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Abstract. The paper presents a new development in the Multipoint
Approximation Method (MAM) that makes it capable of handling large-
scale problems. The approach relies on approximations built in the space
of design variables within the iterative trust-region-based framework of
MAM. With the purpose of solving high dimensionality problems in
a reasonable time, a parallel variant of the Multipoint Approximation
Method (PMAM) has been developed. It is supposed that the values of
the objective function and those of the constraints are computed using
distributed memory (on several cluster nodes), whereas the optimization
module runs on a single node using shared memory. Numerical experi-
ments have been carried out on a benchmark example of structural opti-
mization.
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1 Introduction

In the present paper, the multipoint approximation method (MAM) [1–3] and
its application to large-scale optimization problems are considered. In problems
with a large (in the order of hundreds) number of design variables, MAM has
proved to be efficient, e.g., in turbomachinery applications [4–6]. This method is
an iterative optimization technique based on mid-range approximations built in
trust regions. A trust region is a subdomain of the design space in which a set of
design points, produced according to a small-scale design of experiments (DoE),
is evaluated. These and a subset of previously evaluated design points are used to
build metamodels of the objective and constraint functions that are considered
to be valid within a current trust region. The trust region will then translate
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and change size as optimization progresses. The trust region strategy has gone
through several stages of development to account for the presence of numerical
noise in the response function values [7,8] and occasional simulation failures [9].
The mid-range approximations used in the trust regions, as originally suggested
in [1] for structural optimization problems, are intrinsically linear functions (i.e.
nonlinear functions that can be reduced to a linear form by a simple transfor-
mation) for individual substructures, and an assembly of them for the whole
structure. This was enhanced by the use of gradient-assisted metamodels [3],
the use of simplified numerical models which is also termed the multi-fidelity
approach [10], and the use of analytical models derived by genetic programming
[11]. One of the recent developments [12] involves the use of approximation
assemblies, i.e. a two stage approximation building process that is conceptually
similar to the original one used in [1] but is free from the limitation that lower
level approximations are linked to individual substructures.

The Moving Least-Squares Method (MLSM) was proposed in [13] for smooth-
ing and interpolation of scattered data and was later used in the mesh-free form
of the finite element method (FEM) [14]. As suggested in [15], it can be used
as a technique for metamodeling and in multidisciplinary optimization (MDO)
frameworks. The MLSM is a weighted least-squares method where the weights
depend on the Euclidean distance from a sample point to where the surrogate
model is to be evaluated. The weight value for a certain sample point decays
as the distance increases. Describing the weight decay with a Gaussian function
tends to be the most useful option, even though many others have been evaluated
in [16]. As demonstrated in [17], the cross-validated MLSM can be used both
for design variable screening and for surrogate modeling. In order to create an
efficient MDO framework for problems with disparate discipline attributes, the
optimization approach of MAM was extended in [18] to the use of local DOEs
and MLS approximations built in different subspaces of the total design variable
space corresponding to the individual disciplines. The subspaces are finally com-
bined into the total design variable space in which the resulting MDO problem
is solved.

This paper presents a Parallel Multipoint Approximation Method that makes
it capable of handling problems with numbers of design variables in the order of
thousands. The parallel variant of the algorithm (with the use of shared mem-
ory) has been developed with the purpose of minimizing the work time of the
part of the algorithm related to constructing the approximation and solving the
approximated problem, but not related to computing the values of the objective
function and constraints. The processes of computing the values of the objective
function and constraints (with the use of distributed memory) are supposed to
be already parallelized.

2 The Multipoint Approximation Method

It would be useful to start with a brief description of MAM. A typical formulation
of a constrained optimization problem that MAM works with is as follows:
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min
ai≤xi≤bi

F0(x)

s.t. Fj(x) ≤ 1, j = 1, . . . ,M,
(1)

where x is a vector of design variables, a and b are the lower and upper bounds
for the design variables, respectively, F0(x) is the objective function, and Fj(x)
are the constraints. The numbers of design variables and constraints are n and
M , respectively. MAM attempts to solve this problem by using approximations
of the objective function and constraints in a series of trust regions. The trust
region strategy seeks to zoom in on the region where the constrained minimum
is achieved. It aims at finding a trust region that is sufficiently small for the
approximations to be of sufficiently good quality to improve the design and
contains the point of the constrained minimum as an interior point. The main
loop of the MAM is organized as follows.

