
A Toolkit for the Development
of Data-Driven Functional Parallel

Programmes

Alexander I. Legalov(B), Vladimir S. Vasilyev, Ivan V. Matkovskii,
and Mariya S. Ushakova

Siberian Federal University, Krasnoyarsk, Russia
legalov@mail.ru, rrrFer@mail.ru, alpha900i@mail.ru, ksv@akadem.ru

Abstract. In the article a technology is considered which aims at cre-
ating architecture-independent parallel programmes based on the data-
driven functional paradigm. A proposed toolkit provides the translation,
execution, debugging, optimisation and verification of programmes. A
programme in a data-driven functional parallel language is translated
into the data-flow graph (which describes the data dependencies of an
implemented algorithm) of the programme. On the basis of this represen-
tation, the control-flow graph (which defines the organisation of compu-
tations) is generated. Both graphs allow to carry out various optimising
transformations. The resulting data-flow graph is also used for the for-
mal verification of the programme. A computation process is considered
as a cooperation of the control-flow graph and the data-flow graph. The
execution of data-driven functional parallel programmes is carried out
by a special interpreter (event machine), which consist of a number of
event processors controlled by a special manager.

Keywords: Data-driven functional parallel programming
Software development toolkit · Parallel-programmes translation
Parallel-programmes optimisation · Parallel-programmes verification

1 Introduction

Parallel computing have outgrown the application in high-performance comput-
ing long ago. It is widely used for solving problems in different areas. Nowadays,
the main feature of parallel programming is the source-code dependence on the
architecture of the target computation system. So, to port a programme to another
architecture, it should be completely rewritten or appreciably modified. The rea-
son is the intention to increase the efficiency of parallel programmes, which results
in software being heavily tied to particular hardware characteristics.

Computational resources and their communications are the main character-
istics of a computation system which should be considered during the develop-
ment in order to increase the programmes efficiency. So, in addition to solving

The research is supported by the RFBR (research project No. 17-07-00288).

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 16–30, 2018.
https://doi.org/10.1007/978-3-319-99673-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_2&domain=pdf


A Toolkit for the Development of DDFP Programmes 17

an applied problem, we need to explicitly manage computations and resolve
resource conflicts among parallel processes. That is why parallel programming
is hard [1] and requires non-trivial analysis of programme correctness taking
different approaches, for instance, model checking [2] for formal verification.

It should be pointed out that a dependency on a particular parallel hardware
precludes writing truly parallel algorithms at the initial stage of the develop-
ment. This leads to the reduction of problem parallelism according to hardware
resources, which prevents from applying more effective solutions when a mod-
ification of the programme is needed. At the same time, the development of
hardware-dependent programmes is the mainstream of parallel programming.
The existing approaches have very different ideology of parallelisation. The most
widespread approaches are: parallelisation with message passing [3], multithread
and multi-core programming for systems with shared memory [4], graphical pro-
cessing unit programming [5], and also the mixture of these three approaches in
different combinations for systems with heterogeneous and distributed architec-
ture [6–9].

Though the concept of unlimited parallelism is not widespread in parallel
programmes development nowadays [10], it has some prospects as a basis of
programming system that provide for subsequent transformations of programmes
into resource-limited and architecture-dependent parallel programmes. So it is
topical to develop a language and a toolkit to provide for creation of parallel
programmes which are initially independent of peculiarities of a specific parallel
computer system. Porting a programme to a particular system can be done after
the processes of verification, testing and debugging.

The proposed approach is based on the concept of architecture-independent
parallel programming. Its key ideas are exclusion of resource conflicts and
implicit control over computations from within the programme being devel-
oped. It is supposed that a virtual machine which executes the programme has
unlimited resources and a programming language allows to define solely data
dependencies between the executed functions. An interaction between functions
takes place on data readiness. This allows to create programmes with maximal
achievable parallelism, which is compressed to special computing resources at
the stage of the intermediate representation after verification and debugging of
the source code. This allows to increase the efficiency of parallel-programme
development process. For example, it is possible to create a generic library of
functions adaptable to different existing and prospective architectures. The sub-
sequent transformations of such programmes can be done with formal methods
by changing the control-flow graph to fit the target architecture, preserving the
correspondence with the data-flow graph (DFG).

