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Abstract. Mereology, the formal theory of parts and wholes, has a
played a prominent role within applied ontology. As a fundamental set
of concepts for commonsense reasoning, it also appears in a number of
upper level ontologies. Furthermore, such upper-level ontologies provide
an account of the most basic, domain-independent, existing entities, such
as time, space, objects, and processes. In this paper, we verify the core
characterization of mereologies of the Suggested Upper Merged Ontology
(SUMO), and the mereology of the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE), while relating their axiomatiza-
tions via ontology mapping. We show that the existing axiomatization
of SUMO omits some of the intended models of classical mereology, and
we propose the correction and addition of axioms to address this issue.
In addition, we show the formal relationship between the axiomatization
of mereology in both upper-level ontologies.
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1 Introduction

Automatic applications appealing to ontologies for interoperation are unam-
biguously integrated only when the models of their shared features are equiva-
lent. However, ontologies admitting unintended models ambiguously characterize
their vocabularies, which can generate misunderstandings that hinder interop-
erability.

Upper-level ontologies, also called foundational ontologies, provide an
account of the most basic, domain independent, existing entities, such as time,
space, objects and processes. As ontologies are crucial for the Semantic Web,
upper level ontologies are essential for the ontology engineering cycle in activ-
ities such as ontology building and integration. Upper level ontologies can be
used as the foundational substratum on which new ontologies are developed,
because they provide some fundamental ontological distinctions, which can help
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the designer in her task of conceptual analysis, [11]. They can be used as a back-
bone on top of which more specific concepts can be characterized while reusing
their root vocabulary and their general knowledge. In ontology integration, they
can be used as oracles for meaning clarification [6].

Upper-level ontologies are expected to be mostly consulted for meaning nego-
tiation and not for terminological reasoning, therefore they have to be repre-
sented in expressive languages that can convey every feature of the characterized
entities. However, less accurate representations in lightweight languages should
be available too, which can be extended with domain specific axiomatizations
when the use of lightweight languages is necessary.

Since foundational ontologies are expected to be broadly reused and
extended, they are not expected to admit unintended models which the expres-
sivity of their representation language can rule out, and it is also expected that
they do not miss intended models. If a upper-level ontology does not admit those
models which it is expected to admit, misunderstandings among applications who
subscribe to their account of the world can occur.

Various upper level ontologies have been developed in languages with higher
or equivalent expressivity to first-order logic, such as SUMO [18] and DOLCE
[2,8], and translations of them, with loss, to lightweight language OWL1, made
available. Therefore, semantic mappings connecting their axiomatizations are
necessary to facilitate interoperability among applications that commit to the
characterizations provided by different upper level ontologies. Those mappings
need to be formal, which guarantees their interpretability by automatic agents,
and also need to be represented in an expressive language such as standard
first-order logic.2

Ontology verification [10] is the process by which a theory is checked to
rule out unintended models, and possibly characterize missing intended ones.
Therefore, ontology verification reduces semantic ambiguity. Since foundational
ontologies are expected to be broadly reused, their verification results necessary.

In this paper3, we verify the subtheory of core mereotopological concepts
of the SUMO foundational ontology and the mereology of the DOLCE-CORE,
the fragment of DOLCE focused on entities that exist on time. In addition, we
formally relate their respective axiomatizations via first-order logic mappings.
As a result, we propose the correction, and addition, of some axioms which rule
out unintended models or characterize missing ones. As an additional outcome
of our work, we have produced a modular representation stated in standard

1 https://www.w3.org/2001/sw/wiki/OWL.
2 The expressive power of first-order logic makes its use necessary for the representa-

tion of mappings that characterize features that are not representable in lightweight
languages, such as Description Logics. In addition, checking the correctness of those
mappings results facilitated by the fact that first-order theorem proving in standard
first-order logic is a mature field, and, although semi-decidable, first-order reasoning
on small modules results in an acceptable trade-off among expressivity and efficiency.

3 This paper is an extended and expanded version of the paper “Verifying and Map-
ping the Mereotopology of Upper-Level Ontologies” that originally appeared in the
Proceedings of Knowledge Engineering and Ontology Design (KEOD) 2016 [16].

https://www.w3.org/2001/sw/wiki/OWL
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first-order logic of the complete SUMO subtheory of mereotopology. We have
used automatic theorem prover Prover9 and model finder Mace4 [15] for the
automatic tasks involved in the work described in this paper.

2 Ontology Mapping and Verification

Ontology mapping, also called ontology matching, and ontology alignment, is con-
cerned with the explicit representation of the existing semantic correspondences
among the axiomatizations of different ontologies4 via bridge axioms [6], which
are called translations definitions in the context of first-order logic.

Building a map between two first-order logic ontologies T1 and T2 that inter-
prets the first into the second involves translating every symbol of theory T1 into
the language of T2, translating every sentence of T1 into the language of T2, and
checking the ability of T2 to entail every axiom of T1. The following definition
formalizes the notion of relative interpretation between first-order logic theories.

Definition 1. A map π interprets a theory T1 into a theory T2 iff for every
sentence α in the language of T1, T1 |= α ⇒ T2 |= απ; being απ the syntactic
translation of α into the language of T2.

The following theorem that follows fom [5], introduces a fundamental relation
between the models of a theory and the models of the theories that it interprets.
Given such a relation, in order to demonstrate that a given theory T2 can repre-
sent every feature that another theory T1 represents, it suffices to demonstrate
that theory T2 is able to interpret theory T1.

