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Abstract The aim of this work is to study the problem of sound wave propagation
through a binary mixture undergoing a reversible chemical reaction of type A +
A � B + B, when the mixture is confined between two flat, infinite and parallel
plates. One plate is stationary, whereas the other oscillates harmonically in time and
constitutes an emanating source of sound waves that propagate in the mixture. The
boundary conditions imposed in our problem correspond to assume that the plates
are impenetrable and that the mixture chemically react at the surface plates, reaching
the chemical equilibrium instantaneously. The reactive mixture is described by the
Navier-Stokes equations derived from the Boltzmann equation in a chemical regime
for which the chemical reaction is in its final stage. Explicit expressions for transport
coefficients and chemically production rates are supplemented by the kinetic theory.
Starting from this setting, we study the dynamics of the sound waves in the reactive
mixture in the low frequency regime and investigate the influence of the chemical
reaction on the properties of interest in the considered problem.We then compute the
amplitude and phase profiles of the relevant macroscopic quantities, showing how
they vary in the reactive flow between the plates in dependence on several factors,
as the chemical activation energy, concentration of products and reactants, as well
as oscillation speed parameter.
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1 Introduction

Themathematical modelling of soundwave propagation in a rarefiedmedium and the
correct description of the properties of interest in terms of both the rarefaction degree
of the medium and the sound frequency of the wave is a topic of great relevance in
several fields. This subject appears in many applied situations of modern engineer-
ing, associated with porous nanomaterials, vibrating micro-devices, near-vacuum
systems, acoustic measurements, propagation of noise and many other problems.

These facts have motivated many scientific contributions, both theoretical and
numerical [1–11]. In particular, theoretical works and numerical simulations can
provide some guidance in experimental studies and design of many devices, and can
help to predict the acoustic behaviour in many systems.

From the mathematical point of view, the modelling of sound wave propagation
is based on the Navier-Stokes equations when a regime of continuum flow and low
oscillation frequencies is considered. However, when the systems approach themicro
scale or when high oscillation frequencies are taken into account, other regimes
should be considered for which the Navier-Stokes equations become not valid and
the Boltzmann equation is used to capture the rarefaction effects or to treat the
boundary Knudsen layer [5, 11].

Various problems have been studied in several regimes of propagation, consider-
ing a one-component gas or a mixture of inert gases, either occupying a semi-infinite
space [11–13] or confined between two parallel plates [1, 5, 9, 10]. In particular,
Ref. [5] addresses the problem of sound propagation in a monoatomic gas confined
between source and receptor of sound waves over a wide range of gas rarefaction and
sound frequency regimes. The results presented in Ref. [5] show many interesting
features concerning, in particular, how the sound waves reflected from the recep-
tor influence the solution of the problem when the distance between both plates is
varying.

On the other hand, some problems associated to sound wave propagation have
also been investigated in the context of chemically reactive mixtures [3, 6, 14–18].
The results indicate that the sound propagation can be considerably influenced by
the chemical reaction.

However, the presence of the chemical reaction introduces additional complexities
and, in general, one considers some simplifications in order to solve the sound wave
problem. For instance, in Refs. [3, 14, 15] the problem is formulated in an unbounded
domain, so that no boundary conditions are involved, assuming that themixture fields
are the sum of an equilibrium value plus an harmonic wave of small amplitude. In
Refs. [14, 15, 17, 18], an Eulerian mixture is considered and the transport effects
are absent, so that only the effects of chemical reactions on sound propagation are
considered. In Ref. [6], a binary mixture confined between two parallel plates is
considered and the gaseous particles can react chemically at one wall only, with
infinitely fast chemical reaction so that the gaseous particles reach the equilibrium
instantaneously and the flow between the boundaries is non-reactive.
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The problems described in the latter reference havemotivated the study developed
in the present paper, and we give here a further contribution for the sound wave
propagation problem within a chemically reactive mixture.