The goal of our research is the development of architecture-independent
parallel-programming technology based on the data-driven functional parallel
paradigm [11]. To achieve the goal we solve the following problems:

– the development and further improvement of the data-driven functional par-
allel (DDFP) computing model, on whose basis a programming language
is defined; it allows the creation of architecture-independent parallel pro-
grammes;



18 A. I. Legalov et al.

– the development of a toolkit to provide translation, testing, debugging and
execution of data-driven functional parallel programmes;

– the development of methods for programme verification and optimisation at
the level of the programme DFG;

– the development of control-flow graph transformation methods that allow
to change the programme parallelism and, in the future, to transform pro-
grammes for particular parallel architectures.

2 Problems of Imperative Paradigm Employment
in Parallel Programming

Wide application of the imperative programming paradigm introduces certain
difficulties in the development of parallel programmes. A programmer has to
explicitly or implicitly form relations between programme objects [12]. The pos-
sible relations are:

– data relations which specify the DFG of the programme; this graph defines
dependencies between operations and operands being processed;

– control relations which set the order of execution of operations; these relations
are associated with the DFG of the programme in order to ensure the right
logic of transformations of operands;

– relations between computing resources (memory, processor units) that are
used during the operation execution.

In most cases, a programme developer has to explicitly take into account the
dependencies between these relations in an attempt to avoid any logical contra-
dictions leading to an erroneous execution. In the ubiquitously used imperative
programming, the relations between the data and the control are kept in the pro-
grammer’s mind but are not explicitly expressed in the programme. For instance,
let us consider the factorial function over the range 1 to n.

int fact1n(int n) {
int r = 1; int i = 1;

loop:
if(i <= n) {

r *= i;
i++;
goto loop;

}
return r;

}

It is evident that the only explicit relation is the relation of programme objects
order in the source code or (after translation and loading for execution) in the
system memory. But it does not specify the exact order of computing. A graphical
representation of the given function explicitly represents all kinds of relations and



A Toolkit for the Development of DDFP Programmes 19

Fig. 1. A graphical representation of the relations in the factorial function (the solid,
dashed and dash-dotted lines show data relations, control relations and order relations,
respectively)

shows different trajectories of its execution which the programmer has to keep in
mind to form an overall understanding of the programme (Fig. 1). In some cases,
the control and order relations coincide (operations marked with light grey),
which facilitates the programme understanding and allows to employ programme
counters instead of straight-forwardly transferring the flow of execution to the
address. In most cases, however, these relations are connected by implication
rather than by the order of the operations in the programme.

Frequently, the relation of order can be ignored by employing a graphical rep-
resentation. Particularly, flowcharts, activity diagrams, automaton graphs speed
up the development of programme algorithm and allow to represent the logic of
the operational behaviour clearly. This is done by explicitly defining the control
and data relations on the basis of the developer’s intuitive algorithm understand-
ing.

The situation becomes more complicated if we turn to parallel programmes
development. In this case, additional control operations for splitting and synchro-
nisation appear in the control-flow graph. What is more, all available resources
are to be distributed for the simultaneous execution of parallel source-code frag-
ments. This results in a new relation between the programme and the resources.
This relation can be explicitly represented by the resource graph (graph of sys-
tem resources). The probability of conflicts arises, which could lead to incorrect
computations even if the programme worked correctly in the sequential case.

Various parallel systems employ different computing control methods (strate-
gies) [12]. A programme can be represented by a data-control-resource graph (we



20 A. I. Legalov et al.

Fig. 2. A DCR-net describing the process execution within the computational resources

call it a DCR-net) in which processes P execute the operations F defined by a
programmer. The execution of these operations are initiated by control signals
that are emitted under certain conditions in the control-flow graph. These con-
ditions emerge from the data dependencies of the programme, peculiarities of
computational resources and some additional factors (Fig. 2). The correctness
of the computing process depends on certain prerequisites for each operation.
In the general case, an operation execution within the resources of the comput-
ing system is possible only if the following conditions are satisfied before the
execution:

1. The condition of data readiness (Data, D-condition). Before the process exe-
cution start, all the required data have to be at the process input. The process
execution in the absence of any required data leads to a wrong result.

2. The condition of resources allocation (Resource, R-condition). The process
requires certain resources to be executed within them, and these resources
should be allocated and provided before the process execution.

