q, and by the albedo of the surface, α, which is the fraction of Q reflected by the
surface back into space. Thus

FS = (1 − α)Q. (3)

The value of Q at the North Pole is Q = 173.2 Wm−2, see [3, 7]. Typical values
of the albedo α are 0.6–0.9 for snow, 0.4 for ice, 0.2 for cropland and 0.1 or less
for open ocean. In this paper, two values of α are used corresponding to whether the
surface temperature is below or above freezing, that is

α =
{

αc = 0.7 if TS ≤ 273.15K,

αw = 0.04 if TS > 273.15K.
(4)

The emission of radiation from the atmosphere and surface is governed by the
Stefan-Boltzmann law, that is

IS = σT 4
S , and IA = εσT 4

A . (5)

Here σ = 5.670 × 10−8 Wm−2 K−4 is the Stefan-Boltzmann constant. The surface
of the Earth acts as a black-body, so ε = 1 in IS . However, the atmosphere is an
imperfect black-body, with ε = 0.9 in IA.

Substituting (3) and (5) into (1) and (2) gives the surface and atmosphere energy
balance equations in terms of the two equilibrium temperatures TS and TA:

0 = (1 − α)Q + FO + 1

2
εσT 4

A − σT 4
S , (6)

0 = FA + ησT 4
S − εσT 4

A . (7)
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2.2 Greenhouse Gases

The coefficient η in Eqs. (2) and (7) represents the fraction of the outgoing radiation
IS from the surface that is absorbed by the greenhouse gases in the atmosphere, also
known as absorptivity. Then (1 − η) is the fraction of the outgoing infrared radiation
that escapes to space.Most previous conceptual models leave η as a parameter, which
is adjusted manually in the equation. In this paper, η is expressed as a function of
more fundamental physical parameters.

The two principal greenhouse gases are carbon dioxide CO2 and water vapour
H2O. Because they act in different ways, we determine the absorptivities ηC , ηW of
CO2 and H2O separately, and then combine their effects as

η = 1 − (1 − ηC)(1 − ηW ). (8)

Equation (8) simply states that the absorption done by CO2 and water vapour is in-
dependent, so that the total fraction of radiation passing through the atmosphere is
a product of the fractions that pass through the two gases individually. Other green-
house gases have only minor influence and are ignored in this paper. Although it
is well-known that CO2 and H2O absorb the infrared radiation IS at specific wave-
lengths, in this paper the grey gas approximation [10] is used; that is, absorptivity is
given as a single number averaged over the infrared spectrum.

The concentration of CO2 in the atmosphere is usually expressed as a ratio μ, in
molar parts per million (ppm) of dry air. Today there is convincing evidence that μ

is increasing due to human activity. The value before the industrial revolution was
μ = 270 ppm, but today μ is slightly above 400 ppm. To convert molar ppm to mass
ppm onemust multiplyμ by the ratio of molar masses of CO2 and dry air,

mC
mA

≈ 1.52
(CO2 is about 50% heavier than air, which is primarily nitrogen gas N2).

Beer’s law [3] dictates that for the slab model with constant density, ρ, of CO2,
the radiation from the surface passing through this gas is (1 − ηC)IS = ISe−kCρZ ,
where Z is the height of the troposphere and kC is the absorption coefficient for CO2.
The mass of a column of air, of unit cross-section, from surface to tropopause, is
determined as MA = PA/g, where PA is the atmospheric pressure at the surface and
g is acceleration due to gravity. It follows that

ηC = 1 − exp

[
− μ

106

(
mC

mA

)
kCMA

]
≡ 1 − exp[−μ · G1]. (9)

These constants combine to give the greenhouse gas constant for CO2 as G1 =
7.44 × 10−4.

The absorptivity of water vapour in (8) can not be expressed as simply as is the
case for CO2 in (9), because the concentration of water vapour in the atmosphere
is strongly dependent on temperature. There is a temperature-dependent maximum
(saturated) value of H2O gas concentration, above which the water vapour condenses
out of the atmosphere and falls as rain (or snow). This saturated value, usually
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expressed as partial pressure, is determined by theClausius-Clapeyron equation [10].
The ratio of the actual partial pressure ofH2O in the atmosphere to the saturatedpartial
pressure (under any given conditions) is called relative humidity and denoted δ, 0 ≤
δ ≤ 1. Using the Clausius-Clapeyron equation, the absorptivity of water vapour in
the atmosphere at temperature T has been determined in [3] as

ηW = 1 − exp

[
−δkW

Psat (TR)

g

[
TR

TA

]
exp

(
Lv

RW

[
1

TR
− 1

TA

])]
. (10)

Here, TR is a reference temperature, which we take to be the freezing point of water,
273.15 ◦K, and Psat (TR)/g is the mass of a column, with unit cross-section, of water
vapour at the saturated partial pressure Psat (TR). The absorption coefficient of water
vapour is kW and the specific heat of vaporization is Lv . The above equations are
simplified by non-dimensionalizing temperatures and forcing factors. Define

τA = TA

TR
τS = TS

TR
q = Q

σT 4
R

fO = TO
σT 4

R

fA = FA

σT 4
R

, (11)

then τ = 1 is the freezing point of water and (10) simplifies to

ηW = 1 − exp

[
−δ

G2

τA
exp

(
G3

[
τA − 1

τA

])]
, (12)

where the greenhouse gas constants for water vapour are G2 = 0.9969, G3 =
17.899. Combining all the above results, the energy balance equation for the sur-
face is

τ 4
S = 0.5ετ 4

A + (1 − α)q + fO , (13)

and the energy balance equation for the atmosphere may be written

τ 4
S = ετ 4

A − f A

1 − exp

[
−μ · G1 − δ

G2

τA
exp

(
G3

[
τA − 1

τA

])] . (14)

There are two state variables, τS and τA, determined by these two equilibrium equa-
tions. There are four parameters of interest here, namely μ, δ, α, fO , which we can
vary independently to determine their effects on τS and τA.

Due to space limitations, this paper presents a partial investigation of this model,
which can display further interesting behaviours, including saddle-node bifurcations,
temperature inversion and a “hot” equilibrium solution. For details see [3].
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3 Application of the Model to the Pliocene Paradox

A dramatic climate change occurred in the Arctic during the Pliocene Epoch (5.3–
2.6MYa). For many years before the Pliocene, back to the Cretaceous Period and
beyond, the Arctic was warm and ice-free. There is irrefutable evidence that the
northernmost Arctic islands of present-day Canada supported a temperate rain for-
est during the Eocene (56–34MYa), see [5, 12]. Ever since the Pliocene, the Arctic
has had year-round ice cover. In this section, we use the conceptual model of Sec-
t. 2 to explore possible mechanisms for this dramatic climate change, varying the
parameters independently, to determine the influence of each on the behaviour.

We present the predictions of our model for three different scenarios. First we
decrease CO2 concentration in steps (μ = 800, 600, 400, 200 ppm), while holding
δ = 0, FA = 100 and FO constant. Then we add water vapour feedback, with de-
creasing μ as before. Finally, we vary ocean heat transport FO > 0 in the model.

The pre-industrial modern value of CO2 concentration has been established as
μ = 270 ppm [6]. The warmest part of the Cenozoic Era was the Eocene Epoch.
Estimates of CO2 concentration during the Eocene vary widely, in the range 350–
1000 ppm, with a new consensus of 490 ppm reported in [12]. The model is used to
explore the effects of decreasing CO2 concentration from this Eocene value of 490
ppm to its pre-industrial value of 270 ppm.

3.1 Varying CO2 Concentration Only

Fixing the relative humidity δ = 0 and the ocean heat transport FO = 60 W/m2

allows us to examine the effects of varying CO2 on the climate, see Fig. 2a. The
blue lines represent the atmosphere energy balance Eq. (14) for increasing values of
CO2 concentration μ, from left to right in the figure. The orange and magenta lines
represent the surface energy balance Eq. (13), with a discontinuity across the dashed
line at the freezing point TS = 273.15K (τS = 1) due to the change in albedo there.
Temperatures are shown in dimensionless units τ, for convenience of interpretation.
Each point of intersection of a blue linewith an orange/magenta line is an equilibrium
solution.

As μ varies, Fig. 2a shows that for μ greater than about 400 ppm there exist
two distinct equilibrium solutions, one with τS > 1 above freezing (on the magenta
curve) and the other with τS < 1 below freezing (on the orange curve); however, for
values of μ less than about 400 ppm the warm equilibrium solution does not exist
and only the frozen solution remains. Therefore, if the climate were in the warm state
on the magenta curve, and the CO2 concentration μ were to decrease sufficiently,
this warm equilibrium state would disappear and the climate would cool abruptly to
the ice-covered state on the orange curve.
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3.2 Water Vapour Feedback

The inclusion of water vapour adds more non-linearity to the model, see Fig. 2b,
where δ = 0.2 and FO = 60. The blue atmosphere energy balance curves represent
the same levels of CO2 concentration as in Fig. 2a, but they now bend further to the
right. The transition from ice-free to ice-covered equilibrium solution still occurs as
μ decreases, but for a smaller value of μ than in Fig. 2a; that is, approximately at
μ = 360 ppm. Thus, the warming effect of added water vapour as a greenhouse gas
partially offsets the cooling effect of decreasing CO2 concentration μ.

3.3 Ocean Heat Transport

Formost of the past few hundredmillion years, both theArctic and theAntarcticwere
relatively warm and were free of ice-caps. In the mid-Cretaceous, the South Pole lay
in open ocean waters and was heated by warm ocean currents of the South Pacific O-
cean. Antarctica was surrounded by warm ocean waters and was ice-free at that time.
Near the end of the Cretaceous period, the slow drift of the continent of Antarctica
began to move it over the South Pole. Over the next 10–20 million years, Antarc-
tica continued to drift until the South Pole was near the centre of Antarctica, and
the Antarctic Circumpolar Circulation (ACC) began. The ACC is a cold ocean cur-
rent, circulating around Antarctica, and isolating it from warm ocean currents to the
North. As time passed, Antarctica cooled further and snow began to accumulate. The
cooling of Antarctica was accelerated by ice-albedo feedback and water vapour feed-
back. For about 30 million years prior to the Pliocene, the Antarctic was ice-capped

Fig. 2 Energy Balance Equations with varying CO2 concentrationμ. The blue curves represent the
atmosphere equilibrium equation and the magenta/orange curves represent the surface equilibrium
equation. From left to right, on the blue curves, μ is 200 ppm, 400 ppm, 600 ppm, 800 ppm. a No
water vapour, δ = 0. b CO2 with water vapour, δ = 0.2
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Fig. 3 Energy balance with changing CO2 and ocean heat transport FO , and fixed δ = 0.2. a
Orange/magenta lines represent surface energy balance with FO = 60, 50, 40, 30, respectively
(moving downward in the figure). Blue curves represent atmospheric energy balance as in Fig. 2,
with decreasing CO2. b Equilibrium solutions with both FO and μ decreasing linear functions of
the bifurcation parameter ν, as defined in Eq. (15). There is a sudden drop in Arctic temperatures
near ν = 0.273, which corresponds to μ = 430

while the Arctic remained ice-free. It is estimated that the total volume of ice on
Antarctica today corresponds to a change in sea level of about 60m [6].

TheNorth Pole is situated in the Arctic Ocean, which is warmed by ocean currents
(such as the Gulf Stream) bringing heat from the tropics. The gradual drop in sea
level, due to growth of theAntarctic ice-cap, caused a decrease in ocean heat transport
(OHT) to the Arctic, denoted FO in this paper. Continental drift also affected OHT.
In the late Cretaceous, a land bridge formed between what is now North America
and Asia, further reducing FO . Paleoclimate estimates of OHT are difficult to obtain.
Barron [1] estimated the OHT to the Arctic in the mid-Cretaceous to be 46.7Wm−2

and gave today’s value as 10.7Wm−2. This provides a range of values for FO in our
conceptual model.

From the Eocene Epoch to pre-industrial modern times, the concentration μ of
CO2 decreased (rising blue lines in Fig. 3a) and ocean heat transport, FO , decreased
(descending magenta/orange lines). Note that in Fig. 3a, for every choice of one blue
(atmosphere) curve and one orange (cold surface) curve, there exists an intersection
corresponding to an equilibrium solution below freezing. However, above the dashed
freezing line τS = 1.0 (TS = 273.15K), the intersection of the blue curve with the
magenta curve disappears, as μ decreases and/or FO decreases. At this point, the
ice-free Arctic climate, which had existed at least since the mid-Cretaceous, ceases
to exist and is replaced by a frozen ice-capped Arctic climate on the orange curve.

Figure 3b introduces a “time surrogate” or bifurcation parameter ν, with 0 ≤ ν ≤
1, such that both μ and FO are linear functions of ν given by

μ = 490 − 220ν,

FO = 60 − 30ν,
(15)
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so that ν = 0 corresponds to the Eocene, and ν = 1 corresponds to pre-industrial
time. As seen in Fig. 3b, as ν increases (so both of μ and FO decrease), the ice-free
surface equilibrium (on a magenta line) cools to the freezing point, at which the
albedo α changes from α = αW to α = αC so that this equilibrium point disappears
causing the surface temperature τS and the atmosphere temperature τA to drop to
the frozen solution (orange and cyan lines). This jump occurs at forcing parameter
values approximatelyμ = 430 ppm and FO = 52W/m2, close to estimated Pliocene
conditions. One would not expect the values of μ and FO to vary linearly with time
between the Eocene and the present, so the value ν ≈ 0.273 at which the jump takes
place does not correspond to a specific time in the past. However, the model shows
that this jump must occur at some point between the Eocene and present. Stability
analysis performed in [3] shows that all the equilibrium solutions seen in Figs. 2 and
3 are stable in the dynamical systems sense.

4 Conclusions

The conceptual climate model presented in this paper predicts that, as the Earth’s
forcing parameters evolved slowly from the values of the Eocene (high CO2 concen-
tration μ and high ocean heat transport FO ) to today’s values (lower μ and lower
FO ), at some point in this evolution the climate of the Arctic changed abruptly from
a warm surface ice-free state to a cold ice-capped state. This prediction is support-
ed by the geological record, which shows that an abrupt cooling took place during
the Pliocene Epoch. The model suggests that this abrupt Pliocene cooling was an
inevitable consequence of the underlying climate mechanisms considered here.

This is not to say that the climate of the Earth cooled linearly from Eocene to
modern conditions, as depicted in Fig. 3b. Neither can this extremely simple model
be expected to give accurate quantitative predictions. All that can be inferred from
this model is that, as the forcing parameters vary between Eocene andmodern values,
somewhere in that evolution there should be an abrupt cooling of the Arctic from
ice-free to ice-capped.

Note that in the model the transition from warm (magenta) to frozen (orange)
surface temperature is one-way only. Once on the frozen equilibrium branch, vari-
ation of the forcing parameters will not produce a transition back up to the warm
equilibrium solution, see Fig. 3b. This suggests an explanation for the fact that GCM
computations, originally designed to model today’s climate, have failed to find a
solution corresponding to the warm early Pliocene climate.
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First Order Versus Monod Kinetics
in Numerical Simulation of Biofilms
in Porous Media

Harry J. Gaebler and Hermann J. Eberl

Abstract We study a system of partial differential equations that model a
macroscopic porous medium biofilm reactor. Solutions to the system are calculated
numerically using the second order Uniformly accurate Central Scheme. We investi-
gate and compare two different growth rate functions, first order andMonod kinetics.
Although the reactor quickly becomes substrate limiting, a first order approximation
of Monod kinetics leads to estimation errors in the reactor.

Keywords Balance laws · Porous media · Biofilms · Numerical simulation

1 Introduction

Biofilms are aggregates of microorganisms on immersed surfaces that occur in a
variety of environments. In Environmental Engineering, biofilms create a foundation
for microbial processes that can be utilized in wastewater treatment, soil remediation
and the protection of ground water [1, 2, 10]. Biofilms play an important role in
porous media, such as soils, which prompts the development of models for such an
environment. In these systems, a growth substrate travels through the porousmedium
and biomass is produced through the consumption of such substrate. As the biofilm
forms on the substratum, different forces influence its behaviour.

Perhaps the most important mechanism for modelling biofilm growth in porous
media is the description of substrate flux into the biofilm. Some models describe
substrate flux through empirical expressions [18], while others describe it using
Fick’s first law [1, 8, 11–13]. In the models described by [1, 11, 12], the substrate
inside the biofilm is calculated as the solution to a two-point boundary value problem
where the growth/consumption kinetics are described by the Monod equation [14].
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The widely accepted kinetics for modelling microbial growth is the Monod equa-
tion, which expresses growth as a function of a limiting nutrient [5, 14, 15]. However,
in regimes where substrate concentration is sufficiently low, Monod kinetics predict
substrate utilization as a linear function dependent on substrate concentration [5].
The advantage of expressing microbial growth as a linear function rather than the
Monod equation is that the simplified expression can be solved analytically. Howev-
er, using a linear description when a full Monod description is more appropriate can
lead to over estimations of substrate consumption [5].

The objective of this study is to investigate the difference between two different
kinetics, linear and Monod, which govern the dynamics for substrate consumption
inside the biofilm layer, and differences in biofilm and suspended bacteria growth
inside a porous medium. Here, we utilize the model presented in [7] and adapt the
growth kinetics accordingly. In [7], Gaebler and Eberl found, using Monod kinetics,
that the system quickly becomes substrate limiting, which indicates that a linear
approximation may be appropriate. The goal here is to determine if a simplified
flux calculation can be utilized inside a substrate limiting porous medium reactor to
reduce computational effort while still providing an accurate solution.

In Sect. 2 we present the porous medium biofilm model derived in [7], which is
paired with different kinetics for the purpose of this study. In Sect. 3 we introduce a
numerical method proposed by [9] and apply the method to solve the stiff system of
partial differential equations. We describe the calculation of substrate flux into the
biofilm for Monod kinetics and present the analytical solution for linear kinetics. In
Sect. 4 simulations outlining the effect of different growth kinetics on the solution
and flux calculations to the described system are reported and compared.

2 Mathematical Model

The derivation of the macroscopic model stems from the traditional mesoscopic one-
dimensional Wanner-Gujer biofilm model described in [17]. The porous medium is
described by identical, parallel, non-communicating flow channels of width ε. Each
flow channel is divided into sub-intervals of length ε, in which the mesoscopic
processes are described. These include hydrodynamics and transport of substrates
in the reactor, biofilm and suspended bacteria growth in the pore space through
consumption of a single, non-reproducing growth limiting substrate, attachment of
suspended cells to the biofilm, detachment of biofilm cells, and cell lysis. Using a
similar process as described in [1], the mesoscopic equations are up-scaled from the
biofilm scale to the reactor scale (macroscale) by passing the limit as ε → 0. The
details of the derivation are given in [7] and yield a system of balance laws given by
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∂

∂t

⎛
⎝

(p − 2λ)C
(p − 2λ)U

λ

⎞
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∂x

⎛
⎝
QC
QU
0

⎞
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⎛
⎝

−2J (λ,C) − [p−2λ]
Yu

g(C)U
2X∞dλ − 2a[p − 2λ]U + g(C)[p − 2λ]U

Yl
X∞ J (λ,C) − kdλ − dλ + a

X∞ [p − 2λ]U

⎞
⎠ ,

(1)

where C , U , λ respectively describe substrate concentration [g m−2], suspended
bacteria concentration [g m−2], and relative biofilm thickness [−]. In this system,
g(C) represents the growthkinetics for suspendedbacteria and J (λ,C) represents the
flux of substrate into the biofilm layer. For a complete derivation of the macroscopic
model see [7]. All other parameter descriptions are given in Table1.

Substrate flux into the biofilm layer is determined from the solution to the two-
point boundary value problem

D
d2c

dz2
= f (c),

dc

dz
(0) = 0, c(λ) = C, 0 < z < λ, (2)

where f (c) describes how substrate is consumed inside the biofilm layer and c = c(z)
is the substrate concentration inside the biofilm. Flux of substrate into the biofilm is
then obtained as

J (λ,C) = D
dc

dz

∣∣∣
λ
. (3)

Table 1 Model parameter values used in simulations

Parameter Symbol Value Unit Reference

Substrate inflow concentration C0 1.0 g m−2 Assumed

Suspended bacteria inflow concentration U0 0.0 g m−2 Assumed

Relative biofilm thickness at inflow λ0 0.0025 – Assumed

Biomass density X∞ 100.0 g m−2 [16]

Biofilm maximum growth rate μλ 6.0 d−1 [16]

Biofilm half saturation constant κλ 4.0 g m−2 [16]

Biofilm yield coefficient Yλ 0.63 – [16]

Suspended bacteria maximum growth rate μu 6.0 d−1 [16]

Suspended bacteria half saturation constant κu 4.0 g m−2 [16]

Suspended bacteria yield coefficient Yu 0.63 – [16]

Void fraction p 0.5 – Assumed

Biofilm natural cell death rate kd 0.4 d−1 [16]

Detachment coefficient d 0.5 d−1 [1]

Attachment coefficient a 0.3 d−1 Assumed

Flow velocity Q 0.05 md−1 Assumed

Diffusion coefficient D 10−4 m2d−1 [16]

Reactor length L 0.15 m Assumed
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We considered the consumption of substrate inside the biofilm layer to follow t-
wo different kinetics (i.e. linear kinetics and Monod kinetics), whereby the flux of
substrate into the biofilm layer is determined from the solution of (2) with (3) where

flinear (c) = μλ

κλ

c or fMonod(c) = μλc

κλ + c
.

To study this system numerically, we use a variable transformation in order to
investigate how system (1) progresses over time rather than space. The variable
transformation is given by

S := (p − 2λ)C, W := (p − 2λ)U. (4)

With the variable transformation (4), the system (1) is written as
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3 Numerical Treatment

3.1 Discretization of the Partial Differential Equation with
the Second Order Uniformly Accurate Central Scheme

Over the years many different numerical solvers have been proposed for hyperbolic
systems. However, most of these schemes were developed for conservation laws (i.e.
systems without any reaction terms). In this study we solve a system of the form

ut + ( f̂ (u))x = h(u).

Hereu represents the dependent variable, f̂ (u)describes diffusion and h(u)describes
all reaction terms. Here u, f̂ (u) and h(u) are given by
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⎛
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Due to thewidely varying time scales between substrate depletion andbiofilmgrowth,
an appropriate solver for stiff balance equations is considered. We employ the Uni-
formly accurate Central Scheme of Order 2 (UCS2) as proposed in [9].

UCS2 separates the reaction and transport terms and treats them in different
manners. In order to deal with the stiffness of the system, the reaction terms are
treated implicitly, while transport terms are treated explicitly. To guarantee thatUCS2
is stable, the time step Δt must satisfy a stability condition, given by,

Δt ≤ Δx
(p − 2 max j (λ j ))

2Q
, Δx = L/N

where j is the grid position,λ j is the relative biofilm thickness in the j th grid position,
L is the length of the reactor, and N is the number of grid points.

UCS2 utilizes two predictor steps for the reaction terms and calculates interme-
diate time steps at Δt/2 and Δt/3. The predictor steps are given by

un+1/2
j = unj − 1

2

Δt

Δx
f ′
j + Δt

2
h

(
un+1/2
j

)
, (6)

un+1/3
j = unj − 1

3

Δt

Δx
f ′
j + Δt

3
h

(
un+1/3
j

)
, (7)

where n is the time step, j is the grid position and f ′
j/Δx is an appropriate derivative

approximation for the diffusion function. In this study we approximate the derivative
of the diffusion function using the min-mod function as a flux limiter as proposed
in [9]. By using the min-mod function as a flux limiter, spurious oscillations due to
high order spatial discretizations are avoided. Thus, the derivative of the diffusion
function is therefore approximated by

f ′
j = MM

(
f̂ j+1 − f̂ j , f̂ j − f̂ j−1

)
, (8)

where MM denotes the min-mod function

MM(x, y) =
{
sgn(x)min(|x |, |y|) if sgn(x) = sgn(y),

0 otherwise.

The predictor steps are used to compute the solution to the system at the next time
step at staggered grid points. The new time step solution is given by

un+1
j+1/2 = 1

2
(unj + unj+1) + 1

8
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j − u′
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))
, (9)

where u′
j is analagous to (8).
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This method can be computationally involved since it requires a system of non-
linear equations to be solved for each of the predictor steps (6) and (7), as well as
for the new time step calculation (9). We use for this Newton’s Method (cf. [3, 6])
and compute the Jacobian using a finite difference approximation.

3.2 Calculation of the Substrate Flux for Monod Kinetics

The flux of substrate into the biofilm is calculated from the solution to the two-
point boundary value problem (2). For Monod kinetics, the second order differential
equation is broken into a system of two first order equations given by

x ′ = y, y′ = μλx

κλ + x
, (10)

with boundary conditions

x(λ) = C, y(0) = 0, (11)

where C is the concentration of substrate at the aqueous-biofilm boundary.
To solve the system described by (10) and (11), we use a backward shooting

method. To this end, we change the initial condition (11) to

x(λ) = C, y(λ) = βi . (12)

The goal is to construct a sequence of βi ’s such that the solution to (10) with (12)
satisfies condition (11). We use the bi-section method, which in each iteration step
requires (10) with (12) to be solved, for whichwe use a time-adaptive error controlled
Runge-Kutta 4/5 scheme [4]. Two stopping criteria are implemented for the bi-section
method. We calculate the absolute differences between two successive βi ’s, as well
as for each βi the corresponding y(0). The algorithm is terminated once either of
these values is smaller than a specified value. Finally the flux of substrate into the
biofilm is obtained as

J (λ,C) = D
dc

dz

∣∣∣
λ

= Dβsol ,

where D is the diffusion constant and βsol is the final value of βi .
Note: For linear kinetics, the two-point boundary value problem simplifies to

a linear second order differential equation that can be solved analytically. For a
complete derivation of the linear flux see [7]. The linear macroscopic flux becomes

J (λ,C) = C
μλ

κλ

λ.
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3.3 Implementation

The numerical method was implemented in C and compiled and tested using gcc
and Intel compilers (icc version 17.0.2, gcc version 5.0.0). Simulations were carried
out on a standard Linux desktop workstation under Ubuntu 16.04. All plots were
generated using MATLAB v. 8.6.0.267246 (R2015b).

3.4 Grid Refinement for Linear and Monod Kinetics

To check the convergence of the numerical method we carry out a standard grid
refinement study. This is done by numerically calculating the solution of (5) at
different grid resolutions and comparing these solutions to a true solution. Since
we do not have the true solution to the system, we instead compare different grids
(64, 128, 256, 512) to a much finer grid resolution (1024 grid points). The relative
distance between the various solutions are calculated using relative errors based on
three different norms (l1, l2, l∞) as follows

Dist = ||U −U1024||
||U1024|| .

Since grid spacing varies depending on the number of grid points, only grid locations
that appear in both the current and 1024 grid resolutions are considered.

In the grid refinement simulations the effect of suspended bacteria and attachment
were considered, with all other parameter values listed in Table1. The substrate
inflow concentration was set to 1.0 [g m−2], while the suspended bacteria inflow
concentration was set to 0.0 [g m−2]. In these simulations it was assumed there was
an established biofilm with relative thickness 0.0025 [−] throughout the reactor. The
results for linear and Monod kinetics are reported in Table 2.

In Table2, we see for the l1, l2, and l∞ norm the relative distance between solutions
decreases as the number of grid points increases. This suggests that the computed
solution is converging as the grid resolution is refined. In all three cases, substrate
concentration, suspended bacteria concentration, and relative biofilm thickness all
have a low error at a grid resolution of 256 grid points. For this reason, further
simulations are computed using a grid resolution of 256 points.

4 Comparison Between First Order and Monod Kinetics

We compare the solution values for substrate concentration, suspended bacteria con-
centration, and relative biofilm thickness between the solution calculated using linear
kinetics and the solution calculated using Monod kinetics. Here the simulation con-
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Table 2 Relative distance between solutions with various grid resolutions for both linear and
nonlinear kinetics inside the biofilm layer. All distances are calculated relative to the 1024 grid
resolution

# Points ||.||1 ||.||2 ||.||∞ ||.||1 ||.||2 ||.||∞
Substrate concentration (C)

Linear kinetics Monod kinetics

64 7.18 × 10−4 3.27 × 10−3 1.71 × 10−2 1.27 × 10−3 2.62 × 10−3 1.35 × 10−2

128 3.80 × 10−4 1.91 × 10−3 1.24 × 10−2 6.30 × 10−4 1.53 × 10−3 1.01 × 10−2

256 1.75 × 10−4 9.71 × 10−4 6.88 × 10−3 2.80 × 10−4 7.81 × 10−4 5.68 × 10−3

512 5.96 × 10−5 3.90 × 10−4 2.95 × 10−3 9.59 × 10−5 2.99 × 10−4 2.45 × 10−3

Suspended bacteria concentration (U )

Linear kinetics Monod kinetics

64 5.08 × 10−3 2.32 × 10−2 1.35 × 10−1 5.25 × 10−3 2.32 × 10−2 1.36 × 10−1

128 2.67 × 10−3 1.36 × 10−2 1.00 × 10−1 2.75 × 10−3 1.36 × 10−2 1.00 × 10−1

256 1.22 × 10−3 6.90 × 10−3 5.60 × 10−2 1.25 × 10−3 6.89 × 10−3 5.58 × 10−2

512 4.16 × 10−4 2.60 × 10−3 2.40 × 10−2 4.29 × 10−4 2.63 × 10−3 2.39 × 10−2

Relative biofilm thickness (λ)

Linear kinetics Monod kinetics

64 3.86 × 10−5 1.75 × 10−4 9.65 × 10−4 4.58 × 10−4 4.74 × 10−4 1.07 × 10−3

128 2.19 × 10−5 1.03 × 10−4 6.41 × 10−4 2.15 × 10−4 2.27 × 10−4 6.43 × 10−4

256 1.08 × 10−5 5.16 × 10−5 3.30 × 10−4 9.39 × 10−5 1.00 × 10−4 3.21 × 10−4

512 3.82 × 10−6 1.89 × 10−5 1.21 × 10−4 3.18 × 10−5 3.44 × 10−5 1.18 × 10−4

figuration is identical to the configuration outlined in Sect. 3.4 with parameter values
given in Table 1. The difference in solutions are calculated as

Udi f f = 2
Ulinear −UMonod

|Ulinear +UMonod | .

Figure1a illustrates that as time increases the substrate concentration in the linear
solution is less than the substrate concentration in the Monod solution. We see from
Fig. 1d that the flux into the biofilm is larger for the linear solution than the Monod
solution. This leads to the linear solution having a thicker biofilm at the inlet than in
the Monod solution (Fig. 1c). With a larger biofilm thickness, we see in Fig. 1b that
there is a higher concentration of suspended bacteria in the linear case, which can be
contributed to both the linear growth of suspended and detachment from the thicker
biofilm. Over time, for both suspended bacteria concentration and relative biofilm
thickness, simulations illustrate that the difference first increases then decreases. Ini-
tially, substrate is abundant which allows the solutions to be controlled by the growth
kinetics. However, as substrate becomes depleted, the growth of both the biofilm and
suspended bacteria becomes limited causing the dynamics to be controlled by the
balance between attachment and detachment.
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Fig. 1 Solution difference of (5) with linear and nonlinear flux inside the biofilm layer. Parameter
values reported in Table1. Inflow concentration of substrate and suspended bacteria are C0 = 1.0
[g m−2] and U0 = 0.0 [g m−2] respectively

Simulations demonstrate a difference between the solution of (5) when different
kinetics are considered. After 0.5 days there is up to a 21.20% difference in substrate
concentration, 13.72% difference in suspended bacteria concentration, 13.75% dif-
ference in relative biofilm thickness, and 35.93% difference for flux of substrate into
the bioflm. For both suspended bacteria concentration and relative biofilm thick-
ness, the largest difference occurs at the inlet. Since substrate is not yet limiting,
flux into the biofilm is over estimated by the linear kinetics. An over estimation
of flux correspondingly results in a thicker biofilm. Since detachment is included
in these simulations, a thicker biofilm increases the amount of biomass becoming
detached resulting in a higher suspended bacteria concentration, which is seen in
Fig. 1b. The largest difference for substrate concentration occurs near the end of the
reactor. Since linear kinetics depletes the substrate concentration faster than Monod
kinetics one would expect the largest difference to be at the end of the reactor. The
flux of substrate into the biofilm also displays the same decreasing trend in Fig. 1d.
Initially when there is abundant substrate, linear kinetics over estimate the flux into
the biofilm. However, as time increases this over estimation causes the substrate to
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become depleted too early. We see in Fig. 1d that for t = 0.4 [days] and t = 0.5
[days] the difference in flux becomes negative. This is due to the rapid depletion of
substrate by the linear kinetics before the reactor becomes substrate limiting.

Another major artifact of using different kinetics is its effect on computation time.
Bymodelling the flux of substrate into the biofilm viaMonod kinetics, the solution to
the two-point boundaryvalue problembecomesmore complex andmust be calculated
numerically. This significantly increases computation time. When simulating the
configuration described in Sect. 3.4 over a time period of 1.0 day, linear kinetics had
a real time simulation of 0.617s, while Monod kinetics had a real time simulation of
509.766s, which marks a 826 fold increase.

5 Conclusion

Although linear kinetics is computationally faster and a good approximation ofMon-
od kinetics in a concentration limiting regime, itmay not be appropriate for a substrate
limiting biofilm reactor. In the system described above, the reactor rapidly becomes
substrate limiting. However, the inflow regime of the reactor is not substrate limit-
ing, which causes an over estimation of substrate flux into the biofilm and changes
the behaviour of the model. Initially, the over estimation causes a rapid decrease
in substrate concentration and an increase in both suspended bacteria and biofilm
thickness. Over time, substrate concentrations continue to decrease at a rate higher
than Monod kinetics. Eventually the decrease caused by the linear kinetics results in
an under estimation of substrate flux.

This study illustrates the importance of accurately modelling the flux of substrate
into the biofilm. This process determines the decay of substrate, as well as the growth
of the biofilm and suspended bacteria. In this study we see that although the reactor
quickly becomes substrate limiting, it is important to describe the flux in the inflow
regime by Monod kinetics to avoid estimation errors.
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Predictability of Marine Population
Trajectories Affected by Birth and
Harvest Pulses

Anna S. J. Frank and Sam Subbey

Abstract Predicting future states of harvestedmarine populations requires an under-
standing of how intrinsic time delay processes and volatile phenomena (e.g., impul-
sive mortality) act in concert to alter the dynamic population trajectory. Separately,
the effects (on population dynamics) of time-delays, and impulses, have been studied
theoretically by several authors. This paper shows an example approach, where the
effects of impulses and time-delays are integrated in the same modeling framework,
to understand how they may alter the predictability of future population states. The
paper uses a stage-structured, Impulsive-Delay-Differential-Equation (IDDE)model
to describe a single species marine population system. It presents results based on
numerical experiments.

Keywords Impulsive-Delay-Differential-Equations · Approximate entropy
Unstable periodic orbits (UPOs) · Predictability · Birth and harvest impulses
Marine population

1 Introduction

Impulses aremomentous occurring perturbations in a system [13]. Such perturbations
occur in ecological, biological, physical, medical and numerous other fields [7].
Specifically for marine populations, the effect of birth pulses has been studied in [26]
using a population dynamics model. The authors concluded that regular impulsive
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birth events can lead to chaos. In [19], the authors considered the effect of periodically
occurring impulses onbiological systems, and concluded that under certain parameter
conditions, impulsive events can lead to period-doubling cascades and eventually to
chaos. The authors in [11] used a deterministic model that incorporates birth and
harvest pulses, to study the effect of the impulses, using bifurcation analysis. The
authors concluded that birth events add complexity to the existing system, and that
the population dynamics are affected by the timing of the harvest impulses. For
marine populations, known to exhibit complex dynamics, external impulses such as
harvesting can destroy the system predictability [12].

Time delays in the system dynamics is an intrinsic characteristic of biological
systems and networks. Such delays may have regulatory effects on the system dy-
namics and its trajectory. For instance, in neural networks, it has been shown (see [5])
that delays may initiate different rhythmic spatio-temporal patterns, and that delays
are capable of altering the stability of such rhythmic patterns [9]. In predator-prey
systems, delays influence system behavior through the introduction of repetitive and
feedback cycles [4, 15, 27]. For marine populations in general, delays represent a-
mong others, resource regeneration times, maturation periods, feeding, and reaction
times (see e.g., [13, 24]).

Whereas the effects of impulses, and time delays on the regulation of marine
populations have been studied separately, lacking in the literature is a study of their
combined effect on the population dynamics. This is perhaps due to the fact that
each individual (impulse or time-delay) effect presents several dimensions of com-
putational challenges. Close-form solutions for equations representing mathematical
models that incorporate both effectsmay not exist, or the solutionsmay be intractable.
A viable alternative is to study such combined effects, using a simulation approach.

This paper uses a numerical simulation approach to demonstrate how the com-
bined effect of delays in inter-species relationships and, birth and harvest pulses
may be investigated for complex population dynamic models. The emphasis is on
how the combined effect regulates the predictability of the dynamics trajectory of
a marine population. We use a mathematical model, defined by a system of Delay
Differential Equation (DDE), to describe the dynamics of a hypothetical marine pop-
ulation. Using the time series of biomass from the mathematical model, we conduct
predictability analysis of the system. We quantify the regularity of the system using
the Approximation Entropy (ApEn) measure [21], and the predictability, based on
the the occurrence of Unstable Periodic Orbits (UPOs) [3] in the biomass trajectory.
Finally, we compare the inference based on analysis of UPOs with two alternative
methods for quantifying system predictability namely, the Maximum Lyapunov ex-
ponent (MLE) [29] and System Forecast Errors (SFE) [16]. This manuscript only
considers constant impulses and time delays.

The article is organized in the following way. Section 2 gives a description of
the mathematical model, while Sect. 3 presents a brief description of the metrics
for quantifying predictability and other basic definitions, which are necessary for
understanding the rest of the manuscript. Section 4 gives a brief description of the
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methodological approach, including a description of the base case and the numerical
experiments to be performed. Simulation results presented in Sect. 5 are further
discussed in Sect. 6, which also summarizes our main conclusions.

2 Model Description

This section presents equations to describe the marine population dynamics. The
description uses the nomenclature in Table1.

The base-case model S0 is given by Eq. (1),

S0 ≡
⎧
⎨

⎩

ż(t) = f (z(t), θ) − ax z(t)x(t),
ẋ(t) = μax z(t − τ1) · x(t − τ1) − dx x(t) − δx(t),
ẏ(t) = −dy y(t) + δx(t − τ2),

(1)

with f (z(t), θ) : R+ �→ R+ is defined by (2),

f (z(t), θ) = az(t)

b + z(t)
, a ∈ R+, b ∈ R+. (2)

The resource-growth function in Eq. (2) is theHolling-II function [25]. The base-case
model S0, together with f (z(t), θ) in equation (2), correspond to the model in [10].

Table 1 Nomenclature for the base-case model S0 in Eq. (1)

z(t) ∈ R+, z(0) = 2.0 Resource biomass, and initial condition

x(t) ∈ R+, x(0) = 1.0 Biomass of immature population, Initial
condition

y(t) ∈ R+, y(0) = 0.5 Biomass of mature population, Initial condition

t ∈ R Simulation time

τi ∈ R, i ∈ {1, 2} Time delays

f (z(t), θ) Resource-growth-function (Holling-II
function)

θ ∈ R Parameter-set of the resource-growth function
f (z(t), θ)

ax = 1.6 ∈ R+ Resource uptake rate of the immature
population (fixed parameter)

μ = 0.4 ∈ (0, 1) Resource conversion rate into biomass (fixed
parameter)

dx = 0.2 ∈ (0, 1), dy = 0.15 ∈ (0, 1) Mortality rate of x(t), y(t) (fixed parameter)

δ = 0.35 ∈ (0, 1) Maturation rate (fixed parameter)

B Recruitment impulse on the immature
population x(t)

Hx , Hy Harvest impulses on x(t), y(t)
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The impulse functions (direction and degree) are defined by (3)–(5). The system
is exposed to birth- (B) and harvest (Hx , Hy) impulses that satisfy (for k ∈ Z and
s ∈ Z):

x(k+) = x(k−) + B(k−), (3)

x(s+) = x(s−) + Hx (s
−), (4)

y(s+) = y(s−) + Hy(s
−), (5)

where the impulsive events on system S0 are predefined at simulation steps k ∈ Z+
and s ∈ Z+. In (3), k+ is the state, which occurs right after a birth impulse, while k−
indicates a state just before an impulse takes place (similarly for harvest impulses at
s for (4) and (5)). We define:

B(k) = αe−βy(k)y(k), β ∈ R+ (6)

Hx (s) = hx x(s), hx ∈ (0, 1), (7)

Hy(s) = hy y(s), hy ∈ (0, 1). (8)

In the literature, the impulsive term B is referred to as the stock recruitment, and the
form in (6) is the Ricker function [26] representation.

3 Basic Definitions and Predictability Metrics

This section presents brief definitions of the UPOs and ApEn measures. In general,
periodic orbits are defined by periodic visits along some close trajectory, where
closeness is defined with respect to the neighborhood of the orbit, see [3]. Stable
Period Orbits (SPO) are characterized by stable periodic cycling, i.e., with time, the
system trajectories visit all points in a close neighborhood of the orbit and remain
there for an infinite time period. This paper is concerned with the Unstable Periodic
Orbits (UPOs), which are defined by Definition 1.

Definition 1 (UPO) Periodic orbit characterized by transitory visits to trajectory
points in close neighborhood of each of the periodic orbits, followed by (random)
transition to new orbits.

Dynamical systems that are both sensitive to initial conditions and consist of an infi-
nite number of UPOs are termed chaotic, [3]. In general, UPOs present the skeleton
of chaotic attractors. The randomness in the motion on an attractor can be quantified
as a function of the number of UPOs, and the randomwalk fromUPO to UPO results
in a stochastic process. The randomness of time series therefore provides another
measure for chaos and, hence predictability [23] of a system. UPOs can also be
used to approximate the topological entropy, which provides better insight into the
underlying chaotic structure and dynamics [1, 2, 6, 14]. The topological entropy
measures the complexity and growth rate of all periodic orbits [18]. However, it is a
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computational challenge to derive the topological entropy. A viable alternative is to
use the ApEn, which we describe shortly, for the perturbed system in the numerical
analysis.

Consider themth delay coordinator x(t) = {u(t), . . . , u(t + m − 1)}, of the time
series u(t)Nt=1. The reconstructed phase space of the delay coordinator is given by
Xm(t) = {x(1), . . . , x(n)} ∈ R

m , with n = N − m + 1, (see [28]). Now let xi (t) be
the i-th component of x ∈ R

m , where ||.||∞ is the usual L∞-norm onRm , and define

Φm(r) = − 1

|Xm |
∑

x∈Xm

log

( |y ∈ Xm : ||x − y||∞ ≤ r |
|Xm |

)

. (9)

In (9), r is a similarity measure (quantifying the distance between two data points)
that specifies the filtering level [28]. The bracket term under the summation sum is
the average of points x(i), i ∈ {1, . . . , n}, which fulfills the condition, and |Xm | :=
N − m + 1.

Definition 2 (ApEn) Let (9) prevail. Then the ApEn for the time series u(t) (for
t = 1, . . . , N ) is defined by (10).

ApEn(m, r, N ) := Φm+1(r) − Φm(r), (10)

with ApEn(0, r, N ) := Φ1(r) and X0 = {}, i.e. empty.

The ApEn is a logarithmic likelihood, which estimates whether the closeness of
regular patterns for N observations inm-dimension is preserved in dimensionm + 1
[21, 22]. An increase in the likelihood is thus indicative of a decrease in the ApEn
value, and a preservation of the closeness property of the points.

The Maximum Lyapunov Exponent

The Lyapunov exponent (LE) quantifies the sensitivity of a time series to changes
in the initial conditions (that is, the local instability in a state space) [8, 17]. For
two trajectories of a dynamical system separated in phase-space by δ0 at t = 0 and
δt at some later time t > 0, and satisfying (11), λ is the Lyaponov exponent. A
rearrangement of (11) leads to (12).

δt = δ0e
λt , (11)

λ = lim
t→∞

1

t
ln

(
δt

δ0

)

. (12)

Assume a number of points initially localized in a d-dimensional embedding space
such that neighboring points are contained in a hyper-sphere at t = 0. Then at some
t > 0, the hyper-sphere is stretched to a hyper-ellipsoid with the length of the i-th
principal axis given by δi (t). Then there exists a spectrum of Lyapunov exponents
(one for each principal axis) which can be calculated from a time series using (13).
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λi = lim
t→∞

1

t
ln

(
δi (t)

δ0

)

. (13)

Lyapunov exponents are independent of the initial condition; a property guaranteed
by the Oseledets multiplicative ergodic theorem [20]. The maximum LE (MLE) is
indicative of the predictability of the dynamical system. A positiveMLE implies that
small perturbations in the initial conditions may result in widely divergent results.

4 Methodological Approach

We first define a model consisting of a series of fixed impulses and parameters
in the model S0, defined by (1). We analyze the time series from this model to
determine (i) the number of UPOs, and (ii) time series irregularity, based on the
ApEn algorithm. The results from this model (UPOs and ApEn metrics) are used to
define a classification scheme for all other simulation results. Deriving a good ApEn-
measure for the time series u(t) (for t = 1, . . . , N ) requires that N > 103 [21]. We
therefore set N = 3 × 103 for all simulations. Table 2 summarizes the input data
for the base-case. For simplicity, we fix the value of τ2, and consider four instances
of the sub-case defined by the delay size τ1. Next, we introduce four different sets
of scenarios, where each scenario consists of constant levels of birth and harvest
impulses, as well as the delay parameters in S0. For each scenario, we keep the
strength of the impulses (B, Hx , Hy) constant. However, we consider two instances
of the impulse frequency, (i.e., the number of perturbations per time interval), I f = 1
and I f = 4.

This paper follows the implementation in [16], in quantifying UPO, ApEn, and
MLEmetrics. Integration of the system of DDEs in (1) was performed on theMatlab
computational platform.

5 Summary of Results from Numerical Experiments

This section describes a summary of simulation results. It presents the base-case
analysis and classification scheme,which is used in assessingother simulation results.
Table 3 summarizes the main results for all sub-cases. It shows the SFE (System
Forecast Errors) for 500 iteration steps, MLEs, and the number, Np, of UPOs with
periods p. It also shows the ApEn-values for the filtering level r .

Table 2 Input data for the base-case

Parameter a b α β hx hy τ1 τ2

Value 2.0 2.0 3.8 4.0 0.9 0.8 {0.1, 0.4, 0.5, 0.63} 0.1
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Table 3 Results from the base-case analysis

Base-case

τ1 0.10 0.40 0.50 0.63

p 1 1 1 1

Np 2 1 1 3

SFE 0 0.3 0.9 1.2

MLE λ1 < 0 λ1 ≈ 0 λ1 ≈ 0 λ1 > 0

σ 0.096 0.12 0.16 0.24

ApEn [0.05, 0.03] [0.00] [0.00, 0.01] [0.10, 0.15]

Table 4 Classification scheme based on the Base-case analysis. Nomenclature for the inference
column: P/MP≡Periodic/Multi-periodic; and C/NC ≡ Chaotic/Non-chaotic

Time series characterization ApEn-
threshold

Number UPOs Inference Predictability

Very irregular or Regular ApEn> 0.1 Np >2 C/P/MP No

Multi-periodic or Periodic ApEn< 0.2 max(Np) = 2 P/MP/C/NC Short-term

Very irregular or repetitive ApEn< 0.1 Np ≤ 2 Regular Yes
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Fig. 1 Pictorial rendering of the results in Table 4

The algorithm for the computation of ApEn follows directly from Definition 2.
The implementation procedure for ApEn is according to [16], where computational
details can also be obtained. The ApEn-algorithm yields confident values, when the
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Table 6 Scenario inference based classification scheme in Table 4

Scenario System observations Inference

I Regular patterns Predictable system

II Regular time series Predictable, but high forecast errors

III System is chaotic System is unpredictable

IV System is chaotic System is unpredictable

filter parameter r ∈ [0.10σ, 0.25σ ], with σ being the standard deviation of the series
being considered.

Based on the base-case simulation results in Table 3, we developed the scheme
presented in Table 4, for classification of results from further simulation scenarios.
The classification is based on the Np and ApEn-values. The table shows that the
system can be expected to be predictable over a long time horizon, when the UPOs <

2, and the ApEn< 0.1.
Figure 1 is a pictorial rendering of the results in Table 4, with marked (green)

transition zone for when the system transitions from being predictable to unpre-
dictable. The figure also shows the example simulation results of state variables for
the dynamical system defined in (1). Table 5 summarizes the results from the sce-
nario simulations discussed previously, where the cases are also defined (see Sect. 4).
Combining the classification scheme in Table 4 and scenario simulation results from
Table 5, leads to the inference Table 6.

6 Discussion and Conclusions

We have observed that the irregularity (i.e. high ApEn-value) in the time series is
synchronous with occurrence of UPOs, and that both instances are dependent on the
size of the time-delay. Changes in the impulsive frequency from I f = 1 to I f = 4
had an apparently marginal effect on the predictability. The number of UPOs, Np,
appeared to depend more on the impulse type, and less on the impulsive frequency.
On the other hand, the ApEn-value seems to increase with an increase in the im-
pulse frequency. As shown in [10], we could have also separated the dynamics into
predictable and unpredictable systems, depending on a critical delay-value, which
seemed to occur at approximately τ1 = τ ∗ = 0.4.

A further observation is that the chaotic time series are connected to large time
delays. Periodic and multi-periodic series, with medium delay values are short term
predictable, while very regular series, which are consistent with small delay values,
are predictable. In order to make inference about predictability of IDDE systems, the
time-series regularity and the structure of the system attractor need to be considered,
if delay-values are unknown.
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The authors in [26] found out that stronger impulsive strength lead to faster move-
ment into chaos. In the present analysis, we observed that the size of delays interferes
with system predictability under constant impulsive strength – we could relate large
delays to chaos, and small delays to stability. However, we can imply from [26] that
delay-values of a system under increasing impulsive strength must be decreasing to
maintain stability. Hence, under stronger impulses, dynamical systems will become
chaotic also for small delays.

Of all considered instances, the delay-sizewas themost important factor regulating
the dynamics of the IDDE system under constant impulsive strength, as its size
dictated the motion on the attractor and the pattern of the time series, and hence
predictability.

In terms of predictability, the MLE and the approach combining the concepts
of ApEn-values and UPOs lead to the same conclusion. However, the results show
that the latter approach adds another level of information over the MLE, as it allows
for making inference about the degree of irregularity imposed on the system by the
combined effect of impulses and system time-delays.

In this work, we have assumed that there is always food available. Thus resource
issues such as food-competition, have not been considered. Thoughwe, assumed that
the strength of birth impulses is independent of population size, we have observed
that stronger birth impulses lead to more complex dynamics, while harvest impulse-
strength needed to be set quite high to observe an effect on the system. While these
observations may be particular to the model formulation and choice of parameters,
this must not be considered as a limitation to the results.

Indeed, the strength of this paper lies in demonstrating a simulation approach that
allows for checking the combined effect of delays and impulsive phenomena on the
stability and predictability of marine population trajectories.

Marine populations are usually split into juveniles and adults; the latter being con-
tributors to birth pulses. Our results show that the time delay in resource availability
and conversion to the juvenile biomass dictates the system predictability. Such de-
lays may be caused by extended time for access resource due to, e.g. competition, or
temporal shift in overlap between resource and juveniles (e.g. delayed zooplankton
bloom). When this delay is below a threshold value, the population dynamics are
predictable, as long as the birth and harvest pulses have insignificant fluctuations
about average values. However when the resource dynamics change so that the time
delay exceeds the threshold value, the population dynamics becomes chaotic. This is
true even for cases where the resource biomass is large. Harvest rules must therefore
consider the effects of resource feedback to the population dynamics when setting
harvest levels or quotas. Because it is simulation-based, the framework presented in
this paper can be easily adapted to empirical marine populations.
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Phage Therapy and Antibiotics
for Biofilm Eradication:
A Predictive Model

Amjad Khan, Lindi M. Wahl and Pei Yu

Abstract Bacteria that make up the complex physical structures known as biofilms
can be 10–1000 fold more resistant to antibiotics than planktonic (free-living) bacte-
ria. In this study we develop a mathematical model to analyze therapeutic techniques
that have been proposed to reduce and/or eradicate biofilms, specifically, antibiotics
and phage therapy. In this context, the biofilm can be understood as a group defense
mechanism, such that the functional response of phages to the biofilm bacterial
density is reduced as the biofilm approaches carrying capacity. To capture this mech-
anism we introduce the function f (x) = (

κ − x
K

)
x, where x is the biofilm density,

K is the biofilm carrying capacity and 1 < κ < 2 is the group defense parameter.
The model predicts that two therapeutic strategies of recent experimental interest
(phage therapy followed by antibiotics, or antibiotics followed by phage therapy)
can reduce but not eradicate the biofilm. In contrast, we predict that complete elimi-
nation of biofilm bacteria can be achieved by mechanisms that block the attachment
of planktonic bacteria to the biofilm.

Keywords Biofilm · Antibiotics · Therapeutic technique · Phage therapy
Group defense · Equilibrium · Stability

1 Introduction

Bacteria are ubiquitous unicellular organisms,with critical importance in both human
health and disease [1]. Bacteria can exist as planktonic (free-living) cells, or in com-
plex communities known as biofilms. In the biofilm state, the bacterial colony is
attached to a surface; within the biofilm each cell is sessile and surrounded by extra-
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cellular polymeric substances (EPS), substances produced by bacteria in the colony
that determine the physical and chemical properties of the biofilm [18]. Biofilms are
responsible for a variety of problems in water distribution systems [11], the food
industry [27], and medical treatment [8, 25]. Most importantly, biofilms have been
implicated as a key factor in two-thirds of human infections [17].

Bacteria are able to rapidly develop resistance against agents employed to eradi-
cate them. In particular, bacteria in a biofilm have been shown to increase resistance
to antibiotics by factors of 10–1000 [9]. Amongst the reasons for enhanced resistance
in the biofilm state is the EPS structure surrounding the biofilm colony, which can
completely block the infiltration of antibiotics, and the presence of persister cells
in the biofilm colony, which are in a metabolically inactive state and thus protected
from antibiotic action [9].

The goal or reducing or eradicating biofilm populations has been the focus of
research over many years, and there has been much experimental work in this regard
[8, 12, 14]. Many agents have been employed for this purpose, which include but are
not limited to natural inhibitors of biofilm, for example honey [21], drugs (antibiotics,
biofilm-degrading components) [23, 24], bacteriophages and phage-derived enzymes
[2, 5, 13] or combinations of some of these [7]. While phage therapy has been
proposed as possibly the most effective of these agents, phages alone may not be
sufficient to completely eradicate a biofilm [2]. Most recently, experimental work
demonstrated that using phage therapy first, followed by antibiotics, maximized the
killing of bacteria in an established biofilm.

In this article, we develop a mathematical model to study these therapeutic strate-
gies in detail. In Sect. 2, we develop the model, tracking biofilm and planktonic
bacteria in two linked compartments. In Sect. 3, we explore therapeutic strategies
including: phage followed by antibiotics; antibiotics followed by phage; and a novel
strategy we propose which may have the potential to eradicate the biofilm. In Sect. 4,
we derive some conclusions from our analysis.

2 Mathematical Model

We model the interaction between bacteria and bacteriophages (viruses that infect
bacteria) using an established predator-prey approach [22]. Our model considers
cells of a single bacterial species in either a biofilm or planktonic compartment. The
model studies the population dynamics of biofilm cells, B, planktonic cells, P and
phage, VB and VP , in the biofilm and planktonic compartments respectively. The
parameters of the model are described as follows.

The bacterial populations (biofilm or planktonic) are modeled as cell densities
per unit volume, cells/cm3. The biofilm population can increase logistically with a
maximumgrowth rate r , but is limited by a fixed number of available attachment sites
in the biofilmmatrix, given by carrying capacity KB cells/cm3. Similarly, planktonic
bacteria can grow logisticallywithmaximumgrowth rate r but are limited by carrying
capacity KP . The planktonic bacteria join the biofilm at rate A (B, P) and biofilm
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bacteria leave the biofilm with detachment rate D(B, P). It has been shown that T4
can diffuse fairly throughbiofilmchannels [10]; in themodel, phages enter the biofilm
compartment at rate p and leave at rate q. In addition, as described above, bacteria
in a mature biofilm present substantial resistance to bacteriophages. The expression
f (B) VB gives the number of adsorption events per unit time in the biofilm, where
f (B), the phage response function, will model this group defense mechanism. The
number of adsorption events per unit time in the planktonic compartment is given
by g(P) VP , where g(P) is the phage response function in the absence of group
defense. We neglect the time delay between infection and lysis and assume that
each adsorption event instantaneously produces b daughter phages, resulting in new
b f (B) VB and b g(P) VP bacteriophages in the biofilm and planktonic compartments
respectively. Bacteriophage are cleared or denatured at rate c. These assumptions
yield the following system:

dB

dt
= r

(
1 − B

KB

)
B − f (B)VB + A (P, B) − D(B, P)

dP

dt
= r

(
1 − P

KP

)
P − g(P)VP − A (P, B) + D(P, B)

dVB

dt
= b f (B)VB − cVB + pVP − qVB

dVP

dt
= bg(P)VP − cVP + qVB − pVP . (1)

We note that the attachment and detachment rates, A (B, P) and D(B, P), satisfy
A (B, 0) = 0 and D(0, P) = 0. More generally, system (1) can also be considered
as a two-patch predator-prey model, with group defense acting in one patch only, as
illustrated in Fig. 1.

Fig. 1 In patch-1 there is no
group defense mechanism
whereas in patch-2, group
defense offers prey some
degree of protection from
predators. The dashed line
indicates the protective cover
around patch-2 (the EPS
structure of the biofilm)

B
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P

VP

(B,P)

(B,P)
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3 Therapeutic Strategies

Recent experimental work has addressed approaches for minimizing or eradicating
bacterial biofilms [7]. In particular, Chaudhry et al. compared two therapeutic strate-
gies: applying antibiotics and then phages, or applying the same two agents in the
reverse order. Treatment with phages first followed by antibiotics resulted in maxi-
mum killing of biofilm bacteria. Here we predict that although these strategies can
indeed reduce the biofilm, neither strategy can eradicate the biofilm completely.

3.1 Using Antibiotics First and then Phages

Given that planktonic bacteria aremany-foldmore sensitive to antibiotics thanbiofilm
bacteria, we assume that an appropriate antibiotic is administered such that plank-
tonic bacteria can be effectively eliminated before phage therapy. We also assume
that A (B, P) = D(B, P). After the application of antibiotic we will arrive at the
following system

dB

dt
= r

(
1 − B

KB

)
B − f (B)VB

dVB

dt
= b f (B)VB − cVB . (2)

This is a standard predator-prey system with group defense, as studied in [6, 15, 28,
30]. In particular, f (B)must satisfy f (0) = 0, f (B) > 0 for all B > 0, and if there
exists a constant M > 0, such that f

′
(B) > 0 if B < M and f

′
(B) < 0 if B > M ,

then the systemmodels group defence [15]. The function f (B) = m B
α B2+β B+1 , called

the Holling Type-IV or the Monod-Haldane function, was introduced in [4] and
satisfies these properties. System (2) has been previously studied with the above
functional response for β > −2

√
α [19, 30], and with f (B) = αe−βB [29].

In this study, we consider biofilm bacteria that cannot exceed their carrying
capacity, such that B ≤ KB at all times. Hence we replace the property f (B) >

0 for all B > 0 by f (B) > 0 for all 0 < B ≤ KB . To model this phenomenon, we

propose a relatively simple functional response f (B) = α
(
κ − B

KB

)
B. The ratio-

nale for this function is similar to the rationale underpinning logistic growth: we
assume that as the biofilm population approaches carrying capacity, the ability of
phage to penetrate the biofilm is reduced, linearly. The resulting functional response
has the same properties as that of f (B) defined in [29, 30] for 0 < B ≤ KB . Here α

is proportional to the adsorption rate of phages to bacteria, 1 < κ < 2 is the group
defense parameter, and KB is the carrying capacity of the biofilm bacteria. A con-
venient feature of this model is that the group defense mechanism can be controlled
through the parameter κ; κ = 1 corresponds to a perfect group defense mechanism
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(no phage adsorptionwhen the biofilm is at carrying capacity) and κ = 2 corresponds
to the absence of effective group defense ( f (B) increasing on 0 < B ≤ KB ).

System (2) has a maximum of four equilibria. Two boundary equilibria are:
E0 = (0, 0), which represents the complete extinction of biofilm bacteria and
phages; and EKB = (KB, 0), which represents the extinction of phages while the
biofilm bacteria reaches carrying capacity. In addition, two positive equilibria are:
Eμ1 = (μ1,F (μ1)) and Eμ2 = (μ2,F (μ2)) subject to some conditions of exis-

tence. HereF (B) = r
(
1− B

KB

)

α

(
κ− B

KB

) andμ1 andμ2 are solutions to the equation f̂ (B) = ĉ,

where f̂ (B) =
(
κ − B

KB

)
B and ĉ = c

b α
and μ1 < κ KB

2 < μ2 < KB . The existence

of the two positive equilibria Eμ1 and Eμ2 depend on the positioning of the prey
isocline VB = F (B) and predator isoclines B = μ1 and B = μ2. As we increase ĉ
in the interval (0, ĉm), μ1 and μ2 become closer to each other; when ĉ = ĉm the two

equilibria coincide and we get Eμ1 = Eμ2 =
(

κ KB
2 ,

r(1− κ
2 )

α(κ− κ
2 )

)
. Equilibria and their

existence can be summarized in the following theorem.