We consider a binary mixture confined between source and receptor, in the pres-
ence of a chemical reaction of type A + A � B + B, which is typical of isomers
[19]. Our approach is based on the Navier-Stokes equations with temperature jump
and velocity impenetrable conditions at both source and receptor of sound waves. A
chemical regime for which the chemical reaction is in its final stage is assumed.

Since there are no papers regarding the temperature jump in reactive gas mix-
tures, the temperature jump coefficient for a single gas is used here. This choice is
motivated by two facts. First, both constituents have the same molecular mass, as
a consequence of the mass conservation during the chemical reaction, so that they
are identical in mechanical sense. Second, the chemical reaction is in its final stage,
so that chemical transformations become less frequent and the deviations from the
chemical equilibrium are small. Therefore, in the context of the present problem,
this simplification does not seem to be so restrictive. In fact, it is well known that for
a mixture with a small ratio of molecular masses, the temperature jump coefficient
does not differ significantly from that for a single gas, see paper [12]. However, it
is our future research plan to determine the temperature jump coefficient for a more
general reactive gas mixture, resorting to an appropriate model in kinetic theory for
the description of the reactive mixture.

Starting from this setting, we study the sound wave propagation in the reactive
mixture in the low frequency regime and investigate both the influence of the chem-
ical reaction and the effects of the reflected waves from the receptor on the relevant
macroscopic quantities.Weperform somenumerical computations to investigate how
the amplitudes and phases vary in dependence of several parameters, as the chemical
activation energy, concentration of products and reactants (exothermic or endother-
mic dominant reaction), distance between source and receptor and oscillation speed
parameter.

2 Description of the Mixture

We consider a binary mixture of monoatomic gases whose constituents, denoted by
A and B, undergo a reversible chemical reaction of symmetric type represented by

A + A � B + B. (1)

Both constituents have the same molecular massm and the same molecular diam-
eter d . The molar fraction of each species in the mixture is defined as

xA = nA
nA + nB

, xB = 1 − xA, (2)
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where nα (α =A, B) denotes the number density of species α in the mixture, with
n = nA + nB the total number density of the mixture.

The constituents have different binding energies εA and εB, so that we introduce
the heat of the chemical reaction defined as the binding energy difference between
reactants and products of the forward reaction,

E = 2(εA − εB). (3)

Observe that the forward reaction in (1) is exothermic when E > 0, whereas it is
endothermic when E < 0.

The hydrodynamic model describing the considered mixture is that of the reactive
Navier-Stokes equations [3, 19] formed by the balance equations for the number
densities nA of the reactants and nB of the products, together with the conservation
equations for the momentum and total energy of the whole mixture. The transport
coefficients involved in the description of the mixture are the shear viscosity μ,
diffusion D, thermal diffusion ratio κT and thermal conductivity λ.

The interaction among the constituents due to the chemical reaction (1) is specified
by the chemical production rate T , which plays an important role in the model. In
the present analysis, the reaction rate is explicitly obtained from the kinetic theory
of reactive mixtures, as it will be explained in Sect. 4. The concentration of each
constituent in the reactive mixture is measured by the corresponding number density
nα (α = A,B).

For sake of brevity, we omit here the full system of reactive Navier-Stokes equa-
tions, since they will be introduced in its one-dimensional form in Sect. 4.

3 Statement of the Problem

We assume that the mixture is quiescent in equilibrium conditions, confined between
two flat, infinite and parallel plates, located at x′ =0 and x′ =L′, where x′ is the first
space coordinate of a 3-dimensional orthogonal reference frame Ox′y′z′.

