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Abstract. There are different approaches that help to solve the issue of
low efficiency of modern supercomputer usage. One of them is based on
constant monitoring of a supercomputer job flow in order to promptly
detect inefficient programs. The execution dynamics of such programs
usually differs from the “normal” behavior of common programs; how-
ever, it is very difficult to establish exact criteria for determining abnor-
mal behavior. Machine learning methods are therefore used in this study
for detecting abnormal jobs. This paper deals with an important aspect
of working with machine learning methods, namely data preparation.
The solution proposed herein was evaluated on the Lomonosov-2 super-
computer.

The issue of optimal input data selection is one of the key steps for
transferring the methods suggested in the paper to other supercomput-
ers. The analysis described in the article has served as a starting point for
developing a methodology for applying overall solutions to other super-
computers, which is also described in this paper.
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1 Introduction

High-performance computing is becoming more and more large-scale: the number
of scientists from different research areas that use supercomputer technologies
for solving scientific problems is constantly growing. This is definitely a positive
trend which hopefully will continue in the future. But this has an unobvious
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drawback. A lot of new scientists entering this area are usually skillful special-
ists in their research areas, such as computational physics, molecular dynamics,
weather forecasting, drug design, etc., but they are by no means experienced
enough in parallel computing. Taking also into consideration that the architec-
ture of modern supercomputers is highly complex, it becomes really difficult to
develop efficient parallel applications that consider all the peculiarities of under-
lying hardware. And this results in a substantial amount of parallel programs
with really low execution efficiency [1].

One can say that more people involved in parallel computing means efficient
off-the-shelf application packages being developed, and this is partially true.
New ready-to-use packages appear as well as existing packages enhance their
functionality, although unfortunately they are often neither very scalable nor
efficient in practice. But such packages play significant role in forming the overall
efficiency of using supercomputer centers, so their behavior should be monitored
and analyzed, which is the goal of another research being conducted at the
Research Computing Center of the Lomonosov Moscow State University (RCC
MSU) [2].

There are many different approaches as to how the efficiency of a partic-
ular parallel program can be analyzed and optimized. Various profilers, trace
analyzers, and debuggers have been developed and successfully used to address
this task. But before an application can be studied thoroughly, we would have
to become aware that this application has low execution efficiency and that it
needs to be analyzed. And it turns out that in many cases not only users but also
system administrators do not know that an application has some performance
issues. This means that a constant monitoring of all programs running on a
supercomputer is needed in order to find inefficient applications with possible
performance issues.

This work is aimed at solving this particular task. The main goal is to detect
abnormal applications, i.e. applications with abnormal behavior which signifi-
cantly differentiates from the standard behavior of the tasks in a supercomputer
job flow. The behavior of applications is described using system monitoring data.
Owing to the fact that it is currently almost impossible to precisely establish
criteria for abnormal behavior, machine learning (ML) methods are used for that
purpose. But tuning machine learning techniques to maximize its performance
can be quite tricky. One of the main difficulties that are encountered on this
path is to correctly select and prepare needed input data, which can drastically
influence the overall accuracy of machine learning methods.

The main contribution of this paper is a description of methods for determin-
ing a suitable input data set which can lead to improvements in classification
accuracy. These methods were implemented and evaluated using an anomaly
detection method developed previously. Furthermore, the conducted data prepa-
ration analysis served as an entry point for developing a methodology for apply-
ing overall anomaly detection approaches to other supercomputer centers. This
newly developed methodology is also presented in this paper.
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The paper is organized as follows. Section 2 briefly describes the work that
was previously done within this research, as well as related studies. Section 3 is
devoted to the problem of data preparation for the machine learning method
used for anomaly detection. A methodology for applying the developed solution
for anomaly detection to other supercomputers is described in detail in Sect. 4.
Section 5 contains the conclusions made as well as plans for future research.

2 Background and Related Work

The main goal of this work is to find abnormally inefficient applications in a
supercomputer job flow using system monitoring data. There are several related
works with similar goals that could be mentioned. Many of them are based on
just static thresholds that help to determine abnormal behavior: this is how
system monitoring tools like Nagios or Zabbix do. But this works well just for
simple cases and it is required to accurately adjust these thresholds.