Theorem 1 System (2) has four equilibria E0, EKB , Eμ1 and Eμ2 if ĉ ∈ (ĉm, ĉM),

three equilibria E0, EKB and Eμ1 if ĉ ∈ (0, ĉm), three equilibria E0, EKB and Eμ1 =
Eμ2 = Eμ =

(
κ KB
2 ,

r(1− κ
2 )

α(κ− κ
2 )

)
if ĉ = ĉM , only two equilibria E0 and EKB if ĉ > ĉM ,

where ĉ = c
b α

, ĉM = κ2

4 KB and ĉm = (κ − 1)KB .

3.1.1 Stability Analysis

It can be easily shown that E0 = (0, 0) has eigenvalues λ1 = r > 0, λ2 = −c <

0 showing that E0 = (0, 0) is a saddle point. The equilibria EKB = (KB, 0) has
λ1 = −r, λ2 = bα(ĉm − ĉ), as eigenvalues, showing that EKB is an attractive node,
if ĉ > ĉm, and is a saddle point if ĉ < ĉm . To study the stability of the other two
equilibria, if they exist, we write the model (2) as

dB

dt
= f (B) (F (B) − VB)

dVB

dt
= b f (B)VB − cVB . (3)

The eigenvalues for Eμ1 are λ1,2 = ξ1±
√

ξ 2
1 −4Δ1

2 , where ξ1 = f (μ1)F
′
(μ1) is the

trace of Jacobian matrix of (3) at Eμ1 . Since F
′
(B) < 0, hence ξ1 < 0 and

Δ1 = b α2 μ1

(
κ − μ1

KB

) (
κ − 2μ1

KB

)
is the determinant of the Jacobian matrix at

Eμ1 . As μ1 < κKB
2 , hence Δ1 > 0. This demonstrates that Eμ1 is an attracting

focus. Similarly, the eigenvalues corresponding to Eμ2 are λ1,2 = ξ2±
√

ξ 2
2 −4Δ2

2 ,

where ξ2 = f (μ2)F
′
(μ2) < 0 is the trace of Jacobian matrix at Eμ2 and Δ2 =
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b α2 μ2

(
κ − μ2

KB

) (
κ − 2μ2

KB

)
< 0 is the determinant of the Jacobian matrix at Eμ2 .

We conclude that Eμ2 is a saddle point. Since only one equilibrium corresponds to
the extinction of biofilm bacteria, and it is a saddle point for all feasible parameter
values, we conclude that complete eradication of the biofilm is not possible using
this therapeutic strategy. This conclusion is consistent with the view, as discussed in
an extensive review [3], that phage action is not sufficient for complete eradication
of biofilms.

3.2 Using Phages First and then Antibiotics

In order to understand phage therapy, we return to model (1), approximating the
complicated processes of attachment and detachment by simpler functions to gain
tractability. Specifically, we assume biofilm bacteria detach at constant per capita
rate n; this assumption has a long history in the literature, extending back to Freter’s
influential research onbacterial colonization of the intestinal tract [16, 20].We further
assume that planktonic bacteria attach at constant per capita ratem. InFreter’s original
biofilm model, attachment is also proportional to the number of planktonic bacteria,
but is further restricted by the number of available “wall attachment sites” [16]. In
our model, we restrict biofilm growth by the number of attachment sites, KB , but
take a linear attachment rate. Since B and P are densities (cells per unit volume),
the net transfer of cells between compartments must be scaled, yieldingA (B, P) =(

volP
volB

)
m P and D(B, P) =

(
volB
volP

)
n B, where volB and volP are the volumes of

the biofilm and planktonic compartments respectively. After the substitution of these
function into system (1), it can be shown by direct calculation that the resulting
system has three equilibrium solutions: the trivial equilibrium, an equilibrium with
both classes of bacteria only, and the all-existing equilibrium (exact expressions
omitted for brevity). Out of these equilibria the only equilibrium which corresponds
to the complete eradication of biofilm bacteria is E0. It can be shown by a direct
calculation that this equilibrium E0 is a saddle point for all feasible parameter values.
This demonstrates that phage therapy will not eradicate the biofilm. Since the biofilm
bacteria are resistant to antibiotics, we can conclude that even phage therapy followed
by antibiotics will not remove the biofilm.

3.3 A Novel Therapeutic Strategy: Blocking Attachment

The model developed here allows us to address the following question: is there a
therapeutic strategy, in principle, that could eradicate the biofilm? Since attachment
of planktonic bacteria is critical to biofilm maintenance, we investigated the model
assuming this attachment is negligible, and phage therapy is also applied. In this
case it can be shown by direct calculations that system (1), with the substitutions
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A (B, P) = 0 and D(B, P) =
(

volB
volP

)
n B, has five equilibrium solutions:

E0 : (B, P, VB, VP) = (0, 0, 0, 0)
E1 : (B, P, VB, VP) = (0, KP , 0, 0)
E2 : (B, P, VB, VP) = (

0, c(c+p+q)

α b(c+q)
,

M p r
bα2(c+q)2KP

( volP
volB

), M r
bα2KP

)
,

E3 : (B, P, VB, VP) = (B∗, P∗, 0, 0),
E4 : (B, P, VB, VP) = (

B∗∗, P∗∗, V ∗∗
B , V ∗∗

P

)
,

(4)

where
M = bqαKP − c(c + p + q − bαKP). (5)

Three of these equilibria, E0,E1 andE2, represent complete eradication of the biofilm.
The equilibria E0 and E1 exist for any positive parameter values, while E2 exists
only for M ≥ 0, i.e. α ≥ c(c+p+q)

bKP (c+q)
. The equilibrium E0 is a saddle point for all

feasible values of parameters. The equilibrium E1 is asymptotically stable if n >

r and α <
c(c+p+q)

b KP (c+q)
. This implies that if the detachment rate is greater than the

birth rate of bacteria in the biofilm and adsorption rate is less than c(c+p+q)

b KP (c+q)
, then

elimination of biofilmbacteria is possible; in particular, planktonic bacteriawill reach
their carrying capacity and there will be no biofilm or planktonic viruses. Using the
Hurwitz criterion, it can be shown that the equilibrium E2 is stable if M > 0, i.e.
α >

c(c+p+q)

b KP (c+q)
(which guarantees its existence), and n > max(0, N̄1), where

N̄1 = r − rκp( volP
volB

) M

bα(c + q)2KP
.

If N̄1 is negative, the conditions for elimination of the biofilm become n > 0 and
α >

c(c+p+q)

b KP (c+q)
. Thus, the model predicts that biofilm eradication is possible if the

attachment of planktonic bacteria to the biofilm,A (B, P) can be blocked. Although
an analysis of realistic numerical parameter values is outside the scope of this con-
tribution, we note that the rate at which the biofilm could be eliminated depends
on the difference between the logistic growth rate, r , and the loss rate of biofilm
( f (B)VB − D(B, P))/B.

4 Summary and Conclusions

Biofilm formation starts with the attachment of planktonic (free-living) bacteria to
a surface. As these bacteria become sessile and start producing the extracellular
matrix (EPS) which defines the biofilm, other bacteria from the planktonic state
continue to attach. In this way the bacteria develop a colony that can minimize
the infiltration of antibacterial agents. In particular, antibiotics are often ineffective
against biofilms, both due to the extracellular structure and the presence of persister
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cells, which are metabolically inactive. Phages (viruses that infect bacteria) offer the
most promising alternative strategy for removing biofilms. Some phages such as T4
can easily infiltrate the EPS structure and can also infect and kill persister cells [18].

A range of experimental studies have shown that phages, antibiotics or other agents
alone are not enough to eradicate a biofilm completely, hence a combination of these
agents is typically recommended [7, 26]. In this study we derive a mathematical
model which predicts that a combination of antibiotics and phage therapy cannot
eradicate a biofilm,whether applied as antibiotics followed by phage, or in the reverse
order, as studied in [7].

In Sect. 3.3, we investigate a novel, hypothetical therapeutic strategy. In particu-
lar, we demonstrate that if further attachment of planktonic bacteria to the biofilm
can be blocked (even if the biofilm is already mature), complete elimination of the
biofilm is possible using phages.After eliminating the biofilm, antibiotics can be used
to eliminate any remaining planktonic bacteria. This result suggests that blocking
attachment, perhaps by blocking EPS production, is a promising avenue for biofilm
eradication. Interestingly, the genetic pathways associated with quorum sensing may
in fact be the targets of several natural biofilm inhibitors [21].

Mathematically, the model we derive is a two-patch predator-prey system with
group defense by the prey in one patch. Our analysis wasmade tractable by proposing
a simple, novel functional response describing group defense. While this function
is invalid (becomes negative) for biofilm densities that exceed an upper bound, in
reality physical constraints limit the density of cells in biofilms, and this limitation
did not impede analysis. We expect that this functional form may have further uses
in the study of group defense mechanisms, particularly when other aspects of the
model become more complex.
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A Simple Model of Between-Hive
Transmission of Nosemosis

Nasim Muhammad and Hermann J. Eberl

Abstract We present a simple metapopulation extension of a mathematical model
of Nosemosis for the between-hive transmission of the disease in an apiary. The
transmission of the disease between neighbouring colonies is modeled by impulsive
transfer of pathogens. The model is studied in computer simulations. Our results
illustrate how the disease, starting from a single colony, can spread and lead to
drastic reduction in the bee population in the apiary, even in the subcritical case.

Keywords Honeybee · Mathematical model · Nosema
Between-hive transmission

1 Introduction

The Western honeybee (Apis mellifera) plays an important role in agriculture, both
for the production of honey and wax but also for its use as managed pollinators.
They are estimated to pollinate one third of Canadian food crops, corresponding to
an economic value to Canadian agriculture of over $2 billion annually [17]. Any
major decline of the pollinating population, therefore, can have a dramatic impact
on biodiversity, ecosystems and related economic activities.

In recent years beekeepers have reported huge losses of colonies, which can
manifest themselves in the form of Colony Collapse Disorder or Wintering Losses.
The exact causes for this phenomenon are unclear, but it is now widely assumed that
it is the multifactorial interplay of several stressors, each of which independently
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could be sub-critical, that might be responsible. Important among those stressors are
parasites and diseases of the honeybee.

To aid in understanding the role of honeybee diseases, several mathematical mod-
els have been introduced, either for generic diseases [2, 3, 11] or for specific diseases
such as the Acute Bee Paralysis Virus, the Deformed Wing Virus, Nosemosis, Var-
roatosis, or American Foulbrood, e.g. [8, 9, 13, 14, 16, 20]. These models draw
on the well-developed machinery of Mathematical Epidemiology and combine them
with models for honeybee population dynamics; in may cases they are based on
[10]. These disease modeling studies have in common that they focus on a single,
isolated, colony. In many beekeeping operations, however, several hives are main-
tained in close proximity. This introduces the possibility for disease transfer from
one colony to others.

Our objective is to present a first suchmodel for the spread of a disease in an apiary.
We focus on Nosemosis, a honeybee disease caused by the microsporidians Nosema
apis and N. ceranae. Although some authors have suggested that nosema might be a
causative agent of colony failure [7], more commonly it is assumed to be a subcritical
disease that weakens colonies but does not by itself lead to colony loss. The reduction
in colony strength is primary due to the shorter life span of infected older foraging
bees. The primary route of transmission within a hive is through defecation of spores
by infected bees and subsequent ingestion by healthy bees, e.g. during hive cleaning
activities, primarily in early Spring, cf. [13] and the references therein. The transfer
of the disease between hives in an apiary is not well understood. It has been suggested
that this might happen during hive maintenance, e.g. hive cleaning or transferring of
contaminated combs, splitting and uniting contaminated hives, but also by drifting
of infected bees to neighbouring hives [4, 5].

2 Mathematical Model

Our mathematical model is a metapopulation extension of the nosemosis model for
in-hive transmission that was introduced and described in more detail in [13]. The
main assumptions are that the worker bees in each colony are divided into two casts,
hive bees that are responsible for cleaning and nursing duties, and forager bees.
Each of these two casts is sub-divided into infected and susceptible sub-groups. The
recruitment rates for hive bees to become foragers, as well as possible reversion
from foraging to hive duties are state dependent. Infected hive bees become infected
foragers, susceptible hive bees become susceptible foragers and vice versa. The
transmission of the disease is assumed to be indirect: infected bees deposit nosema
spores in the hive by defecation. Susceptible bees become infected when they ingest
these spores, e.g. during hive cleaning activities. Infected forager have a shorter life
expectation than healthy foragers. Newly emerging worker bees are assumed to be
not infected. As is common in most models of honeybee population and disease
dynamics, e.g. [2, 9, 11, 14, 20], we assume that the queen is not affected by the
disease. Drones are neglected, also in agreement with these studies.



A Simple Model of Between-Hive Transmission of Nosemosis 387

Newly introduced is here the transmission of the disease between colonies. This
could be by movement of infected individuals into neighbouring hives, or, and this
is the route that we describe here, by transfer of spores between neighbouring hives.
We assume that this happens at most at a few discrete events per year during hive
maintenance operations. To model such discrete interventions we follow the frame-
work that was set up in [15] to describe discrete events in a continuous honeybee
disease model. Our model for the ith hive, i = 1, . . . ,N reads

Ḣ i
0 = β(t)

(Zi)n

κ(t)n + (Zi)n
− σ1(t)H

i
0 + σ2(t)

Fi

Zi
Fi
0 − η0(t)H

i
0

−α(t)Hi
0

Ei

λ(t) + Ei
, (1)

Ḣ i
1 = −σ1(t)H

i
1 + σ2(t)

Fi

Zi
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1 − η1(t)H

i
1 + α(t)Hi

0
Ei

λ(t) + Ei
, (2)

Ḟ i
0 = σ1(t)H

i
0 − [σ2(t)

Fi

Zi
+ φ0(t)]Fi

0, (3)

Ḟ i
1 = σ1(t)H

i
1 − [σ2(t)
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Zi
+ φ1(t)]Fi
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Ėi = γ (t)Hi
1 − δ(t)Ei − α̃(t)Hi Ei

λ(t) + Ei
(5)

where
Hi := Hi

0 + Hi
1, Fi := Fi

0 + Fi
1, Zi := Hi + Fi (6)

Here,Hi
0,H

i
1 are the susceptible and infected hive bee sub-populations andF

i
0,F

i
1 are

the susceptible and infected forager sub-populations in the ith hive. By Ei we denote
the environmental disease potential, i.e. a measure for the contamination with the
pathogen. We assume that transmission of spores between hives only happens in
the beginning of Spring during hive maintenance. For this discrete event, we update
the environmental potential value of the kth hive (Ek ) at times t j , j = 1, 2 . . . as
follows:

Ek(t j ) := lim
t→t−j

(
[1 − ξ kp] ∗ Ek(t) + p

∑
i∈Ωk

Ei(t)

)
(7)

where ξ k is the number of neighbours of the kth hive and p the percentage of spores
exchanged between neighbouring hives. The first term on the right of Eq. (7) repre-
sents the amount of spores left after transferring to neighbouring hives and the second
term for the amount of spores placed in kth hive from its grid neighbourhood Ωk ,
which is dependent on the hive arrangement in the apiary and the location of the hive.

We assume for simplicity that the parameters describing honeybee population
and disease dynamics are the same in each hive. The model parameters and their
default values used in our simulations are described in Table1. For a more detailed
explanation we refer the reader to [13]. All parameters are time-dependent, non-
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negative, and assumed to be periodic with periods of one year to reflect seasonal
changes in honeybee population dynamics. In Table1 we give average parameter
values for each season.

Even for the single hive model, the results that were obtainable by analytical tech-
niques in [13] were limited. Therefore, we study the model in computer simulations.
To this end it was implemented inR using the packagedeSolve [19]. To take advan-
tage of themulti-core architecture ofmodern computers a coarse grain parallelisation
approach was taken, mapping hives to cores using the packages doParallel and
Foreach [21]. Simulations were run on a Lenovo ThinkServer RD650 with 256G
of RAM and 16 cores/32 threads in 2 sockets, with 122TB hard drives. The CPUs
are Intel Xeon(R) E5-2640 v3 @ 2.60GHz.

In our simulations we assume that the first day of spring is the first day of the
year. Initially, the model Eqs. (1)–(6) are integrated for the first three seasons with
initial values H0(0) = 104, H1(0) = 0, F0(0) = 104, F1(0) = 0, and E(0) = 0. To
simulate the onset of the disease, we perturb the disease free solution by increasing
H1 to 10 on the first day of the first Winter.

3 Simulations

3.1 Apiary Set-up

We consider here for simplicity beehives that are placed in a rectangular grid of size
N1 × N2. These beehives are labeled from 1 to N = N1 · N2 using lexicographical
ordering, k = k(i, j) := N2(i − 1) + j , i = 1, . . . ,N1, j = 1, . . . ,N2. For disease
transmission between hives we consider the Moore neighbourhood, i.e. for a hive k
at an interior location (i, j), all 8 neighbour hives are affected (ξ k = 8), for a hive in
a corner ξ k = 3, etc. In the simulations presented below we chose N1 = 6,N2 = 5,
representing a medium sized bee yard.

3.2 Base Case Simulation

We first examine a base case with no disease. In this scenario all hives are identical.
The simulation results are shown in Fig. 1. In the absence of nosema, the colony
very quickly reaches a healthy periodic solution, as shown in Fig. 1. Since no disease
is introduced, the colony only contains healthy hive bees and healthy forager bees.
The populations fluctuate with the seasons as expected. The colony population peaks
towards the end of Summer and reaches a minimum near the end of Winter. Foragers
return to the hive in Winter, increasing hive bee populations. This effect is reversed
at the beginning of Spring.
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Fig. 1 Base case simulation of the model (1)−(6) without disease

3.3 Disease Propagation Between Hives

Two simulations were conducted to investigate the effect of the position of infected
hives on bee population and the spread of spores in an apiary. Initially, Hive #01
(a corner hive) was infected in one simulation and Hive #13 (a center hive) in the
other one, whereas all other hives are assumed to be initially pathogen free. It was
reported in [13] for the single hive scenario that the population does not die but
reaches an endemic periodic solution with moderate spore uptake α̃ = 0.15 and low
spore deposition γω = 0.1. We used the same values for α̃ and γω with between-hive
disease transmission of p = 1%. The results are presented in Figs. 2, 3, 4, 5 and 6.

Figure2 shows the behavior of the environmental pathogen reservoirs of two
typical hives that are placed farthest away from each other in an apiary. Hive #01
is infected in the first year of simulation whereas the remaining hives were initially
disease free. The disease quickly establishes itself. The data collected during the
simulation shows that the maximum value of reservoirs Hive#01 and Hive#30 reach
to 372.9 and 372.6 respectively and occurs on the same 10568th day (29 years and 12
days). The propagation of the disease is slow, taking many years. This is made more
quantitative in Table2 in which the times are reported at which pathogens reach 5,
100 and 300 levels. Hive #30 reaches to 300 level in 24 years and 5 days whereas
Hive #01 in 3 years and 10 days.

As mentioned above, the simulation scenario is sub-critical in the sense that dis-
ease infestation does not lead to colony failure but to weaker colonies. We calculate
the percent short fall of the apiary’s population by taking the ratio of the average
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Fig. 2 Behavior of Environmental Reservoirs for Hive #01 (initially infected) and Hive #30 with
α̃ = 0.14, γω = 0.1 and p = 1%
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Fig. 3 Simulation results showing average population shortfall and average environmental potential
with α̃ = 0.14, γω = 0.1, and p = 1% when Hive #01 was infected

population in the apiary with the disease free population (base case simulation). This
is shown in Fig. 3, indicating a rather drastic effect of the disease on the number of
bees in the apiary, which in these simulations drops by 25%. To further investigate
this, we report four data points at the beginning of each season for every year in Fig. 4.
It shows that the populations’ shortfall at the beginning of season is 1% in Spring,
3% in Fall and Winter, and 25% in Summer. Thus although the disease intensity is
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Fig. 5 Behavior of Environmental Reservoirs for Hive #13 (initially infected) and Hive #30 with
α̃ = 0.14, γω = 0.1 and p = 1%

strongest in Spring when cleaning activities primarily take place, cf. [13], it becomes
most noteworthy in Summer when the colonies are strongest.

We repeat the above simulations assuming now that the hive approximately in
the centre of the apiary is the initially infected one. Changing the location of initial
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Fig. 6 Simulation results showing average population shortfall and average environmental potential
with α̃ = 0.14, γω = 0.1, and p = 1% when Hive #13 was infected

Table 2 Approximate time at which pathogen spore levels 5, 100 and 300 are obtained for the
simulation of Fig. 2

Env. reservoir level 5 100 300

Hive #01 (days) 282 358 1102

Hive #30 (days) 6547 7653 8741

Time difference
(years-days)

17y 77d 20y 15d 20y 359d

Table 3 Approximate time at which pathogen spore levels 5, 100 and 300 are obtained for the
simulation of Fig. 5

Env. reservoir level 5 100 300

Hive #13 (days) 282 358 1462

Hive #30 (days) 3640 5094 6190

Time difference
(years-days)

9y 82d 13y 4d 12y 360d

disease outbreak has two primary effects: If the infection originates in a hive in the
centre, it will have spread faster across the entire apiary than if it originates on the
boundary, i.e one will expect a faster spread of the disease. Secondly, in this scenario,
from the location of first outbreak the disease is transmitted into 8 neighbouring
sites on the Moore neighbourhood, whereas in the previous scenario it had only 3
neighbours on the grid. Therefore it can be expected that both the diseases spreads in
more directions but also leads to a faster reduction in the original location. Figure5
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shows the pathogen levels inHives #13 (location of initial outbreak) and #30 (the hive
furthest removed). The levels of contamination that are reached are the same as in the
previous scenario, but the disease spreads across the apiary faster, see also Table 3
for more quantitative data. Noteworthy is here that in this case it takes longer for the
disease to reachE = 300 in the site of first outbreak than in the previous scenario; this
is an effect of having more neighbours into which pathogens are initially distributed.
The level of population shortfall across the apiary, as per Fig. 5 is similar to the
previous scenario, i.e. the longterm effect of the disease outbreak in a single hive on
the overall apiary does not depend on the location of the outbreak. However, the time
that it takes for the disease to spread across the yard does.

4 Conclusion

Most models of the dynamics of honeybee diseases are concerned with individual
colonies.However,most apiaries operate several hives in one locationwhich provides
an opportunity for pathogens to spread between colonies.We presented here a simple
metapopulation model to simulate such a scenario for Nosemosis. Our simulations
suggest that the spread of a sub-critical nosema infection that originates in a single
hive across an apiary can lead to a drastic shortfall in the total bee population, which
has immediate consequences for both pollination performance and honey production.

A key assumption in our model, which obviously affects simulation results, was
that the disease spreads between hives by propagation of the pathogen at few occa-
sions during the year. In reality the transmission of the disease in an apiary is not
well understood and it is possible that, depending on the disease under question,
several mechanisms might be responsible. Under this light, our results cannot be
understood as quantitative predictions. However, they highlight the importance of
further investigations of the effect of between-hive disease transmission. They raise
the question, to which extent the observations made here carry over to other trans-
mission mechanisms, and how sensitive they are with respect to the parameters that
describe those.
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Spreading of Nearshore Effluent
Discharges on Eroded Sloping
Sandy Beaches

Anton Purnama, Huda A. Al-Maamari and E. Balakrishnan

Abstract A far field modeling study is presented to evaluate the effect of erosion
of a sloping sandy beach upon the mixing and dispersion of the effluent discharges
from a multiport diffuser. The two-dimensional advection-diffusion equation with
multiple point sources is analytically solved and illustrated graphically by plotting
contours of solution to replicate the interaction and merging of the nearshore effluent
discharged plumes in coastal waters. The compounded shoreline concentration is
asymptotically approximated and used as an environmental impact measure to assess
how well the effluent plumes are diluted downstream. It is found that the significant
increase in maximum concentration value due to erosion can be reduced by adding
more ports and extending the diffuser pipe. The result demonstrates that a modern
marine outfall system equippedwithmultiport diffusers does produce lower potential
environmental impacts.

Keywords Advection diffusion equation · Far field model
Multiport diffuser · Sea outfall · Shoreline concentration

1 Introduction

It is widely accepted that the environmental effects of discharging pretreated wastew-
ater through an effective and well design long sea outfall system which terminates in
multiport diffusers could be kept to a minimum [1, 2]. A multiport diffuser is a linear
structure consisting of many closely spaced ports or nozzles designed to discharge
a series of effluent jets and rapidly dilute the effluent stream [3–5]. For nearshore
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discharges, as the water depth is gradually decreasing towards the shoreline, it is
observed in the far field that the bent-over effluent plumes are spreading towards the
shoreline and may cause concentration build-up to higher levels in the coastal waters
[6–9].

Physically, the coastal area is a dynamic region where land and sea meet. In
some places, it takes the form of a sloping sandy beach, but in other places it is
a mountainous coast with rocky sea cliffs. The process of a sandy beach erosion is
complicated due to the inherently nature of sediment fluid interaction in the nearshore,
and the sandy beaches are actively adjusting their form to an equilibrium profile in
response to incident waves [10], winds and storms [11], and sea level rise also
exacerbates beach erosion [12]. Erosion is causing sediment to move alongshore
and/or drift out to sea.

The simple empirical power law for the equilibrium beach profile is given by
h = Ayn , where h is the water depth, A is the scale parameter, and y is the offshore
distance [13, 14]. This formula was found by fitting (stable) beach profiles, and
agreed well with data obtained from the experiments in the laboratory. The value of
A = 0.1 was suggested in [15, 16], but different values were reported for the power
law: n = 2/3 in [13, 14, 17], n = 0.78 in [18] and n = 4/5 in [16].

Owing to the unpredicted nature of the sea, a full understanding of the integrated
shoreline evolution and dispersion process of effluent discharges are not yet known,
and the mathematical models has been widely used for assessing the environmental
impacts of marine effluent discharges [19–21]. While the far field modelling in this
paper involves drastic simplifications, key physical mixing and dispersion processes
are represented, and thus the analytical solution remains useful in providing a qualita-
tive understanding and in suggesting general behaviour of the marine outfall effluent
discharge plumes [22–24]. In terms of the practical applicability, it is well recognized
that the far field models can be applied as a tool to perform quick preliminary worst-
case assessments. If this easy-to-apply assessment indicates no significant impacts,
no further action is needed and the use of more sophisticated and time-consuming
integrated three-dimensional shoreline evolution, hydrodynamic and water quality
modeling can be avoided.

2 Advection-Diffusion Equation for Multiport Diffusers

As we are mainly concerned with the effect of variations in the beach profile, the
coastline is considered to be straight and the sea wide, and the far field outfall’s
effluent discharges plume is assumed to be vertically well-mixed. We model the
seabed depth as h(y) = myn (0 < n ≤ 1) [7, 8, 24]. As illustrated in Fig. 1, when
n = 1 the profile is known as the (non-eroded) sloping sandy beach with slope m.
The beach profiles due to bed erosion are represented by n < 1.

The longshore (drift) current is assumed to be steady with a speedU and remains
in the x-direction parallel to the beach at all times. The dispersion mechanisms are
represented by eddy diffusivities, and diffusion in the x-direction is neglected, as the
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Fig. 1 Cross-section profile of eroded sloping sandy beach (left), and diagram of multiple point
sources to represent a multiport diffuser (right)

effluent plumes in steady currents become very elongated in the x-direction [25, 26].
The variations in the y-direction of drift current U and coefficient of dispersivity D
are assumed as the power functions only of water depth h, where U is proportional
to h1/2 and D to h3/2, respectively. These scalings are appropriate for a turbulent
shallow-water flow over a smooth bed [6, 26]. Other complexities such as tidal
motions, density and temperature are ignored.

Without loss of generality, we represent the single outfall (port) discharging an
effluent stream at a constant rate Q0 as a point source at the end of the outfall pipeline
(x0 = 0, y0 = αh0), where h0 is an arbitrary reference water depth. As illustrated
in Fig. 1, for multiport diffusers with N ports (in addition to the single outfall), the
first port discharges at a rate Q1 as a point source at (x1 = −�h0, y1 = (α + d)h0);
the second port discharges at a rate Q2 as a point source at (x2 = −2�h0, y2 = (α +
2d)h0); and so on,whered is the outfall’s (offshore) and � (along the shore) separation
distances. So that the kth port discharges at a rate Qk is represented by a point source
at (xk, yk), where xk = −k�h0, yk = (α + kd)h0 with k = 0, 1, 2, . . . N .

Details on themathematical derivation for the case of a non-eroding sloping sandy
beach are given in published papers [6, 8, 9], and since the extension for eroded sandy
beach can easily be done, to avoid repetition, these lengthy derivations are omitted.By
applying the superposition principle c(x, y) = ∑N

k=0 ck(x, y), the two-dimensional
advection-diffusion equation for effluent concentration ck(x, y) from a point source
at (xk, yk) is given by

∂

∂x
(hUck) − ∂

∂y
(hD

∂ck
∂y

) = Qkδ(x + xk)δ(y − yk), (1)

with the boundary condition hD∂ck/∂y = 0 at the shoreline y = 0, and since the
concentration is ultimately dissolved at far distance, ck(x, y) → 0 as y → ∞. We
note δ(∗) is the Dirac delta function.

First, by removing the delta functions, the equation is solved separately for all x ≥
xk in the two regions 0 ≤ y < yk and y > yk , and the solutions are then connected
by the matching condition at yk = (α + kd)h0. Since no concentration is lost or
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produced anywhere other than being released from the point source, the solutions
must also satisfy

∫ ∞
0 hUck(x, y) dy = Qk .

In terms of dimensionless quantities ck(x, y) = ck∗(x∗, y∗)Q0/h20U0 , x = x∗h0,
y = y∗h0, and settingU = U0y

1/2
∗ , D = D0y

3/2
∗ , and by applying the Laplace trans-

form, the equation to be solved is

y∗
d2ck∗

dy2∗
+ (n + 3

2
)
dck∗

dy∗
− pλck∗ = 0, (2)

where p is the transform parameter, and λ = h0U0/D0 the model parameter. On
writing ck∗(p, y∗) = y−ν/2

∗ u(z) with z = 2
√

λpy∗, the equation is reduced to the
modified Bessel’s equation of order ν = n + 1/2.

The exact solution is obtained using the inversion of the Laplace transform, and
after summing for all concentrations ck∗ from the N + 1 ports, we obtain

cN ∗(x∗, y∗) =
N∑

k=0

λqk
m(x∗ + k�) ([α + kd]y∗)ν/2 ×

exp

(

−λ[y∗ + α + kd]
x∗ + k�

)

Iν

(
2λ

√[α + kd]y∗
x∗ + k�

)

, (3)

where qk = Qk/Q0 with
∑N

k=0 qk = 1. Note that for a multiport diffuser with N
ports, the total effluent discharged is distributed equally, and so each port discharges
at a constant rate of qk = 1/(N + 1).

For nearshore discharges, the appropriate measure for assessing the potential
impact of marine effluent discharges would be the shoreline concentration values. In
the limit as y∗ → 0 and by replacing the modified Bessel function of the first kind
Iv(∗) by its asymptotic form, we obtain the compounded shoreline concentration

cN ∗(x∗, 0) ≈ 1

mΓ (n + 3/2)

N∑

k=0

qk

(
λ

x∗ + k�

)n+3/2

exp

(

−λ[α + kd]
x∗ + k�

)

, (4)

where Γ (∗) is the Gamma function.

3 Single Outfall Discharges

Sea outfalls are built predominantly on the sloping sandy beaches [1]. For the quanti-
tative illustration of the solutions, the value ofm = 0.1will be used in the subsequent
calculations and plots.
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3.1 Non-eroding Sloping Sandy Beaches

Since n = 1, the exact solution for a single outfall (k = 0) discharge is given by

c0∗(x∗, y∗) = λ

mx∗

( 1

αy∗

)3/4
exp

(

−λ[y∗ + α]
x∗

)

I3/2

(
2λ

√
αy∗

x∗

)

. (5)

The contour plots of the solution for α = 20 are shown in Fig. 2 for two different
values of λ = 0.2 and λ = 0.4. The larger the values of λ, the more elongated the far
field effluent discharge plumes. In coastal waters, larger values of λ are mostly due to
a stronger drift currentU0 with less dispersivity D0. As anticipated, the concentration
contours are deflected and turning towards the beach, and thus, a higher build-up in
concentration will occur close to the beach.

The concentration at the beach for a point source discharge reduces to

c0∗(x∗, 0) = 1

mΓ (5/2)

(
λ

x∗

)5/2

exp

(−λα

x∗

)

. (6)

As plotted in Fig. 3(left), it has a maximum value of c1m = 1
mΓ (5/2)

(
5

2αe

)5/2
at x1∗ =

2λα/5. From the first column of Table1, the maximum value for α = 20 is reduced
by 43% when the outfall pipe is extended to α = 25, and by more than 64% when
α = 30. This result shows and agrees with the standard practice of building a longer
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Fig. 2 Concentration for a point source for λ = 0.2 (top) and λ = 0.4 (bottom)
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Fig. 3 Concentration at the beach for λ = 0.2 on a sloping sandy beach (left), and an eroded sandy
beach at α = 30 (right)

Table 1 Maximum concentration values cnm × 10−3

α n = 1 n = 0.9 n = 0.8 n = 2/3

20 3.4112 4.5035 5.9397 8.5766

25 1.9527 2.6361 3.5553 5.2886

30 1.2379 1.7019 2.3375 3.5628

35 0.8420 1.1756 1.6397 2.5511

40 0.6030 0.8532 1.2061 1.9102

45 0.4492 0.6431 0.9199 1.4800

outfall in order to meet the standard regulatory criterion “does not exceed a certain
level of concentration anywhere along the beach” to control public health risks in
the areas where coastal waters are used for recreational purposes.

3.2 Eroded Sandy Beaches

For eroded sandy beaches (n < 1), the maximum value of concentration at the beach

is given by cnm = 1
mΓ (n+3/2)

(
n+3/2

αe

)n+3/2
, which occurs at xn∗ = λα/(n + 3/2). As

shown in Fig. 3(right) for α = 30, the seabed erosion increases substantially the



Spreading of Nearshore Effluent Discharges on Eroded Sloping … 403

shoreline’s concentration level. From Table1, this increase persists and is getting
larger even for longer outfall lengths. A maximum value for α = 40 on non-eroding
sloping sandy beaches with n = 1 is increased by more than double on the eroded
sandy beaches with n = 4/5, and by more than three-fold when n = 2/3. This sug-
gests that extending the outfall pipe alone may not be enough to overcome the beach
erosion.

4 Multiport Diffusers Discharges on Eroded Sandy Beaches

Economically, it is cheaper to install a multiport diffuser at the end of the outfall
pipeline rather than extending the outfall length. Note that both values of d and � are
small compared to α. For example, in Barka desalination plant’s multiport diffusers
[4], �h0 = 3.75m and dh0 = 6.5m which are much shorter than that of the outfall
pipe length αh0 = 650m.

The contours of the solution for five ports (N = 4) are reproduced graphically in
Fig. 4 for λ = 0.3 with α = 30, d = 0.5 and � = 0.3. The effluent plumes from these
ports are immediately merged as they are released, and for x∗ > 0 the combined
plumes appear to be spreading as one. This supports the concept that a multiport
diffuserwill rapidly dilute effluent discharge in coastalwaters and improve themixing
of effluent plumes substantially.
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Fig. 5 Compounded concentration at the beach for discharges from multiport diffusers

Next, for eroded sandy beaches with n = 0.8, the compounded concentration at
the beach for five ports (N = 4) is shown in Fig. 5(top) for λ = 0.3 with α = 30 and
� = 0.3 for three values of d = 0.5, 1 and 1.5. The concentration at the beach for
a single outfall with d = 0 and � = 0 is also plotted using a dotted line. Similarly,
for d = 1 as shown in Fig. 5(bottom), the smaller concentration value is achieved by
increasing the number of ports to 10 (N = 9).

For the quantitative illustration on eroded sandy beaches, by substituting x∗ +
k� ≈ λα/(n + 3/2) , the maximum value of compounded concentration at the beach
is estimated as

cNm ≈ 1

mΓ (n + 3/2)

N∑

k=0

1

N + 1

(
n + 3/2

α

)n+3/2

exp

[

−
(
n + 3/2

α

)

(α + kd)

]

.

(7)
Linearization in term of d/α gives

cNm

cnm
≈

N∑

k=0

1

N + 1

[

1 − (n + 3/2)
kd

α
+ (n + 3/2)2

2

(
kd

α

)2

− (n + 3/2)3

6

(
kd

α

)3

+ · · ·
]

.

(8)
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Finally, after summing for N ports, we obtain

cNm

cnm
≈ 1 − (n + 3/2)

2
N
d

α
+ (n + 3/2)2

12
N (2N + 1)

(
d

α

)2

− (n + 3/2)3

24
N 2(N + 1)

(
d

α

)3

+ · · · . (9)

Note that, the values of � are in the range 0 < � < λd
n+3/2 .

For comparison with that of the sloping sandy beach maximum value for a point
source, the ratio of maximum values for n < 1 is given by

cnm
c1m

= Γ (5/2)

Γ (n + 3/2)

(
2n + 3

5

)5/2 (
2n + 3

2αe

)n−1

. (10)

The last term increases significantly larger for α > 1.25. As shown in Fig. 6(left),
for long sea outfalls α > 10, the maximum concentration value is more than double
that of the non-eroding sloping sandy beach value for a relatively small erosion
represented by n > 0.7.

As shown in Fig. 6(right) and from Table2, we noted that as the number of ports
N increases and α gets longer, the maximum concentration at the beach gets smaller
than that of the single point source value cnm . Finally, using the maximum values
from Tables1 and 2 for α = 30, we can estimate for the eroded sandy beaches with
n = 0.8 the ratio of maximum values cN=14m/c1m is about 1.466 for d = 1 and
reduces to 0.861 for d = 1.5.

Fig. 6 Ratio of maximum values cnm/c1m for a point source (left) and cNm/cnm for multiple point
sources (right)
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Table 2 Maximum concentration values cnm × 10−3 when α = 30

n = 1 n = 0.8 n = 2/3

N d = 1 d = 1.5 d = 1 d = 1.5 d = 1 d = 1.5

4 1.0550 0.9789 2.0168 1.8808 3.0994 2.9012

9 0.8720 0.7356 1.6913 1.4489 2.6244 2.2689

14 0.7189 0.5130 1.4189 1.0662 2.2259 1.7208

19 0.5732 0.2349 1.1665 0.6232 1.8621 1.1153

5 Conclusion

The analytical solution of an advection-diffusion equation on eroded sloping sandy
beaches with multiple point sources is used to study the interaction and merging
effluent discharge plumes fromamultiport diffuser, using a simplemodel of changing
seabed depth profile as the power functions of distance from the beach. The diffuser-
induced concentration at the beach is then formulated, and based on the maximum
concentration values, it is found that building a longer sea outfall alone will not be
enough to suppress the effect of seabed erosion. Installing a multiport diffuser at the
end of the outfall’s long pipeline to enhance dilution of the effluent discharges in the
coastal waters reduces significantly the effect of erosion [24].

The inclusion of the seabed erosion on the mathematical models for assessing
the environmental impacts of outfall’s effluent discharges has never been reported
before. Thus, the proposed far field mathematical model can be regarded as the
first (analytical) model application for evaluating the effect of eroded sloping sandy
beaches on spreading of effluent discharges in coastal waters. Shoreline erosion is
a complex process, and a significant simplification has to be made as a first step
toward building an analytical model. The simple (empirical) power law of depth
with distance offshore is the right choice for complexity in obtaining the model
solution.
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Using Social Media to Improve
Knowledge Sharing among
Healthcare Practitioners

Haitham Alali

Abstract Aim This paper aims to explore and analyse how findings from social
media literature can inform healthcare researchers and providers, particularly in the
subject of online healthcare social groups, one of themost promising knowledge shar-
ing approaches in healthcare.Methods This paper conducted a systematic review of
the social media literature. The Leximancer software “Lexi-Portal Version 4” was
used to analyse 298 studies. The Leximancer software exposed a group of relational
themes that supported the interpretative content analysis undertaken. Results Two
primary findings stand out in the social media literature: The social networking and
communication among healthcare practitioners is crucial for maximizing the group
work behaviour, besides, social media contribute to research, practice, develop pro-
fessionalism, and knowledge sharing, particularly within healthcare services. Con-
clusions Overall, this paper found that social media has a long and rich history
of research in knowledge sharing that offers useful tools to healthcare practition-
ers. Healthcare practitioners may benefit from participating in healthcare knowledge
sharing social media platforms by attaining knowledge that enhances their ability to
effectively contribute issues and dilemmas faced in the healthcare profession.

Keywords Social media · Knowledge sharing · Healthcare
Web 2.0 technologies · Leximancer

1 Introduction and Background

Social media is considered as an interactive channel that can support applications
and features that are part of knowledge management systems. Social Media as an
communicating network was developed in the last years, to facilitate knowledge
sharing activities. Typically, healthcare practitioners can easily adapt to computer-
mediated collaborative activities and different types of social media and build a
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‘virtual’ social space [1, 2] on a variety of social media platforms, such as Facebook,
Twitter, YouTube, online forums andWordPress. Such social spaces, also referred to
as online communities of practice, are among the best places for healthcare practition-
ers to engage in healthcare knowledge sharing because they face the same challenges;
share common interests; and engage in similar occupational practices [1–3].

Social media supports bothsynchronous and asynchronous communication [4].
Clark and Brennan [5, p. 229] have characterised various components that com-
munication media might provide: audibility “A and B can communicate through
speaking to each other”, visibility “A and B are visible to each other”, Co-presence
“A and B share the same environment”, co-temporality “B receives at roughly the
same time as A presents, i.e. synchronous communication”. Moreover, reviewability
“B can reviewA’s message”, revisability “A can revise messages for B”, simultaneity
“A and B can send and receive at once and simultaneously”, and sequentiality “A’s
and B’s turns cannot get out of sequence as in asynchronous communication” [6].

In spite of the rapid diffusion of the use of social media and knowledge man-
agement across organizations, so far, the little research has been carried out on
the use, design, and the outcomes of the social media in the healthcare literature
[7–10]. Knowledge sharing literature has primarily dealt with general case stud-
ies of knowledge sharing initiatives in the organizations and conceptual models i.e.
SECI knowledge creation model [11, 12]. Accordingly, there is no broadly accepted
model that encompasses critical aspects of efficient knowledge sharing to examine
this phenomenon in the healthcare sector, and more specifically, among members in
healthcare social groups [8, 10, 13]. Hence, there is a necessity to explore the social
media literature and provide more information on the way they support the success
of knowledge sharing among healthcare practitioners. Therefore, the available social
media literature should be explored to identify the primary dimensions and concepts
that contribute to the success of healthcare social groups [14].

The dimensions and its related factors that determine the acceptance of health-
care social groups might support healthcare organizations in various ways, such as
providing suggestions to improve the design, implementation, usage, and operation
of online healthcare social groups [3, 15]. Moreover, the main concepts of online
healthcare social groups might improve the decision-making process regarding KM
project investments and online healthcare socialmedia tools, and instruments that can
serve as benchmarks for further measurement and improvement of online healthcare
social groups [1, 16]. The missing gap that should be overcome by further research
is to be identified by the literature review [14, 17].

Theoretically, Wenger et al. [18], have reported that the broad implementation of
online social groups in different industries (i.e. marketing, information technology,
and education) has so far achieved high levels of success. Nevertheless, the number
of studies that assessed online social groups in the healthcare sector is still limited
[19, 20]. Moreover, those studies are mainly descriptive. Hence, the purpose of this
work is to review the literature online healthcare social groups. Furthermore, the
aim of the study is to explore and analyse the primary dimensions and concepts that
contribute to understand the online healthcare social groups.
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2 Methods

In order to conduct a comprehensive analysis of the literature related to social media
in healthcare, the researcher looked for the cited research from 2005 to 2018 in dif-
ferent databases; “health informatics”, “information systems”, and “social science”
databases, including EBSCO, Science direct, Taylor, ProQuest, Sage, Wiley, Emer-
ald, PubMed, Springer Link, and the ACM. Further articles were incorporated using
Google Scholar and Yahoo search engines. A wide range of keywords were used i.e.
“electronic”, “virtual”, “online”, “web-base”, “communities of practice”, “network”,
“social networks”, “forum”, “Facebook”, “social media”, “LinkedIn”, “group”, and
“healthcare”. Nevertheless, the search keywords with similar meaning are combined
by “OR” and the keywords that are required to be combined with other keywords
are paired by “AND and NOT” Boolean operators.

As revealed in Fig. 1 there were several steps of the selection process. First, the
initial screening of titles and abstracts identified 1023 relevant studies. When dupli-
cates were removed, 1001 references were kept. Further 276 articles were excluded
because their research aims were not relevant. Nevertheless, in the cases of doubt
regarding the exclusion, the decision was to keep the article for further evaluation.
Subsequently, all full articles were read, irrelevant studies were excluded, and lastly,
298 studies were kept to be analysed by Leximancer software.

Fig. 1 Identification of articles for analysis of using social media to improve knowledge sharing
among healthcare practitioners



414 H. Alali

Leximancer is an emergent instrument used in the analysis of textual data with
a purpose to map out the underlying themes within the textual data [21, 22]. The
Leximancer software “Lexi-Portal Version 4” [23], is a data-mining software, was
used to analyse 298 articles. This software is used for the automatic extraction of the
major themes and concepts from the data. It represents a mechanism for automatic,
unbiased, and objective discovery of the concepts. It is crucial for the content analysis,
as it can manage massive amounts of textual information and it is highly reliable in
revealing the conceptual and semantic relations of the concepts in the content [21].
Moreover, the results analysis is given in a visual form as well. This software is
excellent in providing interpretative judgment about the nature of the content, and
it provides reliable results [21, 22]. The software was used to reveal the primary
themes and concepts from all selected articles.

3 Content Analysis

As depicted in Fig. 2, the concepts map of the previous studies was created depend-
ing on the thematic analysis by Lexi-Portal Version 4. Once Leximancer analyses a
document, the documents key words and phrases are tallied, parsed and compared
with the Leximancer internal dictionary. After that, Leximancer selects and extracts
the most common phrases and words, the ‘themes’ of the document. Next, Lexi-
mancer once more classifies these themes into categories determined by their lexical
meanings and their use within the text. Themes that show similar meaning or are used
together several times within a document become ‘concepts’, which form the starting
point of the Leximancer concept map, the closeness of concepts in the map suggests
that two concepts appear in similar conceptual contexts [21]. Within a Leximancer
concept map, a number of indicators are present that support the interpretation of the
data [21]. In Leximancer, the brightness of a concept is associated with the frequency
of the data, in other words, the brighter the concept, the more frequently it appears
in the documents. Furthermore, the brightness of links relates to how frequently the
two associated concepts occur in close proximity within the documents. Only the
most dominant lines are presented with a purpose to avoid unnecessary cluttering.

The dots in the map indicate the concepts, and the circles indicate the themes
and how each concept is associated to other concepts. The previous studies of social
media in healthcare mainly adopted two major themes: networking and content; the
networking theme has intersection with healthcare, Facebook, social importance
and users. However, the content theme has intersection with knowledge, data, and
research; besides, there is an emphasis on use behaviour of the social media tools
including online healthcare social groups. The map also illustrates how social media
contribute to research, practice, develop professionalism, and knowledge sharing,
particularly within healthcare services.

The lists of words in Fig. 3 are the top-ranked words from trained thesaurus
entries for the central concepts and its frequency in the literature. Fig. 3 shows that
the key themes were derived from all articles were mainly focusing on; knowledge
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Fig. 2 Concept map of key themes and concepts in literature

sharing 23%, network 20%, healthcare 15%, social interaction 14%, social media
13%, members 9%, and technology 6%. These results suggest that healthcare sector
as a knowledge-based institutions, is paying more attention to the professionals’
experiences, skills, and knowledge as the main vital asset. The shared purpose across
various worldwide health institutions is to develop a successful knowledge sharing
tools that are inexpensive and available for all healthcare practitioners and even for
patients [15, 24, 25].

Nowadays, socialmedia penetrating every possible aspect of people’s lives fuelled
by Twitter, Facebook, LinkedIn, Skype and other services, and by the enabling appli-
cations and hardware such as tablets, phones, and telecommunication devices. In
addition to, the second generation of online platforms “Web 2.0 applications” includ-
ing blogs, wikis, tagging, RSS feeds, social bookmarking and collaborative real-time
editing. These platforms are technologies used widely for social networking to serve
online collaboration and sharing of user-generated content. Mobile sociable tech-
nologies, Web 2.0 technologies, and social applications are enablers in health and
health care from external sources and within the healthcare organizations, benefits to
the healthcare administration and practitioners. . . . Parcell [25, P. 68] stated, “to be
connected to the people who have the knowledge is more important than capturing
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Fig. 3 Counts and
percentage of key themes in
literature

all the knowledge”. Healthcare practitioners do not need to formulate advance skills;
they are highly acknowledged in a specific area such as management, medicine, and
laboratory. Social media supports the engagement of diverse groups of actors in the
process of knowledge sharing. As evidenced in the content analysis, social media
allowed the patients and other actors to get access to the perspectives of people who
live in different geographical locations to interact in a virtual space.

Social media in healthcare sector could be beneficial to groups and countries who
face challenges, adversity, and turbulence. Despite the fact that many people live a
wealthy and healthy life in few countries, many countries around theworld still suffer
from the challenges of poverty, disease, or their geographical borders and even lan-
guage constraints. Telecommunication technologies including mobile applications,
web 2.0 technologies, smart devices and social media that are motivating new health-
care models where providers and patients be capable to join simultaneously in online
social space that facilitate real-time communications and support patients to obtain
a superior role for forming and improving the quality of healthcare services.

4 Limitations

This paper only reviewed articles published in a 13 years period, and books or book
chapters published during that timewere excluded because of access permissions and
downloading difficulties. The search was limited to articles whose titles included at
least one keyword. The results of this analysis are limited to the articles that retrieved
from “health informatics”, “information systems”, and “social science” databases as
discussed in methods section, therefore, the results of this paper are limited to the
social media in healthcare. As a result of these limitations, the search process may
have missed a few related articles. Nevertheless, this paper is confident that the
analysis outcomes would not have been changed in any considerable way by adding
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any articles that did not included the search. Consequently, this paper confident that
the adopted approach was the most suitable for this study, especially when there is a
massive amount of articles on a specific topic.

5 Conclusion and Future Research

Interestingly, the two themes (networking and content) highlighted in the content
analysis outcomes are clearly linked, reflecting the interrelated nature of the social
media with the knowledge shared among healthcare practitioners and patients.
Healthcare practitioners may benefit from participating in healthcare knowledge
sharing groups by attaining knowledge that enhances their ability to effectively con-
tribute the issues and dilemmas faced in the healthcare profession. Enhancing their
problem solving skills and confidence to resolve dilemmas when they arise; becom-
ing familiar with an online healthcare social groups where assistance may be sought
concerning problems/issues faced in the workplace; providing access to expertise;
and allowing for pleasurable experiences, meaningful participation and a sense of
belonging in an online healthcare social groups.

Healthcare practitioners and patients needmore than information from healthcare.
They also need knowledge sharing and social interaction. Consequently, healthcare
organizations should transform themselves to become social enablers, as a result,
patients can collect, learn from, voice their concerns, and share their views, in order
to improve the quality of healthcare services. There is an urgent need to increase
awareness of social media tools and its potential capabilities in knowledge sharing
and healthcare services, and a need to empirically investigate this phenomenon to
inform superior use of social media in healthcare sector.
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Abstract We formulate a dynamic predictive model for the progression of avian
influenza in an all-in/all-out broiler housing system, accounting also for flock vacci-
nation measures. In this model we assume that the route of transmission is indirect:
infected individuals shed the virus in the barn environment, susceptible individuals
acquire it when they come in contact with the pathogen. The vaccination measures
are assumed to be imperfect, in the sense that some birds might receive full protec-
tion, whereas other might enter a latent stage without progressing to the symptomatic
stage, and a third group might not receive protection at all. The information provided
by the dynamic model is then used to estimate economic loss incurred due to an
avian influenza outbreak in the barn. We find, under the assumptions made in our
analysis, that the loss per bird decreases as flock size increases and terminal bird
weight increases. We also find that for small flocks vaccination might not be able
to prevent financial loss, whereas for larger flocks, flock vaccination can turn losses
into profit. Crucial in this analysis is the relationship between vaccination cost and
efficacy, about which, however, currently little information is available.
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1 Introduction

Avian influenza, a subtype of the influenza A virus, developed as a highly pathogenic
infectious disease in the 1980s causing mass mortalities in the poultry industry [3].
The virus is zoonotic and can spread from domesticated and wild avian hosts to
humans as well as other mammals. Sixteen different haemagglutinin subtypes exist
of varying levels of pathogenicity (H1–H16) [15]. Strains of low pathogen avian
influenza present mild clinical symptoms, such as decreased appetite and egg pro-
duction, or can be completely asymptomatic with no disease induced mortality [2].
Highly pathogenic strains show moderate to severe clinical symptoms (i.e. swelling,
coughing, sneezing, and diarrhea) and have a varied mortality rate ranging from 5
to 100% [13]. H5 and H7 have been shown to have the highest pathogenicity and to
be the most fatal to domestic poultry [13, 20]. Their case fatality can range from 20
to 100% of birds, causing it to be one of the most important infections in the poul-
try industry [1, 3]. The primary route of transmission of avian influenza is indirect:
infected animals shed the virus with bodily fluids into the environment. Susceptible
individuals acquire the infection, at a certain rate/probability when they come in
contact with the deposited pathogens [18].

Domestic poultry in North America are layer chickens, broiler chickens, and
turkeys that are produced for food consumption either through egg or meat produc-
tion [2]. Each type of poultry is raised in unique housing systems, across which
bird-bird interaction can vary greatly. The type and intensity of interaction between
individuals affect disease dynamics within a population. Broiler is a term used to
describe chickens being raised for meat consumption [7]. In North America, these
birds are most often kept in open housing systems where all birds are free to roam
anywhere in an enclosed barn [7]. Due to the short lifespan of these birds, typically
between 30 and 45 days [2], most production systems use an all-in-all-out strategy.
All birds are of the same age. They enter an empty barn at day 0 and they all leave the
barn for processing at the same time [7]. The population dynamics of these broiler
chickens are very unnatural due to their short lifespan and housing system. They are
seldom studied in relation to disease dynamics.

The avian influenza vaccine is a tool that can be used to help decrease the presence
of avian influenza pathogens, and decrease the number of infected individuals in a
domestic bird population [8]. Its main purpose is to protect against clinical symptoms
and death, reduce pathogen shedding by infected individuals, prevent transmission of
disease through contact between individuals, increase disease resistance, and provide
20 or more weeks of protection [19].

Economical considerations play a key role in guiding practices and regulations
in the poultry industry. The loss of a flock of broilers can be financially devastating
to a farm. Highly pathogenic strains of avian influenza are considered to be very
detrimental to domestic poultry flocks [6]. Prevention measures such as biosecurity
practices and vaccinations can also be very costly to individual farmers, so the long
term economic benefit is small, especially if the chance of avian influenza infection
is small. Disease outbreaks play an important role on production profits, but even the
public knowledge of the presence of disease can lead to a profit loss [2].
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Based on a predictive model of high pathogenic avian influenza disease dynamics
in broiler operations we develop a framework that might aid in investigating whether
flock vaccination is economically worthwhile.

Several mathematical models for avian influenza can be found in the literature,
some of which are summarized in Table1. Some of thesemodels include disease con-
trol interventions, such as isolation, or vaccination. These models, however, cannot
be readily adopted for the situation of all-in/all-out broiler housing systems. Many
of them focus on zoonotic aspects with a focus on human populations, and do not
distinguish between wild and domestic birds. The existing model studies focus on
longterm asymptotic dynamics, whereas it is important in the context of all-in/all-out
housing systems to account for finite time termination. Virtually all existing models
use generic, direct mass-action disease transmission, either in SI or SEI fashion. This
does not adequately reflect the disease transmission in closed broiler housing, where
the predominant route of transmission is indirect: infected birds shed pathogens into
the environment through bodily fluids, and it is the environment that acts as the reser-
voir of infection for susceptible birds. The first step in our study, therefore, is the
formulation of a predictive mathematical model for the spread avian influenza in a
broiler barn.

2 Mathematical Model

2.1 Disease Dynamics and Vaccination

Our mathematical model will be based on the following assumptions

1. The farm operations considered include thousands of birds, large enough for a
continuous description by ODE models. All broilers are free to roam within a
room/building, therefore having equal likelihood to contact any other bird and
the shared environment, and equal likelihood of contracting the disease.

2. All broilers that enter the barn at day 0 are of the same age. No broilers are
introduced after initial time. Broiler death by natural causes accounts for less
than 1% of population overall [2] and is neglected.

3. Broilers only become infected through contactwith pathogens in the environment.
The rate of infection is dependent on the pathogen concentration in the environ-
ment. Exposed and infected individuals contribute to the disease reservoir by
shedding the pathogen through bodily fluids [22].

4. The pathogen will lose viability in the reservoir at some rate when not in a host
[20]. Pathogens can also be externally removed from the environment during
facility maintenance operations.

5. Susceptible birds that acquire the pathogen become exposed (infected but asymp-
tomatic); exposed birds become infected (infected and symptomatic).

6. A flock can be vaccinated upon entering the barn at day 0 and no birds are
vaccinated after this time [7]. Some birds will receive full protection, whereas
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others are only imperfectly protected or receive no protection at all. Infection
rates are the same for non-vaccinated susceptible and imperfectly vaccinated [2].
Imperfectly vaccinated birds can become exposed but exposed vaccinated birds
will not become infected.

7. An imperfectly protected broiler that becomes exposed will shed the disease at
an equal or lesser rate than the unvaccinated counterpart [2].

The mathematical model is formulated in terms of the dependent variables non-
vaccinated susceptible birds S, imperfectly vaccinated susceptible birds Sv , non-
vaccinated exposed birds E , imperfectly vaccinated exposed birds Ev , infected birds
I , perfectly vaccinated birds Rv , and pathogens in environment P . We have

Ṡ = − γ PS

1 + P
(1)

Ė = γ PS

1 + P
− λE (2)

İ = λE − δ I (3)

Ṗ = α I + β(E + Ev) − νP (4)

Ṡv = − γ PSv

1 + P
(5)

Ėv = γ PSv

1 + P
(6)

Ṙv = 0 (7)

where we assume a hyperbolic force of infection to account for saturation effects
in highly contaminated barns. All parameters in this model are non-negative. Their
meaning is summarized in Table2, where also default values are given that have been
obtained from the literature and that will be used in our simulations below.

The dynamic model is completed by initial conditions

S(0) = (1 − ξS − ξR)N , E(0) = 0, I (0) = 0, P(0) = p,

Sv(0) = ξSN , Ev(0) = 0, Rv(0) = ξRN

Table 2 Disease dynamics parameters and the values used in our study with references

Parameter Units Definition Value Citation

γ day−1 Infection rate 0.4 [11]

λ day−1 Incubation period 1.4 [2]

δ day−1 Death rate 0.06 [12]

α day−1 Infectious shedding rate 0.3 [22]

β day−1 Exposed shedding rate ≤ α [2]

ν day−1 Cleaning/Degradation rate Varied Assumed
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where N is the size of theflock, ξR the fractionof birds that are perfectly vaccinated, ξS
the fraction of imperfectly vaccinated birds.We require 0 ≤ ξS, 0 ≤ ξR, ξS + ξR ≤ 1.

Using the next generation matrix approach one finds for the submodel describ-

ing the disease progression without vaccination intervention as R0 =
√

N
ν

(
β

λ
+ α

δ

)
,

indicating that pathogens must be removed much fast, relative to their deposition,
from the envrionment in order to suppress disease manifestation.

2.2 Economic Analysis

To conduct an economic analysis of avian influenza vaccination, we determine the
loss L to a farm associated with an infected barn. It is the sum of several components:
Costs independent of the number of birds Ω include cost of a building, electricity,
farm hands, etc. Costs dependent on current population size include food expenses.
Broilers are on a strict foodplan and food intake is heavilymonitored. The cost of food
per day is represented byϕ. The cost of vaccination is assumed to be dependent on the
efficacy of the vaccine, represented by function v(e), where efficacy e is defined as
ξS + ξR . In our simulations we assume ξS = ξR . Finally, to offset loss, the surviving
and healthy birds, Rv, S, Sv, E, Ev can be sold into the market at some price. This
income is dependent onweight and the number of surviving birds N − I (t) − R(t) =
Rv + S + Sv + E + Ev , where R denotes the number of individuals that died form
thedisease, givenby R(t) = δ

∫ t
0 I (t)dt . The expectedweights of the birds dependent

on age, κ(t), is obtained from [7]. The price per lb is represented by ρ. All parameters
and their values are represented in Table3. Overall the equation to represent loss is
as follows:

L(N , e, t) = Ω + ϕ

∫ t

0
(N − R(τ ))dτ + N (v(e)) − ρκ(t)(N − R(t) − I (t))

(8)

where L depends on the number of birds initially in the flock N , the efficacy of the
vaccine e, and the age t at which the birds are sold.

Table 3 Estimated parameter values for economic analysis equations

Parameter Units Definition Value Citation

Ω Dollars Upfront costs 5000 [16]

ϕ Dollars/bird*day Food cost 1.49 [16]

ρ Dollars/lb Profit 1.11 [2]

v(e) Dollars/bird Vaccine cost Assumed –

κ(t) lbs Bird weight Time dependent [7]
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3 Results

An illustrative simulation of the disease model is depicted in Fig. 1. The parame-
ters are as described in Table 2 and β = 0.2, ν = 0.3, ξS = ξR = 1

3 . The susceptible
group is monotonically decreasing from 10,000 birds to 0 by day 18. Over half
of the population is removed from the susceptible bird population by day 3. The
exposed group is increasing until it reaches its peak of 1626 exposed individuals at
day 3, then is decreasing until the population reaches 0 at day 21. The infected group
increases until it reaches its peak of approximately 7088 on day 7 and decreases after
that. The infected class reaches 1129 by the 40th day. The environmental poten-
tial increases first and declines eventually. The vaccinated susceptible individuals,
SV , have the same result to the susceptible individuals. The vaccinated susceptible
group is monotonically decreasing from 10,000 to 0 by day 18 with over half of the
population removed by day 3. The vaccinated exposed individuals, Ev , are much dif-
ferent than the exposed individuals. The exposed susceptible group is monotonically
increasing from 0 to 10,000 by day 18. The completely vaccinated group Rv remains
constant at 10,000 individuals.

In Fig. 2 we plot the financial loss per bird L(N , e, t)/N for various population
sizes N , as a function of efficacy e for termination at day t = 25 and at day t = 40,
without accounting for the cost of vaccination.The cost for vaccination is independent
of the state variables and is a function that depends only on the efficacy of the
vaccination e. To obtain the total loss, this (unknown) function is added to the data
reported in Fig. 2 a posteriori. When L/N becomes negative, a loss turns to a profit.