Algorithm (MAM).

1. Initialization: choose a starting point x0 and initial trust region [a0, b0] such
that x0 ∈ [a0, b0].

2. On the kth iteration, the current approximation to the constrained minimum
is xk, and the current trust region is [ak, bk] ⊂ [a0, b0].
(a) Design of Experiments (DoE). A set of points xi

k ∈ [ak, bk] is chosen to
be used for building approximations. Responses are evaluated at the DoE
points and approximations are built using the obtained values. Currently,
the pool of approximation methods available in MAM consists of meta-
model assemblies [12] and the moving least-squares metamodels [13–16].
Other metamodel types could be used as well.
Denote the approximate objective function and constraints by ˜F k

0 (x) and
˜F k
j (x), respectively.

(b) The original optimization problem (1) is replaced by the following:

min
ak
i ≤xk

i ≤bi

˜F k
0 (x)

s.t. ˜F k
j (x) ≤ 1, j = 1, . . . , M.

(2)

The approximate problem (2) is solved using Sequential Quadratic Pro-
gramming (SQP). The solution of this problem determines the center of
the next trust region.

(c) The size of the next trust region is determined depending on the quality
of approximations on the previous iteration, on the history of points xk,
and on the size of the current trust region [7].

(d) The termination criterion is checked (it is a part of the trust region strat-
egy and depends on the position of the point xk+1 in the current trust
region, the size of the current trust region and the quality of approxima-
tions). If the termination criterion is satisfied, the algorithm proceeds to
step 3. Otherwise, it returns to step 2.

3. Optimization terminates. The obtained approximation to the solution of prob-
lem (1) is xk+1.
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The approximations ˜F k
j (x), j = 0, . . . ,M, are selected in such a way that

their evaluation is inexpensive as compared to the evaluation of the original
response functions Fj(x). For example, intrinsically linear functions were suc-
cessfully used for a variety of design optimization problems in [3,19]. The approx-
imations are determined by means of the weighted least squares:

min
P

∑

p=1

wpj

[

Fj(xp) − ˜F k
j (xp, aj)

]2

. (3)

In (3), minimization is carried out with respect to the tuning parameters aj ; wpj

are the weight coefficients, and P is the number of sampling points in Design of
Experiments (DoE), which must not be less than the number of parameters in
the vector aj .

The weight coefficients wpj strongly influence the difference in the quality
of the approximations in different regions of the design variable space. Since in
realistic constrained optimization problems the optimum point usually belongs
to the boundary of the feasible region, the approximation functions should be
more accurate in such domain. Thus, the information at the points located near
the boundary of the feasible region is to be treated with greater weights. In
a similar manner, a larger weight can be allocated to a design with a better
objective function (see [3,19]).

As optimization steps are carried out, a database with response function
values becomes available. In order to achieve good quality approximations in
the current trust region, an appropriate selection of DoE points must be made.
In this work, DoE points in each trust region are generated randomly. Gen-
erally, points located far from the current trust region would not contribute
to the improvement of the quality of the resulting approximations in the trust
region. For this reason, only points located in a neighborhood of the current trust
region are taken into account, as depicted in Fig. 1. A box in the space of design

Fig. 1. Current trust region (smaller box) and its extension (larger box): points outside
the larger box are not used for building the approximate functions
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variables, which is approximately 1.5 to 1.8 times larger than the box represent-
ing the current trust region, was found by numerical experimentation to be a
reasonable choice for the size of the neighborhood.

In this work, an approach is used that is based on the assembly of different
approximate models {ϕl} into one metamodel using the following form (note
that the indices j and k are suppressed to simplify notation):

˜F (x) =
NF
∑

l=1

blϕl(x), (4)

where NF is the number of regressors in the model pool {ϕl}, and bl are the cor-
responding regression coefficients. The procedure used consists of two subsequent
steps. In the first step, the parameters al of individual functions (regressors) ϕl in
(4) are determined by solving a weighted least-squares problem using a specified
DoE of P points:

min
P

∑

p=1

wp [F (xp) − ϕl(xp, al)]
2
,

where minimization is carried out with respect to the tuning parameters al.
In the second step, based on the same DoE and keeping the obtained param-

eters al fixed, a vector b in (4) is estimated using the following formulation:

min
P

∑

p=1

wp

[

F (xp) − ˜F (xp, b)
]2

,

which leads to solving a linear system of NF equations with NF unknowns bl,
where NF is the number of regressors in the model pool {ϕl}.