Both plates are kept at the same uniform temperature, which is the equilibrium
temperature T0 of the mixture. The plate located at x′ =L′ is at rest, whereas the
one located at x′ =0 oscillates harmonically in time, in the x′-direction, i.e. in the
direction orthogonal to its own plane, with angular frequency ω and velocity

Up(t) = � (
Ue−iωt

)
, (4)

where� denotes the real part of a complex number, i is the imaginary unit andU ∈R

represents the constant amplitude of the oscillating velocity. We assume that U is
very small when compared to the characteristic molecular speed vm of the mixture,
that is

U � vm, vm =
√
2kBT0
m

, (5)
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where kB is the Boltzmann constant, T0 is the equilibrium temperature of the mixture
and m is the molecular mass of the species.

Perturbations. According to this description, the oscillating plate (x′ =0) constitutes
an emanating source of sound waves that propagate in the x′-direction and slightly
deviate the properties of the reactive mixture from the equilibrium state. On the
other hand, the stationary plate (x′ =L′) behaves as a receptor of sound waves and
can significantly change the flow due to the influence of the reflected waves from
the plate. The sound waves generated by the oscillating plate disturb the number
densities nα and mean velocities vα of the constituents (α = A,B), as well as the
mass density ρ, temperature T , pressure p and heat flux q of the mixture. We assume
that all mixture properties depend harmonically on time and introduce the following
expansions of the state variables around an equilibrium state,

nα(t, x′) = nα0 + �[nα(x′) e−iωt],
vα(t, x′) = �[vα(x′) e−iωt],
ρ(t, x′) = ρ0 + �[ρ(x′) e−iωt],
v(t, x′) = �[v(x′) e−iωt],
T (t, x′) = T0 + �[T (x′) e−iωt].

(6)

Here, the quantities nα0, ρ0, T0 are constant and refer to the thermodynamical
equilibrium state of the reactive mixture, so that the number densities nA0, nB0 of the
constituents and the temperature T0 of the mixture are constrained to the mass action
law of the model, see [19], that is

exp

(
− E

kBT0

)
=

(
nA0
nB0

)2

, (7)

where E is the reaction heat defined in (3). Furthermore, the quantities nα(x′), vα(x′),
ρ(x′), v(x′), T (x′) appearing in expansions (6) represent the complex spatial pertur-
bations of the corresponding state variables.

Under these conditions, a linearized theory based on the reactive Navier-Stokes
equations is appropriate to describe the dynamics and the chemical kinetics of the per-
turbed variables (6), in particular to describe the spatial evolution of the perturbation
amplitudes.

Relevant parameters. The relevant parameters in this description are the rarefaction
parameter, δ,which is inversely proportional to thewell knownKnudsennumber [20],
and the oscillation parameter, θ , defined by

δ = L′p0
ηvm

, θ = ωτ, (8)
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where L′ is the distance between the plates, already introduced, vm is given in (5), p0
is the equilibrium pressure of the mixture, η the shear viscosity of the mixture and τ

represents the effective mean free time between successive molecular collisions.
Note that the oscillation parameter θ is defined as in [3] and corresponds to the

ratio of the oscillation frequency to the collision frequency.
For convenience, the dimensionless x-coordinate is introduced as

x = x′ω
vm

, (9)

and, as a consequence, the dimensionless distance between the plates is written as
L = δθ . Since our mathematical setting corresponds to the hydrodynamic regime,
large values for δ and small values for θ are considered, i.e. δ � 1 and θ � 1.

Boundary conditions. The interaction of the reactive mixture with the surface plates
is described by the boundary conditions to be imposed to our differential equations.
We assume that both plates are impenetrable, so that the mixture accommodates its
bulk velocity to the velocity of the plates. In fact, at the stationary plate (x=L), the
mixture instantaneously relax to a resting state and its bulk velocity vanishes at this
boundary. At the oscillatory plate (x=0), themixture instantaneously accommodates
its bulk velocity to the velocity of the plate, as a consequence of the oscillatory
movement of the plate itself. Therefore, from (4) and (6), the boundary conditions
for the spatial part of the mixture bulk velocity are given as

v(x)|x=0 = U, v(x)|x=L = 0. (10)