The more efficient vaccination is, the smaller the loss per bird. The larger the
population size N , the smaller the loss per bird. In the case of termination at t = 25

Fig. 1 Illustrative simulation of vaccine model, Eqs. (1)–(7), with initial conditions (10,000, 0, 0,
0.001, 10,000, 0, 10,000) over 40 days. Rv remains constant (data not shown)
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Fig. 2 Financial loss per bird L(N , e, t)/N for various population sizes N , plot versus efficacy e for
termination at day t = 25 (top) and day t = 40, without accounting for vaccination cost, v(e) = 0
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we find that for the smallest population size tested, N = 5000, even a 100% effective
vaccine does not yield a profit. However, the larger the population size in the barn,
the smaller is the loss per bird. For larger populations the loss turns negative at an
efficacy level of approximately 60%. At larger termination ages, the loss per bird
turns negative, i.e. a profit is achieved, at an vaccination efficacy of e = 40% and
already at an efficacy level of 20% for larger populations.

That the curves in Fig. 2 are straight lines is reflective of the observation in Fig. 1
that the state variables describing consumable birds S, E, SV , EV reach their steady
state values quickly, before the termination age. The parameter set used in our sim-
ulations describes a highly pathogenic strain that causes an epidemic in the broiler
barn. For milder strains with slower disease progression and lower mortality, these
loss curves can be nonlinear.

It is important to note that these curves are lower bounds on the actual loss, that is
obtained if the costs of vaccination v(e) are taken into account as well. Vaccintation
costs per bird are usually between $0.50 and $3.40 [17], but a relationship between
cost and efficacy is not known. It seems reasonable to assume that more efficient
vaccines are more expensive, and that zero-efficacy (i.e. no vaccination) does not
incur cost. To illustrate how accounting for vaccination cost affects loss and/or profit,
we assume v(e) = e2 and plot the corresponding data in Fig. 3. The actual loss data
are a superposition of the linear curve previously obtained and a nonlinear curve

Fig. 3 Finanical loss per bird versus efficacy at day 40 with vaccination cost e2
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determined by vaccine price, which can be substantial relative to the other costs
incurred. Although the lower estimates in Fig. 2 (bottom) suggest that a profit can
be made even for vaccines with moderate efficacy, the price to be paid for highly
effective vaccines can invalidate these results.

4 Conclusion

Economic considerations are important in disease control of avian influenza in broiler
production in an all-in/all-out housing system. The question how the cost of vacci-
nation affects profitability depends both on the efficacy of the vaccine, and on the
virulence and pathogenecity of the strain, which determine the time course of dis-
ease progression. A dynamic model that accounts for the effect of vaccination can
be used to estimate the population size up to the time when the flock leaves the barn.
Using this information the costs of operation as well as the income can be estimated.
Together these two pieces of information give a lower bound on the loss incurred
by an avian influenza outbreak. To obtain more accurate estimates the relationship
between vaccine cost and efficacy must be known.
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Estimating the Crossover Point
of a Fuzzy Willingness-to-Pay/Accept
for Health to Support Decision Making

Michał Jakubczyk

Abstract Selecting health technologies to finance with public money requires
juxtaposing their cost and health gains. Determining the exact values of willingness-
to-pay/willingness-to-accept (WTP/WTA)may be difficult and considered unethical.
As a solution, both may be treated as fuzzy sets. Then, a crossover-point (CP) of a
fuzzy WTP is such a value that a decision maker is just as convinced as uncon-
vinced it is worth paying for a unit of health (analogously for fuzzy WTA). In this
fuzzy approach, I motivate why health technologies should be compared using CPs.
I introduce three statistical methods of assessing the CP based on random-samples,
survey data: using hypothesis testing, Bayesian hierarchical modelling, and frequen-
tist estimation. I use the previously published dataset for Poland and show how the
methods may be employed. The results suggest no (significant) difference in CPs
for fuzzy WTP and WTA, but more stochastic uncertainty regarding the latter. The
estimation methods can be used to assess the fuzzy preferences in other decision
problem contexts.

Keywords Willingness to pay/accept · Crossover point · Fuzzy set

1 Introduction

To decidewhether to finance a health technology (HT)with publicmoney, itsmedical
benefits and cost must be juxtaposed. This requires, explicitly or implicitly, valuing
life, i.e. determining the willingness-to-pay (WTP) for a unit of health (e.g. a quality-
adjusted life year, QALY). DeterminingWTP feels difficult and apparently is, noting
the variability of published results see [1, 8]. The variability is not surprising, in view
of the non-market nature of health and no preference-forming experience (health
services are bought, not health itself). A belief that the societally wanted WTP can
be set precisely and used in the cost-effectiveness analysis is, thus, a naïveté.
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The thresholds used in practice may reflect the convenience of predefined rules,
e.g. triple annual gross domestic product per capita in Poland, see [6]; of benchmark
technologies [7]; or of round numbers, e.g. $50,000, see [10]. Moreover, an ethical
component emerges: refusing a treatment due to cost of QALY exceeding the WTP
by $1 sounds inhumane and repudiates the readiness to define a threshold. It seems
more natural to adopt a gradually diminishing acceptance when cost per QALY
increases. This property invokes the use of fuzzy sets, invented to represent not
complete membership or acceptance [13].

Jakubczyk and Kamiński [4], onwards J&K, suggested treating WTP and
willingness-to-accept (WTA, for effect-reducing, cost-saving alternatives) as fuzzy
sets, discussing the case of comparing two HTs. Jakubczyk [5] considered more
than two alternatives, but only effect-increasing ones. In the present paper, I further
the analysis. First, I propose and motivate a new decision making rule that can be
used for both effect-increasing and reducing HTs. Then, as the major contribution, I
introduce three statistical methods to estimate the parameters of fuzzy WTP/WTA,
whose results can be subsequently used to choose one of the alternatives. I illustrate
the estimation methods using the J&K’s dataset.

2 Comparing Decision Alternatives with Fuzzy Net Benefit

In this section, I first briefly introduce the cost-effectiveness analysis (CEA) of HTs.
Then, I define the fuzzy WTP, WTA, and net benefit (of a health technology), fol-
lowing ideas of J&K. Finally, I propose a decision making rule in the fuzzy context.

2.1 Standard (Crisp) Cost-Effectiveness Analysis

The decision maker has n HTs, A1, …, An , to choose from. Each Ai is characterized
by expected (across a population of possible patients) effect, ei , and cost, ci , Ai =
(ei , ci ). For simplicity, I neglect the estimation error: (ei , ci ) is known. The ei and
ci are measured relative to some status quo (a current standard, a lack of treatment,
etc.). Whether this null option may be chosen (by not choosing any Ai ) does not
affect the results (as discussed below). A possible approach to CEA is to calculate
the net benefit (NB) of each Ai (in monetary terms):

N Bi = ei × WTP − ci , (1)

(WTA would be used for ei < 0) and to find i that maximizes the NB.1 Obviously,
the problem lies in determining the WTP (WTA).

1In applied CEA it is more common to calculate the incremental cost-effectiveness ratios and
compare them with WTP, algebraically equivalent to maximizing NB [5].
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2.2 Fuzzy Willingness-to-Pay/Accept, Fuzzy Net Benefit

As motivated in the Introduction, the decision maker may find it difficult to deter-
mineWTP andWTA precisely. Thus, I redefine both as fuzzy sets: fuzzyWTP/WTA
(fWTP/fWTA). In this, I follow J&K’s idea with one difference: J&K derived
fWTP/fWTA from the fuzzy preference relation, being a primitive of their model. I
treat fWTP/fWTA as primitives.

Definition 1 Fuzzy WTP, fWTP, (fuzzy WTA, fWTA) is a fuzzy set with an
upper semi-continuous, non-increasing (non-decreasing) membership function,
μfWTP : R → [0, 1] (μfWTA : R → [0, 1]), such that μfWTP(0) = 1 (μfWTA(0) = 0).

I interpretμfWTP(x) = m to denote that the decision maker is convinced to degree
m that paying additional x for a unit of effect is acceptable (μfWTA(x) = m is inter-
preted symmetrically). No relation between fWTP and fWTA is assumed a priori,
and their selected characteristics are estimated and compared below. Then, for each
Ai , I define the fuzzy NB.

Definition 2 For any decision alternative A = (e, c), define fuzzy net benefit (fNB)—
a fuzzy set with membership function:

μfNB(A)(x) =
⎧
⎨

⎩

μfWTA( c+x
e ), for e < 0,

1(−∞,−c](x), for e = 0,
μfWTP(

c+x
e ), for e > 0.

(2)

μfNB(A)(x) measures the conviction that using A is equivalent to the monetary
gain of x (would be acceptable even if costed x more). Following the assumptions
on fWTP/fWTA, μfNB(A)(x) is non-increasing and upper-semi continuous. In Fig. 1,
I present an example how fNBs might look. To make comparing HTs easier, I define

Fig. 1 The available technologies in cost-effectiveness plane (left): A1 = (1, 0.25), A2 = (2, 0.75),
A3 = (3, 2), A4 = (4, 3.55), and A5 = (4.5, 4.45). Their respective fNB membership functions
(right), when μfWTP decreases linearly from 1 to 0 in [1; 2] interval (fNB(A5) not drawn)
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the right-boundary of α-cuts of fNB: τA(α) = sup
{
x ∈ R : μfNB(A)(x) ≥ α

}
, for

α ∈]0, 1], and τA(0) = supα∈]0,1] {τA(α)}. τA(α) can be interpreted as the largest
value that the decision maker would agree with conviction α that using A is worth.

2.3 Decision Making Rule

Jakubczyk [5] suggested to choose HTs by maximizing the measure of set of αs in
[0, 1] that a givenHT, Ai maximizes τAi (α). In Fig. 1 (when A5 is ignored) that would
be technology A4, as it maximizes the τA(α) for all α < 0.45, and the remaining
technologies maximize τA(α) for shorter intervals. That approach, however, violates
the independence of irrelevant alternatives: adding A5 to the menu would switch the
choice to A3, previously available but not chosen.

For the above reason, I propose to base the choice of Ai by maximizing the
τAi (0.5) (A3 in Fig. 1, irrespectively of whether A5 is being considered), denoted by
CfNBi (crossover fNB) for brevity. When considering crisp NBs, typically such i∗ is
selected that maximizes N Bi∗ . In our case, fNBs are sets; hence, the analogy would
be to select i∗ that results in the greatest (including all others) set. The following
proposition states why maximizing CfNBi does just that in a sense of weak inclusion
of fuzzy sets, see def. of [2].2

Proposition 1 Consider n HTs, Ai = (ei , ci ). If Ai∗ maximizes C f N B, then (i)
fNBi∗ weakly includes, to degree 0.5, fNBi for any i not maximizing CfNB, and (ii)
fNBi weakly includes fNBi∗ at maximum to degree 0.5. Formally:

inf
x∈R

max
(
μfNB(Ai∗ )(x), 1 − μfNB(Ai )(x)

) ≥ 1

2
,

inf
x∈R

max
(
μfNB(Ai )(x), 1 − μfNB(Ai∗ )(x)

) ≤ 1

2
.

Moreover, two implications hold.

• IfμfWTP andμfWTA are strictly decreasing where they take values fromwithin (0, 1)
interval, then the above inequalities are strict.

• If μfWTP and μfWTA are continuous, then all CfNB-maximizing options, say i∗ and
i∗∗, weakly include each other to the same degree.

2This approach can also be seen (not pursued formally, for brevity) as applying the Orlovsky-score
[11]: maximizing the degree to which a given alternative is not dominated by others.
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3 Estimation of the Crossover Point

WhenmaximizingCfNB (i.e. applying a decisionmaking rule defined in the previous
section), it is most convenient to estimate the upper bound of the 0.5-cut of fWTP
and fWTA (i.e. the crossover point of fWTP/fWTA, CP). In the present section, I
propose three methods of assessing these values based on random samples. First,
I briefly introduce the dataset used for illustrative purposes. Then, I introduce the
methods along with presenting their results.

3.1 Data

I use the data collected by J&K: 27 respondents in Poland (5 removed due to incon-
sistencies) answered with a 5-level Likert scale if they consider paying/saving λ

for an additional/lost unit of health (in QALY) as acceptable, for various λs. The
reader is referred to the original publication for more details. Figure2 presents the
responses (WTP part only, for brevity) for various λs (horizontal axis, hundreds of
000s PLN/QALY). The horizontal bars span the λs for which the middle level was used
by an individual. For other levels, the circle area is proportional to the number of
answers. Black lines depict jumps across the middle answer.

The small sample size lowers the precision of the estimates obtained below
(e.g. the credible intervals are quite large). Still, the present paper should be treated
more as a conceptual one. Importantly, the methods introduced below can be used
to any, similarly collected (but larger) dataset.

1

2

3

4

5

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3 4 5 7.5 10 15 20 50

Fig. 2 Survey results forWTP, values in horizontal axis in hundreds of 000s of PLN/QALY, answers
(vertical axis) from a 5-level Likert scale (1—definitely disagree, 5—definitely agree). Horizontal
bars represent individuals, circles—the fraction of respondents, lines—jumps across the middle
option
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3.2 Assessing the CP for fWTP/fWTA via Hypothesis Testing

I assume that for each λ ∈ R+ there is an (unknown) average conviction in the
population, μfWTP(λ).3 The sought for estimand, CP, is defined as μWTP(CP) = 0.5.
I assume that the values of μfWTP,i (CP) for every individual, i (index added, for
clarity), are drawn from a common, symmetric distribution, and so are the responses
in the Likert scale. Hence, for each λ, I test H0 : CP = λ by testing the symmetry
of the Likert answers. I use the test proposed by [3] (with H2 alternative, according
to their notation). Mann-Whitney test could be used (vs a vector of 3s); with no
impact on the conclusions in the present data, but in general Dykstra test uses more
information, differentiating between Likert levels 1/2 (4/5).

For WTP the test does not reject H0 for λ = 125 (p∗ = 0.0612) and λ = 150
(p∗ = 0.6313), while e.g. for λ = 100 or λ = 175 the test yields p∗ = 0.0001 and
p∗ = 0.0028, respectively. For WTA, the test does not reject H0 for λ = 150 (p∗ =
0.1994), λ = 175 (p∗ = 0.2532), λ = 200 (p∗ = 0.166), λ = 250 (p∗ = 0.1308),
and λ = 300 (p∗ = 0.0849). The conclusions (which H0 to reject) do not change if
a one-sided test is used. As the inference is conducted separately for each λ, there is
no need to correct for multiple hypothesis.

3.3 Data Transformation for Bayesian/Frequentist
Estimation

In the remaining two approaches I consider a cross-over range (CR): a range of
λs for which the decision maker selected (would have selected) the middle Likert
answer. IdentifyingCRs from thedata requires some transformation andassumptions,
described below for WTP (analogous for WTA). Firstly, even if the respondent did
not use the middle option, I still assume it would be used for λ equal to the average
of the greatest λwith options 4 or 5 selected and the lowest λwith 1 or 2. Secondly, I
assume CR’s lower endpoint as the mean of the greatest λwith options 4 or 5 and the
lowest λ with 3 (directly selected or inferred); analogously for the upper endpoint.4

The assumptions suffice to calculate CRs forWTP; in case ofWTA, two respondents
used only options 1 & 2, and one respondent only option 3, for all λs, thwarting the
calculation. All three were removed, as they, in principle, disagree with sacrificing
effectiveness to make savings, while the methods developed here accept such trade-
offs (and aim to quantify them); hence, should not be based on the opinions in such
a fundamental disagreement.

3The explanation is done for WTP, but refers to WTA mutatis mutandis.
4Example 1: if the respondent selected option 4 for λ = 100, option 3 for λ = 125 and λ = 150,
and option 2 for λ = 175, then CR = [112.5; 162.5]. Example 2: if the respondent selected option
4 for λ = 100 and immediately switched to option 2 for λ = 125, then CR = [106.25; 118.75].
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In the calculations below, log of λs were used,5 for three reasons. Firstly, the
distribution of themiddles of the non-loggedCRswas skewed, and statisticalmethods
typically work on non-skew data better. Secondly, the length of CR is positively
correlatedwith the location (for non-logs). Intuitively, the respondents thinking about
large amounts allow larger tolerance in absolute terms (and λs were sparser for
large values). It is more convenient to model the respondents uncertainty in relative
terms, not to have to model the relation between the CR’s middle and length, and
this is automatically done with logs. Thirdly, with logs the results do not change
whether WTP/WTA are taken as PLN/QALY or QALY/PLN; not the case with original
data (arithmetic and geometric means differing).

3.4 Hierarchical Bayesian Modelling

I assume the following data generating process. Each of k respondents, indexed by
j ∈ {1, . . . ,m}, has a single, true, log ofCP value, denoted η j , drawn from a common
distribution N (η, ξ 2).6 The respondent does not precisely perceive own η j , only the
bounds, l j and u j , l j = η j − �′

j and u j = η j + �′′
j , where �′

j , �
′′
j are independent

random variables from a single (for every j), exponential distribution, Exp(κ). Non-
informative prior distributionswere used to defineη (normal distribution, N (0, 100)),
ξ−2 and κ (for both, the gamma distribution, with mean equal to 1 and variance equal
to 100).

Then, l j and u j are observed as the lower/upper endpoints of CR (logs), and the
distribution of observables is based on parameters (η, ξ , κ). The independence of�s
reflects the unpredictability of misjudging one’s CP. Using the exponential distribu-
tion has two nice consequences: (1) knowing that one’s CP is misjudged upwards
by at least some amount does not change the distribution of by how much more it
is misjudged; (2) the resulting distribution of �′

j/
(
�′

j+�′′
j

)
is uniform. Both reflect a

conservative approach assuming no regularity how CP is imperfectly perceived.
The model was estimated with MCMC in JAGS/R (10,000 burn-in iterations,

50,000of actual iterations, thinning5). Themeanof the posteriorwas taken as the esti-
mate, and percentiles 2.5 and 97.5% as boundaries of the 95% credible interval (CrI).
In result, forWTP the estimate of exp(η) equals 145.68, 95%CrI = (106.99; 197.95),
while for WTA it amounts to 162.29 and (115.78; 228.15), respectively.

51 PLN/QALY added, to avoid ln(0).
6Taking the logs, conveniently, allows using a normal distribution, as the non-log CR are bounded
by zero from below.
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3.5 A Meta-analytic Approach with Bootstrap

I assume the random effects model: respondents differ in terms of their true log
CP, denoted by η j , drawn from a N (η, ξ 2). I use the same symbols as in the pre-
vious subsection, as intuitions are identical. In the frequentist approach here, η is
the true, unknown parameter of interest (with no probability distribution). I assume
the precision for each j is given by the length of CR and the observed CR ([l j , u j ])
is uniformly distributed, subject to η j ∈ [l j , u j ]. Then m j = (l j+u j )/2 is uniformly
distributed around η j with variance (u j−l j )2/12, and m j is an unbiased point estimate
of η j for every j . I use the inverse-variance weighted average to calculate the point
estimate η̂, accounting for random effects, using standard formulae see, e.g. [12].
As the distribution of estimated η̂ is not normal, I assess the 95%confidence interval
(CI) for η via bootstrapping: (i) re-sample the set of respondents (to account for sam-
pling error), (ii) for each re-sampled respondent generate a new m∗

j from a uniform
distribution [l j , u j ], (iii) keep the length of CR, (iv) calculate the η̂∗ in this bootstrap
sample (inverse-variance, random effects), (v) repeat for 10,000 bootstrap samples
and take percentiles 2.5 and 97.5% to define the 95%CI.

For WTP the exp(η̂) = 153.57, 95%C I = (121.19; 202.89). For WTA, respec-
tively, 163.29 and (120.94; 225.13). No bias prevails: mean bootstrap results equal
154.26 and 163.03 for WTP and WTA, respectively (close to the meta-analysis
results). Notice, that assuming the normal distribution of the standard error in the
meta-analysis would yield more narrow (and probably overly optimistic) 95%CI:
(130.57; 180.61) and (135.03; 197.47), respectively.

3.6 Summary of the Results

Table1 juxtaposes the—reassuringly consistent—results. The CP for WTP/WTA
exceeds the official threshold in Poland (130,002 PLN/QALY as of 1st Sept, 2017, and
111,381 PLN/QALY in the time the survey was run). CP forWTA seems no greater than
for WTP, but all methods suggest there is more uncertainty for WTA.

The statistical testing requires fewest assumptions (e.g. no specific distribution
assumed) and its results do not require (or change with) any transformation of λs.
Hypothesis testing works on complete data, while other methods require some han-

Table 1 Estimation results for the indecisiveness point (in 000s PLN/QALY) along with 95% confi-
dence or credible (depending on context) interval (95%CI)

Method Willingness-to-pay Willingness-to-accept

Hypothesis testing Not rejected for 125, 150 Not rejected for 150–300

Bayesian modelling (95%CrI) 145.7, (107.0; 197.9) 162.3, (115.8; 228.1)

Meta-analysis (95%CI) 153.6, (121.2; 202.9) 163.3, (120.9; 225.1)
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dling of the respondents not crossing the middle Likert option. Adding extremely
undecided respondents (selecting the middle option) would change the results of the
last two methods, while are effectively ignored by hypothesis testing.

The last two methods require using the middle option to account for possibly
wide CR (otherwise the intra-respondent uncertainty regarding the location of CP
could be underestimated). The hypothesis testing can be used with or without the
middle level, irrespectively how it is worded (e.g. neither/nor or I don’t know, as
long as it is symmetric). Making the middle answer more inclusive does not prevent
hypothesis testing, but may reduce the power. Matell [9] showed that using more
(odd number of) levels decreases the frequency of selecting the middle option, hence
all the methods might profit from using a greater than five, odd number of levels.

No method required an interval interpretation of the Likert scale. In the hypoth-
esis testing the assumption is made, however, that options 1 & 2 are symmetrical
counterparts of 5 & 4 (not a strong assumption, as wording is symmetrical).

The usefulness of hypothesis testing depends most heavily on the design of the
questionnaire, as the conclusions can be drawn only for λs included, but obviously
using more λs would be tiresome. Another downside is that not rejecting H0 does
not denote accepting it in statistical parlance. Also, all the non-rejected λs have to be
treated identically with no telling which are more likely to represent CP. Bayesian
approach produces a posteriori distributions, easy to use in sensitivity analysis. It
could also account for covariates and explain part of the heterogeneity between the
respondents.

The hypothesis testing allows for μfWTP(x) = 0.5 (μfWTA(x) = 0.5) for a range
of, not a single, x . The remaining two methods would have to be somehow adopted.

4 Conclusion

Health technologies can also be compared whenWTP andWTA are treated as fuzzy
set: the recommended decision making rule uses the crossover point of the fuzzy
WTP/WTA. This value can be assessed based on simple surveys (i.e. Likert based)
in random samples using several approaches. The results of the approaches are con-
sistent (for the present dataset), and the crossover point for WTP and WTA seems
not to differ. This finding suggests that the WTP-WTA disparity should be redefined
and rechecked in the fuzzy-set context.

Proofs

Proof (Proposition1) Proving the first part. Take any x ∈ (CfNBi ,CfNBi∗) (the
interval is non-empty), μfNB(i)(x) ≤ 1/2 ≤ μfNB(i∗)(x); using the monotonicity of
μfNB (for i∗, i) yields the result. Proving the first bullet implication: take any
x ∈ (CfNBi ,CfNBi∗) (again, exists), μfNB(i)(x) < 1/2 < μfNB(i∗)(x), and use
monotonicity again. Proving the last bullet. First consider ei∗ 	= 0 	= ei∗∗ , and so
μfNB are continuous for i∗, i∗∗. Then μfNB(i∗)(x) = μfNB(i∗∗)(x) = 1/2, and the rest
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follows from monotonicity. Now consider ei∗ = 0 = ei∗∗ , then fNBs are equal, crisp
numbers (with upper semi-continuous, stepmembership functions, jumping from1 to
0), and so weakly include each other to the degree 1. Finally consider ei∗ 	= 0 = ei∗∗ .
μfNB(i∗) is continuous and monotonic, and fNBi∗∗ is a crisp number. It easily fol-
lows (considering x = CfNBi∗ ) that fNBi∗ weakly includes fNBi∗∗ to the degree 1/2.
Approaching this x from right yields the weak inclusion to the same degree.

Acknowledgements The research was financed by the funds obtained from National Science
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Fuzzy Approach to Elicitation
of Preferences for Health States

Bogumił Kamiński and Michał Jakubczyk

Abstract Eliciting people’s preferences for health states is crucial to understand
what society values and support public decisionmaking in healthcare. Thought exper-
iments are used to assign utilities to health states but the lack of actual experience
may result in the preferences being vague. Based on previously published studies,
we model the disutilities of health worsening using fuzzy numbers. In our model,
we define a new interval-arithmetic operator to differentiate between two alternatives
being compared by looking into a single criterion (e.g. howmuchmobility is reduced
in two states being compared) or trading off several criteria (e.g. mobility worsening
vs increasing pain). We use a large dataset from a discrete choice experiment to
estimate the parameters of our model. We find that (i) imprecision should indeed be
handled differently for within-criterion and between-criteria comparisons, (ii) large
imprecision leads to a more erratic behaviour in choice experiments, (iii) the type of
time unit used matters little in comparing health states with duration.

Keywords Fuzzy preferences · Health state utility · QALY
Discrete choice experiment

1 Introduction

Numerous decision problems in real life involve multiple goals; hence, people have
to trade-off individual criteria. If decision makers lack adequate experience with
past choices, they may find it difficult, only vaguely understanding the importance
of individual criteria.
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In particular, people rarely directly choose between health states (at best they
choose between unhealthy pleasures and health or free time and health improvement).
At the same time, understanding preferences for health states is crucial to measuring
health gains and supporting public decisions what health technologies to finance.
The health measure used to support such decisions must combine the longevity of
life with health-related quality of life, which introduces the first two criteria to trade-
off. We must additionally make the notion of quality of life operational; typically,
the EQ-5D-5L1 descriptive system is used see [6]. In this system, a health state is
described using five attributes2: mobility, self-care, usual activities, pain/discomfort,
and anxiety/depression, always considered in this ordering. In each dimension, a
person can be at one of five levels (1–5): simplifying, no problems (denoted by value
1) to extreme problems (denoted by value 5).3 A health state can then be briefly coded
as a five-tuple of digits (the ordering of dimensions as above); e.g. 11111 denotes the
best possible health state (in the EQ-5D-5L descriptive system), 55555 denotes the
worst possible health state, and 11131 denotes the state in which one feels moderate
pain/discomfort but otherwise experiences no health problems.4

The description of health state presented above adds two sources of imprecision.
Firstly, the notion of, say, self-care is vague (what activities are included?). Various
people may understand it differently, and a single person may be unsure how to
understand it (e.g. what counts as self care, rather than mobility?) and, thus, what
importance to attach to it. Secondly, how the verbal description of levels is interpreted
is subjective too (e.g.where does the boundary between slight andmoderate problems
lie?).

The above difficulties are particularly visible for choosing between health states,
but can be observed in manymultiple-criteria problems (for example, related to other
intangible goods like clean environment or safety). Imprecision and gradualness in
preferences can bemodelled using fuzzy sets [14]. Jakubczyk andGolicki [7] showed
how to use fuzzy set concepts to account for imprecision when eliciting utility for
health states with a time trade-off method; Jakubczyk et al. [9] and Kamiński and
Jakubczyk [10] did it for the other dominant elicitation method: discrete choice
experiment (DCE).

In the present paper, we further the methodology presented by [10], based on the
following motivation (made more formal in the next section). A person might find it
problematic to compare 11141 and 11114, i.e. the disutility of severe pain/discomfort
(fourth attribute at level 4) and the disutility of severe anxiety/depression (fifth
attribute at level four). The same person may find it difficult to compare 11141
and 11115, while the choice between 11114 and 11115 is obvious. Hence, within-

1https://euroqol.org/eq-5d-instruments/.
2In the health preference research literature using EQ-5D-5L, the attributes are typically referred
to as dimensions, and we use this terminology in the present paper.
3Previously, EQ-5D-3L system was widely used, in which three levels were available in every
dimension see [3]. Readers with interest in other descriptive systems can have a look at a study by
[11].
4Again, to align with the health preference research literature we do not write this 5-tuple as a
vector, e.g. [1, 1, 1, 1, 3].

https://euroqol.org/eq-5d-instruments/
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criterion comparisons are easier than between-criteria ones. Less trivially: a person
may find it easier to compare 11115 with 11314 than 11115 with 11341, because the
first comparison requires thinking about two criteria only.5 The former choice can be
framed as asking oneself: ‘is setting usual activities at level 3 as bad as deteriorating
anxiety/depression dimension from level 4 to level 5’; the latter requires a more com-
plex framing. Hence, if fuzzy utilities are attached to level-criterion combination,
then the comparisons (subtracting the fuzzy numbers) must differentiate between
comparisons within or between the criteria. We formalize this idea in the present
paper.

In the next section we introduce a model of preferences we consider. How the
choices are made accounts for the difference between inter or intra-criteria analysis,
as described above. We then estimate the parameters of the model based on an actual
dataset and discuss the results. We show possible further directions of research in
the last section.

2 Model of Preferences

Consider two health states A and B described in the EQ-5D-5L descriptive system,
where A lasts for TA and B for TB (various time units are used in the paper). Our
objective is to derive the probability that option A is chosen over option B by a
respondent. Our approach can be summarized in the following steps:

(a) assign a fuzzy number to each health dimension, i.e. each attribute describing a
decision alternative (to be used in the assessment of both considered options, A
and B);

(b) for each attribute, calculate the advantage/disadvantage of option A over B
(accounting for the duration of health problems); the result of this compari-
son is a fuzzy number for every attribute separately; this analysis over individual
dimensions allows us to treat the within-criterion comparisons differently;

(c) aggregate the fuzzy comparisons for all dimensions to get the comparison of
considered options A and B as fuzzy numbers;

(d) crispify this fuzzy number to calculate the probability of choice of option A over
option B.

The key innovation in our approach is that we allow the comparisons within a
single criterion (within one EQ-5D-5L dimension) to be simpler for the respondent
than between criteria (between dimensions). Standard fuzzy number arithmetic is
commutative and associative so it would be impossible to distinguish such effect in
steps (b) and (c) of the above procedure. Therefore in this text we introduce a novel
notion of subtraction of fuzzy numbers (in step b) that allows distinguishing the above

5We neglect possible interactions between criteria both in this motivation, and in the general frame-
work below. Omitting the interactions is a generally an accepted approach to modelling EQ-5D-5L
data (in a crisp approach), but could obviously be studied in further research.
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two types of comparisons. In Sect. 4, we show that the empirical data confirm our
assumptions (i.e. it is easier for the respondents to compare states within dimension
than between dimensions).

In this section, we first present the model of disutilities attached to EQ-5D-5L
dimensions as fuzzy numbers. Then, we show how two fuzzy numbers representing
health states should be subtracted, accounting for the possibility that the same criteria
are worsened. Third, we present how to crispify the fuzzy preferences to get the
probability of choosing one of the alternatives. Sections2.1 and 2.3 follow the model
by Kamiński, B., Jakubczyk [10].

2.1 Disutility of a Health State

We consider a choice between two health states, A or B, lasting for TA or TB time
units, respectively. The variable d A

i denotes the level of dimension i (i = 1, . . . , 5)
for state A. TA and TB can be measured in different units, which is reflected in the
formulas below.

Each dimension, i = 1, . . . , 5, is associatedwith a fuzzy number,˜DUi ,measuring
its importance.We interpret˜DUi as a fuzzy disutility of level 5 in dimension i , where
we interpret the utility of a health state in a sense of the QALY model [2]. In the
present paper, we trivially assume˜DUi is rectangular and normal: the membership
function takes value 1 in the interval [li , hi ] and 0 otherwise. In other words, there
is a set of numbers that the respondent accepts as disutilities of setting dimension
i to level 5 (membership function equal to 1) and the respondent rejects any other
number as a disutility (membership function equal to 0). We still treat and interpret
˜DUi as a fuzzy number for three reasons: (i) in future research our assumptions may
be relaxed and fractional membership can be used (i.e. there may be numbers that
the respondent only partially accepts as disutilities of worsening i to level 5), (ii) we
want to directly refer to and develop arithmetic of fuzzy numbers, thus, we discuss
our work in this context, and (iii) our interpretation of˜DUi is easiest in the epistemic
(rather than ontic) sense, and the distinction is stressed more in the fuzzy set context
[4, 13, 15].

The relative (to level 5) importance of levels 2, 3, 4 is given as crisp weights
wi, j , where i denotes the dimension and j = 2, 3, 4 denotes the level. To simplify
formulas, we set wi,1 = 0 and wi,5 = 1. In future, separate fuzzy numbers for the
combinations of dimensions and levels could be defined (and this fact motivates our
approach, as discussed below).

The utility of living in A for time TA is given as a fuzzy number

˜U (A, TA) = τunit(A) × TA ×
⎛

⎝1 −
∑

i=1,...,5

wi,d A
i

×˜DUi

⎞

⎠ , (1)
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where unit(A) is the time unit TA ismeasured in (days,weeks,months, or years, coded
as 1–4, respectively), and τk > 0 are the scaling factors to reflect the (subjectively
perceived by the decision maker) duration of the units.

If A denotes being dead comparisons vs dead are often used to anchor the utility
values to an interpretable scale, see [12], then TA is irrelevant and ˜U (A, TA) amounts
to a crisp 0 (i.e. only value 0 has a membership function equal to 1).

2.2 Comparing Two Health States

The difference in utilities of (A, TA) and (B, TB) is given by the difference
˜U (A, TA) − ˜U (B, TB) both defined by Eq. (1), after reorganization:

τunit(A)(TA − TB) + τunit(A)

∑

i=1,...,5

(

wi,dB
i

× TB ×˜DUi � wi,d A
i

× TA ×˜DUi

)

,

(2)
where we use the fact that in our dataset A and B with identical time units are
compared. The operator � is introduced in the equation to allow for a particular
form of within-criterion comparisons motivated in the introduction and is explained
formally below.

InEq. (2), we decomposed the differences in utilities into two sources: the duration
of life (the first term), and the accumulated (over time) streamof disutility (the second
term, notice the reversal of A and B) due to health problems (further decomposed
into individual dimensions).

Because the fuzzy numbers are fully represented as intervals (1-cuts), interval
arithmetic applies. The multiplication of a fuzzy number, [a, b], by a crisp number,
[c, c], yields a fuzzynumber [ac, bc] (weuse the fact thatweonlymultiply bypositive
numbers: relative level weights or duration). Obviously [a, a] × [c, c] = [ac, ac].
Adding two intervals works as follows: [a, b] + [c, d] = [a + c, b + d] (possibly
for degenerate intervals).

Standard subtraction of fuzzy numbers increases the imprecision (as measured by
the length of α-cuts) of the result, as compared to the imprecision of the minuend and
subtrahend. In case of intervals, that would lead to the following formula: [a, b] −
[c, d] = [a − d, b − c], with the length of the result being the sum of the starting
lengths. In Eq. (2), the disutilities from individual dimensions are considered one by
one. For this reason, we introduce a new operator, �, to be explained below, that
can generalize regular subtraction to account for the possible smaller imprecision of
within criteria comparisons.

For example, the interpretation of ˜DU 1 = [0.2, 0.4] is that the decision maker
cannot rule out any value from the interval [0.2, 0.4] as the possible (crisp) disutility
of worsening mobility to level 5. Assume w1,4 = 0.5, i.e. the relative gravity of
level 4 in mobility equal 0.5. Then the disutility of mobility at level 4 is given as
[0.1, 0.2]. Standard subtraction would yield [0.2, 0.4] − [0.1, 0.2] = [0, 0.3]. The
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imprecision of ˜DU 1 as reflected by the length of [0.2, 0.4] is due to the decision
maker being unsure how important mobility is (perhaps because they have never
experienced reduced mobility) or what counts as mobility (and, for example, what
as self-care). Still, when comparing two levels of mobility, substantial part of this
uncertainty cancels out. If the decision maker gains more experience (or can get
more insight into own preferences by longer introspection) and updates own beliefs
so that the disutility of level is [0.35, 0.4], then we expect that the disutility of level
4 to be shorter and closer to its previous upper bound, 0.2, too. Reflecting that effect
requires, imprecisely speaking, to subtract the high values of the subtrahend from
the high values of the minuend.

For the above reason, we propose to replace the standard − with �, so defined
that [a, b] � [c, d] is an interval [e, f ], where:

e = (a + b) − (c + d)

2
− max(b − a, d − c) + κ × min(b − a, d − c)

2
, (3)

f = (a + b) − (c + d)

2
+ max(b − a, d − c) + κ × min(b − a, d − c)

2
, (4)

for some parameter κ ∈ [−1, 1].
Notice that κ = 1 results in regular subtraction of fuzzy numbers. On the other

hand, κ = −1 results in the formula [a, b] � [c, d] = [min(a − c, b − d),max(a −
c, b − d)], as wanted (this is equivalent to taking ˜DUi out of the parenthesis in
Eq. (2)). The value of κ is subject to estimation, and can demonstrate whether the
effect of within-criterion comparisons is present.

2.3 Choosing Between Two Health States

Based on the previous subsection, the difference in utilities of two compared alter-
natives, (A, TA) and (B, TB), is given as an interval, which we denote by [LΔ, HΔ].
Then, we define the ancillary score, π ,

π = 1

1 + exp (−(HΔ + LΔ)/2)
. (5)

In this way, we transform the advantage of one alternative over another into the
π ∈ [0, 1] interval, to facilitate interpreting the gain in terms of probabilities.6

We want to account for the fact that a larger difference between LΔ and HΔ

denotes larger imprecision in the assessment of the difference in utility between the
alternatives.We assume that a larger imprecisionmay dilute the preferences, i.e. drag
the probability of one alternative being chosen towards 50%. Specifically, we take:

6Such a logit formula is often used in health preference research in modelling the discrete choice
experiments, see [8].
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Θ = (HΔ − LΔ)/2, (6)

and we define the resulting probability of (A, TA) being chosen as

P = π − 0.5

1 + ωΘ
+ 0.5, (7)

where ω is a parameter to be estimated. For ω = 0 there is no impact of imprecision
on preferences. Additionally for π = 0.5 we see that P = 0.5 independent from ω.
In short, the transformation

P: π →
[

0.5 − 0.5

1 + ωΘ
, 0.5 + 0.5

1 + ωΘ

]

squashes π towards 0.5, and the higher the value ofω orΘ the stronger the squashing
is.

3 Data and Estimation Process

We use the same dataset as [10], produced during a modelling competition described
by Jakubczyk et al. [8]. In our approach, there are 31 parameters to be estimated:
five pairs for dimension importance, 15 weights wi, j , four τ s, κ , and ω.

The data set consists of 81,480 stated preferences over pairs of health states for
1560 different combinations of pairs health states.Wewill denote a unique pair health
states as ((Ai , TAi ), (Bi , TBi )), where i ∈ {1, 2, . . . , 1560}. For every i , we have an
information how many responses in total were given, denoted as ni , how many
respondents chose state (Ai , TAi ), denoted as ai . Obviously, the number of times
(Bi , TBi )was chosen amounts to bi = ni − ai . We let PA,i denote the probability that
(Ai , TAi ) was chosen, and similarly PB,i denotes the probability that (Bi , TBi ) was
chosen. The probabilities PA,i and PB,i are calculated using the formula described
in Sect. 2.

We used maximum-likelihood to obtain the estimates of the model parameters.
The formula for maximized log-likelihood is:

1560
∑

i=1

ai ln(PAi ) + bi ln(PBi ).

The optimization process was performed using the Nelder-Mead method and was
implemented in Julia [1]. The optimization procedure used the penalty method, to
ensure that κ ∈ [−1, 1], li ≤ hi , ω ≥ 0 and 0 ≤ w1, j < w2, j < w3, j ≤ 1.

We calculate 95% confidence intervals (CIs) of parameters based on 200 bootstrap
replicates of the estimation process.
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4 Results

The estimation results are presented in Tables1, 2 and 3, containing the information
on the importance of individual dimensions, relative level importance, and other
parameters, respectively.

For the estimated parameters the following constraints were binding. Firstly, con-
dition li ≤ hi for i equal to 1 and 2. This result is quite intuitive, as we can expect
that regarding mobility and self care people have good understanding of the dimen-
sion meaning (hence, importance) and have low uncertainty in the assessment of the
disutility. Still, in another dataset or under some other specification, we might expect
some non-degenerate intervals, denoting some imprecision.

Secondly, in the anxiety/depression dimension, the disutility of levels 4 and 5 was
estimated as equal: the respondents cannot really say the difference between extreme

Table 1 Results: dimensions importance (bounds of the interval defining the disutility)

Dimension li ; hi 95%CI(li ); 95%CI(hi )

Mobility (i = 1) 0.3927; 0.3927 [0.3513, 0.4357]; [0.3567, 0.4381]

Self-care (i = 2) 0.3845; 0.3845 [0.3410, 0.4203]; [0.3481, 0.4402]

Usual activities (i = 3) 0.2663; 0.3569 [0.1911, 0.3357]; [0.2893, 0.4380]

Pain/discomfort (i = 4) 0.5622; 0.6822 [0.4713, 0.6175]; [0.5846, 0.8263]

Anxiety/depression (i = 5) 0.3776; 0.5544 [0.2987, 0.4275]; [0.4964, 0.6459]

Table 2 Results: relative level importance

Level Dimensions

Mobility Self-care Usual activities Pain/discomfort Anxiety/depression

1a 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.1877 0.0418 0.3610 0.1127 0.2248

3 0.2469 0.1275 0.4279 0.2104 0.4474

4 0.6929 0.6049 0.8765 0.7198 1.0000

5a 1.0000 1.0000 1.0000 1.0000 1.0000
a by definition

Table 3 Results: other parameters

Parameter Value 95% CI

τ1 0.1492 [0.1301, 0.1719]
τ2 0.4544 [0.4017, 0.5281]
τ3 0.4376 [0.3851, 0.5319]
τ4 0.4813 [0.4175, 0.5701]
κ −0.2922 [−0.6900, 0.2096]
ω 0.7871 [0.5253, 1.6544]
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and severe anxiety/depression. Again, this is unsurprising as the reversals between
levels 4 and 5 were observed in the past in the last two dimensions (see [5], we do
not observe this effect for pain/discomfort in our data, however).

Most of the estimation results were stable (as measured by 95% CIs). The only
two parameters that have relatively uncertain estimates are κ andω. However, in both
cases the uncertainty of the estimate does not significantly influence the qualitative
conclusions drawn from the results. Firstly, κ is much lower than 1 which means
that within-criterion comparisons are simpler than between-criteria ones, and thus
new � operator introduced in this paper proves useful: when we are comparing two
imprecisely-perceived alternatives we must account for the source of imprecision
and how much this imprecision may overlap (hence, cancel out in the comparison).

Secondly ω is significantly greater than zero, so we can observe the effect that
the more difficult the comparison is (the more fuzziness is present) the more erratic
responses we can expect.

The estimated values of τ are quite surprising. The values τ2–τ4 are practically
identical, suggesting that it is the number of units rather than the actual length (that
also results from the type of unit) matters for preferences. More research is needed
to understand it fully; in particular, DCE with mixed units would be useful in this
respect (e.g. months vs. years).

5 Final Remarks

We have shown that using fuzzy (interval) approach to modeling the preferences for
health states is possible, adding to the current literature, e.g. [7], [9], or [10]. The
central contribution of the present paper is proposing a new operator �, that can
differentiate between within- and between-criteria comparisons, and showing that in
actual data this operator is useful (i.e. estimated κ is well below 1). Further research
is required to fully define � in the context of more general fuzzy numbers. Another
line of further research is to account for imprecisely-perceived weights of levels.

More datasets are needed to understand how time is perceived in DCE involving
health states with duration (but that was not the goal of the present study). Due to
the lack of preformed preferences, the respondents may be very fragile to framing
effect, and the selection of time unit may greatly impact how the alternatives are
perceived. Still, in the present dataset, the time could be modeled using non-linear
transformations to account for discounting. That could also impact the estimate of
the relative impact of the time units used.

There is nothingparticular about health states as decision alternatives studied in the
present paper; hence, the ideas we introduced can well be used in other settings when
available alternatives are compared with respect to several criteria, each evaluated at
several levels. Obviously, using the � operator makes sense for criteria with at least
three levels, when non-degenerate intervals are being subtracted.
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In the present study, we drew conclusions based on the point estimates and 95%
CIs; in the future research, an attempt can be made to confirm if the imprecision
modelling improves the predictive validity of the models [8].
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Optimal Control of Breast Cancer:
Investigating Estrogen as a Risk Factor

S. I. Oke, M. B. Matadi and S. S. Xulu

Abstract Breast cancer is the most common cancer in women both in the developed
and underdeveloped world. In this paper, the dynamics of breast cancer disease is
modeled in the presence of two control strategies. The model describes evolution
of the cancer in the body system when anti-cancer drugs and ketogenic-diet are
implemented as control strategies against the tumor cells. We analysed the necessary
and sufficient conditions, optimality and transversality conditions using Pontryagin
Maximum Principle. We conclude through numerical simulations that estrogen level
need to be monitored and combination of the two control is the best to reduce tumor-
size and toxicity side effects.

Keywords Breast cancer · Optimal control · Maximum principle · Ketogenic diet

1 Introduction

Cancer occurs as a result of mutations, or abnormal changes in the genes responsible
for regulating the growth of cells and keeping them healthy. The genes in each cell’s
nucleus, acts as the control room of each cell. Cancer prevalence has been on the
increase due to an aging and growing World population, as well as the choices of
cancer-causing lifestyle and behaviours such as alcohol, smoking,HormoneReplace-
ment Therapy (HRT) [1]. Cancer is a leading cause of morbidity and mortality
worldwide, yet much is still unknown about its mechanism of establishment and
destruction. According to World Health Organization report [2], approximately 14.1
million new cancer were diagnosed (excluding non-melanoma skin cancer cases)
and 8.2 million cancer-related deaths were recorded. The same report indicated
that more than 60% of cancer cases occurred in Africa, Asia, Central and South
America. These regions account for over 60% of all documented cancer mortality.
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It is predicted that 13 million death will erupt worldwide by the year 2030 [2].
However, Sub-Saharan Africa recorded the highest morbidity (25.5%) and mortality
(23.2%) of all breast cancer cases in women globally [2].

The present study will focus on breast cancer which is common among women
due to hormonal imbalance estrogen as one of the risk factors that is responsible
for tumor growth in the breast. The biological implications of mathematical models
concerning tumor-normal competition and breast cancer dynamics have been previ-
ously studied by number of authors such as [3–8]. Most notably, [6] investigated the
effects of excess estrogen on breast cancer dynamics with an addition of an immune
cell compartment to model the body’s natural response on tumor growth. The authors
were able to established equilibrium points as well as both local and global stability
conditions. The aim of this paper is to study an optimal control model of breast cancer
by considering two control measures, such as: anti-cancer drugs and ketogenic-diet
as form of treatments.

Similarly, [5] worked on anti-angiogenic therapy as a therapeutic technique in
cancer therapy to prevent the development of tumor through the supply of blood
needed for the tumor growth. The authors further used geometric optimal control
theory which enabled a further analysis to complete the solution. However, for each
of these models in [5, 9] complete mathematical analysis of the strategy of optimal
control was done. The authors further applied optimal control only to contain one
interval where generally available inhibitors are subject to at maximum dose for the
model.

Chemotherapy is the use of therapeutic drugs such as Tamoxifen to destroymalig-
nant tumor cells. However, chemotherapy is known to have side effects and it is also
very expensive when it is used alone to combat cancer cells [10]. Recently, combi-
nation of ketogenic diet and chemotherapy is proposed to have a synergistic potency
in the treatment and control of tumor cells [11]. Ketogenic diet is a diet which is rich
in triglyceride (fats or lipids) and low in protein and carbohydrate. In addition, in
the body ketogenic diet. metabolised into free-fatty acid which is used as a source of
energy by the cells due to little or no glucose postprandial. Cancer cells lack glucose
to survive due to ketogenic-diet. Recently [8], an extension of this work was done
by the same authors. The authors analyzed the stabilities of the model to get equi-
libria points,using Routh-Hurwitz method to established basic reproduction number,
Uncertainty and sensitivity analysis and the existence of an optimal control were also
considered.

We carried out detailed qualitative optimal control analysis of the resulting model
and found the necessary conditions for optimal control of the breast cancer using
Pontryagin’s Maximum Principle [12] in order to determine optimal strategies for
combating the tumor growth and metastasis.
Our goal are: first to investigate the model under the assumption that:

• the control measures are constants ( that is use of anti-cancer drugs and ketogenic
diet)
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• set up an optimal control problem relatively to the model. In order to achieve this,
we used the following control parameters: anti-cancer drugs (u1), ketogenic diet
(u2) as time dependent variables.

The organization of the paper is as follows, in Sect. 2, we formulated amodel consist-
ing of ordinary differential equations that describes the dynamics of breast cancer
and the underlying assumption. In Sect. 3, we employed Pontryagin’s Maximum
Principle to investigate analysis of control strategies and to determine the necessary
conditions for the optimal control of the disease. In Sect. 4, we discussed the existence
of the optimal control system for the model and characterization of optimal control
using Pontryagin’s Maximum Principle [12]. In Sect. 5, we showed and discuss the
simulation results.

2 Model Formulation

We developed our model by assuming logistic (Verhulst) growth of cell population
and basis competition between normal cells and tumor cells. We considered the
immune cells compartment to comprise of Natural Killer cells (NK) and CD8+
T-cells as in [6] andwe used similar equation tomodel the immune response dynamic
by introducing immune booster (ketone bodies) and to check the efficacy of anti-
cancer drug.

We adapted estrogen equation as presented in a model by Pinho et al. [13]. Pinho
and Coworker [13], considered that a chemotherapy agent as continuously infused
into the body engulfed by different cell populations and natural death can occur.
We handled excess estrogen in a similar way and assumed that it is saturated daily
through birth control (constant source rate) (1 − k)which was introduced to serve as
anti-cancer drug efficacy (e.g Tamoxifen) in order to bind estrogen receptors positive
(ER+) and to reduce excess estrogen from promoting tumor growth [14].

In this study, we reflected on themodel that splits the entire population P(t) of cells
of the human breast tissues at any given period of time (t) into four compartments
known as:

dN

dt
= N (α1 − μ1N − φ1T ) − (1 − k) (λ1NE)

dT

dt
= T (α2d − μ2T ) − γ2MT − μ5T + (1 − k) (λ1NE)

dM

dt
= sβ + ρMT

ω + T
− γ3MT − μ3M −

(
(1 − k)

λ3ME

g + E

)

dE

dt
= (1 − k) ε − μ4E

(1)

where; N (t) =Normal cells, T (t) =Tumor cells,M(t) = Immune response, E(t) =
Estrogen.
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3 Optimal Control

Control variable was introduced into system (1) time dependent treatment efforts
u1(t) and preventive measures u2(t) as control to curtail the spread of cancerous
cells in the body system. Thus system (1) becomes

dN

dt
= N (α1 − μ1N − φ1T N ) − (1 − u1(t)) (λ1NE)

dT

dt
= (1 − u2(t)) T (α2 − μ2T − γ2M − μ5) + (1 − u1(t)) (λ1NE)

dM

dt
= sβ + ρMT

ω + T
− γ3MT − μ3M −

(
(1 − u1(t))

λ3ME

g + E

)

dE

dt
= (1 − u1(t)) ε − μ4E

(2)

Where;
u1(t) is the treatment effort using anti-cancer drugs by the patient
u2(t) is the time preventive control using ketogenic-diet in order to starve cancer
cells.

3.1 Extension of System (2) to Optimal Control Problem

In the previous section, the controls on disease (ketogenic-diet, immune booster and
anti-cancer treatment) are considered as constants hence no cost determination is
taken care of which will be incurred in their implementation. In this section, we
formulated a corresponding optimal control problem for the model in system (2)
considering the ketogenic diet and chemotherapy as control interventions to min-
imize the cancer prevalence and corresponding economic burden. Optimal control
technique has been used successfully to determine the relevant control strategy with
optimal cost [15]. A few of the studies relevant to control problem are described in
the following [15–18].

The system (2)which involves a systemof coupled non-linear differential equation
and two controls will be introduced with initial conditions given at t = 0.

3.2 The Associated Interaction of Normal Cells and Tumor
Cells:

As tumor formation rate increases due to DNA damaging by excess estrogen, the
tumor cells population increases as the density of normal cells population (that is
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prone to be cancerous), we implemented a measure that reduced the interaction by
(1 − u1(t)), where u1(t) measures the level of successful treatment efforts, which
has practical advantages in the reduction of the cancer prevalence during the dead-
free tumor or co-existing free tumor metastasis. The control variable u1(t) denoted
the use of anti-cancer drugs which are alternative preventive measures to minimize
the growth or eliminate tumor from the body system, such as: the use of Tamoxifen
or Taxol = Paclitaxel.

3.2.1 Ketogenic Diet to Tumor Cells Population:

The ketogenic diet to tumor cells u2 is chosen at time dependent control intervention
as u2(t). A control variable that represents the level of ketogenic diet in which a
cancer patient is placed on is u2(t). Ketogenic diet will aid the starvation of tumor
from receiving necessary nutrient and glucose from the body system. It follows that
the growth rate of the tumor population will be reduced by a factor (1 − u2(t)).
u2 also serves as measures for level of successful prevention (personal protection
efforts) [19–27]. Thus, our main objective is to investigate the optimal way for the
control policies which minimized the economic load as well as disease prevalence.

3.2.2 Determination of the Total Cost

We first determined the total cost incurred due to implementation of control poli-
cies and burden of breast cancer which eventually will be minimized in this study.
Therefore, weighted sum of the total cost incurred is described as follow:

(i) Cost incurred due to breast cancer: is the weighted cost due to opportunity lost
of the cancer patient [15] and given as:

∫ T f

0
(A1T (t) + A2E(t)) dt (3)

many factors are responsible for the opportunity loss e.g loss in efficiency due
to sickness, loss of manpower, loss realised in searching for treatment and
protection, patient caring etc [28].

(ii) Cost incurred in treatment: this is the cost that provides treatment to tumor cells
population during the metastasis stage and is given as:

∫ T f

0

(
1

2
A3u

2
1(t)

)
dt (4)

the total weighted cost incurred in treatment includes the costs of efforts
made on treatment process, scanning through mammography or X-rays, cost of
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medication, diagnosis charges, cost of admission in the hospital during the
period of providing treatment.

(iii) Cost incurred in ketogenic diet: the weighted sum of cost realised in ketogenic
diet nutritions which includes the cost of restricted diet that will starve tumor
cells from getting necessary nutrient from the body system is given as:

∫ T f

0

(
1

2
A4u

2
2(t)

)
dt (5)

Based on the state of severity and effect of treatment on tumor cells population, we
considered a nonlinear relationship between cost, efforts made on ketogenic diet and
treatments.

Hence, we define the control problem as per the above discussion for control
policies and cost incurred. Thus, the objective function which has to beminimized is:

J1(u1, u2) =
∫ T f

0

(
A1T (t) + A2E(t) + 1

2
A3u

2
1(t) + 1

2
A4u

2
2(t)

)
dt (6)

minJ1(u1,u2)(u1, u2 ∈ U ) U = {u1(t) & u2(t) : 0 � u1(t) � u1max , 0 � u2(t) �
u1max , t ∈ [0, T f ]

}
and u1 and u2 are Lebesgue measurable subject to the model

system (2):

dN

dt
= Nα1 − μ1N

2 − φ1T N − (1 − u1(t)) (λ1NE)

dT

dt
= (1 − u2(t)) Tα2 − μ2T

2 − γ2MT − μ5T + (1 − u1(t)) (λ1NE)

dM

dt
= sβ + ρMT

ω + T
− γ3MT − μ3M −

(
(1 − u1(t))

λ3ME

g + E

)

dE

dt
= (1 − u1(t)) ε − μ4E

(7)

follow the initial conditions N (0) � 0, T (0) � 0, M(0) � 0, & E(0) � 0.
The objective function J1 represents the total cost incurred as a result of appli-

cation of control plans and breast cancer burden. However, the temporal cost is
measured by the integrand.

L(N , T, M, E, u1, u2) = A1T (t) + A2E(t) + 1

2
A3u

2
1(t) + 1

2
A4u

2
2(t) (8)

Where A1, A2, A3 & A4 are positive weight constants related with the cost in unit
effort and also balance the units integrand. For convenience, we consider u1(t) =
u1 & u2(t) = u2.
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3.3 Analysis of Optimal Control

Weapplied Pontryagin’sMaximumPrinciple [12], to characterize the optimal control
pair u∗

1 & u∗
2 in the following results.

Theorem 1 Given optimal control variables u∗
1 & u∗

2 and N ∗, T ∗, M∗&E∗ are cor-
responding optimal state variables of the control system (6) and (7). Then there exists
adjoint variables
θ = (θ1, θ2, θ3, θ4) ∈ �4+ that satisfies the following equations.

dθ1

dt
= 2θ1μ1N + φ1θ1T + (θ1 + θ2) (1 − u2(t)) λ1E − α1θ1

dθ2

dt
= −A1 + θ1φ1N + θ2 (2Tμ2 + γ2M + μ5 − α2(1 − u2)) + θ3

(
γ3M − ρωM

(ω + T )2

)

dθ3

dt
= θ2γ2T − ρθ3T + γ3θ3T + μ3θ3 + θ3

(
(1 − u1)

λ1E

g + E

)

dθ4

dt
= −A2 + (θ1 − θ2)(1 − u1)λ1N − θ3

(
(1 − u1)

λ3Mg

(g + E)2

)
− θ4μ4

(9)

with transversality conditions
θ1(T f ) = θ2(T f ) = θ3(T f ) = θ4(T f ) = 0
The corresponding optimal controls u∗

1 & u∗
2 are given as,

u∗
1 = min

{
max

{
0,

1

A3

(
θ2λ1N

∗E∗ + θ3ε − θ1λ1N
∗E∗ − θ3λ3M

∗E∗
g + E∗

)}
, u1max

}

(10)

and

u∗
2 = min

{
max

{
0,

1

A4

(
θ2α2T

∗)} , u2max

}
(11)

Proof Let u∗
1 & u∗

2 be the given optimal control functions and N ∗, T ∗, M∗&E∗ be
the corresponding optimal state variables of the system (7) which minimizes the cost
functional or objective (6). Then by Pontryagin’s Maximum Principle [12], there
exists adjoint variables θ1, θ2, θ3, & θ4 which satisfies the following equations:

dθ1

dt
= −∂H

∂N
,
dθ2

dt
= −∂H

∂T
,
dθ3

dt
= − ∂H

∂M
,
dθ4

dt
= −∂H

∂E

with transversality conditions
θ1(T f ) = θ2(T f ) = θ3(T f ) = θ4(T f ) = 0
where H is the Hamiltonian and defined as:

H(N , T, M, E, u1, u2, θ) = L(N , T, M, E, u1, u2) + θ1N
′ + θ2T

′ + θ3M
′ + θ4E

′

(12)
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H =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1T (t) + A2E(t) + 1
2 A3u21(t) + 1

2 A4u22(t)

+ θ1
(
Nα1 − μ1N 2 − φ1T N − (1 − u1(t)) (λ1NE)

)
+ θ2

(
(1 − u2(t)) Tα2 − μ2T 2 − γ2MT − μ5T + (1 − u1(t)) (λ1NE)

)
+ θ3

(
sβ + ρMT

ω+T − γ3MT − μ3M −
(
(1 − u1(t))

λ3ME
g+E

))
+θ4 ((1 − u1(t)) ε − μ4E)

from the optimality condition, we have
∂H
∂u1

= 0, at u1 = u∗
1 and

∂H
∂u2

= 0, at u2 = u∗
2 which implies that,

0 = ∂H

∂u1
= A3u1 + θ1λ1NE − θ2λ1NE + θ3

λ3ME

g + E
− θ4ε (13)

0 = ∂H

∂u1
= A4u2 − θ2α2T (14)

Hence, we obtain (see [29])

u∗
1 = 1

A3

{
θ1λ1NE + θ4ε − θ1λ1NE − θ3

λ3ME

g + E

}
(15)

u∗
2 = 1

A4
{θ2α2T } (16)

Thus we have, (15) and (16).
By standard control arguments involving the bounds on the controls, we conclude

u∗
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i f 1
A3

(
θ1λ1NE + θ4ε − θ1λ1NE − θ3

λ3ME
g+E

)
< 0

1

A3

(
θ1λ1NE + θ4ε − θ1λ1NE − θ3

λ3ME

g + E

)

i f 0 � 1

A3

(
θ1λ1NE + θ4ε − θ1λ1NE − θ3

λ3ME

g + E

)
� 1

1 i f 1
A3

(
θ1λ1NE + θ4ε − θ1λ1NE − θ3

λ3ME
g+E

)
> 1

and

u∗
2 =

⎧⎪⎨
⎪⎩
0 i f 1

A4
(θ2α2T ∗) < 0

1
A4

(θ2α2T ∗) i f 0 � 1
A4

(θ2α2T ∗) � 1

1 i f 1
A4

(θ2α2T ∗) > 1



Optimal Control of Breast Cancer: Investigating Estrogen … 459

However, we discuss the numerical solution of the optimality system and the
corresponding results of varying the optimal controls u1 & u2 the parameter choices,
and the interpretations from various cases.

4 Numerical Simulation and Discussion

In this section, we numerically investigated the effect of the optimal control strate-
gies on breast cancer using estrogen as a risk factor. We investigated the process of
one or both control strategies for minimal cost and breast cancer burden treatments
on economy. The optimal control is acquired by solving the optimality system of
four ordinary differential equations from the state variables and adjoint system. An
iterative scheme is used to solve the optimality system. All the numerical simula-
tions executed in MAPLE 18. We employed the forward-backward scheme method,
beginningwith an initial guess for optimal controls and solve the optimal state system
forward in time and after that solved the adjoint state system backward in forward
using finite difference scheme in MAPLE. The two controls were then updated by
using a convex combination of the previous controls as well as the characterization
(15) and (16). The entire process is repeated until the values of the unknown at the
previous iterations are closed to the one at the current iteration [12, 29]. Amathemat-
ical modeling of breast cancer in the presence of ketogenic diet and chemotherapy
as a control for tumor metastasis is designed.

