
Role-Dependent Resource Utilization
Analysis for Large HPC Centers

Dmitry Nikitenko(B) , Pavel Shvets , Vadim Voevodin ,
and Sergey Zhumatiy

Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
{dan,shpavel,vadim,voevodin}@parallel.ru

Abstract. The resource utilization analysis of HPC systems can be per-
formed in different ways. The method of analysis is selected depending
primarily on the original focus of research. It can be a particular applica-
tion and/or a series of application run analyses, a selected partition or a
whole supercomputer system utilization study, a research on peculiarities
of workgroup collaboration, and so on. The larger an HPC center is, the
more diverse are the scenarios and user roles that arise. In this paper, we
share the results of our research on possible roles and scenarios, as well
as typical methods of resource utilization analysis for each role and sce-
nario. The results obtained in this research have served as the basis for
the development of appropriate modules in the Octoshell management
system, which is used by all users of the largest HPC center in Russia,
at Lomonosov Moscow State University.

Keywords: HPC center management
Application efficiency analysis · User roles · Analysis scenarios
Supercomputer

1 Introduction

1.1 The Variety of Resource Utilization Analysis Levels

Nowadays, the issue of computing resource utilization efficiency is a very hot
topic. There are many points of view and research subjects that fit into this
issue, such as workload efficiency, power consumption, and others. The most
interesting thing is that all these aspects effect efficiency, and one has to take
into consideration many of them at a time to gain a realistic overall picture.
Moreover, there are many different levels of efficiency analysis, especially when

The results were obtained at the Research Computing Center of Lomonosov Moscow
State University. The work was partially funded by the Russian Foundation for
Basic Research (grant № 17-07-00719), and with financial support from the Russian
Science Foundation (grant № 17-71-20114) in the part of the program implementation
described in Sect. 4. The research was carried out on equipment of the shared research
facilities of HPC resources at Lomonosov Moscow State University.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 47–61, 2018.
https://doi.org/10.1007/978-3-319-99673-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_4&domain=pdf
http://orcid.org/0000-0002-2864-7995
http://orcid.org/0000-0001-9431-9490
http://orcid.org/0000-0003-1897-1828
http://orcid.org/0000-0001-5770-3071


48 D. Nikitenko et al.

one considers HPC and distributed computing. For instance, we can define four
levels of computing resources.

First, at the top of the pyramid, a supercomputer center administration is
interested in global figures and resource utilization rates with almost no need
to go through all the messy details of thousands of applications. At the same
time, it is natural at this level of observation to have an interest in comparing
workload with resource utilization rates of supercomputers available at an HPC
center.

Second, a close level is one at which one studies resource utilization and
workload for a specific system. No system holder is interested in wasting costly
resources for the whole system and for each system partition.

Third, at this point levels stop being mapped to any specific part of the HPC
system. This is the level of research projects. Every research project can have a
number of participants that run jobs on some or all HPC center computers. Of
course, both system holder and project member are interested in details of the
project resource utilization, at least to fit into the granted amount of resources
for the project.

The last but not the least is the level of application run. Every job is inter-
esting because it has en effect both on the whole HPC center resource utilization
profile and on its own job efficiency, as it can significantly bring closer or delay
the obtention of the result.

The set of these levels or layers can be extended to a more complicated hier-
archy, but even at this point we can see obviously different scopes of interest with
personalized accents on some specific system utilization parameters. Moreover,
every level requires its own access permissions, so we see different roles of users
at each level of abstraction.

As soon as we speak about resource utilization, one of the most common
techniques of getting all required information is system monitoring. There is a
diversity of various monitoring systems that are focused on specific targets. In
this paper, we keep to the tools that have been developed or adopted and widely
used in our practice at Lomonosov Moscow State University HPC center.

