
123

Leonid Sokolinsky
Mikhail Zymbler (Eds.)

12th International Conference, PCT 2018
Rostov-on-Don, Russia, April 2–6, 2018
Revised Selected Papers

Parallel Computational
Technologies

Communications in Computer and Information Science 910

Communications
in Computer and Information Science 910

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

Leonid Sokolinsky • Mikhail Zymbler (Eds.)

Parallel Computational
Technologies
12th International Conference, PCT 2018
Rostov-on-Don, Russia, April 2–6, 2018
Revised Selected Papers

123

Editors
Leonid Sokolinsky
South Ural State University
Chelyabinsk
Russia

Mikhail Zymbler
South Ural State University
Chelyabinsk
Russia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-99672-1 ISBN 978-3-319-99673-8 (eBook)
https://doi.org/10.1007/978-3-319-99673-8

Library of Congress Control Number: 2018952058

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains a selection of the papers presented at the 12th International
Scientific Conference on Parallel Computational Technologies, PCT 2018, held during
April 2‒6, 2018, in Rostov-on-Don, Russia.

The PCT series of conferences aims at providing an opportunity to discuss the future
of parallel computing, as well as to report the results achieved by leading research
groups in solving both scientific and practical issues using supercomputer technologies.
The scope of the PCT series of conferences includes all aspects of high performance
computing in science and technology such as applications, hardware and software,
specialized languages, and packages.

The PCT series is organized by the Supercomputing Consortium of Russian
Universities and the Federal Agency for Scientific Organizations. Originated in 2007 at
the South Ural State University (Chelyabinsk, Russia), the PCT series of conferences
has now become one of the most prestigious Russian scientific meetings on parallel
programming and high-performance computing. PCT 2018 in Rostov-on-Don con-
tinued the series after Chelyabinsk (2007), St. Petersburg (2008), Nizhny Novgorod
(2009), Ufa (2010), Moscow (2011), Novosibirsk (2012), Chelyabinsk (2013),
Rostov-on-Don (2014), Ekaterinburg (2015), Arkhangelsk (2016), and Kazan (2017).

All papers submitted to the conference were scrupulously evaluated by three
reviewers on the relevance to the conference topics, scientific and practical contribu-
tion, experimental evaluation of the results, and presentation quality. PCT’s Program
Committee selected the 24 best papers to be included in this CCIS proceedings volume.

We would like to thank the Russian Foundation for Basic Research for their con-
tinued financial support of the PCT series of conferences, as well as the respected PCT
2018 sponsors, namely platinum sponsors, RSC Group and Intel, gold sponsors,
NVIDIA and Hewlett Packard Enterprise, and silver sponsor AMD.

We would like to express our gratitude to every individual who contributed to the
success of PCT 2018. Special thanks go to the Program Committee members and the
external reviewers for evaluating papers submitted to the conference. Thanks also go to
the Organizing Committee members and all the colleagues involved in the conference
organization from Don State Technical University, the South Ural State University, and
Moscow State University. We thank the participants of PCT 2018 for sharing their
research and presenting their achievements as well.

Finally, we thank Springer for publishing the proceedings of PCT 2018 in the
Communications in Computer and Information Science series.

May 2018 Leonid Sokolinsky
Mikhail Zymbler

Organization

The 12th International Scientific Conference on Parallel Computational Technologies,
PCT 2018, was organized by the Supercomputing Consortium of Russian Universities
and the Federal Agency for Scientific Organizations, Russia.

Steering Committee

Berdyshev, V. I. Krasovskii Institute of Mathematics and Mechanics,
Yekaterinburg, Russia

Ershov, Yu. L. United Scientific Council on Mathematics
and Informatics, Novosibirsk, Russia

Minkin, V. I. South Federal University, Rostov-on-Don, Russia
Moiseev, E. I. Moscow State University, Russia
Savin, G. I. Joint Supercomputer Center, Russian Academy

of Sciences, Moscow, Russia
Sadovnichiy, V. A. Moscow State University, Russia
Chetverushkin, B. N. Keldysh Institute of Applied Mathematics, Russian

Academy of Sciences, Moscow, Russia
Shokin, Yu. I. Institute of Computational Technologies, Russian

Academy of Sciences, Novosibirsk, Russia

Program Committee

Sadovnichiy, V. A. (Chair) Moscow State University, Russia
Dongarra, J. (Co-chair) University of Tennessee, USA
Sokolinsky, L. B. (Co-chair) South Ural State University, Russia
Voevodin, Vl. V. (Co-chair) Moscow State University, Russia
Zymbler, M. L. (Academic

Secretary)
South Ural State University, Russia

Ablameyko, S. V. Belarusian State University, Belarus
Afanasiev, A. P. Institute for Systems Analysis, Russian Academy

of Sciences, Russia
Akimova, E. N. Krasovskii Institute of Mathematics and Mechanics,

UrB, Russian Academy of Sciences, Russia
Andrzejak, A. Heidelberg University, Germany
Balaji, P. Argonne National Laboratory, USA
Boldyrev, Y. Ya. Saint-Petersburg Polytechnic University, Russia
Carretero, J. Carlos III University of Madrid, Spain
Gazizov, R. K. Ufa State Aviation Technical University, Russia
Gergel, V. P. Lobachevsky State University of Nizhny Novgorod,

Russia

Glinsky, B. M. Institute of Computational Mathematics and
Mathematical Geophysics SB, Russian Academy
of Sciences, Russia

Goryachev, V. D. Tver State Technical University, Russia
Il’in, V. P. Institute of Computational Mathematics and

Mathematical Geophysics SB, Russian Academy
of Sciences, Russia

Kobayashi, H. Tohoku University, Japan
Kunkel, J. University of Hamburg, Germany
Labarta, J. Barcelona Supercomputing Center, Spain
Lastovetsky, A. University College Dublin, Ireland
Ludwig, T. German Climate Computing Center, Germany
Lykosov, V. N. Institute of Numerical Mathematics, Russian Academy

of Sciences, Russia
Mallmann, D. Julich Supercomputing Centre, Germany
Michalewicz, M. A*STAR Computational Resource Centre, Singapore
Malyshkin, V. E. Institute of Computational Mathematics and

Mathematical Geophysics SB, Russian Academy
of Sciences, Russia

Modorsky, V. Ya. Perm Polytechnic University, Russia
Shamakina, A. V. High Performance Computing Center in Stuttgart,

Germany
Shumyatsky, P. University of Brasilia, Brazil
Sithole, H. Centre for High Performance Computing, South Africa
Starchenko, A. V. Tomsk State University, Russia
Sterling, T. Indiana University, USA
Taufer, M. University of Delaware, USA
Turlapov, V. E. Lobachevsky State University of Nizhny Novgorod,

Russia
Wyrzykowski, R. Czestochowa University of Technology, Poland
Yakobovskiy, M. V. Keldysh Institute of Applied Mathematics,

Russian Academy of Sciences, Russia
Yamazaki, Y. Federal University of Pelotas, Brazil

Organizing Committee

Sukhinov, A. I. (Chair) Don State Technical University, Russia
Chistyakov, A. E.

(Co-chair)
Don State Technical University, Russia

Sidoryakina, V. V.
(Secretary)

Chekhov Taganrog Institute, Russia

Antonov, A. S. Moscow State University, Russia
Antonova, A. P. Moscow State University, Russia
Bardina, M. G. South Ural State University, Russia
Bednaya, T. A. Don State Technical University, Russia
Belova, Yu. V. Don State Technical University, Russia

VIII Organization

Kraeva, Ya. A. South Ural State University, Russia
Ladosha, E. N. Don State Technical University, Russia
Nikitenko, D. A. Moscow State University, Russia
Nikitina, A. V. Don State Technical University, Russia
Ostrovskikh, N. O. South Ural State University, Russia
Porksheyan, V. M. Don State Technical University, Russia
Semenyakina, A. A. Supercomputers and Neurocomputers Research Center,

Russia
Sobolev, S. I. Moscow State University, Russia
Voevodin, Vad. V. Moscow State University, Russia
Zymbler, M. L. South Ural State University, Russia

Organization IX

Contents

High Performance Architectures, Tools and Technologies

Hierarchical Domain Representation in the AlgoWiki Encyclopedia:
From Problems to Implementations . 3

Alexander Antonov, Alexey Frolov, Igor Konshin,
and Vladimir Voevodin

A Toolkit for the Development of Data-Driven Functional
Parallel Programmes . 16

Alexander I. Legalov, Vladimir S. Vasilyev, Ivan V. Matkovskii,
and Mariya S. Ushakova

Machine Learning Techniques for Detecting Supercomputer Applications
with Abnormal Behavior . 31

Alexander Bezrukov, Mikhail Kokarev, Denis Shaykhislamov,
Vadim Voevodin, and Sergey Zhumatiy

Role-Dependent Resource Utilization Analysis for Large HPC Centers 47
Dmitry Nikitenko, Pavel Shvets, Vadim Voevodin, and Sergey Zhumatiy

High-Performance Reconfigurable Computer Systems with
Immersion Cooling . 62

Ilya Levin, Alexey Dordopulo, Alexander Fedorov,
and Yuriy Doronchenko

Hybrid Supercomputer Desmos with Torus Angara Interconnect:
Efficiency Analysis and Optimization . 77

Nikolay Kondratyuk, Grigory Smirnov, Ekaterina Dlinnova,
Sergey Biryukov, and Vladimir Stegailov

Performance of Elbrus Processors for Computational Materials Science
Codes and Fast Fourier Transform. 92

Vladimir Stegailov, Alexey Timofeev, and Denis Dergunov

Performance and Energy Analysis of Nighttime Satellite Image Archive
Processing Module . 104

Ekaterina Tyutlyaeva, Sergey Konyukhov, Igor Odintsov,
Alexander Moskovsky, and Mikhail Zhizhin

Parallel Numerical Algorithms

Fully Homomorphic Encryption for Parallel Implementation
of Approximate Methods for Solving Differential Equations 119

Artem K. Vishnevsky and Sergey F. Krendelev

Static Balancing Methods in Projection-Based Mesh
Generation Algorithm . 135

Sergej K. Grigorjev and Mikhail V. Yakobovskiy

Fine-Grained Parallel Algorithms in TIM-3D Code 147
Andrey Alexandrovich Voropinov and Ivan Gennadievich Novikov

Modified Componentwise Gradient Method for Solving Structural
Magnetic Inverse Problem . 162

Elena N. Akimova, Vladimir E. Misilov, and Andrey I. Tretyakov

Parallel Multipoint Approximation Method for Large-Scale
Optimization Problems. 174

Victor P. Gergel, Konstantin A. Barkalov, Evgeny A. Kozinov,
and Vassili V. Toropov

High-Performance Computation of Initial Boundary Value Problems 186
Valery Il’in

A Study of Euclidean Distance Matrix Computation on Intel
Many-Core Processors . 200

Timofey Rechkalov and Mikhail Zymbler

Parallel Method of Pseudoprojection for Linear Inequalities 216
Irina Sokolinskaya

Supercomputer Simulation

GPU Acceleration of Bubble-Particle Dynamics Simulation 235
Ilnur A. Zarafutdinov, Yulia A. Pityuk, Azamat R. Gainetdinov,
Nail A. Gumerov, Olga A. Abramova, and Iskander Sh. Akhatov

VM2D: Open Source Code for 2D Incompressible Flow Simulation
by Using Vortex Methods . 251

Kseniia Kuzmina, Ilia Marchevsky, and Evgeniya Ryatina

Modeling of Nonstationary Two-Phase Flows in Channels Using
Parallel Technologies. 266

Yury Perepechko, Sergey Kireev, Konstantin Sorokin,
and Sherzad Imomnazarov

XII Contents

Supercomputer Simulation of Cathodoluminescence Transients
in the Vicinity of Threading Dislocations . 280

Karl K. Sabelfeld and Anastasiya Kireeva

Supercomputer Simulation of Promising Nanocomposite Anode Materials
for Lithium-Ion Batteries: New Results . 294

Vadim M. Volokhov, Dmitry A. Varlamov, Tatyana S. Zyubina,
Alexander S. Zyubin, Alexander V. Volokhov, Elena S. Amosova,
and Gennady A. Pokatovich

Parallel Solution of Sediment and Suspension Transportation Problems
on the Basis of Explicit Schemes . 306

Alexander I. Sukhinov, Alexander E. Chistyakov,
and Valentina V. Sidoryakina

Three-Dimensional Mathematical Model of Wave Propagation Towards
the Shore . 322

Alexander Sukhinov, Alexander Chistyakov, and Sophia Protsenko

Supercomputer Modeling of Hydrochemical Condition of Shallow Waters
in Summer Taking into Account the Influence of the Environment 336

Alexander I. Sukhinov, Alexander E. Chistyakov, Alla V. Nikitina,
Yulia V. Belova, Vladimir V. Sumbaev, and Alena A. Semenyakina

Author Index . 353

Contents XIII

High Performance Architectures, Tools
and Technologies

Hierarchical Domain Representation
in the AlgoWiki Encyclopedia: From

Problems to Implementations

Alexander Antonov1(B), Alexey Frolov2, Igor Konshin2,
and Vladimir Voevodin1

1 Lomonosov Moscow State University, Moscow, Russia
{asa,voevodin}@parallel.ru

2 Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow, Russia

frolov@inm.ras.ru, igor.konshin@gmail.com

Abstract. Algorithm description is the basic unit in the AlgoWiki Open
Encyclopedia of Algorithmic Features. However, computational algo-
rithms are not objectives in and of themselves: they are needed to address
problems encountered in various fields of science and industry. On the
other hand, there are many practical problems that can be tackled using
various methods. This warrants the introduction of another basic term
that fits between the concepts of a problem and an algorithm. Also, any
algorithm can have different implementations, whether related to a single
computing platform or to different platforms. The “problem–method–
algorithm–implementation” chain is the basis for describing any subject
area in AlgoWiki. This paper describes the permitted freedom in describ-
ing such chains, which arises when studying the approaches to address
various practical problems.

Keywords: AlgoWiki · Problem · Method · Algorithm
Implementation · Parallelism resource · Parallel computing
Supercomputers

1 Introduction

The issues of efficiency and parallelism support throughout the entire supercom-
puter software stack are central to all global supercomputing forums today [1–3].
Judging by current trends, the degree of computing system parallelism will grow
by an order of magnitude every several years [4]. This illustrates the relevance

The results described in Sects. 2–5 were obtained at Lomonosov Moscow State Uni-
versity with the financial support of the Russian Science Foundation (agreement
№ 14-11-00190). The research was carried out using the equipment of the shared
research facilities of HPC computing resources at Lomonosov Moscow State Univer-
sity.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-99673-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_1&domain=pdf

4 A. Antonov et al.

and importance of addressing this issue throughout the entire range of comput-
ing devices, from mobile platforms to exascale supercomputers. Scientists are
currently examining architectures that would potentially form the foundation
for new generations of computers. Light and/or heavy computing cores, acceler-
ators, SIMD and data-flow processing concepts can be used. Vector processing
seems to be getting new life today. This is true for the new-generation Intel Xeon
and Intel Xeon Phi processors. Scalable Vector Extensions (SVE) to ARM pro-
cessor instruction set [5] were announced in August 2016. These extensions were
developed together with Fujitsu, which is planning to use it in a new generation
of CPU for creating the Post-K supercomputer [6]. Intel has started working on
integrating classical multi-core CPUs and ARM processors with FPGA segments
on the same chip [7,8].