Theorem 1. If a theory T1 is interpreted by a theory T2 by means of a given
map π, there is another map δ that sends every model of T2 into a model of T1.

An ontology admits unintended models when it is possible to find features of
its underlying conceptualization which are not characterized by its axiomatiza-
tion. Ontology Verification in first-order logic [10] is based on the fact that the-
ories with different vocabularies unambiguously characterize the same concepts
only if their sets of models are equivalent. Verifying an ontology T ideally consists
of classifying the actual models M of T by means of a representation theorem,5

which relates the models of T with the models Mintended of an alternative axiom-
atization of T built with well understood theories. Such a representation theorem
must be either proved or disproved. The following definition from [19] relates the
notion of ontology mapping with the fundamentals of ontology verification:
4 We assume that an ontology is a set of sentences called axioms closed under logi-

cal entailment that state the properties that characterize the behaviour of a set of
symbols representing constants, relations and functions, called the signature of the
ontology.

5 A representation theorem is a theorem that formally classifies a given class of struc-
tures as equivalent to another class of structures whose properties are better under-
stood. The stated equivalence makes possible the extrapolation of those properties to
the classified structures, facilitating their understanding.
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Definition 2. Two theories T1 and T2 are synonymous iff there exist two sets
of translation definitions Δ and Π, respectively from T1 to T2 and from T2 to
T1, such that T1 ∪ Π is logically equivalent to T2 ∪ Δ.

Given Definition 2, from Theorem 1 follows that the models of synonymous the-
ories are equivalent, and therefore ontology mapping can be used for classifying
the sets of models of two ontologies as equivalent.

3 SUMO

SUMO [18] is a freely available upper level ontology intended to describe the
world as perceived by humans, based on human knowledge and culture, in
opposition to ontological realism [9], which is meant to present the world as
it is, independently of the bias of human perception. In addition to the main
ontology, which contains about 4000 axioms, SUMO has been extended with
a mid-level ontology and a number of domain specific ontologies, all of which
account for 20,000 terms and 70,000 axioms. SUMO has been translated into
OWL and WordNet [17]. The representation language of SUMO is SUO-KIF6,
a very expressive dialect of KIF7 with many-sorted features, whose syntax per-
mits higher-order constructions such as predicates that have other predicates,
or formulas, as their arguments, and the existence of predicates and functions of
variable arity [1].

We have translated (with loss) into standard first-order logic, and modular-
ized, the subset of SUMO that characterizes the notion of mereotopology, which
resulted in the hierarchy of subtheories shown in Fig. 1, where each theory con-
servatively extends8 its related theories below. Due to space limitations, we only
address in this work the study of modules Tpart, Tsum, Tproduct, Tdecomposition,
Ttopology, and Tmereotopology. The first-order logic axiomatization of all the mod-
ules shown in Fig. 1 can be found at colore.oor.net/ontologies/sumo/modules.

SUMO adopts various partial orderings to address the part-whole relationship
in different categories. Regarding entities that are in space and time, classified as
Physical in SUMO, relations part and subProcess respectively characterize part-
whole relations for members of Object and Process, while relation temporalPart
represents part-whole for members of TimePosition, which extends to points and
intervals of time.

3.1 The Subtheory Tpart

The subtheory Tpart represents the relation among a whole and its parts by
axiomatizing the primitive relation part and using conservative definitions for
the overlapsSpatially, overlapsPartially, and properPart relations. Extracting

6 http://suo.ieee.org/SUO/KIF/suo-kif.html.
7 http://logic.stanford.edu/kif/kif.html.
8 A theory T ′ is a conservative extension of a theory T if every theorem of T is a

theorem of T ′, and every theorem of T ′ in the signature of T is also a theorem of T .

http://colore.oor.net/ontologies/sumo/modules
http://suo.ieee.org/SUO/KIF/suo-kif.html
http://logic.stanford.edu/kif/kif.html
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Fig. 1. Modular decomposition of the SUMO axiomatization of concepts related to
mereotopology. Theories in the shaded region are discussed in this paper; the remaining
subtheories of SUMO are left for future work. Arrows point to conservative extensions
among modules. Signature members are shown in the module that first introduces
them. (Original figure from [16].)

the sentences from SUMO that use the primitive signature {Object, part}, we
obtain the following subtheory:

Definition 3. Tpart is the subtheory composed by axioms (1) to (7).

(∀x, y)part(x, y) → Object(x) ∧ Object(y) (1)

(∀x)Object(x) → part(x, x) (2)

(∀x, y)part(x, y) ∧ part(y, x) → (x = y) (3)

(∀x, y, z)part(x, y) ∧ part(y, z) → part(x, z) (4)

(∀x, y)overlapsSpatially(x, y) ↔ (∃z(part(z, x) ∧ part(z, y))) (5)
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(∀x, y)overlapsPartially(x, y) ↔ ¬part(x, y)
∧¬part(y, x) ∧ (∃z)part(z, x) ∧ part(z, y) (6)

(∀x, y)properPart(x, y) ↔ part(x, y) ∧ ¬part(y, x) (7)

The first question we need to address is whether or not this subtheory is a
module of SUMO, or whether there are additional sentences in the signature
{Object, part} that are entailed by the remaining axioms of SUMO. Before we
can fully answer this question, we need to consider the other subtheories of
SUMO that are related to mereology.

3.2 Subtheory Tsum

The mereological sum of two parts into a whole is represented in the subtheory
Tsum by the function symbol MereologicalSumFn.

