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Abstract. Modern Elbrus-4S and Elbrus-8S processors provide a level
of floating-point performance close to that of widespread x86 64 CPUs
that are predominantly used in high-performance computing (HPC). The
uniqueness of the software ecosystem of Elbrus processors requires special
attention in the case of their deployment for execution of mainstream
computational codes. In this paper, we consider the performance of one
widely used code for computational materials science (VASP), as well as
FFT libraries. The results for the Elbrus processors are embedded into
the context of performance of modern x86 64 CPUs.
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1 Introduction

A large share of HPC resources installed during the last decade is based on
Intel CPUs. However, the situation is gradually changing. In March 2017, AMD
released the first processors based on the novel x86 64 architecture, called Zen. In
November 2017, Cavium presented the server-grade 64-bit ThunderX2 ARMv8
CPUs, which are to be deployed in new Cray supercomputers. The Elbrus micro-
processors stand among the emerging types of high-performance CPU architec-
tures [1,2].

The diversity of CPU types significantly complicates the choice of the best
variant for a particular HPC system. The main criterion is certainly the time-to-
solution of a given computational task or a set of different tasks, which represents
the envisaged workload of a system under development.
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Computational materials science provides an essential part of the deploy-
ment time of HPC resources worldwide. The VASP code [3–6] is among the most
popular programs for electronic structure calculations. It makes it possible to
calculate materials properties using non-empirical (so called ab initio) methods.
Ab initio calculation methods based on quantum mechanics are important mod-
ern scientific tools (see, e.g., [7–11]). According to recent estimates, VASP alone
consumes from 15 to 20% of the world’s supercomputing power [12,13]. Such
an unprecedented popularity has led to a special attention directed towards the
optimization of VASP for both existing and novel computer architectures (see,
e.g., [14]).

The computation of Fourier transforms accounts for a significant part of the
calculation time in software packages for computational materials science. One
of the most time consuming components in VASP is 3D-FFT [15]. FFT libraries
were tested on the Elbrus processor in order to determine the most optimal
tool for computing fast Fourier transforms. The EML library, developed by the
manufacturer of the Elbrus processor, and the most popular FFTW library are
under consideration.

In this work, we present an efficiency analysis of Elbrus CPUs compared with
Intel Xeon Haswell CPUs, using a typical VASP workload example. Here we also
give the results of the test of FFT libraries on Elbrus processors.

2 Related Work

HPC systems are notorious for operating at a small fraction of their peak per-
formance. The deployment of multi-core and multi-socket compute nodes fur-
ther complicates performance optimization. Many attempts have been made to
develop a more or less universal framework for algorithm optimization that takes
into account essential properties of the hardware (see, e.g., [16–18]). The recent
work of Stanisic et al. [19] emphasizes many pitfalls encountered while trying to
characterize both the network and the memory performance of modern machines.

A fast Fourier transform is used in computational modeling programs for
calculations related to quantum computations, Coulomb systems, etc., and takes
a significant part of the program’s running time [20], especially in the case of
VASP [15]. A detailed optimization of the computation of 3D-FFT in VASP to
prepare the code for an efficient execution on multi- and many-core CPUs as
Intel’s Xeon Phi is considered in [15]. In this article, the threading performance
of the widely used FFTW library (Cray LibSci) and Intel’s MKL on the Cray-
XC40 with Intel Haswell CPUs and the modern Cray-XC30 Xeon Phi (Knights
Corner, KNC) system is evaluated. Recently, several 64-bit x86 64 and Armv8
CPUs have been compared using a VASP benchmark test with the focus on the
memory bandwidth [21,22].

At the moment, Elbrus processors are ready for use [1,2], so we decided to
benchmark them using one of the main HPC tools applied in materials science
studies (VASP) and the library that determines the performance of this code
(FFT). The architecture of the Elbrus processors [1,2] allows us to expect that,
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during the execution of the FFT, the butterfly computation occurs in a smaller
number of cycles than it does on such CPUs as Intel’s Xeon Phi.
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Fig. 1. Dependence between the first iteration time in the liquid-Si model test and the
number of cores per socket

3 Methods and Software Implementation

3.1 Test Model in VASP

VASP 5.4.1 is compiled for Intel systems using Intel Fortran, Intel MPI and
linked with Intel MKL for BLAS, LAPACK and FFT calls. For the Elbrus-8S
system, lfortran compatible with gfortran ver.4.8 is used together with MPICH,
EML BLAS, Netlib LAPACK and FFTW libraries.

Our test model in VASP represents a liquid-Si system consisting of 48 atoms
in the supercell. The Perdew–Burke–Ernzerhof model for the xc-functional is
used. The calculation protocol corresponds to molecular dynamics. We use the
first iteration time of the electron density optimization τiter as the target param-
eter of the performance metric.

