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Abstract. The discussion is about parallel guarantied mesh-generation
projection-based algorithm. Main subject of this article is load-balancing
problem in distributed projection-based tetrahedral mesh generation
algorithm. Algorithm is based on construction of triangle prisms, formed
by orthogonal projection of base surface mesh. The advantage of using
projection-based algorithm consists in guarantied tetrahedrisation of 3-
dimensional domain. Main purpose of generated meshes consists in guar-
anteed detection of the topology of three-dimensional domains, which can
be used for mesh adaptation algorithms.
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1 Introduction

Geometrical calculating meshes are used in numerical modeling of solid envi-
ronment. Generating such meshes is one of the hardest computational problems
due to the large amount of time that is required to generate such type of mesh.
One of ways of accelerating mesh generation is using parallel mesh generation
algorithms.

Creating a parallel program creates an addition amount of tasks, which must
be solved for parallel algorithm to become good. There are various problems,
however, in this paper we consider problem of load balancing.

The main problem of load balancing for any parallel program is distributing
the load of a parallel program over multiprocessor system uniformly [3]. There
are two different classes of load balancing algorithms: static and dynamic. A
static load balancing algorithm does not take into account the previous state or
behavior of a node while distributing the load. On the other hand, a dynamic
load balancing algorithm checks the previous state of a node while distributing
the load, such as CPU load, amount of memory used, delay or network load, and
so on [4].
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Each of these methods has their own advantages and disadvantages. Finding
an optimal static load balancing is in general an NP-complete problem, unless
some special cases [3]. It seems that optimal load balancing algorithm consists
of good initial partitioning, which could be performed by some kind of static
load balancing algorithm, and dynamic part, which redistributes load during the
calculation. One of the principal costs of good initial distribution is expected
to be the machine dependent cost of transferring the computational modules
between processors [3].

In this particular paper we discuss static load balancing algorithm for guaran-
teed projection-based tetrahedral mesh generation algorithm. As this algorithm
consists three major parts [1], each of them must have some kind of the algo-
rithm. The fact that the considered algorithm tries to cover as much different
surfaces as possible leads to a major problem: it is possible for one of compu-
tational modules on any of three main steps of algorithm take more time for
processing, than all other modules together. This paper discusses load balanc-
ing for this type of algorithm is static load balancing algorithms. In this paper
is discussed load balancing algorithms for parts of the algorithm, problems of
creating balance weights for each computational module and some experiments
with different size and topology objects.

2 Mesh-Generation Algorithm

For further explanation, let’s point out main parts of algorithm. As input for
this kind of algorithm we’re using an oriented surface triangulation. For the
purpose of simplicity, we suggest projection axis to be parallel to OZ. Therefore,
all surface triangles are divided into 3 grand category, by the direction of z-
component of their normal: TOP, WALL and BOT. Guaranteed mesh generation
algorithm consists 3 main subsections: first part generates projection of BOT
triangles onto TOP, triangulation of the resulting graph and creating a number
of triangle prism, that covers the volume of the initial body; second - attachment
of lateral faces of all faces with each other; and third - triangulating surface faces
of each prism, so each prism is covered by surface triangulation. Any triangle
prism is defined by six points: 3 points for each base prism triangle, even for
degenerate case. Second important thing to admit is that algorithm uses rational
numbers with arbitrary bit capacity for nominator and denominator in purpose
of excluding any inaccuracies during the main calculation process, leaving them
only to output part [1].

The first part of the algorithm can be described as follows:

1. [Cycle on i.] for i = (1, Nt), for all TOP-triangles.
2. [Find nearest BOT-triangles.] For every i-th TOP-triangle, form an array of

geometrically close BOT-triangles. Denote by N ′ the number of these trian-
gles. Clear LAY substructure.

3. [Cycle on j.] Set j = 1. After the end of the cycle, go to step 8.
4. [Check hitting the projection-space.] Check the intersection of j-th triangle

with the projection-space of i-th triangle. If the intersection was found, go to
step 5, otherwise, go to step 7.
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5. [Screen by TOP-triangles edges.] Execute screening of j-th triangle by edges
of i-th triangle. Proceed to step 6.