3. The condition of acknowledgement (Acknowledge, A-condition). Resources
utilised by a process can be freed or reused only after the acknowledgement
that the output results of computations have been received by all the processes
that take them as input.

The control of readiness conditions can be performed by different means. On
the one hand, a programmer can control processes directly. On the other hand,
a computing system undertake many control functions. Let us distinguish the
following control modes:



A Toolkit for the Development of DDFP Programmes 21

1. Explicit (human) control. A programmer sets the logic of generating and
checking the readiness conditions in the source code.

2. Implicit control. In this case, it is assumed that the processes are executed
correctly without any control. This assumption may follow, for example,
from special organisation of resources in the computing system, automati-
cally maintaining the data readiness condition (automatic control). Another
possibility is when the readiness conditions are always true due to the system
peculiarities, and hence no control is needed (empty control).

If a programmer uses explicit control, then he should code the readiness condi-
tions checks. It increases the software development costs.

3 Features of the Computing Model and the Language
of Data-Driven Functional Parallel Programming

The basic approach to architecture-independent parallel programming is the
development of a language and a toolkit to provide the implicit control at the
level of computing model. We propose a model of data-driven functional parallel
computing [11], in which every function is represented as a DFG whose nodes
are operators and whose arcs are data connections between operators. Any con-
nection is marked with a value which is both the output of the operator in
the beginning of the arc and the input of the second operator. There are several
types of operators in the graph: the operator of interpretation and data-grouping
operators.

The operator of interpretation is the only operator that applies a func-
tion to the function arguments. This operator has two inputs: the first one takes
a function (functional input), while the second one takes an argument for the
function (data input) (Fig. 3). The output of the interpretation operator is the
result of the function application to the argument. Functions are either elemen-
tary predefined operations or programmer-defined. The interpretation operator
semantics is defined by the axioms of the computing model and its transforma-
tion algebra [11].

Fig. 3. Graphical symbols of the interpretation operator (a—the general case, b—the
case when the function on the first input is predefined)



22 A. I. Legalov et al.

Data-grouping operators provide various ways of grouping operands in dif-
ferent structures (lists). The idea of data-grouping operators goes back to the
functional forms introduced in [13]. In our case, however, it is the variety of such
structures that is the principal way to increase the flexibility in writing par-
allel programmes and implement non-conventional ideas of parallel-algorithms
development. Extending the set of such operators is one of the main approaches
to the further development of the computing model and the language of data-
driven functional parallel programming. This language is used to try out various
approaches targeting the efficiency of expressing different types of parallelism.
For instance, the usage of asynchronous lists [14] allows to develop algorithms
with dynamically modifiable parallelism according to the rates of data incoming
and processing. The core set of data-grouping operators is shown in Fig. 4.

Fig. 4. Graphical symbols of data-grouping operators (a—data copying, b—constant
assignment, c—grouping in a data list, d—grouping in a parallel list, e—delay-list
creation)

The copy operator (Fig. 4a) carries out data replication. In our language,
replication is done by assigning a name to a connection (marked later with a
value during the execution), and then this name is used in other positions of the
programme to refer to this connection (and the corresponding value). We use
the prefix and postfix notation for assigning a name to the connection:

value >> name, or name << value.

The constant operator has no inputs (Fig. 4b). It has only one output
that is always marked with the predefined value. In our language, the constant
operator is defined by the value of a certain type.

The data-list grouping operator (Fig. 4c) has several inputs and one out-
put. It performs structuring and ordering of the values that are transmitted
through arcs from different sources. Each input has its number from 1 to N .
The position of data in the resulting list equals the number of the input it has
come from. In the source code, the list elements are put in parentheses “(” and
“)”. For example:

(x1,x2,x3,x4).



A Toolkit for the Development of DDFP Programmes 23

The parallel-list grouping operator (Fig. 4d) groups elements in a similar
way as in a data list. However, its output is a multiple connection whose mul-
tiplicity equals the number of operator inputs. If an operator of interpretation
is executed having a parallel list on its data input, then a function is applied to
each individual element of the parallel list independently and in parallel. In the
source code, the elements are put in square brackets “[”and “]”. For example:

[x,y,z]:sin ≡ [x:sin,y:sin,z:sin].