For more complex cases, machine learning methods are used. For example, in
[3], ML techniques are used for program classification as well. But the authors
of that paper use supervised methods for identifying specific applications (e.g.,
software packages like GROMACS) based on performance data. For detecting
inefficient behavior, simple static thresholds were used.

Another example, which is the most related one to our research, is the paper
[4]. The authors present a method for detecting performance anomalies in HPC
systems. A system monitoring performance data is also used in this case for
anomaly detection, although they are interested in detecting performance varia-
tions caused by resource contention or hardware/software problems on a node. A
number of node-level anomalies like “orphan processes” and “hidden hardware
problems” are specified, and are then detected using machine learning methods.
So the main goal of this work is quite different, even though the approach used
is very similar. It is interesting that Random Forest algorithm showed the best
classification results, as in our study. The high performance achieved in paper
[4] showed us that the methods we were planning to use in our case should lead
to suitable results.

There are other works where machine learning techniques for performance
analysis in the HPC area are used (for example, [5,6]), but none of them aims
at solving our task. Nevertheless, it should be mentioned that studying these
works helped us to determine the methods suitable in our case.

As mentioned earlier, the anomaly detection method proposed is based on
analyzing data collected with monitoring systems. At the MSU Supercomputing
Center, a set of proprietary tools is currently being used, but it is planned
to switch in the near future to the DiMMon monitoring system [7], which is
being developed at the RCC MSU for use on exascale-level supercomputers.
Data from processor counters (e.g., CPU user load), memory and communication
network intensity (e.g., number of L1 cache misses per second, amount of bytes
sent per second): all this information is collected for each job running on the
supercomputer, forming the basis needed for the performance analysis of job
efficiency.
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Using these dynamic characteristics for performance description, each job
can be classified as normal, suspicious or abnormal. In general, a job is classified
as normal if no performance issues are found. A job is called abnormal if it is
definitely working incorrectly, wasting computing resources; this could happen
if a program stalls or a software/hardware error has been encountered. A job is
classified as suspicious if we can detect some performance issues in its behavior
but we cannot be sure that this behavior is definitely incorrect (abnormal), so a
more detailed analysis is needed.

The overall job classification process is organized as follows (a detailed
description can be found in [8]).

Each job is represented by the values of dynamic characteristics changing
during the program runtime, that is, by a number of timelines, one timeline
per characteristic. For each job, these timelines are divided into time intervals.
An intellectual method is used for this purpose that tries to identify substantial
changes in the behavior of the program, separating different logical stages of the
program execution. In this case, the behavior of each interval is quite simple
and can be therefore represented accurately using integral values (e.g., max,
min, median, oscillation rate). After timelines are divided into time intervals,
each interval is individually classified as abnormal, suspicious or normal using
integral values for the chosen dynamic characteristics.

For interval classification purposes, we use a method based on the Random
Forest algorithm (Scikit-learn [9] implementation). This is a supervised method
that was trained on a set of 520 manually classified intervals (270 normal, 70
abnormal and 180 suspicious intervals), leading to a classifier accuracy of ∼0.93
on the Lomonosov-2 supercomputer. The accuracy is calculated as the ratio of
correctly classified intervals to the number of all intervals in the set.

When each interval of a job runtime is classified, it is needed to assign a
class to the job in general. It is done using a set of criteria that attempt to
determine whether a substantial amount of processor time was consumed by
intervals with abnormal/suspicious behavior. The results were validated on a
test set of 110 applications (32 abnormal, 48 suspicious, 33 normal). The overall
job classification accuracy achieved was ∼0.92.

The resulting performance is quite high. However, the following should be
noted. One of the most important points that influence the performance of
machine-learning-based classification is data preparation. And the original selec-
tion of the feature set was based only on our initial sense of what, in our opinion,
should be most useful for the classification. It was thus decided to study how
much accuracy can be increased with a more intelligent approach to the choice
of the input data, based on a rich existing analytical experience in this area.
Within this paper, we describe a number of different methods we have tried for
choosing the most suitable feature set, aimed at increasing the accuracy of the
classifier we have developed.