6. [Screen by surface of BOT-triangles belonging to the projection-space.] Exe-
cute screening of the region constructed in step 5 by the surface of all triangles
contained in LAY. Store the result in LAY.

7. [Termination condition for j cycle] If j ≤ N ′, then set j = j + 1 and go to
step 4, otherwise, go to step 8.

8. [Triangulate the projection.] Execute the algorithm of 2-dimensional trian-
gulation on data stored in LAY. As a result, LAY structure contains N ′′

triangles.
9. [Cycle on k.] Execute step 10 for each k = (1, N ′′)

10. [Form prisms.] For k-th triangle from LAY, reestablish its projection in the
plane of i-th triangle and the corresponding BOT-triangle. Save these six
points, representing two triangles as a triangle prism.

Second part of the algorithm:

1. [Cycle on i.] For i = (1,M).
2. [Find nearest prisms.] For i-th prism, form an array of geometrically close

prisms. Denote by M ′ the number of such prisms.
3. [Cycle on j.] For j = (1,M ′). After the end of the cycle, go to step 8.
4. [Cycle on k] Execute step 5 for k = (1, 3), on the sides of i-th prism.
5. [Cycle on l] Execute step 6 and, if necessary, step 7, for l = (1, 3), on the

vertices of the upper base of j-th prism.
6. [Check hitting the plane.] Check the hit of l-th vertex in the plane of k-th

side edge of i-ith prism. The result (0 or 1) is stored in his own cell in count
array. If hit occurs, execute step 7.

7. [Inserting vertical edges into topology.] Check the hit of vertical edge of j-th
prism on the side edge of i-th prism. If the hit occus, add intersection point
and parts of this edge into topology of i-th prism.

8. [Calculate number of touches.] Sum the values of count array in sum variable.
If sum = 0, go to step 9. If sum > 0, go to step 10.

9. [Checking intersection of side edges of edges of bases.] Find the intersection
points of vertical edges of i-th prism with edges of bases of j-th prism. Add
these points to topology of i-th prism, dividing corresponding edge into parts.

10. [Building intersection of side edges.] Check hit of parts of edges of bases of
j-th prism on side edge of i-th prism. Add the corresponding elements to i-th
prism topology.

Next important part of the algorithm is using arbitrary bit capacity for rational
numbers. It provides exclusion of any calculation inaccuracies in this particular
algorithm, but leads to a few issues. First issue, that happens while using such
numbers, is an exponential growth of length for nominator and denominator.
During this particular algorithm, however, the maximum length of nominator
and denominator during the calculation is bounded above. To prove this, let’s
consider every part of the algorithm.
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First part includes building intersections between 2 different initial surface
triangles ribs. The equation for calculation intersection point between two lines
is known:

x − x1

x2 − x1
=

x − x3

x4 − x3
(1)

which is taken from the canonical equation of the line. So the answer is:

x =
x1(x4 − x3) − x3(x2 − x1)

(x4 − x3) − (x2 − x1)
(2)

In the worst case, each addition and subtraction increases the length of the
nominator (3) and denominator (4):

n2 = 2n1 + 1 (3)

n2 = 2n1 (4)

Here n1 is a bit capacity before operation, and n2 - after it. So, based on
Eq. (2) and using (3) and (4), maximum bit capacity for any coordinate would
be for the nominator (5) and the denominator (6), n1 is the bit capacity of the
initial surface point coordinate, n2 is a bit capacity of builded point. This is
the maximum theoretical length of stored coordinates for the first part of the
algorithm.

n2 = 6n1 + 3 (5)

n2 = 6n1 + 2 (6)

For second part of the algorithm, we are building same kind of intersection
points, but initial points coordinates, which are used in (2) could be from points,
which are created on a first stage of the algorithm. So, in this case the result
maximum bit capacity for a point coordinate nominator in the worst case would
be:

n2 = 36n1 + 21 (7)

Second issue - is very hard to handle in terms of using MPI, is described
further.

