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Abstract. Conceptual Software Design is of utmost importance for software
development due to its focus on the Conceptual Integrity of software systems.
However, in order to turn it into actual standard practice in software design, a
precise mathematical representation of Conceptual Design is necessary. This
paper claims that Linear Software Models — by means of their basic algebraic
structures, the Modularity Matrix or its corresponding Laplacian Matrix —
guarantee Conceptual Integrity of the software system they represent. This is
argued by first offering a concise Plausibility Path with a few formal steps
towards Conceptual Integrity in terms of the Modularity Matrix. These steps
clarify the role of the Modularity Matrix, both as a facilitator and as a formal
source of the software modules’ Conceptual Integrity. Then, the paper charac-
terizes Conceptual Integrity as an intensive property of the software system.
Finally, application in practice is demonstrated by providing explicit formulas to
compute Conceptual Integrity principles, viz. propriety and orthogonality.
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1 Introduction

The original idea of conceptual integrity for software systems development was
introduced by Brooks in his book “The Mythical Man-Month” [3]. There he argued for
the utmost importance of conceptual integrity for software system design. We essen-
tially agree with Brooks’ qualitative statement, and claim that its formalization in
mathematical terms should completely transform its practical applicability, actually
enabling its usage for software systems.

This paper, an updated extension of [15] based in recent work, explicitly refor-
mulates conceptual integrity in terms of Linear Software Models — our mathematical
theory of software composition. In other words, the basic algebraic structures of this
theory, viz. the Modularity Matrix by Exman [11] or its corresponding Laplacian
Matrix by Exman and Sakhnini [14], guarantee the Conceptual Integrity of the software
system they represent, by means of an iterative procedure. It is shown that the standard
form of the Modularity Matrix is both the facilitator and a formal source of the software
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modules’ conceptual integrity. In case one deviates from the standard form, the matrix
highlights the system spots in need of redesign, within the iterative procedure.

This Introduction concisely overviews the ideas of software conceptual integrity as
presented by Brooks, and reviews the main Modularity Matrix properties.

1.1 Overview of Software Conceptual Integrity

In a more recent book by Brooks “The Design of Design: Essays of a computer
scientist” [4], conceptual integrity was verbally described by three principles in terms
of system functions. These principles are as follows:

Propriety — a software system contains only essential functions;
Orthogonality — functions are mutually independent;
Generality — many usage ways for each function.

The obstacle to practical application of these principles is that there have been no
known translations to precise mathematical formulas and effective algorithms. This
work provides the desired precise formalization of conceptual integrity, gaining both a
deeper comprehension of Brooks’ ideas and a clear basis for concrete usage of the
referred principles.

1.2 Modularity Matrix Concepts

The Modularity Matrix [9—11] enables to represent any level of a hierarchical software
system, through sub-systems, to sub-sub-systems and so on, down to indivisible basic
components. Structors — the matrix columns — stand for architectural structure units,
generalizing classes of object-oriented languages. Functionals — the matrix rows —
stand for architectural behavioral units, generalizing class functions, which may be
invoked, but not necessarily.

Columns and/or rows reordering, together with algebraic manipulations [13], i.e.
solving for the matrix eigenvectors, lead in the optimal situation to a square and block
diagonal matrix. In this standard Modularity Matrix format, the blocks along the
diagonal represent the modules of the current matrix level.

If there are outlier non-zero matrix elements beyond the boundaries of the diagonal
modules, these outliers cause modules’ coupling, which should be resolved by
redesigning the system. This can be done, within an iterative procedure, by splitting
modules or adding/removing structors and/or functionals. Figure 1 illustrates such an
abstract Modularity Matrix, with one outlier matrix element, coupling two block-
diagonal modules.