Moreover, the approach for data preparation described in this paper makes
this overall classification process much more portable, since choosing the cor-
rect input data is one of the most challenging tasks for performing an accurate
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classification. Following the methodology described in Sect. 4, one can try to
implement the described classifier on a different supercomputer.

3 Data Preparation for the Anomaly Detection Approach

In a previous work, we selected and fixed an input feature set for the classifier
according to our initial view of which data is the most important in our opinion
(here and below, we will refer to this set as the “basic feature set”, and, accord-
ingly, to the classifier based on it as the “basic classifier”). However, during the
working process, we figured out that this can potentially be improved with useful
information about job dynamic behavior that was not used at that time. So it
was decided to rethink our data preparation process.

The data preparation stage for machine-learning-based algorithms consists
of three steps: selection, preprocessing and transformation [10]. Usually a lot
of different types of input data are available that can be used for classification
purposes, but using all data not always results in the best performance and, also,
it can be very computationally complex. So the data selection step is aimed
at choosing the right subset of data types that will lead to the best accuracy
and/or classification speed.

In our case, the machine learning algorithm uses system monitoring data as
input, so we can potentially use all the information that can be collected from the
system counters describing the utilization of CPUs, memory subsystem, commu-
nication network, etc. It should be noted that there are always hardware restric-
tions in a processor (which are not the same for different processor families),
which allows us to collect only a small amount of processor counters simulta-
neously. For each supercomputer, we heuristically chose the most suitable data.
For example, the set of data being collected on our Lomonosov-2 supercomputer
is the following:

– CPU utilization: CPU user load, other types of CPU load (system, iowait),
loadavg.

– Memory usage intensity: number of L1/L2/L3 cache misses per second; num-
ber of load/store operations per second.

– Communication network usage intensity: number of bytes/packets sent/
received per second, separately for MPI and file system networks.

– GPU utilization: GPU user load, GPU memory load, GPU memory utiliza-
tion.

Using all this data is not the best option, so we need to choose a suitable
subset. This task turned out to be the most challenging in the data preparation
stage; a description of methods used is further provided.

The second step in the data preparation stage is data preprocessing. This
step includes such processes as data cleaning and formatting, which in our case is
almost not needed at all: the monitoring system provides us with all the needed
data in a suitable format.
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The third step is data transformation. During this step, data scaling or
decomposition as well as aggregation can be performed. In this work, a machine
learning algorithm is used for time interval classification, and this is done with
the Random Forest algorithm. It does not require data normalization, so no need
for any data scaling in our case.

Data aggregation is done twice before passing the input feature set to the
classifier. At first, 2-min approximation is used: raw data collected by the mon-
itoring system is replaced every two minutes with integral values (max, min,
average, etc.). This is necessary to reduce the amount of data that needs to be
stored, and it was decided not to change this step in this work.

The next aggregation is done on our side, at the interval level. As mentioned
earlier, we form time intervals in such a way that they show a simple behavior
which can be accurately described using integral values. This means that each
interval and each dynamic characteristic (like CPU user load) is described with
only maximum, median, etc. values instead of using a time series of raw numbers
(usually, there are 30 to 100 time points representing each interval). Furthermore,
most jobs studied in our work are parallel, which means that we also need to
aggregate the data across different processor cores in a node, as well as between
nodes. So we use triple aggregation in this case: first by space (between cores in
a node), then again by space (between nodes) and then by time (between time
points).

The question is, what integral values should be used for interval description?
We have made a list of possible variants that can be useful in practice, according
to our experience. For each variant, three aggregation methods are provided
(within a node/between nodes/time):

– Minimum (within a node)/minimum (between nodes)/minimum (between
time points). Maximum is not so interesting since it is often equal to the
peak.

– Average/average/median. We have selected median for time aggregation due
to its better resistance to outliers, which leads to a more accurate description
in many cases.