1.2 The Paper Structure

The “Background” section describes the current state at MSU regarding the
paper topic, which served as the basis for the research. The next section, “The
Proposed Approach Principles”, provides a description of selected key roles and
scenarios of resource utilization study. The “Implementation” section provides
technical solution details. The “Evaluation” section describes our experience in
using the methods developed during our research. The “Conclusions” section
lists further steps of research and development. The “References” section ends
the paper.



Role-Dependent Resource Utilization Analysis for HPC Centers 49

2 Background

Understanding resource utilization profiles regarding both machines and research
projects has always been an element of primary importance at every HPC cen-
ter [1]. The larger the HPC center is, the more important that element is. This
has always been a hot topic for the Lomonosov State University HPC center as
the largest of this kind in Russia [2].

There is an impressive number of various approaches to performance and
efficiency analysis for HPC applications [3–7]. Nonetheless, the peculiarities of
running a large academic supercomputing center drove MSU to develop a set of
mutually reinforcing and complimentary tools and methodologies. Every part of
this toolkit has originally been developed as an open-source tool. Figure 1 gives
a short overview of the tools hierarchy.

Fig. 1. JobDigest and OctoShell system as a part of the MSU HPC center toolkit
(Color figure online)

The work described in this paper extends the interaction of JobDigest [8,9], a
detailed application analysis tool, with Octoshell [10,11], a general management
system. These two blocks are shown enclosed in dashed red boxes in Fig. 1.

The JobDigest1 approach provides details on resource utilization for every
application. This can be done in various ways [12,13], but generally the JobDi-
gest reports can also be superfluous and some extra lightweight forms, the mini

1 JobDigest� is a Russian registered trademark. An application for the creation of
the JobDigest approach was filed and the corresponding patent was granted.



50 D. Nikitenko et al.

JobDigest reports, may be required. JobDigest was originally developed as a pre-
cise tool that can be used both by experienced users and by beginners, by users
and by administrators. Nevertheless, the important issue of private and business
data isolation from third party or unauthorized users has not been thoroughly
studied yet.

As a result, this analysis tool, though perfect at its main objective, really
needs to implement access privilege techniques for sharing collected data for jobs,
systems and components between authorized users only, and the development of
mini JobDigest is required for quick job reviews.

At this point, the authors are quite happy with having Octoshell, a modular
management system, at their disposal. This system was originally developed to
serve as a connecting link between managed objects of totally different kinds:
accounts, users, projects, quotas, and so on. Notably, a set of user roles are
present in the system basics.

These facts are a good basis for the development of a special OctoShell mod-
ule that would take advantage of existing roles and authorization mechanisms of
the OctoShell system and grant access to projects logics. Such a module would
be aimed at encapsulating JobDigest reports in all forms, securing access to
sensitive user, project or application data, as well as providing a user-friendly
interface to the available resource utilization submodules for every user of the
center according to the access level regarding the specified level of observation.

3 The Proposed Approach Principles

One of the first, and most important questions that should be answered in the
very beginning of development is who is going to use the proposed services and
what typical scenarios of usage can every type of user go through.

Actually, the main contribution of the paper is the way we combine these
two things. From one side, there is a set of typical user role definitions. On the
opposite side, there are typical scenarios and usage cases that are often encoun-
tered in resource utilization studies based on system monitoring and resource
management data.

3.1 Levels of Analysis

As it has already been mentioned in the introduction, we can go down from the
level of overall system observation to the level of detailed job analysis.

Here we emphasize the following levels of abstraction and observation:

1. Overall job run states.
2. Integral job characteristics.
3. Detailed job information.
4. Heuristics and ML-based reports.
5. HW/SW failure influence.
6. Other custom levels.



Role-Dependent Resource Utilization Analysis for HPC Centers 51

Overall Job Run States. Overall job run statistics is the top level of abstrac-
tion, which represents the actual resource utilization by the whole system or its
part for a specified period of time. In our opinion, it is reasonable to limit the
bottom of this level to the system partition level. The log files of most resource
managers allow for grouping finished and running jobs into categories by job
state and, what is more, for summarizing utilized CPU or core hours. System
monitoring integration allows calculating sums for any other resource amounts
utilized and/or granted. So, in a very similar way, one can observe the distribu-
tion of jobs according to their states and utilized resources for every partition,
system or the whole HPC center.