Similarly, in cases when a parallel list of functions comes to the functional input
of the interpretation operator, each function is applied to the argument in par-
allel:

(x,0):[<,=,>] ≡ [(x,0):<, (x,0):=, (x,0):>].

The transformation algebra of the language describes all the cases of equivalent
transformations of parallel lists.

The delay-list grouping operator (Fig. 4e) delays the execution of oper-
ators corresponding to some subgraph. This subgraph is considered as a single
node of the DFG until the delay list is released. This node has several inputs and
one output. The connections coming from outside the subgraph are the inputs
of the operator, and the result produced in the subgraph comes to the operator
output. The specific feature of this operator is that the delayed operators are
not executed even on data readiness until the delay is not released. The release
from the delay takes place if a delay list becomes an input of the interpretation
operator. Delay lists allows to construct the conditional branches of the pro-
gramme. In the graphical representation, a dashed line surrounding the delayed
operations is used to denote the delay list. In our language, the list of delayed
computations is defined by putting operators in braces “{” and “}”.

On the basis of the described model, we develop the Pifagor language for data-
driven functional parallel programming. The source code of the above-mentioned
factorial function in the Pifagor language is the following:

fact1n << funcdef n {
n1<< (n,1);
[(n1:[<=,>]):?]^ (

1,
{(n, n1:-:fact1n):*}

):. >>return
}

The function is free from explicit computations control. Only the data depen-
dencies between operators are defined. The DFG of this function is shown in
Fig. 5.



24 A. I. Legalov et al.

Fig. 5. Data-flow graph of the factorial function

4 A Toolkit for Architecture Independent Parallel
Programming

We develop a toolkit to support the data-driven functional parallel programming
paradigm in order to try out the proposed ideas and their further development
on the basis of experiments. The general scheme of the toolkit is shown in Fig. 6.
It includes the following subsystems:

– a translator from the language of data-driven functional parallel program-
ming to the intermediate representation, called the reverse data-flow graph
(RDFG);

– a generator of the control-flow graph (CFG), which constructs the graph for
controlling computations;

– an event machine, which supports execution of data-driven functional parallel
programmes by utilising RDFG and CFG;

– RDFG optimisation tools;
– CFG optimisation tools;
– tools for the DDFP programmes formal verification.

4.1 Translation of Data-Driven Functional Parallel Programmes

The translator accepts source code files in Pifagor language, each containing one
or more functions. It also provides separate compilation of functions stored in
a special repository. The translator generates a RDFG for each function. These



A Toolkit for the Development of DDFP Programmes 25

Fig. 6. The toolkit for architecture-independent parallel programming

RDFGs are saved in the repository in text format. The choice of the text format
is due to the fact that an internal representation in the computer memory can be
easily constructed by means of simple translators. Moreover, the developer can
easily read and analyse the translated functions, considering the text form of a
graph to be an analogue of the assembly language. The translator also generates
auxiliary files with debug information binding the nodes of the RDFG to the
function source-code lines.

A reverse data-flow graph generated by the translator allows to generate a
control-flow graph that controls the function execution. Each node of the CFG is
associated with the corresponding node of the RDFG and controls the moment
when the operation starts executing. Each node of the CFG is a finite automaton
whose states are controlled by the input signals. These signals notify the automa-
ton of the event of the data having been prepared for the associated RDFG node.
The computations on the RDFG node are initiated on certain state switches in
the automaton. As the RDFG node execution completes, the readiness signal is
transmitted through the output arc of the CFG to the next automaton. Before
the execution, the CFG arcs are marked with initial signals. As the execution
begins, the signals are transmitted along the arcs and change the states of the
receiving nodes. A special utility programme forms the CFG. It is saved in the
repository in text form.

4.2 Parallel Event Machine

At the current development stage, the execution of data-driven functional paral-
lel programmes is done by a special interpreter (event machine), which consists
of a set of event processors (EP) and a special event-machine scheduler control-
ling the EPs. Each EP handles only one function, which is run in a separate
thread. Currently, the execution of operators inside the function is performed



26 A. I. Legalov et al.

sequentially. At the present moment, our main goal is to achieve a stable func-
tioning of the event machine rather than high performance.