– Maximum/average/average. This value helps to detect imbalance between
nodes.

– Minimum/(average-minimum)/average. We have selected (average-
minimum) for aggregation between nodes instead of just average, since using
just average leads to values very close to the minimum, which was already
described earlier.

– Average/average/oscillation rate. The oscillation rate is calculated as
maximum-minimum range divided by the overall average. This number
reflects the relative fluctuation of the max and min values of the characteristic
around the average.

– Maximum/maximum/oscillation rate. This helps us to describe fluctuation
of characteristics as well. We do not use minimum/minimum/oscillation rate
because it is usually equal to zero.

– (Maximum/maximum/maximum)/(average/average/average). Another way
of describing fluctuation.
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We also thought about adding more integral values, such as skewness or
kurtosis [11], but it seems like it would not add any new information to the list
of considered values, so it was decided not to expand the list, which was already
quite big.

Taking into account the aforesaid, there are two options that we can adjust
in order to try to improve classification accuracy, namely what data types should
be selected and what integral values should be used. But we have 20 different
data types, with 7 integral values to represent each of them, which makes 2140

different possible feature subsets. This means that we need some intellectual
method to choose one close to the optimal for our purpose.

But before starting to choose the appropriate set of features, it is necessary to
understand whether it is worth doing in principle. We need to evaluate whether
the possible accuracy gain is statistically significant. If no, there is no sense
in performing any analysis at all; the current feature set would then be quite
suitable.

For checking the statistical significance of the model accuracy ratio increase,
we use Student’s t-criterion (1):

T = max + 3 ∗ (st error), (1)

where max is the maximum accuracy obtained using the basic feature set, and
st error is the standard error of the mean for the accuracy with the basic clas-
sifier. We use the t-test as it is commonly applied to check the significance of
the difference between two values, in our case, the model accuracy values. If the
accuracy obtained with new feature sets is higher than this value, we can say
that we found a statistically significant better result.

We ran the basic classifier 1000 times and analyzed the cross-validation accu-
racy in the intervals of real-life applications from the Lomonosov-2 supercom-
puter. The max was 0.9398, while the average was 0.9324 (most of the accuracy
variation is related to the random nature of the classifier due to the use of the
Random Forest algorithm). The t-criterion in this experiment is then equal to
0.94. The analysis showed that this value can be exceeded using new feature
sets. For example, the average accuracy for the most complete feature set (all
140 features considered) is 0.9434, which is higher than the t-criterion. It should
be noted that this set does not suit us owing to the following reasons: (1) the
result obtained is possibly not the highest one; (2) using so many characteristics
is likely to lead to an overfitted model (and also to issues with classification
speed), so this amount should be reduced.

This analysis proved that it is worthwhile to search for more optimal feature
sets for our classifier. The standard approach for solving this issue is to use
discriminant function analysis. The next section describes in detail how it was
used in our research.
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3.1 Discriminant Function Analysis

There are three possible approaches for choosing an appropriate feature set:

1. Use all possible features and manually select the most important ones (stan-
dard method).

2. Backward stepwise.
3. Forward stepwise.

All these approaches are usually quite similar in terms of the accuracy that
can be achieved as a result. Both backward and forward stepwise methods were
attempted in order to quantitatively evaluate the significance of the features
and obtain the preliminary list of features that remain in the model after the
completion of both algorithms, as well as to gain an a priori insight into the
features’ influences.

Backward Stepwise Method. The main idea of this algorithm is quite simple:
we perform a number of steps, and at each step, the feature leading to the least
accuracy loss is removed. Scikit-learn provides its own implementation of the
backward stepwise algorithm [12] but it calculates the accuracy using only one
cross-validation at a time, which in our case leads to rather unstable results. So
we decided to implement five cross-validations and take the average result. The
overall backward stepwise algorithm looks as follows:

– While the break condition is not satisfied:
• Temporarily remove one feature from the set A. Calculate the classifica-

tion accuracy using the resulting feature set A1.
• Repeat the previous step for each feature in the set A. As a result, we

have N accuracies for all possible sets An (where N is the size of the
feature set A) without one feature.

