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Chapter 6
Preparing Data for Predictive Modelling

Sander M. J. van Kuijk, Frank J. W. M. Dankers, Alberto Traverso, 
and Leonard Wee

6.1  �Introduction

Predictive modelling is aimed at developing tools that can be used for individual 
prediction of the most likely value of a continuous measure, or the probability of the 
occurrence (or recurrence) of an event. There has been a huge increase in popularity 
of developing tools for prediction of outcomes at the level of the individual patient. 
For instance, a recent review identified a total of 363 articles that described the 
development of prediction models for the risk of cardiovascular disease in the gen-
eral population alone [1].

Such models are often developed using regression techniques that yield a predic-
tion model in the form of a regression formula (see Chap. 8). Such formulae are 
generally impractical to use and are therefore often simplified into a simple risk 
score that can easily computed by hand, or presented in such a way that calculation 
is made easier (such as the use of a nomogram for predicting survival in breast can-
cer patients with brain metastasis [2], see Fig. 6.1), incorporated in a web-based 
application or perhaps as an application on a smartphone.
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Two types of prediction tools for binary outcomes can be distinguished: (1) a tool 
that can be used to predict an individual’s probability of the presence of disease at 
the moment of prediction (i.e., a diagnostic prediction model) and (2) one that can 
be used to predict the probability of the future occurrence of an event (i.e., a prog-
nostic prediction model). An example of the former is a model to estimate the prob-
ability of Chlamydia trachomatis infection to aid selective screening of youth at 
high risk of an infection [3]. An example of a prognostic prediction model to esti-
mate an individual’s probability of a future event is a model that estimates the prob-
ability of a successful vaginal birth after previous caesarean section, which is 
subsequently included in a decision aid to discuss the intended mode of delivery [4, 
5]. Although the application may differ substantially, the methods that are employed 
to develop such models are similar.

Before any new prediction tool can be developed, patient-level data need to be 
collected retrospectively or prospectively. Considerations such as choosing the cor-
rect study design, determining the necessary sample size for developing a prediction 
model, transforming variables, and how to deal with incomplete data on potential 
predictor variables and outcome measures will be covered in this chapter. This 
chapter does not cover all possible steps that need to be undertaken before a predic-
tion tool can be developed, but focuses on the most important considerations and the 
most prevalent challenges.

6.2  �Study Designs for Prediction Model Development

An important observation to make is that in the development of tools for individual 
prediction, we are generally not interested in unbiased estimates of causal associa-
tions between determinants and the presence of disease or the occurrence of a cer-
tain event in the future. In other words, we are not interested to unravel casual 
associations between predictors and the outcome. We are occupied with selecting 
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Fig. 6.1  Nomogram for the prediction of overall survival for patients with breast cancer brain 
metastasis. (Reprinted with permission Huang et al. [2]). Each predictor value corresponds to an 
amount of points. All points combined (i.e. ‘Total points’) corresponds to 1, 2, and 3 year survival 
probability
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the best set of predictors and include those in a model in such a way that the predic-
tions that the model makes are as accurate as possible. Epidemiological phenomena 
such as confounding (i.e., bias is introduced in the estimation of coefficients because 
of a variable associated with both the predictor and the outcome, but is not con-
trolled for) and mediation (i.e., the presence of an intermediate variable that explains 
the association between the predictor and the outcome) are not relevant in the con-
text of prediction modelling. Interaction terms, which are variables that moderate 
the association between a predictor and the outcome, can be useful to increase the 
predictive performance of a model if associations between predictor variables and 
the outcome differ between subgroups, but are not used to aid causal interpretation. 
Hence, the estimated regression coefficients that are used for predictions for future 
patients may not reflect true causal associations but do lead to the best predictions. 
This is especially true for prediction models for recurrent events, as selecting only 
participants that experienced a first occurrence may introduce a phenomenon known 
as index-event bias [6, 7]. This has no effect on the performance of prediction mod-
els for future patients as the coefficients are estimated for the purpose of generating 
predictions, not for aetiological purposes. That being said, models that include pre-
dictor variables that show associations that are contradictory to expectations may 
lack face validity and their introduction in daily clinical practice may be hampered.

