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Abstract. TIM-3D is a continuum-mechanics simulation code that uses
arbitrary-shape unstructured polyhedral Lagrangian meshes. Parallelism
in TIM-3D is provided at three levels in the mixed-memory model. The
first two levels use space decomposition in the MPI-based distributed-
memory model. At the first level, calculations are parallelized in task
fragments (domains). At the second level, calculations within one domain
are parallelized in para-domains. At the third level, iterations of cal-
culation loops are parallelized in the OpenMP-based shared-memory
model. The paper considers the fine-grained paralleling algorithms (sec-
ond level). These algorithms are complementary to the OpenMP shared-
memory parallelism implemented earlier. The fine-grained paralleling can
be done both with overlapping in one row of para-domain interface cells
and without overlapping. These approaches are compared in their paral-
lel efficiency using one of test simulations.
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1 Introduction

TIM-3D [1] is an unsteady continuum-mechanics simulation code that employs
unstructured arbitrary-shape polyhedral Lagrangian meshes. Cells can have an
arbitrary number of faces, and the faces can have an arbitrary number of nodes
connecting an arbitrary number of cells and edges. Figure 1 shows some simple
examples of meshes used in the code.

Parallelism in TIM-3D is provided at three levels. This approach is an exten-
sion of the three-level parallelism in TIM-2D [2] to the three-dimensional case.
The first two levels use space decomposition in the MPI-based distributed-
memory model. At the first level, calculations are parallelized in task fragments
(domains). At the second level, calculations within one domain are parallelized
in para-domains. At the third level, iterations of calculation loops are paral-
lelized in the OpenMP-based shared-memory model. These approaches can be
used both together in different combinations, and separately in one calculation.

Earlier, TIM-3D used shared-memory model parallelism [3]. Shared-memory
parallelism is not sufficient, because the number of memory-sharing processor
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Fig. 1. Examples of polyhedral meshes used in TIM-3D

cores in up-to-date cluster computers is not very large. TIM-3D uses decompo-
sition into domains. This involves solving a contact interaction problem between
domains. Domains are calculated independently. This circumstance is used for
the first level of parallelism. Its constraint is a small number of domains (usually
up to 10). Thus, in order to remove the constraints on the number of computa-
tional resources engaged, an intermediate level of parallelism is required: at the
sub-domain level, where the domain is divided into smaller geometric “grains”.
These fine-grained paralleling algorithms are described in the present paper.

The development of the parallel algorithms is based on the following princi-
ples:

– Identity of calculation outputs in any mode of calculations.
– Scalability, or possibility of running calculations on any number of cores with

easy switch-over between the modes from one start to another for a single
task.

– Minimum memory consumption—to run tasks that are too large for the mem-
ory available to a single core.

– Optimum utilization of computational resources. Prevention of imbalance, or
in-process balancing when this occurs.

To facilitate the development of computational programs:

– Universal data representation in any mode of calculations.
– Minimum revision of codes to make them parallel; the burden of managing

parallel computations lies with a set of supporting programs.

2 Data Decomposition

Efficient use of computational programs on parallel computers requires decom-
position to ensure uniform distribution of work load among computer cores with
as little communication as possible. Decomposition in the distributed-memory
model includes distribution of data among processes (data decomposition) in
such a way that the number of data transfers and the volume of communicated
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data between them is minimum. For distributed-memory parallelism, TIM-3D
uses space decomposition. Decomposition principles for fine-grained parallelism
are as follows:

– The decomposition is performed by cells (cells are the basic computing mesh
elements in TIM-3D).

– All domain cells are distributed among compacts so that each cell belongs to
only one compact.

– Each domain is split into compacts irrespective of other domains.

The problem of decomposition for fine-grained parallelism comes down to
solving a problem of graph partitioning into subgraphs. This is accomplished by
the following algorithm:

– A graph representing the mesh structure is built based on the unstructured
mesh. Graph nodes correspond to mesh cells, and graph edges, to neighbor-
hoods between cells.

– Graph nodes are assigned the weight reflecting the computational load associ-
ated with the corresponding cell. Weights of graph edges are used to introduce
additional decomposition properties. For example, extending compacts along
boundaries reduces the number of data transfers in contact interaction calcu-
lations.

– The problem of graph partitioning into subgraphs is solved using algorithms
from the ParMeTiS or SCOTCH libraries [4–6] and our own hybrid (topolog-
ical and geometric) decomposition algorithm.