The most time-consuming part of the algorithm is docking prisms with each
other, as it would be shown in practical section. Therefore, the main focus of this
paper would be on the static load balancing algorithm of this particular part.

Problems of its load balancing for parallel distributed realization of this algo-
rithm are main topic of this paper.

3 Load-Balancing Problem

3.1 General Parallel Realization Problem in Case of Load Balancing

Arbitrary bit capacity, while providing exclusion of any calculation inaccuracies,
is very hard to handle in terms of using MPI. It is known, that using arbitrary
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bit capacity for rational numbers leads to exponential growth of length for nom-
inator and denominator. And even fixed, a priory calculable maximum length is
still much larger, than any standard type. And, as long as all points coordinates
is also stored in such type, it is difficult to use MPI communications with it,
and it leads to an increase in transmission time. Therefore, during the realiza-
tion of any balancing algorithms it is necessary to minimalize number of MPI
communications.

3.2 Load Balancing for the Projection Part

As soon as algorithm is positioned as guaranteed volume coverage algorithm, it
is clear that under any TOP triangle could be literally any number of triangles.
Furthermore, as is shown on Figs. 1 and 2, there could be other TOP triangles
underneath it. On Fig. 1 on the left is shown initial volume, which needs to be
filled, and part of the surface triangulation on the right. As it was mentioned in [1]
the problem of too many BOT triangles fall underneath one TOP triangles could
be solved in some cases by inserting an additional 0-thickness plates between
TOP and BOT triangles. For example, in Fig. 2 underneath the pointed triangles
we could place an additional inner plate so under each triangle of the mesh would
be close in size number of triangles. But it does not work in example, shown on
Fig. 1. For this kind of surface it is impossible to find place for plate, because
there are no free space left for plate where we need to insert it (see Fig. 4).

Fig. 1. Example of a surface with Np = 23068 points and Nt = 46174 surface triangles

And, moreover, while we are creating a projection, we must check all tri-
angles underneath considered triangle. But, during creating one projection it is
unnecessary to communicate with other processes, so it is possible to create such
initial triangles distribution, that at least some kind of load balancing could be
achieved.
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Fig. 2. Example of possible occasions for triangles mutual location

Creating a load balancing algorithm requires some kind of load weight, which
could be used as weight for each element. As it is described in [1] using a 2-
dimensional geometrical cache is necessary to decrease computational complexity
for projection algorithm due to optimization of element search. As it is mentioned
in [2], 2-dimensional cache can provide find all elements, which are close to the
initial. So, as long as this type of cache could return all triangles that should be
reviewed by projection algorithm, we can use number of BOT triangles, that is
close to reviewed TOP triangle, as our balance weight.

But, on the other hand, such way concludes one major problem: if there are
many colliding TOP and BOT triangles in the same cell of cache, One of the
worst case scenarios is shown on Fig. 1 on the right. All surface of the cylinders,
whose axis is parallel to the main projection axis, contains a large number of
TOP and BOT triangles. That leads to one major problem: for all these TOP
triangles their balance weight would be significantly higher, then for same tri-
angles outside of the problem area. And, more than that, it is almost impossible
to algorithmically find all BOT triangles, which would fall into projection onto
current TOP triangle by any of their part (without, of course, creating full pro-
jection).

All this problem concludes into simple, but reasonably effective decision:
for quasi-uniform surface mesh equal initial distribution leads into reasonable
load balancing (the result would be mentioned below). Of course, this approach
couldn’t be used for other kind of meshes (for example, mesh on Fig. 2). It
seems that solution for this problems, that concludes in good (by any criterion)
balancing, requires and additional specific research.
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3.3 Load Balancing for Attachment Part

This is the hardest part of the algorithm in terms of computational complexity
and calculation time. The näıve way of balancing this part concludes into using
just the same idea as in the first part. In that case, every triangle prism is
represented as a triangle, which lays on OXY plane. This approach leads to two
major problems. First, any prism is a 3-dimensional object. And 2 prisms could
intersect with each other by a number of cases, which is shown on Fig. 3.