The selection of the regressors {ϕl} is based on the number of sampling points
currently located in the trust region. In the mid-range approximation framework,
inexpensive approximate models for objective and constraint functions are built
using the minimum required number of sampling points. The simplest case is
that of a linear function of the tuning parameters a:

ϕ(x) = a0 +
N

∑

i=1

aixi.

This structure can be extended to an intrinsically linear function. Such func-
tions are nonlinear but they can be reduced to linear ones by simple transfor-
mations. The most useful function among them is the multiplicative function

ϕ(x) = a0

N
∏

i=1

xi
ai .

Intrinsically linear functions have been successfully used for a variety of
design optimization problems. The advantage of these approximation functions
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is that a relatively small number N + 1 (N is the number of design variables) of
tuning parameters ai is to be determined, and the corresponding least-squares
problem is solved easily. This is the most important feature of such approxima-
tions as it allows applying them to large-scale optimization problems.

Other intrinsically linear functions may be considered in the model pool, e.g.,

ϕ(x) = a0 +
N

∑

i=1

ai/xi,

ϕ(x) = a0 +
N

∑

i=1

aix
2
i ,

ϕ(x) = a0 +
N

∑

i=1

ai/x2
i ,

ϕ(x) = a0 +
N

∑

i=1

aix
3
i ,

ϕ(x) = a0 +
N

∑

i=1

ai/x3
i .

As more points are added to the database, the approximations may be
switched to higher quality models, e.g., a rational model

ϕ(x) =
a1 + a2x1 + a3x2 + ... + an+1xn

1 + an+2x1 + an+3x2 + ... + a2n+1xn
. (5)

The coefficients in (5) are determined using a least-squares approach which
reduces to a nonlinear optimization problem with a constraint on the sign of
the denominator (positive or negative). The latter is necessary in order to pre-
vent the denominator from crossing the zero axis within a specified trust region.
One may note that this formulation may yield an objective function with many
local minima. Currently, this problem is resolved using optimization restarts
from a specified number of initial guesses randomly generated in a trust region.

Tests results demonstrated that, although the above functions may describe
the global behavior rather poorly, such approximations prove to be efficient in
the mid-range approximation framework of MAM.

3 Parallel Multipoint Approximation Method

Let us consider possible methods of parallelization that could be applied to the
problems considered.

First, one can parallelize the computation of the functions describing the opti-
mized object. This way is an obvious as well as necessary one since, in industrial
design optimization problems, the computation of even a single function value
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may take several hours. However, this method is a specific one for each par-
ticular problem. Here the computation issues are addressed at the level of the
application software in which the industrial modeling is performed (e.g., Ansys,
OpenFOAM, etc.).

Second, one can correct the algorithm with the purpose of parallel computing
several values of the objective function and constraints at different points of the
search domain. According to the MAM rules, in design of experiments, P sam-
pling points are formed in the current trust region at each iteration. The function
values at these points can be computed on different processors (nodes) in par-
allel. The above corresponds to the parallelization of Step 2a of the algorithm
using distributed memory. The number of sampling points generated within each
iteration may be set equal to P = k · NP , where NP is the number of available
processors (or nodes), and k ≥ 1. In terms of time, the latter will be equiva-
lent to NP function evaluations per step. This method has been implemented
successfully in [20] and has demonstrated a good efficiency since, for numbers
of design variables of the order of 100, time is mainly consumed by the func-
tion evaluations, whereas the work of the MAM itself (in the sequential regime)
introduces a minor overhead.

However, when the number of variables becomes of the order of 1000, the
work of the sequential part of MAM begins to affect the total problem solving
time essentially (assuming that the time of computing the objective function
values remains constant). Thus, for the problem considered in Sect. 4, the time
of execution of a single iteration of the method increased by a factor of more
than 4000 (from 1.5 up to 6000 s) when increasing the number of variables from
100 up to 1000. Another approach to the parallelization of the algorithm has
therefore been applied within the framework of the present study: namely, the
computational rules of MAM providing for the construction of the approxima-
tion, the solution of the approximated problem, and the choice of the next trust
region (Steps 2b, 2c, and 2d of the algorithm) were parallelized.