Outcomes obtained without control are compared to those from the different
strategies applied simultaneously. For numerical analysis, the weight factors used are
A1 = 20, A2 = 150, A3 = 15, A4 = 50. The values used here were intended only
for theoretical purposes to investigate the effect of various control practices. For
example, A1 & A2 represented weight cost due to opportunity loss of the breast
cancer patient, A3 is the weighted cost for providing treatment (chemotherapy) to
reduce or eliminate tumor cells growth in the body system. A4 is the cost incurred
during restricted diet ( ketogenic diet) that starved tumor cells from getting necessary
nutrient and glucose from the body system. All control variables were constrained
between zero and one (0 � ui (t) � 1, i = 1, 2)when control is set to zero, it implies
that there is no therapy apply and when it is one, the maximum control therapy or
strategy is invested.

Figure1, represents the tumor cells population (T) with and without control for
different values of u1 and u2. In the absence of control, the tumor cells population
(solid red line) is increase in less thanTwenty days until all the normal cells crowd-out
in the breast. In the presence of controls, the (dash green line) shows that the tumor
growth or metastasis is being hindered due to the combination of the treatment and
tumor cells population drastically reduced. Similarly, Fig. 2 represents the number
or level of estrogen (E) in the body with and without controls for different values of
u1 and u2. When there are no controls, the estrogen level reach maximum level in
Hundred days while in the presence of controls (solid green line), the estrogen level
reduced drastically. Figure3 shows the effectiveness of ketogenic-diet parameter
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Fig. 1 Simulation result of the model (7), showing Tumor cells population against Time with and
without control

Fig. 2 Simulation result of the model (7), showing Estrogen Level and Immune response against
Time with and without control
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Fig. 3 The variation of proportion of Tumor cell population for different for different values of d
with other parameters fixed

using values. Thus, for us to avoid ketoacidosis, ketogenic-diet parameter should not
go above d = 0.6.

5 Conclusions

Breast cancer pose immense economic burden which particularly includes opportu-
nity loss, health care related expenditures, losses due to mortality and dependent’s
care, and loss of work etc. Also, the costs for implementing control interventions
such as medicine, ketogenic diet among others. are involved. Thus for policy makers,
it is not only significant to control the tumor cells metastasis but also to minimize
the overall cost incurred over a specified time period. An ample choice for a con-
trol policy to evaluate a single control intervention or multiple control interventions
depend on availability of resources.

The dynamics of breast cancer disease is described here by a four-compartment
deterministic model where classes differ from one another such as: Normal cells,
Tumor cells, Immune response and Estrogen. They are considered together with two
control strategies implemented to reduce the number of tumor cells and cost of treat-
ing breast cancer. The results show that optimal control of breast cancer is possible
through ketogenic-diet (nutritional diet) and anti-cancer drugs. The combination of
those control strategies is needed for better results. However, support to the imple-
mentation of the control strategies against breast cancer should be encouraged to
reduce the burden of the disease on the economy of the countries. This study has its
limitation.

The weights on cost considered here are for illustrative reasons. The realistic out-
comes will be obtained if data on the cost of the implementation of control strategies
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are available. Hence, authors in the future work will consider cost-effectiveness of
the breast cancer disease.
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Dynamical Analysis of a Modified
Prey-Predator Model for Venture
Capital Investment

Letetia Mary Addison, Balswaroop Bhatt and David Owen

Abstract TheLotka-Volterra predator-preymodel for populationdynamics between
prey and predator species, has been an important model in Biology for many years.
Most recently, it has been used to explain the relationship between Venture Capital
investment opportunities and the experience of the investors, which represent the prey
and predator respectively. Ourwork extends thismodel to include amodificationwith
two investment opportunities available to the venture capitalist. The dynamics of the
system are investigated via analytical work and numerical simulations to obtain
bifurcation points which affect the stability of the system. Results are presented
numerically and graphically. In our study, parameters related to returns to investment
experience, investment handling time, rate of conversion of investment opportunities
and depreciation of investment experience have threshold values where the system
switches from stable to unstable. The stability regions for each of these parameters
display suitable ranges. This provides investors with guidance to invest only when
these parameters are within the stability regions.

Keywords Prey-Predator · Venture capital · Stability · Bifurcations

1 Introduction

Venture Capital (VC) has developed into an important intermediary in financial
markets, providing capital to firms that might otherwise have difficulty attracting
financing [10]. Venture Capitalists (VCs) are wealthy investors who invest capital in
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start-up companies in hopes of high returns in the long run. VCs receive most of their
funding from foundations with large amounts of capital, pension funds and endow-
ments. According to [25], VC investors play a crucial role in incubating new firms
by supplying them with VC. Research in [10] stated that the first true VC firm was
American Research and Development, which consisted of a small group of business
leaders who made risky investments for emerging technological companies inWorld
War II. Since then, VC has been a vastly growing industry.

Previous research has considered its role in different aspects: [15] examined the
innovation VC provided in terms of higher patenting rates while [5] assessed the
geographical impact on the performance of VC firms. Several papers [7, 8, 14] have
also examined methods to estimate risk and returns for private equity investment.
These papers use methods such as the Capital Asset Pricing Model (CAPM) and
Generalized Method of Moments (GMM) model, which mainly use statistical tech-
niques to estimate the risk and return parameters for an investment.

Some papers have also explored the idea of the experience of VCs as it relates to
the success of their investment. The idea here is that it is preferable to have a mea-
sure of experience that is specific to the match between the VCs and the entrepreneur
[23]. Their research investigates this idea using the theory of a two-sided matching
model involving Bayesian inference and Markov Chain Monte Carlo Methods. The
findings are that investments by the most experienced investors are twice as likely to
result in public offerings as investments by the least experienced investors [23].

Consequently, the impact of experience of investors on the investment has been
examined extensively over the years. However, few papers have applied a prey-
predator modelling approach to investigate investment dynamics. Research in [3]
considered an endogenous idea to partially explain investment behavior. Here, the
greater the level of VC investment, the greater the depletion of unexploited invest-
ment opportunities. They observed that VC investments in industry have similar
cyclical patterns associated with the traditional biological Lotka-Volterra [16, 26]
prey-predator model, with the investors acting like predators and the opportunities
are similar to prey.

In addition, investment opportunities may borrow other analogous ideas from
ecology such as herding and competition [13, 22]. Predators may also have the abil-
ity to switch to the abundant prey species in order to sustain the particular eco-system
at hand [1, 12, 19]. The paper by [4] discussed the mathematical implications of prey
switching [24] and its effects on economic and environmental sustainability in two
situations: oil drilling and whale hunting.

Our paper applies this idea of prey-switching to VC investment in order to see
its effects on the system and ultimately, the sustainability of investment. The prey-
predator VC investment model is extended to include two sets of investment opportu-
nities available to VCs from two different industries. The original model is improved
with logistic growth in the prey opportunities and a switchingmechanism [24], which
allows VCs the optimal choice among investments. The introduction of these ideas
into a VC model has not been studied thus far.
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Hence, the aim of this work is to demonstrate the ideas of a prey-predator mod-
elling to investigate the dynamics of a modified version of the Venture Capital invest-
ment model. The stability of the system is presented analytically and Hopf bifur-
cations for parameters are investigated numerically. Simulations are performed to
study the behaviour of the system through time series graphs. Parameters represent-
ing returns to investment experience, investment handling time, rate of conversion of
investment opportunities and depreciation of investment experience have bifurcation
values where the system switches from stable to unstable. We recommend that the
investor should invest only when these parameters are in the stable regions.

2 The Model

The followingmodel is amodifiedversionof theVentureCapital Investmentmodel by
[3]. A Rosenzweig and MacArthur [20] form of the original Lotka-Volterra [16, 26]
predator-prey model is used with a more reasonable assumption of logistic growth
rates in the prey populations. Consider a system of two investment opportunities
available to a single VC investor. There is a switching mechanism where the VCs
can switch to the investment which has the most profitable opportunities available.

dP1

dt
= ρ1P1

(
1 − P1

K1

)
− α1r1(P)X β1P1,

dP2

dt
= ρ2P2

(
1 − P2

K2

)
− α2r2(P)X β2P2, (1)

dX

dt
= c1α1r1(P)X β1P1 + c2α2r2(P)X β2P2 − δX ,

where

ri(P) ≡ ri (P1,P2) = 1

fi (P1,P2)
, i = 1, 2, (2)

f1 (P1,P2) = 1 + γ2P2

P1
,

f2 (P1,P2) = 1 + γ1P1

P2
.

PREY: P1 and P2 represent the investment opportunities available from the first and
second industries respectively,
PREDATOR: X represents the VCs experience measured via the size of the VC
funds, where

P1,P2,X ≥ 0
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Parameters used in the model are all non-negative. For i = 1, 2:

αi investment parameter for investment opportunities in industry i,
βi returns to experience for investment opportunities in industry i,
γi handling time for investment opportunities in industry i,
ρi natural growth rate of investment opportunities in industry i,
ci rate of conversion of VC funds into opportunities in industry i funds,
δ depreciation rate of experience (death rate of VC fund),
Vi a modified Cobb - Douglas [6] Investment function for opportunities in industry

i where V = airi(P)X βi Pi,
ri a functional response of the Venture Capitalists to the investment opportunities

in industry i. It contains a built-in switching mechanism to switch [24] to the
more profitable opportunity depending on the function, fi (P1,P2).

The assumptions of this model follow those outlined by [3]. The VCs experience in
a particular company or industry is proportional to the profitability of the investment
projects in that industry. The number of available projects also affects profitability of
VC investments. It is also assumed that there is risk neutrality between investments
and exogenous factors are ignored.

These ideas allow for less complication in the idea of the analysis and computa-
tions. In addition to these, we also incorporate additional mathematical assumptions,
following those outlined in [2]:

Assumption 1 Eachpredatory function ri (P1,P2) , i = 1, 2 , is smooth and positive
with a Taylor expansion about

(
P∗
1 ,P

∗
2

)
where

(
P∗
1 ,P

∗
2 ,X

∗) is an equilibrium point
of the system.

Assumption 2 The predatory functions ri (P1,P2) , i = 1, 2, give the Venture Cap-
italist the ability to switch predation to the industry which has the larger number of
investment opportunities between them. The following conditions hold:

1. P1 � P2, r1 (P1,P2) → 1 and r2 (P1,P2) → 0,
2. P1 � P2, r1 (P1,P2) → 0 and r2 (P1,P2) → 1.

Therefore, when there is a larger number of opportunities available in the first indus-
try, the VC switches to make the investment in this industry and vice versa.

2.1 Existence of Positive Interior Equilibrium Point(s)

In order to find the steady state solutions of the equations in the original system, set
each equation to zero. This gives:
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dP1

dt
= ρ1P1

(
1 − P1

K1

)
− α1r1(P)X β1P1 = 0, (3)

dP2

dt
= ρ2P2

(
1 − P2

K2

)
− α2r2(P)X β2P2 = 0, (4)

dX

dt
= c1α1r1(P)X β1P1 + c2α2r2(P)X β2P2 − δX = 0. (5)

The system may have more than one positive interior equilibrium point. Let one
such interior equilibrium point be E = (P∗

1 ,P
∗
2 ,X

∗). For simplicity, the superscripts
have been dropped in calculations. In order to find this point, set P1 = PP2, where
P > 0 and after this substitution into ri (P1,P2), we get ri

(
PP2,P2

)
and take this as

ri (for i = 1, 2) in calculations.

Using Eqs. (3) and (4) and solving for X respectively gives:

X =
(

ρ1
(
K1 − PP2

)
α1r1K1

) 1
β1

(6)

and

X =
(

ρ2 (K2 − P2)

α2r2K2

) 1
β2

. (7)

Equating (6) and (7) give the following equation which must be satisfied by P and
P2 :

(α2r2K2)
1

β2
(
ρ1

(
K1 − PP2

)) 1
β1 = (α1r1K1)

1
β1 (ρ2 (K2 − P2))

1
β2 (8)

Also using (6) and (7), since X must be positive (since it represents real populations),
then the following inequalities must be satisfied:

ρ1
(
K1 − PP2

)
> 0 (9)

and

ρ2 (K2 − P2) > 0. (10)

Substituting Eqs. (6) and (7) into (5), another equation involving P and P2 is:

c1
ρ1

(
K1 − PP2

)
r1K1

PP2 + c2
ρ2 (K2 − P2)

r2K2
P2 − δ

(
ρ2 (K2 − P2)

α2r2K2

) 1
β2 = 0 (11)
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Solving Eqs. (8) and (11) for P > 0, P2 > 0, where the conditions in (9) and (10)
hold, then P and P2 are obtained. Hence, P1 is found using the equation P1 = PP2

and using either Eq. (6) or (7), X can be found. This gives the equilibrium point, E.
We may thus write the following Lemma, resuming the use of the superscript, ∗,

to depict the positive steady state values:

Lemma 1 Thepositive equilibriumpointE = (P∗
1 ,P

∗
2 ,X

∗)of the system in (1) exists
and represents real populations if P > 0 and P2 > 0 are solutions to the equations
(8) and (11) and satisfy the inequalities in (9) and (10).

2.2 Stability Analysis of Positive Interior Equilibrium Point

The stability of the interior equilibrium point is discussed by examining the equilib-
rium point, E = (P∗

1 ,P
∗
2 ,X

∗). The equations in system (1) are linearized using the
substitutions:

P1 = P∗
1 + u, (12)

P2 = P∗
2 + v, (13)

X = X ∗ + w, (14)

where u, v andw are small perturbations about the equilibrium point. Assuming Tay-
lor’s Theorem, all terms are expanded about the equilibrium point, while neglecting
higher order terms of u, v and w.

The characteristic equation has the form:

P(λ) = λ3 + a1λ
2 + a2λ + a3 = 0 (15)

For stability, it is necessary for the eigenvalues, λ in (15) to have negative real parts.
These conditions are satisfied by the Routh-Hurwitz [11, 21], which states that a
stable equilibrium occurs if and only if

a1 > 0, a3 > 0, a1a2 − a3 > 0 (16)

Theorem 1 Given an equilibrium point E = (P∗
1 ,P

∗
2 ,X

∗) satisfying the equations
in system (1), then once Lemma 1 holds, E exists and is stable if and only if (16)
holds.

2.2.1 Hopf Bifurcation Analysis

The existence of this type of bifurcation can be explored by applying the Hopf
Bifurcation Theorem [9, 17] to the original system in (1). It is important to verify
the traversality condition at a critical value μ = μ∗:
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Re(
dλi

dμ
)μ=μ∗ �= 0, i = 1, 2. (17)

The system has a family of periodic solutions where the critical value, μ∗, is the
Hopf bifurcation point. Due to the complex nature of the system in symbolic form,
the Hopf bifurcation points are found for a particular parameter set analytically using
the Routh-Hurwitz criteria and then verified numerically.

3 Numerical Simulation Results and Discussion

The aim of the simulation study is to observe the effect of variation of parameter
values on the stability of the system for the simulated dataset shown in Table 1. The
stability of the datasetwas examinedwith the positive interior equilibriumpoint as the
initial value with slight perturbation. Then, each parameter was varied individually,
while keeping others constant.

The Routh-Hurwitz criteria in Theorem 1 was used to analytically find Hopf
bifurcation point(s), that is, values where the system exhibited a change in stability
for the particular parameter. Table 2 shows the stability intervals for the system with
respect to the variation of parameters for the simulated dataset shown in Table 1,
which produced a change in stability of the system.

Time series graphs were generated using [18] for the system for one case of the
parameter c1 in stable and unstable intervals in Figs. 1 and 2 respectively,which verify
the analytical results. It is possible to generate similar graphs for all the parameters
in Table 2. This analysis allows an investor to study the parameter sets which would
produce stable or unstable investments.

Parameters representing returns to investment experience, investment handling
time, rate of conversion of investment opportunities and depreciation of investment
experience experience Hopf bifurcation values, where the system switches stability.
The investors must invest only when the parameters are within the stable regions.

Otherwise, if these parameters have values in the unstable regions it indicates that
investors will experience losses or fluctuations in their investments. These recom-
mendations can assist investors, not only in VC but also in the stock market, to use
these bifurcation parameter thresholds to make more secure investments.

Table 1 Parameter values for simulated dataseta

α1 α2 ρ1 ρ2 β1 β2 K1 K2 γ1 γ2 c1 c2 δ

1 1 0.5 0.7 0.9 0.9 10 10 1 1 3.5 0.5 0.5
aEquilibrium point (0.27, 0.38, 1.18)
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Table 2 Stability/instability intervals for the system when each parameter in the simulated dataset
in Table 1 is varied individually. The regions of stability are represented by (S) whereas the unstable
regions are represented by (U). The Hopf bifurcation point for a parameter is the value which
induces a qualitative change in the stability of the system

Parameter Stable (S)/Unstable (U) interval Hopf bifurcation point/s

β1 0 ≤ β1 < 0.959 (S) 0.959

0.959 ≤ β1 < 29.680 (U)

β2 0 ≤ β2 < 0.943 (S) 0.943

0.943 ≤ β2 < 29.637 (U)

γ1 0 ≤ γ1 < 0.376 (S) 0.376

0.376 ≤ γ1 < 0.512 (U) 0.512

0.512 ≤ γ1 ≤ 30.484 (S)

γ2 0 ≤ γ2 < 3.589 (S) 3.589

3.589 ≤ γ2 < 19.416 (U) 19.416

19.416 ≤ γ2 ≤ 30.106 (S)

c1 0 ≤ c1 < 4.778 (S) 4.778

4.778 ≤ c1 < 32.431 (U)

c2 0 ≤ c2 < 0.268 (U) 0.268

0.268 ≤ c2 < 29.655 (S)

δ 0 ≤ δ < 0.269 (S) 0.269

0.269 ≤ δ < 29.286 (U)
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Fig. 1 Time series graphs for two investment opportunities, P1 (blue line), P2 (red line) and VCs
experience, X (black line), measured in terms of their investment funds (black line). Parameters are
from a stable (S) case from Table 2 where α1 = 1, α2 = 1, ρ1 = 0.5, ρ2 = 0.7, β1 = 0.9, β2 = 0.9,
K1 = 10, K2 = 10, γ1 = 1, γ2 = 1, c1 = 3.5, c2 = 0.5, δ = 0.5. The bifurcation parameter here is
c1, with a value of 3.5. Both sets of investment opportunities, as well as the experience of VCs in the
system co-exist, with stable equilibrium over time for this dataset. This is an ideal eco-system for
VCs to invest in the two opportunities since neither of them, nor the VCs experience, are depleted
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Fig. 2 Time series graphs for two investment opportunities, P1 (blue line), P2 (red line) and VCs
experience, X (black line), measured in terms of their investment funds (black line). Parameters
depict an unstable (U) case fromTable 2where α1 = 1, α2 = 1, ρ1 = 0.5, ρ2 = 0.7, β1 = 0.9, β2 =
0.9,K1 = 10,K2 = 10, γ1 = 1, γ2 = 1, c1 = 5.5, c2 = 0.5, δ = 0.5. The bifurcation parameter here
is c1, with a value of 5.5. The investment opportunities as well as the VCs experience co-exist with
unstable equilibrium over time. There exists large, increasing fluctuations over time for the VCs
experience. For a particular set of opportunities, the VCs experience may increase or decrease
drastically, eventually approaching zero as the oscillations increase. This may not be an ideal case
for investment, hence it is unstable

4 Conclusion

The use of the prey-predator model enhances the investment of VCs. It provides a
guide into the dynamics of the system which can be used to study the stability of the
system for different parameter sets. The stability ranges are essential tools to provide
advice to investors about the threshold bifurcation values which would cause their
investment to become unstable and incur losses to their funds. The model is not
meant to replace existing models but is a means of partially explaining the complex
endogenous nature of the VC investment.
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Modelling Asynchronous Assets
with Jump-Diffusion Processes

Yuxin Chen and Roman N. Makarov

Abstract In this paper, we present a new multivariate jump-diffusion model for
modelling financial securities that havemissing or asynchronous data in time series of
historical prices. The proposed model allows us to analyze a portfolio that combines
a high-activity asset such as a market index (or an exchange-traded fund tracking
a market index) and several low-activity assets. The model is constructed in such
a way that low-activity assets correlate with each other only implicitly through the
high-activity asset price process. To calibrate the model, we first estimate parameters
of a high-activity asset and then estimate parameters for each low-activity asset by
conditioning on the parameters of the high-activity asset. Here, we assume that the
jump component follows a compound Poisson process, which is the same for all
asset price processes. Two jump-size distributions are considered: the normal and
the double-exponential probability distributions. We use the maximum likelihood
method to estimate model parameters for different time-series datasets. The new
models are compared with the model based on a multivariate Geometric Brownian
motion.

Keywords Jump-diffusion · Asset pricing · Model calibration · Missing data
Maximum likelihood estimation

1 Introduction

There exist many low-activity assets that are not traded frequently on financial mar-
kets, which causes missing data for some dates. As a result, daily trading information
for such asset may be no available. However, many investors may be willing to com-
bine high- and low-activity assets in order to diversify their portfolios.
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The objective of this paper is to introduce a new class of multivariate models,
which allow for simulating an ensemble of low-activity assets. Since infrequently
trading assets have missing and asynchronous data in time series of historical prices,
the main feature of the model proposed in this paper is the possibility to estimate
parameters for each asset price process despite the lack of historical data.

Very often, the dynamics of a financial market as a whole can be well described
using one index such as S&P500,which iswidely regarded as the best single gauge of
large-cap U.S. equities. Such an index can be used to describe the systemic behaviour
of amarket. For other assets, the return is then given by a combination of asset-specific
and systemic components. To be more specific, we use a jump-diffusion process to
model the log-value of the index and then introduce the same jump component in
diffusions describing log-values of other assets. Our approach is somewhat similar
to the capital asset pricing model (CAPM), where the expected asset return is given
by a sum of a systemic (market) risk premium and a company-specific risk premium.

2 Multi-Asset Price Model

Let S0 denote a high-activity asset such as amarket index, and Si with i = 1, 2, . . . , n
represent low-activity assets. The price of asset S at time t is denoted by S(t). Suppose
that for the high-activity asset, we have daily trading information for all time points
t0, t1, . . . , tm where t j = jh with h > 0 and j = 0, 1, . . . ,m. However, due to the
low-frequency trading, prices of S1, S2, . . . , Sn are only available for selected dates
when assets had been traded on. Hence, for each low-activity asset, we only have
partial trading information for particular dates, whereas data for the other time points
are missing.

In our project, we assume that the high-activity asset price follows a jump-
diffusion process, and the strong solution under a real-world probability measure
is as follows:

S0(t) = S0(0) exp

⎛
⎝

(
μ0 − σ 2

0

2

)
t + σ0

⎛
⎝W0 (t) +

Nλ(t)∑
j=1

Q j

⎞
⎠

⎞
⎠ , t ≥ 0 (1)

where μ0 and σ0 > 0 are constant, {Qi }i≥1 is a sequence of independent and identi-
cally distributed (iid) random variables with mean μJ and variance σ 2

J , {Nλ(t)}t≥0 is
a Poisson process with intensity λ, and {W0(t)}t≥0 is Brownian motion. We assume
that {Qi }, {Nλ(t)} and {W0(t)} are jointly independent. Here, all stochastic processes
and random variables are defined on the same filtered probability space.

From the strong solution (1), we can derive the following stochastic differential
equation (SDE) for the high-activity asset:



Modelling Asynchronous Assets with Jump-Diffusion Processes 479

dS0(t)

S0(t−)
= μ0dt + σ0dW0(t) + d

⎛
⎝

Nλ(t)∑
j=1

(eσ0Q j − 1)

⎞
⎠ . (2)

For the case where all Q j , j ≥ 1 are zero, the strong solution and the SDE are
respectively changing to

S0(t) = S0 (0) exp

(
(μ0 − σ 2

0

2
)t + σ0W0 (t)

)
, (3)

dS0(t) = S0(t) · (μ0dt + σ0dW0(t)) . (4)

Clearly, it is a Gaussian case without jumps.
For the n low-activity assets, we assume the following strong solutions:

Si (t) = Si (0)e

(
μi− σ2i

2

)
t+σi

√
1−ρ2

i Wi (t)+σiρi

(
W0(t)+∑Nλ(t)

j=1 Q j

)
, t ≥ 0 (5)

where μi , σi > 0 and ρi ∈ (−1, 1) with i = 1, 2, . . . , n are constant and Brownian
motions W0,W1, . . . ,Wn are jointly independent. We use the same compound Pois-
son process to model jumps in the market index and the low-activity assets. Thus,
all asset price processes can have a jump at the same time only and jump sizes for
different assets are proportional to the same random variable.

The SDE for low-activity asset i = 1, 2, . . . , n can be found using Itô’s formula:

dSi (t)

Si (t−)
= μi dt + σi

(√
1 − ρ2

i dWi (t) + ρi dW0(t)

)
+ d

⎛
⎝

Nλ(t)∑
j=1

(eσiρi Q j − 1)

⎞
⎠ .

(6)
The log-values X0(t) = ln S0(t), Xi (t) = ln Si (t) for i = 1, 2, . . . , n are given by

X0(t) = X0(0) +
(

μ0 − σ 2
0

2

)
t + σ0

⎛
⎝W0(t) +

Nλ(t)∑
j=1

Q j

⎞
⎠ , t ≥ 0 , (7)

Xi (t) = Xi (0) +
(

μi − σ 2
i

2

)
t + σi

⎛
⎝Wi (t)

√
1 − ρ2

i + ρi

⎛
⎝W0(t) +

Nλ(t)∑
j=1

Q j

⎞
⎠

⎞
⎠ .

(8)

The strong solutions in (7) and (8) allowus to find the correlation coefficients between
the log-returns Ri (t) = ln(Si (t)/Si (0)) = Xi (t) − Xi (0) with i = 0, 1, 2, . . . , n:

Corr(Ri (t), R0(t)) = ρ̂i ≡ ρi

√
1 + λσJ

1 + λσJρ
2
i

for i ≥ 1 ,

Corr(Ri (t), R j (t)) = ρ̂i ρ̂ j for i, j ≥ 1 with i �= j .
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It is clear that |ρ̂i | ≤ 1 for all i and |ρ̂i | < 1 if |ρi | < 1. Moreover, it is not difficult
to prove that the correlation matrix {Corr(Ri (t), R j (t))}1≤i, j≤n is a positive definite
matrix provided that |ρi | < 1 holds for all i .

Two types of jump-size distributions are considered in this paper. The first one is
the normal distribution Norm(μJ , σ

2
J ). This jump-diffusion model for asset prices

with normally-distributed jump sizes is known in the literature as the Merton model
[4]. The density of the jump amplitude is given by

φQ (x) = 1√
2πσ 2

J

exp

(
− (x − μJ )

2

2σ 2
J

)
. (9)

The second case is the Kou model [3] with double-exponential jump sizes. The
density of the jump amplitude is

φQ(x) = p1
η1

exp

(
x

η1

)
I{x<0} + p2

η2
exp

(−x

η2

)
I{x≥0} (10)

whereη1 andη2 are positive constants; the probabilities p1 and p2 of negative andpos-
itive jumps, respectively, satisfy 0 < p1 < 1, 0 < p2 < 1 and p1 + p2 = 1. The con-
dition η2 > 1 is required to ensure that E[eQ] < ∞. The jump amplitude Q hasmean
μJ = −p1η1 + p2η2 and variance σ 2

J = p1((μJ + η1)
2 + η2

1) + p2((μJ − η2)
2 +

η2
2).

3 Estimation of High-Activity Asset Parameters

The maximum likelihood estimation (MLE) is a commonly used method to estimate
parameters of asset price models. To select values for the model parameters we need
to maximize the likelihood function, which is defined as a joint density function for
assets values.

For the high-activity asset S0, the log-returns are iid, so we can apply the MLE
method to estimateμ0,σ0,λ aswell as parameters of the jump-amplitude distribution.
To speed up our calculations,we use themultinomialmaximum likelihood estimation
(MMLE) method [1, 2]. Assume that we have all historical daily prices for the high-
activity asset S0, and hence we can calculate daily log-returns ln(S0(t j )/S0(t j−1) for
all j = 1, 2, . . . ,m. Let φ(x; v) and Φ(x; v) denote, respectively, the probability
density function (PDF) and the cumulative distribution function (CDF) of daily log-
returns of the high-activity asset with parameter vector v. The MMLE algorithm is
as follows:

Step 1: Sortm historical daily log-returns into nbin bins and get the sample frequency
f (s)
k for each bin k = 1, 2, . . . , nbin

Step 2: Maximize the objective function:
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	(v) =
nbin∑
k=1

[ f (s)
k ln( fk(v))] → max

v

Here fk(v) is the theoretical frequency for themodel distributionwith param-
eter vector v given by

fk(v) = m
∫
Bk

φ(x; v)dx = m
(
Φ(bk; v) − Φ(bk−1; v)

)

where Bk = [bk−1, bk] is the kth bin.
To calculate the theoretical frequencies, we use a first-order approximation. That

is, we assume that no more than one jump happens in any day. Assuming that there
are 250 trading days per year, the duration of one (trading) day is equal to h = 1

250 .
The probability distribution function for the daily log-return ln(S0(t + h)/S0(t)) is
then approximated as follows:

Φ(x) ≈ p0
p0 + p1

Φ(0)(x) + p1
p0 + p1

Φ(1)(x)

where pk = e−λh(λh)k/k! is the probability of having k jumps during a time interval
of length h and Φ(k)(x) is the CDF of the log-return given that k jumps occur.

For the Merton model, we have

Φ(k)(x) = N
(
x; (μ0 − σ 2

0

2
)h + kμJ , σ

2
0 h + kσ 2

J

)
, k = 0, 1, 2, . . .

where N (x; a, b2) is the CDF of the normal distribution with mean a and variance
b2.

For the Kou model, we have the following two cases. If no jump happens, the
probability distribution function of a log-return is

Φ(0)(x) = N
(
x; (μ0 − σ 2

0

2
)h, σ 2

0 h

)
.

Under the assumption that only one jump happens, we have:

Φ(1)(x) = N
(
x, (μ0 − σ 2

0

2
)h, σ 2

0 h

)

+ p1 · exp
(
x − v1

η1

)
· N

(
−x;−(μ0 − σ 2

0

2
)h + σ 2

0 h/η1, σ
2
0 h

)

− p2 · exp
(− (x − v2)

η2

)
· N

(
x; (μ0 − σ 2

0

2
)h + σ 2

0 h/η2, σ
2
0 h

)
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where vi = (μ0 − σ 2
0 /2)h − σ 2

0 h
2η1

with i = 1, 2.

4 Estimation of Low-Activity Asset Parameters

Since all low-activity assets are dependent on the high-activity asset, we can estimate
the parameters for each low-activity asset once we have estimated all parameters
of the high-activity asset. Select one low-activity asset and let i be its index with
i = 1, 2, . . . , n. Assume that for this low-activity asset we know m̂ + 1 historical
values at times t̂0, t̂1, . . . , t̂m̂ . For simplicity, we omit the hat accent above t’s and m
in what follows. Introduce the following notations:

Z j = ln S0(t j ), X j = ln Si (t j ), and Mj = W0(t j ) +
Nλ(t j )∑
k=1

Qk

for j = 0, 1, 2, . . . ,m. Using the strong solutions in (7) and (8), we have

Z j = Z j−1 +
(

μ0 − σ 2
0

2

) (
t j − t j−1

) + σ0
(
Mj − Mj−1

)
, (11)

X j = X j−1 +
(

μi − σ 2
i

2

) (
t j − t j−1

)

+ σi

[
ρi

(
Mj − Mj−1

) +
√
1 − ρ2

i

(
Wi

(
t j

) − Wi
(
t j−1

))]
. (12)

After reorganizing Eq. (11), we have

Mj − Mj−1 =
Z j − Z j−1 −

(
μ0 − σ 2

0
2

) (
t j − t j−1

)

σ0
. (13)

Combine Eqs. (12) and (13) to obtain

X j = X j−1 +
(

μi − σ 2
i

2

)
h j + σiρi

Z j − Z j−1 −
(
μ0 − σ 2

0
2

)
h j

σ0
(14)

+ σi

√
1 − ρ2

i

(
Wi

(
t j

) − Wi
(
t j−1

))
. (15)

where h j = t j − t j−1. As we can see, X j conditional on X j−1 and Z̃ j = Z j − Z j−1

follows a normal distribution, and there is no jump part in the equation for X j . The
joint probability function of X j and Z j conditional on X j−1 and Z j−1 is as follows:
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pX j ,Z j |X j−1,Z j−1

(
X j , Z j | X j−1, Z j−1

)

= pZ j |Z j−1

(
Z j | Z j−1

) × pX j |X j−1,Z̃ j

(
X j | X j−1, Z̃ j

)

= pZ j |Z j−1

(
Z j | Z j−1

) × 1√
2πσ 2

i h j
(
1 − ρ2

i

)

· exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−

⎡
⎣X j − X j−1 −

(
μi − σ 2

i
2

)
h j − σiρi Z̃ j

σ0
+

σiρi

(
μ0− σ20

2

)
h j

σ0

⎤
⎦

2

2σ 2
i

(
1 − ρ2

i

)
h j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where pZ j |Z j−1 is the transition PDF for ln S0(t). The conditional likelihood function
for low-activity asset i is as follows:

Li (X | Z) =
m∏
j=1

pX j |X j−1,Z̃ j

(
X j | X j−1, Z̃ j

)

= σ−m
i (2π)−

m
2

m∏
j=1

h
− 1

2
j

(
1 − ρ2

i

)− m
2

m∏
j=1

e
−

(∑m
j=1

D2
j

h j

)
1

2σ2i (1−ρ2i )

= σ−m
i (2π)−

m
2
(
1 − ρ2

i

)− m
2

m∏
j=1

h
− 1

2
j e

−
(∑m

j=1

D2
j

h j

)
1

2σ2i (1−ρ2i ) (16)

where d0 = μ0− σ20
2

σ0
, Dj = X j − X j−1 − (μi − σ 2

i
2 )h j − σiρi Z̃ j

σ0
+ σiρi h j d0. In the

formula for Li , we can omit the PDFs pZ j |Z j−1 since the likelihood function is con-
ditional on values of S0.

In order to estimate the model parameters, let us introduce new variables:

u2 = σ 2
i (1 − ρ2

i ), v = σiρi , w = μi − σ 2
i

2
.

Differentiate the log-likelihood function (16) w.r.t. u, v,w and equate the derivatives
to zero. Solving the obtained system, we get the following solution:

u2 =
∑m

j=1

(
X̃ j − h jw − Z̃ j

σ0
v + d0vh j

)2
/h j

m

v = (c − (ΔXΔZ/Δt)) σ0

b2 − (ΔZ)2 /Δt

w = ΔXb2 − ΔZc + μ̃0Δtc − μ̃0ΔXΔZ

Δt
(
b2 − ΔZ/Δt

)
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where X̃ j = X j − X j−1, Δt = ∑m
j=1 h j = tm − t0, ΔX = ∑m

j=1 X̃ j = Xm − X0,

ΔZ = ∑m
j=1 Z̃ j = Zm − Z0, and μ̃0 = μ0 − σ 2

0
2 . The parameters a, b, and c are

a2 =
m∑
j=1

x̃ j
2

h j
, b2 =

m∑
j=1

Z̃ j
2

h j
, c =

m∑
j=1

Z̃ j x̃ j

h j
.

We can now obtain σi , μi , ρi as follows:

σi =
√
u2 + v2, ρi = v√

u2 + v2
, μi = w + u2 + v2

2
.

It can be proved that this solution is a globalmaximumof the likelihood function (16).
The procedure described in this section is repeated for every low-activity asset

one by one. In doing so, we use the important property of the proposed model that
low-activity assets, S1, S2, . . . , Sn , are conditionally independent given values of S0.

5 Numerical Results

Weperformed twonumerical tests, forwhich historical daily close values ofCanadian
andU.S. equity ETFs and respectivemarket indiceswere retrieved from aBloomberg
terminal.

In the first test, we used data collected from the Canadian equity market during
the time period July 11, 2014 to July 11, 2015. The S&P/TSX60 Composite Index
was used as the high-activity asset S0. We chose 10 low-frequently trading Canadian
ETFs with the following tickers: FHG, QRD, FGM, ZEL, RLE, PZC, FPR, RHF,
XMY, HXQ. The trading frequency for low-activity assets varies from once a week
to once a month.

Parameters of the high-activity asset model with jumps were estimated using the
multinomial maximum likelihood estimation. The two jump-diffusion processes,
namely, the Merton model and the Kou model, were compared with the Gaussian
case without jumps (see Table1). After estimating parameters of S0, we estimated
parameters for each low-activity asset price process Si with i = 1, 2, . . . , 10. Our
method was robust for assets with various trading activities. As we can see in Table2,
the results were consistent for all three models.

Table 1 High-activity asset parameters for the three models

Gaussian μ0 σ0

−0.0036 0.1422

Merton model μ0 σ0 μJ σJ λ

0.052 0.1339 −0.0058 0.021 3.289

Kou model μ0 σ0 η1 η2 λ p1 μJ σJ

0.116 0.133 0.0095 7.56 7.413 0.975 0.178 1.67
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Table 3 Tickers and names of low-activity assets selected from the U.S. equity ETFs

Ticker Full name

VBK Vanguard Small Cap Growth ETF

VHT Vanguard Healthcare ETF

MINT PIMCO Enhanced Short Maturity Strategy
Fund

VOE Vanguard Mid-Cap Value ETF

In the second numerical example, we used the Kolmogorov–Smirnov (K–S) test
to verify whether the jump-diffusion models fit the historical data better than the
diffusion model (the Gaussian case). We gathered another dataset with the S&P500
equity index used as the high-activity asset. To perform the K–S test, we need daily
information. Hence, as low-activity assets we used four U.S. equity ETFs with high
trading activity (see Table3). The dataset collected from the U.S. equity market
covers the period from September 18, 2015 to September 18, 2017.

The K–S statistic quantifies a distance between the empirical distribution function
of the sample and the CDF of the reference distribution. Thus, it allows us to compare
how well different reference distributions fit the empirical distribution function for
a given sample data.

For a given set of n iid observations, x1, x2, . . . , xn , the empirical distribution
function Fn(x) is defined as

Fn(x) = 1

n

n∑
i=1

I{xi≤x}

where I denotes an indicator function. TheKolmogorov–Smirnov statistic for a given
reference CDF F(x) is

Dn = sup
x

|Fn(x) − F(x)|

The K–S test is a hypothesis test with the null hypothesis H0: F(x) = F0(x). Thus,
a larger value of the K–S statistic means a larger difference between the empirical
distribution and the reference distribution.

In this paper, we compared three reference distributions of daily log-returns: the
Gaussian case with normally distributed log-returns as well as the Kou model and
the Merton model of jump-diffusion processes. Since, the model parameters have
been estimated per annum, we need to convert them into daily values to perform the
K–S test.

Firstly, we calculated the K–S statistic for the S&P/TSX60 Composite Index
from the first numerical example. The K–S statistic for the model without jumps is
0.0593 with the p-value equal to 0.0558. For the Kou model we have Dn = 0.0582
and p-value = 0.0639, and for the Merton model we have obtained Dn = 0.0542
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Table 4 The K–S statistics for the high-activity index S&P500 and four low-activity assets

Gaussian Merton model Kou model

S&P500 0.11603 0.11579 0.11529

VBK 0.05177 0.05092 0.05081

VHT 0.05680 0.05655 0.05667

MINT 0.17633 0.17457 0.17402

VOE 0.07196 0.07104 0.05013

and p-value = 0.1007. The second best model is the Merton model. So, both jump-
diffusion models outperform the Gaussian model.

Secondly, we calculated K–S statistics for the S&P500 index and four U.S. equity
ETFs. The results, which are reported in Table4, supports the hypothesis that jump-
diffusion models provide a better fit.

Acknowledgements R. Makarov wishes to acknowledge the generous support of the NSERC
Discovery Grant program.
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Efficient Hedging in Bates Model Using
High-Order Compact Finite Differences

Bertram Düring and Alexander Pitkin

Abstract We evaluate the hedging performance of the scheme developed in
B. Düring, A. Pitkin, “High-order compact finite difference scheme for option pric-
ing in stochastic volatility jump models”, 2017. We compare the scheme’s hedging
performance to standard finite difference methods in different examples. We observe
that the new scheme achieves fourth-order convergence, outperforming a standard,
second-order central finite difference approximation in all our experiments.

Keywords Option pricing · Hedging · High-order compact finite differences
Stochastic volatility jump model · Bates model

1 Introduction

The Bates model [1] can be considered as the market standard in financial option
pricing applications. It combines the positive features of stochastic volatility and
jump-diffusion models. In this model the option price is given as the solution of a
partial integro-differential equation (PIDE), see e.g. [2].

In [4] we have presented a new high-order compact finite difference scheme
for option pricing in Bates model. The implicit-explicit scheme is based on the
approaches in Düring and Fournié [3] and Salmi et al. [5]. The scheme is fourth
order accurate in space and second order accurate in time. It requires only one initial
LU -factorisation of a sparse matrix to perform the option price valuation. Due to its
structural similarities with standard second-order finite difference schemes it can be
employed to upgrade existing implementations in a straightforward manner to obtain
a highly efficient option pricing code.
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In the present work we evaluate the hedging performance of the scheme derived
in [4]. We compare the scheme’s hedging performance to standard finite difference
methods where the new scheme outperforms a standard discretisation, based on a
second-order central finite difference approximation, in all our experiments.

This article is organised as follows. In the next section we recall Bates model for
option pricing and the related PIDE. We refer here to the [4] paper for the derivation
of the implicit-explicit high-order compact finite difference scheme which we adapt
and implement to conduct the numerical experiments. Section3 is devoted to the
computation of the so-called Greeks and the evaluation of the scheme’s hedging
performance in two examples of hedged portfolios.

2 The Bates Model

TheBatesmodel [1] is a stochastic volatilitymodelwhich allows for jumps in returns.
Within this model the behaviour of the asset value, S, and its variance, σ , is described
by the coupled stochastic differential equations,

dS(t) = μB S(t)dt + √
σ(t)S(t)dW1(t) + S(t)d J,

dσ(t) = κ(θ − σ(t)) + v
√

σ(t)dW2(t),

for 0 � t � T and with S(0), σ (0) > 0. Here, μB = r − λξB is the drift rate, where
r � 0 is the risk-free interest rate. The jump process J is a compound Poisson process
with intensity λ � 0 and J + 1 has a log-normal distribution p(ỹ) with the mean
in log(ỹ) being γ and the variance in log(ỹ) being v2, i.e. the probability density
function is given by

p(ỹ) = 1√
2π ỹv

e− (log ỹ−γ )2

2v2 .

The parameter ξB is defined by ξB = eγ+ v2

2 − 1. The variance has mean level θ , κ is
the rate of reversion back to mean level of σ and v is the volatility of the variance σ .
The two Wiener processes W1 and W2 have constant correlation ρ.

2.1 Partial Integro-Differential Equation

By standard derivative pricing arguments for the Bates model, we obtain the PIDE

∂V

∂t
+ 1

2
S2σ

∂2V

∂S2
+ ρvσ S

∂2V

∂S∂σ
+ 1

2
v2σ

∂2V

∂σ 2
+ (r − λξB)S

∂V

∂S
+ κ(θ − σ)

∂V

∂σ

− (r + λ)V + λ

∫ +∞

0
V (S ỹ, v, t)p(ỹ) d ỹ,
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which has to be solved for S, σ > 0, 0 ≤ t < T and subject to a suitable final con-
dition, e.g. V (S, σ, T ) = max(K − S, 0), in the case of a European put option, with
K denoting the strike price.

Through the following transformation of variables

x = log S, τ = T − t, y = σ

v
and u = exp(r + λ)V

we obtain

uτ = 1

2
vy

(
∂2u

∂x2
+ ∂2u

∂y2

)
+ ρvy

∂2u

∂x∂y
−

(
1

2
vy − r + λξB

)
∂u

∂x

+ κ
(θ − vy)

v

∂u

∂y
λ

∫ +∞

−∞
ũ(x + z, y, τ ) p̃(z) dz,

which is now posed on R × R
+ × (0, T ), with ũ(z, y, τ ) = u(ez, y, τ ) and p̃(z) =

ez p(ez). The problem is completed by suitable initial and boundary conditions,which
for a European put option are:

u(x, y, 0) = max(1 − exp(x), 0), x ∈ R, y > 0,

u(x, y, t) → 1, x → −∞, y > 0, t > 0,

u(x, y, t) → 0, x → +∞, y > 0, t > 0,

uy(x, y, t) → 0, x ∈ R, y → ∞, t > 0,

uy(x, y, t) → 0, x ∈ R, y → 0, t > 0.

2.2 Implicit-Explicit High-Order Compact Scheme

For the discretisation, we replace R by [−R1, R1] and R
+ by [L2, R2] with

R1, R2 > L2 > 0.We consider a uniform grid Z = {xi ∈ [−R1, R1] : xi = ih1, i =
−N , ..., N } × {y j ∈ [L2, R2] : y j = L2 + jh2, j = 0, ..., M} consisting of (2N +
1) × (M + 1) grid points with R1 = Nh1 , R2 = L2 + Mh2 and with space step
h := h1 = h2 and time step k. Let uni, j denote the approximate solution of (2) in
(xi , y j ) at the time tn = nk and let un = (uni, j ).

For the numerical solution of the PIDE we use the implicit-explicit high-order
compact (HOC) schemepresented in [4]. The implicit-explicit discretisation in time is
accomplished through an adaptation of the Crank-Nicholson method which includes
an explicit treatment for the integral operator. The scheme is fourth-order accurate in
space and second-order accurate in time. We refer to [4] for the details of the deriva-
tion of the scheme and the implementation of the initial and boundary conditions.

If notmentioned otherwise,weuse the followingdefault parameters in our numeri-
cal experiments: κ = 2, θ = 0.01,ρ = −0.5, ν = 0.1, r = 0.05,λ = 0.2,γ = −0.5.
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3 The Greeks

The so-called Greeks are the partial derivatives of the option price with respect to
independent variables or parameters. These quantities represent the market sensitiv-
ities of options. Practitioners use these quantities to gain an insight into the effects of
different market conditions on an options price and furthermore to develop hedging
strategies against unfavourable changes in a portfolio of assets.

3.1 Vega

Vega measures the sensitivity of the option price with respect to changes in the
volatility of the underlying asset, with the volatility given by the square root of the
variance,

√
σ , i.e.

Vega = ∂V

∂(
√

σ)
.

We examine whether the higher-order convergence achieved in the option price will
also be represented in the vega of the option. Vega is calculated from the option
price V (S, σ, t), while the order of the scheme is maintained by using a fourth-order
approximation formula (Fig. 1).

Vega = ∂V

∂(
√

σ)
= ∂y

∂(
√

σ)

∂V

∂y

Vegani, j = 2
√

σ j

v

(
∂V

∂y

)n

i, j

= 2
√

σ j

v

V n
i, j−2 − 8V n

i, j−1 + 8V n
i, j+1 − V n

i, j+2

12h

Weconduct a numerical study to evaluate the rate of convergence of vega.We refer
to both the l2-norm error ε2 and the l∞-norm error ε∞ with respect to a numerical
reference solution on a fine grid with href = 0.025. By fixing the parabolic mesh
ratio k/h2 we expect these errors to converge as ε = Chm for some constants m and
C . We generate a double-logarithmic plot of ε against h which should be asymptotic
to a straight line with slope m, with m being the experimentally determined order of
the scheme.

As a tool for comparison we perform the same numerical study using a standard
second-order central difference scheme. The results of these experiments are seen in
Figs. 2 and 3. We observe here that the experimentally determined convergence rates
match well the theoretical order of each scheme. The errors at coarse grid, h = 0.4,
are comparable, while on finer grids the high-order compact scheme gives orders of
magnitude better accuracy on the same grids, achieving convergence rates of about
fourth order.
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Fig. 1 Vega of European put
option priced under the Bates
model with parameters:
Strike K = 100, time to
expiry T = 0.5

0.7

0.6

0.50

( )

0.02

250

0.04

0.4

0.06

200

0.08

V
eg

a(
V

(S
,

,t)
)

0.1

S

150

0.12

0.3

0.14

100

0.16

0.18

50 0.20

Fig. 2 Convergence of
l2-error of the vega of a
European put option priced
under the Bates model with
parameters: Strike K = 100,
time to expiry T = 0.5
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Fig. 3 Convergence of
l∞-error of the vega of a
European put option priced
under the Bates model with
parameters: Strike K = 100,
time to expiry T = 0.5
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3.2 Hedging Vega

As with all financial trading, options are subject to risk and managing this risk is key
to success. One method of managing risk is to establish a hedge against the implied
volatility of the underlying asset. This is achieved by creating a vega neutral option
position, which will be not be sensitive to fluctuations in volatility.

3.2.1 Hedging Example 1

An investment fund holds a long position in a non dividend paying stock,XYZ,which
is currently trading at $135. The investment fundwishes to secure an income from the
position and writes some put options for XYZ with strike $100. The investment fund
now has a position with negative vega. To hedge this vega risk the investment fund
creates a ratio vertical put spread by buying put options with strike $150, creating a
payoff diagram as shown in Fig. 4.

We propose that using the HOC scheme the investment fund can utilise the high-
order convergence in vega to achieve a more accurate vega hedge when constructing
the ratio spread. To measure this we compare the ratio used for each mesh size, h,
with the fine reference grid and examine the resulting percentage error.

The results for the high-order scheme and those for a comparative second-order
scheme are shown in Table 1. The high-order scheme significantly outperforms the
second-order scheme at all mesh-sizes, suggesting that when entering a large position
the HOC scheme will lead to a significant improvement in the vega hedge.

Fig. 4 Payoff for ratio
vertical put spread, examples
include a 1:2 spread, where
the trader writes two put
options then goes long one
put option with a higher
strike price

0 50 100 150 200 250

Price of XYZ at expiry
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Table 1 Percentage error in vega hedge ratio

Scheme Mesh-size Percentage
error

Scheme Mesh-size Percentage
error

HOC 0.4 33.3138 Second-order 0.4 62.0312

HOC 0.2 6.7519 Second-order 0.2 33.0638

HOC 0.1 0.6251 Second-order 0.1 7.4073

HOC 0.05 0.0400 Second-order 0.05 1.5364

3.3 Gamma

Gamma is the second derivative of the option price with respect to the underlying
asset. Gammameasures the rate of change in an option’s delta, providing information
on the convexity of the option’s value in relation to the price of the underlying asset,

Γ = ∂2V

∂S2
.

We calculate gamma using the option price V (S, σ, t). To maintain the order of
the scheme we use a fourth-order approximation formula (Fig. 5).

Γ = ∂2V

∂S2
= ∂2x

∂S2
∂2V

∂x2

Γ n
i, j = 1

S2i

(
∂2V

∂x2

)n

i, j

= 1

S2i

V n
i−2, j − 16V n

i−1, j + 30V n
i, j − 16V n

i+1, j + V n
i+2, j

12h2

Fig. 5 Gamma of European
put option priced under the
Bates model with
parameters: Strike K = 100,
time to expiry T = 0.5
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Fig. 6 Convergence of
l2-error of gamma of a
European put option priced
under the Bates model with
parameters: Strike K = 100,
time to expiry T = 0.5
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Fig. 7 Convergence of
l∞-error of gamma of a
European put option priced
under the Bates model with
parameters: Strike K = 100,
time to expiry T = 0.5
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We conduct a numerical study to evaluate the rate of convergence of gamma.
We refer to both the l2-error ε2 and the l∞-error ε∞ with respect to a numerical
reference solution on a fine grid with href = 0.025. For comparison we perform the
same numerical study using a standard second-order central difference scheme. The
results of these experiments are seen in Figs. 6 and 7.

The HOC scheme achieves convergence rates between three and four for the l2-
and l∞-errors, respectively. This is an improvement on the second-order scheme and
suggests that the high-order scheme is beneficial when developing trading strategies
which involve a gamma hedge.

3.4 Hedging Gamma

Hedges of gamma risk are often accompanied by a delta hedge, with delta being the
first derivative of the option price with respect to the underlying asset. A delta hedged
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Table 2 Percentage error in gamma hedge ratio

Scheme Mesh-size Percentage
error

Scheme Mesh-size Percentage
error

HOC 0.4 14.8885 Second-order 0.4 25.1112

HOC 0.2 2.3323 Second-order 0.2 6.3482

HOC 0.1 0.1281 Second-order 0.1 1.3304

HOC 0.05 0.0081 Second-order 0.05 0.2674

portfolio is not subject to risk owing to a change in the price of the underlying asset,
the gamma hedge is a re-adjustment of this delta hedge.

Delta-gamma hedging strategies often require frequent adjustments and hence
are subject to high trading costs. However, if executed correctly they can enable the
holder to exploit positions with positive theta, meaning the position is profitable over
short time durations.

3.4.1 Hedging Example 2

An analyst at an investment fund looks to create a strategy with positive theta against
the funds currently held assets. They choose a ratio write spread, which involves
writing options at a higher strike price than they are purchased. The analyst is wary
of the positions risk related to move in the underlying asset and hence adjusts the
ratio of short to long options to eliminate the net gamma.

The resulting position will have a delta value which must be hedged before the
analyst can assess any profitability from the positive theta of the spread. The delta
of the two option positions long and short is totalled and if positive or negative
underlying assets are sold or bought, respectively.

The resulting theta is calculated and if positive the analyst can recommend the
strategy as a short term trade for the investment fund.

We propose that using the HOC scheme the investment fund can utilise the high-
order convergence in gamma to achieve a more accurate gamma hedge ratio. To
measure this we compare the ratio used for each mesh size, h, with the fine reference
grid and examine the resulting percentage error.

The results for the high-order scheme and those for a comparative second-order
scheme are shown in Table 2. The high-order scheme offers better results at all mesh-
sizes, this improvement is particularly important in hedged positions which require
repeat computation and regular adjustments.

Acknowledgements BD acknowledges partial support by the Leverhulme Trust research project
grant ‘Novel discretisations for higher-order nonlinear PDE’ (RPG-2015-69). AP has been sup-
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An Explicit Optimal Strategy for Flow
Trades at NASDAQ Around Its Close

Christoph Frei and Chad Yan

Abstract For many investors, such as mutual fund managers, the closing price of
a stock is an important benchmark. Closing prices for stocks traded at NASDAQ
and many other stock exchanges are determined through auctions. Each day and
for each stock traded at NASDAQ, the projected order imbalance of the auction is
announced beginning ten minutes before the close. We introduce a tractable model
for stock price dynamics that takes the order imbalance announcements into account.
In a mean-variance framework with the closing price as benchmark, we derive an
explicit formula for the optimal trading strategy. We find that it is not beneficial
for the investor to trade after the imbalance announcement. However, in addition to
participating in the auction, the investor trades before the imbalance announcement
to benefit from prices which do not reflect the later impact of the investor’s own
auction order.

Keywords Optimal trade execution · NASDAQ · Closing price · Benchmark

1 Introduction

Closing prices of stocks are important and often serve as reference points for investors
to determine their performance. Closing prices are particularly relevant to managers
of mutual funds. For mutual funds, flow trades correspond to inflows or outflows of
cash when clients decide to buy or sell shares of the fund. Regardless of the specific
time the transactions are taking place on a trading day, the mutual fund will receive
from or pay to the client the closing price on that day. Hence, managers of such funds
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use the closing price as their benchmark: they aim to achieve a price that is as close
as possible to the closing price and, if possible, more favourable than the closing
price.

At stock exchanges in many emerging markets and almost all developed markets
(see FTSE Russell [7] for an overview), the closing price is determined through an
auction. The auction mechanisms and rules are similar for different markets. For
this note, we focus on NASDAQ, where all traders are granted access to the same
information. Each day until 3:50 p.m. Eastern Time, traders can submit orders to
the closing auction at NASDAQ without any restriction. At 3:50 p.m., NASDAQ
publishes an initial imbalance announcement, with information on the projected
imbalance of the auction. Afterwards, NASDAQ publishes imbalance information
every five seconds until 4:00 p.m. Between 3:50 p.m. and 4:00 p.m., restrictions on
the possibility to submit orders to the closing auction apply, so to reduce the pro-
jected imbalance. At 4:00 p.m., the closing price is determined such that the most
orders submitted to the auction are matched. Figure1 gives an overview of the clos-
ing auction at NASDAQ. The goal of this note is to introduce a tractable stock price
model around the close and to study what an optimal execution strategy is for a
trader targeting the closing price. This work is in the area of algorithmic trading, the
analysis and implementation of mathematical and computational algorithms to con-
duct trading decisions and asset management. Mathematical studies for algorithmic
trading started with seminal papers by Bertsimas and Lo [3], who set up a discrete-
time model to minimize expected slippage, and by Almgren and Chriss [1], who
focused on the trading strategy targeting the arrival price benchmark including risk
considerations. An overview of trading algorithms targeting different benchmarks
can be found in the recent books by Cartea et al. [4], and Lehalle and Laruelle [9].
While trading strategies for many benchmarks, such as arrival price, VWAP (volume
weighted average price), TWAP (time weighted average price) and POV (percent-
age of volume), have been well studied, there is only sparse literature on execution
problems with a closing price benchmark. Frei and Westray [6] consider the partic-
ular situation in Hong Kong, where the closing price of stocks is computed as the
median of five prices over the last minute of trade. Kan and Park [8] derive an opti-

Fig. 1 Timeline of the closing auction at NASDAQ
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mal trading strategy in a continuous-time model with a mean-variance optimization
criterion. Also using a mean-variance optimization criterion, but in a discrete-time
setting, Labadie and Lehalle [10] find recursive formulae when considering arrival
and closing price benchmarks.

In contrast to all these works, we include in our model the imbalance announce-
ment, which provides crucial information when targeting the closing auction price.
We find an explicit formula for the optimal execution strategy, which trades a part
of the order before the imbalance announcement. This is because the trader bene-
fits from favourable prices before the imbalance announcement by front running the
impact of the trader’s own participation in the closing auction. After the imbalance
announcement, prices reflect the imbalance information so that, for our trader, it is
not favourable to execute further orders. This result of not trading after the imbalance
announcement is in line with observations in Bacidore et al. [2], who discuss issues
surrounding trading in and around the closing auction.

2 Problem Formulation

Our market model consists of T − 1 periods in the open market, with T the closing
time of the auction. Let τ < T be the time of the initial imbalance announcement. At
NASDAQ, τ and T correspond to 3:50 p.m. and 4:00 p.m., respectively. We consider
a trader with a buy order ofW units of some stock. The trader can split the order into
v1, v2, . . . , vT with

∑T
t=1 vt = W , where v1, v2, . . . , vT−1 are the volumes of orders

submitted to the open market and vT is submitted to the closing auction.
We suppose that the order imbalance is cleared immediately and there are no

orders in the closing auction after 3:50 p.m., which are stylized features close to
what we observe at NASDAQ. For a given initial price P̃0, the prices excluding our
market impact are modelled by

P̃t = P̃t−1 + Zt for t ∈ {1, . . . , τ − 1, τ + 1 . . . , T − 1},
P̃τ = P̃τ−1 + Zτ + αN ,

P̃T = P̃T−1 + Y,

where

• Zt , modelling the stock price fluctuations in the open market, are independent and
identically distributed with mean zero and finite variance σ 2

Z .• Y , modelling the fluctuations from the last price in the open market to the auction
price, is independent from Zt with mean zero and finite variance σ 2

Y .
• N = Ñ + vT is the auction imbalance (a positive value means more buy than sell
orders at the current stock price), consisting of our auction order submission, vT ,
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and that of all other market participants, Ñ . We assume that Ñ is independent from
Zt and Y , and it has mean zero and finite variance σ 2

Ñ
.

• α > 0 reflects the impact of the auction imbalance on stock prices.

Assumptions similar to the above independence between auction volume and price
increments have been made in the literature and are empirically justified; see for
example Fig. 1 in Frei and Westray [5].

We assume that the trader’s orders have a temporary market impact so that they
affect stock prices at the execution time, but have no influence on subsequent stock
prices. This means that the trader effectively pays a price

Pt = P̃t + βvt for t ∈ {1, 2, . . . , T − 1},

where β > 0 is the coefficient of temporary market impact. We set PT = P̃T because
our order placed in the closing auction, vT , is already reflected in the earlier price P̃τ

through N = Ñ + vT .
The trader targets the closing price PT . As is standard in the literature on algorith-

mic trading and in line with [1, 6, 8–10], we consider a mean-variance formulation.
Thus, the objective is to minimize, over vt ≥ 0 with

∑T
t=1 vt = W ,

E

[ T∑

t=1

vt Pt − WPT

]

+ λV AR

[ T∑

t=1

vt Pt − WPT

]

for a given mean-variance tradeoff parameter λ > 0, modelling the trader’s risk
aversion. Thismeans that weminimize a combination of average costs and deviations
to the closing price benchmark.

3 Main Result

Our main result gives an explicit formula for the optimal strategy.

Theorem 1 The optimal strategy is given by

v1 = αW

2(β + m1 + ∑τ−1
i=2 mi pi )

,

vt = ptv1 for t = 2, 3, . . . , τ − 1,

vk = 0 for k = τ, τ + 1, . . . , T − 1,

vT = W −
(

1 +
τ−1∑

i=2

pi

)

v1,
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where

mt := (T − t)λσ 2
Z + λσ 2

Y + λα2σ 2
Ñ

+ α,

pt :=
(

λσ 2
Z

β
+ 1 − x−

)
xt+

x2+ − 1
+

(
λσ 2

Z

β
+ 1 − x+

)
xt−

x2− − 1
,

x± := 1 + λσ 2
Z

2β
±

√
λσ 2

Z

β

(

1 + λσ 2
Z

4β

)

.

The theorem shows that the portion 2(β+m1+∑τ−1
i=2 mi pi )−α−α

∑τ−1
i=2 pi

2(β+m1+∑τ−1
i=2 mi pi )

W of the total

orderW is placed into the closing auction. The remaining part is submitted to the open
market before the initial imbalance announcement,with small orders v1, v2, . . . , vτ−1

that are exponentially increasing over time with basis x±. It is not optimal to trade
after the initial imbalance announcement.

Remark 1 (1) If the trader’s orders have no influence on the stock prices in the
closing auction (α = 0), then it is optimal to trade only in the closing auction,
that is, vT = W.

(2) If the trader’s orders have no influence on the stock prices in the open market
(β = 0), then the optimal trading in the open market occurs only at the moment
before the initial imbalance announcement. In particular, we have vt = 0 for all
t �= τ − 1, T and

vτ−1 = αW

2
(
(T − τ + 1)λσ 2

Z + λσ 2
Y + λα2σ 2

Ñ
+ α

) , vT = W − vτ−1.