It has been shown by Exman and Sakhnini [14, 17], that a corresponding Laplacian
Matrix can be generated from the Modularity Matrix. A similar procedure, also
involving matrix eigenvectors, produces the same modules for the same system from
both matrices. Thus, the Linear Software Models, indeed are a unified software com-
position theory.
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Fig. 1. An abstract Modularity Matrix with an added outlier — A standard matrix means that it is
strictly square and block-diagonal. This matrix is indeed square as it displays 6 structors
(columns) and 6 functionals (rows). It is also almost block-diagonal, as it displays 3 modules
seen as three blocks along the diagonal, (green background). A strictly block-diagonal matrix
would have outside the modules (blank areas) only zero-valued matrix elements (values here
omitted for increased clarity). But this matrix shows one outlier (in hatched dark blue
background), a 1-valued matrix element in {F2, S5} coupling the top-left and the middle
modules. This outlier hints at a need of software system redesign. (Color figure online)

1.3 Related Literature

Here we concisely review a sample of the related literature referring to Conceptual
Integrity and algebraic structures, such as matrices and lattices which have been used
for software system design.

Conceptual Integrity
Conceptual Integrity ideas for software design were first proposed in Frederick Brooks’
books [3] and [4], as mentioned above in the beginning of this paper.

Jackson, starting from a research proposal [21], and co-authors elaborated Brooks’
ideas by detailed explanations of case studies, e.g. on Git [7] and more recently De
Rosso and Jackson [8]. Jackson has emphasized the importance of concepts for soft-
ware systems, illustrating them by informal dependence graphs, from which simplified
and more coherent subsets of concepts can be extracted [22].

Simplicity and regularity seem to be important characteristics of Conceptual
Integrity. An example is a Technical Report by Kazman and Carriere [24], dealing with
reconstruction of a software system architecture, using conceptual integrity as a guide.
The architecture should in principle be built from small numbers of regularly connected
components, with consistent functionality allocation to these components. Another
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example by Kazman [23] describes a SAAMtool, with visualization capability. Con-
ceptual Integrity is estimated by the number of primitive patterns that a system uses.

Still another example is given by Clements et al. in their book [6], referring to
conceptual integrity as a unifying design theme. The system should do similar things in
similar ways, with small numbers of data and control mechanisms in the system. Issues
with some similarity to our approach in this paper are: a - they mean the system at all
hierarchical levels; b - a more precise definition of conceptual integrity would be given
by counting mechanisms.

Occasional references concerning Conceptual Integrity have appeared in the liter-
ature. For instance, Beynon et al. [2] explicitly refer to Conceptual Integrity, but do not
go beyond some vague statements about what it means. Orthogonality, one of the
conceptual integrity principles, also have appeared in the software design literature.
Krone and Snelting [25] refer to it in a paper using conceptual lattices extracted from
source code.

Most recently, Exman and Katz [16] starting from an axiomatic approach, began to
make explicit calculations with quantities expressing the Conceptual Integrity
principles.

Algebraic Structures for Software System Design

Other algebraic structures, besides the Modularity Matrix, have been used for software
systems design. The DSM (Design Structure Matrix) included in the Design Rules
approach by Baldwin and Clark [1] has been applied mostly outside software engi-
neering. It should be remarked that the DSM has been mostly analyzed by a super-
imposed economic options theory, external to the DSM itself, in contrast to our pure
algebraic theory. For a set of references to this approach see e.g. [11].

Exman and Sakhnini [14, 17], have shown that a Laplacian matrix can be obtained
from any Modularity Matrix, by means of an intermediate bipartite graph. Although a
clearly different matrix, the Laplacian matrix obtains the same modules as its corre-
sponding Modularity Matrix, by a similar spectral method — using eigenvectors and
eigenvalues.

Another algebraic structure applicable to software system design is the Conceptual
Lattice, developed within FCA (Formal Concept Analysis) mainly by Wille, Ganter
and collaborators, see e.g. [19, 20]. It has been applied by a few authors to software
analysis, see e.g. Krone and Snelting, [25]. More recently, Exman and Speicher [12]
have shown the equivalence of the Modularity Lattice to the Modularity Matrix, dis-
playing in alternative ways the same modules for any software system.