Functioning of an EP (Fig. 7) is carried out in the following way. Initial signals
of the CFG are added to the EP’s signal queue from which they are transmitted
to the handler of control signals according to the queue discipline. The handler
analyses an incoming event. Depending on the state of the signal recipient node
of the CFG, the handler might query the corresponding RDFG node (associated
with the CFG node) if the operation of data processing is to be executed. In case
it is, the handler of the RDFG nodes is called. It performs all needed functional
transformations and saves intermediate results. After the data processing, the
control node changes its state and, if needed, it emits a signal for the next node.
The latter signal is again added to the queue of control signals, and so on.

Fig. 7. Event-processor general structure

Before the event machine launch, a linker assembles separate functions from
the repository into a programme. The linker checks the presence of all compo-
nents that are listed in the section of the external links of the RDFG. If any
required component is absent, the interpretation is reported impossible. Each
required function is also linked. The event machine scheduler stores a table with
RDFGs and CFGs loaded by the linker.

The process of interpretation starts with the creation of the first (initial) EP.
It receives the RDFG and CFG of the function which is the first to execute. The
EP saves the data in the working memory of the RDFG nodes, while automaton
states are stored in the working memory of CFG nodes.

The states of the CFG nodes automata connected with the RDFG constant
operators are initially set to new-signal generation. These signals are transmitted
through the CFG connections and activate receiving automata. The process of
signal transmission through the connections lasts until the “return” node of



A Toolkit for the Development of DDFP Programmes 27

the corresponding RDFG is processed (in this case, the function is considered
completed), or until the event queue is empty. In the latter case, the EP switches
to sleep mode, sending a signal about this to the event-machine scheduler. This
situation occurs when all inner signals are processed and there is no incoming
control signals notifying of returned results from the called functions.

4.3 Optimisation of Data-Driven Functional Parallel Programmes

Within the system of data-driven functional parallel programming, we have
developed a number of optimising transformations that take advantage of the
peculiarities of our computing model.

1. Dead-code elimination (removal of code that does not affect the programme
results). The optimiser starts at the “return” node, traverses the DFG and
marks all the reachable nodes. The rest of the nodes are removed.

2. Optimisation within iterative calculations. Traditionally, compilers carry out
this kind of transformations for loops. In our case, similar transformations
are applied to recursive functions and parallel lists defined in the language
model. In particular, calculations inside a recursive function that remain con-
stant during the recursive calls are moved to a new auxiliary function, whose
result is passed to the recursive function as an additional parameter; in func-
tions applied to parallel lists, all computations that are independent from the
function parameters are moved to the calling function.

3. Inline substitution of simple functions. If a function is sufficiently small (the
number of nodes is below a predefined limit), then the function-call overhead
is substantial compared to the overall cost of the function. As a result, the
function body is better to be inserted at the place of the function call.

4. Duplicate-code elimination. If the DFG subgraphs perform the same opera-
tions on the same arguments and also are in one and the same delay list or in
hierarchically nested delay lists, then they can be merged, thereby eliminating
redundant computations.

5. Optimisation based on equivalent transformations. The RDFG is searched for
certain subgraphs that can be transformed to a more computationally simple
but equivalent form.
In particular, the model admits the following equivalent transformations: sim-
plification of single-element parallel list; unwrapping of directly nested parallel
lists into a single parallel list; preliminary simplification of parallel lists whose
size is known at compilation time.

6. Redundant control-dependencies removal. An RDFG describes data depen-
dencies, and the CFG is created on its basis according to the data-readiness
control strategy. However, in several cases, some control relations are redun-
dant, and their removal would not affect the order of programme-operator
execution.

7. Generation of a CFG that defines a sequential traversal of the RDFG nodes.
This removes the overhead of data-readiness analysis.



28 A. I. Legalov et al.

4.4 Formal Verification of Data-Driven Functional Parallel
Programmes

The proposed paradigm eases formal verification of programmes owing to the
absence of resource limitations and to the fact that a programme defines only
data dependencies. The main problems in this area are to study the application
of formal correctness-proof methods to the proposed language and to develop a
toolkit to assist formal verification.