It is quite useful to have an option to quickly jump to more detailed infor-
mation for specified partition jobs, or even for jobs with a certain state, say,
“TIMEOUT”. In other words, an option to go deeper into details, going down
to the next level of observation.

Integral Job Characteristics. At the integral job characteristics level, one
starts seeing the details of jobs. At his step, job details are presented as basic
information from the resource manager, supplied with average rates of dynamic
job characteristics, such as CPU user, load average, etc., and tags for every
job. Integral job characteristics can be highlighted according to some rules or
thresholds. At this step, the user can see all the available jobs with easy-to-
understand general job information: was it resourceful in terms of memory, CPU
or GPU usage, did it finish normally, and so on.

This step is obviously expected to have a possibility to proceed to the details
of a chosen job. The detailed job information is the next to the bottom level of
abstraction.

Detailed Job Information. Detailed job information can be provided in var-
ious ways. The most natural for us is the JobDigest approach. The JobDigest
reports provide basic job information received from the resource manager and
dynamical job characteristics from the monitoring system, in the form of heat
maps, diagrams or raw data for export and further analysis. It also provides
tags for every job, i.e. some automatically (and/or manually) assigned categories
based on thresholds or more complicated rules.

The problem is that such a report sometimes is redundant, that is why we
have introduced the lightweight version containing no diagrams but showing all
important information: the so-called mini Job Digest. It is specially designed to
be provided to every user of the HPC center, and for every job. If required, it
can also contain unique links to the full JobDigest report version.

Heuristics and ML-Based Information. Of course, thresholds are still of
a significant value to identify many categories of jobs, but recently a number
of methodologies have evolved that provide efficient methods for class revealing,
similarity study, and so on [14,15]. There is an interesting direction of research at



52 D. Nikitenko et al.

the MSU HPC center devoted to such techniques. It allows revealing anomalies
both in job profiles and in job queues [16].

Even though it does not have a user interface yet, the results obtained are
already quite promising and we expect a special module to appear and become
available soon.

HW/SW Failure Influence. It is quite natural that one of the root causes of
drop-downs in the efficiency of an HPC system and its applications are failures
of system hardware, such as interconnect interface, or software, such as problems
with schedulers. Sometimes, such problems are found and fixed almost immedi-
ately. Nevertheless, the influence of such factors can be on occasions critical for
the result or accuracy.

That is why we keep in mind a tool that would allow matching jobs with
known problems all over the system, based on resilience system logs. In our
case, the OctoTron system [17].

Other Custom Levels. As we realistically look at the problem, we understand
that we should support extending this set of levels with new ones as soon as it
is wanted and developed.

3.2 User Roles

Regular User. Actually, regular user is the most important role, just because
all these systems are originally designed to perform actions that allow achieving
real-life research goals by a scientist or an engineer. And that explains the scope
of interest of most users. Some regular users do not care much about efficiency
of applications, but if a user has some limitations like disk quota or limited
CPU time, that becomes critical as it can prevent from obtaining the results
in time or at all. Users who run their codes or packages regularly usually feel
more interested in the efficiency and execution time of the routines. Moreover,
most users still understand that efficient resource utilization is beneficial for
everybody: both for application owners and for system holders.

Anyway, the variety of users determines the scope covered by the analysis.
The important thing is to provide means to collaborate in job efficiency and

study overall stats regarding workgroup activity.
Another important task is to secure job-related data from being accessed by

any other regular user outside the workgroup. One can configure the system in
a way to limit job-detail access rights either to the set of jobs run by the owner
or to the set of jobs run by the workgroup which the user is a member of.