• Find the set Ai that shows the highest accuracy.
• Use this set Ai and go to the next iteration.

There are two points that need to be clarified. The first one is how the accu-
racy is calculated. We use cross-validation: the training data is split into five
equal parts; one part serves as the test set, the other four are chosen as the train-
ing set. There are five possible ways to do this, and the cross-validation accuracy
is calculated based on this 5-fold splitting. Then we repeat cross-validation five
times and take the average accuracy value. The second point to clarify is the
break criterion. There are several standard ways to do this: do not stop until a
particular number of features is reached or do not stop until the accuracy loss is
less (or the overall accuracy is higher) than a specified threshold.

Figure 1 shows average accuracy results for the backward stepwise method.
Along the X axis, we have the numbers of features left in the feature set; the Y
axis corresponds to the accuracy value for the chosen feature set at each iteration
of the backward stepwise algorithm.
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Fig. 1. Interval classification accuracy variation during the backward stepwise method.
The horizontal line corresponds to the basic classifier accuracy

It can be seen that the same accuracy as for the basic classification (marked
with a red horizontal line) is achieved with 50 to 70 features, whereas the basic
feature set consists of 33 features. Using 70+ features is not a suitable option
for us because it does not provide a substantial accuracy gain, while decreasing
the classification speed and increasing the probability of the overfitting problem.
This means that the use of the backward stepwise method leads to worse results
than those of the basic classification.

So it was decided to switch to the second method: the forward stepwise.

Forward Stepwise Method. The forward stepwise algorithm works the other
way round compared with backward stepwise: we start with a small feature set
and add one feature that maximizes the accuracy at each iteration. But there
are also several points that should be determined in this case: what features to
start with and when to stop.

One of the most important steps in the forward stepwise algorithm is the
choice of a suitable starting feature set. Usually it includes 5 to 10 features. But
they can be selected in a different way, for example, randomly or based on expert
knowledge. At first, we tried to rely on our experience-based assumption that the
median and the oscillation rate are the most important integral values that are
useful for the classification process. So we tried to use only them as the starting
feature set. The break criterion was the maximum size of the feature set: not
more than 35 to 40 features. However, this led to poor accuracy results, meaning
that this assumption is not good enough. Using randomly chosen starting sets
is not a good option either, since we know that some combinations of features
must be included, otherwise important behavior peculiarities could be omitted
by the classifier.

As a result of trying different variants, the following method for choosing a
starting feature set and finishing the forward stepwise process was formed. We
combined data types into the following groups (several groups contain only one
data type):



40 A. Bezrukov et al.

– CPU load;
– load average;
– memory reference intensity (number of load/store operations per second);
– number of L1 cache misses per second;
– number of L2 cache misses per second;
– number of L3 cache misses per second;
– MPI network usage intensity (number of bytes/packets sent/received per sec-

ond);
– file system network usage intensity (number of bytes/packets sent/received

per second);
– GPU utilization (GPU user load, GPU memory utilization).

Each group represents a part of information that must be included in the
resulting feature set one way or another. Each group can be represented using
any integral value specified earlier; there are no restrictions on that. It should
be noted that three data types, namely CPU system load, CPU iowait load
and GPU memory load, were considered not important enough, so they are not
included in any group and may not therefore be included in the resulting feature
set.

Initially, five random features were selected from the list above. We chose
the following break criteria: (1) at least one feature from each group must be
included into the feature set; (2) the size of the feature set must be not less than
30. The first criterion is needed to be sure that the resulting feature set includes
all the information we think is necessary. The second one guarantees that the
feature set will not be too small, which, in most cases, leads to poor accuracy
results.

Owing to the random nature of the classification algorithm used, the feature
set obtained can be quite different each time we run the forward stepwise method.
So, in order to choose the most appropriate one, we need to collect enough
statistics.