Fig. 3. Possible cases of collision of prisms, excluding the case with 0-thickness plates.

And, even more, they could be situation, when two or more prism are one
above the other, without any colliding. Second, that partially follows previous
paragraph, as long as docking of prisms is necessary, with every considered prism
on a local process all its neighbor-prism must be stored, at minimum all 6 points,
that define a prism. As we mentioned early, every point is stored as three rational
numbers with arbitrary bit capacity. This concludes to extremely large memory
usage, so it is necessary for the prism on each process to be as close to each other
as possible.

This concludes us to main challenge: create a load balancing algorithm for
prism docking, which guarantees as much domain integrity as possible and pro-
vides reasonable load balancing.

First of all, to separate whole array of prisms into any number of subdomains
we need to create a graph, each vertex of this graph will represent a prism, and
each edge should represent neighborhood relationship. While it is not known
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direct relationships between all prisms at this point of algorithm, we could use
similar idea of creating of some kind of cache.

Fig. 4. Example with a large number of prisms laying in almost the same area.

On Fig. 4 is shown one of the worst case scenarios, when large amount of
prisms are almost at the same place of space. On the left each triangle repre-
sents a surface for prism. On the right is shown much more closely the scale of
problem in that particular case. This example leads to immediate conclusion:
we cannot use 2-dimensional cache for this part of algorithm, because it would
lead us directly to O(N2) operations, where N number of prisms To decrease
this complexity as much as possible it is suggested to use 3-dimensional cache.
There is second approach to resolving this problem, which would be described
in Experiments-part.

With the same idea of caching with 2D-case, in 3D-case each cell of program
cache represents a parallelepiped. For the simplicity of terminology, from here
and below each cache cell would be named “cube”. This approach significantly
lowers the amount of prisms that have fallen into each cube of cache. The most
important usage of this idea consists in using the approximate number of neigh-
bors for each prism as balance weight of prism, and this approximate neighbor-
ship relation for constructing edges for graph. Therefore it is formed a weighted
graph, which is already distributed through the all processes. It is important,
that this approach is not an ideal. For example, Fig. 5, where is shown result-
ing surface for body from Fig. 1. These topological artifacts, so called “stars”,
cannot be optimized by any kind of geometrical cache.

Second trouble consists in separating this formed distributed graph on a
number of domains, with minimum weight difference and least numbers of con-
nections, which represents our demand to minimize the number of locally stored
prisms. In purpose resolving this problem we use ParMETIS [5] for graph sepa-
ration.
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Fig. 5. Example of low efficiency of the 3D-cache.

Main problems of this algorithm consist this approach does not take in
account time of inserting new vertices and edges into prisms, and does not con-
sider any WALL triangles, that directly affect the calculation time.

3.4 Load Balancing for Triangulation of Prism Faces

It is the least expensive part of the algorithm. First thing that we have to
mention that most of the prisms consists only 6 points, therefore for them it
is necessary to add only 3 edge to each of them. Second thing that we should
mention, that computational complexity for 2-dimensional triangulation depends
mainly on number of vertices [2]. So, the main problem therefore is to decide, is
it necessary to redistribute prisms after previous step of the algorithm or no.

The way of constructing previous weights for each prism is arguably inaccu-
rate, so for each prism there would be a number of incorrect neighbors. Therefore,
for the most prisms their weight is pretty much same.

This leads us to initial suggestion, that for purpose of load balancing of this
stage of algorithm we could use distribution from previous stage. The advanced
solution includes using number of vertices as a balance weight for this stage
balancing.

4 Practical Experiments

From all of the experimental data we would consider at first all data about
balancing load while docking the prisms. All experiments were done on 4 MPI-
processes, on the one calculating node. All the data in Tables 1, 2 and 3 consists
only time for docking of prisms.

First experiment is using surface, shown on Fig. 1. Total number of prisms
in this experiment - 203 332.
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Table 1. Experiment with different cache sizes, time for the second step of the algo-
rithm. Sizei – number of cells in that direction.