6.2.1  �Retrospective and Prospective Data

The ideal study design for developing a prognostic prediction model is  the prospec-
tive cohort study. This way, candidate predictors that are not part of routine clinical 
care can be added to the patient work up. Additionally, the quality of data collection 
is in the hands of the researcher, and can be controlled during the course of the 
study. The retrospective cohort design, efficient as the use of readily available data 
may be, is often hampered by the fact that some candidate predictors are unmea-
sured as they are not part of routine clinical care or because the data were collected 
previously for other purposes than developing a prediction model. As a result, miss-
ing data can pose a serious problem in retrospective data. Although valid methods 
exist to handle missing data, prevention is preferred.

Naturally, when the prediction model is diagnostic in nature as opposed to prog-
nostic (i.e., to predict a state that is already present or absent), a cross-sectional 
design may suffice. In such a design, both the candidate predictors and the outcome 
are measured in one go. For diagnostic prediction models, the outcome is often a 
disease status, confirmed by a gold standard.

6.2.2  �Alternative Study Designs

An alternative to the cohort study is making use of data of  a randomized controlled 
trial (RCT). Such a prediction model may serve to identify those patients that have 
the highest probability of responding to the intervention of interest, or to predict the 
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probability of experiencing an adverse event, but the data could also be used for 
predicting other types of events. The benefit of using RCT data is that these data are 
often of high quality as an RCT is designed to minimize the proportion of missing 
data and minimize measurement error. Nonetheless, data from an RCT are not with-
out challenges. Often, strict eligibility criteria result in a homogeneous sample ham-
pering generalizability to the population the prediction model will be applied to in 
the future. For example, many RCT’s exclude patients with comorbidities. These 
comorbidities may be very important prognostic factors that are best included as 
predictors in the prediction model. Another drawback may be that outcome mea-
sures in an RCT may be measured too close in time to the baseline measurement for 
prediction to be of interest.

Another alternative design is the case-control design. In a case-control design, 
for each patient who experienced the event (a case), a control patient (or more than 
one) is recruited for the study. Often, researchers use matching techniques to force 
the control group to be roughly similar to the group of cases. In case matching has 
been performed, the distribution of candidate predictors has changed to such an 
extent that it is unlikely that a useful prediction model can be derived from the data. 
However, if no matching has been performed, case-control data can be used to 
develop a prediction model. Regression coefficients (to compute predicted proba-
bilities for future patients) and odds ratios (to express the strength of the associa-
tion) can be estimated validly as if it were a cohort study. But there remains one 
major problem associated with case-control data. The prevalence of the event (i.e., 
the proportion of cases) is defined by design. In a case-control study with a 1-1 
ratio (i.e., a single control for each case), the prevalence is 50%. As case-control 
studies are usually performed for rare events, this prevalence may be completely 
different from the prevalence in the population of patients the model needs to pro-
vide predictions for. In this case, the predicted probability is likely to be severely 
overestimated for future patients. This can be prevented by adjusting the model 
intercept (i.e., the constant in a logistic regression model) so that the average pre-
dicted probability in the data used to train the model is similar to the prevalence of 
the event in the population of patients the model will be used. This could be done 
iteratively until similarity is reached, or estimated by including the linear predictor 
of the model (see Chap. 8) as an offset in a regression model without predictors. If 
the goal is not providing individual estimates of the probability of an event, but 
merely to stratify patients into risk-based groups, the actual intercept is of less 
concern.