Definition 4. The subtheory Tsum is the subtheory that extends Tpart in the
expanded signature {Object, part,MereologicalSumFn} by means of axioms (8)
and (9).

(∀x, y, z)Object(x) ∧ Object(y) →
((z = MereologicalSumFn(x, y)) → (∀p)(part(p, z) ↔ (part(p, x) ∨ part(p, y))) (8)

(∀x, y)Object(x) ∧ Object(y) → Object(MereologicalSumFn(x, y)) (9)

Given two objects, the existence of their mereological sum is guaranteed in
this theory due to the use of a function to represent such an operation (since
functions in first-order logic are total).

We can immediately find some straightforward consequences9 of the axioms
of Tsum:

Proposition 1.

Tsum |= (∀x, y, z)Object(x) ∧ Object(y)∧
(z = MereologicalSumFn(x, y)) → part(z, x) ∨ part(z, y) (10)

Tsum |= (∀x, y, z)Object(x) ∧ Object(y)∧
(z = MereologicalSumFn(x, y)) → part(x, z) ∧ part(y, z) (11)

Given theorems (10) and (11), and due to the antisymmetry of relation part,
it holds that z must be x or y, this fact entails that every pair of objects in the
universe of every interpretation of SUMO must be in relation part, which shows
that SUMO omits models where there exist objects that are disjoint, or that
overlap without being one part of the other, as depicted in parts (b) and (c) of
Fig. 2. The following proposition formalizes this claim:
9 The proofs for all Propositions have been found using the Prover9 automated the-

orem prover, and models were constructed using Mace4. Results are available at:
colore.oor.net/ontologies/sumo/mereotopology/proofs.

http://colore.oor.net/ontologies/sumo/mereotopology/proofs
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Fig. 2. With the original characterization of mereological sum, every two objects in
every model of SUMO must be in relation part, such as objects x and y in (a). Models
corresponding to (b) and (c) with overlapping objects without being one part of the
other, or with disjoint objects, are not admitted by SUMO submodule Tsum. (Original
figure from [16].)

Proposition 2. Tsum |= (∀x, y)Object(x)∧Object(y) → part(x, y)∨part(y, x).

In other words, SUMO entails that the part relation is synonymous with
a linear ordering. Although there is much discussion in the philosophical and
applied ontology literature [20] over which axioms should constitute a mereology,
there is nobody who proposes that all models of an axiomatization of mereology
be synonymous with linear orderings. In order to allow those omitted models
that Proposition 2 identifies, we propose a modification of Tsum:

Definition 5. Textended sum is the theory which extends Tpart with the sen-
tences

(∀x, y, z)Object(x) ∧ Object(y) →
((z = MereologicalSumFn(x, y) → (∀p)(part(z, p) ↔ part(x, p) ∧ part(y, p))) (12)

(∀x, y)Object(x) ∧ Object(y) → Object(MereologicalSumFn(x, y)) (13)

The following proposition shows that Textended sum does not rule out models
in which overlapping or disjoint objects exist.

Proposition 3.

Textended sum 
|= (∀x, y)Object(x) ∧ Object(y) → (part(x, y) ∨ part(y, x)

If we look more closely at the proposed axiomatization, we can see that the
MereologicalSumFn function is commutative and idempotent:

Proposition 4.

Textended sum |= (∀x, y, z)Object(x) ∧ Object(y) ∧ Object(z)∧

(MereologicalSumFn(x, y) = z) → (MereologicalSumFn(y, x) = z)

Textended sum |= (∀x, y, z)part(x, y) → (MereologicalSumFn(x, y) = y)

This leads us to consider how Textended sum is related to lattice theory [4].

Theorem 2. Textended sum is synonymous with Tjoin semilattice
10.

10 colore.oor.net/ontologies/lattices/join semilattice.clif.

http://colore.oor.net/ontologies/lattices/join_semilattice.clif
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Proof. Let Δ be the sentence

(∀x, y, z) (MereologicalSumFn(y, x) = z) ↔ (join(x, y) = z)

Using Prover9, we can show that Textended sum ∪ Δ |= Tjoin semilattice, and
Tjoin semilattice ∪ Δ |= Textended sum ��

We can also specify an extension of Tpart in the same signature.

Definition 6. Tpart sum is the extension of Tpart with the sentence

(∀x, y)(∃j) (part(x, j) ∧ part(y, j) ∧ ((∀z) (part(x, z) ∧ part(y, z) ⊃ part(j, z))))

Theorem 3. Tpart sum is synonymous with Tstrong lub mereology
11

Proof. To disambiguate the signatures of SUMO and other existing mereologies,
let partsumo(x, y) be the relation in the signature of SUMO.

Let Δ be the sentence

(∀x, y) partsumo(x, y) ↔ part(x, y))

Using Prover9, we can show that Tpart sum |= Tstrong lub mereology, and
Tstrong lub mereology |= Tpart sum ��

It should be noted that the axiomatization of Tstrong lub mereology corresponds
to the sentence SA13 in [20].

Proposition 5.
SUMO |= Tpart sum

3.3 Subtheory Tproduct

Given two objects, their mereological product intuitively corresponds to their
intersection. SUMO represents the notion of mereological product by means of
the function MereologicalProductFn.