We ran the forward stepwise method 50 times and obtained 50 different
feature sets. Next, we needed to determine which feature set shows the best
performance results. So we performed cross-validation 2000 times for each feature
set and calculated the average accuracy. After that, we took the top five feature
sets having highest accuracy (their results were very similar) and then selected
the best one among them, using our own knowledge on what features are more
important. The chosen set turned out to be also the most uniform: the number
of features in each group was almost equal.

Final Results. After we determine the final feature set, it is necessary to evaluate
the results achieved using the final feature set (referred further as the “final
classifier”) compared to the performance of the basic classifier.

The overall cross-validation accuracy of the interval classification for the
Lomonosov-2 real-life applications improved from ∼0.93 with the basic classifier
to 0.95 with the final classifier. This means that the final accuracy is above the
t-criterion value, which is 0.94 (calculated in the beginning of Sect. 3), so that
the achieved accuracy improvement is statistically significant.
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The confusion matrix (Table 1) summarizes the classification accuracy for
particular classes (average values for 1000 cross-validation runs). It can be seen
that our final classifier works best with the normal class, but the results for other
classes are also quite high.

Table 1. Confusion matrix for interval classification

Predicted class

Normal Abnormal Suspicious

Actual class Normal 268 0 6

Abnormal 2 62 5

Suspicious 10 1 168

False-negative error is also an important measurement in our case. It is not
a big issue to misclassify a few normal jobs as suspicious or abnormal since we
want just to notify users about anomalies found. But it is not acceptable to miss
abnormal or suspicious behavior since it leads to loss of computing resources.
The results show that this error is very small for the final set: 0.027 in average.

We have also compared other classification performance metrics, such as
the F -score and the false-negative error. F -score results for both the basic and
the final versions are summarized in Table 2. The F -score helps to evaluate
the classification results from another point of view. It is calculated using the
following formula (2):

F = 2 ∗ (precision ∗ recall)/(precision + recall). (2)

According to Table 2, the F -score also improved for each class. This is espe-
cially true for suspicious jobs, where it increased from 0.892 to 0.935.

Table 2. Comparison of F -score values for the basic and the final classifiers. F -score
calculated independently for each class

F -score (normal) F -score (abnormal) F -score (suspicious)

Basic classifier 0.944 0.918 0.892

Final classifier 0.966 0.93 0.935

All the described results for interval classification show that the accuracy
improved compared to the basic version. But our final goal is to detect jobs
with abnormal behavior, so we need to evaluate job classification results as well.
The performance for the job classification was tested on previously unclassified
real-life jobs from the Lomonosov-2 supercomputer. We detected 190 suspicious
and 64 abnormal jobs with our final classifier based on the analysis of ∼10 days
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of the Lomonosov-2 functioning. These results were manually validated, leading
to accuracies of 0.98 and 0.95 for abnormal and suspicious jobs, respectively.

Thus, it can be seen that the final feature set obtained using discriminant
analysis enabled us to improve the overall classification accuracy. Moreover, the
data preparation process described in this section made the overall classification
process much more portable. The next section is devoted to this topic.

4 Methodology for Applying Anomaly Detection Method
to Other Supercomputers

The methodology in this section describes in detail the process of applying the
solution proposed for anomaly detection to other supercomputing systems. At
the top level, this methodology is quite universal and, in fact, is suitable for most
machine learning based classification methods; however, more specific details of
this process relate to this method in particular. A description of the sequential
steps of this methodology is provided below.

1. Prepare core software tools based on the proposed methods. This can
be implemented manually using the description given in this paper, or the source
code that we plan to upload to GitHub in the near future. This core software
should include methods that are independent of the supercomputer it is used on:
method for partitioning the job timeline into intervals, interval classifier, and job
classifier based on the interval classification results.

2. Determine the range of possible input data. In this step, all data that
can potentially be useful for the interval classification process should be selected.
As in our case, which was described in Sect. 3, this includes selection of data types
and integral values used for aggregation. It is worth recalling that integral values
are used for triple aggregation: by time and twice by space (between cores in a
node and between nodes). We believe that both data types and integral values
chosen in our case can serve as a good starting point by default, but a user may
make his own changes in these lists if needed, according to his knowledge of the
usual behavior of jobs on the target supercomputer.