1.4 Paper Organization

The remaining of the paper is organized as follows. In Sect. 2 a Plausibility Path to
conceptual integrity is offered. In Sect. 3 Conceptual Integrity is characterized as an
intensive quantity of software. In Sect. 4 Conceptual Integrity is directly calculated
from the Modularity Matrix. In Sect. 5 a discussion concludes the paper.
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2 A Plausibility Path to Software Conceptual Integrity

We propose a Plausibility Path from an Abstract Domain Conceptualization to Soft-
ware Conceptual Integrity. We assume that Conceptual Integrity pre-exists, in the
abstract domain, before being formalized. We provide a general perspective of the
plausibility path, leading through the Modularity Matrix to Software Conceptual
Integrity. We then focus on each of its steps.

The main idea behind the Plausibility Path is to make plausible transitions between
an acceptable starting point — the notion of abstract mathematical domain conceptu-
alization — and the final goal of Software Conceptual Integrity. We call it Plausibility
Path since we make acceptable statements in a heuristic fashion, but do not provide
rigorous formal proofs.

We shall make formal definitions and corresponding calculation formulas in
Sect. 4.

2.1 Plausibility Path Perspective

There are three essential formal steps from Abstract Conceptual Integrity to Software
Conceptual Integrity, passing through the Modularity Matrix as shown in Fig. 2.

[ )
Abstract Software
Domain Conceptual
Conceptualization Integrity
& )

Liskov
Substitution' Modulari ty
Matrix

Conceptual
Modularity
Lattice

Fig. 2. From an Abstract Domain to Software Conceptual Integrity — The three steps are: the
initial “Abstract Domain Conceptualization”, the goal “Software Conceptual Integrity”, and the
intermediate Modularity Matrix. In between there are two transitions: “Liskov Substitution” and
“Conceptual Modularity Lattice” to be later explained in the paper text.

The meaning of the three formal steps is as follows:

1. Abstract Domain Conceptualization — along the history, concepts in e.g. Mathe-
matics were grouped in fields within hierarchies obeying conceptual integrity;

2. Modularity Matrix — the basic algebraic structure of Linear Software Models, plays
the role of both a facilitator and formal source for Conceptual Integrity;

3. Software Conceptual Integrity — the desired goal of the formalization steps, should
assure software system orthogonality and propriety.
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The meaning of the two transitions between the above steps is as follows:

1 — 2 — Liskov Substitution — translates abstract mathematical concepts into soft-
ware entities;

2 — 3 — Conceptual Modularity Lattice — is an algebraic structure that has been
shown to be equivalent to the Modularity Matrix, while obtaining concepts of the
software modules.

One can summarize the roles of the above steps, as shown in Fig. 3.

Step Formal Tool Goal Role Main Theorems
Abstract domain Classify fields, | Common concepts and
conceptualization hierarchies functions
Modularization by
spectral methods
Conceptual  Integrity
complies with
Modularization

1 | Domain Ontologies

2 [Modularity Matrix | Software system design | Source and facilitator

Orthogonal Software  conceptual | Assure propriety and
Algebraic Structure | integrity orthogonality

Fig. 3. Plausibility Path: Tools, Goals and Roles — This summarizes properties of its formal
steps in terms of their tools, goals and roles. See detailed discussion in subsequent subsections.

2.2 Software Structure and Behavior

Preliminary definitions clarify each of the above steps. The ultimate goal of the
Plausibility Path is conceptual integrity in software systems. We refer to structure and
behavior, thinking in terms of software, even when dealing with an abstract domain.

Definition A — Software Structure
Software Structure is a relation among software architectural units (“structors”, a
generalization of classes) involving sub-classing and composition operators.

We use the same operators for software systems and for abstract ontologies. This
follows common practice, emphasizing the analogies between abstract concepts and
their respective software classes.

Definition B — Software Behavior
Software Behavior is the performance of a function computation. The outcome of the
function computation is a state change of the software system. We call “functionals” (a
generalization of functions) the software architectural units of behavior.

Structors provide Functionals but the latter are not necessarily invoked. One often,
by linguistic license, refers to the functionals themselves — without the performance of
a computation — as software behavior.