(3) The value of the mean-variance tradeoff parameter λ determines how much
focus the trader puts on minimizing deviations to the benchmark compared to
minimizing average costs. If λ is big, the trader will submit most of the order
to the closing auction so to minimize deviations to the closing price. Indeed, in
the limit as λ → ∞, the theorem implies that vt → 0 for t = 1, 2, . . . , T − 1
and vT → W , using that mt → ∞ for any t as λ → ∞. By contrast, for λ → 0,
we have vt → αW

2β+2α(τ−1) for t = 1, 2, . . . , τ − 1 and vT → (2β+α(τ−1))W
2β+2α(τ−1) , as we

can show that mt → α and pt → 1 as λ → 0. In this case of λ → 0, the trader
minimizes average costs.

(4) In a generalized setting when the assumptions that Ñ , Zt and Y have zero means
are relaxed, we can find a recursive algorithm for the optimal strategy, general-
izing the explicit formula from Theorem 1; see Yan [11] for details.

4 Sketch of the Proof of Theorem 1

Using the assumptions that Ñ , Zt andY have zeromeans,we can rewrite the objective
function as
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min β

T−1∑

t=1

v2
t + α

τ−1∑

t=1

vt

T−1∑

t=1

vt − αW
τ−1∑

t=1

vt + λσ 2
Z

T−1∑

t=2

( t−1∑

i=1

vi

)2

+ λσ 2
Y

( T−1∑

t=1

vt

)2

+ λα2σ 2
Ñ

( τ−1∑

t=1

vt

)2

subject to W −
T−1∑

t=1

vt ≥ 0 and vt ≥ 0 for all t ∈ {1, . . . , T − 1}.

We analyze the corresponding Lagrange function given by

L(v1, v2, . . . , vT−1; δ) = β

T−1∑

t=1

v2t + α

τ−1∑

t=1

vt

T−1∑

t=1

vt − αW
τ−1∑

t=1

vt + λσ 2
Z

T−1∑

t=2

( t−1∑

i=1

vi

)2

+λσ 2
Y

( T−1∑

t=1

vt

)2
+ λα2σ 2

Ñ

( τ−1∑

t=1

vt

)2
+ δ

( T−1∑

t=1

vt − W

)

and examine its first-order condition with respect to the execution order vt at each
point in time. Tominimize the objective function, the followingKarush-Kuhn-Tucker
(KKT) conditions must hold:

vt
∂L

∂vt
= 0, vt ≥ 0,

∂L

∂vt
≥ 0 for t ∈ {1, 2, . . . , T − 1},

δ
∂L

∂δ
= 0, δ ≥ 0,

∂L

∂δ
≤ 0.

By using the KKT conditions, we can show that it is not optimal to trade after the
initial imbalance announcement based on a proof by contradiction.

Using vt = 0 for t = τ, τ + 1, . . . , T − 1, we can reduce the level of complexity
in the system of equations from the KKT conditions. We solve the system of KKT
equations recursively, that is, we rewrite it such that each of its equations gives a
linear relation between vt , vt−1 and vt−2. By applying the concept of characteristic
equation to this recursive system of equations, we can derive the explicit optimal
trading strategy for every period before the initial imbalance announcement, given
in Theorem 1.

5 Implementation Example

In this section,we use data on intraday stock prices and imbalance volumes during the
closing auction to estimate input parameters, and then illustrate the optimal trading
strategies for an investment in Amazon.com Inc. (AMZN). We choose the time
increment in trading periods to be one second. The overall trading horizon consists
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of the last half hour before market close, which means the considered trading begins
at 3:30 p.m. To estimate model parameters, we use a date set from Nov. 1, 2016 to
Jan. 27, 2017, with intraday stock price, volume and imbalance data fromNASDAQ.
In this estimation,wefindα = 5.72 × 10−6,σ 2

Ñ
= 6.6 × 109,σ 2

Z = 1.96 × 10−8 and

σ 2
Y = 3.21 × 10−8 while we set λ = 5 × 10−4 and β = 10−6 in line with Sect. 3.4 of

Almgren and Chriss [1]. We assume that the goal is to purchaseW =100,000 shares
of the AMZN stock on January 30, 2017.

Figure2 shows the cumulative trading volume based on the strategy of Theorem 1.
After the initial imbalance announcement, the cumulative trading volume remains
constant, until a spike occurs at 4:00 p.m., which reflects the order placed in the
closing auction.

Figure3 shows the different paths for AMZN’s stock prices. The blue path corre-
sponds to the actual historical stock prices on Jan. 30, 2017. We added two different
price paths that incorporate our trading decisions. The red path models the stock
prices if we purchased the entire 100,000 shares in the closing action while the green
path displays the prices under our optimal strategy fromTheorem 1. The price impact
induced by the proposed strategy is considerably lower than that of the benchmark
strategy. In this example, implementation costs of the strategy using only the clos-
ing auction are $83,095,241 while the optimal strategy entails implementation costs
of $82,846,209, which reflects a cost reduction of $249,032, or 30 basis points. A
more extensive analysis of the performance across 15 stocks listed at NASDAQ is
contained in Yan [11]. In that study, the proposed strategy yields a positive and sta-

Fig. 2 Cumulative trading volume for AMZN based on the strategy of Theorem 1
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Fig. 3 AMZN price dynamics for the different scenarios: observed prices (blue: ‘Actual’), prices
with an additional order entirely submitted to the closing auction (red: ‘Only C.A.’), and prices
with an additional order submitted based on the strategy of Theorem 1 (green: ‘Strategy’)

ble performance across different stocks. While the strategy may lead to temporary
losses on some trading days, it showed an outperformance compared to trading in
only the closing auction for all tested stocks over a one-month test period. Because
the trading strategy is available in explicit form, its computation time for one stock
and one trading day is only a couple of seconds on a standard personal computer.

The optimal strategy depends also on the chosen values for the mean-variance
tradeoff parameter λ and the coefficient β of temporary market impact. A higher
value of λ means that the trader is more risk averse, and thus, trades a bigger portion
in the closing auction. This is indeed the case, aswe observe in Fig. 4 for a comparison
with different values of λ: 10−4 (low), 5 × 10−4 (default), and 10−3 (high), using the
same other parameters as described at the beginning of this section. A higher value
of the coefficient β means that the trader has a bigger impact on prices in the open
market. When β is high, the trader will spread the orders more evenly during the
period of the open market to reduce price impact while taking more risk from price
fluctuations. This is confirmed in Fig. 5, which shows a comparison for different
values of β: 10−7 (low), 10−6 (default), and 10−5 (high), with the other parameters
the same as described at the beginning of this section.
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Fig. 4 Cumulative trading volume for AMZN compared for different values of λ: 10−4 (low;
green), 5 × 10−4 (default; blue), and 10−3 (high; red)

Fig. 5 Cumulative trading volume for AMZN compared for different values of β: 10−7 (low;
green), 10−6 (default; blue), and 10−5 (high; red)

6 Conclusion

In this note,we derived an explicit optimal strategy for a traderwho targets the closing
prices of stocks listed at NASDAQ. The trader attempts to minimize a combination
of average costs and deviations to the closing price benchmark. We introduced a
tractable model, which takes the key microstructural features into account, namely,
fluctuations in stock prices and the impact of the order imbalance announcement. The
optimal strategy puts a major part into the closing auction and smaller, exponentially
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increasing fractions in the open market before the imbalance announcement. No
execution is done after the imbalance announcement. Using historical imbalance
volume and intraday stock prices, we showed an example of how our optimal strategy
canbe implemented. Further statistical analysis done inYan [11] indicate, persistently
across different stocks of NASDAQ and different levels of the trader’s risk aversion,
an improvement compared to trading in the closing auction only; in particular, our
optimal strategy has lower average costs.
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Optimal Selection of Assets and Portfolios

Bowen Hu and Roman N. Makarov

Abstract In this paper, we propose a new method that allows an investor to rank
available financial securities such as equities and exchange-traded funds (ETFs) in
accordance with his or her risk preferences. We have demonstrated that using a
linear combination of several risk measures and performance metrics as a ranking
function can help us to select the most suitable efficient portfolio that is meeting
risk preferences of an investor. We use three different methods to evaluate long-term
values of metrics for each asset. After applying the ranking system to select most
suitable assets from a large pool of securities, an optimal portfolio is formed by
maximizing the ranking function. Past 5–10 years data with U.S. ETFs and S&P500
stocks have been extracted using a Bloomberg terminal.

Keywords Asset ranking · Portfolio optimization · Occupation time
Risk measures · Performance metrics · Value at risk · Expected shortfall
Sharpe ratio

1 Introduction

Different investorsmayhave different preferences regarding the risk andperformance
of their portfolios that cannot be captured by a single metric such as the volatility or
the Sharpe ratio. To find an optimal portfolio, the investor needs to first select assets
from an extensive collection of securities that are meeting his or her criteria. Second,
the investor needs to find optimal allocation weights for the assets selected. In this
paper, we develop a ranking system to solve the selection problem by forming a linear
combination of several risk and performance metrics. The ranking function attempts
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to quantify the fitness of assets such as exchange trading funds (ETF) and equities
to a specific investor. The list of performance metrics includes the expected daily
log-return rate and the Sharpe ratio. The list of risk metrics consists of the standard
deviation, the Value-at-Risk (VaR) and the Expected Shortfall (ES) also known as the
conditional Value-at-Risk (CVaR). Since the ranking function is a continuous-valued
function, ties (equal scores) are not an issue. Later, the same ranking function can
be used in the portfolio optimization problem.

In this paper, the analysis was mostly done on U.S. Equity ETFs and the stocks
included in the S&P500 index. Our first step was to extract prices of all securities
from Bloomberg for the period from June 2010 to June 2015. We imported data for
all ETFs and deleted those of them that had less than five years worth of data and
were not traded too frequently. In the end there were 537 ETFs left including the
following: 67 U.S. Fixed income ETFs, 145 Global Equity ETFs, 117 Commodity
ETFs and 208 U.S. Equity ETFs.

Here, we use daily logarithmic returns, which are calculated by

r j = ln

(
Vj

Vj−1

)
, (1)

where r j and Vj are, respectively, the daily log-return and the asset value on day
j . Here, we assume that for each asset the daily log-returns are independent and
identically distributed (iid).

We will useμ(r) = E[r ] to denote the expected daily log-return rate. It measures
the growth rate of a fund or an equity one can expect. The average rate can be
approximated by the sample mean μ̂ as follows:

μ(r) ≈ μ̂ = 1

T

T∑
j=1

r j , (2)

where T is the size of the sample data set.
In the financial field, the standard deviation of asset’s returns, denoted by σ(r) =√
Var(r), is a popular indicator to represent the risk of a financial asset. A riskier

asset is having a larger standard deviation of its return. We use the following formula
to calculate the sample standard deviation σ̂ :

σ(r) ≈ σ̂ =
√√√√ 1

T − 1

T∑
j=1

(r j − μ̂)2 . (3)

The Sharpe Ratio is probably the most popular performance metric used by in-
vestors. It takes not only the expected return of a fund into account but also the risk as-
sociatedwith it. The formula of theSharpe ratio,whichwas revisedbySharpe in [7], is

SR(r) = E[r − r0]√
Var [r − r0] , (4)
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where r is the return on the asset we are measuring, r0 is the return on another fund
which is used as a benchmark. It allows for comparing funds with different strategies.
The benchmark used here is a risk-free asset. Since we deal with daily returns and
the impact of interest rate in a short time period is insignificant, we assume here that
r0 is 0. Thus, the Sharpe ration can be estimated as follows:

SR(r) ≈ ŜR =
1
T

∑T
j=1 r j√∑T

j=1(r j−μ̂)2

T−1

= μ̂

σ̂
. (5)

The Value at Risk (VaR) is another important method to measure the risk of asset
[1]. A 100α%VaR is the value of minimal loss in the worst 100(1 − α)% scenarios.
The formal definition of VaR is

VaRα(r) = inf{x ∈ R : P(� > x) � 1 − α} , (6)

where α is the probability that the portfolio will fall in value by more than VaRα(r)
and � = −r is the loss.

The Expected Shortfall (ES) is another well-known risk measure. It captures the
average loss given that one of theworst 100(1 − α)%scenarios happens. The formula
for ES is

ESα(r) = 1

α

∫ α

0
VaRt (r)dt . (7)

We can approximate VaR and ES by the following nonparametric estimates [6]:

VaRα(r) ≈ V̂ aRα = rT : j , for 1 − α ∈
(
j − 1

T
,
j

T

]
, 1 ≤ j ≤ T , (8)

ESα(r) ≈ Ê Sα = V̂ aRα + 1

α

1

T

T∑
j=1

(
ri − V̂ aRα

)+
, (9)

where (x)+ = max{x, 0}, and rT :1 < . . . < rT :T are the order statistics of the sample.

2 Ranking System

In this section, we discuss techniques used to rank the funds and equities based on
investor’s risk preference. Three ranking schemes are introduced in the following
subsections.
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2.1 Standardization

The ranking function is to be defined as a linear combination of risk and performance
metrics. However, the metrics have different ranges, and thus we need to set up an
appropriate transformation to scale them up or down to the same range. For example,
the expected daily return is usually between−0.7% and 0.7% and the Sharpe ratio is
typically changing from−0.5 to 0.7. In this case, if we just simply added unadjusted
values, the contribution of the expected daily returnwould be too small in comparison
with the Sharpe ratio. In order to solve this problem, we apply the following method.
Assume there are N funds available for the investor. Letμn denote the expected daily
return of fund n. To standardize μ for each fund, we need to find out the maximum
and the minimum expected returns of all funds:

μmax = max{μn : 1 � n � N } , (10)

μmin = min{μn : 1 � n � N } . (11)

After that, the standardized expected return μs(r) of fund n with return r ≡ r (n) is
calculated as follows:

μs(r) = μn − μmin

μmax − μmin
. (12)

The benefit of this formula is that it maps the expected return of any asset to a value
between 0 and 1. The standardized expected return of the fund with the largest μ is
1 and 0 will be assigned to the lowest one. We use the same approach to standardize
other risk and performance metrics:

σ s(r) = σ − σmin

σmax − σmin
, (13)

SRs(r) = SR(r) − SRmin

SRmax − SRmin
, (14)

VaRs
α(r) = VaRα(r) − VaRα,min

V aRα,max − VaRα,min
, (15)

ESsα(r) = ESα(r) − ESα,min

ESα,max − ESα,min
, (16)

where σmax and σmin are, respectively, the maximum and minimum standard devia-
tions of the funds; similar notations are used for other metrics.

2.2 Coefficients for Metrics

We use a linear combination of several risk and performance metrics as a ranking
function. Thus, wemultiply eachmetric by some coefficient to adjust the contribution
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of each metric and then sum them up. The ranking function of return r is defined as

F(r) = C1 · μs(r) − C2 · σ s(r) + C3 · SRs(r) − C4 · VaRs
α(r) − C5 · ESsα(r) .

(17)
When selecting an optimal portfolio, a rational investor always prefers the one with
high values of the expected return and the Sharp Ratio as well as with lower values
of the volatility, the value at risk and the expect shortfall. Since we will assume that
all the coefficients Ci are non-negative, we have to put a negative sign in front of the
risk measures we wish to be low. Same setting is also applied in (19), (24), and (26).
This function can be used to compare different assets or investment portfolios. The
higher objective value an asset has, the more suitable this asset is for the investor.

Themultiplicative coefficients formetrics are adjusted for each individual investor
according to his or her preferences. For example, if an investor is more concerned
about risk, the coefficients for the volatility, VaR and ES, can be assigned higher
values. To control the contribution of each metric easily, we set up the following
constraints on the coefficients:

Ci � 0 for all i and
∑

Ci = 1 . (18)

2.3 Static Value Method

The first approach used to calculate metrics is the static value method where all
estimates are computed over the whole time period. In this method, the expected
return rate μ, the standard deviation σ , the Sharpe ratio, VaR and ES are calculated
as sample estimates provided in (2), (3), (5), (8), (9), respectively.

Then, we need to standardize those values as described above. After we find the
standardized values for all risk and performance metrics, we can put those values
into the objective function and set up the coefficient for each metric:

Fs(r) = C1 · μ̂s(r) − C2 · σ̂ s(r) + C3 · ŜRs
(r) − C4 · V̂ aR

s

α(r) − C5 · Ê S
s
α(r) .

(19)

2.4 Occupation Time Method

The idea of the occupation time method is to compare the risk measures and per-
formance metrics calculated for some asset with respective values computed for a
benchmark over a 150-trading-day period. The selection of a benchmark depends
on the asset class. For example, SPY, which is an ETF tracking the S&P500 market
index, is used as the benchmark for the U.S. Equity class. We move the time window
to update the metric values for both the asset and the benchmark and then calculate
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how many times the asset outperforms the benchmark. For example, we calculate a
time series of expected return rates, {μ̂t }t�1, by the following formula:

μ̂t = 1

150

149∑
j=0

rt+ j . (20)

After applying the same formula to the benchmark, we can calculate the occupation-
time metric as follows:

OTμ = 1

T0

T0∑
t=1

1{μ̂t�μ̂b
t } , (21)

where {μ̂t } is the time series for a fund of interest, {μ̂b
t } is the time series for the

benchmark and T0 = T − 150 is the length of those time series. Here, 1{μ̂t�μ̂b
t } is the

indicator of event {μ̂t � μ̂b
t }which is used to count the number of timesμt is greater

than μb
t . Note that the summation in Eq. (21) is a discrete-time approximation of the

occupation-time integral 1
T0

∫ T0
0 1{μt�μb

t }dt ≈
1
T0

∑T0
t=1 1{μt�μb

t }Δt . Since we divide
the whole time period into T0 subintervals and the time is measured in days, we have
Δt = 1.

Similar formulas are used to calculate the occupation-timemetrics for the standard
deviation, the Sharpe ratio, VaR and ES:

OTσ = 1

T0

T0∑
t=1

1{σ̂t�σ̂ b
t } where σ̂t =

√∑149
j=0(rt+ j − μ̂t )2

149
, (22)

OTSR = 1

T0

T0∑
t=1

1ŜRt�ŜR
b
t } where ŜRt = μ̂t

σ̂t
. (23)

In order to normalize the contribution of each metric, we use the same approach
as that in the previous subsection. Then, the objective function becomes:

Fs
OT (r) = C1 · OT s

μ(r) − C2 · OT s
σ (r) + C3 · OT s

SR(r) ,

−C4 · OT s
VaRα

(r) − C5 · OT s
ESα

(r) . (24)

2.5 Occupation Area Method

The occupation area method is similar to the previous one. The key difference is
that we calculate the occupation area between returns of a fund and the benchmark
instead of the occupation time. The formula for the occupation area is
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OAμ =
N∑
t=1

(μt − μt,b) . (25)

The summation above is a discrete-time approximation of the integral
∫ T0
0 (μt −

μt,b)dt . The occupation-area formulae for other metrics are defined similarly. After
we calculate the occupation-areametrics, the standardization is applied to all of them,
and our objective function becomes

Fs
OA(r) = C1 · OAs

μ(r) − C2 · OAs
σ (r) + C3 · OASR(r) ,

−C4 · OAs
VaRα

(r) − C5 · OAs
ESα

(r) . (26)

3 Portfolio Optimization

Using one of the ranking functions (19), (24) and (26), we can select the top assets
with highest rankings. It is obvious that the performance of portfolio will be better
if it involves more stocks or funds in it. But handling too many stocks or funds is
always unrealistic, we will restrict the number of funds in the portfolio within a
reasonable number. In this paper, we assume that the top five ETFs (or stocks) have
been selected. The next step is find an optimal portfolio in those five assets [4, 5].

Let {ωk}k=1,2,3,4,5 denote the portfolio weights for the top five funds. As usual, we
have

∑
ωk = 1. If no short selling is allowed, then all weights are nonnegative. The

weights {ωk}k=1,2,3,4,5 of an optimal portfolio are to be found bymaximizing the same
ranking function that was used to select the top five assets. The ranking function is
calculated for the portfolio return. For example, for the static value ranking function,
the optimizing problem is

C1 · μs(ω) − C2 · σ s(ω) + C3 · SRs(ω) − C4 · VaRs
α(ω) − C5 · ESsα(ω) → maxωk

s.t. ωk � 0 ∀ k = 1, 2, 3, 4, 5; ∑5
k=1 ωk = 1 ,

whereμs(ω) is the standardized expected rate of return on the portfolio with weights
{ωk} and similar notations are used for the other metrics. In order to standardize the
portfolio performance and risk metrics, we use following formula:

Ms
i = Mi − Mmin

Mmax − Mmin
, (27)

where Mi is a metric of asset i and Mmax and Mmin denotes the maximal and minimal
values of this metric calculated for the whole collection of assets. Although in the
optimization stage, we only use the top 5 assets to form a portfolio, it is possible
that the calculated value of a portfolio metric may be out of the range [Mmin, Mmax].
As a result the standardized value of a metric may not be between 0 and 1. To
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solve this issue, we find the maximal and minimal values of each portfolio metric by
simulation and use those values in place of Mmax and Mmin. As a result, the range of
each performance or risk metric is still within the interval [0, 1].

3.1 Bootstrapping Method

Essentially, the bootstrapping method is random sampling with replacement from a
sample. Here, we deal with 5-year data available for each asset. We divided each
data set into two parts. The first two years are used to rank assets and calibrate the
optimization model for the top five funds or stocks. In all our numerical tests, we
assumed a multivariate normal model. The last three years are used for sampling
with replacement to simulate the portfolio behaviour. After simulating 1000 paths,
we calculate the average values of metrics for the aggregate rate of return.

Here, {a, b, c} denotes the following selection of parameters: C1 = a, C2 = 0,
C3 = b, C4 = 0 and C5 = c. Since we wish to verify if the performance of the
portfolio will be affected by changing the coefficients, we select seven combinations
as given in Tables1 and 2. The first three are the cases when we only emphasize
one single risk measure and put less weights on the other two measures. The next
three combinations represent the situation when the investor is equally concerned
about two measures and less concerned about the third one. The last combination is
the case when the investor wishes to have a balanced portfolio. We have used two
different datasets to test our algorithms. The first data set consists of the U.S. equity
ETFs (June 2010–June 2015) and the second one is formed of the stocks contained
in the S&P500 index (June 2010–June 2015). Although the length of each data set
is 5years, we only use the first two years data to rank assets and then use the last
three years data in the bootstrapping method to test the future performance of our
portfolio. All computations were done in R [2, 3].

3.1.1 Bootstrap Method Results for ETFs

As is seen from Table1, we can construct optimal portfolios whose performances
correlate with the parameters {a, b, c} used. When we assign a larger weight to some
metric, the optimal portfolio demonstrates a larger value of this metric in comparison
with portfolios that have lower weights for the same metrics. For example, if the
weights of SR and ES are larger than that of the expected return, the respective
optimal portfolio is less risky. Unfortunately, our results do not allow us to make a
general conclusion about which of the three methods is superior to the other two.
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Table 1 Application of the bootstrapping method to optimal ETFs portfolios with different coef-
ficient settings. All values have been calculated for the three-year testing period

Methods E[μ] Var(μ) E[SR] Var(SR) E[ES] Var(ES)

{.10, .10, .80}
Static 0.4091437 0.03005339 0.0848539 0.001317085 0.01666016 1.50E−06

Area 0.4064643 0.03049992 0.08409062 0.00132626 0.01645895 1.65E−06

Time 0.4825162 0.03219531 0.09618697 0.001315382 0.01743876 1.23E−06

{.10, .80, .10}
Static 0.9511721 0.08165433 0.1250022 0.001452523 0.02608739 3.39E−06

Area 0.951139 0.08165433 0.1249978 0.001452521 0.02608743 3.39E−06

Time 0.9512173 0.08165433 0.1250081 0.001452526 0.02608733 3.39E−06

{.80, .10, .10}
Static 1.860952 0.49827 0.0958098 0.001372627 0.06777416 1.41E−05

Area 1.860955 0.49827 0.09580995 0.001372627 0.06777415 1.41E−05

Time 0.9587738 0.07924474 0.1260501 0.00142009 0.02601282 3.22E−06

{.10, .45, .45}
Static 0.8453735 0.0534542 0.1274899 0.001261965 0.02249692 2.06E−06

Area 0.6377875 0.0348291 0.1195583 0.001259684 0.01797712 1.11E−06

Time 0.6236637 0.03689596 0.1132767 0.001257914 0.01880658 9.56E−07

{.45, .10, .45}
Static 0.9581441 0.07184301 0.1257108 0.001282808 0.02603708 3.16E−06

Area 0.7003136 0.04045489 0.123548 0.001304535 0.01895667 1.22E−06

Time 0.8451697 0.05558618 0.1262633 0.001288165 0.02280545 2.05E−06

{.45, .45, .10}
Static 0.9640664 0.08146813 0.1265162 0.001456916 0.02604171 3.16E−06

Area 0.9640664 0.08146813 0.1265162 0.001456916 0.02604171 3.16E−06

Time 0.9640664 0.08146813 0.1265162 0.001456916 0.02604171 3.16E−06

{ 13 , 1
3 , 1

3 }
Static 0.9637661 0.07707189 0.1265918 0.001364749 0.02601397 3.17E−06

Area 0.800439 0.05360915 0.1273716 0.001391171 0.02108558 1.59E−06

Time 0.9265383 0.07062004 0.1271646 0.001366118 0.02488673 2.72E−06
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Table 2 Application of the bootstrapping method to optimal S&P500 stocks portfolios with dif-
ferent coefficient settings. All values have been calculated for the three-year testing period

Methods E[μ] Var(μ) E[SR] Var(SR) E[ES] Var(ES)

{.10, .10, .80}
Static 0.2626813 0.03404591 0.0509578 0.001289538 0.01795316 2.28E−06

Area 0.240569 0.03793836 0.04460797 0.00130799 0.01839741 2.41E−06

Time 0.1699602 0.04280512 0.03024206 0.001354304 0.01944491 2.70E−06

{.10, .80, .10}
Static 0.6566828 0.08835436 0.07997939 0.001303884 0.02606091 4.17E−06

Area 0.6566865 0.08835974 0.07997722 0.001303877 0.02606187 4.17E−06

Time 0.5609439 0.08806012 0.06906744 0.001317608 0.0249141 1.22E−06

{.80, .10, .10}
Static 0.7442291 0.1813149 0.06483054 0.001357688 0.03874738 1.07E−05

Area 0.7501041 0.1900891 0.06362852 0.001346189 0.03942093 9.86E−06

Time 0.661071 0.3984292 0.03772193 0.001289366 0.05419707 2.65E−05

{.10, .45, .45}
Static 0.4954457 0.06210857 0.07258444 0.001326988 0.02107827 1.35E−06

Area 0.4953065 0.0620733 0.07258416 0.001326992 0.0210743 1.35E−06

Time 0.503649 0.04042229 0.09019538 0.001304144 0.01907546 2.27E−06

{.45, .10, .45}
Static 0.6435807 0.09188279 0.07708096 0.001305725 0.02663781 4.24E−06

Area 0.5200333 0.07083103 0.07150622 0.001327822 0.02122669 1.12E−06

Time 0.405451 0.04739122 0.07057698 0.001446054 0.01905418 1.22E−06

{.45, .45, .10}
Static 0.6747057 0.1533039 0.0613858 0.001246811 0.03666783 1.01E−05

Area 0.6897843 0.1876729 0.05713474 0.001263258 0.04062 1.19E−05

Time 0.6533471 0.1284967 0.06742812 0.001348751 0.02921698 2.94E−06

{ 13 , 1
3 , 1

3 }
Static 0.6711223 0.0872366 0.08114371 0.00125501 0.02618213 3.97E−06

Area 0.6711296 0.08724839 0.08113867 0.00125499 0.02618424 3.97E−06

Time 0.4472853 0.04934969 0.07406981 0.001353427 0.01985187 1.61E−06

3.1.2 Bootstrap Method Results for S&P500 Stocks

As is seen from Table2, the results are quite close to what was calculated for ETF-
s portfolios, although the estimates are a bit less consistent relative to coefficient
settings than those from the previous example.
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4 Conclusion

In this project, we mainly focused on setting up a new ranking and optimization
method that can take more than one risk or performance measure into account. We
also compared three different schemes for ranking funds and stocks such as ETFs and
S&P500 stocks. Each scheme has its own advantage, although, based on the results
obtained using those three schemes, we can not identify the best one. Some funds
always stay in the top five no matter what scheme we use.We applied the backtesting
technique to verify the performance of portfolios generated by our method, and it
turnedout that our optimizer allowed for achieving the predefinedobjective. Themain
advantage of our optimizer is that it can provide investors with more choices than a
traditional optimizer which often focused on the minimization of the variance of the
maximization of the Sharpe ratio. The question of how to determine the coefficients
for risk and performance measures to match investor’s risk preferences is left for the
future research.
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Kinetic Models of Need-Based Transfers

K. Kayser, D. Armbruster and C. Ringhofer

Abstract Kinetic exchange models of markets utilize microscopic binary
descriptions of wealth transfers to derive a Boltzmann-like equation describing the
evolution of the corresponding wealth distribution. We develop such a model to de-
scribe a binary form of welfare called need-based transfer (NBT), inspired by the
gift-giving of cattle practiced among theMaasai of East Africa. Variants of such wel-
fare schemes can be attributed to other human and animal communities. Specifically,
we consider NBTs relative to a given welfare threshold such that individuals with
surplus give to individuals with need in order to preserve the recipient’s continued
viable participation in the economy. Our NBT kinetic model considers redistribution
rules parameterized to vary between regressive and progressive redistribution.

Keywords Kinetic exchange models · Welfare · Need-based transfers

1 Introduction

Need-based transfers are purpose-driven binary donations, given in order to preserve
recipients’ viable participation in an economy. They establish a sort of risk pool.
Natural wealth evolution may cause past recipients to establish surplus and past
donors to have deficit, and so gifts may end up being naturally reciprocated directly
or indirectly [1, 11, 12]. This NBT wealth redistribution mechanism-featuring gift-
giving based on need as determined by some threshold - has been used to describe
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the cattle-gifting practice of the Maasai pastoralists of East Africa [1, 2, 11], and
could be used to describe other community practices such as food sharing among
vampire bats [19, 20].

To explain the evolution of reciprocal altruism and cooperation among rational
and strategic agents in a community, game theoretic perspectives are often taken
and models like the repeated prisoner’s dilemma are utilized [4, 5, 7, 17]; however,
such models do not describe the distribution of wealth in an economy, but focus on
the evolving prevalence of interactive strategies in a population. Agent-based models
allow for consideration of complex socioeconomic interactions like account-keeping
[1], various sharing network topologies [11, 12], and various transfer policies [12].
However, mean statistics from experiments repeated many times are relied on to
describe the aspects of the economy rather than rigorously proved results.

The kinetic exchange model framework features relatively more simple binary
socioeconomic interactions. The resulting Boltzmann-like equation is an integro-
differential equation which allows for proving results about the macroscopic distri-
bution of wealth, e.g. whether the tail of the wealth distribution is fat and obeys a
Pareto power law or is slim. Sometimes in the hydrodynamic limit the Boltzmann
equation is equivalent to a solvable Fokker-Plank equation [10, 15]. With discrete
wealths or amounts of coins, a stochastic processes approach has also been used to
describe the macroscopic wealth distribution corresponding to simple microscopic
interactions [14].

As the NBT transfers we consider are naturally binary gifts, using tools from
Econophysics - namely kinetic theory and Boltzmann-like equations - is not only a
natural approach that has not yet been considered, it is an appropriate approach to
take to focus on howmany microscopic binary donations of the NBT type evolve the
shape of the community distribution of wealth. In this paper, we begin to develop
such kinetic models and examine aspects of numerical solutions. Future work will
feature more analytical results like how moment evolution equations describe the
shape of the shape of the wealth distribution [13].

1.1 Kinetic Exchange Models of Markets

Kinetic exchangemodels of markets utilize Boltzmann-like equations where individ-
uals exchanging money in a trade are considered analogous to gas particles changing
velocities after a collision [6, 10, 15, 16]. Commonly, rules are determined to de-
scribe random fractional amounts of individuals’ wealths to be exchanged in a trade
in order to recover realistic wealth distributions, namely with a log-normal distribu-
tion of a majority of wealth and a Pareto power law tail for the very rich [8]. The
microscopic rules for such models can be described as follows: Where v and w are
two individuals’ respectivewealths before a trade, the individuals’ post-tradewealths
are given by

v∗ = p1v + q1w, w∗ = q2v + p2w. (1)
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The coefficients pi, qi are the non-negative random variables whose laws determine
the shape of the steady state distribution [10].

The relative density of individuals with wealthw ≥ 0 at time t is given by f (t;w),
which evolves according to the following Boltzmann-like equation

∂t f = Q+( f, f ) + Q−( f, f ), (2)

where Q+( f, f ) is the collisional gain operator that gives the gains at wealth w re-
sulting from collisions,Q− gives the losses at wealthw resulting from collisions, and
f (0,w) = f0(w) is the initial wealth distribution. For models fitting the description
of (1), a characteristic function has been defined which can classify the tail of the
steady state distribution according to the given coefficients pi, qi [10]. Also, wealth
redistribution has been considered where the natural wealth redistribution process
described above is still used, but in addition, portions of individuals’ wealths are
extracted via a tax on transfers and redistributed via a redistribution operator [6].

1.2 Need-Based Transfers

We develop a kinetic exchange model that examines wealth redistribution in a d-
ifferent way. Namely, we consider a fixed welfare threshold which determines the
relative surplus or deficit of each individual; then we consider deterministic binary
transfers in which individuals with surplus give to individuals with deficit in order
to bring those who are below the welfare threshold up to it. Such a version of binary
community welfare is inspired by the risk-pooling mechanism called osotua utilized
among the Maasai in East Africa and has previously been examined via agent-based
modeling under the name of need-based transfers (NBTs) [1, 2, 11, 12]. A micro-
scopic description of NBTs with the welfare threshold θ ∈ R and pre-trade wealths
v,w ∈ R is the following:

v∗ = v + H (v + w − 2θ)
[
(θ − v)H (θ − v) − (θ − w)H (θ − w)

]

w∗ = w + H (v + w − 2θ)
[
(θ − w)H (θ − w) − (θ − v)H (θ − v)

]
. (3)

In (3), H is the standard Heaviside step function, and as the rule is invariant
under the permutation w ↔ v,w∗ ↔ v∗, it allows for the assumption of statistical
independence for many identical individuals. Essentially, the rule determines that
wealths will change only if there is enough total wealth for both of them to be at
or above threshold after the transfer, i.e. transfers where donors are caused to go
below threshold are not allowed. Then, if there is enough total wealth for a transfer
to occur, the individual with surplus gives from his/her surplus whatever the deficit
of the needy individual is.
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Multiple agent-based studies have examined variants of the NBT donations de-
scribed in (3). Among the claims of these papers is that NBTs describe a reasonable
welfare mechanism that is found in practice among the Maasai of East Africa [1, 2,
11] and that asking the wealthiest individuals with preference is generally socially
optimal [12]. When NBTs are considered in an environment where needs are the
result of random processes and thus people have needs due to no fault of their own,
those with surplus at one time may have deficit at another time. In that way, gifts may
be reciprocated directly or indirectly even without an account-keeping mechanism
[1, 2]. Other forms of reciprocal gift-giving such as vampire bats sharing food [19,
20] can also be thought of as consisting of NBTs. Understanding the evolution of the
wealth or fitness distribution of such communities is of interest, and a preliminary
step is to model the welfare mechanism.

The binary transfers of NBTs have natural interpretation in the kinetic context,
and we bring this form of welfare into the kinetic exchange model environment in
order to (i) compare numerical results from the kinetic model to observations made
in the agent-based studies and contribute new observations, (ii) control for desirable
wealth distributions, and (iii) potentially prove some results in the integro-differential
equation framework. In this paper we focus on item (i).

2 Kinetic Model of NBT Policies

Given a welfare threshold θ ∈ R, and assuming collisions occur at rate 1, the
Boltzmann-like wealth distribution evolution equation corresponding to the micro-
scopic transfers described in (3) is

∂t f (t;w) =
∫ θ

−∞

∫ ∞

2θ−u

[
− δ(w − u) − δ(w − v) + δ(w − θ) + δ(w − u − v+ θ)

]

× f (t; v) f (t; u) dv du,
(4)

where f (t;w) is the relative density of individuals with wealth w ∈ R at time t ≥ 0.
Note that here wealth is allowed to be negative, which can be understood as distance
from threshold if θ = 0, or as some form of debt if θ �= 0.

Equation (4) can be understood as u denoting the wealth of a below-threshold
individual and v denoting the wealth of a donor (individual with enough surplus to
cover the deficit θ − u and still be above threshold, i.e. v > 2θ − u). Thus,when these
individuals interact, there are density losses at their pre-trade wealths and density
gains at their post-trade wealths, u∗ = θ and v∗ = v − (θ − u).
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Integrating (4) with a test function φ(w) gives

∫ ∞

−∞
φ(w)∂t f (t;w) dw = λ

∫ θ

−∞

∫ ∞

2θ−u

[
− φ(u) − φ(v) + φ(θ) + φ(u + v − θ)

]

× f (t; v) f (t; u) dv du.
(5)

Hence, for the particular cases of φ(w) = 1, and φ(w) = w, ∂t
∫ ∞
−∞ f (t;w) dw =

∂t
∫ ∞
−∞ w f (t;w) dw = 0 confirms that the mean wealth and total wealth are con-

served for this model.
However, with (4) there is no preferential donor selection. For example, if an

individual has a deficit of 1, and there are just as many individuals with a surplus
of 2 as there are individuals with a surplus of 4, no preference is given between the
individuals with less surplus or those with more. To introduce preferential donor
selection based on donor wealths, which defines regressive to progressive transfer
policies as in [12], first exact-match transfers are described.

2.1 Exact-Match Transfers

Let θ ∈ R, and ε0 ≥ 0, where ε0 is not necessarily small. A corresponding exact-
match transfer will only take place if the transfer will cause the recipient to go to the
welfare threshold θ and the donor to go to the donor threshold θ + ε0. Hence, the
microscopic description of exact transfers, given θ, ε0, is

v∗ = v + δ(v + w − 2θ − ε0)
[
(θ − v)H (θ − v) − (θ − w)H (θ − w)

]

w∗ = w + δ(v + w − 2θ − ε0)
[
(θ − w)H (θ − w) − (θ − v)H (θ − v)

]
, (6)

and the macroscopic Boltzmann-like equation is

∂t f (t;w) = [δ(w − θ − ε0) + δ(w − θ)]
∫ ∞

θ+ε0

f (v) f (2θ + ε0 − v) dv

− [H (w − θ − ε0) + H (θ − w)] f (w) f (2θ + ε0 − w). (7)

Choosing a donor threshold θ + ε0 automatically guarantees that no individuals
with wealth below that threshold will be able to give. Thus, a higher donor threshold
corresponds to only wealthier individuals being able to give. In this sense, an exact-
match transfers with large donor thresholds could be consider as describing a more
progressive wealth redistribution than a policy with a smaller donor threshold. We
extend this by describing policies which incorporate what we call donor preference.
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2.2 NBT Policies: Donor Preference

Donor preference is established by assuming the existence of a probability density
function p such that p(ε0)dε is the probability a donor threshold will be selected
between θ + ε0 and θ + ε0 + dε. Thus, the donor preference, or transfer policy is
defined by p and the corresponding wealth evolution equation is

∂t f (t;w) = λ

∫ ∞

0
p(ε)

(
[δ(w − θ − ε) + δ(w − θ)]

∫ ∞

θ+ε

f (v) f (2θ + ε − v) dv

−[H (w − θ − ε) + H (θ − w)] f (w) f (2θ + ε − w)

)
dε.

(8)

For numerical results, we assume some maximal surplus L > 0 and define a pa-
rameterized probability density function pα : [0,L) → (0,∞) as

pα(ε) =
(

α

eαL − 1

)
eαε. (9)

If α is positive, increasing p implies larger donor thresholds are more likely chosen
and thus the policy would be progressive. For the rest of the paper, we will refer to
α = −0.05 as defining the regressive policy, α = 0.05 as the progressive policy, and
α ≈ 0 as the flat policy. pα for these policies is illustrated in Fig. 1, where L = 100.

The flat policy (α ≈ 0) indicates no distinct preference for donor threshold and
thus should correspond to the microscopic description of (3). Figure2 shows a com-
parison of the numerical steady state solution of the flat policy and thewealth distribu-
tion resulting from agent-based simulation using the microscopic description of Eq.
(3); the initial wealth distribution was chosen to be gamma, considered qualitatively
realistic for natural wealth distributions [3, 8].

Fig. 1 Policy illustration.
The equation for these
parameterized donor
threshold probability
distributions is given in (9)
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Fig. 2 Flat policy comparison with agent-based simulation. A gamma initial condition is used for
f0(w) and 104 agents are sampled from this distribution as well. Equation (8) is used with α ≈ 0
to find the steady state solution of the Boltzmann-like equation; for the agents, interactions are
randomly generated and transfers are conducted according to the microscopic description of Eq.
(3) until all 104 agents are at or above threshold

3 Numerical Experiments

It is important to clarify that (8) does not incorporate any natural wealth process,
but merely models the NBTwelfare/risk pooling redistribution operator; future work
will attempt to include natural wealth evolution processes such as economic growth
and disasters in order to examine how NBTs function in those contexts. This being
the case, steady state solutions to (8) are very dependent on initial condition.

For numerical experiments, θ = 0 is considered and two different initial con-
ditions are used: (i) gamma distribution and (ii) uniform distribution. Again, the
gamma distribution is chosen as qualitatively representative of naturally observed
wealth distributions [3, 8]. The uniform distribution is chosen because it allows for
comparability of effectiveness of each policy inmeeting the needs of below-threshold
individuals.

For all results in Figs. 3 and 4, ‘steady state’ is considered to have been reached at
time T such that || f (T ;w) − f (T − 	t;w)||2 < 10−5; in the tables, T is rescaled
by the minimum T value for comparability. 	t = 1 is used for simulations. Gini
index is calculated in the standard way [9], but only for the above-threshold wealth
distribution. Smaller Gini indexes correspond to less inequality. Population below
threshold is found as

∫ 0
−∞ f (T ;w) dw for Fig. 4 and is considered essentially 0 for

Fig. 3.
In Figs. 3 and 4, the steady state distributions of each policy are qualitatively, and

in terms of inequality, predictable or reinforce the regressive/progressive natures of
the policies. Also, the rate of convergence for the regressive policy is greater than
for the progressive policy. This is a new observation with respect to the work of [1,
2, 11, 12] but intuitively makes sense as the higher donor thresholds preferred in the
progressive model reduce the number of potential donors.
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Fig. 3 Steady state distributions and data for parameterized kinetic NBT policies with initial
condition f0(w) ∼ Gamma
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Fig. 4 Steady state distributions and data for parameterized kinetic NBT policies with initial
condition f0(w) ∼ Uniform



Kinetic Models of Need-Based Transfers 529

Figure4 echoes an observation made in [12], where regressive transfers were
found to be a sort of cutting-stock optimization heuristic [18] for best matching all
of the deficits to surpluses. We see that here also the regressive policy results in more
individuals above threshold in steady state than the other policies. Essentially, by
matching the deficits with the closest fitting surpluses in the regressive policy, larger
surpluses are reserved for individuals with larger deficits. In contrast, the progressive
policy cuts into large surpluses quickly leaving no large matching surplus available
for a binary transfer to an individual with a large deficit.

4 Discussion

This paper considers economies that are assumed to practice altruistic welfare do-
nations called need-based transfers. A parameterized kinetic model of regressive
to progressive NBTs is developed in order to examine the influence of the detail-
s of NBT implementation on the wealth distribution of a society. Focusing on the
transfer mechanism (absent natural wealth evolution processes), steady state solu-
tions are very dependent on initial condition and conform to expectation with regard
to inequality as well as with policy efficiency when compared to the cutting-stock
observation made in [12]. Also, the rate at which successful transfers occur varies
between transfer policies; this may be understood as reflecting the varying difficulty
in finding aid given the restrictions of donor preference.

Thismodel introduces kinetic theory to existing need-based transfer literature, and
in this realm it provides an initial structure for examining how reciprocal gift-giving
societies’ wealth distributions evolve. Too, when various natural wealth evolution
mechanisms are added to the model, questions about how NBTs affect disaster re-
covery, inequality, and economic growth may begin to be examined. Such questions
will be considered in future work [13]; analytical properties and control perspectives
will also be studied.
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Optimal Static Hedging of Non-tradable
Risks with Discrete Distributions

Adam W. Kolkiewicz

Abstract We consider the problem of optimal static hedging of a non-tradable risk.
Under general model assumptions, we find a representation of an optimal hedging
option on a traded security that can be used to mitigate such a risk. Since we use
the expectation of the shortfall as the criterion, the resulting hedging methods guard
better against large losses when compared with a more traditional approach based
on the quadratic criterion. We illustrate our method by applying it to the problem of
hedging a multiple-barrier option.

Keywords Financial derivatives · Hedging · Shortfall risk
Path-dependent options

1 Introduction

In the paper we consider the problem of optimal static hedging of a non-tradable risk.
For a fixed time interval [0,T ], the hedger’s objective is to create a static portfolio,
which includes European style options1 on a traded security and possibly a bank
account, so that its value at time T replicates as closely as possible a liability L. The
portfolio is constructed under the constraint that its initial cost does not exceed a
given budget VI .

Let S(T ) denote the price of the underlying traded security at time T . Since the
terminal value of any static hedging portfolio can be represented as h(S(T )) for a
certain function h, the hedger’s objective is to find an admissible function h so that
the hedging error L − h(S(T )) meets his or her risk management objectives. In this
paper we focus on strategies that minimize the shortfall risk, which we define as the
expectation of the shortfall

EP[(L − h(S(T )))+].

1To simplify our presentation, we shall refer to path-independent options as European options.
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Thus, the payoff function hopt of the optimal hedging option must solve

hopt := arg inf
h∈HA

EP[(L − h(S(T )))+], (1)

where HA represents the set of admissible payoff functions.
The distribution of the hedging error is completely characterized by the join

distribution of L and S(T ), but for the purpose of solving (1) it will be convenient
to use an alternative description. Let S denote the set of possible values of S(T ).
Conditionally on S(T ) = s, s ∈ S , the size of a possible shortfall, when hedging L
with h(S(T )), depends only on the conditional distribution L | S(T ) = s. Thus, if we
introduce variables L(s) in the following way

L(s)
D= L | S(T ) = s, (2)

where “
D=” denotes equality in law, then the hedging error can be completely de-

scribed by the set
L (T ) := {L(s) : s ∈ S } (3)

and the distribution of the terminal price S(T ).
Under the assumptions that the distributions of L(s), s ∈ S , are continuous, the

problem (1) has been solved in [4]. In Sect. 2 of this paper, we present a theorem that
extends this result to the case when L(s), s ∈ S , follow discrete distributions.

To give an example of a situation where such distributions arise, consider the
problem of discrete-time hedging of a path-dependent option using European options
only. Suppose that under the empirical measureP the value of the underlying security
S follows the process

dS(t) = S(t)(μdt + σdW (t)), S(0) = S0, (4)

where {W (t)} is a standard Brownian motion. Let us denote the price of the option
at any time t between its inception at zero and maturity TM by

C(S(·), t) ≡ C(S(u)u∈[0,t], t), t ∈ [0,TM ]. (5)

Under the model (4), any path-dependent option can be replicated by trading con-
tinuously the underlying security and a risk-less bond. In practice, however, only
discrete-time hedging is possible, and hence the option writer is faced with the prob-
lem of searching for strategies that reduce the hedging error. If the hedging period
ends at T ≤ TM , then this problem can be cast in the general framework described
above by taking

L = C(S(·),T ).
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In Sect. 3, we illustrate our approach by applying it to a roll-down call, which is
a path-dependent option whose payoff depends on breaching some barriers during
the life of the contract. Due to the presence of these barriers, the residuals risks
L(s), s ∈ S , follow discrete distributions.

Briefly we want to mention other applications of the main result presented in this
paper. In the case when the distributions L(s), s ∈ S , are continuous, the optimal
hedge must be typically obtained through numerical methods. To avoid this, we
can discretize these distributions and then use the optimal solution presented in this
paper, which is quite straightforward to implement. Another potential application of
the presented result is the determination of the optimal static hedge when CVaR is
used as the criterion for selection. For a related approach, we refer to [7].

In Sect. 3 we compare our approach with hedging based on minimization of the
mean-square value of the hedging error. If we restrict hedging strategies to linear
functions of S(T ), then this criterion has been used by, among others, [2, 3] to
determine local risk minimizing hedging methods. When this criterion is applied to
the problem of hedging of a more general liability L, then the payoff function hMSE

of the optimal hedging option solves

hMSE := arg inf
h∈L 2(S(T ))

EP[(L − h(S(T )))2],

where L 2(S(T )) denotes the set of square integrable functions of S(T ). The so-
lution to this problem admits the well-known representation given by hMSE(s) :=
EP[L|S(Th) = s], s ∈ S . More details about this approach, and examples of its ap-
plications to some insurance products, can be found in [5].

2 Optimal Hedging Strategy

We assume that for each s ∈ S ⊂ R+ the distribution of the residual risk L(s) is
discrete and of the following form

P(L(s) = li(s)) = πi(s), i = 0, 1, . . . ,N , (6)

where l0 ≡ 0, the functions l1, . . . , lN and π1, . . . , πN are continuous onS , and for
each s ∈ S they satisfy 0 < li(s) < li+1(s) and πi(s) > 0. In (6) we allow N = ∞,
which would correspond to a distribution with an infinite but countable number of
possible outcomes.

For a given initial capital VI , let V0 := exp(rT )VI , where r is an instantaneous
short interest rate. In order to define admissible payoff functions, we first define
the set

H 0 := { functions h on S such that h(s) ∈ [0, hU (s)] for s ∈ S },
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where hU is a function that satisfies

(C 1) V0 ≤ EQ[hU (S(T ))] < ∞
(C 2) EP[hU (S(T ))] < ∞.

The superscripts Q refers to the risk-neutral measure obtained, for example, from
market prices of traded vanilla options on S(T ). Under this measure, the discounted
price process {S(t)} is a martingale.

In practice, hU can be chosen along selected quantiles of the conditional distri-
butions of the residual risk L(s), s ∈ S . To simplify the exposition, we are going
to assume that this is indeed possible, and for this we shall adopt the following
condition:

(C 3) There exists K such that for hU := lK the conditions (C 1) − (C 2) are satisfied.

If N is finite, then we can take K = N , assuming that EP[lK (S(T ))] < ∞ and
EQ[lK (S(T ))] < ∞.

Now we can define the set of admissible payoff functions h as

H := {h ∈ H 0 : EQ[h(S(T ))] ≤ V0}.

Then the optimal hedging option is the function hopt that solves the problem

hopt := arg inf
h∈H

EP[(L − h(S(T )))+]. (7)

Let P∗ and Q∗ denote the distribution of S(T ) under the measures P and Q,
respectively. In order to ensure uniqueness of the optimal hedging option, we will
need the following condition.

(C 4) For each strictly positive c, the Lebesgue measure of the sets

Bc(i) := {s ∈ S : c =
K∑

j=i

π j (s)
dP∗

dQ∗ (s)}, i = 1, . . . ,K, (8)

is zero.

This assumption is satisfied, for example, when the functions

gi(s) :=
K∑

j=i

π j (s)
dP∗

dQ∗ (s), i = 1, . . . ,K,

are continuously differentiable and their derivatives are zero only at a finite number
of points fromS .
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Theorem 1 Under the assumptions (C 3)–(C 4), the payoff function of the optimal
hedging option is given by

hopt =

⎧
⎪⎨

⎪⎩

lK (s) for s : πK (s) dP∗
dQ∗ (s) > c

li(s) for s : ∑K
j=i+1 π j (s)

dP∗
dQ∗ (s) < c ≤ ∑K

j=i π j (s)
dP∗
dQ∗ (s)

0 for s : (1 − π0)
dP∗
dQ∗ (s) < c,

where c is the smallest number such that EQ[hopt(S(T ))] ≤ V0.

Proof To simplify the notation, we denote the random variable S(T ) by S. First we
show that the solution to the optimization problem (7) can be represented in terms
of the following auxiliary function

g(s, z) := g0(s, zhU (s) − hU (s))

hU (s)
, (s, z) ∈ S × [0, 1], (9)

where
g0(s, z) := EP[(L(s) + z)+], (s, z) ∈ S × [−hU (s), 0]. (10)

Observe that each admissible function h fromH can be represented as h = γ hU ,

where γ is a function on S with values in [0, 1]. Using this representation, and
conditioning on S, we can rewrite the optimization problem (7) in the following way

arg min
γ∈I

EP[EP[((L(R, S) − γ (S)hU (S))+|S]]

= arg min
γ∈I

EP∗ [hU (S)EP[(L(R, S) − hU (S)

hU (S)
+ 1 − γ (S))+|S]],

= arg min
γ∈I

EP∗ [hU (S)g(S, 1 − γ (S))], (11)

where I represents Borel measurable functions on S with values in [0, 1].
By (C 3), we can introduce a new probability measure Q̃ on S in the following

way
dQ̃ = const · hUdQ∗.

Then the constraint EQ∗ [h(S)] ≤ V0 implies that the optimal function γopt in (11)
must satisfy

EQ̃[γopt(S)] ≤ H̃0 := V0

EQ∗ [hU (S)] . (12)

Due to our assumptions about the distributions of {L(s), s ∈ S }, it is possible to
find explicit representations of the functions g0 and g. In particular, we have

g0(s, z) =
∑

j :l j (s)+z≥0

(l j (s) + z)π j (s), (s, z) ∈ SL × [−hU (s), 0],
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which for each s is a piecewise linear, strictly increasing and continuous function of
z. It can be rewritten in the following way

g0(s, z) =
K∑

i=1

⎡

⎣
K∑

j=i

l j (s)π j (s) + z
K∑

j=i

π j (s)

⎤

⎦ 1[−li(s),−li−1(s))(z) + EP[(L(s))+]1{0}(z),

where1A denotes the indicator function of a setA. From this,we canfind the following
representation of g(s, z) for (s, z) ∈ S × [0, 1]:

g(s, z) =
K∑

i=1

⎡

⎣
K∑

j=i

(
l j (s)

hU (s)
− 1)π j (s) + z

K∑

j=i

π j (s)

⎤

⎦ 1[1− li (s)
hU (s) ,1−

li−1(s)
hU (s) )

(z) + EP[(L(s))+]1{1}(z).

For each s the above function is piecewise linear, strictly increasing and contin-
uous. Based on this representation we can find that the partial derivative of g with
respect to z is given by

gz(s, z) =
K∑

i=1

[
K∑

j=i

π j (s)]1(1− li (s)
hU (s) ,1−

li−1(s)
hU (s) )

(z), for (s, z) ∈ S × (0, 1),

which is a piecewise constant and nondecreasing function. For each s, partial deriva-
tives are not determined at the points 1 − li(s)

hU (s) , i = 0, . . . ,K .
We solve the problem (11)–(12) by reducing it to the form for which the Neyman-

Pearson lemma can be applied. For this we use the method presented by [6], which is
based on a characterization of the minimum in terms of directional derivatives. For
two given functions γ̃ and γ from I , let

γε = (1 − ε)γ̃ + εγ, for ε ∈ [0, 1].

It can be verified that the function

F(ε; γ̃ , γ ) = EP∗ [hU (S)g(S, 1 − γε(S))], ε ∈ [0, 1],

is convex. Therefore any local solution will be also a global one, although uniqueness
is not guaranteed.Wewill show that γ̃ is optimal for the problem (11) by demonstrat-
ing that for any γ the corresponding function ε → F(ε; γ̃ , γ ) attains its minimum
at ε = 0. This condition can be expressed by using a one-sided derivative of F . The
latter can be found by taking the derivative inside the expectation, which can be
justified by using our assumptions (C 3)–(C 4). This leads to
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F ′(0+; γ̃ , γ ) = EP∗ [hU (S)gz(S, 1 − γ̃ (S); p)(γ̃ (S) − γ (S))].

Using this derivative, the condition for γ̃ to be optimal becomes

F ′(0+; γ̃ , γ ) ≥ 0, for any γ ∈ I ,

or equivalently,

EP∗ [hU (S)gz(S, 1 − γ̃ (S))γ̃ (S)] ≥ EP∗ [hU (S)gz(S, 1 − γ̃ (S))γ (S)] (13)

for any γ ∈ I . Let us observe that this condition will hold regardless of how we
define the derivatives gz(s, z) at the points 1 − li(s)

hU (s) , i = 1, . . . ,K .

Let us introduce a new measure P̃ in the following way

dP̃ = const · hU (s) · gz(s, 1 − γ̃ (s))dP∗.

Then the problem of finding γ̃ that satisfies (13) and the constraint (12) can be
recognized as looking for the most powerful test for the hypothesis Q̃ against the
alternative P̃ at the level α := H̃0. The structure of the optimal test γ̃ is given by the
Neyman-Pearson lemma in terms of the likelihood ratio

dP̃

dQ̃
= const · gz(s, 1 − γ̃ )

dP∗

dQ∗ .

For a given constant c, the optimal test should be equal to one on the set

{dP̃/dQ̃ > c} = {s : ·πK (s)
dP∗

dQ∗ (s) > c} (14)

and zero on the set

{dP̃/dQ̃ < c} = {s : (1 − π0)
dP∗

dQ∗ (s) < c}. (15)

On the set

{dP̃/dQ̃ = c} = {s : ·gz(s, 1 − γ̃ (s))
dP∗

dQ∗ (s) = c} (16)

the optimal test γ̃ should be defined so that the level condition is satisfied.
Below we show that under (C 4) the optimal test is unique and given by hopt . For

a given c, suppose that the set

Cc := {s : πK (s)
dP∗

dQ∗ (s) ≤ c ≤ (1 − π0)
dP∗

dQ∗ (s)}
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is non-empty. Since by (14) and (15) the optimal test is determined uniquely on
S − Cc, we focus on the definition of the test on Cc only. Let

Ac(i) := {s :
K∑

j=i+1

π j (s)
dP∗

dQ∗ (s) < c <

K∑

j=i

π j (s)
dP∗

dQ∗ (s)}, i = 1, . . . ,K − 1.

On each non-empty set Ac(i), i = 1, . . . ,K − 1, the condition

gz(s, 1 − γ̃ (s))
dP∗

dQ∗ (s) = c

will hold if we take γ̃ (s) = li(s)
hU (s) . This is possible since we have the freedom to

choose values of the derivative at the points 1 − li(s)
hU (s) , i = 1, . . . ,K − 1. Thus, the

optimal test is uniquely determined on ∪K−1
i=1 Ac(i). In addition, it is of the same form

as hopt .
Now let us consider the sets Bc(i), i = 1, . . . ,K , defined in (8). For each i for

which the set Bc(i) is non-empty, the test is not uniquely determined, as it can take
any value from the interval [− li(s)

hU (s) ,− li−1(s)
hU (s) ]. However, under the assumption (C 3),

the Lebesgue measure of the set of s for which this occurs is zero.
Since it can be easily verified that EQ[hopt(S(T ))] is a decreasing function

of c, the optimal c should be selected as the smallest number for which
EQ[hopt(S(T ))] ≤ V0. �

3 Example: Roll-Down Call

To illustrate our approach, in this section we find the payoff function of the optimal
static hedge for a roll-down call with two barriers. Such a contract involves barriers
b1 > b2 that are below the spot price and strike, that is, S0 > b1 and K0 > b1. If
the higher barrier is not reached before maturity T , then a roll-down call has the
same terminal payoff as a standard call with strike price K0. However, if the barrier
b1 is reached prior to maturity, then the strike price is rolled down to a new level
K1 ∈ (b1,K0), and a new out-barrier becomes active at the level b2. For more details
about such contracts, we refer to [1].

If we define the following two stopping times

τ1 = inf{z : S(z) = b1} and τ2 = inf{z : S(z) = b2},

then the payoff function of a roll-down call can be written compactly as

(S(T ) − K0)
+1{τ1>T } + (S(T ) − K1)

+1{τ1<T and τ2>T }.
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In order to determine the distributions of the residual risk, we assume that the
underlying asset follows theBlack-Scholesmodel (4). Then the distribution ofS(T ) is
lognormal, while the distributions of the residual risks depend on Brownian bridges.
For a precise description, let us introduce Wd (t) := (μ − 1

2σ
2)t + σW (t), t ≥ 0.

Since S(t) = S(0)eW
d (t), conditioning on S(T ) is equivalent to conditioning on the

terminal value of the Brownian motion {Wd (t), t ∈ [0,T ]}. It is known that the law
a Brownian motion conditioned on its terminal value does not depend on its drift
and is described by a Brownian bridge. Therefore the law of the process {Wd (t), t ∈
[0,T ]} conditioned on Wd (T ) = u is the same as the law of { u

T t + σW[0,T ](t), t ∈
[0,T ]}, where {W[0,T ](t), t ∈ [0,T ]} is a standardBrownian bridge on [0,T ], that is a
standardBrownianmotion conditioned onW (T ) = 0. Thus, under theBlack-Scholes
model, the distribution of each conditional residual risk can be represented as

L(s,T )
D= C(S0 exp(

u

T
t + σW[0,T ](t))t∈[0,T ],T ), (17)

where u = ln(s/S0), s ∈ R+, and C is a proper functional.
If we denote by Ss the process S conditioned on S(T ) = s, then, using the notation

from Sect. 2, the set of s for which the residual risk is non-zero is given by S =
[K1,∞). In addition, for s ≥ K0 we have

l1(s) = s − K0,

π1(s) = P( min
z∈(0,T ]

Ss(z) > b1),

while for s ≥ K1, we have l2(s) = s − K1, with

π2(s) = P(Ss(u) ≤ b1 for someu ∈ [0,T ) and min
z∈(0,T ]

Ss(z) > b2).

In our implementation we have used the following values: S0 = K0 = 100, b1 =
K1 = 95, b2 = 90, σ = 0.2, T = 0.25, and r = 0.04. To approximate the prob-
abilities π1(s), s ≥ K0, and π2(s), s ≥ K1, we have used Monte Carlo simulation
with 50,000 repetitions.

The resulting payoff functions of the MSE-optimal and the ES-optimal hedging
options, togetherwith quantile functions of the conditional residual risks, are present-
ed in Fig. 1. As the graphs suggest, the payoff functions of the MSE-optimal and the
ES-optimal hedging options have very different characters, since the former is a con-
tinuous and strictly increasing function, while the latter is a piecewise linear function
with a jump at a single point (equal to 101.85). Using the Monte Carlo method we
have also found that the hedging method based on hopt reduces the expected shortfall
by about 18.5% when compared with the MSE-optimal hedging option.