The Sunway TaihuLight supercomputer [9], the current leader on the TOP500
list, consists of more than 10 million cores, an unprecedented degree of paral-
lelism. At the same time, its architecture has a few features that dictate a need
to follow a certain style for writing efficient programs [10], namely to maintain
a very high ratio of arithmetic operations execution speed to data transmission
speed from RAM (flops/bytes). . . These facts clearly show how important it is
to know the properties and features of parallel algorithm structures today and
in the future. Obviously, the full utilization of future computer capacity would
require redesigning and rewriting source code; the important thing, though, is
that the basic properties of the algorithms will remain the same.

2 About the AlgoWiki Project

The AlgoWiki Open Encyclopedia of Parallel Algorithmic Features [11] project
has been running at Lomonosov Moscow State University since 2014. During
this time, the project has drawn attention from the computing community [12,
15]. All computational algorithms are described in AlgoWiki using the same
universal structure, with special emphasis on properties related to parallelism.
The description consists of two primary parts. The first describes the machine-
independent properties of an algorithm. The second part describes the properties
of its specific implementations [13]. As the number of algorithms described in the
AlgoWiki Encyclopedia rapidly grew, the issue of classification and distribution
by thematic categories was raised shortly after the project was launched.

A logical extension to the AlgoWiki project was the specific algorithm anal-
ysis [14] with expert-quality reviews of various approaches to addressing indi-
vidual applied problems. Each problem can usually be addressed with several
different algorithmic approaches or methods. Each method has its own features,
and those algorithms that fit well a specific class of computers may not always
be suitable for another class. The AlgoWiki project is acquiring new dimensions
that help researchers move from analyzing individual algorithms to analyzing
various algorithmic approaches to tackling problems.

Hierarchical Domain Representation in the AlgoWiki Encyclopedia 5

3 The Basic Concepts Are: Problem, Method, Algorithm
and Implementation

Algorithm description the basic unit in the AlgoWiki Open Encyclopedia of
Algorithmic Features. The notion of an algorithm has been in existence for a
long time, with the actual word originating from the name of al-Khwarizmi, an
Arab scientist who lived between the 8th and 9th centuries [16]. Many definitions
of the term “algorithm” exist, probably the most famous one being attributed
to Knuth [17]: an algorithm is “a finite set of rules that gives a sequence of
operations for solving a specific type of problem,” and it “has five important
features:

– Finiteness. . .
– Definiteness. . .
– Input. . .
– Output. . .
– Effectiveness.”

A common universal structure was proposed for describing in a standard form
these and other important properties of various computational algorithms in the
AlgoWiki project. According to D. Knuth, “[a]lgorithms are the threads that tie
together most of the subfields of computer science.” In the AlgoWiki Encyclo-
pedia, algorithm descriptions also act as the central link in the chain connecting
applied scientific problems with the results of supercomputer experiments.

At its initial stage of development, AlgoWiki was a simple list of algorithm
descriptions. As the project expanded, the algorithms were divided into thematic
subcategories, eventually developing into a form of algorithm classification. How-
ever, computational algorithms are not objectives in and of themselves: they are
needed to solve problems faced in various areas of science and industry. For
this reason, descriptions of the practical problems to be addressed were added
to the AlgoWiki Encyclopedia. The problems can be described at various lev-
els: from a specific practical problem being addressed (for example, “a general
atmospheric circulation model”) to mathematical formulations (“solving ellipti-
cal equations”).

Many practical problems can be addressed using various methods: this war-
rants the introduction of another basic term that fits between the concepts of
a problem and an algorithm. A problem can potentially be addressed via dif-
ferent methods (for example, elliptical equations can be solved using the direct
method, Fourier transforms or iterative methods [18–20]). Each method has its
advantages and may be preferred over others under certain conditions. These
conditions can be dictated by the target software and hardware environment
(e.g., iterative methods are preferred when solving elliptical equations on par-
allel computers with distributed memory). Some methods can also use other
methods in sequence, which requires AlgoWiki to have several method levels.

Also, any algorithm can have different implementations, whether related to a
single computing platform or to different platforms. For example, the following

6 A. Antonov et al.

parallel implementations are known for three-dimensional Fast Fourier Trans-
form: FFTW (using MPI+OpenMP technologies) [21], MKL FFT (MPI) [22],
AccFFT (MPI, CUDA) [23], etc. Within the algorithm description, AlgoWiki
allows the properties of each specific implementation of the algorithm to be
described, with visualization of the results obtained on various software and
hardware platforms.

Thus, a “problem–method–algorithm–implementation” chain is being built as
part of the AlgoWiki Open Encyclopedia of Algorithmic Features, which forms
the basis for describing any subject area and follows the concept of linked rep-
resentation of various algorithmic approaches to addressing one and the same
problem. Effectively, the AlgoWiki project is acquiring new dimensions that help
researchers move from analyzing individual algorithms to analyzing various algo-
rithmic methods for addressing problems. Whether evaluating a definite integral,
finding characteristic vectors, or searching for the minimum spanning tree of a
graph, multiple algorithms can be offered to address the problem at hand, each
having its own properties that can be key to efficiently implementing it on a
specific computing system.

The classification of algorithms in the AlgoWiki project by their compati-
bility with specific supercomputer infrastructure will become the basis for com-
paring various algorithms to each other, which is needed for switching from
analyzing individual algorithms to analyzing algorithmic methods for address-
ing problems. This markup makes it possible to compare the compliance of
algorithms to the properties of a specific computer architecture, understand the
advantages of each specific approach compared to others, compare the theoreti-
cal potential of various algorithmic approaches to the same problem, and draw
a variety of other conclusions.

4 Interrelationships Between Basic Concepts

4.1 From Problem to Method

The Problem (P) level is the most general of the basic concepts considered in
AlgoWiki. Algorithms addressing problems from various areas of study can be
described in the AlgoWiki Encyclopedia. From various areas in mathematics
and more specific problems in computational physics, quantum chemistry and
biomathematics, to practical issues in construction, design and all areas of sci-
ence where computer simulation can be applied. More complex problems may
require addressing additional problems (P–P link), for some of which solutions
are already available (see Fig. 1a).

The way a problem is addressed can be called a Method (M); the resulting
link is denoted as P–M (Fig. 1a). The description of a method usually contains
a mathematical description of the way it addresses the problem, an explanation
of its precision level, some considerations on the solution accuracy, the way to
arrive at a solution and a justification for this being the only solution. Let us
assume that a method is a mathematically justified sequence of actions by which
one can follow to arrive at a solution to the original problem.

Hierarchical Domain Representation in the AlgoWiki Encyclopedia 7

a) Possible connections
from P level

b) Possible connections
from M level

c) Possible connections
from A level

Fig. 1. Possible connections between nodes and links in the “problem–method–
algorithm–implementation” chain. We denote with“P” a problem, with “M” a method,
with “A” an algorithm, and with “I” an implementation

As an example of the sub-chain being considered, we can describe a solution
to a specific problem (P level), for instance, the analysis of the flow around
an aircraft. The solution to gas dynamic equations in a complex-shaped area
requires solving the subproblem (P) of construction of a computational grid
in the given region. The latter problem is usually reduced to solving a set of
linear elliptical equations (P), which requires performing the decomposition (P)
of a coefficient matrix into triangular factors (P). Matrix decomposition can
be done using the Cholesky factorization method (M level). Thus, the sequence
considered above can be presented as follows: P–P–P–P–P–M. It should be noted
that the last three nodes in this sub-chain are already described in AlgoWiki.

4.2 From Method to Algorithm

The method level (M) stands for a known solution to a certain (most commonly
mathematical) problem. Methods usually operate with mathematical objects of
a general nature (matrices, vectors, graphs, arrays, etc.). Very complex methods
can include solving certain secondary subproblems using other known methods
(M–M links; Fig. 1b). These contain a description of the general method for
tackling a problem, frequently providing an opportunity to detail the method
further.

The method is detailed by recording a fixed sequence of computations that
result in the concept of an algorithm (A) and, consequently, an M–A link
(Fig. 1b). One method can lead to a variety of algorithms with different compu-
tational properties. An algorithm implies a precise indication of the entire set of
operations needed to implement the method and their sequence of operations.
Even though a Gaussian elimination method for a linear system is not sensitive
to the order of calculation of the partial sums in each line of the matrix, this order
needs to be defined in the algorithm. At the same time, it should be noted that
two algorithms related to the same Gaussian method but with a different order
of calculation of partial sums (ascending or descending order), besides difference

8 A. Antonov et al.

in accuracy due to round-off errors, would have completely different properties:
one is strictly serial, while the other has a good parallel implementation.

As an example, we can quote a sub-chain fully described in AlgoWiki. If matrix
factoring is performed using Gaussian elimination by finding a triangular factor-
ization (M), and its option LU-decomposition [24] without using transposition
(M), with the compact Gaussian elimination method (M), or more specifically,
the compact Gaussian elimination for tridiagonal matrices (M), then, for exam-
ple, serial algorithm (A) for the compact factoring scheme described above can be
considered. The chain above can be represented as follows: M–M–M–M–A.

4.3 From Algorithm to Implementation

The algorithm level (A) is the most branched structure in AlgoWiki, owing to
the use of various clarifications of a specific method, or to the application of
certain tricks to solve the problem faster. Some algorithms can engage many
different operations, each being an independent algorithm (A–A link; Fig. 1c).
For example, an algorithm (A) for solving a system of linear equations by the
conjugate gradients method [20], in which every iteration uses auxiliary algo-
rithms, is also described in AlgoWiki Encyclopedia: multiplication of a densely
populated matrix by a vector (A), scalar multiplication of vectors (A), finding
the vector norm (A), and vector operations (A) such as AXPY. This can result
in a long chain of algorithms or trees of algorithms.

Once an algorithm is selected for solving a problem, a data structure should
be developed. After the data structure is fixed, the most suitable programming
language can be chosen and work can start on writing a specific implementation
(I) of the chosen algorithm as a computer program (A–I link; Fig. 1c). It should
be noted that the preliminary design and data structure development for complex
algorithms may take a substantial amount of time, comparable to the time it
takes to write the actual computer program.

As a result, each algorithm can be implemented using different program-
ming languages. Many developers publish their implementations with detailed
descriptions. This makes it possible to find either the necessary program or
the information on how to write the most efficient program. Most pages in the
AlgoWiki Encyclopedia, together with algorithm descriptions, contain reviews
of existing implementations and direct links to open source codes.

4.4 From Implementation to Computations

When running the computations using the written program or a specific exist-
ing implementation, one should pay attention to the correct operation of the
program; the most experienced developers design tests to debug the program.
An important indicator of the quality of a program is its computational per-
formance. This issue receives much attention in AlgoWiki Encyclopedia articles.
The computation locality and data usage locality are analyzed, criteria for assess-
ing parallel efficiency are developed, and the results of the parallel computation
are presented with a scalability analysis [29].

Hierarchical Domain Representation in the AlgoWiki Encyclopedia 9

As a conclusion to the review of the various forms of the “problem–method–
algorithm–implementation” chain, it should be noted that the least experienced
developers make their first attempt to consider features of the computer architec-
ture only during the very last stage, when analyzing the results of their first runs.
However, the highest efficiency and scalability of the program can be achieved at
the topmost levels, when choosing a method for solving the problem. One of the
main goals for creating the AlgoWiki Open Encyclopedia of Algorithmic Fea-
tures is to specifically give the user an opportunity well in advance to visualize
the entire chain in full detail, from problem to implementation, and to choose
the methods and algorithms that will produce the most efficient solutions.

4.5 Interconnection of Sub-chains

In fact, different sub-chains may intersect or have many common nodes and links
since each method can usually be applied to the solution of various problems.
Short chains can be composed of longer ones. For example, all the sub-chains
considered in Subsects. 4.1–4.3 could be combined into one. Thus, the subtask of
the solution of a system of linear elliptic equations (P) considered in Subsect. 4.1
can be solved by using the algorithm (A) for the solution of linear systems by the
conjugate gradients method (see Subsect. 4.3), which will use as a preconditioner
an incomplete triangular factorization, referred to in Subsect. 4.2. Such long
chains can also arise when solving other practical problems. Another example of
a complete chain description is considered in the next section.

5 An Example Description of the “Problem-Method-
Algorithm-Implementation” Chain in the AlgoWiki
Encyclopedia

Let us take a look at one of the full “problem-method-algorithm-implementation”
chains already described in the AlgoWiki Encyclopedia—the chain that goes
from the “Matrix factorization” group of problems to Householder’s (reflection)
method of QR factorization [25–28] of a square matrix, floating point variant
(see Fig. 2).

Starting with the program (Matrix factorization), an AlgoWiki reader would
see the “P” icon, indicating the problem level. In this case, however, it is not
a single problem but a group of problems: Matrix factorization as a problem
requires decomposing a matrix into a series of special matrices (unitary, tri-
angular, etc.), depending on what is used in a higher-level problem (solving a
system of linear equations, eigenvalue problems, etc.). Next, the reader sees that
the detailed description of the problem raises another level with the same “P”
sign, and again, these are not individual problems but groups of problems:

– “Triangular factorization”: different versions of Gaussian decomposition, with
or without transpositions, using the original matrix structures, up to compact
schemes for tridiagonal matrices; a place is also prepared for pre-computed
factorization of known matrices.

10 A. Antonov et al.

Fig. 2. Example of the full “problem–method–algorithm–implementation” chain

– “Unitary-triangular factorization”: the intermediary point we seek in our
chain (we will look at it in more detail later).

– “Similar factorization”: reduction of the matrix by means of a two-sided sim-
ilarity transform to a Hessenberg form or tridiagonal symmetric matrix form,
and spectral factorization.

Hierarchical Domain Representation in the AlgoWiki Encyclopedia 11

– “Unsimilar unitary factorization”: reduction of the matrix by means of an
unbounded similarity transform to a two-diagonal form, and singular factor-
ization.

Before proceeding with the chosen factorization group, note that the pages
describing variations at the lower “algorithmic” level (e.g., Gaussian method with
the selection of a leading element) are quite brief, but we can say in advance
that no detailed description will be available for at least two of them since they
are not used in practice and are only mentioned as a tribute to the history of
the algorithm development.

In the chosen group of problems, “Unitary-triangular factorization,” after
moving a level lower, the reader finally gets to the individual problem level.
There are two of them in the classification so far: QR factorization for a dense
non-singular matrix and for Hessenberg matrices. The latter only has a short
description at the method level, as the actual algorithm is not used in practice
(factorization is not explicitly used in the QR algorithm but as iterations with
implicit shifts). The LQ decomposition is also mentioned in the description at
this level as a variation of QR factorization for a matrix transposed from the
original matrix.