2.3 Abstract Conceptual Integrity

Abstract concepts are hierarchically classified by properties’ similarity. The hierarchy
determines which concepts are particular cases of other ones. We illustrate the idea
with some examples.
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A square is a subclass of a rectangle, which is a subclass of a parallelogram. The
parallelogram, the most general instance in this small hierarchy (in Fig. 4), is a polygon
with four sides, in which the opposite sides are parallel. A rectangle is a subclass of a
parallelogram with four right angles. A square is a subclass of a rectangle with all four
sides equal.

Each lower hierarchy class has all the properties of the upper classes. A square has
4 sides (as in any quadrilateral), which are parallel (as in the parallelogram), and 4 right
angles (as the rectangle).

Hierarchy is also true regarding behavior, i.e. the outcome of the functionals’
calculations for each concept (or class). As an example, the perimeter of any class in
this hierarchy is obtained by summing the length of the four sides (which in principle
may be all different, partially different or all equal).

{ Parallelogram I

subclass

Rectangle

subclass

Square

Fig. 4. The Quadrilateral Hierarchy — Each arrow (meaning subclass/subtype of) points from the
particular concept (or class) to the more general concept. The parallelogram is the most general
class of this hierarchy and Square is the most specific class. We visualize each class with the
geometry of the class concept, instead of conventional UML rectangles for all classes.

A different hierarchy could contain a circle as a subclass of an ellipse. A yet dif-
ferent hierarchy would refer to 3-dimensional concepts such as a sphere as a subtype of
an ellipsoid.

Each of the three referred hierarchies (quadrilaterals, ellipses, 3-D ellipsoids) dis-
play conceptual integrity, both intuitively and by some specific well-defined charac-
teristic. For example, all quadrilaterals in Fig. 4 have linear segments as sides of a
polygon (literally meaning “multiple angles”), while the ellipses have no linear seg-
ments and no angles in between at all the points in their perimeters.

These hierarchies, such as that the quadrilaterals in Fig. 4, are in fact small frag-
ments of an ontology of geometric figures, see e.g. Rovetto [28], which may encompass
the three referred hierarchies.

We summarize conceptual integrity in an abstract domain such as mathematics by
means of the following Statement:
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Statement 1 — Conceptual Integrity in Abstract Domain Hierarchy of Concepts

In a class hierarchy determined by sub-classing, in an abstract domain, all the concepts
of the hierarchy have at least one common concept, and one common function defined
in the most general member of the hierarchy. The common concept and the common
function represent the conceptual integrity.

2.4 The Need for Liskov Substitution

We need Liskov Substitution to make the transition from an abstract domain, such as
the quadrilaterals in Fig. 4, to actual software entities — say the same quadrilaterals
which now have behavior, through their functionals, as represented by the Modularity
Matrix. Thus Liskov Substitution attempts to translate, as faithfully as possible, con-
cepts found in Abstract Mathematics to the software domain. This is possible, first of
all, since the structure of both ontology fragments (hierarchies) in abstract mathematics
and software hierarchies are based upon the same sub-typing operator.

The basic idea of Liskov Substitution which is relevant to conceptual integrity is to
link “structure” to “behavior”, effectively transforming concepts in an abstract (e.g.
“mathematics”) domain into generic software.

A formulation of Liskov Substitution [27] essentially links sub-classing to the
behavior of software containing the relevant classes, when substituted by their sub-
classes. In such case, the software behavior should not change.

This is particularly interesting, as a “structural” class diagram (type T and its
subtype S) in Fig. 5 is being linked to a “behavioral” condition, which is precisely
what transforms an abstract domain to software concepts.

Liskov Substitution Principle
Object 02
If for each obj / T oftype T
ject ol of type S
there is an object 02 of type T
such that for all programs P subclass
defined in temms of T, the
behavior of P is unchanged
when ol is substituted for o2 S Object 01
then S is a subtype of T. oftype S

Fig. 5. Liskov Substitution Principle and Class Diagram — The principle is shown in the left-
hand-side of the figure. The class diagram illustrating Liskov’s principle is in the right-hand-side
of the figure. T is a class (or type). S is a subclass (or subtype) of T. Substitution of Object 02 of
type T, by an object ol of type S should not change the software behavior. This diagram is
analogous to an abstract hierarchy in Fig. 4. Figure adapted from the paper by Exman [15].
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2.5 The Modularity Matrix Roles

The Modularity Matrix of a software system is built of structors preserving the notion
of sub-classing. Thus, the Modularity Matrix implicitly conveys the hierarchical ideas
formulated in the previous sub-sections.