Definition 7. Tproduct is the subtheory of SUMO that extends theory Tpart

in the expanded signature {Object, part,MereologicalProductFn} by the sen-
tences:

(∀x, y, z)Object(x) ∧ Object(y) →
((z = MereologicalProductFn(x, y)) → (∀p)(part(p, z) ↔ part(p, x) ∧ part(p, y))) (14)

(∀x, y)Object(x) ∧ Object(y) → Object(MereologicalProductFn(x, y)) (15)

11 colore.oor.net/ontologies/mereology/strong lub mereology.clif.

http://colore.oor.net/ontologies/mereology/strong_lub_mereology.clif
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Given two objects, the existence of their mereological product is guaranteed due
to the use of a function to represent such an operation.

The characterization of mereological product in SUMO corresponds to the
infimum or meet of the corresponding arguments on the lattice that relation
part defines. We have found that from the characterization of mereological prod-
uct of SUMO follows that every pair of objects must overlap, which indicates
that SUMO omits those models where there exist objects that do not overlap
(in other words, all elements overlap each other in all models of SUMO):

Proposition 6. Tproduct |= (∀x, y)Object(x)∧Object(y) → (overlapsSpatially
(x, y)).

In order to allow models in which nonoverlapping elements exist, we propose
a modification of SUMO:
Definition 8. Textended product is the theory which extends Tpart by the sen-
tences

(∀x, y, z)overlapsSpatially(x, y) →
((z = MereologicalProductFn(x, y)) → (∀p)(part(p, z) ↔ part(p, x) ∧ part(p, y))) (16)

(∀x, y)Object(x) ∧ Object(y) → Object(MereologicalProductFn(x, y)) (17)

The following propositions show that Textended product does not rule
out models in which there exist nonoverlapping objects, and that
MereologicalProductFn is commutative and idempotent.

Proposition 7.

Textended product 
|= (∀x, y)Object(x) ∧ Object(y) → overlapsSpatially(x, y)

Proposition 8.

Textended product |= (∀x, y, z)Object(x) ∧ Object(y) ∧ Object(z)∧
(MereologicalProdFn(x, y) = z) → (MereologicalProdFn(y, x) = z)

Textended product |= (∀x, y, z)part(x, y) → (MereologicalProdFn(x, y) = x)

We can also specify an extension of Tpart in the same signature.

Definition 9. Tpart prod is the extension of Tpart with the sentence

(∀x, y) overlapsSpatially(x, y) ⊃ (∃z) ((∀u) (part(u, z) ↔ (part(u, x) ∧ part(u, y))))

Calling partsumo to the relation part of Tpart, the following property holds:

Theorem 4. Tpart prod is synonymous with Tprod mereology
12.

Proof. Let Δ be the sentence

(∀x, y) partsumo(x, y) ↔ part(x, y))

Using Prover9, we can show that Tpart prod |= Tprod mereology,
and Tprod mereology |= Tpart prod ��

12 colore.oor.net/ontologies/mereology/prod mereology.clif.

http://colore.oor.net/ontologies/mereology/prod_mereology.clif
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3.4 Subtheory Tdecomposition

The remainder between a whole and its proper parts is represented by the func-
tion MereologicalDifferenceFn.
Definition 10. Tdecomposition is the subtheory of SUMO that extends Tpart by the sentences

(∀x, y, z)Object(x) ∧ Object(y) → ((z = MereologicalDifferenceFn(x, y)) →
(∀p)properPart(p, z) ↔ properPart(p, x) ∧ ¬properPart(p, y)) (18)

(∀x, y)Object(x) ∧ Object(y) → Object(MereologicalDifferenceFn(x, y)) (19)

Because the mereological difference, or remainder, between a whole and one
of its parts is represented in SUMO by a function, its existence is guaran-
teed in every case at the expenses of having arbitrary values of the function
MereologicalDifferenceFn.

We have found that the axiomatization of MereologicalDifferenceFn given by
(18) and (19) entails an unusual result in which the remainder overlaps with the
subtrahend:

Proposition 9.

Tdecomposition |= (∀x, y, z)Object(x) ∧ Object(y)

∧(z = MereologicalDifferenceFn(x, y)) ∧ properPart(y, x) → properPart(y, z))

In order to eliminate such a class of unintended models, we propose the
following modification, and prove by means of Proposition 10 that the new theory
does not admit these models.
Definition 11. Textended decomp is the theory that extends Tpart with the following sen-
tences

(∀x, y, z)Object(x) ∧ Object(y) → ((MereologicalDifferenceFn(x, y) = z) →
(∀p)(part(p, z) ↔ part(p, x) ∧ ¬overlapsSpatially(p, y))) (20)

(∀x, y)Object(x) ∧ Object(y) → Object(MereologicalDifferenceFn(x, y)) (21)

Proposition 10.

Textended decomp 
|= (∀x, y, z)Object(x) ∧ Object(y)

∧(z = MereologicalDifferenceFn(x, y))∧properPart(y, x) → properPart(y, z))

We can also specify an extension of Tpart in the same signature.

Definition 12. Tpart decomp is the extension of Tpart with the sentence

(∀x,w) ¬part(w, x) ⊃ (∃z) ((∀y) (part(y, z) ↔ ¬overlapsSpatially(y, x)))

Theorem 5. Tpart decomp is synonymous with Tcomp mereology
13.

Proof. Let Δ be the sentence

(∀x, y) partsumo(x, y) ↔ part(x, y))

Using Prover9, we can show that Tpart decomp |= Tcomp mereology, and
Tcomp mereology |= Tpart decomp ��
13 colore.oor.net/ontologies/mereology/comp mereology.clif.

http://colore.oor.net/ontologies/mereology/comp_mereology.clif
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3.5 Relationship to Classical Mereologies

We have so far evaluated four subtheories of SUMO and proposed revisions to
their axiomatizations to address the problem of classes of omitted and unin-
tended models regarding those normally associated with mereology. We now
take a closer look at these revised theories.