In order to find the most time-consuming parts of the sequential program
developed earlier, we applied the Intel VTune Amplifier XE. The analysis per-
formed has shown that the most time-consuming operations in the execution of
MAM are matrix multiplication, the solution of the SLAE when constructing the
approximations, and the solution of the approximating problem by SQP. Matrix
multiplication and solution of SLAE are standard operations implemented in
many high-performance libraries. Here we used the corresponding parallel meth-
ods from the Intel MKL library. We parallelized the SQP method ourselves using
OpenMP.

4 Numerical Example

The example considered in this study is a classical engineering optimization
problem known as the scalable cantilevered beam [21]. The engineering object
to be optimized is shown in Fig. 2 (taken from [21]).

The design variables are the widths bi and heights hi of the segments. The
number of segments N can be chosen arbitrarily. The total length of the beam is
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Fig. 2. The cantilevered beam

500 cm, the lengths of the segments are li = 500/N cm. There are N geometric
constraints (the aspect ratios of the blocks, i.e. heights divided by widths, should
not exceed 20) and N constraints on the stress, calculated at the left end of
each segment (stresses should not exceed σ̄ = 14 000N/cm2). There is also a
constraint on the displacement at the tip, which should not exceed 2.5 cm. The
load is P = 50 000 N; the Young’s modulus is E = 2 · 107 N/cm2.

The deflection yi at the right end of the ith segment is given by the following
recursive formulas:

y0 = y′
0 = 0,

y′
i = P ·li

E·Ii

[

L + li
2 −

i
∑

j=1

lj

]

+ y′
i−1,

yi = P ·l2i
2E·Ii

[

L −
i

∑

j=1

lj + 2li
3

]

+ y′
i−1li + yi−1.

The moment of inertia of the ith segment is Ii = bih
3
i /12, and the bending

moment at its left end is Mi = P [L + li − ∑i
j=1 lj ]. The maximum bending

stress in the ith segment is then given by the following formula:

σi =
Mihi

2Ii

We should look for a design of smallest volume V =
∑N

i=1 bihili. The widths
bi vary from 1.0 to 10.0 cm and the heights hi from 5.0 to 100.0 cm. The opti-
mization problem is formulated as follows:

min
b,h

V (b, h)

s.t. 1.0 ≤ bi ≤ 10.0,
5.0 ≤ hi ≤ 100.0,

yN ≤ 2.5,
σi ≤ σ̄ = 14000,

hi

bi
≤ 20.
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With N = 50 segments (corresponding to 100 design variables), the SQP
solution of the problem is V = 63704.598 cm3. The optimal values of the design
variables are given below (the first 50 entries are the widths, and the last 50
entries are the heights of the segments):

b = [3.246, 3.224, 3.202, 3.179, 3.156, 3.133, 3.109, 3.085, 3.061, 3.036,
3.011, 2.985, 2.959, 2.933, 2.905, 2.878, 2.850, 2.821, 2.792, 2.762,
2.731, 2.700, 2.668, 2.635, 2.602, 2.567, 2.532, 2.495, 2.458, 2.419,
2.379, 2.338, 2.295, 2.250, 2.204, 2.156, 2.105, 2.052, 1.996, 1.936,
1.873, 1.805, 1.732, 1.651, 1.562, 1.462, 1.345, 1.196, 1.023, 1.000] ,

h = [64.919, 64.480, 64.033, 63.581, 63.122, 62.656, 62.184, 61.703, 61.216, 60.720
60.216, 59.703, 59.182, 58.651, 58.110, 57.558, 56.996, 56.423, 55.837, 55.239
54.628, 54.003, 53.363, 52.707, 52.035, 51.344, 50.635, 49.906, 49.155, 48.381
47.582, 46.754, 45.897, 45.008, 44.082, 43.116, 42.105, 41.041, 39.919, 38.729
37.462, 36.102, 34.630, 33.020, 31.240, 29.241, 26.910, 23.919, 20.465, 14.639] .