A more detailed description of the problem “QR factorization for dense non-
singular matrix” is the last step in our chain, with the “P” icon. This is why,
following the rules for describing the single-problem level, a brief list of solution
methods is given along with a brief comparison of the above methods.

Digressing from the chosen chain towards the Householder method, one can
note that different chains do not always end at the algorithm level. For exam-
ple, the last method (using Gramian matrix factorization) does not have such
descriptions. The reason is that, owing to a narrow application area (in addition
to requiring a non-singular matrix, the A * A matrix conditioning is the square
of the original matrix conditioning, so the error margin for this method is much
greater), this algorithm has not been implemented by anyone.

Choosing the Householder method next, the user arrives at the method level
(“M” icon on screen), specifically at the “Householder (reflection) method for
matrix QR-factorization”. Naturally, at this level the user is presented with just
a basic mathematical concept for the method in question, as the actual algorithm
is described in more detail at the algorithm-level page (“Householder (reflection)
method of QR-factorization of a square matrix, floating point variant”). Other
versions of the algorithm have not been described yet, but they are mentioned in
the method description: “In addition to the classical point version, the method
has many other implementations such as the block version.”

Following the link to the algorithm, the user sees the “A” icon and a detailed
description of all features for the chosen algorithm. Among other things, the
general and mathematical descriptions of the algorithm contain not just general
words about the Householder transformation, but also specific formulas for each
step in the computation and for reducing the transformations to a sequence of
scalar multiplications and weighted vector sums. These basic operations are parts
of the computational core of the algorithm and are described in the respective

12 A. Antonov et al.

section. A description of the algorithm macro structure shows why the main
parts of scalar multiplications in the same step can be performed independently.

Looking at the implementation chart of the serial algorithm, the reader will
see a description of the mathematical essence of the stages within one step.
Serial complexity is presented as a formula for the number of floating point
multiplications and additions/subtractions.

Fig. 3. Algorithm step graph (zeroing column i). Squares represent input data for this
step (taken from the input data or from previous step), circles show operations. The
outlined group of operations is repeated independently n− i times

The information graph (see Fig. 3) is given for a single step as no parallelism is
observed between individual steps. The parallelism resource is calculated assum-
ing serial execution of scalar multiplication, but there are also assessments for
other methods, namely the serial-parallel and pairing methods. Input and output
data for the algorithm and its other properties are described further.

As one can clearly see, the correlation between serial and parallel complexities
is linear, which provides a good incentive for paralleling the algorithm execution.
However, the fastest level-parallel form of the graph has a square-law width,
which indicates an imbalance between device loads in an attempt to actually
program it. That is why it is more reasonable to keep the number of devices

Hierarchical Domain Representation in the AlgoWiki Encyclopedia 13

(e.g., cluster nodes) linear to the matrix size, even in the presence of a good (fast)
communication network, which doubles the critical path for the level parallel
form.

In this case, the algorithm’s computational efficiency, expressed as the ratio
of the number of operations to the total amount of input and output data, is
linear.

The algorithm is fully determined within the selected version.
The computational error in the Householder (reflection) method grows in a

linear manner, as well as in the Givens (rotations) method.
The next item after the description of the actual algorithm is the descrip-

tion of its software implementation from SCALAPACK’s PDGEQRF function.
The “Implementation peculiarities of the serial algorithm” section presents a
fragment of the program in Fortran implementing the given algorithm.

The next session presents an analysis of the algorithm locality and its quali-
tative assessment.

Next, the user can see how the algorithm’s dynamic characteristics change
with different computation performance parameters for the same algorithm
implementation.

Algorithm implementation can have relatively good performance, owing to
the use of the SCALAPACK implementation of BLAS libraries, etc. Finally, at
the end of the chain, the user can see some recommendations, particularly the
advice to avoid using the classical version of the method and to use the block
versions instead, for which numerous research works are available.

6 Conclusions

The paper considers the hierarchical approach used in the AlgoWiki Open
Encyclopedia of Algorithmic Features to represent the structure of the subject
area. A description is offered in the form of a “problem–method–algorithm–
implementation” chain, which corresponds to numeric descriptions of the prob-
lems used in computational mathematics. In the paper, we show the intercon-
nection between the basic concepts and analyze the descriptions of such chains
obtained while working on additional content for the AlgoWiki Encyclopedia.

The proposed approach to the description of “problem–method–algorithm–
implementation” chains is now being implemented in descriptions within the
AlgoWiki Open Encyclopedia of Algorithmic Features. This makes it possible to
describe subject areas in which computational algorithms are used more clearly
and according to a single scheme.

14 A. Antonov et al.

References

1. Patwary, M.M.A., et al.: Parallel efficient sparse matrix-matrix multiplication on
multicore platforms. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance
2015. LNCS, vol. 9137, pp. 48–57. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-20119-1 4

2. Solc, R., Kozhevnikov, A., Haidar, A., Tomov, S., Dongarra, J., Schulthess, T.C.:
Efficient implementation of quantum materials simulations on distributed CPU-
GPU systems. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC 2015), pp. 10:1–10:12.
ACM, New York (2015). https://doi.org/10.1145/2807591.2807654

3. Alam, M., Khan, M., Vullikanti, A., Marathe, M.: An efficient and scalable algo-
rithmic method for generating large-scale random graphs. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 32:1–32:12. IEEE Press, Piscataway (2016). https://doi.org/10.
1109/SC.2016.31

4. Dongarra, J., et al.: The international exascale software project roadmap. Int.
J. High Perform. Comput. Appl. 25(1), 3–60 (2011). https://doi.org/10.1177/
1094342010391989

5. Arm HPC tools for SVE. https://developer.arm.com/products/software-
development-tools/hpc/sve

6. Post-K computer. http://www.aics.riken.jp/en/postk/project
7. Intel Eases Use of FPGA Acceleration: Combines Platforms, Software Stack

and Ecosystem Solutions to Maximize Performance and Lower Data Cen-
ter Costs. https://newsroom.intel.com/news/intel-eases-use-fpga-acceleration-
combines-platforms-software-stack-//ecosystem-solutions/

8. Intel Enables 5G, NFV and Data Centers with High-Performance, High-Density
ARM-based Intel Stratix 10 FPGA. https://newsroom.intel.com/news/intel-
enables-5g-nfv-data-centers-high-performance-high-density-arm-//based-intel-
stratix-10-fpga/

9. Fu, H., et al.: The Sunway TaihuLight supercomputer: system and applications.
Sci. China Inf. Sci. 59(7) (2016). https://doi.org/10.1007/s11432-016-5588-7

10. Zhang, J., et al.: Extreme-Scale phase field simulations of coarsening dynamics
on the Sunway TaihuLight supercomputer. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC 2016), pp. 4:1–4:12. IEEE Press, Piscataway (2016). https://doi.org/10.1109/
SC.2016.3

11. Open Encyclopedia of Parallel Algorithmic Features. https://algowiki-project.org/
en

12. Voevodin, Vl., Antonov, A., Dongarra, J.: AlgoWiki: an open encyclopedia of paral-
lel algorithmic features. Supercomput. Frontiers Innov. 2(1), 4–18 (2015). https://
doi.org/10.14529/jsfi150101

13. Antonov, A., Voevodin, V., Voevodin, Vl., Teplov, A.: A study of the dynamic char-
acteristics of software implementation as an essential part for a universal descrip-
tion of algorithm properties. In: 24th Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing Proceedings, 17th-19th February
2016, pp. 359–363 (2016). https://doi.org/10.1109/PDP.2016.24

14. Antonov, A., et al.: Parallel processing model for Cholesky decomposition algo-
rithm in Algowiki project. Supercomput. Frontiers Innov. 3(3), 61–70 (2016).
https://doi.org/10.14529/jsfi160307

https://doi.org/10.1007/978-3-319-20119-1_4
https://doi.org/10.1007/978-3-319-20119-1_4
https://doi.org/10.1145/2807591.2807654
https://doi.org/10.1109/SC.2016.31
https://doi.org/10.1109/SC.2016.31
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989
https://developer.arm.com/products/software-development-tools/hpc/sve
https://developer.arm.com/products/software-development-tools/hpc/sve
http://www.aics.riken.jp/en/postk/project
https://newsroom.intel.com/news/intel-eases-use-fpga-acceleration-combines-platforms-software-stack-//ecosystem-solutions/
https://newsroom.intel.com/news/intel-eases-use-fpga-acceleration-combines-platforms-software-stack-//ecosystem-solutions/
https://newsroom.intel.com/news/intel-enables-5g-nfv-data-centers-high-performance-high-density-arm-//based-intel-stratix-10-fpga/
https://newsroom.intel.com/news/intel-enables-5g-nfv-data-centers-high-performance-high-density-arm-//based-intel-stratix-10-fpga/
https://newsroom.intel.com/news/intel-enables-5g-nfv-data-centers-high-performance-high-density-arm-//based-intel-stratix-10-fpga/
https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1109/SC.2016.3
https://doi.org/10.1109/SC.2016.3
https://algowiki-project.org/en
https://algowiki-project.org/en
https://doi.org/10.14529/jsfi150101
https://doi.org/10.14529/jsfi150101
https://doi.org/10.1109/PDP.2016.24
https://doi.org/10.14529/jsfi160307

Hierarchical Domain Representation in the AlgoWiki Encyclopedia 15

15. Voevodin, Vl., Antonov, A., Dongarra, J.: Why is it hard to describe properties
of algorithms? Procedia Comput. Sci. 101, 4–7 (2016). https://doi.org/10.1016/j.
procs.2016.11.002

16. Boyer, C.B.: The Arabic Hegemony. A History of Mathematics, Second edn. Wiley,
Hoboken (1991)

17. Knuth, D.: The Art of Computer Programming. Fundamental Algorithms, vol. 1,
3rd edn. Addison-Wesley, Reading (1997)

18. Gloukhov, V.: Parallel implementation of the INM atmospheric general circula-
tion model on distributed memory multiprocessors. In: Sloot, P.M.A., Hoekstra,
A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2329, pp. 753–762.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46043-8 76

19. Hess, R., Joppich, W.: A comparison of parallel multigrid and a fast Fourier trans-
form algorithm for the solution of the Helmholtz equation in numerical weather
prediction. Parallel Comput. 22, 1503–1512 (1997)

20. Saad, Y.: Iterative Methods for Sparse Linear Systems, Second edn. SIAM,
Philadelphia (2003). https://doi.org/10.1137/1.9780898718003

21. FFTW Home Page. http://www.fftw.org
22. Computing Cluster FFT. https://software.intel.com/node/521992
23. AccFFT. A New Parallel FFT Library. http://accfft.org
24. Davis, T.A.: Direct methods for sparse linear systems. SIAM (2006). https://doi.

org/10.1137/1.9780898718881
25. Golub, G., Van Loan, C.F.: Matrix Computations, Third edn. Johns Hopkins Uni-

versity Press, Baltimore (1996)
26. Chu, E., George, A.: QR factorization of a dense matrix on a hypercube multipro-

cessor. SIAM J. Sci. Stat. Comput. 11, 990–1028 (1990). https://doi.org/10.1137/
0911057

27. Paige, C.: Some aspects of generalized QR factorization. In: Cox, M., Hammarling,
S. (eds.) Reliable Numerical Computations. Clarendon Press, Oxford (1990)

28. Dongarra, J.J., D’Azevedo, E.F.: The design and implementation of the parallel
out-of-core ScaLAPACK LU, QR, and Cholesky factorization routines. Depart-
ment of Computer Science Technical report CS-97-347, University of Tennessee,
Knoxville, TN (1997)

29. Antonov, A., Teplov, A.: Generalized approach to scalability analysis of parallel
applications. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp.
291–304. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7 23

https://doi.org/10.1016/j.procs.2016.11.002
https://doi.org/10.1016/j.procs.2016.11.002
https://doi.org/10.1007/3-540-46043-8_76
https://doi.org/10.1137/1.9780898718003
http://www.fftw.org
https://software.intel.com/node/521992
http://accfft.org
https://doi.org/10.1137/1.9780898718881
https://doi.org/10.1137/1.9780898718881
https://doi.org/10.1137/0911057
https://doi.org/10.1137/0911057
https://doi.org/10.1007/978-3-319-49956-7_23

A Toolkit for the Development
of Data-Driven Functional Parallel

Programmes

Alexander I. Legalov(B), Vladimir S. Vasilyev, Ivan V. Matkovskii,
and Mariya S. Ushakova

Siberian Federal University, Krasnoyarsk, Russia
legalov@mail.ru, rrrFer@mail.ru, alpha900i@mail.ru, ksv@akadem.ru

Abstract. In the article a technology is considered which aims at cre-
ating architecture-independent parallel programmes based on the data-
driven functional paradigm. A proposed toolkit provides the translation,
execution, debugging, optimisation and verification of programmes. A
programme in a data-driven functional parallel language is translated
into the data-flow graph (which describes the data dependencies of an
implemented algorithm) of the programme. On the basis of this represen-
tation, the control-flow graph (which defines the organisation of compu-
tations) is generated. Both graphs allow to carry out various optimising
transformations. The resulting data-flow graph is also used for the for-
mal verification of the programme. A computation process is considered
as a cooperation of the control-flow graph and the data-flow graph. The
execution of data-driven functional parallel programmes is carried out
by a special interpreter (event machine), which consist of a number of
event processors controlled by a special manager.

Keywords: Data-driven functional parallel programming
Software development toolkit · Parallel-programmes translation
Parallel-programmes optimisation · Parallel-programmes verification

1 Introduction

Parallel computing have outgrown the application in high-performance comput-
ing long ago. It is widely used for solving problems in different areas. Nowadays,
the main feature of parallel programming is the source-code dependence on the
architecture of the target computation system. So, to port a programme to another
architecture, it should be completely rewritten or appreciably modified. The rea-
son is the intention to increase the efficiency of parallel programmes, which results
in software being heavily tied to particular hardware characteristics.

Computational resources and their communications are the main character-
istics of a computation system which should be considered during the develop-
ment in order to increase the programmes efficiency. So, in addition to solving

The research is supported by the RFBR (research project No. 17-07-00288).

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 16–30, 2018.
https://doi.org/10.1007/978-3-319-99673-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_2&domain=pdf

A Toolkit for the Development of DDFP Programmes 17

an applied problem, we need to explicitly manage computations and resolve
resource conflicts among parallel processes. That is why parallel programming
is hard [1] and requires non-trivial analysis of programme correctness taking
different approaches, for instance, model checking [2] for formal verification.

It should be pointed out that a dependency on a particular parallel hardware
precludes writing truly parallel algorithms at the initial stage of the develop-
ment. This leads to the reduction of problem parallelism according to hardware
resources, which prevents from applying more effective solutions when a mod-
ification of the programme is needed. At the same time, the development of
hardware-dependent programmes is the mainstream of parallel programming.
The existing approaches have very different ideology of parallelisation. The most
widespread approaches are: parallelisation with message passing [3], multithread
and multi-core programming for systems with shared memory [4], graphical pro-
cessing unit programming [5], and also the mixture of these three approaches in
different combinations for systems with heterogeneous and distributed architec-
ture [6–9].