The contribution of the Modularity Matrix for Conceptual Integrity is to be pur-
posely built to maximize modularity, increasing software simplicity and maximal
orthogonality among modules.

Statement 2 — Conceptual Integrity in the Modularity Matrix

If the Modularity Matrix is standard (square and block-diagonal), then specific structors
provide related functionals within modules, and the modules conceptual integrity is
preserved for the restricted set of software systems represented by the Matrix.

2.6 Concepts in the Modularity Lattice

The contribution of the Conceptual Modularity Lattice in the transition from the
Modularity Matrix to the software Conceptual Integrity is to link the optimization in
terms of Structors and Functionals from the Modularity Matrix to concepts.

This is possible, since the Conceptual Modularity Lattice has been shown by
Exman and Speicher [12] to convey information equivalent to the Modularity Matrix,
in terms of software system modularity. Moreover, by its very definition from Formal
Conceptual Analysis [19] the Conceptual Modularity Lattice is an algebraic structure
restricted to the concepts relevant to its software system. This is summarized in the
following statement.

Statement 3 — Conceptual Integrity in the Modularity Lattice

Since the Modularity Lattice in terms of software design is equivalent to its corre-
sponding Modularity Matrix, the concepts fitting to the Matrix modules preserve
conceptual integrity and this can be explicitly tested for the restricted set of software
systems represented by the Modularity Lattice.

3 Conceptual Integrity as an Intensive Property of Software

In this section we go beyond the principles formulated upon the Modularity Matrix. We
present and discuss the idea that Conceptual Integrity is an Intensive property of
Software. We explain the meaning of intensive property, give an analogy to physical
systems, and deal with software systems.

3.1 Conceptual Integrity Is an Intensive Quantity

Conceptual integrity, besides being a property of a whole hierarchical software system,
seems to be a recursive property of each of its subsystems down to basic blocks. If any
subsystem does not have conceptual integrity, it is plausible that the whole system
cannot display it either.
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We now give an example to explain what are intensive versus extensive quantities.
Suppose that our system is a vehicle — either a car or a truck. A family car typically has
4 wheels. A truck usually has a bigger number of wheels. The weight of a vehicle is an
extensive quantity: the weight of a vehicle is the sum of the weights of its parts. For
instance, additional wheels increase the weight of the vehicle.

In contrast, the speed of a vehicle is an intensive quantity: the speed of the vehicle is
not the sum of the speeds of its parts. All the car parts move at the same speed.
Specifically, the tangential speed of any of its wheels is the same as the speed of the
vehicle, irrespective of the number of wheels.

Conceptual Integrity is an intensive quantity. It is not the sum of the conceptual
integrities of the components of a software system.

3.2 Increasing Conceptual Integrity by Exchange of Module Components

Here we use a different physical metaphor as a further illustration for the idea of
Conceptual Integrity being intensive.
Assume a system having four sub-systems as in Fig. 6:

glass container;

water contained by the glass;

sphere mostly filled with air partially floating in the water;
small solid metal cube inside the sphere.

NS

Now, one heats the glass container by an external heat bath. Heat energy flows
among the different sub-systems, from those with higher temperatures to those with
lower temperatures, until the whole system reaches a uniform temperature.

N Al Al Al Al
OO O b
Glass
container
Water Air inside
Metal Sphere
Cube
‘Insulated‘
Double
wall
Heat
A A A Al Bath
oL OO D

Fig. 6. Physical System Metaphor — The system has 4 sub-systems: a - glass container; b - water
inside the glass; ¢ - floating sphere filled with air; d - metal cube inside the sphere. A heat bath
heats the glass container until the temperature is uniform, causing heat energy flow among the
sub-systems. Figure reproduced from the paper by Exman [15].
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In a software system, each sub-system usually has different computation charac-
teristics — one dealing with data, another one with business logic, and so on. Moving
concepts (classes) from one sub-system to another may increase conceptual integrity in
both sub-systems. One could say that Conceptual Integrity in the whole system is
optimized by flow of concepts (classes) among sub-systems. However, such flow of
concepts and the intensive hypotheses of conceptual integrity, do not guarantee a single
value of conceptual integrity anytime throughout a whole software system.