From these graphs it also follows that the ES-optimal option hedges perfectly the
residual risk for any terminal value S(T ) that is below 101.85. Above this threshold
value, the residual risk is hedged only partially. On the other hand, the MSE-optimal
hedging option never hedges completely loss corresponding to the level l2, but it pro-
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together with quantile functions of the conditional residual risks for a roll-down call option
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Fig. 2 Frequencies of losses for MS-optimal and ES-optimal hedging options

vides more protection than hopt for terminal values S(T ) that are above the threshold
S(T ) = 101.85. These differences in hedging are well captured by the graphs of
frequencies of losses for the two strategies, which we present in Fig. 2.
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Population and Pollution Interactions
in a Spatial Economic Model

Davide La Torre, Danilo Liuzzi and Simone Marsiglio

Abstract We analyze the spatio-temporal dynamics of a simple model of economic
geography in which population and pollution dynamics are mutually interdepen-
dent. Pollution by reducing the carrying capacity of the natural environment, which
determines the maximum amount of people a given location can effectively bear,
affects labor force dynamics which in turn alter pollution emissions. Such mutual
links determine the development path followed by different locations, and spatial
interactions further complicate the picture. We show that neglecting the existence of
spatial externalities can lead to misleading predictions about the development path
followed by different locations in the spatial economy.

Keywords Population dynamics · Pollution · Spatial model · Sustainability

1 Introduction

Sustainable development has become a very popular research topic lately, and the
main research question in this context consists of understanding how to address
the economy along a sustainable development path [1, 2]. Sustainability ultimately
requires to satisfy “the needs of the present without compromising the ability of

D. La Torre (B) · D. Liuzzi
Department of Economics, Management, and Quantitative Methods,
University of Milan, 20122 Milan, Italy
e-mail: davide.latorre@unimi.it

D. Liuzzi
e-mail: danilo.liuzzi@unimi.it

D. La Torre
Dubai Business School, University of Dubai, 14143 Dubai, UAE
e-mail: dlatorre@ud.ac.ae

S. Marsiglio
School of Accounting, Economics and Finance,
University of Wollongong, Wollongong, NSW 2522, Australia
e-mail: simonem@uow.edu.au

© Springer Nature Switzerland AG 2018
D. M. Kilgour et al. (eds.), Recent Advances in Mathematical
and Statistical Methods, Springer Proceedings in Mathematics & Statistics 259,
https://doi.org/10.1007/978-3-319-99719-3_49

543

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99719-3_49&domain=pdf


544 D. La Torre et al.

future generations to meet their own needs” [3], demanding thus to take into account
the population and environment relation. The channels through which the human
population affects the natural environment in which it lives and how in turn the en-
vironment may alter the evolution of human population have been long discussed
in literature since [4] seminal work (see among others [5–7]). However, none of the
existing works is able to relate the issue to geographical and spatial characteristics,
since they all assume that the economy is simply a unique point in space and thus
eventual heterogeneities are completely ruled out. This is clearly a strong simplifica-
tion of reality. While understanding the implications of geographical heterogeneity
on the development path followed by a spatial-extended notion of economy is a very
active and recent research topic, following [8] seminal work (see [9–13]). The goal
of this paper consists of analyzing the population and environment relation from a
spatial point of view, taking into account thus that the dynamics of population and
the environment mutually affect each other not only over time but also across space.

Our work thus combine together two different streams of literature: the sustain-
ability and the economic geography ones. From the latter we borrow the analytical
framework by considering a spatial economic growth model with environmental and
demographic interactions; the setup most similar to ours is [14], but differently from
them we allow for population growth and labor migration. From the former, instead,
we borrow the interest in understanding whether sustainable development can effec-
tively occur; [5, 7] are closely related to our work, but differently from them our
focus is not on natural resources but on pollution and we do not restrict our analy-
sis to the temporal dynamics only since we allow also for spatial interactions. Our
main results show that by neglecting the existence of spatial spillovers the possible
predictions about the development path followed by different locations in the spatial
economy may be misleading, suggesting thus that geographic externalities may be
an important determinant of economic development.

The paper proceeds as follows. Section2 introduces our spatio-temporal dynamic
model, summarized by two partial differential equations. In Sect. 3 we derive some
analytical results in absence of spatial diffusion,while in Sect. 4we focus on the fully-
fledged model in which spatial diffusion plays an active role. Section5 concludes
and presents directions for future research.

2 The Model

We consider a simple model of economic geography in which agents consume all
their income and inelastically supply labor. Since there is no unemployment, the
population size and the labor force perfectly coincide. Economic production gener-
ates pollution which by affecting the carrying capacity of the natural environment
in which human population lives determines the evolution of the labor force, which
is an essential input in the production of final output. We assume a continuous s-
pace structure to represent that the spatial economy develops along a linear city (see
[15]), where the population is mobile across different locations and pollution, even if
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generated in a specific location, diffuses across the whole economy [14]. We denote
with L(x, t) and P(x, t) respectively the population size and pollution stock in the
position x at date t, in a compact interval [xa, xb] ⊂ R, and t ≥ 0. We also assume
that the initial population and pollution distribution, L(x, 0) and P(x, 0), are known
and there is no migration or pollution flow through the boundary of [xa, xb] namely
the directional derivative is null, ∂L(x,t)

∂x = ∂P(x,t)
∂x = 0, at x = xa and x = xb ([11, 16].

The economic and environmental setup to a large extent resembles [14], but d-
ifferently from theirs, our model focuses on the dynamic evolution of population
and its interaction with pollution. Output is produced according to a Cobb-Douglas
production function employing capital and labor as Y (x, t) = AK(x, t)αL(x, t)1−α ,
where A > 0 denotes the total factor productivity and 0 < α < 1 the capital share
of income. We abstract from capital accumulation and without loss of generality the
capital stock is normalized to unity,K(x, t) = 1,∀x, t. Production activities generate
emissions which increase linearly the stock of pollution and θ > 0 measures the de-
gree of such environmental inefficiency. These emissions are dampened by (spatially
heterogeneous) public abatement activities, which reduce a share u(x) ∈ [0, 1] of to-
tal emissions, thus 1 − u(x) represents unabated emissions. Apart from abatement
activities, the pollution stock tends to decrease at the constant rate δP > 0 representing
the natural decay rate of pollution. Agents are subject to (location-specific) propor-
tional income taxation, τ(x) > 0, which is used to finance the abatement activities
needed to reduce the environmental effects associated with pollution; agents are as-
sumed to consume completely their disposable income, implying thatC(x, t) = [1 −
τ(x)]Y (x, t). We assume that the (local) government wishes to maintain a balanced
budget at any point in time, such that the tax revenue is totally devoted to reduce pollu-
tion.At location x the tax revenue isT (x, t) = τ(x)Y (x, t),while abatement activities,
M (x, t), decrease a certain share of pollution, u(x) ∈ [0, 1], by employing a certain
amount of not consumed output with the following cost M (x, t) = C [u(x)]Y (x, t),
where C (·) is the cost function of abatement activities, taking the following form
C [u(x)] = 1 − [1 − u(x)]ε with ε < 1 [17]. By equating the tax revenue and abate-
ment we obtain a one-to-one relationship between the tax rate and the share of abat-
ed emissions, τ(x) = C [u(x)], implying that consumption is given by the following
expression: C(x, t) = [1 − u(x)]εY (x, t). Population evolves according to a logistic
equation, where Lc(x) > 0 represents the (spatially heterogeneous) carrying capacity
of the natural environment, which is affected by pollution flows, through the follow-
ing damage function D(x, t) = 1

1+BP(x,t)β with B > 0 being a scale parameter and
β > 0 measuring the magnitude of the pollution externality on population dynamic-
s. Note that the share of abatement activities rules the economic-environmental trade
off: a larger abatement improves the environmental outcome (by reducing pollution)
at the cost of deteriorating the economic one (by reducing consumption).

The spatio-temporal dynamic model can thus be summarized by the following
system of two partial differential equations:
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∂P(x, t)

∂t
= dP

∂2P(x, t)

∂x2
+ θ [1 − u(x)]AL(x, t)1−α − δPP(x, t) (1)

∂L(x, t)

∂t
= dL

∂2L(x, t)

∂x2
+

[
Lc(x)

1 + BP(x, t)β
− L(x, t)

]
L(x, t) (2)

Equation (1) describes the evolution of pollution over time and across space. The
engine of pollution accumulation is represented by economic production activities;
a fraction of the emissions is abated from the outset, through cleaning activities
represented by term 1 − u, while a constant part of the pollution stock is eliminated
by the self-cleaning capacity of the natural environment, represented by δPP. The
spatial externality, representing the extent to which the outcome in specific locations
affects the outcomes in other locations as well, is captured by the diffusion term: the
intensity of the diffusion process is measured by the diffusion coefficient dP ≥ 0,
quantifying the extent to which pollution no matter where it is originally generated
spreads across the whole spatial economy [14].

Equation (2) describes the evolution of the human population over time and across
space. In absence of pollution, the population size would grow according to a logistic
law with constant carrying capacity Lc [18]. By taking into account the negative
pollution externality, the demographic lawofmotion is still logistic, but themaximum
value of the population size that the natural environment can bear is represented by
the term Lc

1+BPβ . As for the case of pollution, the spatial externality is represented by
the diffusion term, where dL ≥ 0, represents the diffusion coefficient, measuring the
extent to which population tends to migrate across different locations in the spatial
economy.

3 The Model with No Diffusion

We first analyze the behavior of the above system without diffusion, but preserving
the spatial structure. This allows us to compare the outcome with what arises in the
diffusion case whichwewill analyze in the next section. In the case with no diffusion,
that is dP = dL = 0, the partial differential equations (1) and (2) boil down to the
following parametric system of ordinary differential equations:

dP(t)

dt
= θ [1 − u]AL(t)1−α − δPP(t) (3)

dL(t)

dt
=

[
Lcx

1 + BP(t)β
− L(t)

]
L(t) (4)

The system (1)–(2) is characterized by several parameters, each of which could be
space dependant, but we restrict our analysis to the effects of spatial heterogeneity
on Lc. It is thus quite natural to suppose that the carrying capacity of the natural
environment can vary across different locations, and thus it is reasonable to expect
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some spatial heterogeneity due to such inherent characteristic of specific locations.
Since we are especially interested in discussing the implications of the population
and environment relation, understanding the specific spatial characteristics of such
a parameter, Lcx = Lc(x), is essential to comment on the interplay between human
population and the natural environment. Specifically, this parameter captures the
pollution feedback on population, and we wish to analyze how the location-specific
carrying capacity Lcx along with the diffusion terms di

∂2

∂x2 where i = L,P, shape
the time evolution of population and pollution. Note first that the system (3)–(4) is
actually a continuous set of systems of ordinary differential equations, because of
the presence of the space dependant parameter Lcx: each point in the spatial domain
has its own time dynamics, but there is no interaction between adjacent locations.
Next proposition offers a concise description of the properties of this continuous
set of systems, stating that ∀x ∈ [xa, xb] the system (3)–(4) has a unique and stable
non-trivial equilibrium.

Proposition 1 The system (3)–(4) admits a unique nontrivial equilibrium, (P,L) ∈
R

2++, ∀x ∈ [xa, xb]:

P =
[
θA(1 − u)

δP

]
L
1−α

L = RootO f

{
B

[
θA(1 − u)

δP

]β

L(1−α)β+1 + L − Lcx = 0

}
.

Moreover (P,L) is asymptotically stable.

Proposition1 can be proved by using a classical linearization approach. The Jacobian
matrix associated with the non-trivial equilibrium, J (P,L), is given by:

J (P,L) =
[

−δP A(1 − α)(1 − u)L
−α

−βBLcxLP
β−1

(1 + BP
β
)−2 −L

]
(5)

It is not difficult to determine the signs of each element. a11 is obviously negative.
Since L and P are both positive, a12 is positive while a21 and a22 are both negative.
It follows that both the eigenvalues of the Jacobian matrix are negative. Figure 1
represents the phase portrait for the following parametrization: u = 0.5, θ = 0.2,
δP = 0.05, A = 1, B = 1, α = 0.33, β = 1.5 (see [14]), showing that whatever is
the pair of initial conditions, (P0,L0), the system converges to its unique nontrivial
equilibrium. The existence of a steady state in which both human population and
pollution attain a strictly positive value suggests that despite the pollution feedback on
population dynamics each location in the spatial economy develops along a trajectory
which could be deemed as sustainable in some minimal sense. In absence of spatial
interactions, the spatial economy is overall able to proceed its process of economic
development along a smooth path, independently on the spatial parameter Lcx. Even if
an analytical expression for the steady state values cannot be obtained, it is possible
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Fig. 1 Phase portrait in the
no diffusion case
(dP = dL = 0)
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to infer from the steady state expressions above how they do depend on such a spatial
parameter and thus how the heterogeneity in the carrying capacity is likely to affect
the long run equilibrium of both population and pollution.

4 The Model with Diffusion

We now turn to the analysis of the full model in which diffusion and thus spatial
externalities are explicitly taken into account. In particular, we wish to understand
whether the presence of such spatial interactions can alter our previous predictions
about the development path followed by different locations in the spatial economy.
Given the spatial structure of the economy, the analysis of transitional dynamics
can be performed only numerically, thus we now focus on numerical simulations in
order to illustrate the spatial implications of pollution accumulation and population
growth. Even if the numerical simulations that follow are based upon a specific set
of parameters and initial conditions, reported in (6), it is possible to show that, since
the nontrivial equilibrium is unique (see [14], for a discussion of how the presence
of spatial externalities differently affect the system dynamics in the case of unique or
multiple equilibria), even under different parametrizations the following qualitative
results will hold true.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u = 0.5, θ = 0.2, xa = −1, xb = 1, δP = 0.05,
A = 1, B = 1, α = 1

3 , β = 1.5, dP = 0.1, dL = 0.1,
P(x, 0) = 1 + x, L(x, 0) = 1 + x,

σ 2
Lc = 0.1, Lc = 10, Lc(x) = Lce

− x2

σ2
Lc .

(6)
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Fig. 2 Evolution of pollution and population: no diffusion case (dP = dL = 0)

Most parameters take the same values as in [14] consistently with empirical evi-
dence (see references therein), apart from those which are set to unity without loss
of generality, and those which are specifically set in order to make our graphical
illustrations as clear as possible. The share of abated emissions u is a candidate to be
a control variable, that is a policy variable optimally chosen by the social planner in
order to keep under control the level of pollution stock and thus to limit its impacts on
population. We do not analyze the associated optimal control problem, thus for the
sake of simplicity we assume that it takes the central value in the control space, name-
ly u = 0.5. We assume the initial distribution of pollution, P(x, 0) = Px = 1 + x, to
mimic to the initial distribution of population, L(x, 0) = Lx = 1 + x. We set the car-

rying capacity as follows Lc(x) = Lce
− x2

σ2
Lc , meaning that in the central locations it

is larger than in the lateral ones. The results of our simulations are shown in Figs. 2
and 3.

Figure2 describes the evolution over time and across space of population (left
panel) and pollution (right panel) in the case in which diffusion is absent, that is
dP = dL = 0, consistently with what discussed in Sect. 3. Given the shape of Lc(x),
it is clear that the central locations, where a higher carrying capacity is assumed,
establish their primacy over time. There is no interaction among locations (no spatial
externality), and for each location x the system (3)–(4) reaches its non-trivial and
stable steady state. Figure3 presents the same simulations in the case in which there
is diffusion, that is dP = dL > 0. The overall dynamics of the system (1)–(2) is
analogous to what seen before but there are notable differences that underline the
role of diffusion as a spatial externality, justifying thus the introduction of a spatial
model to the study of the dynamic relation between pollution and population. Indeed,
even if the shape of the initial condition for both population and pollution increases
linearly from the leftmost to the rightmost locations, the spatial profiles of both
population and pollution over time change to end up mimicking the spatial pattern
of the carrying capacity, which by being the only spatially-dependent parameter
completely determines the spatial pattern at the equilibrium.
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Fig. 3 Evolution of pollution and population: diffusion case (dP = dL = 0.1)

By comparing Figs. 2 and 3, it is possible to notice that diffusion has a twofold
effect on the dynamics and steady states of pollution: the central and the lateral
locations witness less and more pollution accumulation, respectively, with respect
to the case without diffusion. This is because of the inherent tendency of diffusion
to smooth differences out [9, 14]. Pollution diffusion does have a beneficial effect
for the initially most polluted locations and a detrimental effect for the less polluted
ones: ignoring spatial externalities can thus result in macroscopic modeling errors,
since not only the dynamics, but even the steady states are affected by this type of
spatial interaction. It is also clear that when diffusion is present the overall population
becomes larger: on the one hand, the central locations reach a higher demographic
concentration, on the other hand, the lateral locations are an order of magnitude
bigger, with respect to the no-diffusion scenario. This is apparently in contrast with
what happens to pollution: pollutionhas anegative impact on thegrowthof population
via its carrying capacity dampening factor. At the steady state, in the central locations
there is less pollution such that the population concentration tends to increase: the
reaction term, ( 1

1+BPβ ), prevails on the smoothing tendency of diffusion, dL ∂2

∂x2 . In the
lateral locationswewould expect a symmetrical behavior, that is pollution to increase
while population to decrease; what instead happens is that diffusion prevails on
reaction and the population in the lateral locations can benefit from migration from
the central ones. Clearly, the introduction of diffusion enriches the dynamics and
affects the steady states: the overall effects are the results of the dynamical tension
between the reaction and the diffusion components of the system (1)–(2).

In Fig. 4 we show the long run per capita pollution in the case with no (left panel)
and with (right panel) diffusion. At the beginning of the time horizon per capita
pollution is identically equal to 1 across the spatial domain in both the cases by
assumption. In both the cases, over timeper capita pollution increases everywhere, but
the locationswho suffer themost are lateral ones, due to the extremely lowvalue of the
environmental carrying capacity that tends to keep population down. A fewwords on
the long run spatial distribution of per capita pollution in the two different frameworks
are needed. Per capita pollution is bounded, such that in the long run the spatial
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Fig. 4 Steady state per capita pollution: no diffusion and positive diffusion cases

economy can be considered sustainable. Comparing the left and the right panels, it
is clear that the central locations performs better in terms of per capita pollution, in
both scenarios: the combined effect of reaction and diffusion previously mentioned
turns out to be favorable to the central locations, as long as per capita pollution is
deemed to be a proxy of the health status of the environment. The major difference
between the two cases results in the higher level of pollution per capita taken in
the no-diffusion scenario. As seen before, both pollution and population increase in
the lateral locations when spatial externality are taken into account; however, now
we can compare such relative increases: population increases more than pollution,
resulting in lower per capita pollution than in the no-diffusion case.

5 Conclusion

This paper analyzes the mutual interactions between population and pollution in
a spatio-temporal dynamic economic geography model. We develop a dynamic
macroeconomic model to analyze the extent to which population and pollution may
affect each other not only over time but also across space. We show that the popula-
tion and pollution feedbackmay be important in order to assess the development path
that different locations in the spatial economywill follow. This means that neglecting
any spatial implication may give rise to misleading predictions about the environ-
ment and population relation. Thus, from a policy point of view, spatial externalities
represent an important aspect which deserves further attention. Indeed, the analysis
performed in this paper cannot be considered exhaustive, since important issues have
not be taken into account. Specifically, the pure dynamic setup of the model does not
allow us to assess how optimally defined policies may alter our conclusions about
the development path followed by single locations in the spatial economy. Extending
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the analysis in order to consider the associated optimal control problem along the
lines of [14] is a priority for future research.
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Price Bounds in Jump-Diffusion Markets
Revisited via Market Completions

Anne MacKay and Alexander Melnikov

Abstract It is well known that incomplete markets generally admit infinitely many
equivalent (local) martingale measures (EMMs), and that the resulting no-arbitrage
price of a contingent claim is not unique. The bounds on no-arbitrage prices for
a given contingent claim can be obtained by considering the set of EMMs on the
market. In some cases, incomplete markets can be completed by adding specific sets
of assets.Market completion techniques have beenmentioned in various publications
and can be used to simplify optimal investment and hedging problems. In this paper,
we consider a multidimensional jump-diffusion market with predictable jump sizes
and we revisit the no-arbitrage price bounds via market completions. We review
the conditions under which a given set of assets can complete the original market,
and we present a set of market completions that can be used to obtain the range of
no-arbitrage prices.

Keywords Incomplete markets · Jump-diffusion markets · Market completions
No-arbitrage price

1 Introduction

The absence of arbitrage in amarket allows for the existence of at least one equivalent
(local) martingale measure (EMM) that can be used to price contingent claims. In
a complete market, such a measure is unique and claims can be perfectly replicated
by trading in the available assets; the value of the replicating portfolio is the unique
no-arbitrage price of the claim. In an incomplete market, there exists more than one
such pricing measure, and some contingent claims cannot be perfectly replicated
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by investing in the market. These claims do not have a unique no-arbitrage price.
Instead, there exists a range of no-arbitrage prices that are acceptable for both the
buyer and the seller of the claim.

The theory of no-arbitrage pricing in incomplete markets is well developed. An
important result is that the range of no-arbitrage prices admitted by an incomplete
market can be obtained by taking the infimum and the supremum of the no-arbitrage
price over the set of EMMs.

In this paper, we discussmarket completions as away to describe the set of EMMs.
The idea of market completions is to associate each equivalent local martingale
measurewith a set of fictitious assets which forms a completemarket when combined
with the original incomplete one. The idea of adding fictitious assets to investigate
pricing and hedging problems in the Black-Scholes model first appeared in [9], and
was used in variousworks since then. For example, [14] showed how these arguments
can be also adapted to American options in a multidimensional diffusion market.
Market completion techniques were also independently developed in the framework
of multinomial markets in Appendix 3 of [11].

Market completion techniques have also been used to solve precise problems.
[6] make external risk tradable via market completion, and use the method to price
weather derivatives. In a diffusionmodel, [10] study pricing and hedging problems by
completing a market where incompleteness is due to different borrowing and lending
rates (see also [3]). Kane and Melnikov [8] extend the results to a jump-diffusion
model. Finally, [4] consider market completion techniques in the setting of a general
Lévy model.

In this paper, we consider a multidimensional jump-diffusion model with pre-
dictable jump sizes, in which incompleteness stems from a larger number of risk
sources than traded assets. We review results on the set of EMMs in this particular
model, and describe the assets that can be used to complete the market. We show the
equivalence between the set of all EMMs admitted by the market, and a subset of
possible market completions. Note that this is only possible because we assume that
the jump sizes are predictable (see [12] for details).

The paper is organized as follows. In Sect. 2, we present the market model and
recall specific results on market arbitrage and completeness. We discuss the link
between the set of EMMs and market completions in Sect. 3. Section 4 concludes.

2 Review of Basic Definitions and Concepts

In this section, we introduce the market model and review some key results on no-
arbitrage and market completeness conditions in the context of our model.
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2.1 Market Model

We work on a probability space (Ω,F ,P) with a finite time horizon T ∈ R. On
the probability space, we assume the existence of a d -dimensional Brownian motion
W = (W1, . . . ,Wd )

� and amultivariate Poisson processN = (N1, . . . ,Nn−d )
� with

intensity λ = (λ1, . . . , λn−d )
�, independent of W . We denote by F = {Ft}t≤T the

filtration generated by W and N , and augmented by the P-null sets. The intensity λ

can be stochastic, but is assumed to be predictable in t.
We define amarket (B, S) = (B, S1, . . . , Sk), in whichB denotes the bank account

process (considered to be risk-free) and S = (S1, . . . , Sk) represents the value of k
risky assets. Throughout the paper, we assume that k ≤ n. The k + 1 assets have the
following dynamics

dB(t) = B(t) r(t) dt,

dSi(t) = Si(t−)
(
μi(t) dt + σ V

i (t) dW (t) + σ J
i (t) dM (t)

)
(1)

with B(0) = 1 and Si(0) = si0 ∈ R+ for i ∈ {1, . . . , k}, and where M (t) = N (t) −∫ t
0 λ(s) ds. The risk-free interest rate r(t) ≥ 0, as well as the appreciation rate μ =

(μ1, . . . , μk)
� and the matrix-valued processes σ V and σ J , with ith row given by

the vectors σ V
i = (σ V

i1 , . . . , σ V
id ), and σ J

i = (σ J
i1, . . . , σ

J
i(n−d)), respectively, for i =

1, . . . , k, are predictable with respect to the filtration F. Going forward, we assume
that r(t) ≡ 0 for all t ∈ [0,T ], so that B(t) = 1 for all t ∈ [0,T ]. In other words, we
consider that the price processes are discounted by the bank account numéraire.

We also assume thatμ, σ V and σ J are uniformly bounded in (t, ω) ∈ [0,T ] × Ω ,
and that supt≤T λl(t) ≤ K , for someK < ∞, for all 0 ≤ l ≤ m. Under these assump-
tions, (1) has a unique solution. In order for the risky asset prices to remain positive,
we further assume that σ J

il (t) ∈ [0, 1] and λl(t) > 0 and bounded uniformly in t, for
1 ≤ i ≤ k and 1 ≤ l ≤ n − d .

Finally, we denote by σ = [σ V σ J ] the k × n matrix containing the volatility
coefficients. We assume that σ has full rank, so that det(σ (t)σ�(t)) �= 0 P-a.s. for
all t ∈ [0,T ]. This allows us to define the process θ = [θV θJ ]� by

θ(t) = σ�(t)(σ (t)σ�(t))−1μ(t), (2)

for t ∈ [0,T ].
We let the R(k+1)-valued process π = (π0(t), π1(t), . . . , πk(t))0≤t≤T represent a

(portfolio) strategy, and we assume that
∫ T
0 ‖π(t)‖2 dt < ∞, P-a.s. We denote the

value process of the resulting portfolio by X π , with

X π (t) = π0(t) B(t) +
k∑

i=1

πi(t)Si(t), for all 0 ≤ t ≤ T .
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A portfolio strategy is called admissible if its value process satisfies X π (t) ≥ −K
for some K = K(π) ≥ 0. We denote the class of admissible portfolio strategies with
initial capital x by

A (x) = {π ∈ R
k+1 : X π (0) = x, X π (t) ≥ −K for all t ≤ T }.

An admissible portfolio strategy π is called self-financing if the following holds:

X π (t) = X π (0) +
∫ t

0
π0(t)dB(t) +

k∑

i=1

∫ t

0
πi(t)dSi(t), for all 0 ≤ t ≤ T . (3)

Note that under our assumption that r(t) ≡ 0, the second term on the right-hand side
of (3) is always 0, and will therefore be omitted going forward.

As is usually the case, we only consider arbitrage-freemarkets. That is, we assume
that for any self-financing strategy π in A (0), for all 0 ≤ t ≤ T ,

P(X π (t) = 0) = 1, P(X π (t) ≥ 0) = 1 ⇒ P(X π (t) = 0) = 1.

The existence of an equivalent martingale measure (EMM), i.e. a measure equiv-
alent to P under which the value of any self-financing strategy is a local martingale,
is a sufficient condition for our market to be arbitrage-free. Such a measure ex-
ists if the market allows for at least one predictable process γ = (γ V , γ J )� with
γ J = (γ J

1 , . . . , γ J
n−d ) strictly positive that satisfies

σ V (t)γ V (t) + σ J (t)λ(t) • (1 − γ J (t)) = μ(t) = σ(t)θ(t), (4)

where 1 denotes a vector of ones, and where the second equality follows from (2).
Heuristically, this condition ensures that the drift of the discounted asset prices “dis-
appears” under an EMM. It is analogous to the no-arbitrage condition in a multidi-
mensional diffusion market, and comes from similar arguments. Going forward, we
will assume the existence of at least one process γ as described above.

It is possible to show that any solution γ to (4), with γ J
l > 0 for l ∈ {1, . . . , n −

d}, defines a probability measure. Indeed, for such a solution γ , we can define the
process Lγ = LV

γ L
J
γ , with

LV
γ (t) = exp

{
−

∫ t

0
γ V (s)�dW (s) − 1

2

∫ t

0
‖γ V (s)‖2ds

}
,

LJγ (t) = exp

{
−

∫ t

0
λ(s) • (1 − γ J (s))ds

} n−d∏

l=1

∏

s≤t

γ J
l (s)	Nl(s), for t ≤ T .

Then Lγ is a non-negative local martingale with E[Lγ (t)] = 1 for all t ∈ [0,T ].
We are only interested in the solutions γ such that Lγ is a true martingale, and we
define this set by
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 = {γ : γ solves (4), γ J
l > 0 for l ∈ {1, . . . , n − d},Lγ is a martingale}.

It is well known by now that the set 
 characterizes the set of all possible EMMs
on the (B, S)market (see for example [2]). This result is summarized in the following
proposition.

Proposition 2.1 (Theorem 4.2 of [2]) LetQ denote the set of all EMMs on the (B, S)

market and let dQγ

dP

∣∣∣
F t

= Lγ (t). Then, Qγ ∈ Q if and only if γ ∈ 
.

The reader is referred to [2] for the proof of this proposition.

2.2 Market (In)Completeness and Hedging Contingent
Claims

Jumps in the stock price process are often a source of incompleteness. In our particular
case, the size of the jumps is predictable, and the market is incomplete only when
there are less assets than sources of risk. Next, we review the concept of market
(in)completeness and discuss it in the context of the (B, S) market.

Market completeness is closely linked to the perfect replication of contingen-
t claims. We define a contingent claim as an FT -measurable random variable
fT = fT (ω) that satisfies EQ[ fT ] < ∞ for all Q ∈ Q.
A contingent claim is called replicable if there exists an initial capital x and an

admissible, self-financing strategy π that satisfies

X π (T ) = x +
k∑

i=1

∫ T

0
πi(t)dSi(t) = fT , P − a.s.

A market is called complete if any contingent claim is replicable. In a complete
market, the perfect hedging price (or fair price) C( fT ) of a replicable contingent
claim fT is defined as the lowest initial capital needed to perfectly replicate the
claim at T :

C( fT ,P) = inf{x ≥ 0 : ∃ π ∈ A (x) s.t. X π
T = fT ,P − a.s.}.

The perfect hedging price is also obtained as the expectation of the (discounted)
claim under the unique EMM, that is

C( fT ) = EQ[ fT ]. (5)

A well-known necessary and sufficient condition for market completeness is the
uniqueness of theEMM. In our setting, this is equivalent to the set
 being a singleton.
In other words, if (4) has only one solution such that γ J

l > 0 for l ∈ {1, . . . , n − d}
and Lγ is a martingale, then the market is complete.



558 A. MacKay and A. Melnikov

Note that (4) can be written as a system of k equations, and γ is a vector of length
n. Thus, when k < n, the solution cannot be unique. It is only possible for our market
to be complete when k = n, that is, when there are as many assets as sources of risk.

In the case where k = n, the unique element of 
 is given by γ V (t) = θV (t) and
γ J (t) = λ−1(t) • (λ(t) − θ J (t)), if θ J (t) < λ(t) for all t ∈ [0,T ]. When the bound
on θ J (t) is not satisfied, the market does not admit any martingale measure. This
result is discussed, for example, in [1, 7].

In this paper, our goal is to study no-arbitrage price bounds in incomplete markets.
Henceforth, we assume k < n, which results in market incompleteness.

As recalled previously, in an incomplete market, some contingent claims are not
perfectly replicable. That is, it is impossible to find a self-financing admissible trading
strategy whose value at T is equal to fT P-almost surely. Therefore, we extend the
set of admissible strategies to consider investment strategies with consumption. Such
strategies will be represented by a (k + 2)-dimensional F-adapted process (π, c) =
(π0(t), π1(t), . . . , πk(t), c(t))t≤T , where c(t) ≥ 0 for t ≤ T . The value process of the
strategy (π, c) is given by

X π,c(t) = X π,c(0) +
k∑

i=1

∫ t

0
πi(s)dSi(s) −

∫ t

0
c(s)ds.

The strategy (π, c)with initial capital x is a (super-)hedge for the contingent claim
fT if its value process satisfies X π,c(T ) ≥ fT , P − a.s..
An investor selling the contingent claim fT will require its price to be at least

sufficient to build a (super-)hedging portfolio for the claim.Thus, in the (B, S)market,
we call the upper hedging price (or seller price) C∗( fT ) the smallest initial capital
needed by the investor to set up such a portfolio for fT :

C∗( fT ) = inf{x ≥ 0 : ∃(π, c) ∈ A (x) : X π,c(T ) ≥ fT ,P − a.s.} (6)

An investor buying the contingent claim fT will not want to pay more than the
amount that she will be able to recover by time T , by investing in a strategy with
consumption. Therefore, the largest amount allowing for such result is called lower
hedging price (or buyer price) C∗( fT ) is given by:

C∗( fT ) = inf{x ≥ 0 : ∃(π, c) ∈ A (−x) : X π,c(T ) ≥ − fT ,P − a.s.} (7)

Claims that cannot be perfectly replicated in an incomplete market do not have a
unique, perfect hedging price as defined by (5). Indeed, each measure Q ∈ Q yields
a different arbitrage price EQ[ fT ]. It is well known that the lower and upper hedging
prices correspond to the lower and upper bounds of the set of arbitrage prices (for
more details on this result, the reader is referred to [5]).
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The upper and lower hedging prices for a contingent claim fT can thus be obtained
by taking the infimum and the supremum over the set of EMMs admitted by an
incomplete market:

C∗( fT ) = sup
Q∈Q

EQ[ fT ], C∗( fT ) = inf
Q∈Q

EQ[ fT ].

3 Pricing Via Market Completions

In this section, we show how the upper and lower hedging prices can be represented
in terms of market completions, or additional assets added to complete the original
(B, S) market. In particular, in the market defined in Sect. 2.1, we characterize the
set of completions that should be considered to obtain the no-arbitrage price bounds.

3.1 Market Completions

Let Sc be an (n − k)-dimensional process representing the value of (n − k) assets that
will be added to the original market. We assume that the new assets have dynamics
similar to the first k ones, that is, for i ∈ {k + 1, . . . , n},

dSi(t) = Si(t−)
(
νi(t) dt + ρV

i (t) dW (t) + ρJ
i (t) dM (t)

)
,

with Si(0) = si0 ∈ R+, and where W andM are defined as in Sect. 2.1. The (n − k)-
dimensional appreciation rate process ν and the matrix-valued processes ρV and
ρJ , with ith row given by ρV

i = (ρV
i1 , . . . , ρ

V
id ), and ρJ

i = (ρJ
i1, . . . , ρ

J
i(n−d)), respec-

tively, for i = 1, . . . , n − k, are predictable with respect to the filtration F. As in
the original market, we assume that ν and ρ = [ρV ρJ ] are uniformly bounded in
(t, ω) ∈ [0,T ] × Ω , and that ρJ

il ∈ [0, 1], for k + 1 ≤ i ≤ n and 1 ≤ l ≤ n − d .
We denote S̃ = (S, Sc), μ̃ = (μ, ν)� and σ̃ = (

(
σ
ρ

)
), and only consider comple-

tions Sc such that the augmented market (B, S̃) is complete. That is, for a given
market augmented with the completion Sc, we assume that det σ̃ �= 0, and we define
θ̃ = (θ̃V , θ̃ J ) by

θ̃ = σ̃� (
σ̃ σ̃�)−1

μ̃, (8)

and γ̃ = (γ̃ V , γ̃ J ) by

γ̃ V = θ̃V γ̃ J = λ−1 •
(
λ − θ̃ J

)
. (9)

If θ̃ J (t) < λ(t) for all t ∈ [0,T ], then Lγ̃ is a true martingale and the (B, S̃) market
is complete.
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Then, Qγ̃ , defined by dQγ̃

dP = Lγ̃ , is the unique EMM on the completed market
(B, S̃). It immediately follows that a contingent claim fT has the unique no-arbitrage
price E[Lγ̃ fT ] in the completed market.

3.2 A Special Set of Market Completions

In this section, we want to express the upper and lower hedging prices defined in (6)
and (7) in terms of market completions. To do so, we follow ideas similar to those
used by [14] in a multivariate diffusion setting.

We let Rρ be defined as the set of (n − k) × n matrix-valued F-adapted process
uniformly bounded in (t, ω) ∈ [0,T ] × Ω , with ρJ

il ∈ [0, 1], for k + 1 ≤ i ≤ n and
1 ≤ l ≤ n − d , such that det

(
σ
ρ

) �= 0 P-a.s.
For each ρ ∈ Rρ , we denote by Dρ the set of appreciation rate processes ν for

which the associated market is complete. Therefore, we have

Dρ := {ν : ν isF-predictable, uniformly bounded, s.t. θ̃ J (t) < λ(t) ∀ t ∈ [0,T ]}.

For a given ρ ∈ Rρ , we define the upper and lower completion prices C̃∗( fT ; ρ)

and C̃∗( fT ; ρ) by

C̃∗( fT ; ρ) = sup
ν∈Dρ

E[Lγ̃ (ν, ρ) fT ], C̃∗( fT ; ρ) = inf
ν∈Dρ

E[Lγ̃ (ν, ρ) fT ].

In the above, the density process Lγ̃ (ν, ρ) = LV
γ̃ (ν, ρ)LJγ̃ (ν, ρ) defines the unique

EMM on the market completed using assets with appreciation rate vector ν and
diffusion coefficient matrix ρ.

As it is the case in the multidimensional diffusion market (see [14]), the upper
and lower completion prices do not depend on the choice of ρ.

Proposition 3.1 Fix ρ and ρ ′ ∈ Rρ . Then,

C̃∗( fT ; ρ) = C̃∗( fT ; ρ ′), C̃∗( fT ; ρ) = C̃∗( fT ; ρ ′).

Proof The proof is very similar to the proof of Proposition 2.1 of [14]. Take the
(n − k) × k and (n − k) × (n − k) predictable matrix valued processes C and D
with det(D) �= 0 satisfying

(
σ

ρ ′

)
=

(
I 0
C D

) (
σ

ρ

)
,
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where I denotes the identity matrix. Then it is possible to show that

θ̃ν,ρ ′ =
(

σ

ρ ′

)� ((
σ

ρ ′

)(
σ

ρ ′

)�)−1 (
μ

ν

)
= θ̃ν ′,ρ,

with ν ′ = D−1(ν − Cμ) ∈ Dρ . The result follows. ��
Since the upper and lower completion prices are independent of ρ, it is natural

to only consider the market completions associated with a particular matrix-valued
process ρ. Henceforth, we fix ρ̄ ∈ Rρ satisfying

σ ρ̄� = 0 and ρ̄ρ̄� = I . (10)

It follows that θ̃ν,ρ̄ = θ + ϑν with ϑν = ρ̄�(ρ̄ρ̄�)−1ν for any ν ∈ Dρ̄ .
The density processLγ̃ (ν, ρ̄) of the EMMassociatedwith eachmarket completion

with parameters ρ̄ and ν ∈ Dρ̄ can then be written as

Lγ̃ (t; ν, ρ̄) = e− ∫ t
0 γ V (s)�dW (s)−∫ t

0 ϑV
ν (s)�dW (s)− 1

2

∫ t
0 ‖θV (s)+ϑV

ν (s)‖2ds

× e− ∫ t
0 θJ (s) ds−∫ t

0 ϑJ
ν (s) ds

n−d∏

l=1

∏

s≤t

λ−1(s) •
(
λ(s) − θJ (s) − ϑJ

ν (s)
)

	Nl(s).

In the above, θ = (θV , θ J ) is as defined in (2), and is therefore independent of the
market completion.

3.3 Completion Price Bounds

Finally, we highlight the equivalence between the set of EMMs Q of the original
market and the set of market completions associated with the fixed matrix process ρ

satisfying (10).

Lemma 1 Fix ρ ∈ Rρ . Then for any γ ∈ 
, it is possible to find ν ∈ Dρ such that

γ V = θ̃V
ν,ρ, γ J = λ−1 • (λ − θ̃ J

ν,ρ).

Proof To find such a ν ∈ Dρ , it suffices to let θ̃V = γ V and θ̃ J = λ − λ • γ J .
Then, since σ̃�(̃σ σ̃�)−1 is an n × nmatrix, there is only one solution μ̃ = (μ, ν)

that satisfies
θ̃ = σ̃�(̃σ σ̃�)−1μ̃. (11)

Indeed, this solution is given by μ̃ = σ̃ θ̃ , and ν ∈ Dρ by definition.
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It follows fromLemma 1 that anymeasureQ ∈ Q can be recovered by completing
the market using a market completion Sc with parameters ρ̄ and ν, for some ν ∈ Dρ̄ .

We can also show that any ν ∈ Dρ̄ defines an element γ ∈ 
.

Lemma 2 Fix ρ ∈ Rρ , with ρ satisfying (10). Then for any ν ∈ Dρ , the resulting
γ̃ , as defined by (8) and (9) is an element of 
.

Proof From (10), we have θ̃ = θ + ϑ , and the resulting γ̃ solves (4), since σθ� = μ

and σϑ� = 0.

Therefore, the unique EMM resulting from any market completion Sc with pa-
rameters ρ̄ and ν, with ν ∈ Dρ̄ is an element of Q.

Lemmas 1 and 2 confirm that the set of market completions with diffusion coeffi-
cient matrix ρ fixed spans the set of EMMsQ on the complete market. It is therefore
possible to express the range of no-arbitrage prices for a contingent claim fT in terms
of the set of market completions.

Proposition 3.2 The upper and lower hedging prices C∗( fT ) and C∗( fT ) coincide
with the upper and lower completion prices C̃∗( fT ) and C̃∗( fT ), and we have

C∗( fT ) = sup
ν∈Dρ

E[Lγ̃ (T ; ν, ρ) fT ], C∗( fT ) = inf
ν∈Dρ

E[Lγ̃ (T ; ν, ρ) fT ].

4 Concluding Remarks

In a pure diffusionmarket, the processLγ̃ (ν, ρ) can be expressed as the product of two
(local)martingales; one pertaining to the originalmarket, and the other one associated
with the market completion. This makes market completion techniques very useful
in the context of hedging and portfolio optimization problems. The addition of jumps
in the market generally removes the possibility of such an expression, as is remarked
at the end of Sect. 1 of [13].
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Error Expansion for a Symplectic
Scheme for Stochastic Hamiltonian
Systems

Cristina Anton

Abstract We consider a stochastic autonomous Hamiltonian system for which the
flowpreserves the symplectic structure. Numerical simulations show that for stochas-
tic Hamiltonian systems symplectic schemes produce more accurate results for long
term simulations than non-sysmplectic numerical schemes. We study the approxi-
mation error corresponding to a symplectic weak scheme of order one. A backward
error analysis is done at the level of the Kolmogorov equation associated with the
initial stochastic Hamiltonian system.We obtain an expansion of the error in terms of
powers of the discretization step size and the solutions of the modified Kolmogorov
equation.

Keywords Backward error analysis · Stochastic Hamiltonian systems
Kolmogorov equation · Weak symplectic scheme

1 Introduction

Numerical simulations [5, 9, 11] show that for stochasticHamiltonian systems (SHS)
symplectic schemes give more accurate results for long term simulation that non-
symplectic schemes, but, to the best of our knowledge, no theoretical proof was done
in the stochastic case. For a SHS and a first weak order symplectic scheme, in [2] we
present an expansion of the global approximation error in powers of the discretization
step size. Comparing this expansion with the global error expansion obtained in
[13] for the Euler scheme (which has also weak order one), we justify the superior
performance of the symplectic scheme for the simple linear SHS corresponding to
the Kobo oscillator [2]. However, this justification can not be easily extended for
general non-linear SHSs. Here we use backward error analysis to find an expansion
of error for the symplectic scheme in terms of the powers of the discretization step
size and the solutions of the modified Kolmogorov equation [3].
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Backward error analysis was successfully applied to study long term behavior
of deterministic Hamiltonian systems [4]. Recently, backward error analysis was
extended to stochastic differential equations (SDE). Modified SDEs associated with
various numerical schemes are presented in [1, 10, 14]. A SDE defined on the n-
dimensional torus and its approximation by the explicit Euler scheme are studied
using backward error analysis in [3].

We follow the same approach as in [3], and we construct the modified equation
not at the level of the SDE, but at the level of the associated Kolmogorov equation.
Compared with [3] we consider a fully implicit scheme instead of an explicit one,
and we consider a SHSwith additive or multiplicative noise defined on R2n instead of
the compact n dimensional torus. Implicit numerical schemes are also considered in
[6, 7], but for Langevin SDEs on Rn with additive noise. Studying the multiplicative
noise case is more difficult, especially for a fully implicit numerical scheme.

In the next section we present some preliminary results regarding the solution
of the SHS and the approximate solution given by the numerical scheme. The steps
followed for the backward error analysis are included in Sect. 3. The last section
contains the conclusions.

2 Assumptions and Preliminary Results

We introduce a few definitions and notations. We denote N = {1, 2, . . .}, N ∗ =
{1, 2, . . .} and for any x = (x1, . . . , xn)T ∈ Rn, |x| represents the Euclidean norm.

For any multi-index α = (α1, . . . , αr) ∈ Nr with length |α| = α1 + · · · + αr , let
∂α = ∂ |α|

∂
α1
1 ···∂αr

r
denote the partial derivative of order |α|.

We define the following space of functions with polynomial growth:

C∞
pol(R

2n) =
{
f ∈ C∞(R2n) such that f and all its derivatives have polynomial growth

}

For any k, l ∈ N, we denote

Cl
k (R

2n) =
{
f ∈ Cl(R2n) : there exists Cl,k > 0 such that for all x ∈ R2n and any index

α ∈ N2n, |α| ≤ l, |∂α f (x)| ≤ Cl,k (1 + |x|2k )
}
.

On Cl
k(R

2n) we define [7] the norm ‖ · ‖l,k and the semi norm | · |l,k :

‖ f ‖l,k = sup
α,|α|≤l

|∂α f (x)|
1 + |x|2k , | f |l,k = sup

α,1≤|α|≤l

|∂α f (x)|
1 + |x|2k . (1)

Notice that if φ ∈ C∞
pol(R

2n), then for all d ∈ N, there exists rd ∈ N such that φ ∈
Cd
rd (R

2n).
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We consider the following stochastic Hamiltonian system

dP = −∂QH0(P,Q)dt −
m∑
r=1

∂QHr(P,Q) ◦ dwr
t , P(0) = p

dQ = ∂PH0(P,Q)dt +
m∑
r=1

∂PHr(P,Q) ◦ dwr
t , Q(0) = q, (2)

whereP,Q,p, q aren-dimensional columnvectors,wr
t , r = 1, . . . ,m are independent

standardWiener processes, and for any function f defined on Rn × Rn, ∂P f and ∂Q f
denote the column vectors with components (∂ f/∂Pi), 1 ≤ i ≤ n and (∂ f/∂Qi), 1 ≤
i ≤ n, respectively. The stochastic flow (p, q) −→ (P,Q) of the SHS (2) preserves
the symplectic structure [9]: dP ∧ dQ = dp ∧ dq, where the differential 2-form dp ∧
dq = dp1 ∧ dq1 + · · · + dpn ∧ dqn.

The system (2) can be re-written in the Ito formulation:

dP = a(P,Q)dt +
m∑
r=1

σ r(P,Q)dwr
t , P(0) = p (3)

dQ = b(P,Q)dt +
m∑
r=1

γ r(P,Q)dwr
t , Q(0) = q, (4)

where

a = −∂QH0 + 1

2

m∑
r=1

n∑
j=1

(
∂Hr

∂Qj
∂Q

(
∂Hr

∂Pj

)
− ∂Hr

∂Pj
∂Q

(
∂Hr

∂Qj

))

b = ∂PH0 + 1

2

m∑
r=1

n∑
j=1

(
− ∂Hr

∂Qj
∂P

(
∂Hr

∂Pj

)
+ ∂Hr

∂Pj
∂P

(
∂Hr

∂Qj

))

σ r = −∂QHr, γ r = ∂PHr .

Here everywhere the arguments are (P,Q), and a, b, σ r , γ r , r = 1, . . . ,m are
n−dimensional column vectors.

The Kolmogorov generator L(p, q, ∂p, ∂q) associated with the SHS (3)–(4) has
the following form [12]

L(p, q, ∂p, ∂q)φ(p, q) =
n∑
j=1

(
a j

∂

∂p j
φ(p, q) + b j

∂

∂q j
φ(p, q)

)
+ 1

2

m∑
r=1

n∑
i, j=1

(
σ r
i σ

r
j

∂2

∂pip j
φ(p, q) + γ r

i γ r
j

∂2

∂qiq j
φ(p, q) + 2σ r

i γ
r
j

∂2

∂piq j
φ(p, q)

)
, φ ∈ C∞(R2n)

Throughout the paper we make the same assumptions as in [12, 13]:
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A1. The derivatives of any order of Hi ∈ C∞, i = 1, . . . ,m are bounded, and the
derivative of any order k ≥ 2 of H0 ∈ C∞ are bounded.

A2. The operator L is uniformly elliptic: there exists a constant α > 0 such that for
all x = (p, q)T ∈ R2n we have

α|x|2 ≤
m∑
r=1

n∑
i, j=1

(
σ r
i σ

r
j pip j + γ r

i γ r
j qiq j + 2σ r

i γ
r
j piq j

)
(5)

A3. There exists a constant β > 0 and a compact set K such that for all x = (p, q)T

∈ R2n − K we have p · a(x) + q · b(x) ≤ −β|x|2.
Notice that assumptionA1 implies that we have a Lipschitz condition, i.e. there exists
L1 > 0 such that for all X = (P,Q)T , x = (p, q)T ∈ R2n we have

m∑
j=0

∣∣∣∣
(
∂PHj , ∂QHj

)T
(X ) − (

∂pH j , ∂qH j
)T

(x)

∣∣∣∣≤ L1|X − x|. (6)

2.1 Results Regarding the Solution of the Stochastic
Hamiltonian System

Proceeding as in Proposition 3.1 in [12], under the assumptions A1-A3 we can prove
the following result regarding the solution

(
X 0,x0(t)

) = (
(P(t, p0, q0),Q(t, p0, q0))T

)
of the SHS (2) with the initial condition x0 = (p0, q0)T ∈ R2n.

Lemma 1 The Markov process
(
X 0,x0(t)

)
is ergodic. The unique invariant proba-

bility measure μ has finite moments of any order and a density ρ ≥ 0. Moreover, for
any k ∈ N there exist Ck , γk > 0 such that for any x0 = (p0, q0)T ∈ R2n, and any
t ≥ 0 we have:

E(|X 0,x0(t)|k) ≤ Ck
(
1 + |x0|k exp(−γk t)

)
. (7)

We consider any function φ ∈ C∞
pol(R

2n), and for all x = (p, q)T ∈ R2n and all t > 0
we define u(t, p, q) := E[φ(X 0,x(t)]. Notice that Lemma 1 implies that u is well
defined. It is well known [12] that u(t, p, q) is a classical solution of the Kolmogorov
equation

du

dt
(t, p, q) = Lu(t, p, q), u(0, p, q) = φ(p, q), (p, q)T ∈ R2n, t > 0. (8)

For any function f ∈ C∞
pol(R

2n) we denote the average

< f >:=
∫

f (x)dμ(x)
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The results included in the following lemma show the exponential convergence of
u and its derivatives and are essential for the backward error analysis presented in
this paper. The proof is an extension of the proof of Theorem 3.4 in [12], based on
Theorem 2.5 in [8].

Lemma 2 Let k ∈ N, k ≥ 1, and φ ∈ C∞
pol(R

2n) ∩ Ck+n+1
rk+n+1

(R2n), rk+n+1 ∈ N. Then
there exist γk > 0, Ck > 0 and lk ∈ N such that lk > rk+n+1 and for any 0 < γ < γk
and all t ≥ 0 we have

|u(t, x)|k,lk ≤ Ck ‖φ− < φ >‖k+n+1,rk+n+1
exp(−γ t). (9)

‖u(t, x)− < φ > ‖0,l0 ≤ C0 ‖φ− < φ >‖n+1,rn+1
exp(−γ t). (10)

2.2 Results Regarding the Symplectic Scheme

We consider the following one-step approximation [9] for the system (2):

Pk+1 = Pk − h

(
∂QH0 + 1

2

m∑
r=1

∂QG(r,r)

)
− √

h
m∑
r=1

ςrk∂QHr, P0 = p0 (11)

Qk+1 = Qk + h

(
∂PH0 + 1

2

m∑
r=1

∂PG(r,r)

)
+ √

h
m∑
r=1

ςrk∂PHr Q0 = q0 (12)

where G(r,r) = ∑n
i=1

∂Hr
∂Qi

∂Hr
∂Pi

, the random variables ςrk are mutually independent
identically distributed according to the law, P(ςrk = ±1) = 1/2, and everywhere the
arguments are (Pk+1,Qk).

Notice that the first equation (11) is implicit. Let denote δ := √
h and F(p, q) =(

H0(p, q) + 1
2

∑m
r=1 G(r,r)(p, q)

)
. Then we can reformulate the scheme (11)–(12) as

follows:

Pk+1 = Pk − δ2∂QF(Pk+1,Qk) − δ

m∑
r=1

ςrk∂QHr(Pk+1,Qk) (13)

Qk+1 = Qk + δ2∂PF(Pk+1,Qk) + δ

m∑
r=1

ςrk∂PHr(Pk+1,Qk) (14)

Using the Lipschitz condition (6) and proceeding as in the proof of Theorem 4.6.1
in [9] we can show that the scheme (13)–(14) is well defined:

Lemma 3 There exist h01 > 0, C > 0 such that for any 0 < h ≤ h01 and any
(p, q)t ∈ R2n there exists a unique z ∈ Rn such that z = p − h∂qF(z, q) − √

h
∑m

r=1

ςrk∂qHr(z, q) which satisfies |z − p| ≤ C(1 + |p|)√h.

Moreover, Theorem 4.6.1 in [9] shows that implicit method (13)–(14) is symplec-
tic and of first weak order: for any T > 0, and any φ ∈ C∞

pol(R
2n) we have
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|E(φ(Pk ,Qk)) − E(φ(X 0,x0(kh)))| ≤ c(φ,T )h, k = 0, . . . , T/h�, c(φ,T ) > 0.
(15)

We define the function φδ which associate to (q, p) ∈ R2n the solution z =
(z1, z2)T ∈ R2n of f (δ, q, p, z1, z2) = 0, where

f (δ, q, p, z) =
[
z1 − p + δ2∂qF(z1, q) + δ

∑m
r=1 ςr∂qHr(z1, q)

z2 − q − δ2∂pF(z1, q) − δ
∑m

r=1 ςr∂pHr(z1, q)

]
(16)

where the random variables ςr are mutually independent identically distributed
according to the law, P(ςr = ±1) = 1/2, Since the scheme (13)–(14) is well defined,
the function φδ is also well defined for any δ ∈ (0,

√
h01). Using A1 it is easy to

show that there exists h03 ≤ h01 such that ∂z f (δ, q, p, z) = I − B(δ, p, q, z) where
‖B(δ, p, q, z)‖ < 1 for any (δ, p, q, z) ∈ (0,

√
h03) × R2n ×R2n. Thus, ∂z f (δ, q, p, z)

is invertible, and from the Implicit Functions Theorem we obtain that the func-
tion defined by (δ, p, q) → φδ(p, q) is C∞ on a neighborhood of each point of
(0,

√
h03) × R2n.

Following the same approach as in the proof of Proposition 7.1 in [12]we can show
that the moments of the approximating process (Pk ,Qk) satisfy a similar property
with (7):

Lemma 4 There exist 0 < h02 ≤ h01 such that the symplectic scheme (11)–(12)with
any initial condition (p, q)t ∈ R2n and any 0 < h ≤ h02 satisfies for any l ∈ N∗

Ep,q(|Pk |2l + |Qk |2l) ≤ Cl
(
1 + (|p|2l + |q|2l) exp(−αlkh)

)
, Cl > 0, αl > 0.

(17)

3 Asymptotic Expansion of the Weak Error

Using a Taylor expansion and the fact that u is a solution of the Kolmogorov equation
(8) we obtain the following expansion.

Proposition 1 Let consider any N ∈ N and any φ ∈ C∞
pol(R

2n) ∩ C2N+n+3
r2N+n+3

(R2n),
r2N+n+3 ∈ N. There exist c(N ) > 0 and lN ∈ N, lN > r2N+n+3 such that for all h > 0
and (p, q)T ∈ R2n we have

|u(h, p, q) −
N∑

k=0

hk

k! L
kφ(p, q)| ≤ c(N )hN+1‖φ− < φ > ‖2N+3+n,r2N+3+n

(1 + |p|2lN + |q|2lN ) (18)

Let h0 = min{h02, h03}.We study the first step of the approximating process (Pk ,Qk),
and later we will use the Markov property to extend the results at all steps. The
following result gives an expansion for the symplectic scheme, similar with the
expansion (18).
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Proposition 2 For any k ∈ N there exists an operatorAk of order 2k with coefficients
in C∞

pol(R
2n) such that for any N ∈ N and any φ ∈ C∞

pol(R
2n) ∩ C2N+2

r2N+2
(R2n), r2N+2 ∈

N, there exist CN > 0 and lN ∈ N such that for all 0 < h ≤ h0 and (p, q)T ∈ R2n we
have A0 = I , A1 = L, and

|E(φ(Q1,P1)) −
N∑

k=0

hkAk(p, q)φ(p, q)| ≤ CNh
N+1(1 + |p|2lN + |q|2lN )|φ|2N+2,r2N+2

Proof Firstly we use Taylor expansions to obtain expansions for P1 andQ1 (see also
the proof of Lemma 3.4 in [6]). Then the proof can be done using the same approach
as in the proof of Proposition 3.2 in [6].

3.1 The Modified Generator

Following the same approach as in [3], we want to construct a formal series L =
L + hL1 + · · · + hkLk + · · · such that formally the solution v(h, p, q) of the equation

∂tv(t, p, q) = L v(t, p, q), t > 0, v(0, p, q) = φ(p, q), (p, q)T ∈ R2n,

coincides in the sense of asymptotic expansionwith the transition semigroupE(φ(P1,
Q1)) studied in Proposition 2. In order to have

exp(hL )φ = φ +
∑
k≥1

hkAkφ

we define the Lk operator as

Lk = Ak+1 +
k∑

l=1

Bl

l!
∑

k1+···+kl+1=k−l

Lk1 . . . LklAkl+1+1 (19)

Bl are the Bernoulli numbers and Lk is an operator of order 2k + 2 with coefficients
in C∞

pol(R
2n) and Lk1 = 0. We also have

Ak =
k∑

l=1

1

l!
∑

k1+···+kl=k−l

Lk1 . . . Lkl . (20)

We define the modified generator

L(N ) = L +
N∑

k=1

hkLk , N ∈ N∗. (21)
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Since we do not know if the modified equation

∂tv
(N )(t, p, q) = L(N )v(N )(t, p, q), t > 0, v(N )(0, p, q) = φ(p, q), (p, q)T ∈ R2n,

has a solution, we construct an approximate solution associated to (21).

Proposition 3 Let φ ∈ C∞
pol(R

2n). For all k ∈ N there exist functions vk(t, ·) ∈
C∞
pol(R

2n) defined for all t ≥ 0 such that v0(0, ·) = φ(·), vk(0, ·) = 0, k ≥ 1, and

∂tvk(t, p, q) − Lvk(t, p, q) =
k∑

l=1

Llvk−l(t, p, q), t ≥ 0. (22)

Moreover, for all k ∈ N, j ∈ N∗ there exist γk, j > 0 and positive integers αk, j and
lk,0 such that for all t ≥ 0 we have

|vk(t)| j,αk, j ≤ Qk, j (t)e
−γk, j t‖φ− < φ > ‖ j+(n+1)(k+1)+4k,r j+(n+1)(k+1)+4k , (23)

‖vk(t)‖0,lk,0 ≤ C0,k‖φ− < φ > ‖(n+1)(k+1)+4k,r(n+1)(k+1)+4k , (24)

HereQk, j : [0,∞) → [0,∞) are polynomial functions with positive coefficients and
the constants C0,k do not depend on t.

Proof The proof is similar with the proof of Theorem 4.1 in [6]. Inequalities (23)–
(24) are a consequence of the results presented in Lemma 2.

For any N ≥ 0, we define the approximate solution of the modified flow as:

v(N )(t, p, q) =
N∑

k=0

hkvk(t, p, q). (25)

We can easily show that for all t ≥ 0 we have

∂tv
(N )(t, p, q) = L(N )v(N )(t, p, q) − R(N )(t, p, q), v(N )(0, p, q) = φ(p, q), (26)

where

R(N )(t, p, q) =
2N∑

i=N+1

hi
N∑

k=i−N

Lkvi−k (27)

is of order O(hN+1). The following result can be proved similarly with Theorem 4.1
in [3].
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Proposition 4 Let φ ∈ C∞
pol(R

2n). For any N ∈ N∗ there exist CN > 0 and lN ,

k2N+2 ∈ N such that for all t ≥ 0, 0 < h ≤ h0, (p, q) ∈ R2n we have

∣∣∣∣E(v(N )(t,P1,Q1) − v(N )(t + h, p, q))

∣∣∣∣
≤ hN+1CN (1 + |p|2lN + |q|2lN ) sup

s∈[0,h]
k=0,...,N

|vk(t + s, ·)|2N+2,k2N+2 . (28)

3.2 Main Result

We now study the long time behavior of the numerical solution. We obtain an expan-
sion similar with the one for the exact solution, given in Proposition 1.

Theorem 1 Let N ∈ N be fixed, and let (Pk ,Qk) be the discrete process defined
by the symplectic scheme. Let 0 < h ≤ h0, αN = 6N + 8 + (n + 1)(N + 2) and φ ∈
C∞
pol(R

2n) ∩ CαN
rαN

. Then there exist CN > 0 and lN ∈ N such that for all k ∈ N

|E(φ(Pk ,Qk)) − v(N )(kh, p, q)| ≤ hN+1CN (1 + |p|2lN + |q|2lN )‖φ− < φ > ‖αN ,rαN
.