Though the concept of unlimited parallelism is not widespread in parallel
programmes development nowadays [10], it has some prospects as a basis of
programming system that provide for subsequent transformations of programmes
into resource-limited and architecture-dependent parallel programmes. So it is
topical to develop a language and a toolkit to provide for creation of parallel
programmes which are initially independent of peculiarities of a specific parallel
computer system. Porting a programme to a particular system can be done after
the processes of verification, testing and debugging.

The proposed approach is based on the concept of architecture-independent
parallel programming. Its key ideas are exclusion of resource conflicts and
implicit control over computations from within the programme being devel-
oped. It is supposed that a virtual machine which executes the programme has
unlimited resources and a programming language allows to define solely data
dependencies between the executed functions. An interaction between functions
takes place on data readiness. This allows to create programmes with maximal
achievable parallelism, which is compressed to special computing resources at
the stage of the intermediate representation after verification and debugging of
the source code. This allows to increase the efficiency of parallel-programme
development process. For example, it is possible to create a generic library of
functions adaptable to different existing and prospective architectures. The sub-
sequent transformations of such programmes can be done with formal methods
by changing the control-flow graph to fit the target architecture, preserving the
correspondence with the data-flow graph (DFG).

The goal of our research is the development of architecture-independent
parallel-programming technology based on the data-driven functional parallel
paradigm [11]. To achieve the goal we solve the following problems:

– the development and further improvement of the data-driven functional par-
allel (DDFP) computing model, on whose basis a programming language
is defined; it allows the creation of architecture-independent parallel pro-
grammes;

18 A. I. Legalov et al.

– the development of a toolkit to provide translation, testing, debugging and
execution of data-driven functional parallel programmes;

– the development of methods for programme verification and optimisation at
the level of the programme DFG;

– the development of control-flow graph transformation methods that allow
to change the programme parallelism and, in the future, to transform pro-
grammes for particular parallel architectures.

2 Problems of Imperative Paradigm Employment
in Parallel Programming

Wide application of the imperative programming paradigm introduces certain
difficulties in the development of parallel programmes. A programmer has to
explicitly or implicitly form relations between programme objects [12]. The pos-
sible relations are:

– data relations which specify the DFG of the programme; this graph defines
dependencies between operations and operands being processed;

– control relations which set the order of execution of operations; these relations
are associated with the DFG of the programme in order to ensure the right
logic of transformations of operands;

– relations between computing resources (memory, processor units) that are
used during the operation execution.

In most cases, a programme developer has to explicitly take into account the
dependencies between these relations in an attempt to avoid any logical contra-
dictions leading to an erroneous execution. In the ubiquitously used imperative
programming, the relations between the data and the control are kept in the pro-
grammer’s mind but are not explicitly expressed in the programme. For instance,
let us consider the factorial function over the range 1 to n.

int fact1n(int n) {
int r = 1; int i = 1;

loop:
if(i <= n) {

r *= i;
i++;
goto loop;

}
return r;

}

It is evident that the only explicit relation is the relation of programme objects
order in the source code or (after translation and loading for execution) in the
system memory. But it does not specify the exact order of computing. A graphical
representation of the given function explicitly represents all kinds of relations and

A Toolkit for the Development of DDFP Programmes 19

Fig. 1. A graphical representation of the relations in the factorial function (the solid,
dashed and dash-dotted lines show data relations, control relations and order relations,
respectively)

shows different trajectories of its execution which the programmer has to keep in
mind to form an overall understanding of the programme (Fig. 1). In some cases,
the control and order relations coincide (operations marked with light grey),
which facilitates the programme understanding and allows to employ programme
counters instead of straight-forwardly transferring the flow of execution to the
address. In most cases, however, these relations are connected by implication
rather than by the order of the operations in the programme.

Frequently, the relation of order can be ignored by employing a graphical rep-
resentation. Particularly, flowcharts, activity diagrams, automaton graphs speed
up the development of programme algorithm and allow to represent the logic of
the operational behaviour clearly. This is done by explicitly defining the control
and data relations on the basis of the developer’s intuitive algorithm understand-
ing.

The situation becomes more complicated if we turn to parallel programmes
development. In this case, additional control operations for splitting and synchro-
nisation appear in the control-flow graph. What is more, all available resources
are to be distributed for the simultaneous execution of parallel source-code frag-
ments. This results in a new relation between the programme and the resources.
This relation can be explicitly represented by the resource graph (graph of sys-
tem resources). The probability of conflicts arises, which could lead to incorrect
computations even if the programme worked correctly in the sequential case.

Various parallel systems employ different computing control methods (strate-
gies) [12]. A programme can be represented by a data-control-resource graph (we

20 A. I. Legalov et al.

Fig. 2. A DCR-net describing the process execution within the computational resources

call it a DCR-net) in which processes P execute the operations F defined by a
programmer. The execution of these operations are initiated by control signals
that are emitted under certain conditions in the control-flow graph. These con-
ditions emerge from the data dependencies of the programme, peculiarities of
computational resources and some additional factors (Fig. 2). The correctness
of the computing process depends on certain prerequisites for each operation.
In the general case, an operation execution within the resources of the comput-
ing system is possible only if the following conditions are satisfied before the
execution:

1. The condition of data readiness (Data, D-condition). Before the process exe-
cution start, all the required data have to be at the process input. The process
execution in the absence of any required data leads to a wrong result.

2. The condition of resources allocation (Resource, R-condition). The process
requires certain resources to be executed within them, and these resources
should be allocated and provided before the process execution.

3. The condition of acknowledgement (Acknowledge, A-condition). Resources
utilised by a process can be freed or reused only after the acknowledgement
that the output results of computations have been received by all the processes
that take them as input.

The control of readiness conditions can be performed by different means. On
the one hand, a programmer can control processes directly. On the other hand,
a computing system undertake many control functions. Let us distinguish the
following control modes:

A Toolkit for the Development of DDFP Programmes 21

1. Explicit (human) control. A programmer sets the logic of generating and
checking the readiness conditions in the source code.

2. Implicit control. In this case, it is assumed that the processes are executed
correctly without any control. This assumption may follow, for example,
from special organisation of resources in the computing system, automati-
cally maintaining the data readiness condition (automatic control). Another
possibility is when the readiness conditions are always true due to the system
peculiarities, and hence no control is needed (empty control).

If a programmer uses explicit control, then he should code the readiness condi-
tions checks. It increases the software development costs.

3 Features of the Computing Model and the Language
of Data-Driven Functional Parallel Programming

The basic approach to architecture-independent parallel programming is the
development of a language and a toolkit to provide the implicit control at the
level of computing model. We propose a model of data-driven functional parallel
computing [11], in which every function is represented as a DFG whose nodes
are operators and whose arcs are data connections between operators. Any con-
nection is marked with a value which is both the output of the operator in
the beginning of the arc and the input of the second operator. There are several
types of operators in the graph: the operator of interpretation and data-grouping
operators.

The operator of interpretation is the only operator that applies a func-
tion to the function arguments. This operator has two inputs: the first one takes
a function (functional input), while the second one takes an argument for the
function (data input) (Fig. 3). The output of the interpretation operator is the
result of the function application to the argument. Functions are either elemen-
tary predefined operations or programmer-defined. The interpretation operator
semantics is defined by the axioms of the computing model and its transforma-
tion algebra [11].

Fig. 3. Graphical symbols of the interpretation operator (a—the general case, b—the
case when the function on the first input is predefined)

22 A. I. Legalov et al.

Data-grouping operators provide various ways of grouping operands in dif-
ferent structures (lists). The idea of data-grouping operators goes back to the
functional forms introduced in [13]. In our case, however, it is the variety of such
structures that is the principal way to increase the flexibility in writing par-
allel programmes and implement non-conventional ideas of parallel-algorithms
development. Extending the set of such operators is one of the main approaches
to the further development of the computing model and the language of data-
driven functional parallel programming. This language is used to try out various
approaches targeting the efficiency of expressing different types of parallelism.
For instance, the usage of asynchronous lists [14] allows to develop algorithms
with dynamically modifiable parallelism according to the rates of data incoming
and processing. The core set of data-grouping operators is shown in Fig. 4.

Fig. 4. Graphical symbols of data-grouping operators (a—data copying, b—constant
assignment, c—grouping in a data list, d—grouping in a parallel list, e—delay-list
creation)

The copy operator (Fig. 4a) carries out data replication. In our language,
replication is done by assigning a name to a connection (marked later with a
value during the execution), and then this name is used in other positions of the
programme to refer to this connection (and the corresponding value). We use
the prefix and postfix notation for assigning a name to the connection:

value >> name, or name << value.

The constant operator has no inputs (Fig. 4b). It has only one output
that is always marked with the predefined value. In our language, the constant
operator is defined by the value of a certain type.

The data-list grouping operator (Fig. 4c) has several inputs and one out-
put. It performs structuring and ordering of the values that are transmitted
through arcs from different sources. Each input has its number from 1 to N .
The position of data in the resulting list equals the number of the input it has
come from. In the source code, the list elements are put in parentheses “(” and
“)”. For example:

(x1,x2,x3,x4).

A Toolkit for the Development of DDFP Programmes 23

The parallel-list grouping operator (Fig. 4d) groups elements in a similar
way as in a data list. However, its output is a multiple connection whose mul-
tiplicity equals the number of operator inputs. If an operator of interpretation
is executed having a parallel list on its data input, then a function is applied to
each individual element of the parallel list independently and in parallel. In the
source code, the elements are put in square brackets “[”and “]”. For example:

[x,y,z]:sin ≡ [x:sin,y:sin,z:sin].

Similarly, in cases when a parallel list of functions comes to the functional input
of the interpretation operator, each function is applied to the argument in par-
allel:

(x,0):[<,=,>] ≡ [(x,0):<, (x,0):=, (x,0):>].

The transformation algebra of the language describes all the cases of equivalent
transformations of parallel lists.

The delay-list grouping operator (Fig. 4e) delays the execution of oper-
ators corresponding to some subgraph. This subgraph is considered as a single
node of the DFG until the delay list is released. This node has several inputs and
one output. The connections coming from outside the subgraph are the inputs
of the operator, and the result produced in the subgraph comes to the operator
output. The specific feature of this operator is that the delayed operators are
not executed even on data readiness until the delay is not released. The release
from the delay takes place if a delay list becomes an input of the interpretation
operator. Delay lists allows to construct the conditional branches of the pro-
gramme. In the graphical representation, a dashed line surrounding the delayed
operations is used to denote the delay list. In our language, the list of delayed
computations is defined by putting operators in braces “{” and “}”.

On the basis of the described model, we develop the Pifagor language for data-
driven functional parallel programming. The source code of the above-mentioned
factorial function in the Pifagor language is the following:

fact1n << funcdef n {
n1<< (n,1);
[(n1:[<=,>]):?]^ (

1,
{(n, n1:-:fact1n):*}

):. >>return
}

The function is free from explicit computations control. Only the data depen-
dencies between operators are defined. The DFG of this function is shown in
Fig. 5.

24 A. I. Legalov et al.

Fig. 5. Data-flow graph of the factorial function

4 A Toolkit for Architecture Independent Parallel
Programming

We develop a toolkit to support the data-driven functional parallel programming
paradigm in order to try out the proposed ideas and their further development
on the basis of experiments. The general scheme of the toolkit is shown in Fig. 6.
It includes the following subsystems:

– a translator from the language of data-driven functional parallel program-
ming to the intermediate representation, called the reverse data-flow graph
(RDFG);

– a generator of the control-flow graph (CFG), which constructs the graph for
controlling computations;

– an event machine, which supports execution of data-driven functional parallel
programmes by utilising RDFG and CFG;

– RDFG optimisation tools;
– CFG optimisation tools;
– tools for the DDFP programmes formal verification.

4.1 Translation of Data-Driven Functional Parallel Programmes

The translator accepts source code files in Pifagor language, each containing one
or more functions. It also provides separate compilation of functions stored in
a special repository. The translator generates a RDFG for each function. These

A Toolkit for the Development of DDFP Programmes 25

Fig. 6. The toolkit for architecture-independent parallel programming

RDFGs are saved in the repository in text format. The choice of the text format
is due to the fact that an internal representation in the computer memory can be
easily constructed by means of simple translators. Moreover, the developer can
easily read and analyse the translated functions, considering the text form of a
graph to be an analogue of the assembly language. The translator also generates
auxiliary files with debug information binding the nodes of the RDFG to the
function source-code lines.

A reverse data-flow graph generated by the translator allows to generate a
control-flow graph that controls the function execution. Each node of the CFG is
associated with the corresponding node of the RDFG and controls the moment
when the operation starts executing. Each node of the CFG is a finite automaton
whose states are controlled by the input signals. These signals notify the automa-
ton of the event of the data having been prepared for the associated RDFG node.
The computations on the RDFG node are initiated on certain state switches in
the automaton. As the RDFG node execution completes, the readiness signal is
transmitted through the output arc of the CFG to the next automaton. Before
the execution, the CFG arcs are marked with initial signals. As the execution
begins, the signals are transmitted along the arcs and change the states of the
receiving nodes. A special utility programme forms the CFG. It is saved in the
repository in text form.

4.2 Parallel Event Machine

At the current development stage, the execution of data-driven functional paral-
lel programmes is done by a special interpreter (event machine), which consists
of a set of event processors (EP) and a special event-machine scheduler control-
ling the EPs. Each EP handles only one function, which is run in a separate
thread. Currently, the execution of operators inside the function is performed

26 A. I. Legalov et al.

sequentially. At the present moment, our main goal is to achieve a stable func-
tioning of the event machine rather than high performance.

Functioning of an EP (Fig. 7) is carried out in the following way. Initial signals
of the CFG are added to the EP’s signal queue from which they are transmitted
to the handler of control signals according to the queue discipline. The handler
analyses an incoming event. Depending on the state of the signal recipient node
of the CFG, the handler might query the corresponding RDFG node (associated
with the CFG node) if the operation of data processing is to be executed. In case
it is, the handler of the RDFG nodes is called. It performs all needed functional
transformations and saves intermediate results. After the data processing, the
control node changes its state and, if needed, it emits a signal for the next node.
The latter signal is again added to the queue of control signals, and so on.

Fig. 7. Event-processor general structure

Before the event machine launch, a linker assembles separate functions from
the repository into a programme. The linker checks the presence of all compo-
nents that are listed in the section of the external links of the RDFG. If any
required component is absent, the interpretation is reported impossible. Each
required function is also linked. The event machine scheduler stores a table with
RDFGs and CFGs loaded by the linker.

The process of interpretation starts with the creation of the first (initial) EP.
It receives the RDFG and CFG of the function which is the first to execute. The
EP saves the data in the working memory of the RDFG nodes, while automaton
states are stored in the working memory of CFG nodes.