The previous physical metaphor suggests that conceptual integrity is not an
extensive property, like heat energy, but an intensive property, like temperature.

4 Direct Computation of Conceptual Integrity
from the Modularity Matrix

In this section we first assign a formal definition to two of the quantities behind
Conceptual Integrity, viz. Propriety and Orthogonality. The proposed definitions are
based on the criteria used to generate an optimized Modularity Matrix by an iterative
procedure. Then we provide formulas to directly compute Conceptual Integrity
quantities from the generated Modularity Matrix.

4.1 Propriety Formally Defined

Propriety has been verbalized in Subsect. 1.1 as “a software system contains only
essential functions”. Intuitively, this means that one is minimizing the number of
functions. Formally, it is stated as in the following definition.

Definition 1: Module Propriety

Propriety of a module in the Modularity Matrix, in a certain
hierarchical level of a given software system, means that all
its structors are mutually linearly independent, and
concomitantly all its functionals are mutually linearly
independent.

Explaining the previous intuition, the demand of linear independence among
vectors (structors among themselves or functionals among themselves), implies that
there are no two identical vectors. Moreover, if a sub-set of vectors are linearly
dependent, some of the vectors are superfluous and can be eliminated. The decision of
which vectors to eliminate is left to the software engineer, with a good knowledge of
the concepts of the software system under development.

Thus, propriety reflects the fact that the Modularity Matrix optimizes — in fact
minimizes — the number of structors and their provided functionals, for all its modules.
Therefore, the above definition for a module extends to the whole matrix, and the
standard Modularity Matrix complies with Propriety.
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4.2 Orthogonality Formally Defined

Orthogonality was intuitively verbalized in Subsect. 1.1 as “functions are mutually
independent”. Based upon the Modularity Matrix, this definition has two associated
meanings:

e Linear independence — among structors and among functionals;

e Strict orthogonality — among modules, which is a stronger requirement than linear
independence, and is easily visually recognized in the diagonal blocks of the
Modularity Matrix, for instance in Fig. 1, when one ignores the outlier.

But, linear independence was already guaranteed by the Propriety definition 1.
Therefore, the exact meaning of orthogonality is strict orthogonality among a specified
sub-set of modules formally stated in the following definition.

Definition 2: Orthogonality among Modules
Orthogonality of a module with respect to a specified sub-set
of other modules in the Modularity Matrix, in a certain
hierarchical level of a given software system, means that all
its structors are orthogonal to all the structors of the other
modules in the specified sub-set, and concomitantly all its
functionals are orthogonal to all the functionals of the other
modules in the same specified sub-set.

The usage of the same term for the principle and for the linear algebra operation is
not coincidence. It probably was suggested to conceptual integrity authors by the
algebraic notion.

One could now ask about the third principle — Generality. Please see the Discussion
Subsect. 5.1 item “d” for considerations on “Generality”.

4.3 Direct Computation of Propriety from the Modularity Matrix

Since Propriety has been defined in terms of linear independent vectors within a
module, it is calculated, according to linear algebra, by the rank r of the sub-matrix of
the given module. Specifically, if s is the number of structors (columns) of the module
sub-matrix, propriety is calculated by Eq. (1).

Propriety =1— ((s —r)/s) (1)

Note that since module sub-matrices are square, one could use as well the number
of functionals f (rows) instead of the number of structors. The module propriety
quantity in this equation has a value between zero and the maximum propriety value of
1 obtained when r equals s. The need for this kind of normalization is to facilitate
calculations of propriety for the whole system, given the values for all its modules,
while preserving Conceptual Integrity as an intensive property.
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4.4 Direct Computation of Orthogonality from the Modularity Matrix

Orthogonality has been defined for all vectors within a module, with respect to vectors
in other modules in specified sub-set of modules in the Modularity Matrix. According
to linear algebra, orthogonality of a pair of vectors v,z; and v,y,, respectively belonging
to modules M; and M,, is calculated by the scalar product of the pair of vectors in
Eq. (2).