Proposition 11. The theory

Tpart ∪ Textended sum ∪ Textended product ∪ Textended decomp

is consistent.

Given that the revised theories are consistent, can we characterize their mod-
els? In particular, how is the mereology within SUMO related to the classical
mereologies that have been explored by the philosophical and applied ontology
communities? Regarding the supplementation principles (22) to (25), respec-
tively named in [21] as weak company, strong company, supplementation, and
strong supplementation, Proposition 12 shows that those principles are not the-
orems of SUMO.

Proposition 12. The following sentences are not entailed by
Tpart ∪ Textended sum ∪ Textended product ∪ Textended decomp:

(∀x, y)properPart(x, y) → ∃z(properPart(z, y) ∧ −(z = x)) (22)

(∀x, y)properPart(x, y) → (∃z)(properPart(z, y) ∧ ¬part(z, x)) (23)

(∀x, y)properPart(x, y) → (∃z)(Part(z, y) ∧ ¬overlapsSpatially(z, x)) (24)

(∀x, y)¬part(y, x) → (∃z)(Part(z, y) ∧ ¬overlapsSpatially(z, x)) (25)

This is closely related to the question of whether or not Tpart is a module of
SUMO. We have already seen that the subtheories of SUMO entail additional
mereological theories that are not entailed by Tpart alone. However, we can see
that the addition of these new sentences does form a module of the revised
axioms by combining the earlier theorems:

Theorem 6. Tpart sum ∪ Tpart prod ∪ Tpart decomp is a module of
Tpart∪Textended sum∪Textended product∪Textended decomp that is synonymous with
Tstrong lub mereology ∪ Tprod mereology ∪ Tcomp mereology

3.6 Mereotopology in SUMO

Since mereology can only represent the relation of parts with their respective
wholes, predicate connected is characterized in SUMO to represent a more gen-
eral symmetric and reflexive spatial relationship among objects which are not
necessarily in a part-whole relation.
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Definition 13. Ttopology is the subtheory of SUMO consisting of the following
axioms:

(∀x)Object(x) → connected(x, x) (26)

(∀x, y)connected(x, y) → Object(x) ∧ Object(y) (27)

(∀x, y)connected(x, y) → connected(y, x) (28)

The subtheory of SUMO that axiomatizes mereotopology, which we have
called Tspatial relation is intended to characterize the relationship between the
notions of mereology and topology. In it, both predicates, meetsSpatially,
which represents external connection among objects, and overlapsSpatially, are
declared disjoint specializations of predicate connected.

Definition 14. Tspatial relation is the subtheory of SUMO which is an extension
of Tpart ∪ Ttopology consisting of the sentences

(∀x, y) meetsSpatially(x, y) → connected(x, y) (29)

(∀x) ¬meetsSpatially(x, x) (30)

(∀x, y) meetsSpatially(x, y) → meetsSpatially(y, x) (31)

(∀x, y) overlapsSpatially(x, y) → connected(x, y) (32)

(∀x) overlapsSpatially(x, x) (33)

(∀x, y) overlapsSpatially(x, y) → overlapsSpatially(y, x) (34)

(∀x, y) meetsSpatially(x, y) → ¬overlapsSpatially(x, y) (35)

(∀x, y)connected(x, y) → (meetsSpatially(x, y)∨overlapsSpatially(x, y)) (36)

However, the axiomatization of this theory is already entailed by the following
definitional extension of Tpart ∪ Ttopology:

Definition 15. Tmereotop def is the definitional extension of Tpart ∪ Ttopology

consisting of the sentences

(∀x, y)overlapsSpatially(x, y) ↔ connected(x, y) ∧ (∃z) part(z, x) ∧ part(z, y)
(37)

(∀x, y)meetsSpatially(x, y) ↔ connected(x, y) ∧ ¬(∃z) part(z, x) ∧ part(z, y)
(38)

Proposition 13.
Tmereotop def |= Tspatial relation

We have found that the monotony of relation connected with respect to
parthood was not characterized in SUMO, which introduces unintended models
as the one represented in Fig. 3, where all parts share one point, but only shaded
ones result to be connected.
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Fig. 3. Model of SUMO where the monotony of relation connected with respect
to parthood was not characterized. Even though connected(z, x), part(x, y),
part(y, u), andpart(u, v) hold, connected(z, y) and connected(z, v) do not hold, while
connected(z, u) does hold. (Original figure from [16].)

Proposition 14.

Tmereotop def 
|= (∀x, y)part(x, y) → ∀z(connected(z, x) → connected(z, y))

In order to rule out those unintended models that proposition 14 identifies,
we propose the following extension:

Definition 16. Textend mereotop is the theory which extends Tpart ∪ Ttopology

with sentence (39).

(∀x, y)part(x, y) → ∀z(connected(z, x) → connected(z, y)) (39)

4 DOLCE

The Descriptive Ontology for Linguistic and Cognitive Engineering DOLCE [8,
14] is a freely available upper ontology that is part of the WonderWeb project14,
which is aimed to provide the infrastructure required for a large-scale deployment
of ontologies intended to be the foundation for the Semantic Web. DOLCE has
a cognitive approach, i.e., it presents the world as it is grasped by humans,
based on human knowledge and culture, in opposition to ontological realism
[9], which intends to present the world as it is, independently of the bias of
human perception. The development of DOLCE has followed the principles of the
OntoClean methodology [12]. The first version of DOLCE had a representation in
Modal Logic, a translation with loss into standard first-order logic, a translation
with further loss into OWL, and also an alignment with WordNet [7]. A new
version of the fragment of the original ontology that focuses on entities that
exist on time, called temporal particulars, was presented in [2], called DOLCE-
CORE; we will circumscribe our work to the axiomatization of DOLCE-CORE.