By MAM, we obtained the solution V = 63935.360 cm3, using 2201 function
evaluations (as compared to almost 10 000 evaluations used by SQP). The num-
ber of points in the trust region used to build the approximations was 200. The
optimal values of the design variables obtained by MAM are given below:

b = [3.238, 3.204, 3.202, 3.170, 3.176, 3.128, 3.108, 3.089, 3.057, 3.003
3.027, 2.986, 2.959, 2.952, 2.885, 2.855, 2.864, 2.847, 2.803, 2.762
2.737, 2.722, 2.630, 2.645, 2.590, 2.558, 2.547, 2.480, 2.693, 2.391
2.368, 2.310, 2.307, 2.227, 2.176, 2.149, 2.106, 2.016, 2.007, 1.925
1.864, 1.843, 1.758, 1.635, 1.582, 1.934, 1.332, 1.173, 1.026, 2.419] ,

h = [64.764, 64.083, 64.036, 63.392, 63.518, 62.566, 62.153, 61.772, 61.149, 60.054
60.534, 59.728, 59.182, 59.033, 57.695, 57.105, 57.274, 56.943, 56.057, 55.233
54.747, 54.433, 52.590, 52.902, 51.802, 51.150, 50.943, 49.597, 51.567, 47.811
47.373, 46.190, 46.140, 44.543, 43.525, 42.991, 42.119, 40.308, 40.141, 38.506
37.268, 36.839, 35.153, 32.702, 31.615, 28.304, 26.642, 23.447, 20.536, 9.417] .

The solution obtained by MAM is very close to the reference solution
obtained by SQP, except for the last design variable (the height of the last
segment), which indicates that the problem is insensitive to this variable near
the optimum, making it hard for metamodels to capture this dependence. Both
SQP and MAM solutions are, however, feasible and differ only slightly in the
value of the objective function.

Next, let us compare the work time of the sequential and parallel algorithms
when solving large-scale problems. The dimensionality N of the problem being
solved was varied from 100 up to 1000 design variables, which corresponds to a
variation of the number of segments of the cantilevered beam from 50 to 500. The
number of points in the trust region used to build the approximations was 2N .
Both algorithms were run on a single node of the cluster (the specifications of the



Parallel Multipoint Approximation Method 183

node are listed below), the parallel algorithm employed all 16 processors cores
available. Since the time of computing the objective function and the constraints
in the test problem was negligible, these were computed on the same node.

Table 1. Time and speedup

N TMAM TPMAM Speedup

100 15.4 11.9 1.3

200 167 89 1.9

400 2476 837 3.0

600 9678 2777 3.5

800 27826 6948 4.0

1000 67674 13771 4.9

Table 2. Function evaluations

N IMAM FMAM FSQP

100 10 2201 9901

200 10 4402 28143

400 11 9599 84211

600 10 13200 146046

800 10 17600 221079

1000 10 22000 305308

Table 1 reflects the work time (in seconds) of the sequential algorithm and
that of the parallel one subject to the number of variables. The number of MAM
iterations IMAM as well as the number of function evaluations FMAM required
for solving the problem are presented in Table 2. For comparison purposes, the
number of function value computations FSQP that would be required to solve
the initial (non-approximated) problem by the SQP method is also given. In
all conducted experiments, the objective function values in the sequential and
parallel versions of the algorithm were the same (up to computational errors)
and negligibly differed from the solution obtained by SQP. The reduction of the
number of the function evaluations required to solve the problem using MAM
as compared to the use of SQP was demonstrated visibly.

The computational experiments were carried out on a high-performance clus-
ter at Lobachevsky State University of Nizhny Novgorod. A cluster node includes
two Intel Sandy Bridge E5-2660 2.2 GHz CPUs and 64 Gb RAM. Each CPU has
8 cores, i.e. a total of 16 physical cores were available at the node. MS Visual
Studio 15 and Intel Fortran Compiler were used to implement the algorithm.
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5 Conclusions

Recent developments in the Multipoint Approximation Method (MAM) made
it capable of solving large-scale industrial optimization problems. The fact that
MAM solves the initial problem by using approximations of the objective func-
tion and constraints is the primary distinctive feature of the method. Within
the framework of the present study, we developed a parallel version of MAM ori-
ented to the reduction of the work time of the optimization algorithm (assuming
that the computation of the values of the objective function and constraints has
already been parallelized). The experiments performed have demonstrated an
acceptable speedup when solving large-scale problems employing 16 cores on a
single cluster node. The performance was demonstrated on a benchmark example
of structural optimization known as the scalable cantilevered beam.
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