The states of the CFG nodes automata connected with the RDFG constant
operators are initially set to new-signal generation. These signals are transmitted
through the CFG connections and activate receiving automata. The process of
signal transmission through the connections lasts until the “return” node of

A Toolkit for the Development of DDFP Programmes 27

the corresponding RDFG is processed (in this case, the function is considered
completed), or until the event queue is empty. In the latter case, the EP switches
to sleep mode, sending a signal about this to the event-machine scheduler. This
situation occurs when all inner signals are processed and there is no incoming
control signals notifying of returned results from the called functions.

4.3 Optimisation of Data-Driven Functional Parallel Programmes

Within the system of data-driven functional parallel programming, we have
developed a number of optimising transformations that take advantage of the
peculiarities of our computing model.

1. Dead-code elimination (removal of code that does not affect the programme
results). The optimiser starts at the “return” node, traverses the DFG and
marks all the reachable nodes. The rest of the nodes are removed.

2. Optimisation within iterative calculations. Traditionally, compilers carry out
this kind of transformations for loops. In our case, similar transformations
are applied to recursive functions and parallel lists defined in the language
model. In particular, calculations inside a recursive function that remain con-
stant during the recursive calls are moved to a new auxiliary function, whose
result is passed to the recursive function as an additional parameter; in func-
tions applied to parallel lists, all computations that are independent from the
function parameters are moved to the calling function.

3. Inline substitution of simple functions. If a function is sufficiently small (the
number of nodes is below a predefined limit), then the function-call overhead
is substantial compared to the overall cost of the function. As a result, the
function body is better to be inserted at the place of the function call.

4. Duplicate-code elimination. If the DFG subgraphs perform the same opera-
tions on the same arguments and also are in one and the same delay list or in
hierarchically nested delay lists, then they can be merged, thereby eliminating
redundant computations.

5. Optimisation based on equivalent transformations. The RDFG is searched for
certain subgraphs that can be transformed to a more computationally simple
but equivalent form.
In particular, the model admits the following equivalent transformations: sim-
plification of single-element parallel list; unwrapping of directly nested parallel
lists into a single parallel list; preliminary simplification of parallel lists whose
size is known at compilation time.

6. Redundant control-dependencies removal. An RDFG describes data depen-
dencies, and the CFG is created on its basis according to the data-readiness
control strategy. However, in several cases, some control relations are redun-
dant, and their removal would not affect the order of programme-operator
execution.

7. Generation of a CFG that defines a sequential traversal of the RDFG nodes.
This removes the overhead of data-readiness analysis.

28 A. I. Legalov et al.

4.4 Formal Verification of Data-Driven Functional Parallel
Programmes

The proposed paradigm eases formal verification of programmes owing to the
absence of resource limitations and to the fact that a programme defines only
data dependencies. The main problems in this area are to study the application
of formal correctness-proof methods to the proposed language and to develop a
toolkit to assist formal verification.

For the correctness proof, we employ the axiomatic approach based on Hoare
Logic [15]. The specification of the programme is expressed in a special formal
language (specification language). A Hoare triple is represented by a data-flow
graph of the programme whose input and output arcs are marked with formulas
in the specification language (called a precondition and a postcondition, respec-
tively). The process of proving the programme correctness consists in marking
the graph arcs with formulas, graph modifications and folding. As a result, we
obtain a number of RDFGs with all arcs marked with formulas. Each of these
RDFGs can be transformed into a logic formula. If all these formulas are iden-
tically true, then the programme is correct [16].

The process of proving is quite complicated since it requires taking into
account a great number of graphs and their transformations. That is why we
have developed basic concepts of a toolkit for supporting formal verification of
DDFP programmes [17]. The system takes a DFG and programme pre- and
postcondition as its input. It searches for unmarked arcs of the graph and assists
in selecting appropriate axioms and theorems for marking the arcs. The proof
process of a programme correctness is considered as a tree in which each node is
a partially marked DFG of the programme. The construction of the proof tree
finishes when all its leaves are totally marked DFGs. Thereafter, a logic formula
is generated for each DFG in the leaves. The programme correctness is proved
if we manage to prove that all these formulas are identically true.

5 Overview of Related Works

In the area of languages and support tools for parallel programming, the current
focus is on the creation and development of architecture-dependent systems. The
difference between these and our approaches has been discussed above. There
exist unconventional methods and tools for parallel programming, but usually,
they are being developed by small groups of developers. The development often
finishes at the stage of an experimental solution, which does not make it more
popular. An exception is special-purpose systems, which target specific object
domains and have a considerable optimisation potential for existing architectures
owing to the limited number of tasks to solve. For instance, the non-procedural
language NORMA [18] targets problems of mathematical physics and translates
into parallel programmes for different architectures.

Dataflow programming is implemented in the LabVIEW system [19]. The
graphical programming language named “G” is designed to target the problems
of the automation of scientific researches and production processes. The language

A Toolkit for the Development of DDFP Programmes 29

is oriented towards large-blocks programming and, in fact, describes an inter-
action of different resources. On the contrary, our approach targets unlimited
resources and parallelism at the level of elementary operations.

Sisal is one of the universal functional languages of parallel programming
that has been developed for a long time. The first version of this language
was released in 1985. In recent times, the Institute of Informatics Systems of
the Siberian Branch of the Russian Academy of Sciences has been developing
this language, and its latest release is Sisal 3.2 [20]. It should be pointed out
that the main goal of the project is to provide application programmers with
convenient environment for functional programme development, with the subse-
quent execution of the programmes on a parallel computing system available via
telecommunication networks. This is the main difference from our goals: we seek,
investigate and implement operators that allow for efficient expression of unlim-
ited parallelism in architecture-independent parallel programmes. In our view,
this allows to rethink the process of development, analysis and transformation
of parallel programmes. In particular, it is demonstrated in [21] how to deduce
known methods of sorting by imposing different constraints on an algorithm with
initially unlimited parallelism.

6 Conclusions

The toolkit being developed allows to create architecture-independent parallel
programmes whose execution may be controlled using different strategies with-
out changing the programme logic. Nothing prevents us from performing pre-
liminary optimisation, testing and verification of the DFG in the architecture-
independent manner. Further transformations of intermediate programme repre-
sentations to programmes for real computing systems can be carried out on the
already debugged source code by means of formal methods, which would increase
programme reliability. Also, it is possible to perform additional optimisations,
for instance, to increase the efficiency of memory usage.

It should be pointed out that all transformations are done only after a cor-
rectly functioning programme code is written. In the meantime, we have solved
only the first part of the problem—programme execution on the emulator of the
event machine. The next stage of our development is programme transforma-
tions for existing computing systems. Besides making the developed tools more
convenient to use, we intend to create an integrated development environment
(IDE) that additionally supports function repository, translating, verification
and execution of programmes.

References

1. McKenney, P.E.: Is Parallel Programming Hard, And, If So, What Can You Do
About It? www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.
html

www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

30 A. I. Legalov et al.

2. Karpov, Y.G.: Model Checking. Verification of Parallel and Distributed Program
Systems. BHV-Petersburg, Saint Petersburg (2010). (in Russian)

3. Korneev, V.D.: Parallel programming in MPI. Institute of Computational Math-
ematics and Mathematical Geophysics, Siberian Branch of the Russian Academy
of Sciences, Novosibirsk (2002). (in Russian)

4. Akhter, S., Roberts, J.: Multi-core Programming Increasing Performance through
Software Multithreading. Intel Press, Santa Clara (2006)

5. Cheng, J., Grossman, M., McKercher Ty.: Professional CUDA Programming.
Wiley, Indianapolis (2014)

6. Tay, R.: OpenCL Parallel Programming Development Cookbook. Packt Publishing
Ltd., Birmingham (2013)

7. Lastovetsky, A.L.: Parallel Computing on Heterogeneous Networks. Willey, Hobo-
ken (2003). https://doi.org/10.1002/0471654167

8. Maad, S. (ed.): Grid Computing – Technology and Applications, Widespread Cov-
erage and New Horizons. InTech, Rijeka (2012). https://doi.org/10.5772/2290

9. Gaster, B.R., Howes, L., Kaeli, D.R., Mistry, P., Schaa, D.: Heterogeneous Com-
puting with OpenCL. Advanced Micro Devices, Inc., Elsevier Inc., Santa Clara
(2013)

10. Voevodin, V.V., Voevodin, Vl.V.: Parallel Computations. BHV-Petersburg, Saint
Petersburg (2002). (in Russian)

11. Legalov, A.I.: The functional programming language for creating architecture-
independent parallel program. Comput. Technol. 10(1), 71–89 (2005). (in Russian)

12. Legalov, A.I.: Managing computation in parallel systems and programming lan-
guages. Sci. Bull. NSTU 3(18), 63–72 (2004). (in Russian)

13. Backus, J.: Can programming be liberated from von Neuman style? A functional
stile and its algebra of programs. CACM 21(8), 613–641 (1978). https://doi.org/
10.1145/359576.359579

14. Legalov, A.I., Redkin, A.V., Matkovskii, I.V.: Data driven functional parallel pro-
gramming with data coming asynchronously. In: PACT 2009, pp. 573–578. South
Ural State University, Chelyabinsk (2009). (in Russian)

15. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12(10),
576–585 (1969). https://doi.org/10.1145/363235.363259

16. Kropacheva, M., Legalov, A.: Formal verification of programs in the pifagor lan-
guage. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 80–89. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39958-9 7

17. Ushakova, M.S., Legalov, A.I.: Automation of formal verification of program in the
Pifagor language. Model. Anal. Inf. Syst. 22(4), 578–589 (2015). https://doi.org/
10.18255/1818-1015-2015-4-578-589

18. Andrianov, A.N., Baranova, T.P., Bugerya, A.B., Efimkin, K.N.: Nonprocedural
NORMA Language and Its Translation Methods for Parallel Architectures. Uni-
versity News. North-Caucasian region, Technical Sciences Series, vol. 3, no. 195,
pp. 5–12 (2017). https://doi.org/10.17213/0321-2653-2017-3-5-12

19. Yang, Y.: LabVIEW Graphical Programming Cookbook. Packt Publishing, Birm-
ingham (2014)

20. Kasyanov, V.: Sisal 3.2: functional language for scientific parallel programming.
Enterp. Inf. Syst. 7(2), 227–236 (2013). https://doi.org/10.1080/17517575.2012.
744854

21. Legalov, A.I.: Parallel algorithms development. Open Syst. 9(101), 64–68 (2004).
(in Russian)

https://doi.org/10.1002/0471654167
https://doi.org/10.5772/2290
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-39958-9_7
https://doi.org/10.18255/1818-1015-2015-4-578-589
https://doi.org/10.18255/1818-1015-2015-4-578-589
https://doi.org/10.17213/0321-2653-2017-3-5-12
https://doi.org/10.1080/17517575.2012.744854
https://doi.org/10.1080/17517575.2012.744854

Machine Learning Techniques
for Detecting Supercomputer

Applications with Abnormal Behavior

Alexander Bezrukov1 , Mikhail Kokarev2 , Denis Shaykhislamov2 ,
Vadim Voevodin2(B) , and Sergey Zhumatiy2

1 Plekhanov Russian University of Economics, Moscow, Russia
Bezrukov.AV@rea.ru

2 Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
mikhail.kokareff@gmail.com, sdenis1995@gmail.com,

{vadim,serg}@parallel.ru

Abstract. There are different approaches that help to solve the issue of
low efficiency of modern supercomputer usage. One of them is based on
constant monitoring of a supercomputer job flow in order to promptly
detect inefficient programs. The execution dynamics of such programs
usually differs from the “normal” behavior of common programs; how-
ever, it is very difficult to establish exact criteria for determining abnor-
mal behavior. Machine learning methods are therefore used in this study
for detecting abnormal jobs. This paper deals with an important aspect
of working with machine learning methods, namely data preparation.
The solution proposed herein was evaluated on the Lomonosov-2 super-
computer.

The issue of optimal input data selection is one of the key steps for
transferring the methods suggested in the paper to other supercomput-
ers. The analysis described in the article has served as a starting point for
developing a methodology for applying overall solutions to other super-
computers, which is also described in this paper.

Keywords: Supercomputer · High-performance computing
Task flow · Anomaly detection · Program efficiency · Machine learning

1 Introduction

High-performance computing is becoming more and more large-scale: the number
of scientists from different research areas that use supercomputer technologies
for solving scientific problems is constantly growing. This is definitely a positive
trend which hopefully will continue in the future. But this has an unobvious

This work was partially funded by the Russian Foundation for Basic Research (grants
16-07-00972 and 17-07-00719) and a study grant from the Russian Federation Pres-
ident’s Fund (SP 1981.2016.5).

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 31–46, 2018.
https://doi.org/10.1007/978-3-319-99673-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_3&domain=pdf
http://orcid.org/0000-0003-0753-3830
http://orcid.org/0000-0002-5261-7745
http://orcid.org/0000-0002-9279-6397
http://orcid.org/0000-0003-1897-1828
http://orcid.org/0000-0001-5770-3071

32 A. Bezrukov et al.

drawback. A lot of new scientists entering this area are usually skillful special-
ists in their research areas, such as computational physics, molecular dynamics,
weather forecasting, drug design, etc., but they are by no means experienced
enough in parallel computing. Taking also into consideration that the architec-
ture of modern supercomputers is highly complex, it becomes really difficult to
develop efficient parallel applications that consider all the peculiarities of under-
lying hardware. And this results in a substantial amount of parallel programs
with really low execution efficiency [1].

One can say that more people involved in parallel computing means efficient
off-the-shelf application packages being developed, and this is partially true.
New ready-to-use packages appear as well as existing packages enhance their
functionality, although unfortunately they are often neither very scalable nor
efficient in practice. But such packages play significant role in forming the overall
efficiency of using supercomputer centers, so their behavior should be monitored
and analyzed, which is the goal of another research being conducted at the
Research Computing Center of the Lomonosov Moscow State University (RCC
MSU) [2].

There are many different approaches as to how the efficiency of a partic-
ular parallel program can be analyzed and optimized. Various profilers, trace
analyzers, and debuggers have been developed and successfully used to address
this task. But before an application can be studied thoroughly, we would have
to become aware that this application has low execution efficiency and that it
needs to be analyzed. And it turns out that in many cases not only users but also
system administrators do not know that an application has some performance
issues. This means that a constant monitoring of all programs running on a
supercomputer is needed in order to find inefficient applications with possible
performance issues.

This work is aimed at solving this particular task. The main goal is to detect
abnormal applications, i.e. applications with abnormal behavior which signifi-
cantly differentiates from the standard behavior of the tasks in a supercomputer
job flow. The behavior of applications is described using system monitoring data.
Owing to the fact that it is currently almost impossible to precisely establish
criteria for abnormal behavior, machine learning (ML) methods are used for that
purpose. But tuning machine learning techniques to maximize its performance
can be quite tricky. One of the main difficulties that are encountered on this
path is to correctly select and prepare needed input data, which can drastically
influence the overall accuracy of machine learning methods.