The τiter values considered in this work range from 5 to 50 s approximately
and correspond to a single CPU performance. At the first glance, these times are
not sufficiently long to be accelerated. However, ab initio molecular dynamics
usually requires 104 to 105 time steps and larger system sizes. That is why
decreasing τiter by several orders of magnitude is an actual problem for modern
HPC systems targeted at materials science computing.
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Fig. 2. Dependence between the first iteration time in the liquid-Si model test and the
number of cores per socket, for reduced parameters Rpeakτiter and balance B (Rpeak

is the total peak performance of all the cores used; the balance B corresponds to the
total bandwidth for a single/dual-socket server)

The choice of a particular test model has a certain influence on the bench-
marking results. However, our preliminary tests of other VASP models show that
the main conclusions of this study do not depend significantly on a particular
model.

3.2 Fast Fourier Transform

FFTW 3.3.6 is compiled using lcc, the analogue of gcc for Elbrus systems. As
an input array for the Fourier transforms, a sinusoidal signal, white, pink and
brown noise are used. In this article, we report the results for white noise.

The usual pattern when calling FFT (or MKL through its FFTW interface)
is as follows:

1. Preparation stage: creates plans for FFT computations, e.g., via fftw plan
p=fftw plan dft(..) for FFTW, and via eml Signal FFTInit(...) for
EML.

2. Execution stage: performs FFT computations using the plan created, e.g., via
fftw execute dft(p,in,out) for FFTW, and via eml Signal FFTFwd(...)
for EML.

3. Clean up.

We consider the work of the first two stages as they are the most time con-
suming. Preparation takes the main time when one starts the Fourier transform
once for a fixed size of the input array. When the Fourier transform is repeatedly
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started, the running time of the program can determine the execution time of
the Fourier transform itself.

So, for these two stages, we compare the FFTW and EML libraries on the
processors Elbrus-4S and Elbrus 8S. For the moment, the EML library has fewer
useful functions than the FFTW library. In particular, the size of the input
array can only be a power of two, so the preparation stage has to be partially
implemented by the user. The number of functions in the EML library is much
smaller than that in the FFTW library.

Plan creation with FFTW can be done by planner schemes that
differ in their costs: FFTW ESTIMATE (cheap), FFTW MEASURE (expensive),
FFTW PATIENT (more expensive) and FFTW EXHAUSTIVE (most expensive). Except
for FFTW ESTIMATE , plan creation involves testing different FFT algorithms
together with runtime measurements to achieve the best performance on
the target platform. On servers with Elbrus-4S and Elbrus-8S processors,
the authors, owing to lack of libraries, managed to compile FFTW only in
FFTW ESTIMATE mode, in which the preparation time is short and the execu-
tion time is long.

To average the operating time values and obtain the dispersion of the results,
calculations were repeated 30 to 1000 times. The dispersion of the results was
within 1%, and sometimes did not exceed 0.001%.

4 Results and Discussion

4.1 VASP Benchmark on Elbrus-8S and Xeon Haswell CPUs

VASP is known to be both a memory-bound and a compute-bound code [14].
Figure 1 shows the results of the liquid-Si model test runs.

Performance comparison of different CPUs usually resembles a comparison of
“apples and oranges”. To compare CPUs with different frequencies and different
peak Flops/cycle values, it is better to use the reduced parameter Rpeakτiter
[7,23].

Another reduced parameter that characterizes the memory subsystem is the
so-called balance B, which is the ratio of Rpeak to the CPU memory bandwidth
(in this work, we measure the latter quantity using the STREAM benchmark).

Figure 2 shows the same data as Fig. 1 but in reduced coordinates. This allows
to eliminate the differences in floating-point performance and memory band-
width between dissimilar CPU cores. In these reduced coordinates, the scatter
of data points is much smaller, and there is an evident common trend.

The test model considered fixes the total number of arithmetic operations
(Flops) required for its solution. An increase in Rpeakτiter (that is proportional
to the number of CPU cycles) leads to an increase in overhead due to the limited
memory bandwidth. More CPU cycles are required for the CPU cores involved
in computations to get data from DRAM.

We calculated the number of floating-point operations that corresponds to
τiter. We used a system with Intel Core i7 640UM CPU. This CPU does not
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support AVX instructions and the performance counters work unambiguously.
The resulting value of NFP = 76 GFlops is shown in Fig. 2 as a dashed-dotted
horizontal line. The ratio Rpeakτiter/NFP indicates the overhead of CPU cycles
that are not deployed for computations because the required data from DRAM
are not available. We should notice that the overall trend in Fig. 2 corresponds
quite well to the limiting case Rpeakτiter → NFP when B → 0.