Concerning the temperature, jump conditions at source and receptor are employed,
so that from (6) we have

T |x=0 = T0 + ζT θ
∂T

∂x

∣∣∣∣
x=0

, T |x=L = T0 − ζT θ
∂T

∂x

∣∣∣∣
x=L

, (11)

where ζT is the temperature jump coefficient, see papers [8, 12, 21–23].
As explained and motivated in the Introduction, we will use, in this work, the

temperature jump coefficient for a single gas, namely ζT = 1.954, see [5, 12], as
an approximation of the corresponding coefficient in the considered binary reactive
mixture.

4 Hydrodynamic Equations for the Reactive Mixture

Starting from a kinetic description in terms of a Boltzmann equation for the con-
sidered binary reactive mixture, the macroscopic field equations of the reactive flow
can be derived in the hydrodynamic limit at Navier-Stokes level. This derivation has
been addressed in paper [24] for the reactive mixture considered in our work.
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Basic fields and macroscopic equations. The basic fields of the mixture are the
particle number densities nA of the reactants and nB of products, the velocity v and
temperature T of the mixture. For the problem under consideration, the balance
equations for these fields can be written in the following form (see paper [3])

∂nα

∂t
+ ∂

∂x′ (nαvα) = λαT , α = A,B, (12)

ρ
∂v

∂t
+ρv

∂v

∂x′ + ∂Pxx

∂x′ = 0, (13)

3

2

p

T

(
∂T

∂t
+ v

∂T

∂x′

)
+ ∂q

∂x′ − E

2

∂

∂x′
[
nA(vA − v)

]
+ Pxx

∂v

∂x′ = E

2
T , (14)

where T represents the reaction production term due to the chemical reaction, λα is
the stoichiometric coefficient of each constituent, with λA = −λB = −1. Moreover,
the symbol E stands for the chemical reaction heat introduced in (3). Finally, plain
symbols refer to the whole mixture and have the usual meaning in kinetic theory and
fluid mechanics [19], in particular p = nkBT is the mixture pressure, q the heat flux
and Pxx the first component of the pressure tensor.

The constitutive relations for the field equations (12–14) have been derived in
paper [24] in the form

Fick law vA−v = − D

nA

(
nB
n

∂nA
∂x′ − nA

n

∂nB
∂x′ + n

T
κT

∂T

∂x′

)
(15)

Newton law Pxx = p − 4

3
η

∂v

∂x′ (16)

Fourier law q = −λ
∂T

∂x′ +
(
E

2
+ n

nAnB
p κT

)
nA(vA − v) (17)

Reaction rate law T = �
A

kBT
(18)

whereD, η andλ are the coefficients of diffusion, shear viscosity and thermal conduc-
tivity, respectively, κT is the thermal diffusion ratio, � the coefficient of the forward
reaction rate and A the chemical affinity of the forward reaction given by

A = E + 2kBT ln

(
nA
nB

)
. (19)

Equations (12–14) with their constitutive conditions (15–18) represent the closed
set of Navier-Stokes equations for the binary reactive mixture considered here. Such
equations have been derived in paper [24] from a kinetic theory dynamics and there-
fore explicit expressions have been obtained in the quoted paper for the transport
coefficients D, η, λ, κT and reaction rate coefficient �.
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5 Analysis of Sound Propagation in the Reactive Mixture

The linearized equations for the problem in question are obtained by inserting the
representation (6) into both the balance equations (12)–(14) and the constitutive
relations (15)–(18), keeping only linear terms of the field deviations. The resulting
set of equations describes the spatial evolution of the complex perturbation of the
state variables, and is written as follows.