Examples of resulting decompositions done by SCOTCH algorithms and by
our own algorithm are shown in Fig. 2.

Fig. 2. Examples of decompositions: SCOTCH (left), hybrid (right)
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3 Fine-Grained Parallelism

TIM-3D uses the staggered centering stencil. Kinematic quantities (velocities,
accelerations, coordinates) are assigned to cell nodes, while thermodynamic
quantities (energy, pressure, density, etc.) are assigned to cells. As a result,
the key issue associated with the fine-grained parallelism is the way of calcu-
lating the mesh nodes (cell vertices) surrounding the cells belonging to different
compacts (para-boundary nodes). For simplicity, let us illustrate this with the
two-dimensional case shown in Fig. 3. In the figure, the white cells belong to
compact 1, and the yellow ones, to compact 2.

Fig. 3. A mesh fragment partitioned into compacts (Color figure online)

In accordance with the difference scheme of TIM-3D [1], a closed integration
contour of cell centers and edge centers is constructed to calculate a node. For
the two-dimensional case of interest, an example of an integration contour for
the node V in Fig. 4 is marked by a green line. The integration contour is defined
by the centers of the surrounding cells C1, C2, C3, C4, and the “centers” of the
edges V V1, V V2, V V3, V V4. In conformity with the integration contour, the node
V is calculated using the quantities in both the cells C1, C2, C3, C4, and the
nodes V , V1, V2, V3, V4.

If the integration contour is preserved, we obtain the first type of fine-grained
parallelism (with one layer of overlapping cells). In order to preserve the node
integration contour on the side of the first para-domain, the cells C2, C3 do
not need to be generated completely, i.e. no information on the nodes V5, V6 is
required. However, if we do not attach these nodes to the first para-domain, the
mesh will be incomplete, and some operations on the cells C2, C3, for example,
definition of mesh nodes, volume calculations, or determination of the center, will
be unavailable. In this case, the attached cells need to be described in the data
structure in a special way and accounted for in different computing algorithms.
As the highest possible transparency of parallelism for computing algorithms
is one of the basic paralleling principles, it was decided to include such nodes
into para-domains as attached nodes, i.e. the nodes V3, V5, V6 are attached with
respect to para-domain 1.
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Fig. 4. Node integration contour (Color figure online)

On the other hand, the integration contour can be represented as a set of
closed contours on the side of each cell (this representation is also used in the
difference scheme to determine the node mass [1]). Similarly, the integration
contour can also be represented as a set of closed contours on the side of each
para-domain. Such a partitioning for the case under consideration is shown in
Fig. 5, where the partitioning line of the integration contour is marked with red.
When the integration contour is partitioned, the nodes along the para-domain
interface are divided into pairs (or proportional to the number of para-domains
connected at the node), for example, the node V is partitioned into V ′ and V ′′.
For each node, a separate integration contour is used to determine the mass and
accelerations, which are then combined to calculate the common velocity. Such
an integration contour partitioning in the simulation makes it possible not to use
the overlapping between para-domains. A similar approach is used for “no-slip”
boundaries [7] and for fine-grained parallelism in TIM-2D [8].

Fig. 5. Node integration contour partitioning during fine-grained paralleling without
overlapping (Color figure online)
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A similar volume element in the three-dimensional case is constructed as fol-
lows (see Fig. 6). Consider node i. Let the point j be the center of a cell adjacent
to the node i. We draw three planes through the center j of the polyhedron
(Fig. 6):

– the first passing through the node of interest i and one of the edges connected
at this node and belonging to the cell having its center at j, for example, ii1;

– the second passing through the node i and the center c1 of one of two faces
of polyhedron j to which the edge ii1 also belongs;

– the third passing through the middle i2 of the same edge ii1 and the center
c1 of the face.

The triangular pyramid jii2c1 is part of the volume of the mass belonging to
the node i. Using the same procedure, we construct another triangular pyramid
with another edge belonging both to the face c1, the node i and the cell of
interest centered at j. Now we proceed to other faces belonging to the cell j and
the node i at the same time. The number of such faces is equal to the number
of faces of the polyhedral angle corresponding to the node i and the cell j (in
most cases, they are three).

This resulting set of triangular pyramids generates the polyhedron belonging
to the node on the face of the cell of interest j.