Project Manager. Project manager is almost a regular user with one key dif-
ference: responsibility for the workgroup actions, being the official representative
of the workgroup. So, in any case, it is quite natural for such role to have access
to all personal jobs and to job stats of the workgroup members. The main dif-
ference from the user is a more concentrated focus on overall statistics, as the



Role-Dependent Resource Utilization Analysis for HPC Centers 53

project manager is more concerned about keeping the project to the granted
amount of resources.

Administrator. Going to the other side, system administrators are originally
targeted at running HPC systems and helping users to overcome difficulties while
using these machines. That implies covering all possible levels of observation in
all possible combinations.

System holders or HPC center managers have almost the same rights that
administrators have, but like project managers are more focused on overall stats
on system usage, and certain workgroup or account activity.

Expert. There can be supervisors with some reduced scopes of analysis. For
example, a role that can be used for real-time open demonstrations of what
is going in the center right now, but only for some special events regarding a
selected workgroup or partition.

As for the MSU HPC center, we actively use the Expert role for annual
project expertise. This allows experts to see the job history and details only of
those sets of accounts that belong to the project that has been assigned to the
expert for review.

3.3 Jumps Between Levels of Analysis

The described levels of analysis, as noted, are interrelated. In order to develop
a more convenient and effective tool, we consider the following requirements for
quick links between levels.

– Jump from overall job run states to a list of jobs with more detailed, integral
characteristics for a selected set of logins (i.e. projects), for a certain state,
for a certain queue, for a certain system, or for combinations thereof.

– Jump from the list of jobs to a sublist of jobs (specification of the list of jobs
by tags, dates, etc.).

– Jump from the job list to detailed job info, mini JobDigest for a selected job
by its ID.

– Jump from a mini JobDigest to a full-format external JobDigest for a selected
job by its ID.

3.4 Functional Description of the Interface

We consider the following basic functional features for each one of the proposed
levels of the prototype.



54 D. Nikitenko et al.

Overall Job Run States. Purpose: granted resource-utilization rate assess-
ment by user applications and an estimation of conformity of resources utilization
to allocated limits.

Content: average and total amounts of CPUh, GPUh, disk usage for multiple
logins grouped by whole systems, partitions, job states.

Filtration: by system, by partition, by job states, by time interval, by project,
by login.

Features: job data access segregation: user (own logins), project manager
(own logins and managed projects’ logins), expert (logins of additional projects
assigned to an expert), administrator (all logins, all projects).

Additional features: comparison with allocated quotas for a project; compar-
ison with the same period preceding a displayed interval, quick jump to a job
list corresponding to the selected group (for example, all completed jobs or all
successfully completed jobs in a specified section).

Integral Job Characteristics (Job List). Purpose: qualitative assessment of
resource utilization by jobs, search for abnormal launches, comparison of appli-
cation runs.

Content: a list of jobs with characteristics and color markup.
Filtration: by system, by partition, by job states, by time interval, by project,

by login, by values range for each characteristic, by tags.
Features: job data access segregation: user (own logins), project manager

(own logins and managed projects’ logins), administrator (all logins, all projects).

Detailed Job Information. Purpose: qualitative assessment of resource uti-
lization by a job.

Content: reduced version of JobDigest: integrated characteristics and data
from the resource manager.

Features: job data access segregation: user (own logins), project manager
(own logins and managed projects’ logins), administrator (all logins, all projects).

Additional functions: unique link to the full JobDigest report.

4 Implementation

Let us now describe the technical implementation. All the tools are implemented
as a module of the OctoShell system, which allows using the built-in roles sepa-
ration mechanism, while users get access to a generally familiar interface, so as
to expect a more successful and frequent use of the development by the users.

All necessary data is stored locally in the system and is obtained from a
third-party tool operating in 24/7 mode, which builds a full-format JobDigest,
allocates categories, and so on. The Octoshell job service retrieves all data from
an external supercomputer job data storage and processing service.