− iω nA + xAn0
dv

dx′ − DxB
d2nA
dx′2 + DxA

d2nB
dx′2 − D

n0
T0

κT
d2T

dx′2

= −2�0
n0

(
nA
xA

− nB
xB

)
, (20)

− iω nB + xBn0
dv

dx′ − DxA
d2nB
dx′2 + DxB

d2nA
dx′2 + D

n0
T0

κT
d2T

dx′2

= 2�0
n0

(
nA
xA

− nB
xB

)
, (21)

− iωmn0v + kBT0
dn

dx′ + kBn0
dT

dx′ − 4

3
η
d2v

dx′2 = 0, (22)

− 3

2
iωkBn0T − λ

d2T

dx′2 − kBT0
xA

κTD
d2nA
dx′2 + kBT0

xB
κTD

d2nB
dx′2 + n0kBT0

dv

dx′ (23)

− n0kB
xAxB

Dκ2
T

d2T

dx′2 = E�0

n0

(
nA
xA

− nB
xB

)
,

where �0 is the dimensionless coefficient of the forward reaction rate, given by

�0 = −4xAn
2
0d

2s2
√

πkBT0
m

exp

(
− εf

kBT0

)
, (24)

with s being the steric factor and εf the activation energy of the forward chemical
reaction. Moreover, we use here the notation xα for the equilibrium molar fraction
of species α in the mixture, xα = nα0/n0 (α=A,B), and xA, xB are related to the
reaction heat through the mass action law (7). Accordingly, the forward chemical
reaction reaction is exothermic if xA < 0.5, whereas it is endothermic if xA > 0.5.

After some algebraic manipulation, the system of equations (20–23) is reduced to
two differential equations for the bulk velocity of species A and B as

A1
d4vA
dx′4 + B1

d2vA
dx′2 + C1vA = 0, A2

d4vB
dx′4 + B2

d2vB
dx′2 + C2vB = 0 (25)

where Ai, Bi, Ci, for i = 1, 2, are known coefficients depending on the transport
coefficients and equilibrium quantities as follows
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A1=−λ

(
iT0
ω

+ 4η

3kBn0

)
,

B1= 5

2
kBn0T0−2iηω− ρ0

kBn0
iλω + kBn0T0

xA
κT + E�0

xAxBT0

(
iT0
ω

+ 4η

3kBn0

)
κT , (26)

C1= 3

2
ρ0ω

2 + E�0

xAD
+ E�0

xAxBT0

ρ0

kBn0
iωκT ,

and

A2=A1,

B2= 5

2
kBn0T0−2iηω− ρ0

kBn0
iλω − kBn0T0

xB
κT + E�0

xAxBT0

(
iT0
ω

+ 4η

3kBn0

)
κT , (27)

C2= 3

2
ρ0ω

2 − E�0

xBD
+ E�0

xAxBT0

ρ0

kBn0
iωκT .

For convenience, the equations given by (25) are written in a dimensionless form
by referring them to the dimensionless x-coordinate (9) and by introducing the fol-
lowing dimensionless macroscopic fields

n∗ = n

n0

vm
U

, n∗
α = nα

n0

vm
U

, v∗ = v

U
, (28)

v∗
α = vα

U
, T ∗ = T

T0

vm
U

, P∗
xx = Pxx

P0

vm
U

. (29)

Such fields measure the deviation of the macroscopic fields introduced in (6)
with respect to corresponding equilibrium values. Furthermore, the dimensionless
transport coefficients are introduced as

η∗ = η

ηI
, λ∗ = λ

λI
, D∗ = D

DI
, (30)

where ηI , λI , DI are the first-order approximation to the coefficients of shear viscos-
ity, thermal conductivity and diffusion of an inert gas of hard-spheres with diameter
d , given by (see, again, paper [24])

ηI = 5

16

1

d2

√
mkBT0

π
, λI = 75

64

kB
d2

√
kBT0
πm

, DI = 177

464

1

n0d2

√
kBT0
πm

. (31)