Fig. 6. Nodal cell element in TIM-3D

Interactions between para-domains are always pairwise. One can there-
fore speak about introducing para-boundaries. Para-boundaries include para-
boundary nodes and faces separating the cells calculated in different para-
domains. The para-boundaries also contain cell elements in the overlapping layer
(if it is used): attached and near-boundary cells, faces, nodes.

Domain partitioning into para-domains does not change the difference scheme
of TIM-3D in both fine-grained parallel modes, ensuring the identity of their
results with that of the serial mode.

Finite-difference codes generally employ fine-grained parallelism with over-
lapping (see, e.g., [9–11]). A similar approach is to fill in missing data that are
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needed to calculate equations (see, e.g., [12]). The approach with node integra-
tion contour partitioning has been proposed for TIM-2D [8]. The present work
considers its extension to the three-dimensional case.

If one compares the approaches, then each of them will have both advan-
tages and disadvantages. The non-overlapping method demands less communi-
cation, because only nodal quantities are exchanged, whereas both nodal and
cell-centered quantities are exchanged in the mode with overlapping. The vol-
ume of communicated data in the non-overlapping mode is also much smaller,
because only data on para-boundary nodes are transferred, whereas in the mode
with overlapping, this volume also includes data on the nodes of the overlapping
layer. This results in higher efficiency of the non-overlapping mode. This app-
roach is more convenient for algorithm programming, because all cell elements
are computable, and the para-domain is in fact nearly identical to the mathemat-
ical domain. A constraint of the non-overlapping approach is that the difference
scheme of the code should allow for integration contour partitioning. The draw-
back of the non-overlapping approach is that new limitations of the algorithms
involving cell analysis around nodes at the para-domain interface occur. Exam-
ples of such algorithms include mesh maintenance algorithms (for example, it
becomes impossible to combine directly cells from different para-domains). The
computational load also increases a little because of the recovery of the common
node integration contour.

The mode with overlapping is free of these limitations and drawbacks, which
makes it more general. But its efficiency turns out to be a little lower because
of the growing volume of exchanged data and number of data transfers.

4 Specific Features of Cell Neighborhood
in the Three-Dimensional Case

In the three-dimensional case, para-domain generation has a number of spe-
cific features that distort the mesh structure in the para-domain. Such features
are impossible or exceptional in the two-dimensional case, while in the three-
dimensional case they are present in quite consistent decompositions.

The first class of features occurs at para-domain interfaces. They are cell
neighborhoods along an edge or across a node (see Fig. 7). Such features make
it difficult to describe the mesh structure [13], for example, to get a list of
surrounding cells for nodes.

Features of the second class occur at outer domain boundaries. They include
outbreaks of para-domains to the outer boundary with one edge or node. The
simplest example of such a feature is the decomposition of a regular spherical
mesh into columns or rows (see Fig. 8). The features of this class cause problems
in calculations of contact interactions since they involve calculations of surface
interactions, even though edges and nodes do not generate any surfaces.

These features constitute a certain challenge for the non-overlapping fine-
grained parallelism because they directly influence calculations of the respective
mesh nodes. These problems are not so evident in the overlapping mode since
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Fig. 7. Features in para-domain cell neighborhood: neighborhood along an edge (left),
neighborhood across a node (right)

Fig. 8. Example of single-point outbreaks of para-domains onto the outer surface

the data of the feature are mostly transferred to an attached layer which is not
processed. Nevertheless, these features should be kept in mind in this mode too.

To solve the above-mentioned problems, an additional object, a boundary
node, has been introduced into the algorithms. This object is introduced for
nodes at both outer and parallel boundaries. The following information is stored
for boundary nodes:

– A full set of boundary conditions (both outer and parallel).
– A number of countable quantities essential for contact interaction calcula-

tions, such as vectors of outward normals, work, etc.
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– Specifically for fine-grained parallelism, numbers of all faces connected at the
boundary node are stored.

The storage of additional boundary node information makes it possible to
incorporate arising features into the algorithms.