6.2.3  �Patient Selection

Patients  or subjects that are included in the study should reflect the population the 
model will be applied to in the future, and they should be at risk to develop the out-
come of interest. Preferably, the sample is heterogeneous, including a wide range of 
values on the predictors.
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6.3  �Sample Size Considerations

6.3.1  �Potential Predictor Variables and Model Overfitting

In most cases, the primary aim of predictive modelling is not null-hypothesis testing 
but determining the structure of a prediction model and estimating indicators of 
predictive performance (see Chap. 8). As a result, sample size formulas that include 
the statistical power (say, 80 or 90%) and the type-I error rate alpha (usually 5%) for 
null-hypothesis testing are generally not applicable. However, there is a limit as to 
how many candidate predictor variables can be included in the modelling phase. 
A model that consists of too many predictors is more likely to be overfitted (i.e., the 
model performs well on the data used to develop or train the model, but performs 
poor on new patients). One characteristic of the poor external performance of an 
overfitted model is that it produces too extreme predictions for future patients. Thus, 
predictions for future patients who are at low risk of the outcome are on average too 
low, and predictions for patients at high risk of the outcome are on average too high. 
This can easily be seen in the calibration plot (see Chap. 10). The slope of the cali-
bration plot of a well-calibrated model is close to 1 indicating perfect agreement 
between predicted probabilities and actual outcomes, but the slope is less than 1 for 
models that are overfit.

6.3.2  �Sample Size Rules-of-thumb

A simulation study has examined the ratio between the number of events that need 
to be included in the study, and the number of candidate predictor variables that can 
validly be entered in the modelling step when using logistic regression [8]. They 
concluded that no major problems occurred for 10 events per variable or more. Note 
that an event is defined as the outcome that is least prevalent. E.g., if the majority of 
patients experience the event of interest, the number of patients who do not experi-
ence the event determine the minimum sample size (or the maximum number of 
candidate predictor variables if the sample size is fixed). For example, consider 
designing a study to develop a prediction model to estimate the probability of lymph 
node metastases in patients with non-small cell lung cancer. From previous experi-
ence you estimate that the outcome will be experienced in 1 in 6 (or in about 17%), 
and you plan to include 6 predictor variables in the modelling step. According to the 
rule of thumb, 60 events need to be observed in the data. Hence, 60/0.17 = 353 
patients need to be recruited for the study.

Similar rules of thumb exist for different regression models. For the Cox pro-
portional hazards regression model it is suggested to include at least 10 failures for 
each candidate predictor [9, 10], and for the linear regression model at least 2–10 
patients for each candidate predictor [11, 12]. However, there is no guarantee that 
overfitting does not occur when abiding by these rules of thumb. Other factors 
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may influence the ratio between candidate predictors and the number of events, 
such as the frequency of a binary predictor that is relatively rare. For models that 
include binary predictors that are rare, it is suggested to include at least 20 events 
per variable [13].

6.4  �Pre-processing Your Data

The first step after collecting data is checking for inconsistencies and impossible 
values in the data. On the patient level, variables that are dependent on each other 
may be checked several ways. For instance, by computing the difference between 
systolic and diastolic blood pressure, the differences can be checked with a histo-
gram to rule out impossible values (e.g., values indicating higher diastolic blood 
pressure). On the variable level, computing ranges provides a first check of whether 
values beyond an acceptable range were entered in the data. Examine outliers and 
determine per outlier if this is likely due to an error in the data collection, or whether 
the outlier represents the true value of the patient. In the latter case, the value(s) 
should not be removed from the dataset before modelling.

6.4.1  �Transforming Predictor Variables

Regression models that are employed to develop prediction models explicitly 
assume additivity and linearity of the associations between the predictors and the 
outcome (in linear regression), between the predictors and the log odds of the 
outcome (in logistic regression), or between the predictors and the log hazard or 
log cumulative hazard (in Cox proportional hazards regression). The linearity 
assumption implies that the slope of the regression line (or the estimated coeffi-
cient) is the same value over the whole range of the predictor, and the additivity 
assumption implies that effects of different predictor variables on the outcome are 
not dependent on the value of other predictors. Regression methods do not place 
assumptions on the distribution of the predictor variables, but severely skewed 
continuous variables (e.g, circulating levels of biomarkers) often perform better 
after transformation to a roughly normal distribution. A frequent transformation of 
right-skewed predictors that consist of only positive values is taking the natural 
logarithm. This compresses the long right tail and expands the short left tail. In 
addition to taking the logarithm of a predictor, other mathematical transformations 
may be performed as well (e.g., taking the square root). A drawback of including 
transformed predictors in the model is interpreting the effect of those predictors on 
the original scale.

