
Modified Componentwise Gradient
Method for Solving Structural Magnetic

Inverse Problem

Elena N. Akimova1,2(B) , Vladimir E. Misilov1,2, and Andrey I. Tretyakov1,2

1 Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS,
Yekaterinburg, Russia

aen15@yandex.ru, out.mrscreg@gmail.com, fr1z2rt@gmail.com
2 Yeltsin Ural Federal University, Yekaterinburg, Russia

Abstract. An original variant of the componentwise gradient method
is constructed to solve a nonlinear magnetic inverse problem: using mag-
netic data, find a boundary surface between two layers with constant
arbitrarily directed magnetizations. An efficient parallel algorithm is cre-
ated and implemented on a multicore CPU and multiple GPUs to solve
the problem. We study the efficiency and speedup of the parallel algo-
rithm. We solve various model problems with synthetic magnetic data
on a fine grid. A comparison of the proposed method with the conju-
gate gradient method shows that the new one allows for a significant
reduction of computation time.
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1 Introduction

The solution of structural gravity problems and magnetic inverse problems has
an extraordinary importance in the study of the Earth’s crust structure [1–3].

This paper deals with the problem of finding an interface between layers with
different magnetizations using known magnetization contrast, interface depth,
and magnetic field [4,5].

The problem is described by a nonlinear integral equation of the first kind
and thus is ill-posed. It is therefore necessary to use iterative regularization
methods [6].

Real observations are performed on large areas. To increase the accuracy and
the level of detail, it is essential to use finer grids, which leads to big data sets.
The application of modern computing technologies and parallel computations
makes it possible to significantly reduce computation time.
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An effective method to determine the structural boundary in the case of
arbitrarily directed magnetization was constructed in [7,8] on the basis of the
linearized conjugate gradient method.

A time-efficient componentwise gradient method for solving gravity inverse
problems was constructed in [9]. In the present paper, we use this method to
solve the magnetic inverse problem of finding a magnetization interface in the
case of an arbitrarily directed magnetization. Here, we modify the method for
better performance. The modification consists in offsetting the indices of the
components with respect to the angle of the magnetization vector.

Moreover, we construct a parallel algorithm based on the modified compo-
nentwise method and implement this parallel algorithm using the Intel CPUs and
NVIDIA Tesla GPUs of the Uran supercomputer, which is installed at the Insti-
tute of Mathematics and Mechanics of the Ural Branch of the Russian Academy
of Sciences. We also investigate the efficiency and speedup of the parallel algo-
rithm and compare it with a conjugate gradient-based algorithm in terms of
iteration number and computation time.

2 Problem Statement

Let us introduce a cartesian coordinate system in which the x0y plane coincides
with the Earth’s surface and the z axis is directed downwards, as shown in
Fig. 1. Assume that the lower half-space consists of two layers with constant
magnetizations J1 and J2, divided by the surface sought, which is described by
a bounded function ζ = ζ(x, y), and lim

|x|+|y|→∞
(h − ζ(x, y)) = 0 for some h.

Fig. 1. Two-layer medium for the magnetic problem
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The function ζ must satisfy the following equation:

ΔZ(x′, y′, 0) =
1
4π

∞∫

−∞

∞∫

−∞

[
ΔJx(x − x′) + ΔJy(y − y′) − ΔJzh(

(x′ − x)2 + (y′ − y)2 + h2
)3/2

− ΔJx(x − x′) + ΔJy(y − y′) − ΔJzζ(x, y)(
(x′ − x)2 + (y′ − y)2 + ζ2(x, y)

)3/2
]

dx dy, (1)

where ΔJx,ΔJy,ΔJz are the components of the magnetization contrast ΔJ =
J2 − J1, and ΔZ(x, y, 0) is the vertical component of the anomalous magnetic
field measured at the Earth’s surface.

A preliminary processing of data with the aim of extracting the anomalous
field from the measured magnetic data is performed using a technique described
and implemented in [10].

Equation (1) is a nonlinear two-dimensional integral equation of the first
kind.

After discretization of the region Π = {(x, y) : a � x � b, c � y � d}
by means of an n = M × N grid and approximation of the integral operator
using quadrature rules, we obtain a vector F on the right-hand side and an
approximation of the solution vector z of dimension n. Equation (1) can be thus
written as

ΔFi =
ΔxΔy

4π

∑
j=1..n

[
ΔJx(xi − xj) + ΔJy(yi − yj) − ΔJzh(

(xi − xj)2 + (yi − yj)2 + h2
)3/2

− ΔJx(xi − xj) + ΔJy(yi − yj) − ΔJzzj(
(xi − xj)2 + (yi − yj)2 + z2j

)3/2
]
, (2)

We can rewrite the equation as

A(z) = F. (2a)

3 Numerical Methods for the Solution of the Problem

3.1 Linearized Conjugate Gradient Method

The linearized conjugate gradient method (LCGM) has the following form [11]:

zk+1 = zk − ψ
〈pk, S(zk)〉
‖A′(zk)pk‖2

pk,

pk = S(zk) + βkpk−1,

p0 = S(z0), (3)

βk = max

{〈
S(zk),

(
S(zk) − S(zk−1)

)〉
‖S(zk−1)‖2

, 0

}
,

S(z) = A′(z)T
(
A(z) − F

)
,
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where zk is the approximation of the solution in the kth iteration, k ∈ N, and ψ
is a damping factor.