Proof Let tk = kh. By the Markov property of (Pk ,Qk) we have

|E(φ(Pk ,Qk ) − v(N+1)(tk , p, q)| = |E(v(N+1)(0,Pk ,Qk )) − v(N+1)(tk , p, q)| =∣∣∣∣∣∣
E

⎛
⎝
k−1∑
j=0

E

(
v(N+1)(t j ,Pk− j ,Qk− j ) − v(N+1)(t j+1,Pk− j−1,Qk− j−1)

∣∣∣∣Pk− j−1,Qk− j−1

)⎞
⎠

∣∣∣∣∣∣

≤
k−1∑
j=0

∣∣∣∣E
(
E

(
v(N+1) (

t j ,P1(Pk− j−1,Qk− j−1),Q1(Pk− j−1,Qk− j−1)
) − v(N+1)(t j+1,

Pk− j−1,Qk− j−1)

∣∣∣∣Pk− j−1,Qk− j−1

))∣∣∣∣,

where (P1(p, q),Q1(p, q)) is the first step of the scheme (11)–(12) when the ini-
tial condition is (p, q). Using inequalities (17), (23), and (28), with t = t j , j =
0, . . . , k − 1, we deduce that there exist positive integers lN , kN such that

‖E(v(N+1)(0,Pk ,Qk ) − v(N+1)(tk , p, q)‖0,lN ≤ hN+2c
k−1∑
j=0

sup
s∈[0,h]

i=0,...,N+1

|vi(t j + s, ·)|2N+4,kN

≤ hN+2c‖φ− < φ > ‖αN ,rαN

k−1∑
j=0

Q2N+4(t j )e
−λ2N+4t j

≤ hN+2c‖φ− < φ > ‖αN ,rαN

k−1∑
j=0

e−λ̃2N+4t j ,
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where c > 0, 0 < λ̃2N+4 < λ2N+4 and Q2N+4 is a polynomial function with positive
coefficients. Notice that for a fixed constant λ > 0 we have

k−1∑
j=0

e−λt j ≤ 1

1 − e−λh
≤ c1

h
,

where the constant c1 depends on λ and h0. Hence, using the previous inequality and
(24) we get

‖E(φ(Pk ,Qk) − v(N )(tk , p, q)‖0,lN = ‖E(v(N+1)(0,Pk ,Qk) − v(N+1)(tk , p, q)

+ hN+1vN+1(tk , p, q)‖0,lN ≤ hN+1c2‖φ− < φ > ‖αN ,rαN
+ hN+1‖vN+1(tk , p, q)‖0,lN

≤ hN+1c2‖φ− < φ > ‖αN ,rαN
+ hN+1C0,N+1‖φ− < φ > ‖(n+1)(N+2)+4(N+1),rαN

≤ hN+1CN‖φ− < φ > ‖αN ,rαN

4 Conclusions and Future Work

We have presented a weak backward error analysis for a SHS system and a symplec-
tic scheme of first weak order. The main tools are the exponential convergence to
equilibrium of the solution of theKolmogorov equation, and the uniform ellipticity of
the associated operator.We plan to do a backward error analysis under less restrictive
assumptions. The main difficulty is that the symplectic schemes are fully implicit,
and for SDEs with multiplicative noise and unbounded coefficients, methods from
Malliavin calculus are needed.
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Rogue Waves in the Generalized
Davey-Stewartson System

Mervenur Belin and Irma Hacinliyan

Abstract In this study, we consider rogue waves, which appear and disappear sud-
denly with large amplitudes, in the generalized Davey-Stewartson (GDS) system
found in acoustics and discuss their dynamic structure. For the rogue wave solutions,
we first obtain the Hirota bilinear form of the GDS system through rational and bilog-
arithmic transformations. Then, forming the solutions of the GDS system through
determinants of matrices, we obtain three types of rogue wave solutions depending
on the size of the matrices (N × N ) and the order of the N -rational solutions: fun-
damental (line), multi- and higher-order rogue waves. We report the behavior and
differences of these three types of rogue waves and explain the change in the waves
with respect to time.

Keywords Solution · Rogue waves · Davey-Stewartson system

1 Introduction

Rogue waves, often called freak waves or giant waves, are those that appear from
nowhere and then suddenly disappear without any trace [1]. Researchers considered
modulational instability to be the reason for the formation of rogue waves [2, 3].
Peregrine first obtained a fundamental rogue wave for the nonlinear Schrödinger
(NLS) equation involving water waves in 1983 [4]. For this reason, the solution is
also called the Peregrine soliton. Subsequently, rogue waves have been observed in
many other nonlinear wave phenomena, such as water, optical and acoustic waves [3,
5–7]. Ohta and Yang have recently established rogue waves in the Davey-Stewartson
(DS) equations [8–10]:
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iuζ = uξξ + γ uηη + χ |u|2u + βuvξ ,

vξξ + αvηη = (|u|2)ξ , (1)

where u is the complex wave amplitude and v is a real field. Also, ζ is the time
coordinate and (ξ, η) denotes spatial coordinates. The coefficients in (1) depend
on the frequency, wave number, group velocity and gravity. If (γ, α) = (1, −1),
the DS system is known as DSI; for (γ, α) = (−1, +1) it is DSII. Ohta and Yang
eventually classified roguewave solutions for DSI in three forms: Fundamental (line)
rogue waves, Multi-rogue waves and Higher-order rogue waves. Fundamental rogue
waves, the simplest rogue waves, have line profiles in the (ξ, η)-plane and therefore,
they are also called line rogue waves. Their initially constant amplitude suddenly
increases, reaches a maximum value, and then returns to the initial value. Multi-
rogue waves occur when multiple fundamental rogue waves interact with each other.
In this case, it is observed that fundamental roguewaves interfere and vanish back into
the constant background. In contrast, higher-order rogue waves cannot approach the
constant background uniformly as ζ → ∞. Only some parts of the waves approach
uniformly the constant background [9].

In the current study, we focus on the generalized Davey-Stewartson (GDS) system
in acoustics given as

iuζ = uξξ + γ1uηη + γ2uξη + χ |u|2u + u(β1∂ξ + β2∂η)v,

α11vξξ + α22vηη = −2(β1∂ξ + β2∂η)|u|2, (2)

where

γ2 = 4β1β2γ1

β2
2 + β2

1γ1
, α11 = β2

2 − β2
1γ1

β2
2 + β2

1γ1
,

α22 = −γ1

(
β2
2 − β2

1γ1

β2
2 + β2

1γ1

)
, χ = −β2

2 + β2
1γ1

γ1
.

This system for (γ2, β2) = (0, 0) reduces to the DS system (1). The GDS system is
obtained for the weakly nonlinear modulation of a wave originated by the interaction
between a long wave-length acoustic mode and a high frequency mode given in
[11]. Therefore, the real mode v represents a mean motion induced by the oscillatory
wave packet, which has the complex amplitude u. This system can be classified in two
categories depending on the relationship between the coefficients: the GDSI (elliptic-
hyperbolic) system if γ 2

2 − 4γ1 < 0 and α11α22 < 0, and the GDSII (hyperbolic-
elliptic) system if γ 2

2 − 4γ1 > 0 and α11α22 > 0. With the constraints γ1 > 0 and
β2 − β1

√
γ1 < 0, the GDSI system is obtained. In this study, we find fundamental,

multi- and higher-order rogue waves in the GDSI system (2) by following a similar
approach to the DS system in [9, 10]. In the next section, the main theorem which
presents the rational solutions of the GDSI system is stated and proved. Rogue wave
solutions are also mentioned in Sect. 2. Simulations of these solutions are presented
in Sect. 3.
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2 The Non-singular Rational Solutions of GDSI

Theorem 1 The non-singular rational solutions of the GDSI Eq. (2) are given by

u =
√
2γ1√

β2
2 + β2

1γ1

τ1

τ0
, v = 2 − β2

β1
ξ + η + 4γ1

β2
2 + β2

1γ1
(β1∂ξ + β2∂η)logτ0, (3)

where τn is a determinant of the N × N matrix
(
m(n)

i j

)
whose entries are

m(n)
i j =

ni∑
k=0

cik
(
n + μ′

i + pi∂pi
)ni−k

×
n j∑
l=0

c∗
j l

(
−n + (

μ′
j

)∗ + p∗
j∂p∗

j

)n j−l 1

pi + p∗
j

, (4)

with

μ′
i =

√
β2
2 + β2

1γ1

2

(
1

pi(β2 + β1
√

γ1)
− pi

β2 − β1
√

γ1

)
ξ

+
√

β2
2 + β2

1γ1

2
√

γ1

(
1

pi(β2 + β1
√

γ1)
+ pi

β2 − β1
√

γ1

)
η + p2i + p−2

i√−1
ζ. (5)

Proof Substituting the transformation

u =
√
2γ1√

β2
2 + β2

1γ1

G

F
, v = 2 − β2

β1
ξ + η + 4γ1

β2
2 + β2

1γ1
(β1∂ξ + β2∂η)logF,

where G is complex and F is real valued function, into (2) implies the following
bilinear form of GDSI:

(−iDζ + D2
ξ + γ1D

2
η + γ2DξDη)GF = 0,

(α11D
2
ξ + α22D

2
η)(FF) = 2χγ1

β2
2 + β2

1γ1
|G|2 + 2FF . (6)

On other hand, there is an auxiliary bilinear form,

(Dx1Dx−1 − 2)τnτn = −2τn+1τn−1,

(D2
x1 − Dx2)τn+1τn = 0,

(D2
x−1

+ Dx−2)τn+1τn = 0, (7)
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which is reduced to (6) by the independent variables transformation

x1 =
√

β2
2+β2

1γ1

2(β2−β1
√

γ1)

(
−ξ + 1√

γ1
η
)

, x2 = − iζ

2

x−1 = −
√

β2
2+β2

1γ1

2(β2+β1
√

γ1)

(
ξ + 1√

γ1
η
)

, x−2 = iζ

2
, (8)

with τ0 = F , τ1 = G and τ−1 = G∗ (∗ denotes the complex conjugate of the indicated
term). The form of solutions for the system (7) is given by the following lemma.

Lemma 1 [9] If the functions m(n)
i j , ϕ

(n)
i , and ψ

(n)
j of x1, x2, x−1 and x−2 satisfy the

differential equations

∂x1m
(n)
i j = ϕ

(n)
i ψ

(n)
j ,

∂x2m
(n)
i j = ϕ

(n+1)
i ψ

(n)
j + ϕ

(n)
i ψ

(n−1)
j ,

∂x−1m
(n)
i j = −ϕ

(n−1)
i ψ

(n+1)
j ,

∂x−2m
(n)
i j = −ϕ

(n−2)
i ψ

(n+1)
j − ϕ

(n−1)
i ψ

(n+2)
j ,

∂xkϕ
(n)
i = ϕ

(n+k)
i ,

∂xkψ
(n)
j = −ψ

(n−k)
j (k = −2,−1, 1, 2) (9)

and the difference relation

m(n+1)
i j = m(n)

i j + ϕ
(n)
i ψ

(n+1)
j , (10)

then the bilinear Eq. (7) are satisfied by the determinant τn = det
1≤i, j≤N

(
m(n)

i, j

)
.

It is easy to observe that the transformation (8) and Lemma 1 lead to the complex
conjugate conditions

τ ∗
n = τ−n, m(n)∗

i j = m(−n)
j i . (11)

We now define the appropriate functions ϕ
(n)
i , ψ

(n)
j and m(n)

i, j to obtain rational
solutions:

ϕ
(n)
i = Aip

n
i e

μi , ψ
(n)
j = Bj (−q j )

−neλ j ,

m(n)
i j = AiB j

1

pi + q j

(
− pi
q j

)n

eμi+λ j , (12)

where Ai and Bj denote differential operators of order ni and n j with respect to pi
and q j as

Ai =
ni∑

k=0

cik(pi∂pi )
ni−k and Bj =

n j∑
l=0

dl j (q j∂q j )
n j−l (13)
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for which cik , dl j are complex numbers and ni and n j are positive integers. The func-
tions in (12) satisfy Eqs. (9) and (10). Thus τn is a solution of the auxiliary form (7).

To find the matrix m(n)
i j , the reduction formulas

(
q j∂q j

) (−q j
)−n

eλ j = (−q j
)−n

eλ j

(
−n + 2x−2

q2j
− x−1

q j
+ q j x1 − 2q2j x2 + q j∂q j

)
,

(
pi∂pi

)
pni e

μi = pni e
μi

(
n − 2x−2

p2i
− x−1

pi
+ pix1 + 2p21x2 + pi∂pi

)
(14)

are applied to (12); restrictions d jl = c∗
ik and q j = p∗

j are assumed because of the con-
ditions (11). After straightforward but long computations, we obtain the expression
of m(n)

i j as:

m(n)
i j =

(
− pi
p∗
j

)n

eμi+μ∗
j

ni∑
k=0

cik
(
n + μ′

i + pi∂pi
)ni−k

×
n j∑
l=0

c∗
j l

(
−n + (

μ′
j

)∗
p∗
j∂p∗

j

)n j−l 1

pi + p∗
j

, (15)

where μi = x−2/p2i + x−1/pi + pix1 + p2i x2 and μ′
i = −2x−2/p2i − x−1/pi + pix1 +

2p2i x2. Then, we use the gauge freedom of τn to get Eq. (4).
Finally, we discuss nonsingularity of rational solutions (3). The aim of this part

is to prove τ0 = det(m(0)
i j ) > 0. To do this, integrating the first differential equation

in (9) and using the fact that B∗
j = Aj gives us

m(0)
i j =

∫ x1

−∞
AiA

∗
je

μi+μ∗
j dx1. (16)

The antiderivative of exp(μi + μ∗
j ) with respect to x1 disappears as x1 → −∞, if

the real part of pi is positive. Then, we find that the matrix m(0)
i j is positive definite

since we have

v
(
m(0)

i j

)N

i, j=1

(
v∗)T =

∫ x1

−∞

∣∣∣∣∣
N∑
i=1

viAie
μi

∣∣∣∣∣
2

dx1 > 0, (17)

for every non-zero vector v = (v1, v2, v3, . . . , vN ) and its conjugate transpose (v∗)T .
This means that det(m(0)

i j ) > 0. In the same manner, it is possible to prove that the
solution is nonsingular for the case Re(pi) < 0. (For details, see [10].) �	
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The dynamical behavior of the rational solutions for the DSI equations was in-
vestigated in [9]. As a result, it was found that these solutions become rouge waves
if pi’s are real. Since the GDSI system for the case β1 = −1, β2 = 0 and γ1 = 1 is
reduced to DSI in [9], we continue the work with assumption p∗

i = pi.
In order to observe that the 1- dimensional rational solution of the first order

(N = 1 and n1 = 1) forms a fundamental rogue wave, we substitute N = 1, n1 = 1,
c10 = 1 and p∗

1 = p1 to the rational solution (3). Then, we have

u =
√
2γ1√

β2
2 + β2

1γ1

(
1 − 1 + 2iIm(μ)

|μ|2 + 1
4

)
,

v = 2 − β2

β1
ξ + η + 4γ1

β2
2 + β2

1γ1
(β1∂ξ + β2∂η) log

(
4|μ|2 + 1

8p1

)
, (18)

where

μ = c11 − 1

2
+

√
β2
2 + β2

1γ1

2

(
1

p1(β2 + β1
√

γ1)
− p1

β2 − β1
√

γ1

)
ξ

+
√

β2
2 + β2

1γ1

2
√

γ1

(
1

p1(β2 + β1
√

γ1)
+ p1

β2 − β1
√

γ1

)
η − i

(
p21 + p−2

1

)
ζ.

The coefficients of ξ and η in μ are real and the coefficient of ζ in μ is purely
imaginary, so the solution u is in the form of a line. The line wave is oriented in
the direction ((p21 − 1)β1 + (p21 + 1)β2/

√
γ1, (p21 + 1)β1

√
γ1 + (p21 − 1)β2) of the

(ξ, η)-plane. However, the line profile does not show up at all times in the (ξ, η)-

plane, since u approaches to uniformly constant background
√
2γ1/

√
β2
2 + β2

1γ1

as ζ → ±∞. Moreover, the form of |u| is two-dimensional counterparts of the
Peregrine solution [4].

We now proceed with a consideration of multi- and higher-order rogue waves.
Due to the involved nature of these waves and for brevity, wewill limit our discussion
to the selected special cases.

Considering the N = 2 rogue wave, p1 and p2 are arbitrary real parameters. We
take ni = ci0 = 1, for i = 1, 2 and c11 and c21 as arbitrary complex parameters. Then,
the solution is:

u =
√
2γ1√

β2
2 + β2

1γ1

∣∣∣∣m
(1)
11 m(1)

12

m(1)
21 m(1)

22

∣∣∣∣∣∣∣∣m
(0)
11 m(0)

12

m(0)
21 m(0)

22

∣∣∣∣
, (19)
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where

m(0)
i j = 1

pi + p j

((
μ′
i + ci1 − pi

pi + p j

) ((
μ′

j

)∗ + c∗
j1 − p j

pi + p j

)
+ pip j(

pi + p j
)2

)

m(1)
i j = 1

pi + p j

((
μ′
i + 1 + ci1 − pi

pi + p j

)

×
((

μ′
j

)∗ − 1 + c∗
j1 − p j

pi + p j

)
+ pip j

(pi + p j )2

)
.

As defined by Ohta and Yang [9, 10] multi-rogue waves result from the interaction
of multiple fundamental rogue waves.

For an example of higher-order rogue waves, we impose the condition N = 1 and
n1 = 2 > 1. Taking c10 = 1, c11 = 0, c12 = 0 and c21 = 0, we get the second-order

rogue wave u = √
2γ1τ1/

(√
β2
2 + β2

1γ1 τ0

)
, where

τ0 = (
μ′
1 + p1∂p1

)2 ((
μ′
1

)∗ + p∗
1∂p∗

1

)2 1

p1 + p∗
1

τ1 = (
1 + μ′

1 + p1∂p1
)2 (−1 + (

μ′
1

)∗ + p∗
1∂p∗

1

)2 1

p1 + p∗
1

. (20)

Substituting N = 1 and any n1 > 1 in (3), other examples of higher-order rogue
waves are obtained. Thus, solutions are generated from a higher-order differential
operator.

3 Simulations of Rogue Waves

In this section, all types of rogue waves for (γ1, β1, β2) = (1, 1, 0.5) are simulated
and their behavior are shown.

3.1 Fundamental (Line) Rogue Waves

In Fig. 1. the line rogue wave solutions (18) are simulated. In the intermediate time
ζ = 0, |u| reaches the maximum amplitude 6

√
2/5 ≈ 3.79473. However, as ζ →

±∞, the solution |u| approaches to the constant background which is approximately
2
√
2/5 ≈ 1.26491 in the (ξ, η)-plane. We see that the fundamental rogue wave

appears and disappears suddenly.
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Fig. 1 The fundamental rogue wave solution for the case (γ1, β1, β2) = (1, 1, 0.5) with p1 = 1

3.2 Multi-rogue Waves

In Fig. 2, two fundamental rogue waves (19) are given by taking p1 = 1, p2 = 1.5
and c11 = c21 = 0. Starting from the usual constant background of 1.26491, the
local maximum amplitude 3.94784 is reached at ζ = −1. After this amplitude fades,
the two fundamental rogue waves in the far field appear to be with their maximum
amplitude of 3.95446 at ζ = 0. The wave fronts at this stage are well separated. Due
to the interaction of two fundamental rogue waves, curvy wave fronts are formed.
When ζ becomes larger, the waves go back to the constant background as seen
at ζ = −10 and ζ = 10. In all cases, the amplitude does not reach four times the
constant value. Thus, this means that the interaction does not guarantee very high
peaks.

In order to see the situation inmore than two rougewaves, settingp1 = 1,p2 = 1.5,
p3 = 2 and ci1 = 0 for i = 1, 2, 3, three interacting roguewaves are obtained inFig. 3.
However, we get a more complicated outcome from the case of two-rogue waves. In
the graphics, we see that three rogue waves at ζ = 0 individually reach a maximum
amplitude. After a while the rogue wave disappears without any trace.
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Fig. 2 The two-rogue wave solution for the case (γ1, β1, β2) = (1, 1, 0.5) with p1 = 1 and p2 =
1.5

3.3 Higher-Order Rogue Waves

The higher-order rogue wave (20) is formed as in Fig. 4. Unlike fundamental rogue
wave and multi-rogue wave, in this case the rogue wave does not disappear without
any trace. For instance, at ζ = −5, ζ = 5 and ζ = 10 parts of waves still exist. When
the graphs are examined, it can be said that in the case that ζ approaches −2.5, the
solution tends to lump. As ζ increases further, the lump begins to split into two
branch rogue waves. When ζ goes to 0, the branches become dominant. Then the
lump dissipates.

In conclusion, rogue waves in GDSI system (2) which is derived in acoustics
are obtained. The results show that the properties of the waves in the solution are
compatible with Ohta and Yang’s classification of rogue waves as fundamental rogue
wave, multi-rogue wave and higher-order rogue wave for the DS system. With the
additional term in the GDSI system, the results from the DS system are qualitively
similar.
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Fig. 3 The three-roguewave solution for the case (γ1, β1, β2) = (1, 1, 0.5)with p1 = 1, p2 = 1.5
and p3 = 2

Fig. 4 The higher-order rogue wave solution for the case (γ1, β1, β2) = (1, 1, 0.5) with p1 = 1
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Linearization and Local Topological
Conjugacies for Impulsive Systems

Kevin E. M. Church and Xinzhi Liu

Abstract The celebrated Hartman-Grobman theorem for ordinary differential
equations states that the phase portrait nearby a hyperbolic equilibrium point of
a nonlinear system is equivalent to that of its linearization by a conjugation. Hartman
and Grobmans theorem has been extended in numerous ways to accommodate more
general classes of dynamical systems. For instance, generalizations have been proven
for finite-dimensional nonautonomous systems, impulsive systems, and impulsive d-
ifferential equations in Banach spaces. All of the aforementioned generalized results,
however, require global Lipschitz assumptions on the vector field and jump map, as
well as intimate knowledge of the dichotomy properties of the linearized system.
Since many systems encountered in applied fields are nonlinear and not globally
Lipschitz, there is a need to weaken the assumptions. We show that one can localize
such linearization theorems near a hyperbolic equilibrium point, provided sufficient
smoothness conditions are satisfied and time-varying terms are suitably bounded.
Global assumptions on the nonlinearity are no longer necessary and one does not
require as detailed an analysis of the linearized system to apply the result.

Keywords Impulsive differential equation · Topological conjugacy
Hartman-Grobman theorem

1 Introduction and Background

Impulsive differential equations see applications in numerous fields where the sys-
tems of study exhibit rapid jumps in state. Such jumps may be intrinsic to the system,
such as in the firing of a neuron in a biological neural network, or synthetic, such
as the application of an insecticide or antibiotic treatment in a biological model.
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Arguably, one of the most common applications of the theory of impulsive differ-
ential equations arises in the latter case, where a continuous autonomous system is
perturbed by impulses in an impulsive control setting. Specifically, there are many
applications involving systems of the form

ẋ = Ax + f (x), t �= τk (1)

Δx = Bx + g(x), t = τk , (2)

where (1) describes the continuous evolution of the system, and (2) the discontinuous
impulsive control. We will call such a system an impulsive system with autonomous
right-hand side. To be precise, such a system consists of a continuous evolution
defined by the differential equation (1) coupled with jumps at times τk indexed by
k ∈ Z, according to Eq. (2). The notation Δx stands for Δx = x(τ+

k ) − x(τk), where
x(τ+

k ) denotes the limit from the right at time τk . In particular, the Eq. (2) should be
understood as

x(τ+
k ) − x(τk) = Bx(τk) + g(x(τk)).

Frequently in applications, the sequence τk is periodic, and in this case, there are a
wealth of techniques available to study the complete impulsive system. Specifically,
the following elementary tools are available.

1. A linearized stability theorem.
2. A local bifurcation theory of fixed points and periodic orbits.
3. A local topological equivalence (Hartman-Grobman) theorem.

Linearized stability principles for finite-dimensional impulsive systems have been
known for quite some time; see the monographs [1, 2] and the literature cited therein
for relevant background information on finite-dimensional impulsive systems and
stability, and [3] for background on stability of impulsive delay differential equations.
In applications, Poincarémaps andnumerical continuationmethods havebeenused to
study bifurcations of fixed points and periodic orbits: see [4–7] for recent applications
of these methods and [8] for an outline of analytical techniques based on Poincaré
maps.

The Hartman-Grobman Theorem [9] was originally proven for finite-dimensional
ordinary differential equations and difference equations. The theorem yields topo-
logical information about the phase portrait near a hyperbolic equilibrium point.
Since then, the theorem has been extended to different classes of systems. Recent
advances include variants of the theorem for hyperbolic evolution equations [10]
and dynamic equations on time scales [11]. There are several generalizations of
the Hartman-Grobman theorem to impulsive systems [12–14]. However, the latter
results and seemingly all published Hartman-Grobman-type linearization theorems
for impulsive systems assume global boundedness and Lipschitz conditions on the
vector field and jump map, as well as a detailed analysis of the linearization. In
these proceedings, we show how these assumptions can be weakened in favour of
local smoothness assumptions, resulting in a direct analogue of the local, classical
Hartman-Grobman theorem.



Linearization and Local Topological Conjugacies … 593

1.1 The Linearization Theorem of Fenner and Pinto

The starting point for our result will be the linearization theorem of Fenner and Pinto
[13].We will later show how this theorem can be localized near an equilibrium point.
To begin, we remind the reader of the definition of exponential dichotomy [1].

Definition 1 Consider the linear impulsive system

ẋ = A(t)x, t �= τk

Δx = Bkx, t = τk ,
(3)

with Cauchy (fundamental) matrix solution X (t, s). We say the system (3) has ex-
ponential dichotomy if there exist K ≥ 1, α > 0 and a family P(t) of projection
matrices such that for all t ≥ s one has X (t, s)P(s) = P(t)X (t, s) and the following
inequalities:

||X (t, s)P(s)|| ≤ Ke−α(t−s),

||X (t, s)−1[I − P(t)]|| ≤ Ke−α(t−s).

The K and α are admissible constants and exponents of the dichotomy. In this case,
we will also say that X (t, s) has exponential dichotomy.

A brief reminder: system (3) is periodic with period T and c impulses per period if
A(t + T ) = A(t), Bk+c = Bk and τk+c = τk + T for all t ∈ R and k ∈ Z. When (3)
is periodic, the existence of an exponential dichotomy is equivalent to an eigenvalue
condition. Namely, if one computes the monodromy matrix M = X (τ0 + T , τ0) for
period T > 0, the linear system has exponential dichotomy if and only if M has no
eigenvalues with unit modulus [1]. Exponential dichotomy is also guaranteed if (3)
is exponentially stable, regardless of periodicity assumptions.

We will also need a notion of accumulation of the sequence of impulses. We will
say that {τk} has upper density bound N if #{τk ∈ [n, n + 1) : n ∈ Z} ≤ N . That is,
in each unit interval starting at an integer, there are at most N impulse times.

Fenner and Pinto’s linearization theorem [13] is stated in terms of (h, k)-
dichotomies, which are more general than exponential dichotomies. To keep the
presentation elementary, we will refrain from using this notion here. Then, a special
case of the aforementioned theorem is as follows: it is stated with respect to the
quasilinear system

ẋ = A(t)x + f (t, x), t �= τk (4)

Δx = Bkx + gk(x), t = τk , (5)
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and its formal linearization

ẋ = A(t)x, t �= τk (6)

Δx = Bkx, t = τk . (7)

Proposition 1 (Fenner and Pinto, [13]) Consider the periodic impulsive system (4)–
(5) and the linear equation (6)–(7). Suppose the linear system has exponential di-
chotomy with constant K and exponent α. Assume for all x, y ∈ R

n, the following
inequalities are satisfied:

|| f (t, x)||| ≤ μ,

||gk(x)|| ≤ μ,

|| f (t, x) − f (t, y)|| ≤ γ ||x − y||,
||gk(x) − gk(y)|| ≤ γ ||x − y||.

If the sequence {τk} of impulse times has upper density bound N and the inequality

2Kγ

(
1

α
+ N

2 − e−α

1 − e−α

)
< 1 (8)

holds, then there exists a function H : R × R
n → R

n with the following properties:

1. For all t ∈ R, x �→ Ht(x) = H (t, x) is a homeomorphism,
2. Ht(x(t)) is a solution of the linear equation whenever x(t) is a solution of the

quasilinear equation,
3. H−1

t (y(t)) is a solution of the quasilinear equation whenever y(t) is a solution
of the linear equation,

4. For all (t, x) ∈ R × R
n, Ht(x) − x is uniformly bounded with

|Ht(x) − x| ≤ 4Kμ

(
1

α
+ N

2 − e−α

1 − e−α

)
. (9)

Clearly, if the conditions of the proposition are satisfied, then the quasilinear system
(4)–(5) admits at most one solution that is bounded for all time. This is to be expected,
since the time-varying topological conjugacy Ht induces a global equivalence of
the quasilinear system with its formal linearization, and the latter is exponentially
dichotomous and therefore admits only one bounded solution: the trivial solution.

2 Localized Impulsive Linearization

In this section, we demonstrate how Proposition 1 can be localized near a given fixed
point. The result is that one needs no longer verify the inequality (8), and so the
constant and exponent of the exponential dichotomy need not be known explicitly.
Next, we obtain a parameter-dependent analogue.
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2.1 Main Result and Proof

Given the quasilinear system (4)–(5), wewill say that the formal linearization (6)–(7)
is hyperbolic [15] if it has exponential dichotomy. Before stating our main result, we
will need one more definition.

Definition 2 Let x(·; s, xs) : I → R
n denote the solution of the quasilinear impulsive

system (4)–(5) satisfying x(s; s, xs) = xs, where I denotes themaximal interval of ex-
istence. The partial function ϕ : R × R × R

n → R
n defined by ϕ(t, s, y) = x(t; s, y)

is the process associated to (4)–(5), and we will write ϕ(t, s)y := ϕ(t, s, y).

Theorem 1 Let f : R × R
n → R

n be differentiable in its second variable and let
gk : Rn → R

n be differentiable. Assume t �→ D f (t, r(t)) is locally integrable for
all continuous functions r(t) sufficiently small, and for each α ∈ R there exists a
continuously differentiable Hα : U → R

+ for some open set U containing the ori-
gin, satisfying Hα(0) = 0 and DHα(0) = 0, and a continuous Nα : U → R

+ with
Nα(0) = 0 such that

sup
t∈[α,∞)

| f (t, x)| + sup
τk≥α

|gk(x)| ≤ Hα(x), (10)

sup
t∈[α,∞)

||D f (t, x)| + sup
τk≥α

||Dgk(x)|| ≤ Nα(x), (11)

on U. Consider the impulsive system (4)–(5) with process ϕ and the linearized
equation (6)–(7) with process L. Suppose the linearization is hyperbolic and the
sequence of impulses has an upper density bound. Let ξ > 0 be given. There exists a
family of homeomorphisms Ht : Rn → R

n, t ∈ R, satisfying the bound |Htx − x| ≤ ξ

and the following additional properties:

• For all u ≤ v ∈ R, there exists δ > 0 such that for all ||x|| < δ, one has Ht ◦
ϕ(t, s)x = L(t, s)Hsx for all [s, t] ⊆ [u, v].

• If x∗ = 0 is either linearly or nonlinearly stable, then for all s ∈ R, there exists
δ > 0 such that Ht ◦ ϕ(t, s)x = L(t, s)Hsx for ||x|| < δ and s ≤ t < ∞.

Proof Let ε > 0 be a constant that has yet to be chosen. By the mean-value theorem
and the assumptions on f and gk , one can show that

||ϕ(t, u, x)|| ≤ ||x|| +
∫ t

u
Mu,v||ϕ(r, u, x)||dr +

∑
u≤τk<t

Mu,v||ϕ(τk , u, x)||,

Mu,v = sup
[u,v]

||A(t)|| + max
τk∈[u,v] ||Bk || + max||x||≤ε

Fu(x),

provided ||x|| ≤ ε2 < ε for some ε2 and t > u is small enough. By Gronwall’s in-
equality for impulsive systems [1], it follows that

||ϕ(t, s, x)|| ≤ ||x||(1 + Mu,v)
N (�t−�s�)eMu,v(t−s) := ||x||Cs,t
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for t − s > 0 small enough. One obtains ||ϕ(t, s, x)|| ≤ ε for [s, t] ⊆ [u, v] provided
||x|| ≤ ε2 = εC−1

u,v .
Let rε : U → [0, 1] be a smooth cutoff function satisfying rε |||x||≤ε = Id, rε |||x||≥2ε

= 0 and ||∇rε || ≤ 2/ε on the annulus ε ≤ ||x|| ≤ 2ε, where we assume without loss
of generality thatU contains the closed ball of radius 2ε centered at the origin. Define
the time-varying cutoff vector fields and jump maps as follows:

f ε(t, x) =
{

f (t, x)rε(x), t ≥ s
0, t < s,

gε
k (x) =

{
gk(x)rε(x), s ≤ τk

0, s > τk .

By the mean-value theorem and the chain rule, we obtain the estimates

max{||D f ε ||, ||Dgε
k ||} ≤ sup

||x||≤2ε
||Nu(x)|| + 4 sup

||x||≤2ε
||DHu|| := A(ε),

uniformly, for all t ∈ R, k ∈ Z and x ∈ R
n. Choose ε small enough so that inequality

(8) is satisfied with γ = A(ε) and apply Proposition 1 to the quasilinear system

ẋ = A(t)x + f ε(t, x), t �= τk

Δx = Bkx + gε
k (x), t = τk ,

to obtain the family of conjugacies Ht . Then, Ht ◦ ϕε(t, s)x = L(t, s) ◦ Hsx for all
x ∈ R and t ≥ s. In particular, it holds for ||x|| < δ = εC−1

u,v and [s, t] ⊆ [u, v]. Since
it is known that ||ϕ(t, s)x|| ≤ ε whenever these same constraints hold, we obtain the
equality Ht ◦ ϕ(t, s)x = L(t, s) ◦ Hsx for ||x||δ and [s, t] ⊆ [u, v], as claimed in the
theorem.

Now we prove the assertions concerning stability. We prove only that linear
stability implies nonlinear stability, since the other direction is similar. Suppose
x∗ = 0 is linearly stable. To begin, let some s ∈ R be given and let ε > 0, where
we may assume without loss of generality that ε is small enough for inequality
(8) holds with γ = A(ε). By linear stability, let δ1 > 0 be small enough so that
ρ = sup||y||≤δ1

||L(t, s)y||t≥s satisfies inequality

4Kρ

(
1

α
+ N

2 − e−α

1 − e−α

)
<

ε

2
.

By triangle inequality and the conjugation property, we have

||ϕε(t, s)x|| ≤ ||(H−1
t − id)L(t, s)Hsx|| + ||L(t, s)Hsx||. (12)

From inequality (9), it follows that for ||y|| ≤ δ1 one has ||Hty − y|| ≤ ε/2, and
by homeomorphism, one obtains ||H−1

t y − y|| ≤ ε/2 as well. By continuity of
Hs, the same holds true with y = Hsx provided ||x|| is small enough. Stability
of L(t, s) and continuity of Hs once again yield ||L(t, s)Hsx|| < ε/2 for ||x|| s-
mall enough. It then follows that there exists some δ > 0 such that, in light of
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inequality (12), ||ϕε(t, s)x|| < ε whenever ||x|| < δ and t ≥ s. But this implies that
ϕε(t, s)x = ϕ(t, s)x for all such ||x|| < δ.

In the periodic case, the inequality conditions of Theorem 1 are satisfied under
reasonable smoothness assumptions on the vector field and jumpmap. The following
corollary makes this concrete, and the proof is obvious.

Corollary 1 Inequalities (10)–(11) can be replaced with one of the following
stronger assumptions.

• The quasilinear system (4)–(5) is periodic, each gk is C1, and f and D f are
continuous at (t, x) unless t = τk , where they are continuous from the left and
have right limits in t.

• The “nonlinearities” f and gk of the quasilinear system are autonomous and C1.

2.2 An Application to Bifurcation Theory

Consider the system

ẋ = f (t, x, p), t �= τk (13)

Δx = gk(x, p), t = τk , (14)

together with its linearization at the origin

ẏ = D f (0, t, p)y, t �= τk (15)

Δy = Dgk(0, p)y, t = τk , (16)

dependent on a parameter p ∈ � ⊆ R
m, and suppose that 0 is an equilibrium point

for all p ∈ Br(π) for some r > 0 and some given π ∈ �. Generally, if one possesses
a parameter-dependent family of periodic orbits or equilibrium points (or, more gen-
erally, complete bounded solutions) x∗

p(t), the time- and parameter-dependent change
of variables x = y + x∗

p transforms the system to one in which 0 is an equilibrium
point, independent of p. One then has the following theorem.

Theorem 2 Suppose f : R × R
n × � → R

n and gk : Rn × � → R
n are C1 and

f (t, 0, p) = gk(0, p) = 0 for all t ∈ R and k ∈ Z; that is, 0 is an equilibrium point
of (13)–(14). Let π ∈ � be given, and assure for each α ∈ R, there exists P ⊆ � with
π ∈ P, a continuously differentiable Hα : U × P → R

+ satisfying Hα(0, p) = 0 and
DHα(0, p) = 0, and a continuous Nα : U × P → R

+ satisfying Nα(0, p) = 0, such
that

sup
t∈[α,∞)

|F(t, x, p)| + sup
τk≥α

|Gk(x, p)| ≤ Hα(x, p), (17)

sup
t∈[α,∞)

||DF(t, x, p)| + sup
τk≥α

||DGk(x, p)|| ≤ Nα(x, p), (18)
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on R
n × P, where F(t, x, p) = f (t, x, p) − D f (t, 0, π)x and Gk(x, p) = gk(x, p) −

Dgk(0, π)x. For a given parameter p ∈ �, let ϕp denote the process associated to the
impulsive system (13)–(14), and Lp the process of its associated linearized equation
(15)–(16). Suppose Lπ is hyperbolic and the sequence τk has a upper density bound.
Then, there exists η > 0 such that for all p1, p2 ∈ (π − η, π + η), there exists a
family of homeomorphisms Ht : Rn → R

n, t ∈ R, with the following properties:

• For all [u, v] ⊂ R bounded, there exists δ > 0 such that for all ||x|| < δ, one has
Ht ◦ ϕp1(t, s)x = ϕp2(t, s)Hsx for all [s, t] ⊆ [u, v].

• If x∗ = 0 is linearly stable at parameter π , the previous conclusion holds, but the
interval [u, v] can be unbounded on the right.

Proof Write system (13)–(14) equivalently, for each parameter p, let E(p) denote
the system,

ẋ = D f (t, 0, π)x + F(t, x, p), t �= τk

Δx = Dgk(0, π)x + Gk(x, p), t = τk ,

whereF(t, x, p) = f (t, x, p) − D f (t, 0, π)x andGk(x, p) = gk(x, p)− Dgk(0, π)x.
Also, denote by L(π) its formal linearization

ẋ = D f (t, 0, π)x, t �= τk

Δx = Dgk(0, π)x, t = τk .

Broadly, the idea of the proof is as follows. We locally conjugate the process asso-
ciated to E(p1) to L(π) by a family of homeomorphism Ht , and also conjugate the
process associated to E(p2) to L(π) by a family of homeomorphism Gt . The family
of compositions G−1

t ◦ Ht will then be a local conjugacy of E(p1)with E(p2). There-
fore, it is enough to emulate the proof of Theorem 1 with a parameter, establishing
the existence of the conjugacy ofE(p1)with L(π) provided |p1 − π | is small enough,
since the other conjugacy is obtained by the same method.

Let ϕ denote the process associated with E(p1). Let ε > 0 be a constant that has
yet to be chosen. One has

||ϕ(t, u, x)|| ≤ ||x|| +
∫ t

u
M (p)||ϕ(r, u, x)||dr +

∑
u≤τk<t

M (p)||ϕ(τk , u, x)||,

M (p) = sup
t∈[u,v]

||D f (t, 0, π)|| + max
τk∈[u,v] ||Dgk(0, π)||

+ sup
||x||≤ε

Hu(x, p) + sup
||x||≤ε

Nu(x, p),

provided ||x|| ≤ ε2 < ε for some ε2 and t > u is small enough. By Gronwall’s in-
equality for impulsive systems [1], it follows that

||ϕ(t, s, x)|| ≤ ||x||(1 + M (p))N (�t−�s�)eM (p)(t−s) := ||x||Cs,t(p)
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for t > s small enough. One obtains ||ϕ(t, s, x)|| ≤ ε for [s, t] ⊆ [u, v] provided
||x|| ≤ ε2 = εCu,v(p)−1. As in the previous proof, set

A(ε, η) = sup
(x,p)∈D

||Nu(x, p)|| + 4 sup
(x,p)∈D

||DHu(x, p)||

with D = {(x, p) : ||x|| ≤ 2ε, |p − π | ≤ η}, and choose η > 0 and ε > 0 small
enough so that inequality (8) is satisfied with γ = A(ε, η) for all ||x|| ≤ 2ε and
|p − π | < η. Defining the cutoff process ϕε at this ε > 0 and choosing
p1 ∈ (π − η, π + η), the proof proceeds in essentially the same way as that of
Theorem 1, with the only difference being that η and ε may need to be
chosen smaller to accomodate for the restrictions |F(t, x, p1)| ≤ μ and |Gk(x, p1)| ≤
μ for the second point concerning stability. Again, the argument is analogous to the
one for Theorem 1, and is omitted.

An obvious variant of Corollary 1 holds for Theorem 2.

Corollary 2 Inequalities (17)–(18) can be replaced with one of the following
stronger assumptions.

• The nonlinear system (13)–(14) is periodic, each gk(x, p) is C1, f and D f are
continuous at (t, x, p) unless t = τk , where they are continuous from the left and
have right limits in t.

• The vector field and jump map f and gk of the nonlinear system are autonomous
and C1

We shouldmake a remark concerning the changeof variables x = y + x∗
p(t)preceding

the statement of Theorem 2 that serves to translate the family of bounded parameter-
dependent solutions x∗

p(t) to the origin. After performing the change of variables, the
vector field, for instance, becomes

ẏ = f̃ (t, y, p) := f (t, y, p) − f (t, x∗
p(t), p).

One hypothesis of Theorem 2 is that f̃ is C1, and since the bounded solution x∗
p(t)

depends on the parameter, it becomes necessary to study the smoothness of p �→
x∗

p(t). If the functions f and gk are C1, the differentiability of p �→ x∗
p(t) at a given

parameter π is equivalent [15] to the variational equation

ż = D f (t, x∗
π (t), π)z, t �= τk

Δz = Dgk(x
∗
π (τk), π)z, t = τk ,

having exponential dichotomy, which in the new coordinate system is one one of the
assumptions of Theorem 2: namely, that Lπ is hyperbolic, where Lπ is the process
associated to the linearization. Conveniently, the linearization in this case is precisely
the variational equation.
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3 Conclusions

Theorem1provides a local topological conjugacy theorem for hyperbolic fixed points
of finite-dimensional impulsive differential equations. The result is also applicable
to hyperbolic periodic orbits and bounded solutions by first applying the changes of
coordinates to map these orbits to the origin. Like the classical Hartman-Grobman
theorem, our theorem requires only local smoothness properties of the vector field
(and jump map). Other topological conjugacy theorems for impulsive systems as-
sume strong global Lipschitz conditions, boundedness, and inequality conditions
concerning the linearization, making our result more flexible.

Theorem 2 is a robustness result. It states that the dynamics near a hyperbolic
equilibrium point or periodic orbit are robust with respect to parameter variation.
Namely, the phase portraits are topologically conjugate. This strengthens a result of
Church and Liu [15] concerning the absence of bifurcations at equilibrium points.
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Oscillations in Low-Dimensional Cyclic
Differential Delay Systems

Anatoli F. Ivanov and Zari A. Dzalilov

Abstract Nonlinear autonomous N -dimensional systems of cyclic differential e-
quations with delays and overall negative feedback are considered. Such systems
serve as mathematical models of numerous real world phenomena in physics and
laser optics, physiology and mathematical biology, economics and life sciences a-
mong others. In the case of lower dimensionsN = 2 andN = 3 sufficient conditions
are derived for the oscillation of all solutions about the unique equilibrium. Open
problems and conjectures are discussed for the higher dimensional case N ≥ 4 and
for more convoluted sign feedbacks.

Keywords Differential delays equations · Cyclic systems
Overall negative feedback · Unique equilibrium · Oscillatory solutions

1 Introduction

We consider a system of delay differential equations of the form

x′
i(t) = −αixi(t) + fi(xi+1(t − τi+1)), 1 ≤ i ≤ N , (1)

where the functions fi(u) are real-valued and continuous on R, fi ∈ C(R,R), the
decay rates αi > 0 are positive, and the delays τi are non-negative with the total delay
τ = ∑N

i=1 τi > 0 being positive. The system is a cyclic one, with the variables xN+1

and τN+1 defined as x1 and τ1, respectively, for the index value i = N .
Systems of form (1) are used in various applications, including physics and laser

optics, physiology and mathematical biology, economics and life sciences among
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others. In particular, they naturally appear in physiology and mathematical biology
[5, 7, 9, 10, 14], where they serve as models of enzyme production [6, 11] or of
an intracellular circadian rhythm generator [12]. An extensive description of various
applications can be found in e.g. [4, 5, 13, 14].

The problem of oscillatory behavior of all solutions in systems of type (1) is a
very important one. From the applied point of view, when a system is a mathematical
model of a real world phenomenon, it is essential to know whether solutions are
monotone (and thus approaching an equilibrium) or they oscillate about the unique
equilibrium. The oscillatory behavior is more typical in applied models; it also leads,
under proper circumstances, to the existence of periodic motions in the model.

This work is devoted to derivation of sufficient conditions when all solutions of
system (1) oscillate. Two partial cases of lower dimension N = 2 and N = 3 are
studied.

2 Preliminaries

In this section we recall some basic notions and facts about system (1), introduce
relevant definitions, and derive preliminary results necessary for the exposition and
proof of our main results in Sect. 3.

The phase space of system (1) is the set X = C([−τ1, 0],R) × · · · × C
([−τN , 0],R). For every initial function Φ = (φ1, . . . , φN ) ∈ X, φi ∈ C([−τi, 0],
R), 1 ≤ i ≤ N , there exists a unique solution x = x(t) = x(t, Φ) = (x1(t), . . . ,
xN (t)) satisfying system (1) for all t > 0. The solution is built by the standard step-
by-step integration procedure [1, 3, 8].

We also assume that each nonlinearity fi satisfies either the positive or negative
feedback condition in the sense of the following definition.

Definition 1 We say that function f (u) satisfies the positive feedback condition on
R if the following inequality holds

u · f (u) > 0 for all u ∈ R, u �= 0. (2)

Likewise, function g(u) satisfies the negative feedback condition if the inequality
holds

u · g(u) < 0 for all u ∈ R, u �= 0. (3)

When i = N we set i + 1 = 1. If the number of nonlinearities in system (1) satisfying
the negative feedback assumption (3) is odd we say that the system possesses the
overall negative feedback. If it is even (including zero) the system is said to have the
overall positive feedback.

It is easy to see that the sign assumptions (2) and (3) together with the continuity of
fi imply that fi(0) = 0, 1 ≤ i ≤ N . Therefore, system (1) admits the only constant
solution 0 = (0, . . . , 0).
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We shall make an additional assumption about the smoothness of functions fi
in a neighborhood of zero: each fi is continuously differentiable for all u such that
|u| ≤ δ for some δ > 0. Their derivatives satisfy f ′

i (0) = ai �= 0, 1 ≤ i ≤ N . The
latter inequality describes a generic case for the nonlinearities fi around the zero
equilibrium.

Note that system (1) can be reduced to a standard form where each of the nonlin-
earities fi, 1 ≤ i ≤ N − 1, satisfies the positive feedback condition (2), while the last
nonlinearity fN satisfies the negative feedback assumption (3) [2]. Indeed, assume
that the k-th equation, k < N ,

x′
k(t) = −αkxk(t) + fk(xk+1(t − τk+1))

is the first one in system (1) where the nonlinearity fk satisfies the negative feedback
condition (3). Introduce then the new component yk+1 =: −xk+1 and the new nonlin-
earity f̂k(yk+1) = fk(−yk+1). One easily sees that f̂k satisfies the positive feedback
condition (2). The next (k + 1)-st equation of system (1) should also be rewritten in
terms of the new yk+1:

y′
k+1(t) = −αk+1yk+1(t) − fk+1(xk+2(t − τk+2))

= −αk+1yk+1(t) + f̂k+1(xk+2(t − τk+2)).

If f̂k+1, k + 1 < N , satisfies the negative feedback condition, then one applies the
same procedure of introducing the new variable yk+2 = −xk+2 to this equation, and
renaming the nonlinearity accordingly. If it satisfies the positive feedback condition
then one moves to the next equation of the system, and so on until the last equation.
The lastN -th equationwill satisfy the negative feedback assumption since the overall
feedback in the system is negative.

Definition 2 Let x = (x1, . . . , xN ) be a solution to system (1). We shall call its k-th
component xk to be oscillatory (about zero) if there exists a sequence tn → ∞, n ∈ N,

such that xk(tn) · xk(tn+1) < 0. The component xk will be called non-oscillatory if
there exists T ≥ 0 such that |xk(t)| > 0 for all t > T .We exclude from consideration
solutions which are identical zero for sufficiently large t: x = (0, . . . , 0) ∀t ≥ T for
some T ≥ 0.

Lemma 1 Let x = (x1, . . . , xN ) be an arbitrary solution to system (1).
(i) If its k-th component xk is oscillatory then any other component xi, i �= k, is

oscillatory as well;
(ii) If its k-th component xk is non-oscillatory, so that xk(t) ≥ 0 or xk(t) ≤ 0

holds for all t ≥ T1 ≥ 0, then there exists T2 ≥ T1 such that xk(t) > 0 or xk(t) < 0
holds respectively for all t ≥ T2;

(iii) If its k-th component xk is of eventually definite sign, i.e. xk(t) > 0 or xk(t) <

0 for all t > T and some T ≥ 0, then any other component xi, i �= k, is also of
eventually definite sign;

(iv) Every component xk of any non-oscillatory solution x satisfies
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lim
t→∞ xk(t) = lim

t→∞ x′
k(t) = 0, 1 ≤ k ≤ N . (4)

In order to prove Lemma 1 we need several simple facts about solutions of initial
value problems for scalar first order ordinary differential equations.

Proposition 1 Consider the initial value problem

u′(t) + αu(t) = b(t), u(t0) = u0, t ≥ t0, (5)

where α > 0 is a constant and b(t) is a continuous real-valued function defined for
t ≥ t0, b ∈ C([t0,∞),R), with b(t) �≡ 0 for large values of t.

(i) If u0 ≥ 0 and b(t) ≥ 0 for all t ≥ t0 then there exists t1 ≥ t0 such that u(t) > 0
for all t ≥ t1. If u0 ≤ 0 and b(t) ≤ 0 for all t ≥ t0 then there exists t2 ≥ t0 such that
u(t) < 0 for all t ≥ t2;

(ii) If u0 < 0 and b(t) ≥ 0 for all t ≥ t0 then either u(t) < 0 for all t ≥ t0, or there
exists t1 ≥ t0 such that u(t1) = 0. Likewise, if u0 > 0 and b(t) ≤ 0 for all t ≥ t0 then
either u(t) > 0 for all t ≥ t0, or there exists t1 ≥ t0 such that u(t1) = 0. For either
one of these two possibilities the solution u(t) is of definite sign eventually (for all
t ≥ T ≥ t0 and some T).

Proof The proof of this proposition easily follows from the integral representation
of the solution of the initial value problem (5):

u(t) = u0 exp{−α(t − t0)} +
∫ t

t0

exp{−α(t − s)}b(s) ds. (6)

It is easily seen that when u0 > 0 and b(t) ≥ 0 then u(t) > 0 ∀t ≥ t0. When
u0 = 0 and b(t) ≥ 0 (however, b(t) �≡ 0) then there exists point t1 ≥ t0 such that
u(t) > 0 ∀t ≥ t1 (since the integral value in (6) becomes positive for all large t). The
remaining possibilities are treated analogously.

Proposition 2 Consider the initial value problem

βv′(t) + v(t) = c(t), v(t0) = v0, t ≥ t0, (7)

where β > 0 is a constant and c(t) is a continuous function, c ∈ C([t0,∞),R), such
that the limit limt→∞ c(t) = c0 is finite. Then the solution v(t) of the initial value
problem (7) also has the same limit limt→∞ v(t) = c0 (for any initial value v0 ∈ R
and any positive parameter value β > 0).

Proof To prove the limit for any solution we shall show that for arbitrary ε > 0 there
exists tε ≥ t0 such that the solution v(t) satisfies the inclusion v(t) ∈ [c0 − ε, c0 + ε]
for all t ≥ tε.

We shall show first that if a solution enters a sufficiently small neighborhood
of value c then it must stay there for all forward times. That is if the above claim
about the solution v(t) is not valid for a particular choice of β > 0, v0 ∈ R, and a
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sufficiently small ε0 > 0 then the solution v(t) must satisfy v(t) /∈ [c0 − ε0, c0 + ε0]
for all t ≥ T1 ≥ t0 for some T1. Indeed, given ε0 > 0 one can choose T1 large enough
such that the inclusion c(t) ∈ (c0 − ε0, c0 + ε0) holds for all t ≥ T1. If there exists a
point t1 ≥ T1 such that v(t1) ∈ [c0 − ε0, c0 + ε0] then v(t) ∈ [c0 − ε0, c0 + ε0]must
hold for all t ≥ t1. Indeed, assume that t2 ≥ t1 is the first point of exit of the solution
v(t) from the interval [c0 − ε0, c0 + ε0]. To be definite, assume that v(t2) = c0 + ε0,
and v(t) > c0 + ε0 for all t ∈ (t2, t2 + δ) for some δ > 0.Then the interval (t2, t2 + δ)

also contains a point t3 such that v(t3) > c0 + ε0 and v′(t3) > 0. On the other hand,
according to the equation, v′(t3) = 1

β
[c(t3) − v(t3)] < 0, a contradiction. The other

possibility v(t2) = c0 − ε0 leads to a contradiction in a similar way.
Therefore, we can assume next that there exists T2 ≥ t0 such that c(t) ∈ [c0 −

ε0, c0 + ε0] and v(t) /∈ [c0 − ε0, c0 + ε0] for all t ≥ T2. To be definite, assume that
v(t) > c0 + ε0 ∀t ≥ T2. Equation (7) then implies that βv′(t) = c(t) − v(t) < 0 for
t ≥ T2, therefore the solution v(t) is monotone decreasing. Set v0 = limt→∞ v(t) ≥
c0 + ε0.By using the limit values for functions c(t) and v(t) the last inequality yields

βv′(t) = c(t) − v(t) < c0 + σ − (v0 − σ) = c0 − v0 + 2σ < 0

for any sufficiently smallσ > 0 and all t ≥ tσ for some large tσ . The latter implies that
limt→∞ v(t) = −∞, a contradiction with v(t) → v0 ≥ c0 + ε0. The other possibility
v(t) < c0 − ε0 ∀t ≥ T2 is treated analogously leading to a contradiction in a similar
way. This completes the proof of the proposition.

Note that Proposition 2 can also be proved by using the variation of constant formula
for the solution of the initial value problem (7).

Now we are in position to prove Lemma 1.

Proof We shall prove first that when a solution x = (x1, . . . , xN ) to system (1) is
non-oscillatory, so either xk(t) ≥ 0 or xk(t) ≤ 0 holds for all t ≥ T1 and some k ∈
{1, 2, . . . ,N }, then there exists T2 ≥ T1 such that in fact the strict inequalities hold:
either xk(t) > 0 or xk(t) < 0 for all t ≥ T2. Besides, for every other component
xi, i �= k, there exists time moment si such that either xi(t) > 0 or xi(t) < 0 holds
for all t ≥ si.

To be definite, assume that x1(t) ≥ 0 ∀t ≥ T1 and x1(t) �≡ 0 (other possibilities
are considered similarly). Then the inequality fN (x1(t − τ1)) ≤ 0 (and �≡ 0) holds
for all large t. The last equation of system (1) can be represented in the integral form
as follows

xN (t) = xN (t0) exp{−αN (t − t0)} +
∫ t

t0

exp{−αN (t − s)} fN (x1(s − τ1)) ds. (8)

One applies now Proposition 1 to conclude that either xN (t) > 0 or xN (t) < 0 holds
eventually, since the kernel of the integral in the representation (8) is non-positive and
is not identical zero eventually. Note that similarly to formula (8) any other equation
of system (1) has its integral representation as follows
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xk(t) = xk(t0) exp{−αk(t − t0)} +
∫ t

t0

exp{−αk(t − s)} fk(xk+1(s − τk+1)) ds.

(9)
Using next the (N − 1)-st equation of the system, and its analogous representation
in the form of integral Eq. (9) one finds that either xN−1(t) > 0 or xN−1(t) < 0 holds
eventually. Going up along equations of system (1) one completes the proof of the
claim for all the components xk , 1 ≤ k ≤ N .

We shall show next that all the components xi, 1 ≤ i ≤ N , of the non-oscillatory
solution x = (x1, . . . , xN ) converge to zero together with their derivatives. To be defi-
nite assume that x1(t) > 0 ∀t ≥ t0. Consider the last equation of system (1). Suppose
first that xN (t) > 0 holds for all t ≥ tN .Then x′

N (t) = −αNxN (t) + fN (x1(t − τ1)) <

0 is satisfied for all large t. Therefore, the finite limit limt→∞ xN (t) = x0N ≥ 0 exists.
By using the second from the last equation of system (1), x′

N−1(t) = −αN−1xN−1(t) +
fN−1(xN (t − τN )), its integral representation in the form of (9), and Proposition
2, one sees that the limit of the component xN−1(t) exists with limt→∞ xN−1(t) =
(1/αN−1) fN−1(x0N ) =: x0N−1. Likewise, limt→∞ xN−2(t) = (1/αN−2) fN−2(x0N−1) =:
x0N−2, and finally the limit of the first component is limt→∞ x1(t) = (1/α2) f2(x02) =:
x01. Using again the last equation of system (1) and Proposition 2 one finds that
limt→∞ xN (t) = (1/αN ) fN (x01) =: x0N . Therefore, the constant x0N satisfies the recur-
sive equation

x0N = 1

αN
fN (x01) = 1

αN
fN ◦ 1

α1
f1(x

0
2) = · · · = 1

αN
fN ◦ 1

α1
f1 ◦ . . . ◦ 1

αN−1
fN−1(x

0
N ).

Since function F(u) = (1/αN ) fN ◦ (1/α1) f1 ◦ . . . ◦ (1/αN−1) fN−1(u) satisfies the
negative feedback condition (3) the only solution of the equation F(u) = u is u = 0.
Therefore, x01 = x02 = · · · = x0N = 0. Also, one easily finds next that limt→∞ x′

k(t) =
limt→∞[−αkxk(t) + fk(xk+1(t − τk+1))] = 0. This completes the proof of the
lemma.

3 Main Results

In this sectionwe consider two particular cases of system (1)whenN = 2 andN = 3.
We establish sufficient conditions for the oscillatory behavior of all solutions in the
system. The complete proof is provided for the case N = 2. The very same ideas
for the proof are applicable for the three-dimensional system, however, an outline is
only given for the more involved case N = 3, due to the length of considerations.

3.1 Two Dimensional Systems

Consider the two-dimensional case N = 2 of system (1)
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x′
1(t) = −α1x1(t) + f1(x2(t − τ2))

x′
2(t) = −α2x2(t) + f2(x1(t − τ1)). (10)

Since it is in the standard form f1 satisfies the positive feedback assumption (2) while
f2 satisfies the negative feedback assumption (3). Introduce the following quantities:
a = −a1 · a2 > 0, τ1 + τ2 = τ > 0, where f ′

1(0) = a1 > 0, f ′
2(0) = a2 < 0.

Theorem 1 Suppose that the inequality a τ > max{α1, α2} is satisfied. Then all
nontrivial solutions of system (10) oscillate.

Proof Consider consecutively all the possibilities for non-oscillatory solutions of
system (10).

(i) Assume first that inequalities x1(t) > 0 and x2(t) > 0 hold eventually. Then
by Lemma 1 (iv) one has that

lim
t→∞ x1(t) = lim

t→∞ x2(t) = lim
t→∞ x′

1(t) = lim
t→∞ x′

2(t) = 0. (11)

The second equation of system (10) shows that x′
2(t) < 0 eventually, so x2(t) ismono-

tone decreasing to zero for large t. The first equation of (10) can bewritten in the form
(1/α1)x′

1(t) = −x1(t) + (1/α1) f1(x2(t − τ2)). Since (1/α1) f1(x2(t − τ2)) > 0 and
is decreasing to zero as x2 → 0+ one sees that the inequality x1(t) ≤ (1/α1) f1(x2(t −
τ2)) holds for all sufficiently large t.

Assume now that for arbitrary ε1 > 0 and ε2 > 0 the values of t are chosen to be
large enough, t ≥ T , so that the following inequalities hold:

f2(x1(t − τ1)) ≤ [
f ′
2(0) + ε1

]
x1(t − τ1) and f1(x2(t − τ2)) ≥ [

f ′
1(0) − ε2

]
x2(t − τ2).

Integrate now the second equation of system (10) over the interval [t − τ, t]:

x2(t) − x2(t − τ) = − α2

∫ t

t−τ

x2(s) ds +
∫ t

t−τ

f2(x1(s − τ1) ds ≤

− α2x2(t)τ + [
f ′
2(0) + ε1

]
∫ t

t−τ

x1(s − τ1) ds ≤

− α2x2(t)τ + [
f ′
2(0) + ε1

] 1

α 1

∫ t

t−τ

f1(x2(s − τ)) ds ≤

− α2x2(t)τ + τ

α1

[
f ′
2(0) + ε1

] [
f ′
1(0) − ε2

]
x2(t − τ)).

Therefore, we obtain the inequality

x2(t) [1 + α2τ ] ≤ x2(t − τ)

{

1 + τ

α1

[
f ′
2(0) + ε1

] [
f ′
1(0) − ε2

]
}

.
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In the case when 1 + τ
α1

[ f ′
2(0) + ε1][ f ′

1(0) − ε2] < 0 is satisfied we arrive at a con-
tradiction with x2(t) > 0. This will clearly be the case when the inequality τa > α1

is satisfied and ε1, ε2 are sufficiently small.
(ii) Assume next that inequalities x1(t) > 0 and x2(t) < 0 are satisfied eventually.