For the correctness proof, we employ the axiomatic approach based on Hoare
Logic [15]. The specification of the programme is expressed in a special formal
language (specification language). A Hoare triple is represented by a data-flow
graph of the programme whose input and output arcs are marked with formulas
in the specification language (called a precondition and a postcondition, respec-
tively). The process of proving the programme correctness consists in marking
the graph arcs with formulas, graph modifications and folding. As a result, we
obtain a number of RDFGs with all arcs marked with formulas. Each of these
RDFGs can be transformed into a logic formula. If all these formulas are iden-
tically true, then the programme is correct [16].

The process of proving is quite complicated since it requires taking into
account a great number of graphs and their transformations. That is why we
have developed basic concepts of a toolkit for supporting formal verification of
DDFP programmes [17]. The system takes a DFG and programme pre- and
postcondition as its input. It searches for unmarked arcs of the graph and assists
in selecting appropriate axioms and theorems for marking the arcs. The proof
process of a programme correctness is considered as a tree in which each node is
a partially marked DFG of the programme. The construction of the proof tree
finishes when all its leaves are totally marked DFGs. Thereafter, a logic formula
is generated for each DFG in the leaves. The programme correctness is proved
if we manage to prove that all these formulas are identically true.

5 Overview of Related Works

In the area of languages and support tools for parallel programming, the current
focus is on the creation and development of architecture-dependent systems. The
difference between these and our approaches has been discussed above. There
exist unconventional methods and tools for parallel programming, but usually,
they are being developed by small groups of developers. The development often
finishes at the stage of an experimental solution, which does not make it more
popular. An exception is special-purpose systems, which target specific object
domains and have a considerable optimisation potential for existing architectures
owing to the limited number of tasks to solve. For instance, the non-procedural
language NORMA [18] targets problems of mathematical physics and translates
into parallel programmes for different architectures.

Dataflow programming is implemented in the LabVIEW system [19]. The
graphical programming language named “G” is designed to target the problems
of the automation of scientific researches and production processes. The language



A Toolkit for the Development of DDFP Programmes 29

is oriented towards large-blocks programming and, in fact, describes an inter-
action of different resources. On the contrary, our approach targets unlimited
resources and parallelism at the level of elementary operations.

Sisal is one of the universal functional languages of parallel programming
that has been developed for a long time. The first version of this language
was released in 1985. In recent times, the Institute of Informatics Systems of
the Siberian Branch of the Russian Academy of Sciences has been developing
this language, and its latest release is Sisal 3.2 [20]. It should be pointed out
that the main goal of the project is to provide application programmers with
convenient environment for functional programme development, with the subse-
quent execution of the programmes on a parallel computing system available via
telecommunication networks. This is the main difference from our goals: we seek,
investigate and implement operators that allow for efficient expression of unlim-
ited parallelism in architecture-independent parallel programmes. In our view,
this allows to rethink the process of development, analysis and transformation
of parallel programmes. In particular, it is demonstrated in [21] how to deduce
known methods of sorting by imposing different constraints on an algorithm with
initially unlimited parallelism.

6 Conclusions

The toolkit being developed allows to create architecture-independent parallel
programmes whose execution may be controlled using different strategies with-
out changing the programme logic. Nothing prevents us from performing pre-
liminary optimisation, testing and verification of the DFG in the architecture-
independent manner. Further transformations of intermediate programme repre-
sentations to programmes for real computing systems can be carried out on the
already debugged source code by means of formal methods, which would increase
programme reliability. Also, it is possible to perform additional optimisations,
for instance, to increase the efficiency of memory usage.

It should be pointed out that all transformations are done only after a cor-
rectly functioning programme code is written. In the meantime, we have solved
only the first part of the problem—programme execution on the emulator of the
event machine. The next stage of our development is programme transforma-
tions for existing computing systems. Besides making the developed tools more
convenient to use, we intend to create an integrated development environment
(IDE) that additionally supports function repository, translating, verification
and execution of programmes.