A parallel algorithm based on this method was developed and implemented
in [8] for NVIDIA GPUs using CUDA technology.

3.2 Componentwise Gradient Method

The componentwise gradient method (CWM) has the following form [9]:

zk+1
i = zki − ψ

Ai(zk) − Fi

‖∇Ai(zk)‖2
(

∂Ai(zk)
∂zi

)
, (4)

where zi is the ith component of the solution approximation, i = 1, . . . , n, k ∈ N,
and ψ is a damping factor.

The main idea of this method is to minimize the residual Ai(z) − Fi at one
grid node i by changing the value zi at this node. The idea is based on the
fact that the value of a gravity or magnetic (in the case of vertically directed
magnetization) field depends on 1/r2. Thus, the value of zi exerts the greatest
influence on the field value Fi at the node directly situated above it. In the case
of an arbitrarily directed magnetization, the correlation between zi and Fi is
weaker, so this method will not be as effective as it is for vertical magnetization.

3.3 Modified Componentwise Gradient Method

Let us find the approximation of a new point j at which Fj is mostly influenced
by zi in the case of an arbitrarily directed magnetization. This point is displaced
from the point i by the biases x̄ and ȳ. To find x̄, we need to solve the following
problem:

x̄ = arg max
x

[
− ΔJx(x) − ΔJzh(

x2 + h2
)3/2

]
.

The necessary condition for maximum is

d

dx

[
− ΔJx(x) − ΔJzh(

x2 + h2
)3/2

]
= 0.

Write the derivative:

−ΔJx(2x2 − h2) + 3ΔJzhx(
x2 + h2

)5/2 = 0.

Evidently, x �= 0 for the case of nonvertical magnetization and the surface
lies below the Earth’s level, i.e. h > 0, so that

ΔJx(2x2 − h2) + 3ΔJzhx = 0.



166 E. N. Akimova et al.

Write the roots of this equation:

x̄1,2 =

( − 3ΔJz ± √
8ΔJ2

x + 9ΔJ2
z

)
h

4ΔJx
.

Assume that ΔJz > 0. Then, obviously, the relation sgn(ΔJx) = sgn(x̄) must
hold. Only the first root (the one with the plus sign) satisfies this condition. For
ΔJz < 0, we have the second root (the one with the minus sign).

The ȳ bias can be found in the same way. We can now write the modified
componentwise gradient method (MCWM) as follows:

zk+1
i = zki − ψ

Aj(zk) − Fj

‖∇Aj(zk)‖2
(

∂Aj(zk)
∂zi

)
,

j = i + M

( − 3ΔJz + sgn(ΔJz)
√

8ΔJ2
y + 9ΔJ2

z

)
h

4ΔJyΔy
(5)

+

( − 3ΔJz + sgn(ΔJz)
√

8ΔJ2
x + 9ΔJ2

z

)
h

4ΔJxΔx
,

where Δx and Δy are the grid element sizes.
We should also check whether the offsetted indices are out of the grid. If so,

we should use the boundary values.

4 Parallel Implementation

The parallel algorithms based on the componentwise methods were implemented
on a multicore CPU, using OpenMP technology, and NVIDIA M2090 GPUs,
using CUDA technology.

Note that storing a Jacobian matrix for a 29×29 grid takes more than 512 GB.
The elements of the Jacobian matrix in the constructed algorithms are cal-

culated on-the-fly, which means that the value of an element is computed when
calling this element, without storing it previously in memory.

The most expensive operation is to compute the values of the integral opera-
tor and its Jacobian matrix. This operation consists of four nested loops. In the
OpenMP implementation, the outer loops are parallelized using ‘#pragma omp
parallel’, whereas the inner loops are vectorized using ‘#pragma simd’ directives.
When using multiple GPUs, two outer loops are distributed to the GPUs, and
two inner loops are executed on each GPU. The CPU transfers the data between
the host memory and GPUs, and then calls the kernel functions.

The adjustment of the kernel execution parameters for the grid size is an
important problem. In [12], we proposed an original method for automatic
adjustment of parameters. This method is based on rescaling the optimal param-
eters found for a reference grid size.