3. Implement data collection using a monitoring system. For detection
of anomalies, we need the input data that were described in the previous step.
This is provided by a monitoring system, so one should be installed and con-
figured at the target supercomputer. This step is done outside of our anomaly
detection process, so we do not specify how this step should be done.

Nevertheless, several remarks should be made. Usually, it is impossible to
store all the data that a monitoring system can provide for the whole super-
computer, so data aggregation is used (as it was done in our case, see Sect. 3).
The frequency of data aggregation can influence the classification performance,
and one should keep that in mind: if classification results are too low, a possible
reason could be that data are too frequently aggregated.

The second remark is that this step can reduce the range of possible data
from step 2. This is due to the limitations of the hardware being monitored.
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For example, modern processors allow to simultaneously collect data from just
a few hardware counters, so we need to select the most needed ones. Moreover,
different processor families provide different sets of counters. So it is likely that
the range of data specified in step 2 will have to be adjusted after the installation
of a monitoring system.

4. Choose the initial feature set. At this point we have fixed the data that
can possibly be used for classification. So now the initial feature set that will
be used in the basic (reference) version of the classifier can be determined. This
set is chosen on the basis of our understanding of a feature importance since, at
this point, we have no analytical insights on which features are more important
for classification.

Creating this basic version is done for several reasons. Based on the results of
the reference version, we can decide whether the proposed approach is applicable
in general in this case. Working with the basic version, we get first assumptions
on the preferable size of the feature set, the time needed for classification, etc.
Next, we can use reference classification results for comparison with all other
versions that are going to be created in future. And also, this allows us to verify
whether this implementation works correctly on this supercomputer.

5. Create the training set. This is both one of the most challenging and
one of the least automated steps. We need to scan through real data (real-
life supercomputer job flow) and pick out intervals we want to include in the
training set. Each interval should be classified as normal, suspicious or abnormal,
based on the chosen monitoring data set. Also, since our final goal is to classify
applications, we need to create a second training set of classified jobs, so we must
assign a class to each job according to its classified intervals. It is not necessary
to use every interval from a job in the training set; only the most useful ones
may be included. But if not all intervals in a job are classified, this job normally
should not be included in the second training set for the job classifier (the one
based on the simple criteria, not on ML techniques) since the result in this case
can be incorrect.

In our experience, the training sets do not need to be very big: 500+ intervals
from 100+ jobs were enough for our classifier.

There are several general rules that should be followed during this process:

– The manual interval classification for the training set should be based on
exactly the same data that will be used in the main classification process.

– The training set should include as many different types of dynamic behavior
as one wants the classifier to identify. If one type of behavior is not present
in the training set, then the classifier is likely to misclassify it.

– The numbers of intervals in the classes of the training set should not differ
significantly. Otherwise, the classification results can be incorrectly biased to
the more popular class.

– A suspicious class can be divided into subclasses if desired. This can make
classification results more informative but only if the division into subclasses
in the training set was made accurately enough. There is usually no point
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in detecting subclasses in a normal class (since there are no performance
issues in such jobs) as well as in an abnormal class (since such jobs behavior
normally is not so diverse). At the same time, there are many possible types
of dynamic behavior for suspicious jobs. For example, on the Lomonosov-2
supercomputer, we have manually found such types of specific behavior as “1
active process on each node”, “1 active process on all nodes”, “stalled because
of Lustre issues”, etc. It should be noted that the classifier developed has not
been tested in practice with subclass division, but this should work out of the
box.

6. Configure proposed core software. The methods developed in the core
software have a number of input parameters that can be configured. All input
parameters can be used with default values but some of them depend on the
target supercomputer peculiarities, so it is recommended to analyze if more
suitable values can be used.

The method for partitioning the job timeline into intervals has only one
parameter: the minimal number of time points in an interval. In our case, it was
decided that each interval should be not less than 30 min, otherwise the number
of intervals in the job could be too large. Since 2-min aggregation is used on
the Lomonosov-2 supercomputer, it results in a minimum of 15 time points per
interval.