5 Fine-Grained Paralleling Algorithms

Fine-grained parallelism in para-domains includes processing of interior and
near-boundary mesh elements. Cell calculations are therefore strictly associated
with para-domains. However, this poses a question regarding nodes: how to cal-
culate para-boundary nodes? As stated in Sect. 3 above, in the non-overlapping
mode, para-boundary nodes are firstly calculated independently in each para-
domain and then matched. This requirement is removed in the overlapping fine-
grained paralleling mode, and para-boundary nodes can be calculated by any
process calculating surrounding para-domains. As node calculations are rather
inexpensive in TIM-3D, calculations of para-boundary nodes are backed up in
this case. In TIM-3D, gas dynamic quantities are calculated in two major steps:

1. Calculations of nodal quantities, such as velocities, coordinates (calculation
of the equation of motion). Node calculations are performed using data from
neighbor nodes and surrounding cells from the previous time step.

2. Calculations of cell quantities, such as density, pressure, energy (calculation
of the energy equation). These are done with updated node locations of the
cells under consideration, based on which changes in the cell volume at an
iteration time step are calculated.

The overlapping mode encounters the issue of data update in attached mesh
elements (cells and nodes). This update is performed by asynchronous commu-
nication in para-boundary, near-boundary and attached elements. Calls of com-
munication procedures are placed in such a way that the required information
is updated before its use.

A flow diagram of a time step involving fine-grained paralleling with overlap-
ping is shown in Fig. 9. The flow diagram for the non-overlapping mode remains
the same, except for missing transfer of cell quantities. Likewise, once information
is received, an additional integration contour recovery operation is performed.

The green boxes in Fig. 9 represent the calls of asynchronous communication
procedures for nodal quantities, and the yellow boxes, for cell quantities; dashed
lines are actual data streams between processes. The flow diagram shows that
data transfers are combined with calculations of interior cells and nodes, which
enables their parallel running. Communication involves packaging and unpack-
aging of quantities in the buffer array.
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Fig. 9. Flow diagram of nodal and cell quantities in the overlapping fine-grained par-
alleling mode (Color figure online)
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6 Distinctive Features of Non-overlapping Fine-Grained
Parallelism

The approaches employed in TIM-3D paralleling algorithms are basically similar
to those employed in TIM-2D [2]. In addition, most computational modules in
both codes use the same programs for the two-dimensional and three-dimensional
cases. The major difference in the parallelism of TIM-3D lies in the fine-grained
paralleling algorithms with non-overlapping cell layers.

In TIM-2D, the integration contour partitioning scheme is used to calculate
the no-slip boundary motion, when no partitioning is allowed at the domain
boundary not only for the normal, but also for the tangential velocity component.
In TIM-2D, the non-overlapping fine-grained parallelism is implemented by a
modified algorithm for no-slip boundary calculations [7].

In the three-dimensional case, however, the approach employing the contact
interaction algorithms cannot be used for a number of reasons. The main one is
that the boundary interface in the two-dimensional case is a combination of two
broken lines. Each line is drawn using a strictly defined series of boundary points
in each domains. The three-dimensional case involves surfaces, and it is impos-
sible in this case to set up a strict series of points and hence ensure the node-
to-node point matching especially with active execution of mesh maintenance
algorithms (to maintain the required shape of Lagrangian cells). In addition,
contact interaction algorithms in the three-dimensional case become much more
complicated themselves, primarily as a result of the transition to surface interac-
tion. This makes the contact interaction algorithms significantly more expensive.
Note that even in the two-dimensional case, calculations of boundary points are
several times more expensive than calculations of interior points. It is therefore
preferable to prevent the buildup of boundary points in the three-dimensional
case.

For these reasons, in the three-dimensional case, for the non-overlapping
fine-grained parallelism, it was decided to implement a program matching nodal
quantities upon exchange of accelerations and masses for para-boundary nodes,
rather than to use the contact interaction algorithms.

The node integration contour recovery algorithm is as follows:

– Prior to starting a calculation, masses of para-boundary nodes are calculated
over the integration contour belonging to the para-domain of interest. That
is, one para-boundary node has its own mass in different para-domains, and

its total mass is the sum of its masses in the para-domains (mi =
k∑

j=1

mj is the

mass of the para-boundary node i with respect to k para-domains (k ≥ 2), mj

is the mass of the para-boundary node in the corresponding para-domain).
– The para-boundary nodes are calculated in each para-domain completely

independently. Here, no forces are applied from the side of the parallel bound-
ary (the parallel boundary serves as a free surface with pressure PG = 0).