As in part (i) one has the limits (11). The first equation of system (10) shows that
x′
1(t) < 0 so x1(t) is decreasing to zero. The second equation of the system implies
that x′

2(t) > 0 eventually, so x2(t) is increasing with x2(t) ≤ (1/α2) f2(x1(t − τ1))
satisfied for all large t. Now integrate the first equation of the system over the interval
[t − τ, t], assuming similar smallness of ε1, ε2 as in part (i) above:

x1(t) − x1(t − τ) = − α1

∫ t

t−τ
x1(s) ds +

∫ t

t−τ
f1(x2(s − τ2) ds ≤

− α1τx1(t) ds +
∫ t

t−τ
[ f ′

1(0) − ε1]x2(s − τ2) ds ≤

− α1τx1(t) ds + [
f ′
1(0) − ε1

]
∫ t

t−τ
(1/α2) f2(x1(s − τ)) ds ≤

− α1τx1(t) ds + 1

α 2

[
f ′
1(0) − ε1

] [
f ′
2(0) + ε2

]
∫ t

t−τ
x1(s − τ) ds ≤

− α1τx1(t) ds + τ

α 2

[
f ′
1(0) − ε1

] [
f ′
2(0) + ε2

]
x1(t − τ).

The last inequality implies that the following estimate holds

x1(t) [1 + α1τ ] ≤ x1(t − τ)

{

1 + τ

α2

[
f ′
1(0) − ε1

] [
f ′
2(0) + ε2

]
}

.

Therefore when the condition aτ > α2 is satisfied the latest inequality leads to a
contradiction with x1(t) > 0.

(iii) Two remaining subcases, {x1(t) < 0, x2(t) < 0} and {x1(t) < 0, x2(t) > 0}
are symmetric to those treated above in cases (i) and (ii), respectively. The details
of the proof are derived along the same lines, with a contradiction obtained to the
assumption that x1(t) < 0. They are left to the reader.

3.2 Three Dimensional Systems

Consider the three-dimensional case N = 3 of system (1)

x′
1(t) = −α1x1(t) + f1(x2(t − τ2))

x′
2(t) = −α2x2(t) + f2(x3(t − τ3)) (12)

x′
3(t) = −α3x3(t) + f3(x1(t − τ1)).
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Since it is in the standard form f1 and f2 satisfy the positive feedback assump-
tion (2) while f3 satisfies the negative feedback assumption (3). Introduce the
following quantities: a = −a1a2a3 > 0, τ1 + τ2 + τ3 = τ > 0 where f ′

1(0) = a1 >

0, f ′
2(0) = a2 > 0, f ′

3(0) = a3 < 0.

Theorem 2 Suppose that the inequality a τ > max{α1α2, α1α3, α2α3} is satisfied.
Then all nontrivial solutions of system (10) oscillate.

Proof The proof of this theorem in very similar to that of Theorem 1. One has
to consider the following three principal subcases for the eventual signs of the
components x1, x2, x3 of a non-oscillating solution x: {x1 > 0, x2 > 0, x3 > 0},
{x1 > 0, x2 > 0, x3 < 0}, and {x1 > 0, x2 < 0, x3 < 0}. The remaining five subcases
are symmetric opposite or similar to those three, and are considered along the same
lines. For example, the case {x1 > 0, x2 > 0, x3 > 0} leads to the following integral
equation for the component x3, when the last equation of the system is integrated
over the interval [t − τ, t],

x3(t) − x3(t − τ) = −α3

∫ t

t−τ

x3(s) ds +
∫ t

t−τ

f3(x1(s − τ1) ds,

and to the following two inequalities for the components x1 and x2

x1(t) ≥ 1

α1
f1(x2(t − τ2)), x2(t) ≥ 1

α2
f2(x3(t − τ3)).

Substituting the latter into the integral equation, one derives a contradiction with
the assumption x3(t) > 0, when the inequality τa > α1α2 is satisfied. The other two
principal subcases lead to a similar contradiction when the other two assumptions
are in place, τa > α1α3 and τa > α2α3. We leave details to the reader.

4 Discussion

Theorems 1 and 2 provide simple and verifiable sufficient conditions for the oscil-
lation of all solutions of system (1) in cases N = 2 and N = 3. In the case when the
feedback functions f1, f2, f3 are fixed, and the rates of decay of all the components
are bounded above, maxi αi ≤ α0 for some fixed constant α0 > 0, a sufficiently large
overall delay τ = ∑N

i=0 in the system forces all its solutions to oscillate. We believe
that an analogue of these two theorems is valid in the case of general dimension N .
However, we are not in a position to provide a complete proof at this time. The ideas
used in the proof of Theorems 1 and 2 cannot be extended to the case N ≥ 4, due to
the variety and complexity of all the subcases. Therefore, we are only in a position
to state the following conjecture.
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Set a = −a1a2 . . . aN−1aN > 0 and τ = τ1 + · · · + τN > 0, where f ′
i (0) = ai >

0, 1 ≤ i ≤ N − 1 and f ′
N (0) = aN < 0. Given positive α1, . . . , αN introduce the fol-

lowing quantities: 
i = ∏
k �=i αk , 1 ≤ i ≤ N .

Conjecture 1 Suppose that the inequality a τ > max{ 
1, . . . , 
N } is satisfied.
Then all nontrivial solutions of system (1) oscillate.

Another interesting and challenging problem is to derive sufficient conditions for
the oscillation of all solutions in cyclic type systems when either a positive or a
negative type feedback is in place between any two consecutive components xk and
xk+1, however, all other components are also involved on every step. In the simplest
case of dimension N = 2 such system would have the form

x′
1(t) = −α1x1(t) + f1(x1(t − τ1), x2(t − τ2))

x′
2(t) = −α2x2(t) + f2(x1(t − τ1), x2(t − τ2)),

where the nonlinearities f1 and f2 satisfy the positive and negative feedback assump-
tions, respectively, in the following sense:

v · f1(u, v) > 0 ∀(u, v) ∈ R2, v �= 0 u · f2(u, v) < 0 ∀(u, v) ∈ R2, u �= 0.

This problem can be generalized to the case of arbitrary dimensionN . This oscillation
problem and the above stated Conjecture 1 represent a program for future research.
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Asynchronous Control of Switched
Nonlinear Systems

Jiaojiao Ren, Xinzhi Liu, Hong Zhu and Shouming Zhong

Abstract This paper studies the problem of asynchronous control of switched non-
linear systems. The asynchronous control means that the switchings between the can-
didate controllers and systemmodels are asynchronous. By using the piecewise Lya-
punov function and average dwell time approach, the asynchronously switched stabi-
lizing control problem for nonlinear systems is solved under the proposed switching
law, which allows us to have a stable or unstable subnonlinear system. Illustrative
examples are provided to show the effectiveness of the results.

Keywords Asynchronous control · Switched nonlinear system
Exponential stability · Average dwell time

1 Introduction

Switched systems [1, 2], consisting of a family of subsystems and a switching rule
that orchestrates the switching between them, have been used tomodelmany physical

J. Ren (B)
School of Information Science and Engineering,
Chengdu University, Chengdu 610106, People’s Republic of China
e-mail: jiaojiaoren06@163.com

J. Ren · X. Liu
Department of Applied Mathematics, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
e-mail: xzliu@uwaterloo.ca

H. Zhu
School of Automation Engineering, University of Electronic Science
and Technology of China, Sichuan 611731, People’s Republic of China
e-mail: zhuhong@uestc.edu.cn

S. Zhong
School of Mathematical Sciences, University of Electronic Science
and Technology of China, Sichuan 611731, People’s Republic of China
e-mail: zhongsm@uestc.edu.cn

© Springer Nature Switzerland AG 2018
D. M. Kilgour et al. (eds.), Recent Advances in Mathematical
and Statistical Methods, Springer Proceedings in Mathematics & Statistics 259,
https://doi.org/10.1007/978-3-319-99719-3_55

615

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99719-3_55&domain=pdf


616 J. Ren et al.

or man-made systems displaying switching features. The diverse switching signals
differentiate switched systems fromgeneral time-varying systems, since the solutions
of the switched systems are dependent on not only the system’s initial conditions but
also the switching signals. This class of systems have numerous applications in the
control of mechanical systems, the automotive industry, air traffic control, switching
power converters and many other fields [2].

In switched systems, each subsystem is called a mode, and control problems are
said to design a set of mode-dependent controllers or mode-independent controllers
for the unforced system and find admissible switching signals such that the resulting
systems is stable or satisfies certain performance criteria [2–4]. As we know, mode-
dependent controller design is less conservative. However, for the control problem,
it inevitably takes some time to identify the system modes and apply the matched
controller. So, a very common assumption in the mode-dependent context, the con-
trollers are switched synchronously with the switching of system modes, is quite
unpractical. Therefore, the asynchronous phenomena between the system modes
and the controller modes always exists. Recently, some efforts have been made to
study asynchronous control problems [5–9]. In [5–8], each subsystem is stable. In
[5], desirable controller is designed such that the energy function is decreasing in
each switching interval (both mismatched period and matched period). This require-
ment is weakened in [6–8]. The energy function is not required decreasing in mis-
matched period any more. Most recently, in [9], the authors deal with asynchronous
stabilization problem of switched system, which contains stable and unstable sub-
systems. However, the condition inf t≥t0 [ T

−(t)
T+(t) ] ≥ − β

α
can not guarantee the condition

−γ t = T−(t)α + T+(t)β holds, which only can guarantee T−(t)α + T+(t)β < 0
holds, where, T−(t) and T+(t) represent, respectively, the total active time of sub-
systems that are stable, not stable subsystems over (0, t); α, β and γ are constants.
Therefore, a switching law is need.

In this paper, the problem of asynchronous control of switched nonlinear sys-
tems is studied. By using the piecewise Lyapunov function and average dwell time
approach, the asynchronously switched stabilizing control problem for nonlinear sys-
tems is solved under the proposed switching law , which allows us to have stable and
unstable subnonlinear system. Some examples are provided to show the effectiveness
of the results.

2 Problem Descriptions and Preliminaries

Consider the following switched nonlinear system:

ẋ(t) = fσ(t)(x(t), u(t)), (1)

where x(t) ∈ Rn is a state vector and u(t) ∈ Rm is a control input vector. fσ(t) are
a set of regularly nonlinear functions. σ(t) : [0,∞) → S is the switching signal,
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i.e., σ(t) = ik ∈ S for t ∈ [tk, tk+1), where tk is the kth switching time instant, S =
{1, 2, . . . , s}, s, k ∈ N. 0 = t0 < t1 < . . . < tk < . . ., lim

k→∞tk = ∞, which can rule

out Zeno behavior automatically.
In fact, for the control problem, it inevitably takes some time to identify the system

modes and apply the matched controller. Therefore, the asynchronous phenomena
between the system modes and the controller modes always exists. In this paper, we
assume that the time lag of controllers modes to systemmodes is td > 0 (td < tk+1 −
tk, k ∈ N ). The state feedback control input can be written as u(t) = Kσ(t−td )x(t).

Before proceeding further, the following definitions are introduced.

Definition 2.1 [10] For a switching signal σ(t) and any t
′′
> t

′
> t0, let Nσ (t

′
, t

′′
)

be the switching numbers of σ(t) over the interval [t ′
, t

′′
). If Nσ(t

′
, t

′′
)≤N0+ t

′′ − t
′

τa
holds for N0 ≥ 1, τa > 0, then N0 and τa are called the chatter bound and the average
dwell time, respectively.

Note that:When the active subsystems are changed at some time instant, a switching
happens. Therefore, switching numbers mean the total numbers of switching.

Definition 2.2 [6] The equilibrium point of system (1) is globally uniformly expo-
nentially stable under certain switching signals σ(t) if, for u(t), there exist con-
stants K > 0 and δ > 0 such that the solution of the system satisfies ‖x(t)‖ ≤
Ke−δ(t−t0)‖x(t0)‖, ∀t ≥ t0.

3 Main Results

In this section, we first proposed a switching law for the system (1). Under this
switching law, the sufficient condition is given to guarantee the system (1) with-
out control input is exponentially stable by using average dwell time. Second, the
obtained result is extended to the system with control input.

3.1 Exponential Stability for the System (1) Without
Control Input

Switching law 3.1 [11] Let 0= t0< t1< t2<. . . (lim j→∞ t j =∞) be a specified
sequence of time instants satisfying sup j {t j+1−t j }=T <∞. Determine the switching
signal σ(t) such that the inequality T−(t j , t j+1)/T+(t j , t j+1)≥−(β + α∗)/(α + α∗)
holds on every time interval [t j , t j+1)( j = 0, 1, . . .), where 0 < α∗ < −α, α and
β are given constants, T−(t j , t j+1) and T+(t j , t j+1) denote the total active time of
stable and unstable subsystems respectively over (t j , t j+1).

Based on the given switching law 3.1, the following theorem is presented to
guarantee the system is exponentially stable.
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Theorem 3.1 For the given scalars ασ(t) and μ ≥ 1, the system (1) with u(t) = 0,
under the switching law 3.1, is exponentially stable if there exist Lyapunov functions
Vσ(t)(t) : Rn → R, and two positive constants K1 and K2 such that ∀σ(t) = i ∈ S

the following inequalities hold

K1‖x(t)‖2 ≤ Vi (t) ≤ K2‖x(t)‖2, (2)

V̇i (t) ≤ αi Vi (t), t ∈ [tk, tk+1) (3)

Vσ(tk )(tk) ≤ μVσ(t−k )(t
−
k ), (4)

τa >
lnμ

α∗ . (5)

Proof When ∀t ∈ [tk, tk+1), for σ(t) = i ∈ S, k ∈ N , it means the switched system
is active within the i th subsystem. From (3) and (4), we have

Vσ(t)(t) ≤ eαi (t−tk )Vσ(tk )(tk)

≤ μeαi (t−tk )Vσ(t−k )(t
−
k )

≤ μeαi (t−tk )+ασ(tk−1)(tk−tk−1)Vσ(tk−1)(tk−1)

≤ μ2eαi (t−tk )+ασ(tk−1)(tk−tk−1)Vσ(t−k−1)
(t−k−1)

≤ ...

≤ μNσ (t0,t)Vσ(t0)(t0)e
αT−(t0,t)+βT+(t0,t), (6)

where α = supi∈S{αi : αi < 0}, β = supi∈S{αi : αi ≥ 0}, T−(t0, t) and T+(t0, t)
denote the total active time of those subsystems that are stable, not stable subsystems
over (t0, t), respectively.

Suppose 0= t0< t1< t2<. . . (lim j→∞ t j =∞) be a specified sequence of time
instants satisfying Switching law 3.1. For any t , we have two cases:

(1) For t0 and t satisfying t j−1 < t0 ≤ t j < t j+1 < . . . < t k ≤ t , one has

T−(t j , t j+1)
T+(t j , t j+1)

≥−β + α∗

α + α∗

⇒T−(t j , t j+1)(−α − α∗) ≥ T+(t j , t j+1)(β + α∗)

⇒ − α∗(T−(t j , t j+1) + T+(t j , t j+1)) ≥ αT−(t j , t j+1) + βT+(t j , t j+1)

⇒ − α∗(t j+1 − t j ) ≥ αT−(t j , t j+1) + βT+(t j , t j+1), (7)

T−(t j , t j+1)
T+(t j , t j+1)

≥−β + α∗

α + α∗

⇒T−(t j , t j+1)(−α − α∗) ≥ T+(t j , t j+1)(β + α∗)

⇒T−(t j , t j+1)(−α − α∗) + T+(t j , t j+1)(−α − α∗)
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≥ T+(t j , t j+1)(β + α∗) + T+(t j , t j+1)(−α − α∗)

⇒T+(t j , t j+1) ≤ −α − α∗

β − α
T, (8)

and whether or not the activated subsystems over the interval [t0, t j ] and [t k, t]
are stable subsystems, we consider that the activated subsystems over the interval
[t0, t j ] and [t k, t] are unstable subsystems. Then, one obtain

eαT−(t0,t)+βT+(t0,t) ≤eβ(t j−t0)+∑k−1
q= j [βT+(tq ,tq+1)+αT−(tq ,tq+1)]+β(t−t k )

According to (7) and (8), one obtains

eαT−(t0,t)+βT+(t0,t) ≤ eβ(t−t k )−α∗ ∑k−1
q= j (t

q+1−tq )+β(t j−t0)

= eβ(t−t k )−α∗(t k−t j )+β(t j−t0)

= e(β+α∗)(t−t k+t j−t0)−α∗(t−t0)

≤ e(β+α∗)(T+(t k ,t k+1)+T+(t j−1,t j ))−α∗(t−t0)

≤ eγ−α∗(t−t0), (9)

where γ = −2(β+α∗)(α+α∗)
β−α

T .

(2) For t0 and t satisfying tq ≤ t0 < t ≤ tq+1, one has

eαT−(t0,t)+βT+(t0,t) ≤ eβ(t−t0)

= e(β+α∗)(t−t0)−α∗(t−t0)

≤ eγ−α∗(t−t0), (10)

where γ has the same value as the one above.

Based on (6), (9) and (10) and average dwell time, for any t , the following inequality
holds

Vσ(t)(t) ≤ μNσ (t0,t)Vσ(t0)(t0)e
αT−(t0,t)+βT+(t0,t)

≤ eN0 lnμ+γ e(
lnμ

τa
−α∗)(t−t0)Vσ(t0)(t0). (11)

From (2) and (5), we have

‖x(t)‖ ≤ Ke−κ(t−t0)‖x(t0)‖, (12)

where K = ( K2
K1
eN0 lnμ+γ )1/2 and κ = 1

2 (α
∗ − lnμ

τa
).

Therefore, the system (1) without control input is exponentially stable.
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3.2 Exponential Stability for the System (1)
With Control Input

Switching law 3.2 Let 0 = t0 < t1 < t2 < . . . (lim j→∞ t j = ∞) be a specified
sequence of time instants satisfying sup j {t j+1−t j }=T <∞. Determine the switching
signal σ(t) such that the inequality (T−(t j , t j+1) −N−

σ (t j , t j+1)td)/(T+(t j , t j+1) +
N−

σ (t j , t j+1)td)≥−(β + α∗)/(α + α∗) holds on every time interval [t j , t j + 1)( j =
0, 1, ...), where 0 < α∗ < −α, α and β are given constants. T−(t j , t j+1), T+(t j , t j+1)
and N−

σ (t j , t j+1) denote the total active time of those subsystems that are stable,
not stable subsystems and the total switching numbers of stable subsystems over
(t j , t j+1), respectively.

Based on the given switching law 3.2, the following theorem is presented to
guarantee the system is exponentially stable.

Theorem 3.2 For the given scalars ασ(t),σ (t−td ) and μ ≥ 1, the system (1) with
u(t) = Kσ(t−td )x(t), under the switching law 3.2, is exponentially stable if there exist
Lyapunov functions Vσ(t),σ (t−td )(t) : Rn → R, and two positive constants K̂1 and K̂2

such that ∀σ(t) = i , σ(t − td) = p, ∀i, p ∈ S the following inequalities hold

K̂1‖x(t)‖2 ≤ Vi,p(t) ≤ K̂2‖x(t)‖2, (13)

V̇i,p(t) ≤
{

αi,pVi,p(t), t ∈ [tk, tk + td), i �= p,

αi,i Vi,i (t), t ∈ [tk + td , tk+1), i = p,
(14)

Vσ(tk ),σ (tk−td )(tk) ≤ μ̂Vσ(t−k ),σ (t−k −td )(t
−
k ), (15)

Vσ(tk+td ),σ (tk )(tk + td) ≤ μ̂Vσ(t−k +td ),σ (t−k )(t
−
k + td), (16)

τa >
2 ln μ̂

α∗ . (17)

Proof When ∀t ∈ [tk + td , tk+1), σ(t) = i ∈ S; ∀t ∈ [tk, tk + td), σ(t − ts) = p ∈
S, k ∈ N . From (14), (15) and (16), we have

Vσ(t),σ (t−td )(t) ≤ eαi,i (t−tk−td )Vσ(tk+td ),σ (tk )(tk + td)

≤ μ̂eαi,i (t−tk−td )Vσ(t−k +td ),σ (t−k )(t
−
k + td)

≤ μ̂eαi,i (t−tk−td )+αi,ptd Vσ(tk ),σ (tk−td )(tk)

≤ μ̂2eαi,i (t−tk−td )+αi,ptd Vσ(t−k ),σ (t−k −td )(t
−
k )

≤ ...

≤ μ̂2Nσ (t0,t)eα(T−(t0,t)−N−
σ (t0,t)td )+β(T+(t0,t)+N−

σ (t0,t)td )×
Vσ(t0),σ (t0−td )V (t0), (18)
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whereα = supi∈S{αi,i , αi,i < 0},β = supi,p∈S,i �=p{αi,p, αi,i > 0},T−(t0, t),T+(t0, t)
and N−

σ (t0, t) denote the total active time of those subsystems that are stable, not
stable subsystems and the total switching numbers of stable subsystems over (t0, t),
respectively.

Combining Switching law 3.2 and following the similar proof procedure, we can
conclude that the system (1) with u(t) = Kσ(t−td )x(t), under the switching law 3.2,
is exponentially stable.

4 Numerical Examples

Example 1 Consider the following switched nonlinear system without control input
Switching Region 1: σ(t) = 1

ẋ1(t)=0.2x1(t)+0.1x2(t)−0.15|sin(10x2(t))|e−sin(10x2(t))x2(t)

ẋ2(t)=0.7x1(t)+0.02x2(t) (19)

Switching Region 2: σ(t) = 2

ẋ1(t) = −x1(t)

ẋ2(t) = −0.2|cos(10x1(t))|x1(t) − x2(t) (20)

Here, let α1 = 1.5, α2 = −0.6, α∗ = 0.3 and μ = 1.2. According to Switching
law 3.1, for t ∈ [0, 12], the switching signal σ(t) is given as follows:

σ(t) = 1 : t ∈ [0, 0.3), [2.9, 3.4), [6.8, 7.1), [8.9, 9.4),
σ (t) = 2 : t ∈ [0.3, 2.9), [3.4, 6.8), [7.1, 8.9), [9.4, 12],

where the specified sequence of time instants {tn}4n=0 is given as {0, 3, 6, 9, 12}. Note
that the condition 1.5 = τa ≥ lnμ

α∗ = 0.6077 also holds. The simulation results are
shown in Figs. 1 and 2, which well illustrate Theorem 3.1.

Example 2 Consider the following switched nonlinear system
Switching Region 1: σ(t) = 1

ẋ1(t) = x1(t)+0.1x2(t)+0.15|sin(6x1(t))|e−sin(6x1(t))x2(t)

+ (0.1 + 0.4

e
|sin(6x1(t))|e−sin(6x1(t)))u1(t)

ẋ2(t) = 0.7x1(t)+0.2x2(t), (21)
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Fig. 1 The switching signal
σ(t)
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Fig. 2 The state trajectories
of the system (3)
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Switching Region 2: σ(t) = 2

ẋ1(t) = 0.6x1(t) + 0.3u1(t) + 0.7|cos(6x2(t))|u1(t)
ẋ2(t) = 0.2|cos(10x2(t))|x1(t) − 0.7x2(t), (22)

Here, let α11 = 0.2, α12 = 0.5, α21 = 0.1, α22 = −0.3, α∗ = 0.2, μ = 1.1 and
td = 0.2. According to Switching law 3.2, for t ∈ [0, 12], the switching signal σ(t)
and σ(t − td) are given as follows:

σ(t) = 1 : t ∈ [0, 0.3), [2.9, 3.4), [6.8, 7.1), [9.0, 9.4),
σ (t) = 2 : t ∈ [0.3, 2.9), [3.4, 6.8), [7.1, 9.0), [9.4, 12],
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σ(t − td) = 1 : t ∈ [0, 0.5), [3.1, 3.6), [7.0, 7.3), [9.2, 9.6),
σ (t − td) = 2 : t ∈ [0.5, 3.1), [3.6, 7.0), [7.3, 9.2), [9.6, 12],

where the specified sequence of time instants {tn}4n=0 is given as {0, 3, 6, 9, 12}. Note
that the condition 1.5 = τa ≥ 2 lnμ

α∗ = 0.9532 also holds. The simulation results are
shown in Figs. 3 and 4, which well illustrate Theorem 3.2.

Fig. 3 The switching signal
σ(t)
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5 Conclusion

In this paper, the piecewise Lyapunov function and average dwell time approach have
been used to investigate the problem of asynchronous control of switched nonlinear
systems. By using the proposed switching law, the asynchronously switched stabiliz-
ing control problem for nonlinear systems has been solved, which allows us to have
stable and unstable subnonlinear system. Illustrative examples have been provided
to show the effectiveness of the results.
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FMPS of Master-Slave Dynamical
Networks with Hybrid Feedback Control

Xin Wang, Xinzhi Liu, Kun She and Shouming Zhong

Abstract In this paper, the problem concerning function matrix projective syn-
chronization (FMPS) for two different coupled complex dynamical networks with
nonidentical nodes of different dimensions is investigated, in which the internal time
delay is different from the coupling delay. With the aid of Lyapunov stability the-
ory and mathematical induction, a hybrid feedback control protocol is proposed to
achieve the FMPS. In contrast to most existing results, the symmetric or diffusive
criteria for the coupling matrices are not needed. Numerical example is presented to
illustrate the effectiveness and conservatism reduction of the proposed scheme.

Keywords Synchronization · Hybrid control · Complex networks

1 Introduction

Many large-scale systems in real world, such as biological neural networks, food
webs, electrical power grid and social networks, can be described by complex net-
works. A complex dynamical network consists of coupling nodes, each node is a
nonlinear dynamical system and interconnected by edges. In the past few decades,
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the study of complex networks has attracted increasing attention from researchers in
different fields [1–3]. In particular, synchronization as a typical collective dynamical
behavior of coupled nonlinear systems has been widely investigated in [4–7].

In addition, a new type of synchronization phenomenon, called function projec-
tive synchronization (FPS), has been proposed and extensively investigated in [8–11].
FPS means that the master system and the slave system could be synchronization
up to a scaling function matrix. FPS is a more general definition of chaotic synchro-
nization. For example, if we let the scaling function matrix be unity or constant; one
can get complete synchronization (CS) or projective synchronization (PS). Since the
unpredictability of the scaling function matrix in FMPS can additionally enhance the
security of communication [12, 13], recently, FPS has attracted the interest of many
researchers in various fields. For example, on the basis of an adaptive control method,
FPS for a class of chaotic systems with unknown parameters was studied in [14].
In [15], the authors addressed FPS in complex dynamical networks via hybrid feed-
back control. Furthermore, results on generalized matrix projective synchronization
of general complex networks were considered in [16]. However, although synchro-
nization of complex networks with identical or nonidentical dynamical systems have
been studied extensively, the dimensions of node dynamics are always assumed to be
identical. In reality, many systems are modeled by nonlinear dynamics which may
be totally different, and the interactions among them can also be totally different. On
the other hand, due to time and space characteristics of the complex networks, at the
process of information transmission, the time delay that exists in a single network
and the coupling delays between complex networks may be different at different
times.

Motivated by the issues discussed above, based on the Lyapunov stability the-
ory and mathematical induction scheme, we use a matrix as a bridge, for complex
dynamical networks with nonidentical nodes of different dimensions, and achieve
the synchronization via a hybrid feedback control protocol. Here, the symmetric or
diffusive conditions for the coupling matrices are not needed. Finally, a numerical
example is presented to illustrate the effectiveness and conservatism reduction of the
proposed method.

Notation: The diag{. . .} denotes the block diagonal matrix. For a real symmetric
matrix P , λmin(P) and λmax (P) denote the minimum and maximum eigenvalues of
P , respectively. ‖ · ‖ denotes the Euclidean vector norm. | · | denotes the absolute
value. The superscript T denotesmatrix or vector transposition. The symmetric terms
in a symmetricmatrix are denoted by ∗. Matrices, if not explicitly stated, are assumed
to have compatible dimensions.

2 Preliminaries

Consider a general complex network with different internal time-varying delay and
coupled time-varying delay:
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ẋi (t) = fi (xi (t), xi (t − τ1(t))) + ε

N∑

j=1

ci j Qi j x j (t − τ2(t)), (1)

where i = 1, 2, . . . , N , xi (t) = (xi1(t), xi2(t), . . . , xini (t))
T ∈ �ni stands for the

state vector of the i th node. fi (·, ·) ∈ �ni is vector-valued function. ε > 0 is the cou-
pling strength, τ1(t) and τ2(t) are the known internal time-varying delay and coupled
time-varying delay. Qi j ∈ �ni×n j is the inner coupling matrix, i, j ∈ {1, 2, . . . , N },
C = (ci j )N×N is the outer coupling matrix satisfying: if there is a connection from
node j to node i (i �= j), then ci j �= 0; otherwise ci j = 0.

We refer to (1) as the drive network, the response networkwith suitable controllers
will be described as follows:

ẏi (t) = gi (yi (t), yi (t − τ1(t))) + ε

N∑

j=1

di jGi j y j (t − τ2(t)) + ui (t), (2)

where i = 1, 2, . . . , N , yi (t) = (yi1(t), yi2(t), . . . , yimi (t))
T ∈ �mi stands for the

state vector of the i th node. gi (·, ·) ∈ �mi is vector-valued function. ε > 0 is the
coupling strength, τ1(t) and τ2(t) are the known internal time-varying delay and
coupled time-varying delay. ui (t) is the control input. Gi j ∈ �mi×m j is the inner
coupling matrix, i, j ∈ {1, 2, . . . , N }, D = (di j )N×N is the outer coupling matrix
satisfying: if there is a connection from node j to node i (i �= j), then di j �= 0;
otherwise di j = 0.

Definition 1 The FMPS between drive network (1) and response network (2) is
achieved, if there exists a continuously differentiable scaling functionmatrixMi (t) ∈
�mi×ni such that

lim
t→∞ ‖yi (t) − Mi (t)xi (t)‖ = 0, i = 1, 2, . . . , N . (3)

Assumption 1 0 ≤ τi (t) ≤ τi and τ̇i (t) ≤ μi < 1 for i = 1, 2, where τi and μi are
constants.

Assumption 2 The function σ(·, ·) ∈ �n is said to satisfy the QUAD condition, i.e.,
σ ∈ QU AD(L ,Δ), if there exist positive diagonal matrices L and Δ such that

(x − y)T (σ (x, x̃) − σ(y, ỹ)) ≤ (x − y)T L(x − y) + (x̃ − ỹ)TΔ(x̃ − ỹ). (4)

for any x , y, x̃ , ỹ ∈ �n .

Lemma 1 For any x, y ∈ �n and positive definite matrix R ∈ �n×n, the following
matrix inequality holds:

2xT y ≤ xT Rx + yT R−1y. (5)
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3 Main Results

In this section, we propose a hybrid feedback control method to achieve FMPS.
Define the error vectors as follows:

ei (t) = yi (t) − Mi (t)xi (t), (6)

where Mi (t) ∈ �mi×ni is the time-varying scaling matrix.
The hybrid controller is designed as

ui (t) = u1i (t) + u2i (t), (7)

where

u1i (t) = Mi (t)ẋi (t) + Ṁi (t)xi (t) − gi (Mi (t)xi (t), Mi (t − τ1(t))xi (t − τ1(t)))

− ε

N∑

j=1

di jGi j Mi (t − τ2(t))x j (t − τ2(t)), (8)

u2i (t) = −βi (t)ei (t), (9)

and the adaptive law is

β̇i (t) = ki e
T
i (t)ei (t), i = 1, 2, . . . , N , (10)

where ki is positive constant, u1i (t) is the nonlinear controller, and u
2
i (t) is the adaptive

feedback controller.
Then, the error dynamical network can be obtained:

ėi (t) = ẏi (t) − Ṁi (t)xi (t) − Mi (t)ẋi (t)

= g̃i (ei (t), ei (t − τ1(t))) + ε

N∑

j=1

G̃i j e j (t − τ2(t)) − βi (t)ei (t), (11)

where g̃i (ei (t), ei (t − τ1(t))) = gi (yi (t), yi (t − τ1(t))) − gi (Mi (t)xi (t),
Mi (t − τ1(t))xi (t − τ1(t))), G̃i j = di jGi j .

Theorem 1 Suppose that the Assumptions1 and 2 hold, for given synchronization
scaling function matrix Mi (t) ∈ �mi×ni , the drive network (1) and the response net-
work (2) can achieve FMPS, if there exists sufficiently large positive constant β∗,
such that the following inequality holds for i = 1, 2, . . . , N ,

λmax (
ε

2

N∑

j=1

G̃i j G̃
T
i j ) + (1 − μ1)

−1δmax + 	max + Nε

2(1 − μ2)
< β∗

i , (12)
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Proof Choose a Lyapunov functional as follows:

V (et ) = V1(et ) + V2(et ) (13)

V1(et ) = 1

2

N∑

i=1

eTi (t)ei (t) + 1

2

N∑

i=1

(βi (t) − β∗)2

ki

V2(et ) =
N∑

i=1

∫ t

t−τ1(t)
eTi (s)P (1)

i ei (s)ds +
N∑

i=1

∫ t

t−τ2(t)
eTi (s)P (2)

i ei (s)ds

where β∗ is a positive constant, P (1)
i and P (2)

i ∈ �mi×mi are the positive definite
diagonal matrices to be determined.

Differentiating V (et ) along the trajectory of the system (11), we have

V̇1(et ) =
N∑

i=1

eTi (t)ėi (t) +
N∑

i=1

(βi (t) − β∗)eTi (t)ei (t)

=
N∑

i=1

eTi (t)g̃i (ei (t), ei (t − τ1(t))) + ε

N∑

i=1

N∑

j=1

eTi (t)G̃i j e j (t − τ2(t))

− β∗
N∑

i=1

eTi (t)ei (t) (14)

V̇2(et ) =
N∑

i=1

[eTi (t)P (1)
i ei (t) − (1 − τ̇1(t))e

T
i (t − τ1(t))P

(1)
i ei (t − τ1(t))]

+
N∑

i=1

[eTi (t)P (2)
i ei (t) − (1 − τ̇2(t))e

T
i (t − τ2(t))P

(2)
i ei (t − τ2(t))]

≤
N∑

i=1

eTi (t)(P (1)
i + P (2)

i )ei (t) − (1 − μ1)

N∑

i=1

eTi (t − τ1(t))P
(1)
i

ei (t − τ1(t)) − (1 − μ2)

N∑

i=1

eTi (t − τ2(t))P
(2)
i ei (t − τ2(t))

(15)

Notice that g̃i (·, ·) satisfies the QUAD condition, thus there exist positive matrices
Li and Δi such that

eTi (t)g̃i (ei (t), ei (t − τ1(t)))

≤ eTi (t)Liei (t) + eTi (t − τ1(t))Δi ei (t − τ1(t))
(16)
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where Li = diag(li1, li2, . . . , limi ), Δi = diag(δi1, δi2, . . . , δimi ), i = 1, 2, . . . , N .
Moreover, by Lemma 1, we get

2
N∑

i=1

N∑

j=1

eTi (t)G̃i j e j (t − τ2(t))

≤
N∑

i=1

N∑

j=1

eTi (t)G̃i j G̃
T
i j ei (t) +

N∑

i=1

N∑

j=1

eTj (t − τ2(t))e j (t − τ2(t))

=
N∑

i=1

N∑

j=1

eTi (t)G̃i j G̃
T
i j ei (t) + N

N∑

i=1

eTi (t − τ2(t))ei (t − τ2(t))

(17)

Then, according to (14)–(17), it follows that

V̇ (et ) ≤
N∑

i=1

eTi (t)Liei (t) +
N∑

i=1

eTi (t − τ1(t))Δi ei (t − τ1(t))

+ ε

2

N∑

i=1

N∑

j=1

eTi (t)G̃i j G̃
T
i j ei (t) + Nε

2

N∑

i=1

eTi (t − τ2(t))ei (t − τ2(t))

+
N∑

i=1

eTi (t)(P (1)
i + P (2)

i )ei (t) − (1 − μ1)

N∑

i=1

eTi (t − τ1(t))P
(1)
i

ei (t − τ1(t)) − (1 − μ2)

N∑

i=1

eTi (t − τ2(t))P
(2)
i ei (t − τ2(t))

− β∗
N∑

i=1

eTi (t)ei (t).

(18)

Let P (1)
i = (1 − μ1)

−1Δi , P
(2)
i = Nε

2(1−μ2)
Imi , then

V̇ (et ) ≤
N∑

i=1

eTi (t)[Li + ε

2

N∑

j=1

G̃i j G̃
T
i j + (1 − μ1)

−1Δi + Nε

2(1 − μ2)
Imi

− β∗ Imi ]ei (t)

≤[λmax(
ε

2

N∑

j=1

G̃i j G̃
T
i j ) + (1 − μ1)

−1δmax + 	max + Nε

2(1 − μ2)
− β∗]

N∑

i=1

eTi (t)ei (t)

(19)
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where δmax = max{δi j }, 	max = max{li j },μmin = min{μi }, i = 1, 2, . . . , N and
j = 1, 2, . . . ,mi .

It follows from the condition (12), one can get V̇ (et ) ≤ 0, then the FMPS is
achieved. The proof is completed. �

4 Numerical Example

In this section, a numerical example is given to illustrate the effectiveness and cor-
rectness of the proposed method.

Consider two different complex networks as follows: Firstly, the drive network is
given by

ẋi (t) = fi (xi (t), xi (t − τ1(t))) + ε

2∑

j=1

ci j Qi j x j (t − τ2(t)), (20)

where xi (t) = (xin1 , xin2)
T , i = 1, 2,n1 = 3,n2 = 4, τ1(t) = et

4(1+et ) , τ2(t) = et

2(1+et ) ,

fi (xi (t), xi (t − τ1(t))) = fi (xi (t)) + 1
2 sin(xi (t − τ1(t))). Here, we consider the

nonlinear functions fi (xi (t)) of these nonidentical nodes consist of the hyperchaotic
Rossler system and hyperchaotic Lorenz system, that is

f1(x1(t)) =
⎛

⎝
36(x12(t) − x11(t))

20x12(t) − x11(t)x13(t)
−3x13(t) + x11(t)x12(t)

⎞

⎠ , f2(x2(t)) =

⎛

⎜⎜⎝

10(x22(t) − x21(t)) + x24(t)
28x21(t) − x22(t) − x21(t)x23(t)

x21(t)x22(t) − 8
3 x23(t)

1.3x24(t) − x21(t)x23(t)

⎞

⎟⎟⎠ .

The coupling matrices of system (14) are defined as

C =
(−0.3 −0.2

0.1 0.4

)
, Q11 =

⎛

⎝
0.4 −0.2 0.3
0.2 −0.3 0.4
0.3 0.2 0.1

⎞

⎠ , Q12 =
⎛

⎝
0.2 0 0.3 −0.5
0.1 −0.3 0.4 0
0.3 0.2 0.1 −0.2

⎞

⎠ ,

Q21 =

⎛

⎜⎜⎝

0.2 −0.1 0.3
0 0.3 0.2
0.4 0.2 0.1
0.1 −0.2 0.5

⎞

⎟⎟⎠ , Q22 =

⎛

⎜⎜⎝

0.1 −0.2 0.3 0.1
0.4 −0.3 0 0.2

−0.3 0.2 −0.1 0.1
0 0.2 0.1 −0.2

⎞

⎟⎟⎠ .

Moreover, the response network with suitable controllers is described as follows:

ẏi (t) = gi (yi (t), yi (t − τ1(t))) + ε

2∑

j=1

di jGi j y j (t − τ2(t)) + ui (t), (21)
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ui (t) = u1i (t) + u2i (t), (22)

where

u1i (t) = Mi (t)ẋi (t) + Ṁi (t)xi (t) − gi (Mi (t)xi (t), Mi (t − τ1(t))xi (t − τ1(t)))

− ε

N∑

j=1

di jGi j Mi (t − τ2(t))x j (t − τ2(t)),

u2i (t) = −βi (t)ei (t),

β̇i (t) = ki e
T
i (t)ei (t), i = 1, 2,

gi (yi (t), yi (t − τ1(t))) = Bi yi (t) + 1
2 (cos

2(yi (t)) − yi (t − τ1(t))), and the
parameters of system (15) are given by

B1 =

⎛

⎜⎜⎝

1 −2 3 1
4 3 −1 2

−3 2 −1 1
0 2 1 −5

⎞

⎟⎟⎠ , B2 =
(
1 −2
3 −4

)
, D =

(−0.5 0
0.3 0.4

)
,

G11 =

⎛

⎜⎜⎝

0.4 0 0 −0.1
0.1 0.3 0 −0.2
0 0 0.1 0

−0.1 0.1 −0.2 0.5

⎞

⎟⎟⎠ ,G12 =

⎛

⎜⎜⎝

−0.2 0.1
0.1 0

−0.1 0.1
0 −0.2

⎞

⎟⎟⎠ ,

G21 =
(
0.1 0.1 0 −0.1
0 0.1 −0.1 0.2

)
,G22 =

(−0.1 0.1
0 −0.3

)
,

Now, we take the time-varying scaling matrices as:

M1(t) =

⎛

⎜⎜⎝

0 0 1
0 0.5sin2t −1

2cost 0 1
0 0 1 − sint

⎞

⎟⎟⎠ , M2(t) =
(−2 −1 1 0

0 −0.5cos2t −1 0

)
,

and ε = 0.5, ki = 5,βi (0) = 0.5, i = 1, 2.Choose the initial values state variables
of drive-response networks randomly.

Figures1 and 2 show the state trajectories of master system and slave system,
respectively. It can be seen from Fig. 3 that the state trajectories of drive system
and response system have been synchronization under the hybrid controller (16).
Moreover, Fig. 4 shows the orbits of adaptive feedback gains βi (t).
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Fig. 1 The state trajectories
of master system (14)
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Fig. 2 The state trajectories
of slave system (15)
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Fig. 3 The orbits of
synchronization errors ei (t)
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Fig. 4 The orbits of adaptive
feedback gains βi (t)
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5 Conclusions

In this paper, we have studied the issue of FMPS for two different coupled complex
dynamical networks with nonidentical nodes of different dimensions, in which the
internal time delay is different from the coupling delay. Based on Lyapunov stability
theory andmathematical induction, a hybrid feedback control protocol is proposed to
achieve the FMPS. The symmetric or diffusive conditions for the coupling matrices
are not needed. Finally, a numerical example is presented to illustrate the effectiveness
and conservatism reduction of the proposed scheme. In the future, we will use the
proposed approach to fractional-order complex networks.
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Implicit State Dependent Delay
in Range-Based Position Estimation
and Navigation

Erik I. Verriest

Abstract The transmission delay present in sonar based navigation may present a
problem. Typically one solves such navigation using a quasi-static assumption, by
assuming that the position of the mobile unit (MU) does not change significantly
over the time the signal travels between the MU and the beacon (and back, in case of
two-way ranging). For fast moving units, this may pose a problemwhich is addressed
in this paper. An extension of the Lagrange-Bürman inversion, dynamic inversion,
and perturbation methods are proposed to solve the problem.

Keywords Transmission delay · State dependent delay · Lagrange inversion
Sonar based positioning

1 Problem Setting

We visit the problem of localization of underwater and/or surface vehicles by sonar.
We limit our discussion to the position estimation and tracking given range measure-
ments only, and solve two cases: The first considers one-way signaling: The mobile
unit (MU) sends out signals, carrying transmission time information, which are re-
ceived by the processing platforms (P). In the second scenario, two-way signaling
is employed. The MU transmits to the platform, which reflects or repeats the signal
back to the MU. In each scenario, multiple platforms may be employed (the long
baseline (LBL) solution). The problem is that the signaling is not instantaneous, and
as the speed of the MU may be a substantial fraction of the speed of sound, correc-
tions need to bemade for its motion. Although this problem has been dealt with in the
recent literature (see [2, 3, 8] for an overview), we consider a new approach based on
the Lagrange-Bürman inversion, which is exact in the absence of noise and in the as-
sumption that the system is driven by an inputmodeled as an analytic function. In con-
trast, methods based on the Taylor expansion assuming piecewise constant delays are
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known to give erroneous results [1]. In what follows it is assumed that the transmis-
sion delays can be measured, We also assume that signalling proceeds in straight line
paths, thus neglecting bending of paths due to varying water temperature and salinity.

2 Observability

We shall focus on the problem consisting of a single MU. If the MU moves in a
plane (ocean surface), it is well known from Euclidean geometry that the position of
this MU can be determined uniquely from knowledge of the distances to three non-
collinear observers provided the position of the observers is perfectly known. With
only two observers, the location of the MU is at the intersection of two circles, but
without side information, it cannot be known which of the two possible intersections
(generically) is the right one.
If the MU can submerge, four non-planar observers are necessary to uniquely deter-
mine the position as the intersection of four spheres.
However distance measurements may be prone to observation noise, so that in gener-
al only a probability density for the position can be established, or in a deterministic
setting, only a bounded region of space may be known to contain the MU.
In addition it may of interest to estimate the velocity and/or acceleration of the MU
as well. This would involve differentiation of the range information which may be
problematic in the presence of noise. We present an interpolation method to derive
the velocity. We consider a sampled approach, and an induced continuous method.

2.1 Sampled Process

Assume that at times −kδ, where k ∈ {0, 1, 2, . . . , n} ⊆ Z+, the distances |x(kδ)|
are known. From the Taylor approximation we obtain then for all t and k x(−kδ) =
x(t) − (t + kδ)ẋ(t) + (t+kδ)2

2! ẍ(t) + h.o.t.,where “h.o.t.” refers to higher order terms.
Neglecting the higher order terms, these relations can be collected in a matrix form,
which evaluated at t = 0 is

⎡
⎢⎢⎢⎣

x(0)
x(−δ)

...

x(−nδ)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x(δ)

=

⎡
⎢⎢⎢⎣

1 0 · · · 0
1 (−δ)

1! . . . (−δ)n

n!
... · · · ...

1 (−nδ)
1! · · · (−nδ)n

n!

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Tn(δ)

⎡
⎢⎢⎢⎣

x
Dx
...

Dnx

⎤
⎥⎥⎥⎦

0︸ ︷︷ ︸
D x(0)

. (1)

Hence, with the vectors and matrix identified above, D x(0) = Tn(δ)−1x(δ). The
second component of D x(0) is the requested derivative. We note that the matrix
Tn(δ) is invertible, so that x and its derivatives at t = 0 are solvable. In fact x(0) does
not need to be estimated as it corresponds to the last sample value at t = 0.
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2.2 Continuous Process

The continuous analog is obtained by setting up integral equations for the data.
Thus let again for −δ < s < 0 the Taylor expansion be x(s) = x(t) + (s − t)ẋ(t) +
(s−t)2

2! ẍ(t) + h.o.t. Integrating from t − δ to t. we get

〈x〉 def=
∫ 0

−δ

x(s) ds = δx(0) − δ2

2! ẋ(0) + δ3

3! ẍ(0) + h.o.t.

Additional equations are created by considering the moments 〈x〉k = ∫ 0
−δ

skx(s) ds.
A simple 2 × 2 system of equations is

[ 〈x〉1
〈x〉2

]
=

[
δ − δ2

2

− δ2

2!
δ3

3!

] [
x(0)
ẋ(0)

]
.

By time shifting the equation, we obtain from this an estimate for the derivative

D̂x(t) = −12

δ3

[
δ

2! 〈x〉1 + 〈x〉2
]

.

Thus, in principle the derivatives of ‖ri‖ can be obtained by processing the observa-
tions ‖ri‖. Using two observing stations, and letting r2 = r1 − d, we get

d

dt
‖r1‖ = v · 1r1 ,

d

dt
‖r2‖ = v · 1r1−d.

This yields the components of the velocity of the MU in two different directions
(generically), so that the vector v may be reconstructed from these projections. The
3-D case is similar. With two observing stations, A and B as in Fig. 1, one can nicely
represent the observations in the following topological form. Represent the observed
distances ri ≥ 0 in an orthogonal coordinate frame. See Fig. 2. Not all points of the
quadrant correspond to a geometrically feasible case. The points (r1, r2) are feasible
distances for the MU problem only if they fall within a semi-infinite rectangular
domain. IfA andB are one unit apart, then their representationsA′ andB′ respectively
have coordinates (1, 0) and (0, 1). Points on the line of sight between A and B are
represented by the line segmentA′B′, while the external parts of the line is represented
by the parallel lines orthogonal to A′B′. In fact each point in the rectangular domain
of the representation corresponds to two points in the geometry, one lying above AB
and one beneath. Hence the rectangle should be seen as two copies, connected at
their boundaries, thus giving a “pita bread” like representation (with opening at the
far end in the (1, 1) direction.)

Lines of constant sum r1 + r2 are ellipses with A and B as foci in Fig. 1, while in
Fig. 2 they are line segments parallel to A′B′. Lines of constant differences r1 − r2
are hyperbolae again with A and B as foci, while in the representation they are the
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Fig. 1 Geometry of the two
observer problem (color
online)

A B

M

Fig. 2 Topology of the two
observer problem (color
online)

A

B

r2

r1

straight lines at a 45 degree angle. The (green) lines orthogonal to AB in Fig. 1map to
the parts of (green) hyperbolae in Fig. 2 (color online). It should be emphasized that
although the ellipses and hyperbolas are mutually orthogonal and map to orthogonal
line bundles in the representation, the mapping is not conformal. It is easily shown
that the Cauchy-Riemann conditions (when using a complex representation) are not
satisfied.

Finally, if the signal propagation speed is not infinite, a delay will be incurred.
This is of no consequence when the MU is stationary. However, when it is in motion,
the signals to the observers will in general incur different path lengths, and the signals
received by the stations at time t will contain information about the position of the
MU at different past times. It was shown in [5–7] that the history of position can be
obtained from delay either graphically by construction, or analytically.

3 One-Way Signalling

The scenario is as follows. At a known time t0, the MU is a known distance r0 away
from a platform P. For instance the MU is moored to another platform, or surfaced
to get its precise coordinates via GPS. During its motion, the MU transmits time-
stamped signals to the platform. This enables a processor at P to observe the delay
between transmission and reception. This delay is the only available measurement to
P at time t. Thus let the receiver (the platform) define the perceived delay at time t as
its output, y(t) = τr(t), and this delay reports information about the position of the
MU at some earlier time t − τr(t). If this position is r(t − τr(t)), then the delay was
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precisely |r(t − τr(t)) − RP|/c, where RP denotes the fixed position of the platform
P. The observation constraint is therefore:

cτr(t) = |r(t − τr(t)) − RP|. (2)

This is an implicit equation for τr(t), given r(t) or vice versa.
An alternate viewpoint is possible: with reference to the position, r(t) of the MU at
time t. A signal emitted from theMU at time t will need a time τe(t) = |RP − r(t)|/c
to reach the platform. Since we’re processing data from each platform separately,
without loss of generality, we can set RP = 0. Some reflection will elucidate that this
second viewpoint then means that

cτe(t) = |r(t)|, (3)

and that the signal arrives at the platform at time t′ = t + τe(t). It follows that τr(t +
τe(t)) = τe(t), and inversely, τr(t′) = τe(t′ − τr(t′)).

In practice, there always is the ubiquitous observation noise that further corrupts
the measurements of τr(t) (Since r(t) is the unknown position, τe(t) is actually a
non-measured quantity). In addition the system equation (MU)may contain a driving
noise term.

We propose two methods: The first (Sect. 3.1) focuses on the explicit form that
can be obtained to express the observation in terms of the (delayed) state, so that a
nonlinear observer (or methods akin to extended Kalman filtering in the stochastic
case) can be used. The second method (Sect. 3.2) proceeds by expressing the state
directly in terms of the measurement and its derivatives. Both methods fuse the
delay information with dead-reckoning, the process of calculating one’s position by
advancing a prior known position based on an estimated velocity-vector over the
elapsed time.

Preliminary ideas were presented in [5, 7] where a geometric construction was
given. A similar equation is encountered in a pure physical problem involving the
finite propagation speed of gravitation. In the weak field assumption, where space
may still be considered flat, and the notion of simultaneity holds locally, a so-called
post-Newtonian approach led to a useful approximation of effects due to general
relativity. This was explored in [6]. The main idea was to extend the Lagrange-
Bürman inversion to implicit equations.

3.1 Inversion for Implicit Equations

At each platform P the received signal relates to the range from P, say, |r| = x ≥ 0,
by a reduced one-dimensional implicit delay equation,

cτ(t) = x(t − τ(t)) ≥ 0. (4)
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This allows the information at each platform to be preprocessed independently from
the others, and therefore renders the problem one-dimensional. The “pinning” condi-
tion, x(t0) = x0, with τ(t0) = τ0,may be considered as a generalized initial condition:
At time t0 position and signal delay are known exactly, and x(t) = x(t0) for t < t0,
so that

cτ(t0) = x(t0 − τ(t0)) = x0. (5)

If ∀t < t0, x(t) 
= x(t0), then we assume that also all derivatives of x are known at t0.

3.1.1 Lagrange-Bürman Inversion for Implicit Equations

Given a more general relation between delay and output of the form

G(τ ) = F(y(t), y(t − τ)), (6)

where the functions F , G and y are all analytic, the following generalization of the
Lagrange-Bürman inversion holds: (see [5] for a proof.).

Theorem 1 If G ′(τ ) + F2(y(t), y(t)) is nonzero at t, then τ(t) is expressed by the
power series

τ(t) =
∑
k≥1

(G(0) + F(y(t), y(t)))k

k!

{(
d

ds

)k−1 (
s

f (s)

)k
}

s=0

, (7)

where
f (τ ) = G(τ ) − G(0) − F(x(t), x(t − τ)) + F(x(t), x(t)). (8)

Unfortunately, methods based on the implicit function theorem and the Lagrange-
Bürmann inversion are limited by the need of the explicit functional form of x(t).

3.1.2 Application of the Lagrange-Bürman Inversion

Revisit the specific Eq. (4) where we may assume without loss of generality that
x(t) > 0. Indeed, if x = 0, then r = 0 and the function |r| fails to be analytic there.
However, the case r = 0 obviously does not require position estimation. Hence one
can restrict the problem to the two open half-lines where the inversion formula holds
(locally). We get, letting t = t0 + t̃, τ (t) = τ(t0 + t̃) = τ0 + τ̃ and with s = t̃ − τ̃

f (s) = x(t0 − τ0 + s) − x(t0 − τ0) + cs = ct̃. (9)

This choice results in f (0) = 0 and f ′(0) = ẋ(t0 − τ0) + c 
= 0, where we also need
to let t̃ → 0 if s → 0. The inversion yields
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s = ct̃

[
θ

f (θ)

]

θ=0

+ c2 t̃2

2

(
D

[
θ

f (θ)

]2
)

θ=0

+ · · · (10)

After some algebra, we obtain the expansion

τ
(
t|τ(t0) = x0

c

)
= x0

c
+ (t − t0)

ẋ[x0]
c + ẋ[x0] + (t − t0)2

2

c2ẍ[x0]
(c + ẋ[x0])3

+ · · ·

where ẋ[x0] stands for the derivative of x when x was at position x0, thus in the past.
A nonlinear observer is constructed from this output relation in continuous time with
a discretized model of the dynamics.

3.2 Approximate Dynamic Inversion

The current range of theMU from the platform is approximated by a truncation of the
Taylor series. This involves using derivatives of the observable delay τ(t). In principle
the observability guarantees their existence. However, because of observation noise,
the practicality of the method may be limited. Knowledge of when the mathematical
problem has a solution still sheds light on the ultimate observability problem. In fact,
not just position, but also velocity and acceleration may be recoverable. We start
again from Eq. (2) and take successive derivatives. The exposition is streamlined by
introducing the differentiation operatorD, and the evaluation functionalσt , definedby
σt(x) = x(t) for almost all t, on piecewise continuous functions. Finally, introduce
the concatenation operator ◦ concatenating two functions as follows σt(x ◦ β) =
σβ(t)x = x(β(t)). Note the fundamental identity (chain rule)

σtD(x ◦ β) = σt[(Dx) ◦ β] · Dβ, ∀t,

implying that the identity can be lifted from the evaluations to the functions them-
selves D(x ◦ β) = [(Dx) ◦ β] · Dβ.

This avoids a common ambiguity with the usual notation: Is ẋ(2t) the derivative of
x evaluated at 2t or is it the derivative of the concatenation x(2t)with respect to t? The
interpretations differ by a factor of 2! Thus, Eq. (2) becomes, with β(t) = t − τ(t),

x ◦ β = cτ,

from which successive differentiation yields

c

⎡
⎢⎢⎢⎣

τ

Dτ

D2τ
...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
Dβ

D2β (Dβ)2

...
. . .

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x ◦ β

Dx ◦ β

D2x ◦ β
...

⎤
⎥⎥⎥⎦ (11)
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Any analytic x can be represented by its Taylor expansion. Consider here the expan-
sion about β(t), so that x = x ◦ β + τ(Dx ◦ β) + τ 2

2! (D
2x ◦ β) + · · · and by exten-

sion
⎡
⎢⎢⎢⎣

x
Dx
D2x
...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 τ τ 2/2! · · ·
1 τ · · ·
1 · · ·

. . .

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x ◦ β

Dx ◦ β

D2x ◦ β
...

⎤
⎥⎥⎥⎦ . (12)

The matrices in these systems (11) and (12) are triangular. The obvious observability
condition, namely invertibility of the matrix in (11), boils down to Dβ 
= 0. This is
in fact the condition for causality, τ̇ < 1, of the delay equation (see [4]). It follows
then that (normalizing c = 1)

⎡
⎢⎢⎢⎣

x
Dx
D2x
...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 τ τ 2/2! · · ·
1 τ · · ·
1 · · ·

. . .

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
Dβ

D2β (Dβ)2

...
. . .

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

τ

Dτ

D2τ
...

⎤
⎥⎥⎥⎦ . (13)

The present position, x(t) is estimated by truncating the infinite series. For instance,
the three-term series truncation yields the continuous time position estimate

x̂(3)(t) = τ

1 − τ̇
+ τ 2τ̈

2(1 − τ̇ )3
+ τ 3(τ̈ 2 + ...

τ (1 − τ̇ ))

6(1 − τ̇ )5
.

In practice, a discrete version would be sought, so that each time update allows
for a new pinning condition, and the data fusion centers about this, thus avoiding
problems with the smaller radius of convergence for the LB inversion.

4 Two-Way Problem

In the two-way problem, the MU emits the signal, which takes a time τ1 to propagate
to the stationary platform where it is scattered (or repeated) and takes another τ2
seconds to reach the MU, which now is at another position. In this case only the total
delay τ = τ1 + τ2 is known and the geometry dictates

cτ(t) = ‖r(t − τ(t))‖ + ‖r(t)‖.

Let again a pinning conditions be that at time t0 the position r0 (and velocity etc.) were
exactly known, and that the MU emits a signal that is scattered and picked up by the
MU τ0 seconds later. This means that ‖r(t0 + τ0)‖ + ‖r0‖ = cτ(t0 + τ0) = cτ0, with
τ0 = τ(t0 + τ0). The LB inversion starts now from the relation, setting s = τ − τ0



Implicit State Dependent Delay in Range-Based Position … 645

cs − ‖r(t − τ0 − s)‖ + ‖r(t − τ0)‖ = ‖r(t)‖ + ‖r(t − τ0)‖ − cτ0.

Denoting the left hand side by f (t, s), we note that f (t, 0) = 0 and ∂
∂s f (t, 0) = c +

ṙ(t − τ0) · r(t−τ0)

‖r(t−τ0)‖ . In the neighborhood of r0, the LB inversion yields the relation
between position and observed delay as

τ = τ0 +
∑
k≥1

(‖r(t)‖ − ‖r(t − τ0)‖ − cτ0)k

k! �k (14)

�k = lim
s→0

Dk−1

(
s

f (t, s)

)k

. (15)

Alternatively, the reverse relation may be derived to get the range and its derivatives
as a nonlinear functional of the observed delay τ .

We sketch two perturbation approaches as an alternative way to solve the problem.
Let’s focus on a decoupled spatial 1-D system, thus assuming that x(·) ≥ 0 so that
the constraint equation is simply

cτ(t) = x(t) + x(t − τ(t)). (16)

Approach 1
Rearrange (16) as follows using successive substitution

x(t) = cτ(t) − x(t − τ(t))

= cτ(t) − cτ(t − τ(t)) + x(t − τ(t) − τ(t − τ(t))

= cτ(t) − cτ(t − τ(t)) + cτ(t − τ(t) − τ(t − τ(t))) − x(t − τ(t) − τ(t − τ(t)))

= · · ·

Reorganize this by defining first a sequence of times {tk} satisfying

tk+1(t) = tk(t) − τ(tk(t)), t0 = t. (17)

so that the above series is x(t) = c[τ(t) − τ(t1) + τ(t2) − · · · ]. We note that, since
τ(t) < t, the ratio tk+1(t)/tk(t) equals to 1 − τ(tk)/tk ∈ (0, 1). Hence the sequence
{tk} is monotone and converges to zero, with τ(0) = 0. Consequently the alternating
series τ(t0) − τ(t1) + τ(t2) − · · · converges to a finite limit for all t.

Approach 2
Reorganize the constraint (16) as cτ(t) = 2x(t) − (x(t) − x(t − τ(t)). The idea is
that if τ is small, then x(t) − x(t − τ(t) ≈ −ẋ(t)τ (t). This gives approximately

x(t) ≈ cτ(t)
2

(
1 + ẋ(t)

c

)
, suggesting a perturbation expansion for x(t), initialized with

x0(t) = cτ(t)
2 . We established the following



646 E. I. Verriest

Theorem 2 The constraint equation (16) is solved by the limit of

xk+1(t) = cτ(t)

2
− 1

2

k∑
i=1

(−τ(t))i
x(i)
k (t)

i! . (18)

Proof Suppose xk(t) → x∞(t). The limit must solve x∞(t) = − 1
2

∑∞
i=1(−τ(t))i x

(i)∞ (t)
i!

+ cτ(t)
2 . But the rhs series is the expansion of x∞(t − τ) − x∞(t). Thus x∞(t) =

cτ(t)
2 − 1

2 (x∞(t − τ) − x∞(t)), and therefore satisfies the constraint. �

5 Conclusions

We considered the one-way and the two-way sonar-based localization problems,
where large vehicle speeds lead to implicit delay equations. Two methods were pre-
sented: One based on an extension of the Lagrange-Bürman inversion, and one based
on dynamic inversion. Alternative perturbation-based approaches are also suggested
for the two-way problem. We focused on the exact (noise-free) problem in order to
gauge the ultimate feasibility. Simulations, reported in [8], hint at Approach 1 con-
verging faster for high speeds compared to the signal speed c, but it seems to have
problems when τ returns to zero. In contrast, the perturbation Approach 2 converged
faster at slow speeds in the test case for τ(t) = t(1 − t)/4.
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