Data access is performed using ORM technique, and Ruby on Rails web app
development framework is used. All general data are stored in a database table



Role-Dependent Resource Utilization Analysis for HPC Centers 55

with a structure as shown in Table 1. Fields id, login, start time, end time
are used for indexing. It allows to speed up the most common requests for user
job querying in a selected time interval.

Integral job characteristics are stored using three tables in the database.
The first table contains three fields: id, name, type. The name field holds the

name of the characteristic, and the type field its type (numeric or text). This
table is used to identify what kind of characteristics are available and what kind
of data they present.

Table 1. The structure of the general job information storage table

Attribute Description

id Entry ID

job id Job ID

login System user name

partition Supercomputer partition

account Accounting user name

submit time Submit time of the job

start time Start time of the job

end time End time of the job

timelimit Time limit of the job

job name Name of the job

state State of the job

priority Priority of the job

req cpus Number of requested cores

alloc cpus Number of allocated cores

nodelist List of allocated nodes

The other two tables have the same structure, as shown in Table 2.
Those two tables are used for storing actual integral characteristics data. The

only difference between them is the type of their value field.
The id and task id fields are used for indexing. To obtain the integral

characteristics for a task, one should query the characteristics metainfo from the
first table and query actual data from the corresponding characteristic table.

The service allows displaying the short version of the JobDigest with optional
access to the full JobDigest as an external service.

The structure of the short JobDigest is stored using a table similar to the
one described previously (id, name, type). That table stores the description of
the monitoring sensors used in JobDigest. Values are stored in a table with a
structure as show in Table 3.



56 D. Nikitenko et al.

Table 2. The structure of the job integral characteristics storage table

Attribute Description

id Entry ID

name Name of the characteristic

task id Job entry ID (see Table 1)

value Value

Table 3. The structure of the job dynamic characteristics storage table

Attribute Description

name Name of the characteristic

task id Job entry ID (see Table 1)

time Time

value Value

The id and task id fields are used for indexing. The access to the full Job-
Digest is granted with a unique URL which is stored as usual job characteristics
of text type.

The service allows using tags assigned to a job. Tags are stored in a table
with a structure as show in Table 4.

Table 4. The structure of the job tags storage table

Attribute Description

id Entry ID

name Tag name

task id Job entry ID (see Table 1)

All fields are used for indexing.
Updates are performed using external POST requests.
The first request is used to update general JSON information. If a job is not

present, then a new entry is added.
The second type of request inserts data about the integral characteristics

into the database, and the data is transmitted in the body of a POST request
in JSON format.



Role-Dependent Resource Utilization Analysis for HPC Centers 57

The third type of request inserts the tag data into the database, and the data
is sent in the body of a POST request in JSON format.

The fourth type of request adds to the database data about a series of changes
in the value of the sensor during job operation. The data is sent in the request
body in CSV format.

The overall system workflow is shown in Fig. 2.

Fig. 2. General OctoShell mini JobDigest DB workflow

5 Evaluation

The implemented prototype is available for users of the MSU HPC center. At
present, we are collecting feedback that should aid us in further approach elab-
orations. We hereby thank one of the workgroups at the MSU HPC center for
depicting the interface. All presented data correspond to real research [18,19].

Figure 3 illustrates the interface for the level of overall job run states. We
can see that the “Lomonosv-2” system was used by the project only during the
2017Q2. It is quite nice to see that users did really use the test partition for
testing. The majority of resources have been spent for successfully completed
jobs in the compute partition during the period.



58 D. Nikitenko et al.

Fig. 3. States of selected project jobs for a certain period of time with total resources
utilization example

Figure 4 provides the details for the compute partition run jobs. One can see
job IDs, allocated amount of resources, and actually spent CPU time. This list
can be easily enriched with general integral job characteristics, such as average
CPU user, Load Average, network usage, etc.

Figure 5 shows a prototype of the mini JobDigest tool. We can see all general
data on the job, including command line and node list. Note that we can also see
the average resource utilization rates highlighted with colors based on thresholds.
The job tag corresponding to the job category of jobs with poor cache data stats
has been imported also from the full size JobDigest report.