– Once all the para-boundary nodes are calculated, their resulting accelerations
and masses are exchanged between the para-domains. Generally speaking,
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node masses do not vary in the course of gas dynamic equation calculations,
but their variations are possible as a result of the execution of mesh main-
tenance algorithms. In addition, more complicated algorithms may require
some additional quantities, so whole sets of nodal quantities are exchanged.

– Once the exchange is over, total accelerations, velocities and positions of
para-boundary nodes are calculated in each para-domain as follows:

an+1
i =

k∑

j=1

mian+1
j

k∑

j=1

mj

− total acceleration of node i;

vn+1
i = vn

i + τan+1
i − total velocity of node i;

rn+1
i = rni + τvn+1

i − updated node position;

where τ is the time step.

Note that the additional update can lead to truncation errors due to specific
features of machine arithmetics, i.e., the resulting velocity calculated by different
processes can differ in its 16th digit. This error can build up with time and result
in mismatch between para-boundary nodes (a gap or overlapping between para-
domains). Although the mismatch is tiny, some algorithms can be sensitive even
to such discrepancies. To overcome this problem, (1) the resulting velocity is
rounded by assuming that near-zero accelerations and velocities are zero, and
(2) the velocities and node positions are averaged at time instant n. Velocities
and coordinates are calculated as follows:

vn+1
i =

k∑

j=1

vn
j

k
+ τan+1

i − total velocity of node i;

rn+1
i =

k∑

j=1

rnj

k
+ τvn+1

i − updated node position.

This prevents any mismatch between matched para-boundary nodes belong-
ing to different para-domains.

7 Measurements of Parallel Efficiency

To assess the parallel efficiency, we used the functions Sp = t1
tp

(speedup of
calculations), and Ep = t1

ptp
·100% (parallel efficiency), where t1 is the calculation

time on one processor of the parallel computer (serial calculations), tp is the
calculation time on p processors.

For the test, we chose a planar-wave problem [14]. The calculation was run
on an unstructured hexahedral mesh of 1 million cells. The results of time,
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acceleration and efficiency measurements are summarized in Table 1. We used
as a basic unit the time for running the calculation of one compute node with
OpenMP parallelism only. This allowed us to evaluate the efficiency of the fine-
grained paralleling block in the mixed mode.

The results indicate that the efficiencies of the fine-grained parallel modes
with and without overlapping are close up to 10 compute nodes, whereas, for
a greater number of nodes, the efficiency of the non-overlapping parallel mode
becomes higher (by 7 to 10 %). This is explained by a smaller number of data
transfers and a smaller volume of communicated data.

Table 1. Measured speedup and parallel efficiency

Mode→ With overlapping Without overlapping

Core count Node count Time, s Speedup Efficiency Time, s Speedup Efficiency

16 1 4012.10 1 100% 4012.10 1 100%

32 2 2224.96 1.80 90.16% 2268.58 1.76 88.42%

64 4 1116.10 3.59 89.86% 1144.32 3.50 87.65%

128 8 629.42 6.37 79.67% 594.82 6.74 84.31%

160 10 515.88 7.77 77.77% 495.80 8.09 80.92%

256 16 359.40 11.16 69.77% 321.14 12.49 78.08%

320 20 303.34 13.22 66.13% 266.54 15.05 75.26%

384 24 264.42 15.17 63.22% 230.37 17.41 72.56%

512 32 222.41 18.03 56.37% 186.29 21.53 67.30%

640 40 193.15 20.77 51.92% 164.17 24.43 61.09%

800 50 169.12 23.72 47.44% 143.87 27.88 55.77%

1600 100 146.71 27.34 27.34% 110.78 36.21 36.21%

8 Conclusions

The paper describes two fine-grained parallel methods used in TIM-3D code.
In the first method, the whole node integration contour is preserved, and para-
domains overlap in one layer of cells. The overlapping layer serves for node and
cell data communication. In the second method, the node integration contour
is partitioned, and para-domain interactions are calculated. These methods are
close in their parallel efficiency on a small number of compute nodes (up to
10), while, on a large number of nodes, the non-overlapping method turns out
to be 7 to 10 % more efficient. The higher efficiency is achieved owing to a
smaller number of data transfers and a smaller volume of communicated data.
Most calculations in TIM-3D are performed in the non-overlapping fine-grained
parallel mode.

The algorithms developed are complementary to the OpenMP parallelism
implemented earlier in TIM-3D.
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