Table1 shows the values of the transport coefficients in the reactive mixture,
for different values of the dimensionless activation energy ε∗= εf /kBT0 and molar
fraction xA specifying the exothermic (xA < 0.5) or endothermic (xA > 0.5) character
of the forward reaction. Observe that high values of the activation energy mean that
the energy barrier that the particles must overcome in order to react chemically is
to high, so that only few particles react chemically. In particular, the case ε∗ = 20
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Table 1 Dimensionless transport coefficients for different values of the forward activation energy
ε∗ and reactants molar fraction xA. The data is obtained with the results derived in paper [24]

ε∗ xA D∗ η∗ λ∗ κT

2 0.1 0.9843 0.9800 0.9674 0.0077

0.3 0.9462 0.9039 0.8904 0.0225

0.7 0.7301 0.7814 0.7308 −0.1088

0.9 0.5136 0.7309 0.4559 −0.2671

5 0.1 0.9994 0.9979 0.9973 0.0004

0.3 0.9979 0.9872 0.9863 0.0012

0.7 0.9865 0.9573 0.9529 −0.0065

0.9 0.9318 0.9845 0.9027 −0.0305

10 0.1 0.9999 0.9999 0.9999 0

0.3 0.9999 0.9998 0.9998 0

0.7 0.9999 0.9991 0.9990 0

0.9 0.9997 0.9987 0.9984 −0.0002

20 0.1 0.9999 0.9999 0.9999 0

0.3 0.9999 0.9999 0.9999 0

0.7 0.9999 0.9999 0.9999 0

0.9 0.9999 0.9999 0.9999 0

represents a limiting situation of this type inwhich the effects of the chemical reaction
becomes almost negligible and the values of the dimensionless transport coefficients
D∗, η∗, λ∗ approach the unity and κT vanishes, as shown in Table1.

We also specify the effective mean free time τ between successive molecular
collisions and introduce both the exponential factor Δ of the Arrhenius law and the
dimensionless reaction heat E , given by

τ = 4

5

ηI

kBn0T0
, Δ = x2As

2 exp

(
− εf

kBT0

)
, E = E

kBT0
. (32)

Therefore, the dimensionless equations read

A′
1
d4v∗

A

dx4
+ B′

1
d2v∗

A

dx2
+ C ′

1v
∗
A = 0, A′

2
d4v∗

B

dx4
+ B′

2
d2v∗

B

dx2
+ C ′

2v
∗
B = 0 (33)

where
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A′
1 = −25

32
iθλ∗ − 125

96
θ2λ∗η∗,

B′
1 = 5

6
− 5

6
iθη∗ − 25

16
iθλ∗ + 1

3xA
κT − E ∗Δ

3xAxB

(
i

θ
+ 5

3
η∗

)
, (34)

C ′
1 = 1 − 232

531

EΔ

xAθ2D∗ − 2

3
i
EΔ

xAxBθ
κT ,

and

A′
2 = A′

1,

B′
2 = 5

6
− 5

6
iθη∗ − 25

16
iθλ∗ − 1

3xB
κT − E ∗Δ

3xAxB

(
i

θ
+ 5

3
η∗

)
, (35)

C ′
2 = 1 + 232

531

EΔ

xBθ2D∗ − 2

3
i
EΔ

xAxBθ
κT .

The analytic solutions of the equations given by (33) are

v∗
A(x) = a1e

ik1Ax + b1e
−ik1Ax + c1e

ik2Ax + d1e
−ik2Ax,

v∗
B(x) = a2e

ik1Bx + b2e
−ik1Bx + c2e

ik2Bx + d2e
−ik2Bx,

(36)

where the complex wave numbers k1A, k2A, k1B and k2B read

k1A =

√√
√√B′

1 −
√
B′2
1 − 4A′

1C
′
1

2A′
1

, k2A =

√√
√√B′

1 +
√
B′2
1 − 4A′

1C
′
1

2A′
1

, (37)

k1B =

√√√√B′
2 −

√
B′2
2 − 4A′

2C
′
2

2A′
2

, k2B =

√√√√B′
2 +

√
B′2
2 − 4A′

2C
′
2

2A′
2

. (38)