This type of short but informative report seems to be sufficient for most
regular users for an initial job analysis. Nevertheless, the set of characteristics
in such a brief report is subject to investigation and will be updated based on
users’ feedback.



Role-Dependent Resource Utilization Analysis for HPC Centers 59

Fig. 4. List of selected project jobs for a certain period of time in the specified section
with example of details

Fig. 5. Example of mini JobDigest report (Color figure online)



60 D. Nikitenko et al.

6 Conclusions

In the near future, our plans have a strong focus on usability for regular users.
At the same time, there are at least two levels of analysis to be added to the
prototype. The first is a machine-learning-based module for anomaly detection,
and the second is a role-sensitive situational screen based on earlier research,
known as OctoScreen or TentaView [20].

We would also like to encourage all interested HPC users to contact the
authors if additional implementation and functional details are required.

References

1. Voevodin, V., Voevodin, V.: Efficiency of exascale supercomputer centers and
supercomputing education. In: Gitler, I., Klapp, J. (eds.) ISUM 2015. CCIS, vol.
595, pp. 14–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32243-
8 2

2. Voevodin, V., et al.: Practice of “Lomonosov” supercomputer. Open Syst. J. 7,
36–39 (2012)

3. Gunter, D., Tierney, B., Jackson, K., Lee, J., Stoufer, M.: Dynamic monitoring
of high-performance distributed applications. In: Proceedings of the 11th IEEE
International Symposium on High Performance Distributed Computing, pp. 163–
170 (2002). https://doi.org/10.1109/hpdc.2002.1029915

4. Mellor-Crummey, J., Fowler, R.J., Marin, G., Tallent, N.: HPCVIEW: a tool for
top-down analysis of node performance. J. Supercomput. 23(1), 81–104 (2002).
https://doi.org/10.1023/A:1015789220266

5. Jagode, H., Dongarra, J., Alam, S., Vetter, J., Spear, W., Malony, A.D.: A holistic
approach for performance measurement and analysis for petascale applications.
In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2009. LNCS, vol. 5545, pp. 686–695. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01973-9 77

6. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurr. Comput.: Pract. Exper. J. 22(6), 685–701 (2009).
https://doi.org/10.1002/cpe.1553

7. Kluge, M., Hackenberg, D., Nagel, W.E.: Collecting distributed performance data
with dataheap: generating and exploiting a holistic system view. Procedia Comput.
Sci. J. 9, 1969–1978 (2012). https://doi.org/10.1016/j.procs.2012.04.215

8. Nikitenko, D., et al.: JobDigest - detailed system monitoring-based supercomputer
application behavior analysis. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017.
CCIS, vol. 793, pp. 516–529. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-71255-0 42

9. JobDigest components. https://github.com/srcc-msu/job statistics
10. Nikitenko, D., Voevodin, V., Zhumatiy, S.: Resolving frontier problems of mas-

tering large-scale supercomputer complexes. In: ACM International Conference on
Computing Frontiers (CF 2016), pp. 349–352. ACM, New York (2016). https://
doi.org/10.1145/2903150.2903481

11. Nikitenko, D., Voevodin, V., Zhumatiy, S.: Octoshell: large supercomputer complex
administration system. In: Russian Supercomputing Days International Confer-
ence, Moscow, Russia, CEUR Workshop Proceedings, vol. 1482, pp. 69–83 (2015)

https://doi.org/10.1007/978-3-319-32243-8_2
https://doi.org/10.1007/978-3-319-32243-8_2
https://doi.org/10.1109/hpdc.2002.1029915
https://doi.org/10.1023/A:1015789220266
https://doi.org/10.1007/978-3-642-01973-9_77
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1016/j.procs.2012.04.215
https://doi.org/10.1007/978-3-319-71255-0_42
https://doi.org/10.1007/978-3-319-71255-0_42
https://github.com/srcc-msu/job_statistics
https://doi.org/10.1145/2903150.2903481
https://doi.org/10.1145/2903150.2903481