References

1. McKenney, P.E.: Is Parallel Programming Hard, And, If So, What Can You Do
About It? www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.
html

www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html


30 A. I. Legalov et al.

2. Karpov, Y.G.: Model Checking. Verification of Parallel and Distributed Program
Systems. BHV-Petersburg, Saint Petersburg (2010). (in Russian)

3. Korneev, V.D.: Parallel programming in MPI. Institute of Computational Math-
ematics and Mathematical Geophysics, Siberian Branch of the Russian Academy
of Sciences, Novosibirsk (2002). (in Russian)

4. Akhter, S., Roberts, J.: Multi-core Programming Increasing Performance through
Software Multithreading. Intel Press, Santa Clara (2006)

5. Cheng, J., Grossman, M., McKercher Ty.: Professional CUDA Programming.
Wiley, Indianapolis (2014)

6. Tay, R.: OpenCL Parallel Programming Development Cookbook. Packt Publishing
Ltd., Birmingham (2013)

7. Lastovetsky, A.L.: Parallel Computing on Heterogeneous Networks. Willey, Hobo-
ken (2003). https://doi.org/10.1002/0471654167

8. Maad, S. (ed.): Grid Computing – Technology and Applications, Widespread Cov-
erage and New Horizons. InTech, Rijeka (2012). https://doi.org/10.5772/2290

9. Gaster, B.R., Howes, L., Kaeli, D.R., Mistry, P., Schaa, D.: Heterogeneous Com-
puting with OpenCL. Advanced Micro Devices, Inc., Elsevier Inc., Santa Clara
(2013)

10. Voevodin, V.V., Voevodin, Vl.V.: Parallel Computations. BHV-Petersburg, Saint
Petersburg (2002). (in Russian)

11. Legalov, A.I.: The functional programming language for creating architecture-
independent parallel program. Comput. Technol. 10(1), 71–89 (2005). (in Russian)

12. Legalov, A.I.: Managing computation in parallel systems and programming lan-
guages. Sci. Bull. NSTU 3(18), 63–72 (2004). (in Russian)

13. Backus, J.: Can programming be liberated from von Neuman style? A functional
stile and its algebra of programs. CACM 21(8), 613–641 (1978). https://doi.org/
10.1145/359576.359579

14. Legalov, A.I., Redkin, A.V., Matkovskii, I.V.: Data driven functional parallel pro-
gramming with data coming asynchronously. In: PACT 2009, pp. 573–578. South
Ural State University, Chelyabinsk (2009). (in Russian)

15. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12(10),
576–585 (1969). https://doi.org/10.1145/363235.363259

16. Kropacheva, M., Legalov, A.: Formal verification of programs in the pifagor lan-
guage. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 80–89. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39958-9 7

17. Ushakova, M.S., Legalov, A.I.: Automation of formal verification of program in the
Pifagor language. Model. Anal. Inf. Syst. 22(4), 578–589 (2015). https://doi.org/
10.18255/1818-1015-2015-4-578-589

18. Andrianov, A.N., Baranova, T.P., Bugerya, A.B., Efimkin, K.N.: Nonprocedural
NORMA Language and Its Translation Methods for Parallel Architectures. Uni-
versity News. North-Caucasian region, Technical Sciences Series, vol. 3, no. 195,
pp. 5–12 (2017). https://doi.org/10.17213/0321-2653-2017-3-5-12

19. Yang, Y.: LabVIEW Graphical Programming Cookbook. Packt Publishing, Birm-
ingham (2014)

20. Kasyanov, V.: Sisal 3.2: functional language for scientific parallel programming.
Enterp. Inf. Syst. 7(2), 227–236 (2013). https://doi.org/10.1080/17517575.2012.
744854

21. Legalov, A.I.: Parallel algorithms development. Open Syst. 9(101), 64–68 (2004).
(in Russian)

https://doi.org/10.1002/0471654167
https://doi.org/10.5772/2290
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-39958-9_7
https://doi.org/10.18255/1818-1015-2015-4-578-589
https://doi.org/10.18255/1818-1015-2015-4-578-589
https://doi.org/10.17213/0321-2653-2017-3-5-12
https://doi.org/10.1080/17517575.2012.744854
https://doi.org/10.1080/17517575.2012.744854

	A Toolkit for the Development of Data-Driven Functional Parallel Programmes
	1 Introduction
	2 Problems of Imperative Paradigm Employment in Parallel Programming
	3 Features of the Computing Model and the Language of Data-Driven Functional Parallel Programming
	4 A Toolkit for Architecture Independent Parallel Programming
	4.1 Translation of Data-Driven Functional Parallel Programmes
	4.2 Parallel Event Machine
	4.3 Optimisation of Data-Driven Functional Parallel Programmes
	4.4 Formal Verification of Data-Driven Functional Parallel Programmes

	5 Overview of Related Works
	6 Conclusions
	References