The constants aj, bj, cj and dj (j = 1, 2) are determined via the set of algebraic
equations obtained from the boundary conditions (10) and (11). Note that, since v∗

A
and v∗

B are known from (36), (37 and 38), all the other moments (28–29) of the
mixture can be obtained from the set of linearized balance equations (20–23). In
particular, the temperatures T ∗

A and T ∗
B , whose expressions are used in the boundary

condition (11), are written as follows

T ∗
A = t11

dv∗
A

dx
+ t12

d3v∗
A

dx3
, T ∗

B = t21
dv∗

B

dx
+ t22

d3v∗
B

dx3
, (39)

where
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t11 = −2

3

iEΔ

xAxBθξ

(
1 − 2iΔ

xBθ

)
+ 2

3

EΔ

xBθ
− 25

8
λ∗θ − 59

58

D∗κ2
T θ

xAxB
− 2

3
i ,

t12 = 59

116

iD∗κT θ

xAxB

(
1

ξ
− 2iΔ

xBθξ
+ixA+iκT + 5

3
κTη∗θ

)
− 25

16
λ∗θ

(
1− 5

3
iη∗θ

)
,

t21 = −4

3

iEΔ2

xAx2Bθ
2ξ

+ 2

3

EΔ

xBθ
− 25

8
λ∗θ − 59

58

D∗κ2
T θ

xAxB
− 2

3
i ,

t22 = 59

116

iD∗κT θ

xAxB

(
1

ξ
− 2iΔ

xBθξ
+ixA+iκT + 5

3
κTη∗θ

)
− 25

16
λ∗θ

(
1− 5

3
iη∗θ

)
.

Here, we have introduced the notation ξ = i + 2Δ

xAxBθ
.

6 Results and Discussion

Usually, in acoustics, the quantity measured in experiments is the pressure difference
in the direction of sound propagation, P∗

xx in our notation. The attenuation coefficient
and phase speed are then determined by using the experimental data measured at the
receptor. In the context of a chemically reactive mixture, the temperature deviation
from equilibrium, T ∗ in our notation, is another important indicator of the effects
induced by the chemical reaction.

Therefore, we use the solution obtained in the previous section to determine the
amplitudes and phases of the macroscopic fields and focus our attention on the
pressure difference P∗

xx and temperature deviation T ∗.
Since such quantities are complex, they can be represented in the form

P∗
xx(x) = AP(x) exp

[
iϕP(x)

]
, T ∗(x) = AT (x) exp

[
iϕT (x)

]
, (40)

where AP(x), AT (x) are the amplitudes and ϕP(x), ϕT (x) are the corresponding
phases. These amplitudes and phases give a measure of the deviation of the macro-
scopic properties of the gas mixture from the corresponding values in equilibrium.
They were calculated as functions of the rarefaction δ and oscillation θ parame-
ters, the molar fraction xA of the reactants and activation energy εf of the chemical
reaction.

Figures1 and 2 show the profiles of the amplitude and phase of the pressure
difference P∗

xx when xA = 0.3 (exothermic reaction), δ = 10 and θ = 0.1, θ = 0.01.
Figures3 and 4 show the profiles of the amplitude and phase of the temperature
deviation T ∗ when xA = 0.3 (exothermic reaction), δ = 10 and θ = 0.1, θ = 0.01.