At the top of DOLCE-CORE the category of temporal-particulars PT is
partitioned into six basic categories: objects O, events E, individual qualities
Q, regions R, concepts C, and arbitrary sums AS. Categories ED (endurant)
and PD (perdurant) of DOLCE were, respectively, renamed O (object) and

14 http://wonderweb.semanticweb.org.

http://wonderweb.semanticweb.org
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E (event) in DOLCE-CORE. The axiomatization of mereology in DOLCE-
CORE is as follows,15 where predicate P represents parthood, and (40)–(42)
respectively stand for the reflexivity, transitivity, and antisymmetry of relation
P . Overlap of parts and mereological sum representing binary fusion of parts
are respectively defined in (43) and (44), while (46)–(50) characterize the dis-
sectivity of P across categories, and (51)–(56) close the sum of parts inside each
category.

(∀x)P (x, x) (40)

(∀x, y)P (x, y) ∧ P (y, z) → P (x, z) (41)

(∀x, y)P (x, y) ∧ P (y, x) → (x = y) (42)

(∀x, y)Ov(x, y) ≡ (∃z)(P (z, x) ∧ P (z, y)) (43)

(∀x, y, z)SUM(z, x, y) ≡ (∀v)Ov(v, z) ↔ Ov(v, x) ∨ Ov(v, y) (44)

(∀x, y)¬P (x, y) → (∃z)P (z, x) ∧ ¬Ov(z, y) (45)

(∀x, y)O(y) ∧ P (x, y) → O(x) (46)

(∀x, y)E(y) ∧ P (x, y) → E(x) (47)

(∀x, y)T (y) ∧ P (x, y) → T (x) (48)

(∀x, y)TQ(y) ∧ P (x, y) → TQ(x) (49)

(∀x, y)C(y) ∧ P (x, y) → C(x) (50)

(∀x, y, z)O(x) ∧ O(y) ∧ SUM(z, x, y) → O(z) (51)

(∀x, y, z)E(x) ∧ E(y) ∧ SUM(z, x, y) → E(z) (52)

(∀x, y, z)T (x) ∧ T (y) ∧ SUM(z, x, y) → T (z) (53)

(∀x, y, z)TQ(x) ∧ TQ(y) ∧ SUM(z, x, y) → TQ(z) (54)

(∀x, y, z)C(x) ∧ C(y) ∧ SUM(z, x, y) → C(z) (55)

(∀x, y, z)AS(x) ∧ AS(y) ∧ SUM(z, x, y) → AS(z) (56)

Due to the ontological commitment represented by axiom (45), the mereology
characterized in DOLCE-CORE is an extensional mereology16 according to [3,
21].

15 Axioms (48), (49), (53), and (54) are the instantiation of DOLCE higher-order axiom
schemas for the subcategories of main categories Q and R which are relevant for our
work. A complete version of DOLCE-CORE mereology represented in first-order
logic is available at colore.oor.net/ontologies/dolce-core/mereology.in.

16 It can be proved that in an extensional mereology non-atomic entities whose proper
parts are the same, are identical, i.e., every entity is exhaustively defined by its parts.

http://colore.oor.net/ontologies/dolce-core/mereology.in
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5 Mapping the Mereologies of SUMO and DOLCE

In order to relate SUMO and DOLCE we assume that the changes that we have
proposed in Sect. 3 for eliminating unintended models and characterizing missing
intended ones have been performed in SUMO. There is no axiomatization in
DOLCE-CORE, neither in DOLCE, that corresponds to the notion of topology,
therefore our mappings are circumscribed to the axiomatization of mereology in
both theories.

By examining the predicates that characterize the participation of objects
in events in both ontologies, and also by the type of relation that the main
categories of SUMO and DOLCE-CORE have with time and space, we have
built the translation definitions of Table 1 for the main these categories.

Table 1. Mapping of SUMO and DOLCE main categories.

(∀x)Object(x) ↔ O(x) (57)

(∀x)Process(x) ↔ E(x) (58)

(∀x)TimeInterval(x) ↔ T (x) (59)

(∀x)Region(x) ↔ S(x) (60)

Table 2. Translation definitions for Tdolce part t into Ttime mereology.

(∀x)T (x) ↔ TimeInterval(x) (61)

(∀x, y)P (x, y) ↔ temporalPart(x, y) (62)

(∀x, y)Ov(x, y) ↔ overlapsTemporally(x, y))) (63)

Table 3. Translation definitions for Ttimemereology into Tdolce part t.

(∀x)TimeInterval(x) ↔ T (x) (64)

(∀x, y)temporalPart(x, y) ↔ P (x, y) ∧ T (x) ∧ T (y) (65)

(∀x, y)overlapsTemporally(x, y) ↔ Ov(x, y) ∧ T (x) ∧ T (y) (66)

5.1 Mapping Time

The subtheory Tsumo time, whose modular structure is shown in Fig. 5, charac-
terizes the axiomatization of time in SUMO. This theory, which was verified
in [20], includes 3 submodules17 Tsumo ordered timepoints, Tsumo timeintervals, and
Ttime mereology, such that each module is a conservative extension of each con-
nected subtheory below it in Fig. 5. These 3 subtheories respectively characterize
a linear ordering between instants of time, a part-whole relation among inter-
vals of time, and an account of Allen’s interval relations starts, finishes, during,
earlier, and meetsTemporally [13]. Finally, Tsumo time characterizes a part-whole
relationship that includes intervals and instants of time.