There are other methods to account for non-linear associations between the pre-
dictor and the outcome, but those are strictly part of the regression modelling phase 
and do not fall within the scope of preparing data for predictive modelling. Examples 
of such methods include polynomial regression and spline regression.
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6.4.2  �Categorizing Predictor Variables

If transforming does not yield the desired effect, or if easy interpretation of coef-
ficients is necessary, continuous predictor variables may be categorized into two 
or more categories. Keep in mind that when the assumptions of additivity and lin-
earity are met, categorization is likely to result in a decrease of predictive perfor-
mance compared to using the continuous predictor. Categorizing causes a loss of 
information and statistical power, but also underestimates the extent of variation 
in risk [14]. Categorization can be performed using data-driven cut-off values after 
visualization of the association between the determinant and the outcome, or using 
well-established cut-off values. For example, evidence suggests that the associa-
tion between body mass index (BMI) and mortality is U-shaped [15–17]. In this 
case, choosing cut-off values that are commonly accepted (e.g., below 18.5 kg/m2 
to define underweight and above 25  kg/m2 to define overweight) may not result 
in the best performing categories on the data used for development compared to 
data-driven determination of cut-off values, but it aids interpretation and practical 
implementation. Bear in mind that the number of categories that are made not only 
depends on the best fit of the predictor during the modelling phase, but also on the 
amount of predictors that can be studied using the sample at hand (see sample size 
considerations). A categorical variable with n categories results in the inclusion of 
n-1 dummy variables.

6.4.3  �Visualizing Data

Associations between continuous predictor variables and the outcome (or log odds 
etc. of the outcome) can be visualized to check if non-linearity exists and if so, if 
there are clear indications for certain transformations, polynomials, or categoriza-
tion. For a continuous outcome, a simple plot can be made consisting of the predic-
tor on the x-axis and the outcome variable on the y-axis with a smooth local 
regression curve (or LOESS curve) to provide a visual representation of the associa-
tion. For binary outcomes, graphing the association becomes more tedious as the 
outcome variable consists only of zeroes and ones. A simple solution is to make 
groups based on quartiles of the predictor variable, and plot the average of the pre-
dictor values against the average of the outcome parameter.

6.5  �Missing Data

6.5.1  �Why You Should Bother About Missing Data

Most statistical and machine learning packages will omit patients that have one or 
more missing values on the variables that are used to develop the model. This results 
in less statistical precision in estimating regression coefficients and other statistics 
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of interest, reflected by larger standard errors, wider confidence intervals and thus 
p-values that are less likely to be lower than the alpha that is chosen for testing. Such 
complete case analysis or listwise deletion not only decreases the sample size, but 
may also introduce bias if the incomplete patients are not a random sample of all 
patients recruited for the study. The patients in the sample that are completely 
observed do not reflect the population of interest anymore. This mechanism that 
underlies the process of missing values is important for deciding how to handle 
missing data. Methods such as complete case analysis and proper imputation meth-
ods all have assumptions with respect to the mechanism that caused missing data.