Dimension of cache and
its size:
sizex * sizey * sizez

Process 1,
work time,
minutes

Process 2,
work time,
minutes

Process 3,
work time,
minutes

Process 4,
work time,
minutes

2D-cache 100 * 100 * 1 248.23 239.29 224.75 248.94

3D-cache 100 * 100 * 4 188.62 235.84 230.21 212.18

The imbalance, which is shown in Table 1, is caused by the fact, that the
balance weight value of each prism does not include the time of inserting new
points and ribs, which are essentially created during this step of the algorithm.
Increasing size of cache by 4 times caused further increase of imbalance from 10%
in the first experiment to 20% in the second, but decreases calculation time.

Next idea for improving quality of balancing and further increasing load
consists in rotating surface mesh around its center, so the least amount of prisms
would have any additional points on their faces or edges; the result for this is
shown in Table 3.

Table 2. Experiment with different cache sizes. Rotated surface.

Dimension of cache and
its size:
sizex * sizey * sizez

Process 1,
work time,
minutes

Process 2,
work time,
minutes

Process 3,
work time,
minutes

Process 4,
work time,
minutes

2D-cache 100 * 100 * 1 190.87 190.25 200.87 191.14

3D-cache 100 * 100 * 4 124.26 119.20 115.96 113.16

Simplification of prisms faces leads to significant increase of balance quality:
now, first experiment provides almost only 5% of imbalance between processes,
and second - near 9% of imbalance. Increasing imbalance while increasing cache
size is provided by the fact that some prisms would eventually lose their balance
weight, but the total number of new vertices and edges for each prism is constant,
so for smaller prism there would be much less work to do, while for bigger prism
there are still the same amount of work, which is represented by decrease of
computational time.

The experiment shown in Table 3 shows, how initial surface triangulation of
the same region will affect current algorithm (see Fig. 6). In this case the task
is to fill inner part of these planes. As it is mentioned earlier, main difference is
made by the amount of new vertices and edges, which are inserted into specific
prism. Cache size for this experiment is 100 * 100 * 10.

Now let’s consider the last stage of the algorithm.
In Table 4 is shown test of hypothesis, which was described earlier about

using initial distribution for previous stage. Surprisingly, the results are much
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Fig. 6. Two different surface triangulations

Table 3. Experiment with the same initial surface, Nt – number of surface triangles.

Mesh parameters, number
of triangles

Process 1,
work time,
minutes

Process 2,
work time,
minutes

Process 3,
work time,
minutes

Process 4,
work time,
minutes

Left mesh, Nt = 6115 92.052 98.204 96.409 117.529

Right mesh, Nt = 10997 253.704 269.194 296.033 295.033

better than they were to be expected. The weight imbalance in all cases is near
27%. This result is arguably bad, because it is still definitely high imbalance.
But, for the same time, we can admit that even without creating any specific
algorithm for this stage, using just what left from previous part, we already have
a distribution of data that could be used for much easier data redistribution
algorithm.

Table 4. Third stage load balance using the same distribution as in the second stage.

Mesh description Process 1,
work time,
minutes

Process 2,
work time,
minutes

Process 3,
work time,
minutes

Process 4,
work time,
minutes

First example (Fig. 1) 25.122 20.413 29.575 23.325

First example (Fig. 1)
rotated

24.73 18.414 22.509 18.122

First plane (Fig. 5, left) 11.01 11.028 12.182 16.382

Second plane (Fig. 5,
right)

29.852 21.071 28.441 17.489
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5 Conclusion

Load balancing is hard and important task for all parallel programs. During
this work created static load balancing algorithm, which is based on three-
dimensional cache for generating graph and uses ParMETIS library for sepa-
rating graph. Reviewed main problems of static load balancing in application to
guarantied mesh generation algorithm. It is proved, that using three-dimensional
cache significantly decreases total calculation time, but increases load imbalance
between each processes. Founded, that using initial balancing for second stage
of the algorithm provides a reasonable load balancing for the third stage.
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