4.2 Fast Fourier Transform on Elbrus CPUs: EML vs. FFTW

We split the Fourier transformation process into two stages: the preparation
of the algorithm (Figs. 3, 4, 5 and 6), and the execution of the transformation
(Figs. 7, 8, 9 and 10). The preparation takes the main amount of time when one
starts the Fourier transform once. The algorithm execution time can determine
the total running time of the Fourier transform in situations when the Fourier
transform is started many times for a fixed size of the input array.

Fig. 3. Dependence between the FFT preparation time and the size of the input array,
for Elbrus-4S

The preparation time of the FFT algorithm for Elbrus-4S appears to be an
order of magnitude smaller when using the EML library than it is when using
FFTW, for array sizes smaller than 215 (Figs. 3 and 4). For larger array sizes, the
preparation time is only 2 to 3 times smaller with EML than it is with FFTW.
All points have an error less than 1%. As Figs. 5 and 6 show, the difference in
preparation time is even greater for the Elbrus-8S. For array sizes smaller than
215, the preparation time when using EML is 10 to 20 times less than it is when
using FFTW. For larger array sizes (up to 217), the preparation time when using
EML is 50 to 90 times less than it is in the case of FFTW.
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Fig. 4. Dependence between the ratio of FFT preparation time with FFTW to that
with EML and the size of the input array, for Elbrus-4S

We can thus make an interim summary: single launches of the FFT on Elbrus-
4S and Elbrus-8S are more efficient when using the EML library because the
preparation of the FFT algorithm when using EML is faster (2 to 20 times for
Elbrus-4S, and 10 to 90 times for Elbrus-8S) than it is when using FFTW.

And now we consider the second stage of the FFT implementation, namely
the execution of the algorithm. The execution stage of the algorithm takes from
one to several orders of magnitude less time than its preparation stage, so it
has a significant effect only if the algorithm is run multiple times after a single
preparation. This often happens when we need to execute an FFT on a set of
arrays of the same size.

For array sizes less than 211, the execution time of the FFT algorithm using
EML turns out to be from 1 to 10 times greater than it is when using FTTW
(Figs. 9 and 10). For larger array sizes, the situation reverses, and the ratio of
the execution time with FFTW to that with EML increases from 1 to 6 for
array sizes between 214 and 222. Figures 9 and 10 show that the difference in
preparation time is smaller for the Elbrus-8S than for the Elbrus-4S. For arrays
smaller than 212, the execution time when using EML is close to that when using
FFTW. For larger arrays (up to 218), the ratio of execution time with FFTW
to that with EML ranges from 1.4 to 1.9.

On Elbrus-4S, multiple starts (more than 1000) of FFT for small arrays (less
than 211) are more efficient when using FFTW than they are when using EML.
On Elbrus-4S, the execution time when using FFTW is 1 to 10 times faster than
it is when using the EML library. On Elbrus-8S, FFT for arrays of almost all
sizes is more efficient when using the EML library, but the ratio of the execution
time for FFTW to that for EML is less than 2.
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Fig. 5. Dependence between the FFT preparation time and the size of the input array,
for Elbrus-8S

Fig. 6. Dependence between the ratio of FFT preparation time with FFTW to that
with EML and the size of the input array, for Elbrus-8S
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Fig. 7. Dependence between the FFT execution time and the size of the input array,
for Elbrus-4S

Fig. 8. Dependence between the ratio of FFT execution time with FFTW to that with
EML and the size of the input array, for Elbrus-4S
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Fig. 9. Dependence between the FFT execution time and the size of the input array,
for Elbrus-8S

Fig. 10. Dependence between the ratio of FFT execution time with FFTW to that
with EML and the size of the input array, for Elbrus-8S

5 Conclusions

We performed test calculations for the VASP model on Intel Xeon Haswell and
Elbrus-8S CPUs with the best choice of mathematical libraries available. Elbrus-
8S shows larger time-to-solution values, but there is not a large gap between the
Elbrus-8S performance and that of Xeon Haswell CPUs. The major target for
optimization, which could significantly speed up VASP on Elbrus-8S, is the FFT
library.
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We tested the native EML library and an unoptimized FFTW library on the
Elbrus-4S and Elbrus-8S processors. Single launches of the FFT on both Elbrus-
4S and Elbrus-8S are more efficient when using the EML library. Nevertheless,
for small arrays (less than 4000), multiple starts (more than 1 000) of FFT are
more efficient with FFTW than they are with EML. On Elbrus-8S, FFT for
arrays of any sizes is more efficient when running with the EML library.
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