The main contribution of this paper is a description of methods for determin-
ing a suitable input data set which can lead to improvements in classification
accuracy. These methods were implemented and evaluated using an anomaly
detection method developed previously. Furthermore, the conducted data prepa-
ration analysis served as an entry point for developing a methodology for apply-
ing overall anomaly detection approaches to other supercomputer centers. This
newly developed methodology is also presented in this paper.

ML Techniques for Detecting HPC Applications with Abnormal Behavior 33

The paper is organized as follows. Section 2 briefly describes the work that
was previously done within this research, as well as related studies. Section 3 is
devoted to the problem of data preparation for the machine learning method
used for anomaly detection. A methodology for applying the developed solution
for anomaly detection to other supercomputers is described in detail in Sect. 4.
Section 5 contains the conclusions made as well as plans for future research.

2 Background and Related Work

The main goal of this work is to find abnormally inefficient applications in a
supercomputer job flow using system monitoring data. There are several related
works with similar goals that could be mentioned. Many of them are based on
just static thresholds that help to determine abnormal behavior: this is how
system monitoring tools like Nagios or Zabbix do. But this works well just for
simple cases and it is required to accurately adjust these thresholds.

For more complex cases, machine learning methods are used. For example, in
[3], ML techniques are used for program classification as well. But the authors
of that paper use supervised methods for identifying specific applications (e.g.,
software packages like GROMACS) based on performance data. For detecting
inefficient behavior, simple static thresholds were used.

Another example, which is the most related one to our research, is the paper
[4]. The authors present a method for detecting performance anomalies in HPC
systems. A system monitoring performance data is also used in this case for
anomaly detection, although they are interested in detecting performance varia-
tions caused by resource contention or hardware/software problems on a node. A
number of node-level anomalies like “orphan processes” and “hidden hardware
problems” are specified, and are then detected using machine learning methods.
So the main goal of this work is quite different, even though the approach used
is very similar. It is interesting that Random Forest algorithm showed the best
classification results, as in our study. The high performance achieved in paper
[4] showed us that the methods we were planning to use in our case should lead
to suitable results.

There are other works where machine learning techniques for performance
analysis in the HPC area are used (for example, [5,6]), but none of them aims
at solving our task. Nevertheless, it should be mentioned that studying these
works helped us to determine the methods suitable in our case.

As mentioned earlier, the anomaly detection method proposed is based on
analyzing data collected with monitoring systems. At the MSU Supercomputing
Center, a set of proprietary tools is currently being used, but it is planned
to switch in the near future to the DiMMon monitoring system [7], which is
being developed at the RCC MSU for use on exascale-level supercomputers.
Data from processor counters (e.g., CPU user load), memory and communication
network intensity (e.g., number of L1 cache misses per second, amount of bytes
sent per second): all this information is collected for each job running on the
supercomputer, forming the basis needed for the performance analysis of job
efficiency.

34 A. Bezrukov et al.

Using these dynamic characteristics for performance description, each job
can be classified as normal, suspicious or abnormal. In general, a job is classified
as normal if no performance issues are found. A job is called abnormal if it is
definitely working incorrectly, wasting computing resources; this could happen
if a program stalls or a software/hardware error has been encountered. A job is
classified as suspicious if we can detect some performance issues in its behavior
but we cannot be sure that this behavior is definitely incorrect (abnormal), so a
more detailed analysis is needed.

The overall job classification process is organized as follows (a detailed
description can be found in [8]).

Each job is represented by the values of dynamic characteristics changing
during the program runtime, that is, by a number of timelines, one timeline
per characteristic. For each job, these timelines are divided into time intervals.
An intellectual method is used for this purpose that tries to identify substantial
changes in the behavior of the program, separating different logical stages of the
program execution. In this case, the behavior of each interval is quite simple
and can be therefore represented accurately using integral values (e.g., max,
min, median, oscillation rate). After timelines are divided into time intervals,
each interval is individually classified as abnormal, suspicious or normal using
integral values for the chosen dynamic characteristics.

For interval classification purposes, we use a method based on the Random
Forest algorithm (Scikit-learn [9] implementation). This is a supervised method
that was trained on a set of 520 manually classified intervals (270 normal, 70
abnormal and 180 suspicious intervals), leading to a classifier accuracy of ∼0.93
on the Lomonosov-2 supercomputer. The accuracy is calculated as the ratio of
correctly classified intervals to the number of all intervals in the set.

When each interval of a job runtime is classified, it is needed to assign a
class to the job in general. It is done using a set of criteria that attempt to
determine whether a substantial amount of processor time was consumed by
intervals with abnormal/suspicious behavior. The results were validated on a
test set of 110 applications (32 abnormal, 48 suspicious, 33 normal). The overall
job classification accuracy achieved was ∼0.92.

The resulting performance is quite high. However, the following should be
noted. One of the most important points that influence the performance of
machine-learning-based classification is data preparation. And the original selec-
tion of the feature set was based only on our initial sense of what, in our opinion,
should be most useful for the classification. It was thus decided to study how
much accuracy can be increased with a more intelligent approach to the choice
of the input data, based on a rich existing analytical experience in this area.
Within this paper, we describe a number of different methods we have tried for
choosing the most suitable feature set, aimed at increasing the accuracy of the
classifier we have developed.

Moreover, the approach for data preparation described in this paper makes
this overall classification process much more portable, since choosing the cor-
rect input data is one of the most challenging tasks for performing an accurate

ML Techniques for Detecting HPC Applications with Abnormal Behavior 35

classification. Following the methodology described in Sect. 4, one can try to
implement the described classifier on a different supercomputer.

3 Data Preparation for the Anomaly Detection Approach

In a previous work, we selected and fixed an input feature set for the classifier
according to our initial view of which data is the most important in our opinion
(here and below, we will refer to this set as the “basic feature set”, and, accord-
ingly, to the classifier based on it as the “basic classifier”). However, during the
working process, we figured out that this can potentially be improved with useful
information about job dynamic behavior that was not used at that time. So it
was decided to rethink our data preparation process.

The data preparation stage for machine-learning-based algorithms consists
of three steps: selection, preprocessing and transformation [10]. Usually a lot
of different types of input data are available that can be used for classification
purposes, but using all data not always results in the best performance and, also,
it can be very computationally complex. So the data selection step is aimed
at choosing the right subset of data types that will lead to the best accuracy
and/or classification speed.

In our case, the machine learning algorithm uses system monitoring data as
input, so we can potentially use all the information that can be collected from the
system counters describing the utilization of CPUs, memory subsystem, commu-
nication network, etc. It should be noted that there are always hardware restric-
tions in a processor (which are not the same for different processor families),
which allows us to collect only a small amount of processor counters simulta-
neously. For each supercomputer, we heuristically chose the most suitable data.
For example, the set of data being collected on our Lomonosov-2 supercomputer
is the following:

– CPU utilization: CPU user load, other types of CPU load (system, iowait),
loadavg.

– Memory usage intensity: number of L1/L2/L3 cache misses per second; num-
ber of load/store operations per second.

– Communication network usage intensity: number of bytes/packets sent/
received per second, separately for MPI and file system networks.

– GPU utilization: GPU user load, GPU memory load, GPU memory utiliza-
tion.

Using all this data is not the best option, so we need to choose a suitable
subset. This task turned out to be the most challenging in the data preparation
stage; a description of methods used is further provided.

The second step in the data preparation stage is data preprocessing. This
step includes such processes as data cleaning and formatting, which in our case is
almost not needed at all: the monitoring system provides us with all the needed
data in a suitable format.

36 A. Bezrukov et al.

The third step is data transformation. During this step, data scaling or
decomposition as well as aggregation can be performed. In this work, a machine
learning algorithm is used for time interval classification, and this is done with
the Random Forest algorithm. It does not require data normalization, so no need
for any data scaling in our case.

Data aggregation is done twice before passing the input feature set to the
classifier. At first, 2-min approximation is used: raw data collected by the mon-
itoring system is replaced every two minutes with integral values (max, min,
average, etc.). This is necessary to reduce the amount of data that needs to be
stored, and it was decided not to change this step in this work.

The next aggregation is done on our side, at the interval level. As mentioned
earlier, we form time intervals in such a way that they show a simple behavior
which can be accurately described using integral values. This means that each
interval and each dynamic characteristic (like CPU user load) is described with
only maximum, median, etc. values instead of using a time series of raw numbers
(usually, there are 30 to 100 time points representing each interval). Furthermore,
most jobs studied in our work are parallel, which means that we also need to
aggregate the data across different processor cores in a node, as well as between
nodes. So we use triple aggregation in this case: first by space (between cores in
a node), then again by space (between nodes) and then by time (between time
points).

The question is, what integral values should be used for interval description?
We have made a list of possible variants that can be useful in practice, according
to our experience. For each variant, three aggregation methods are provided
(within a node/between nodes/time):

– Minimum (within a node)/minimum (between nodes)/minimum (between
time points). Maximum is not so interesting since it is often equal to the
peak.

– Average/average/median. We have selected median for time aggregation due
to its better resistance to outliers, which leads to a more accurate description
in many cases.

– Maximum/average/average. This value helps to detect imbalance between
nodes.

– Minimum/(average-minimum)/average. We have selected (average-
minimum) for aggregation between nodes instead of just average, since using
just average leads to values very close to the minimum, which was already
described earlier.

– Average/average/oscillation rate. The oscillation rate is calculated as
maximum-minimum range divided by the overall average. This number
reflects the relative fluctuation of the max and min values of the characteristic
around the average.

– Maximum/maximum/oscillation rate. This helps us to describe fluctuation
of characteristics as well. We do not use minimum/minimum/oscillation rate
because it is usually equal to zero.

– (Maximum/maximum/maximum)/(average/average/average). Another way
of describing fluctuation.

ML Techniques for Detecting HPC Applications with Abnormal Behavior 37

We also thought about adding more integral values, such as skewness or
kurtosis [11], but it seems like it would not add any new information to the list
of considered values, so it was decided not to expand the list, which was already
quite big.

Taking into account the aforesaid, there are two options that we can adjust
in order to try to improve classification accuracy, namely what data types should
be selected and what integral values should be used. But we have 20 different
data types, with 7 integral values to represent each of them, which makes 2140

different possible feature subsets. This means that we need some intellectual
method to choose one close to the optimal for our purpose.

But before starting to choose the appropriate set of features, it is necessary to
understand whether it is worth doing in principle. We need to evaluate whether
the possible accuracy gain is statistically significant. If no, there is no sense
in performing any analysis at all; the current feature set would then be quite
suitable.

For checking the statistical significance of the model accuracy ratio increase,
we use Student’s t-criterion (1):

T = max + 3 ∗ (st error), (1)

where max is the maximum accuracy obtained using the basic feature set, and
st error is the standard error of the mean for the accuracy with the basic clas-
sifier. We use the t-test as it is commonly applied to check the significance of
the difference between two values, in our case, the model accuracy values. If the
accuracy obtained with new feature sets is higher than this value, we can say
that we found a statistically significant better result.

We ran the basic classifier 1000 times and analyzed the cross-validation accu-
racy in the intervals of real-life applications from the Lomonosov-2 supercom-
puter. The max was 0.9398, while the average was 0.9324 (most of the accuracy
variation is related to the random nature of the classifier due to the use of the
Random Forest algorithm). The t-criterion in this experiment is then equal to
0.94. The analysis showed that this value can be exceeded using new feature
sets. For example, the average accuracy for the most complete feature set (all
140 features considered) is 0.9434, which is higher than the t-criterion. It should
be noted that this set does not suit us owing to the following reasons: (1) the
result obtained is possibly not the highest one; (2) using so many characteristics
is likely to lead to an overfitted model (and also to issues with classification
speed), so this amount should be reduced.

This analysis proved that it is worthwhile to search for more optimal feature
sets for our classifier. The standard approach for solving this issue is to use
discriminant function analysis. The next section describes in detail how it was
used in our research.

38 A. Bezrukov et al.

3.1 Discriminant Function Analysis

There are three possible approaches for choosing an appropriate feature set:

1. Use all possible features and manually select the most important ones (stan-
dard method).

2. Backward stepwise.
3. Forward stepwise.

All these approaches are usually quite similar in terms of the accuracy that
can be achieved as a result. Both backward and forward stepwise methods were
attempted in order to quantitatively evaluate the significance of the features
and obtain the preliminary list of features that remain in the model after the
completion of both algorithms, as well as to gain an a priori insight into the
features’ influences.

Backward Stepwise Method. The main idea of this algorithm is quite simple:
we perform a number of steps, and at each step, the feature leading to the least
accuracy loss is removed. Scikit-learn provides its own implementation of the
backward stepwise algorithm [12] but it calculates the accuracy using only one
cross-validation at a time, which in our case leads to rather unstable results. So
we decided to implement five cross-validations and take the average result. The
overall backward stepwise algorithm looks as follows:

– While the break condition is not satisfied:
• Temporarily remove one feature from the set A. Calculate the classifica-

tion accuracy using the resulting feature set A1.
• Repeat the previous step for each feature in the set A. As a result, we

have N accuracies for all possible sets An (where N is the size of the
feature set A) without one feature.

• Find the set Ai that shows the highest accuracy.
• Use this set Ai and go to the next iteration.

There are two points that need to be clarified. The first one is how the accu-
racy is calculated. We use cross-validation: the training data is split into five
equal parts; one part serves as the test set, the other four are chosen as the train-
ing set. There are five possible ways to do this, and the cross-validation accuracy
is calculated based on this 5-fold splitting. Then we repeat cross-validation five
times and take the average accuracy value. The second point to clarify is the
break criterion. There are several standard ways to do this: do not stop until a
particular number of features is reached or do not stop until the accuracy loss is
less (or the overall accuracy is higher) than a specified threshold.

Figure 1 shows average accuracy results for the backward stepwise method.
Along the X axis, we have the numbers of features left in the feature set; the Y
axis corresponds to the accuracy value for the chosen feature set at each iteration
of the backward stepwise algorithm.

ML Techniques for Detecting HPC Applications with Abnormal Behavior 39

Fig. 1. Interval classification accuracy variation during the backward stepwise method.
The horizontal line corresponds to the basic classifier accuracy

It can be seen that the same accuracy as for the basic classification (marked
with a red horizontal line) is achieved with 50 to 70 features, whereas the basic
feature set consists of 33 features. Using 70+ features is not a suitable option
for us because it does not provide a substantial accuracy gain, while decreasing
the classification speed and increasing the probability of the overfitting problem.
This means that the use of the backward stepwise method leads to worse results
than those of the basic classification.

So it was decided to switch to the second method: the forward stepwise.

Forward Stepwise Method. The forward stepwise algorithm works the other
way round compared with backward stepwise: we start with a small feature set
and add one feature that maximizes the accuracy at each iteration. But there
are also several points that should be determined in this case: what features to
start with and when to stop.