Figures5, 6, 7 and 8 show the same quantities P∗
xx and T ∗ for the endothermic

reaction corresponding to xA = 0.7.
Note that, since L = δθ is the distance between the source and receptor, the sit-

uations considered in the figures correspond to a variation in the distance between
the plates. Therefore, to analyse how the distance between the plates influence the
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Fig. 1 Amplitude (left) and phase (right) of the pressure difference P∗
xx when the exothermic

reaction dominates (xA = 0.3), for δ = 10 and θ = 0.1

amplitude and phase of P∗
xx and T

∗, we can compare the plots given in Figs. 1 and 2,
3 and 4, 5 and 6, 7 and 8, respectively. As one can see from the figures, the closer
the receptor, the larger the influence of the reflected waves from the receptor on the
properties of the gas flow, as expected, since the sound waves are less attenuated
when the distance between the plates is smaller. This feature is observed for both
exothermic (Figs. 1, 2, 3 and 4) and endothermic (Figs. 5, 6, 7 and 8) reactions.

Moreover, in the limit of high activation energy, ε∗ = 10, the mixture tends to a
non-reactive configuration, so that the effects of the chemical reaction on the macro-
scopic properties of the mixture can be inferred by comparing the profiles for ε∗ = 2,
ε∗ = 5 with those for ε∗ = 10. We can see that only in the situation ε∗ = 2, the pro-
files of the plotted quantities are significantly different from those corresponding to
a non-reactive gas. These results should be analysed together with the values of the
transport coefficients presented in Table1. Accordingly, we can see that, regarding
the influence of the chemical reaction on the solution of the problem, such influence
is rather significant when also the transport coefficients show a larger deviation from
the corresponding values in the inert mixture, that is, when the dimensionless values
shown in Table1 are not so close to the unity.

Another aspect that can be recognizable from the figures is that the amplitudes
and phases of P∗

xx and T ∗ are larger when the reaction is endothermic (Figs. 5, 6, 7
and 8). This behaviour is in agreement with the results obtained in Refs. [3, 15], in
the sense that, in Refs. [3, 15], it is shown that, for low oscillation frequencies, the
attenuation of the sound waves are smaller for the endothermic reaction than for the
exothermic one.

Observe that, combining the results shown in Figs. 1, 2, 3, 4, 5, 6, 7 and 8 with
the values of the transport coefficients presented in Table1, we can infer that the
transport coefficients also contribute to increase the amplitudes and phases of P∗

xx
and T ∗ when the reaction is endothermic, since Table1 shows that the deviation of
the reactive transport coefficients from the corresponding inert values is larger for
the endothermic reaction than for the exothermic one.
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endothermic reaction dominates (xA = 0.7), for δ = 10 and θ = 0.01

7 Final Remarks and Future Plans

In this paper we have analysed the sound wave propagation through a binary mixture
undergoing a reversible chemical reaction of symmetric type. The mixture is con-
fined between two flat, infinite and parallel plates, one of them is stationary whereas
the other one oscillates harmonically in time and constitutes an emanating source of
soundwaves that propagate in themixture. Themathematical problemwas studied in
the low frequency regime, using the Navier-Stokes equations with chemically reac-
tion rate derived from the kinetic theory of reactive mixtures, assuming temperature
jump and velocity impenetrable conditions at both plates.

The main objective of our study was to investigate the influence of the chemical
reaction on the properties of interest in the considered problem and how the sound
waves reflected from the receptor influence the solution of the problem when the
distance between both plates is varying and when the dominant chemical reaction is
of exothermic or endothermic type.

To the best of our knowledge, similar sound wave propagation problems have
been studied only in the context of non-reactive systems, and no results are known
for chemically reactive mixtures and, thus, our analysis in this paper gives the first
contribution in this direction. However, the presence of the chemical reaction, com-
bined with the type of boundary conditions, brings additional complexities in the
sound wave propagation problem, and we have introduced a simplified assumption
for what concerns the temperature jump coefficient appearing in the boundary con-
ditions, as it was explained and motivated in the Introduction.

In our opinion, this simplification is not so restrictive in the context of the present
problem, however, if we consider a general mixture with a more complex chem-
ical reaction, the temperature jump coefficient should be determined resorting to
an appropriate model of the kinetic theory for chemically reactive mixtures. This
development is the subject of a future work.
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