The main interval classifier has two internal parameters that are used for
tuning the Random Forest algorithm: (1) the number of trees in the ensemble,
and (2) a measure for choosing the optimal database split (impurity). On the
Lomonosov-2 supercomputer, 256 decision trees are used in production mode and
32 in test mode (using less trees speeds up the classification process significantly
and leads to only a slight decrease in accuracy); increasing this value does not
lead to any significant changes in classification accuracy but causes a decrease
in speed. Also, Gini impurity measure is used since it tends to provide more
accurate results. We believe that it is not necessary to change these parameters
in most cases, but they may be adjusted if needed.

The last method developed is the job classifier based on interval classifica-
tion results. It uses a set of criteria (see [8]) based on constant thresholds that
generally determine how much CPU hours (and what part of the overall job)
are consumed by abnormal/suspicious intervals. It is recommended to configure
these parameters based on the job flow structure of the target supercomputer,
since the default thresholds were specifically adjusted for the Lomonosov-2 super-
computer.

7. Run the classification using the initial feature set. All the preliminary
steps are done, so now it is time to run the classification for the first time,
using data from the initial feature set. If the accuracy results are unsatisfying,
it may be necessary to rethink steps 2 (in the part related to the aggregation
implementation), 5 or 6.

8. Search for a suitable feature set using the forward stepwise method.
This step is devoted to the feature selection, which was described in detail in
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Sect. 3. This is another one of the most challenging steps, along with step 5,
since there is a lot of possible ways to implement it. According to the results
from Sect. 3, the following steps should be carried out:

1. Choose forward stepwise parameters. This includes the initial set of features
to start from, as well as the break criterion (at what point the forward step-
wise algorithm must stop). By default, values specified in this paper may be
used but these can be altered if needed. This step also includes changing the
forward stepwise method to other possible methods, but we hope this will be
necessary on rare occasions.

2. Run the forward stepwise method. As a result, a new feature set will be
defined.

3. Tune the feature set. It is always useful to add more semantic knowledge
to the classification process. If some features are known to be meaningful for
classification, it is likely that they should be added to the resulting feature set.
But this should be done with caution, since it is very hard, in our experience,
to understand all the dependencies in the performance data collected for
supercomputer jobs.

3. Check the accuracy. After the feature set is formed, it is necessary to check
the classification accuracy. The result can be now compared to the reference
results achieved with the initial feature set.

4. Repeat if necessary. If the classifier works poorly, return to the feature set
tuning in this step. If this does not help, return to step 5 or 6.

9. Verify the results. At this step, we have developed a working classifier
that shows, hopefully, high-performance results. However, this was achieved on
training data, and the classification accuracy on real-life data can be slightly
different owing to possible shortcomings of the training set (see step 5). So we
need to verify the accuracy of the resulting classifier on unclassified real-life data.
This can be done in a similar way as shown in Subsect. 3.1.

5 Conclusions

This paper describes the data preparation process for a machine learning method
used for anomaly detection in a supercomputer job flow. The main goal is to
determine what data types should be included in the feature set and how this
data should be aggregated. Discriminant analysis methods were used for this pur-
pose. The best results were obtained with the forward stepwise method, resulting
in a new feature set that helped to increase the accuracy from 0.93 to 0.95.

The research conducted in this paper have shown that the basic classifier
with the initial feature set shows a very good accuracy which can only be slightly
improved. But the developed method for choosing an appropriate feature set has
allowed us to make the overall anomaly detection solution much more portable.
Thus, a methodology for applying this solution to other supercomputer systems
has been proposed, which is also described within this paper.
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In the future, we plan to further apply the proposed anomaly detection solu-
tion in practice. It is planned to implement an online job classification which
would allow us to promptly notify supercomputer users about their running
jobs that exhibit a suspicious behavior. Also, we are looking forward to trying
our solution on other supercomputers, so we could analyze its performance and
portability and make further improvements if required.
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