Role-Dependent Resource Utilization Analysis for HPC Centers 61

12. Nikitenko, D., Stefanov, K., Zhumatiy, S., Voevodin, V., Teplov, A., Shvets, P.: Sys-
tem monitoring-based holistic resource utilization analysis for every user of a large
HPC center. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp.
305–318. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7 24

13. Nikitenko, D.A., et al.: Supercomputer application integral characteristics analysis
for the whole queued job collection of large-scale HPC systems. In: 10th Annual
International Scientific Conference on Parallel Computing Technologies, PCT 2016,
Arkhangelsk, Russian Federation, CEUR Workshop Proceedings, vol. 1576, pp. 20–
30 (2016)

14. Movchan, A., Zymbler, M.: Time series subsequence similarity search under
dynamic time warping distance on the Intel many-core accelerators. In: Amato,
G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp.
295–306. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25087-8 28

15. Rechkalov, T., Zymbler, M.: Accelerating medoids-based clustering with the Intel
many integrated core architecture. In: Proceedings of the 9th International Con-
ference on Application of Information and Communication Technologies (AICT
2015), 14–16 October 2015, Rostov-on-Don, Russia, pp. 413–417. IEEE (2015).
https://doi.org/10.1109/ICAICT.2015.7338591

16. Voevodin, V., Voevodin, V., Shaikhislamov, D., Nikitenko, D.: Data mining method
for anomaly detection in the supercomputer task flow. In: Numerical Computa-
tions: Theory and Algorithms, The 2nd International Conference and Summer
School, Pizzo calabro, Italy, 20–24 June 2016, AIP Conference Proceedings, vol.
1776, pp. 090015-1–090015-4 (2016). https://doi.org/10.1063/1.4965379

17. Antonov, A., et al.: An approach for ensuring reliable functioning of a supercom-
puter based on a formal model. In: Wyrzykowski, R., Deelman, E., Dongarra, J.,
Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015, Part I. LNCS, vol. 9573,
pp. 12–22. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32149-3 2

18. Rudyak, V., Krakhalev, M., Sutormin, V.: Electrically induced structure transition
in nematic liquid crystal droplets with conical boundary conditions. Phys. Rev. E.
96, 052701-1–052701-5 (2017). https://doi.org/10.1103/PhysRevE.96.052701

19. Guseva, D., Rudyak, V., Komarov, P., et al.: Crosslinking mechanisms, structure
and glass transition in phthalonitrile resins: insight from computer multiscale sim-
ulations and experiments. J. Polym. Sci. Part B: Polym. Phys. (2017). https://doi.
org/10.1002/polb.24548

20. Nikitenko, D., Zhumatiy, S., Shvets, P.: Making large-scale systems observable –
another inescapable step towards exascale. Supercomput. Front. Innov. J. 3(2),
72–79 (2016). https://doi.org/10.14529/jsfi160205

https://doi.org/10.1007/978-3-319-49956-7_24
https://doi.org/10.1007/978-3-319-25087-8_28
https://doi.org/10.1109/ICAICT.2015.7338591
https://doi.org/10.1063/1.4965379
https://doi.org/10.1007/978-3-319-32149-3_2
https://doi.org/10.1103/PhysRevE.96.052701
https://doi.org/10.1002/polb.24548
https://doi.org/10.1002/polb.24548
https://doi.org/10.14529/jsfi160205

	Role-Dependent Resource Utilization Analysis for Large HPC Centers
	1 Introduction
	1.1 The Variety of Resource Utilization Analysis Levels
	1.2 The Paper Structure

	2 Background
	3 The Proposed Approach Principles
	3.1 Levels of Analysis
	3.2 User Roles
	3.3 Jumps Between Levels of Analysis
	3.4 Functional Description of the Interface

	4 Implementation
	5 Evaluation
	6 Conclusions
	References