On the other hand, Tdolce part characterizes parthood by unique predicate P
across every category, including T . By means of the following theorems we can
characterize the relationship that exists among Tdolce part t and Tsumo time.
17 Available at colore.oor.net/ontologies/sumo/modules.

http://colore.oor.net/ontologies/sumo/modules
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Theorem 7. Let Tdolce part t be the subtheory of Tdolce part with signature
{T, part}, and Let Ttime mereology be the theory given by axioms (67)–(72). Then,
Ttime mereology is synonymous with Tdolce part T .

(∀x)TimeInterval(x) → temporalPart(x, x). (67)

(∀x, y)temporalPart(x, y) ∧ temporalPart(y, x) → (x = y). (68)

(∀x, y, z)temporalPart(x, y)∧ temporalPart(y, z) → temporalPart(x, z). (69)

(∀x, y)overlapsTemporally(x, y) → TimeInterval(x) ∧ TimeInterval(y) (70)

(∀x)TimeInterval(x) → overlapsTemporally(x, x)). (71)

(∀x, y)TimeInterval(x) ∧ TimeInterval(y) → (overlapsTemporally(x, y)↔
((∃z)(TimeInterval(z) ∧ temporalPart(z, x) ∧ temporalPart(z, y)))) (72)

Proof. Let Δ be the set of translations shown in Table 2, and Υ the set of transla-
tions shown in Table 3. Using Prover9 we have shown that Ttime mereology ∪Δ |=
Tdolce part T , and Tdolce part T ∪ Υ |= Ttime mereology. ��

5.2 Mapping Events

Regarding the representation of events in SUMO and DOLCE, by means of the
following definition and theorem we classify the relationship that their respective
part-whole axiomatizations have as synonymy.

Table 4. Translation definitions for Tdolce part E into Tsumo subprocess.

(∀x)E(x) ↔ Process(x) (73)

(∀x, y)P (x, y) ↔ subProcess(x, y) (74)

(∀x, y)Ov(x, y) ↔ (∃z)(subProcess(z, x) ∧ subProcess(z, y)) (75)

Table 5. Translation definitions for Tsumo subprocess into Tdolce part E .

(∀x)Process(x) ↔ E(x) (76)

(∀x, y)subProcess(x, y) ↔ E(x) ∧ E(y) ∧ P (x, y) (77)
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Definition 17. Tsumo subprocess is the theory given by the axioms:

(∀x, y)subProcess(x, y) → Process(x) ∧ Process(y) (78)

(∀x)Process(x) → subProcess(x, x) (79)

(∀x, y)subProcess(x, y) ∧ subProcess(y, z) → subProcess(x, z) (80)

(∀x, y)subProcess(x, y) ∧ subProcess(y, x) → (x = y) (81)

Theorem 8. Let Tdolce part E be the theory given by axioms (40)–(42) and (47).
Tsumo subprocess is synonymous with Tdolce part E.

Proof. Let Δ be the set of translations shown in Table 4 and Γ the set
of translations shown in Table 5. Using Prover9 we have demonstrated that
Tsumo subprocess ∪ Δ |= Tdolce part E and Tdolce part E ∪ Γ |= Tsumo subprocess. ��

5.3 Mapping Objects

Regarding the representation of objects in SUMO and DOLCE-CORE, by means
of the following theorem we classify the relationship among their respective part-
whole axiomatizations as synonymy.

Definition 18. SUMO PART is the theory given by axioms (1)–(7), and
DOLCE PART-T is the theory given by axioms (40)–(43) and (46).

Theorem 9. Let Tsumo part be the theory given by axioms (1)–(7), and
Tdolce part O the theory given by axioms (40)–(43) and (46). Then, Tsumo part

is synonymous with Tdolce part O.

Proof. Let us call Δ to the set of translations shown in Table 6, and Π the set
of translations shown in Table 7. Using Prover9 we have shown that Tsumo part ∪
Δ |= Tdolce part O and Tdolce part O ∪ Π |= Tsumo part. ��

Table 6. Translations DOLCE PART-O into SUMO PART.

(∀x, y)P (x, y) ↔ part(x, y)) (82)

(∀x, y)Ov(x, y) ↔ overlapsSpatially(x, y)) (83)

Table 7. Translations SUMO PART into DOLCE PART-O.

(∀x, y)part(x, y) ↔ O(x) ∧ O(y) ∧ P (x, y) (84)

(∀x, y)properPart(x, y) ↔ O(x) ∧ O(y) ∧ P (x, y) ∧ ¬P (y, x) (85)

(∀x, y)overlapsSpatially(x, y) ↔ O(x) ∧ O(y) ∧ Ov(x, y)) (86)

(∀x, y)overlapsPartially(x, y) ↔ Ov(x, y) ∧ ¬P (x, y))) ∧ ¬P (y, x)))) (87)
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5.4 Mapping Mereologies with Sums

The theories Tdolce sum in DOLCE and Textended sum for SUMO are both
intended to axiomatize the intuitions regarding the fusion of parts. The key ques-
tion is now whether or not they actually axiomatize the same class of intended
models.

z

yx t

z

yx t

v

z

yx t

v
(a) (b) (c)

Fig. 4. Objects x, y, z, t, which do not hold SUM(z, x, y) but hold
MereologicalSumFn(x, y) = z. Arrows represent relation part of theory Textended sum,
and relation P of theory Tdolce sum. (Original figure from [16]).