One of the most important steps in the forward stepwise algorithm is the
choice of a suitable starting feature set. Usually it includes 5 to 10 features. But
they can be selected in a different way, for example, randomly or based on expert
knowledge. At first, we tried to rely on our experience-based assumption that the
median and the oscillation rate are the most important integral values that are
useful for the classification process. So we tried to use only them as the starting
feature set. The break criterion was the maximum size of the feature set: not
more than 35 to 40 features. However, this led to poor accuracy results, meaning
that this assumption is not good enough. Using randomly chosen starting sets
is not a good option either, since we know that some combinations of features
must be included, otherwise important behavior peculiarities could be omitted
by the classifier.

As a result of trying different variants, the following method for choosing a
starting feature set and finishing the forward stepwise process was formed. We
combined data types into the following groups (several groups contain only one
data type):

40 A. Bezrukov et al.

– CPU load;
– load average;
– memory reference intensity (number of load/store operations per second);
– number of L1 cache misses per second;
– number of L2 cache misses per second;
– number of L3 cache misses per second;
– MPI network usage intensity (number of bytes/packets sent/received per sec-

ond);
– file system network usage intensity (number of bytes/packets sent/received

per second);
– GPU utilization (GPU user load, GPU memory utilization).

Each group represents a part of information that must be included in the
resulting feature set one way or another. Each group can be represented using
any integral value specified earlier; there are no restrictions on that. It should
be noted that three data types, namely CPU system load, CPU iowait load
and GPU memory load, were considered not important enough, so they are not
included in any group and may not therefore be included in the resulting feature
set.

Initially, five random features were selected from the list above. We chose
the following break criteria: (1) at least one feature from each group must be
included into the feature set; (2) the size of the feature set must be not less than
30. The first criterion is needed to be sure that the resulting feature set includes
all the information we think is necessary. The second one guarantees that the
feature set will not be too small, which, in most cases, leads to poor accuracy
results.

Owing to the random nature of the classification algorithm used, the feature
set obtained can be quite different each time we run the forward stepwise method.
So, in order to choose the most appropriate one, we need to collect enough
statistics.

We ran the forward stepwise method 50 times and obtained 50 different
feature sets. Next, we needed to determine which feature set shows the best
performance results. So we performed cross-validation 2000 times for each feature
set and calculated the average accuracy. After that, we took the top five feature
sets having highest accuracy (their results were very similar) and then selected
the best one among them, using our own knowledge on what features are more
important. The chosen set turned out to be also the most uniform: the number
of features in each group was almost equal.

Final Results. After we determine the final feature set, it is necessary to evaluate
the results achieved using the final feature set (referred further as the “final
classifier”) compared to the performance of the basic classifier.

The overall cross-validation accuracy of the interval classification for the
Lomonosov-2 real-life applications improved from ∼0.93 with the basic classifier
to 0.95 with the final classifier. This means that the final accuracy is above the
t-criterion value, which is 0.94 (calculated in the beginning of Sect. 3), so that
the achieved accuracy improvement is statistically significant.

ML Techniques for Detecting HPC Applications with Abnormal Behavior 41

The confusion matrix (Table 1) summarizes the classification accuracy for
particular classes (average values for 1000 cross-validation runs). It can be seen
that our final classifier works best with the normal class, but the results for other
classes are also quite high.

Table 1. Confusion matrix for interval classification

Predicted class

Normal Abnormal Suspicious

Actual class Normal 268 0 6

Abnormal 2 62 5

Suspicious 10 1 168

False-negative error is also an important measurement in our case. It is not
a big issue to misclassify a few normal jobs as suspicious or abnormal since we
want just to notify users about anomalies found. But it is not acceptable to miss
abnormal or suspicious behavior since it leads to loss of computing resources.
The results show that this error is very small for the final set: 0.027 in average.

We have also compared other classification performance metrics, such as
the F -score and the false-negative error. F -score results for both the basic and
the final versions are summarized in Table 2. The F -score helps to evaluate
the classification results from another point of view. It is calculated using the
following formula (2):

F = 2 ∗ (precision ∗ recall)/(precision + recall). (2)

According to Table 2, the F -score also improved for each class. This is espe-
cially true for suspicious jobs, where it increased from 0.892 to 0.935.

Table 2. Comparison of F -score values for the basic and the final classifiers. F -score
calculated independently for each class

F -score (normal) F -score (abnormal) F -score (suspicious)

Basic classifier 0.944 0.918 0.892

Final classifier 0.966 0.93 0.935

All the described results for interval classification show that the accuracy
improved compared to the basic version. But our final goal is to detect jobs
with abnormal behavior, so we need to evaluate job classification results as well.
The performance for the job classification was tested on previously unclassified
real-life jobs from the Lomonosov-2 supercomputer. We detected 190 suspicious
and 64 abnormal jobs with our final classifier based on the analysis of ∼10 days

42 A. Bezrukov et al.

of the Lomonosov-2 functioning. These results were manually validated, leading
to accuracies of 0.98 and 0.95 for abnormal and suspicious jobs, respectively.

Thus, it can be seen that the final feature set obtained using discriminant
analysis enabled us to improve the overall classification accuracy. Moreover, the
data preparation process described in this section made the overall classification
process much more portable. The next section is devoted to this topic.

4 Methodology for Applying Anomaly Detection Method
to Other Supercomputers

The methodology in this section describes in detail the process of applying the
solution proposed for anomaly detection to other supercomputing systems. At
the top level, this methodology is quite universal and, in fact, is suitable for most
machine learning based classification methods; however, more specific details of
this process relate to this method in particular. A description of the sequential
steps of this methodology is provided below.

1. Prepare core software tools based on the proposed methods. This can
be implemented manually using the description given in this paper, or the source
code that we plan to upload to GitHub in the near future. This core software
should include methods that are independent of the supercomputer it is used on:
method for partitioning the job timeline into intervals, interval classifier, and job
classifier based on the interval classification results.

2. Determine the range of possible input data. In this step, all data that
can potentially be useful for the interval classification process should be selected.
As in our case, which was described in Sect. 3, this includes selection of data types
and integral values used for aggregation. It is worth recalling that integral values
are used for triple aggregation: by time and twice by space (between cores in a
node and between nodes). We believe that both data types and integral values
chosen in our case can serve as a good starting point by default, but a user may
make his own changes in these lists if needed, according to his knowledge of the
usual behavior of jobs on the target supercomputer.

3. Implement data collection using a monitoring system. For detection
of anomalies, we need the input data that were described in the previous step.
This is provided by a monitoring system, so one should be installed and con-
figured at the target supercomputer. This step is done outside of our anomaly
detection process, so we do not specify how this step should be done.

Nevertheless, several remarks should be made. Usually, it is impossible to
store all the data that a monitoring system can provide for the whole super-
computer, so data aggregation is used (as it was done in our case, see Sect. 3).
The frequency of data aggregation can influence the classification performance,
and one should keep that in mind: if classification results are too low, a possible
reason could be that data are too frequently aggregated.

The second remark is that this step can reduce the range of possible data
from step 2. This is due to the limitations of the hardware being monitored.

ML Techniques for Detecting HPC Applications with Abnormal Behavior 43

For example, modern processors allow to simultaneously collect data from just
a few hardware counters, so we need to select the most needed ones. Moreover,
different processor families provide different sets of counters. So it is likely that
the range of data specified in step 2 will have to be adjusted after the installation
of a monitoring system.

4. Choose the initial feature set. At this point we have fixed the data that
can possibly be used for classification. So now the initial feature set that will
be used in the basic (reference) version of the classifier can be determined. This
set is chosen on the basis of our understanding of a feature importance since, at
this point, we have no analytical insights on which features are more important
for classification.

Creating this basic version is done for several reasons. Based on the results of
the reference version, we can decide whether the proposed approach is applicable
in general in this case. Working with the basic version, we get first assumptions
on the preferable size of the feature set, the time needed for classification, etc.
Next, we can use reference classification results for comparison with all other
versions that are going to be created in future. And also, this allows us to verify
whether this implementation works correctly on this supercomputer.

5. Create the training set. This is both one of the most challenging and
one of the least automated steps. We need to scan through real data (real-
life supercomputer job flow) and pick out intervals we want to include in the
training set. Each interval should be classified as normal, suspicious or abnormal,
based on the chosen monitoring data set. Also, since our final goal is to classify
applications, we need to create a second training set of classified jobs, so we must
assign a class to each job according to its classified intervals. It is not necessary
to use every interval from a job in the training set; only the most useful ones
may be included. But if not all intervals in a job are classified, this job normally
should not be included in the second training set for the job classifier (the one
based on the simple criteria, not on ML techniques) since the result in this case
can be incorrect.

In our experience, the training sets do not need to be very big: 500+ intervals
from 100+ jobs were enough for our classifier.

There are several general rules that should be followed during this process:

– The manual interval classification for the training set should be based on
exactly the same data that will be used in the main classification process.

– The training set should include as many different types of dynamic behavior
as one wants the classifier to identify. If one type of behavior is not present
in the training set, then the classifier is likely to misclassify it.

– The numbers of intervals in the classes of the training set should not differ
significantly. Otherwise, the classification results can be incorrectly biased to
the more popular class.

– A suspicious class can be divided into subclasses if desired. This can make
classification results more informative but only if the division into subclasses
in the training set was made accurately enough. There is usually no point

44 A. Bezrukov et al.

in detecting subclasses in a normal class (since there are no performance
issues in such jobs) as well as in an abnormal class (since such jobs behavior
normally is not so diverse). At the same time, there are many possible types
of dynamic behavior for suspicious jobs. For example, on the Lomonosov-2
supercomputer, we have manually found such types of specific behavior as “1
active process on each node”, “1 active process on all nodes”, “stalled because
of Lustre issues”, etc. It should be noted that the classifier developed has not
been tested in practice with subclass division, but this should work out of the
box.

6. Configure proposed core software. The methods developed in the core
software have a number of input parameters that can be configured. All input
parameters can be used with default values but some of them depend on the
target supercomputer peculiarities, so it is recommended to analyze if more
suitable values can be used.

The method for partitioning the job timeline into intervals has only one
parameter: the minimal number of time points in an interval. In our case, it was
decided that each interval should be not less than 30 min, otherwise the number
of intervals in the job could be too large. Since 2-min aggregation is used on
the Lomonosov-2 supercomputer, it results in a minimum of 15 time points per
interval.

The main interval classifier has two internal parameters that are used for
tuning the Random Forest algorithm: (1) the number of trees in the ensemble,
and (2) a measure for choosing the optimal database split (impurity). On the
Lomonosov-2 supercomputer, 256 decision trees are used in production mode and
32 in test mode (using less trees speeds up the classification process significantly
and leads to only a slight decrease in accuracy); increasing this value does not
lead to any significant changes in classification accuracy but causes a decrease
in speed. Also, Gini impurity measure is used since it tends to provide more
accurate results. We believe that it is not necessary to change these parameters
in most cases, but they may be adjusted if needed.

The last method developed is the job classifier based on interval classifica-
tion results. It uses a set of criteria (see [8]) based on constant thresholds that
generally determine how much CPU hours (and what part of the overall job)
are consumed by abnormal/suspicious intervals. It is recommended to configure
these parameters based on the job flow structure of the target supercomputer,
since the default thresholds were specifically adjusted for the Lomonosov-2 super-
computer.

7. Run the classification using the initial feature set. All the preliminary
steps are done, so now it is time to run the classification for the first time,
using data from the initial feature set. If the accuracy results are unsatisfying,
it may be necessary to rethink steps 2 (in the part related to the aggregation
implementation), 5 or 6.

8. Search for a suitable feature set using the forward stepwise method.
This step is devoted to the feature selection, which was described in detail in

ML Techniques for Detecting HPC Applications with Abnormal Behavior 45

Sect. 3. This is another one of the most challenging steps, along with step 5,
since there is a lot of possible ways to implement it. According to the results
from Sect. 3, the following steps should be carried out:

1. Choose forward stepwise parameters. This includes the initial set of features
to start from, as well as the break criterion (at what point the forward step-
wise algorithm must stop). By default, values specified in this paper may be
used but these can be altered if needed. This step also includes changing the
forward stepwise method to other possible methods, but we hope this will be
necessary on rare occasions.

2. Run the forward stepwise method. As a result, a new feature set will be
defined.

3. Tune the feature set. It is always useful to add more semantic knowledge
to the classification process. If some features are known to be meaningful for
classification, it is likely that they should be added to the resulting feature set.
But this should be done with caution, since it is very hard, in our experience,
to understand all the dependencies in the performance data collected for
supercomputer jobs.

3. Check the accuracy. After the feature set is formed, it is necessary to check
the classification accuracy. The result can be now compared to the reference
results achieved with the initial feature set.

4. Repeat if necessary. If the classifier works poorly, return to the feature set
tuning in this step. If this does not help, return to step 5 or 6.

9. Verify the results. At this step, we have developed a working classifier
that shows, hopefully, high-performance results. However, this was achieved on
training data, and the classification accuracy on real-life data can be slightly
different owing to possible shortcomings of the training set (see step 5). So we
need to verify the accuracy of the resulting classifier on unclassified real-life data.
This can be done in a similar way as shown in Subsect. 3.1.

5 Conclusions

This paper describes the data preparation process for a machine learning method
used for anomaly detection in a supercomputer job flow. The main goal is to
determine what data types should be included in the feature set and how this
data should be aggregated. Discriminant analysis methods were used for this pur-
pose. The best results were obtained with the forward stepwise method, resulting
in a new feature set that helped to increase the accuracy from 0.93 to 0.95.

The research conducted in this paper have shown that the basic classifier
with the initial feature set shows a very good accuracy which can only be slightly
improved. But the developed method for choosing an appropriate feature set has
allowed us to make the overall anomaly detection solution much more portable.
Thus, a methodology for applying this solution to other supercomputer systems
has been proposed, which is also described within this paper.

46 A. Bezrukov et al.

In the future, we plan to further apply the proposed anomaly detection solu-
tion in practice. It is planned to implement an online job classification which
would allow us to promptly notify supercomputer users about their running
jobs that exhibit a suspicious behavior. Also, we are looking forward to trying
our solution on other supercomputers, so we could analyze its performance and
portability and make further improvements if required.