Orthogonality = 1 — (vy @ vyp2) (2)

Note that each of the vectors in this equation is normalized (se e.g. Weisstein [29]),
i.e. all their elements are divided by the length of the respective vector. Thus, the
calculated orthogonality for a pair of vectors has a value between zero and the maximal
value of 1 obtained for zero scalar product. Again the need for normalization is to
facilitate calculations of orthogonality for the whole system, given the values for all
pairs of structors and all pairs of functionals for all modules, preserving Conceptual
Integrity as an intensive property.

5 Discussion

Conceptual Integrity has been considered of fundamental importance for software
system design, but has been only vaguely defined.

This paper’s basic claim is that the Modularity Matrix is a facilitator and a formal
source of Conceptual Integrity information. We have provided two lines of
argumentation:

a. Plausibility Path from Abstract Domains through the Modularity Matrix to Con-
ceptual Integrity — We started from the accepted conceptual integrity of abstract
domains, made a transition to the Modularity Matrix fitting a set of software sys-
tems. Using the equivalence to the Modularity Conceptual Lattice, we returned to
“conceptual” aspects, to finally reach Conceptual Integrity.

b. Formal definitions and direct calculation — The Modularity Matrix optimization
procedure was the direct source of the defined quantities viz. propriety and
orthogonality, in a formal way.

Two of the principles — propriety and orthogonality — have a neat definition derived
from the standard Modularity Matrix properties.

Promising progress has been achieved in this work, but additional investigation, in
particular calculation for extensive numbers of case studies is needed to further clarify
issues detailed in the next sub-section.

5.1 Open and Controversial Issues

a. Conceptual Independence of Abstract Hierarchies

We have referred in Sect. 2.3 to two independent hierarchies, one of polygons and
another one of ellipses, say a circle. However, they are not strictly independent. One
may think of a circle as a regular polygon in the limit of an infinite number of sides,
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enabling a transition between two of the above hierarchies. One can easily estimate the
value of m in the perimeter of a circle 2 * m * Radius by taking the limit of the
perimeter of a polygon inscribed in the circle, when the number of polygon sides goes
to infinity.

b. Stability Along Time of Conceptual Hierarchies

The situation is more complex than the naive static view of Fig. 4 would suggest.
Concepts evolve — see e.g. Lakatos [26] — in his book on “Proofs and Refutations”
discussing the empirical contribution to the concept evolution of regular polyhedrons
(from Euler’s initial five). Concepts also can be said to expand along time — see e.g.
Buzaglo [5] — according to the terminology of his book “The Logic of Concept
Expansion”.

c. The Single Brilliant Architect of Major Systems?

Brooks has argued in favor of the idea that only a single brilliant architect, can impart
conceptual integrity to a major building, say an architect of a cathedral, or similarly to a
major engineering enterprise such as a very large software system. Gabriel [18] chal-
lenges Brooks’ position.

In our opinion, Brooks’ position is difficult to be rationally proven for real systems.
But its main drawback is the dependence on the existence and the opportunistic
presence of a single brilliant mind. One obviously prefers a systematic construction of
formal tools, based upon clear conceptual integrity ideas.

d. The Generality Principle of Conceptual Integrity

Generality, has been described as the quality that “a single function should be usable in
many ways” in the same system. This intuitive formulation seems vague enough, being
an obstacle to a formal interpretation. We shall return to this issue elsewhere.

5.2 Future Work
Open issues for future work include:

e extensive calculations on actual software systems;
e explanation of difficulties encountered with heavily used software systems such as
Git [7].

5.3 Main Contribution

The main contribution of this work is that Linear Software Models — by means of the
formal algebraic tools of Modularity Matrix or the Laplacian Matrix — guarantee
Conceptual Integrity of the software system they represent.
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