When the incomplete patients are a random sample of the complete patients, or 
in other words when the probability of values to be missing is unrelated to any 
patient characteristic or response, the missing data are said to be missing completely 
at random (MCAR). Complete case analysis will provide unbiased estimates, but 
with less precision compared to a situation where all data are observed. When the 
probability of values to be missing is associated with the values of other, observed, 
patient characteristics or responses, the missing data are missing at random (MAR). 
For instance, if older male patients are less inclined to complete a questionnaire on 
socio-economic status, but both sex and age are recorded in the dataset. A third 
mechanism that can be identified is called missing not at random (MNAR). In this 
case, the probability of values to be missing is associated with the value of the vari-
able itself (such as when a ceiling effect is present), or when the probability is asso-
ciated with the value of other, unobserved, covariates.

Most methods to handle missing data assume that data are MCAR or MAR. 
However, there are no methods to discriminate between mechanisms using the data 
that were collected. Therefore, it is important to think thoroughly about the miss-
ing data problem and judge if MCAR or MAR is a likely explanation of the miss-
ing data. This makes transparent communication on the missing data problem in 
a manuscript very important. Sterne et al. have suggested guidelines for reporting 
analyses that are potentially affected by missing data [18]. Applied to prediction 
modelling research, the researcher should report the number of missing values per 
predictor variable and outcome variable, give reasons for missing data if these are 
known, compute difference in characteristics between patients that are completely 
observed and patients who are incomplete, and describe the method that was used to 
account for missing data, including a description of the assumptions that were made.

6.5.2  �Handling Missing Data

To prevent a decrease in precision and a high likelihood of biased regression coef-
ficients, missing data can be imputed. Imputing is the replacing of the empty cells 
in the dataset with actual values. The goal of imputation is not adding new informa-
tion to the dataset, but to allow all other observations of incomplete patients to be 
used for the subsequent analysis.

There are numerous methods that can be used to impute missing data. A simple 
method to impute a continuous variable is to compute the mean of that variable 

S. M. J. van Kuijk et al.



83

using data of patients that have an observed value of this variable, and replace every 
missing data point with this mean value. Simple as it is, imputation with the mean 
decreases the variance within a variable and distorts the association between the 
imputed variable and other covariates in the data. Proper imputation methods pro-
duce a synthetic part of the data that, when analysed, do not introduce bias in the 
estimation of regression coefficients (given certain assumptions, usually that data 
are MAR), and gives a correct estimate of uncertainty, reflected in confidence inter-
vals of parameters estimated in the study.

A very popular imputation method, and for good reasons, is multiple imputation. 
In multiple imputation, the incomplete variables are imputed using regression mod-
els based on other covariates that are used to estimate a likely value for each of the 
incomplete patients. However, not the estimated value is imputed, but the estimated 
value to which a random error term (which can be positive or negative) is added to 
preserve the variance in the dataset. This is performed multiple times so that the 
analyst ends up with more than 1 imputed dataset. Because of the randomness asso-
ciated with the error term that is added to the imputation, imputations differ between 
the imputed datasets. Analyses are performed on each of the imputed datasets, and 
regression coefficients are averaged to produce a pooled estimate, and the variance 
is computed using a combination of the within-dataset variance and the between-
dataset variance. This way, the uncertainty introduced by having to impute the data 
is correctly accounted for. This method of producing pooled estimates after multi-
ple imputation is called Rubin’s Rules [19]. Although multiple imputation works 
well when the MAR assumption is met, it is likely to introduce bias in case the 
assumption is violated [20, 21]. In case data are known to be MNAR, the analyst 
needs to specifically define the mechanism that caused missing data to produce 
unbiased estimates. However, the alternative to imputing data (i.e., complete case 
analysis) assumes data are MCAR, which may be unrealistic for many incomplete 
medical datasets.

References

	1.	 Damen JA, Hooft L, Schuit E, Debray TP, Collins GS, Tzoulaki I, et al. Prediction models for 
cardiovascular disease risk in the general population: systematic review. BMJ (Clin Res Ed). 
2016;353:i2416.

	2.	 Huang Z, Sun B, Wu S, Meng X, Cong Y, Shen G, et al. A nomogram for predicting survival in 
patients with breast cancer brain metastasis. Oncol Lett. 2018;15(5):7090–6.