Table 8. Translations DOLCE SUM into SUMO SUM.

The axiomatization of Textended sum from SUMO is weaker than the axiom-
atization of Tdolce sum in DOLCE. In fact, let us consider objects x, y, z, t
of Fig. 4, such that properPart(x, z), properPart(y, z), and properPart(t, z)
hold, while none of overlapsSpatially(x, y), overlapsSpatially(t, y), or
overlapsSpatially(x, t) hold. In parts (a), (b), and (c) of the bottom of Fig. 4
parthood is indicated with arrows from the part to the whole. According
to the characterization of mereological sum in Textended sum, we must have
(MereologicalSumFn(x, y) = z). However, parts (b) and (c) of Fig. 4 depict
alternative additional conditions that the characterization of mereological sum
in Tdolce sum must satisfy. In DOLCE, any other object t which overlaps with
the sum z must also overlap with at least one of the addends x or y, which is a
condition indicated by dotted lines. Because neither overlapsSpatially(x, t) nor
overlapsSpatially(y, t) hold, then SUM(z, x, y) does not hold in DOLCE. The
following theorem formalizes our claim.

Theorem 10. Textended sum cannot interpret Tdolce sum.

Proof. Let us call Δ to the translations shown in Table 6, and Π to the transla-
tion shown in Table 8, and let T1 be the theory that results from adding sentence
(89) to theory Textended sum. Using Mace4, we have built a model of T1 ∪ Δ ∪ Π
(see footnote 17).

(∃x, y, z)SUM(z, x, y) ∧ ¬(∀w)(Ov(w, z) ↔ Ov(w, x) ∨ Ov(w, y)) (89)

��
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In order to translate the symbol MereologicalSumFn of theory Textended sum

into the language of DOLCE-CORE, we have represented the graph18 of function
MereologicalSumFn by means of predicate MSum, as shown in Table 9.

Theorem 11. Tdolce sum cannot interpret Textended sum.

Proof. Let us call Δ to the translations shown in Table 1, Π to the translations
in Table 7, and Υ to the translation in Table 10, and let T1 be the theory that
results from adding sentence (90) to Tdolce sum. Using Mace4, we have built a
model of T1 ∪ Δ ∪ Π ∪ Υ (see footnote 18).

(∃x, y)Object(x) ∧ Object(y) ∧ (∀z)(¬Object(z) ∨ ¬MSum(z, x, y)) (90)

��

Table 9. Characterization of predicate MSum in SUMO.

Table 10. Translation of Textended sum into Tdolce sum.

Figure 5 shows conservative extensions by means of thin black arrows and rel-
ative interpretations (mappings), by thick grey arrows from interpreted to inter-
preting theories. Because every theorem of a theory is also a theorem of its con-
servative extensions, each conservative extension is capable of interpreting every
theory that the modules that it extends interpret. In particular, the subtheory
Tdolce part, shown in Fig. 5, is the theory resulting from the union of Tdolce part T ,
Tdolce part E , and Tdolce partO , plus axioms (49), (50), while the subtheory DOLCE

EXTENSIONAL MEREOLOGY is the union of Tdolce part, Tdolce sum, and axioms

18 A n-ary function f from An to B is representable by a relation � with arity (n+1),
called the graph of f, such that:

(a) Every tuple of � is a tuple 〈x̄, f(x̄)〉 with x̄ ∈ An and f(x̄) ∈ range(f).
(b) If f(x̄) = b and f(z̄) = c, then b = c.
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Fig. 5. Mappings between modules of DOLCE-CORE and SUMO (extracted from
[16]). Black thin arrows point to conservative extensions, thick grey arrows are directed
from interpreted theories to interpreting theories, and thick black arrows connect syn-
onymous theories.

(45), (52), (53), (54), (55), and (56). As indicated by oriented grey arrows,
the axiomatization of part-whole relations in categories Object, Process, and
TimeInterval of SUMO are mappable to DOLCE minimal axiomatization of
mereology represented by the subtheory Tdolce part. Although not represented
in Fig. 5, it holds that because DOLCE EXTENSIONAL MEREOLOGY extends
Tdolce part, it also interprets Tsumo part, Tsumo subprocess, and Ttime mereology. In
turn, Tsumo sum interprets Tdolce part O. The strongest subtheories of SUMO and
DOLCE-CORE that are synonymous, and therefore have equivalent models, are
the pairs indicated by double black arrows, i.e, Tdolce part O with Tsumo part,
Tdolce part E with Tsumo subprocess, and Tdolce part T with Ttime mereology.

6 Conclusions

Since the conceptual coverage of upper ontologies needs to be broad enough
to cover the underpinnings of domain ontologies, we find a modules of upper
ontologies for notions about time, space, objects, and processes. In this paper,
we have focussed on how two upper ontologies (SUMO and DOLCE) axiomatize
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mereotopologies, that is, the notions of parthood (mereology) and connection
(topology). By showing how different subtheories of SUMO and DOLCE are
logically synonymous with different theories of lattices, we have identified unin-
tended and omitted models of the original axiomatization of SUMO. There are
additional subtheories of SUMO that capture additional spatial concepts such
as containment, holes, orientation, and betweenness. Future work will provide a
verification of these modules, thereby provided a firmer foundation for spatial
reasoning.
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