This imposes some constraints on the input data and GPUs configuration:

– the grid size must be divisible by 128 (128, 256, 512, 1024, . . .);
– the number of GPUs must be a power of 2 (1, 2, 4, 8, . . .).
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5 Numerical Experiments

The model problems consisted in finding the interface between two layers.
Figure 2 shows the model surface z∗ considered in all model problems.

Figures 3, 4, 5, 6 and 7 show the model magnetic fields ΔZi(x, y, 0). These
fields were obtained by solving the direct problem for the surface with the asymp-
totic plane H = 10 km and various magnetization contrasts:

ΔJ1 = (0, 0, 1)A/m,

ΔJ2 = (0.19, 0.19, 1)A/m,

ΔJ3 = (0.41, 0.41, 1)A/m,

ΔJ4 = (0.71, 0.71, 1)A/m,

ΔJ5 = (1.23, 1.23, 1)A/m.

These contrasts correspond to magnetization direction angles of 0◦, 15◦, 30◦,
45◦, and 60◦.

The problems were solved on the Uran supercomputer nodes (two eight-core
Intel E5-2660 CPUs and eight NVIDIA Tesla M2090 GPUs) by the following
three methods:
– linearized conjugate gradient method (LCGM) (3);
– componentwise gradient method (CWM) (4);
– modified componentwise gradient method MCWM (5).

The reconstructed interfaces are shown in Fig. 8.
The condition ‖A(z) − F‖/‖F‖ < ε, ε = 0.011, was taken as termination

criterion for all methods. The parameter ψ was set at 0.85 in the CGM for 60◦,
as well as in the CWM and MCWM for 45◦. In the CWM and MCWM for 60◦,
it was set at 0.75. Everywhere else, it was set at 1.

The relative error of all solutions is δ = ‖z − z∗‖/‖z∗‖ < 0.01.
Table 1 summarizes the numbers of iterations N and average execution times

T for 10 runs on two eight-core Intel E5-2660 CPUs (16 cores) with a 512 × 512
grid.

Speedup and efficiency coefficients are used to analyse the scaling of parallel
algorithms. The speedup is expressed as Sm = T1/Tm, where T1 is the execution
time of a program running on one GPU, and Tm is the execution time for m
GPUs. The efficiency is defined as Em = Sm/m. The ideal values are Sm = m
and Em = 1, but real values are lower because of the overhead.

Table 2 summarizes the average execution times for the CWM method on a
512 × 512 grid for various numbers of GPUs.

The experiments show that the constructed modified algorithms are very
effective. New algorithms are more economical in terms of operations and time
at each iteration step. For the model problems, the componentwise method has
a better performance in terms of number of iterations and computation time
than the conjugate gradient methods. The parallel algorithms demonstrate an
excellent scaling; the efficiency is more than 100% for eight GPUs. Probably, this
is due to a non-optimal automatic adjustment of the kernel execution parameters
for some configurations of GPUs.
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Fig. 2. The original surface z∗

Fig. 3. Model gravitational field for an angle of 0◦
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Fig. 4. Model gravitational field for an angle of 15◦

Fig. 5. Model gravitational field for an angle of 30◦
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Fig. 6. Model gravitational field for an angle of 45◦

Fig. 7. Model gravitational field for an angle of 60◦
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Fig. 8. Reconstructed surfaces for various magnetization angles

Table 1. Comparison of methods

Magnetization angle CGM CWM MCWM

N T (min) N T (min) N T (min)

0◦ 20 120 6 36 6 36

15◦ 20 120 6 36 6 36

30◦ 20 120 8 48 7 42

45◦ 25 150 10 60 9 54

60◦ 26 156 16 96 14 84
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Table 2. Execution times (in minutes) of the parallel CWM algorithm on multiple
GPUs

Magnetization angle Number of GPUs

1 2 4 8

Execution time T , minutes

0◦ 7.6 2.8 1.3 0.7

15◦ 7.6 2.8 1.3 0.7

30◦ 8.3 3.3 1.5 0.9

45◦ 10.8 4.5 2.3 1.1

60◦ 17.7 7.9 4.2 2.1

6 Conclusions

We constructed an original variant of a componentwise gradient method for a
structural magnetic inverse problem consisting in finding a contact surface in
the case of an arbitrarily directed magnetization.

We developed parallel algorithms based on the componentwise gradient
method and its modified variant. The parallel algorithms were implemented on a
multicore CPU, using OpenMP technology, and on multiple GPUs, using CUDA
technology. Model problems with fine grids were solved. The parallel algorithms
demonstrated an excellent scaling and nearly 100% efficiency.

The componentwise gradient methods (CWM and MCWM) are very effective
for solving problems with a nearly vertical magnetization direction; in this case,
computation times are reduced by a factor of 2 to 4. For greater magnetization
angles, the modified componentwise gradient method (MCWM) show better
computation times compared to the unmodified componentwise method.
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