	3.	 van Klaveren D, Gotz HM, Op de Coul EL, Steyerberg EW, Vergouwe Y. Prediction of chla-
mydia trachomatis infection to facilitate selective screening on population and individual 
level: a cross-sectional study of a population-based screening programme. Sex Transm Infect. 
2016;92(6):433–40.

	4.	 Schoorel EN, van Kuijk SM, Melman S, Nijhuis JG, Smits LJ, Aardenburg R, et al. Vaginal 
birth after a caesarean section: the development of a Western European population-based pre-
diction model for deliveries at term. BJOG. 2014;121(2):194–201; discussion

	5.	 Schoorel EN, Vankan E, Scheepers HC, Augustijn BC, Dirksen CD, de Koning M, et  al. 
Involving women in personalised decision-making on mode of delivery after caesarean sec-
tion: the development and pilot testing of a patient decision aid. BJOG. 2014;121(2):202–9.

6  Preparing Data for Predictive Modelling



84

	 6.	Sep SJ, van Kuijk SM, Smits LJ. Index event bias: problems with eliminating the paradox. J 
Stroke Cerebrovasc Dis. 2014;23(9):2464.

	 7.	Smits LJ, van Kuijk SM, Leffers P, Peeters LL, Prins MH, Sep SJ. Index event bias-a numerical 
example. J Clin Epidemiol. 2013;66(2):192–6.

	 8.	Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number 
of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.

	 9.	Concato J, Peduzzi P, Holford TR, Feinstein AR.  Importance of events per independent 
variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin 
Epidemiol. 1995;48(12):1495–501.

	10.	Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent vari-
able in proportional hazards regression analysis. II. Accuracy and precision of regression esti-
mates. J Clin Epidemiol. 1995;48(12):1503–10.

	11.	Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression 
analyses. J Clin Epidemiol. 2015;68(6):627–36.

	12.	Harrell FE Jr. Regression modeling strategies. New York: Springer-Verlag; 2001.
	13.	Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction mod-

els is not simply related to events per variable. J Clin Epidemiol. 2016;76:175–82.
	14.	Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regres-

sion: a bad idea. Stat Med. 2006;25(1):127–41.
	15.	Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, et al. Body-mass index 

and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective stud-
ies. Lancet. 2009;373(9669):1083–96. London

	16.	Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K, et  al. Association 
between body-mass index and risk of death in more than 1 million Asians. N Engl J Med. 
2011;364(8):719–29.

	17.	Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al. Body-
mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–9.

	18.	Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputa-
tion for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 
2009;338:b2393.

	19.	Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and Sons; 
2004.

	20.	van Kuijk S, Viechtbauer W, Peeters L, Smits L. Bias in regression coefficient estimates when 
assumptions for handling missing data are violated: a simulation study. Epidemiol Biostat 
Public Health. 2016;13(1):1–8.

	21.	White IR, Carlin JB. Bias and efficiency of multiple imputation compared with complete-case 
analysis for missing covariate values. Stat Med. 2010;29(28):2920–31.

Open Access   This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

S. M. J. van Kuijk et al.

http://creativecommons.org/licenses/by/4.0/

	Chapter 6: Preparing Data for Predictive Modelling
	6.1 Introduction
	6.2 Study Designs for Prediction Model Development
	6.2.1 Retrospective and Prospective Data
	6.2.2 Alternative Study Designs
	6.2.3 Patient Selection

	6.3 Sample Size Considerations
	6.3.1 Potential Predictor Variables and Model Overfitting
	6.3.2 Sample Size Rules-of-thumb

	6.4 Pre-processing Your Data
	6.4.1 Transforming Predictor Variables
	6.4.2 Categorizing Predictor Variables
	6.4.3 Visualizing Data

	6.5 Missing Data
	6.5.1 Why You Should Bother About Missing Data
	6.5.2 Handling Missing Data

	References