References

1. Voevodin, V., Voevodin, V.: Efficiency of exascale supercomputer centers and
supercomputing education. In: Gitler, I., Klapp, J. (eds.) ISUM 2015. CCIS, vol.
595, pp. 14–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32243-
8 2

2. Shvets, P., Voevodin, V., Zhumatiy, S.: Statistics of software package usage in
supercomputer complexes. In: Proceedings of the 3rd Ural Workshop on Parallel,
Distributed, and Cloud Computing for Young Scientists. CEUR Workshop Pro-
ceedings, vol. 1990, pp. 20–29 (2017)

3. Gallo, S.M., et al.: Analysis of XDMoD/SUPReMM data using machine learning
techniques. In: 2015 IEEE International Conference on Cluster Computing, pp.
642–649. IEEE, September 2015. https://doi.org/10.1109/CLUSTER.2015.114

4. Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 355–373. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0 19

5. Zhang, H., You, H., Hadri, B., Fahey, M.: HPC usage behavior analysis and perfor-
mance estimation with machine learning techniques. In: Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA), p. 1. The Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp) (2012)

6. Sidnev, A., Gergel, V.: Automatic selection of the fastest algorithm implementa-
tions. Numer. Methods Program.: Adv. Comput. 15(4), 579–592 (2014). (in Rus-
sian)

7. Stefanov, K., Voevodin, V., Zhumatiy, S., Voevodin, V.: Dynamically reconfig-
urable distributed modular monitoring system for supercomputers (DiMMon). Pro-
cedia Comput. Sci. 66, 625–634 (2015). https://doi.org/10.1016/j.procs.2015.11.
071

8. Shaykhislamov, D., Voevodin, V.: An approach for detecting abnormal parallel
applications based on time series analysis methods. In: Wyrzykowski, R., Dongarra,
J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10777, pp. 359–369.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78024-5 32

9. Pedregosa, F.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12(Oct), 2825–2830 (2011)

10. How to Prepare Data for Machine Learning. https://machinelearningmastery.com/
how-to-prepare-data-for-machine-learning/

11. Measures of Skewness and Kurtosis. http://www.itl.nist.gov/div898/handbook/
eda/section3/eda35b.htm

12. Feature Elimination Implementation in Scikit-Learn. http://scikit-learn.org/
stable/modules/generated/sklearn.feature selection.RFECV.html

https://doi.org/10.1007/978-3-319-32243-8_2
https://doi.org/10.1007/978-3-319-32243-8_2
https://doi.org/10.1109/CLUSTER.2015.114
https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1016/j.procs.2015.11.071
https://doi.org/10.1016/j.procs.2015.11.071
https://doi.org/10.1007/978-3-319-78024-5_32
https://machinelearningmastery.com/how-to-prepare-data-for-machine-learning/
https://machinelearningmastery.com/how-to-prepare-data-for-machine-learning/
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html

Role-Dependent Resource Utilization
Analysis for Large HPC Centers

Dmitry Nikitenko(B) , Pavel Shvets , Vadim Voevodin ,
and Sergey Zhumatiy

Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
{dan,shpavel,vadim,voevodin}@parallel.ru

Abstract. The resource utilization analysis of HPC systems can be per-
formed in different ways. The method of analysis is selected depending
primarily on the original focus of research. It can be a particular applica-
tion and/or a series of application run analyses, a selected partition or a
whole supercomputer system utilization study, a research on peculiarities
of workgroup collaboration, and so on. The larger an HPC center is, the
more diverse are the scenarios and user roles that arise. In this paper, we
share the results of our research on possible roles and scenarios, as well
as typical methods of resource utilization analysis for each role and sce-
nario. The results obtained in this research have served as the basis for
the development of appropriate modules in the Octoshell management
system, which is used by all users of the largest HPC center in Russia,
at Lomonosov Moscow State University.

Keywords: HPC center management
Application efficiency analysis · User roles · Analysis scenarios
Supercomputer

1 Introduction

1.1 The Variety of Resource Utilization Analysis Levels

Nowadays, the issue of computing resource utilization efficiency is a very hot
topic. There are many points of view and research subjects that fit into this
issue, such as workload efficiency, power consumption, and others. The most
interesting thing is that all these aspects effect efficiency, and one has to take
into consideration many of them at a time to gain a realistic overall picture.
Moreover, there are many different levels of efficiency analysis, especially when

The results were obtained at the Research Computing Center of Lomonosov Moscow
State University. The work was partially funded by the Russian Foundation for
Basic Research (grant № 17-07-00719), and with financial support from the Russian
Science Foundation (grant № 17-71-20114) in the part of the program implementation
described in Sect. 4. The research was carried out on equipment of the shared research
facilities of HPC resources at Lomonosov Moscow State University.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 47–61, 2018.
https://doi.org/10.1007/978-3-319-99673-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_4&domain=pdf
http://orcid.org/0000-0002-2864-7995
http://orcid.org/0000-0001-9431-9490
http://orcid.org/0000-0003-1897-1828
http://orcid.org/0000-0001-5770-3071

48 D. Nikitenko et al.

one considers HPC and distributed computing. For instance, we can define four
levels of computing resources.

First, at the top of the pyramid, a supercomputer center administration is
interested in global figures and resource utilization rates with almost no need
to go through all the messy details of thousands of applications. At the same
time, it is natural at this level of observation to have an interest in comparing
workload with resource utilization rates of supercomputers available at an HPC
center.

Second, a close level is one at which one studies resource utilization and
workload for a specific system. No system holder is interested in wasting costly
resources for the whole system and for each system partition.

Third, at this point levels stop being mapped to any specific part of the HPC
system. This is the level of research projects. Every research project can have a
number of participants that run jobs on some or all HPC center computers. Of
course, both system holder and project member are interested in details of the
project resource utilization, at least to fit into the granted amount of resources
for the project.

The last but not the least is the level of application run. Every job is inter-
esting because it has en effect both on the whole HPC center resource utilization
profile and on its own job efficiency, as it can significantly bring closer or delay
the obtention of the result.

The set of these levels or layers can be extended to a more complicated hier-
archy, but even at this point we can see obviously different scopes of interest with
personalized accents on some specific system utilization parameters. Moreover,
every level requires its own access permissions, so we see different roles of users
at each level of abstraction.

As soon as we speak about resource utilization, one of the most common
techniques of getting all required information is system monitoring. There is a
diversity of various monitoring systems that are focused on specific targets. In
this paper, we keep to the tools that have been developed or adopted and widely
used in our practice at Lomonosov Moscow State University HPC center.

1.2 The Paper Structure

The “Background” section describes the current state at MSU regarding the
paper topic, which served as the basis for the research. The next section, “The
Proposed Approach Principles”, provides a description of selected key roles and
scenarios of resource utilization study. The “Implementation” section provides
technical solution details. The “Evaluation” section describes our experience in
using the methods developed during our research. The “Conclusions” section
lists further steps of research and development. The “References” section ends
the paper.

Role-Dependent Resource Utilization Analysis for HPC Centers 49

2 Background

Understanding resource utilization profiles regarding both machines and research
projects has always been an element of primary importance at every HPC cen-
ter [1]. The larger the HPC center is, the more important that element is. This
has always been a hot topic for the Lomonosov State University HPC center as
the largest of this kind in Russia [2].

There is an impressive number of various approaches to performance and
efficiency analysis for HPC applications [3–7]. Nonetheless, the peculiarities of
running a large academic supercomputing center drove MSU to develop a set of
mutually reinforcing and complimentary tools and methodologies. Every part of
this toolkit has originally been developed as an open-source tool. Figure 1 gives
a short overview of the tools hierarchy.

Fig. 1. JobDigest and OctoShell system as a part of the MSU HPC center toolkit
(Color figure online)

The work described in this paper extends the interaction of JobDigest [8,9], a
detailed application analysis tool, with Octoshell [10,11], a general management
system. These two blocks are shown enclosed in dashed red boxes in Fig. 1.

The JobDigest1 approach provides details on resource utilization for every
application. This can be done in various ways [12,13], but generally the JobDi-
gest reports can also be superfluous and some extra lightweight forms, the mini

1 JobDigest� is a Russian registered trademark. An application for the creation of
the JobDigest approach was filed and the corresponding patent was granted.

50 D. Nikitenko et al.

JobDigest reports, may be required. JobDigest was originally developed as a pre-
cise tool that can be used both by experienced users and by beginners, by users
and by administrators. Nevertheless, the important issue of private and business
data isolation from third party or unauthorized users has not been thoroughly
studied yet.

As a result, this analysis tool, though perfect at its main objective, really
needs to implement access privilege techniques for sharing collected data for jobs,
systems and components between authorized users only, and the development of
mini JobDigest is required for quick job reviews.

At this point, the authors are quite happy with having Octoshell, a modular
management system, at their disposal. This system was originally developed to
serve as a connecting link between managed objects of totally different kinds:
accounts, users, projects, quotas, and so on. Notably, a set of user roles are
present in the system basics.

These facts are a good basis for the development of a special OctoShell mod-
ule that would take advantage of existing roles and authorization mechanisms of
the OctoShell system and grant access to projects logics. Such a module would
be aimed at encapsulating JobDigest reports in all forms, securing access to
sensitive user, project or application data, as well as providing a user-friendly
interface to the available resource utilization submodules for every user of the
center according to the access level regarding the specified level of observation.

3 The Proposed Approach Principles

One of the first, and most important questions that should be answered in the
very beginning of development is who is going to use the proposed services and
what typical scenarios of usage can every type of user go through.

Actually, the main contribution of the paper is the way we combine these
two things. From one side, there is a set of typical user role definitions. On the
opposite side, there are typical scenarios and usage cases that are often encoun-
tered in resource utilization studies based on system monitoring and resource
management data.

3.1 Levels of Analysis

As it has already been mentioned in the introduction, we can go down from the
level of overall system observation to the level of detailed job analysis.

Here we emphasize the following levels of abstraction and observation:

1. Overall job run states.
2. Integral job characteristics.
3. Detailed job information.
4. Heuristics and ML-based reports.
5. HW/SW failure influence.
6. Other custom levels.

Role-Dependent Resource Utilization Analysis for HPC Centers 51

Overall Job Run States. Overall job run statistics is the top level of abstrac-
tion, which represents the actual resource utilization by the whole system or its
part for a specified period of time. In our opinion, it is reasonable to limit the
bottom of this level to the system partition level. The log files of most resource
managers allow for grouping finished and running jobs into categories by job
state and, what is more, for summarizing utilized CPU or core hours. System
monitoring integration allows calculating sums for any other resource amounts
utilized and/or granted. So, in a very similar way, one can observe the distribu-
tion of jobs according to their states and utilized resources for every partition,
system or the whole HPC center.

It is quite useful to have an option to quickly jump to more detailed infor-
mation for specified partition jobs, or even for jobs with a certain state, say,
“TIMEOUT”. In other words, an option to go deeper into details, going down
to the next level of observation.

Integral Job Characteristics. At the integral job characteristics level, one
starts seeing the details of jobs. At his step, job details are presented as basic
information from the resource manager, supplied with average rates of dynamic
job characteristics, such as CPU user, load average, etc., and tags for every
job. Integral job characteristics can be highlighted according to some rules or
thresholds. At this step, the user can see all the available jobs with easy-to-
understand general job information: was it resourceful in terms of memory, CPU
or GPU usage, did it finish normally, and so on.

This step is obviously expected to have a possibility to proceed to the details
of a chosen job. The detailed job information is the next to the bottom level of
abstraction.

Detailed Job Information. Detailed job information can be provided in var-
ious ways. The most natural for us is the JobDigest approach. The JobDigest
reports provide basic job information received from the resource manager and
dynamical job characteristics from the monitoring system, in the form of heat
maps, diagrams or raw data for export and further analysis. It also provides
tags for every job, i.e. some automatically (and/or manually) assigned categories
based on thresholds or more complicated rules.

The problem is that such a report sometimes is redundant, that is why we
have introduced the lightweight version containing no diagrams but showing all
important information: the so-called mini Job Digest. It is specially designed to
be provided to every user of the HPC center, and for every job. If required, it
can also contain unique links to the full JobDigest report version.

Heuristics and ML-Based Information. Of course, thresholds are still of
a significant value to identify many categories of jobs, but recently a number
of methodologies have evolved that provide efficient methods for class revealing,
similarity study, and so on [14,15]. There is an interesting direction of research at

52 D. Nikitenko et al.

the MSU HPC center devoted to such techniques. It allows revealing anomalies
both in job profiles and in job queues [16].

Even though it does not have a user interface yet, the results obtained are
already quite promising and we expect a special module to appear and become
available soon.

HW/SW Failure Influence. It is quite natural that one of the root causes of
drop-downs in the efficiency of an HPC system and its applications are failures
of system hardware, such as interconnect interface, or software, such as problems
with schedulers. Sometimes, such problems are found and fixed almost immedi-
ately. Nevertheless, the influence of such factors can be on occasions critical for
the result or accuracy.

That is why we keep in mind a tool that would allow matching jobs with
known problems all over the system, based on resilience system logs. In our
case, the OctoTron system [17].

Other Custom Levels. As we realistically look at the problem, we understand
that we should support extending this set of levels with new ones as soon as it
is wanted and developed.

3.2 User Roles

Regular User. Actually, regular user is the most important role, just because
all these systems are originally designed to perform actions that allow achieving
real-life research goals by a scientist or an engineer. And that explains the scope
of interest of most users. Some regular users do not care much about efficiency
of applications, but if a user has some limitations like disk quota or limited
CPU time, that becomes critical as it can prevent from obtaining the results
in time or at all. Users who run their codes or packages regularly usually feel
more interested in the efficiency and execution time of the routines. Moreover,
most users still understand that efficient resource utilization is beneficial for
everybody: both for application owners and for system holders.

Anyway, the variety of users determines the scope covered by the analysis.
The important thing is to provide means to collaborate in job efficiency and

study overall stats regarding workgroup activity.
Another important task is to secure job-related data from being accessed by

any other regular user outside the workgroup. One can configure the system in
a way to limit job-detail access rights either to the set of jobs run by the owner
or to the set of jobs run by the workgroup which the user is a member of.

Project Manager. Project manager is almost a regular user with one key dif-
ference: responsibility for the workgroup actions, being the official representative
of the workgroup. So, in any case, it is quite natural for such role to have access
to all personal jobs and to job stats of the workgroup members. The main dif-
ference from the user is a more concentrated focus on overall statistics, as the

Role-Dependent Resource Utilization Analysis for HPC Centers 53

project manager is more concerned about keeping the project to the granted
amount of resources.

Administrator. Going to the other side, system administrators are originally
targeted at running HPC systems and helping users to overcome difficulties while
using these machines. That implies covering all possible levels of observation in
all possible combinations.

System holders or HPC center managers have almost the same rights that
administrators have, but like project managers are more focused on overall stats
on system usage, and certain workgroup or account activity.

Expert. There can be supervisors with some reduced scopes of analysis. For
example, a role that can be used for real-time open demonstrations of what
is going in the center right now, but only for some special events regarding a
selected workgroup or partition.

As for the MSU HPC center, we actively use the Expert role for annual
project expertise. This allows experts to see the job history and details only of
those sets of accounts that belong to the project that has been assigned to the
expert for review.

3.3 Jumps Between Levels of Analysis

The described levels of analysis, as noted, are interrelated. In order to develop
a more convenient and effective tool, we consider the following requirements for
quick links between levels.

– Jump from overall job run states to a list of jobs with more detailed, integral
characteristics for a selected set of logins (i.e. projects), for a certain state,
for a certain queue, for a certain system, or for combinations thereof.

– Jump from the list of jobs to a sublist of jobs (specification of the list of jobs
by tags, dates, etc.).

– Jump from the job list to detailed job info, mini JobDigest for a selected job
by its ID.

– Jump from a mini JobDigest to a full-format external JobDigest for a selected
job by its ID.

3.4 Functional Description of the Interface

We consider the following basic functional features for each one of the proposed
levels of the prototype.

54 D. Nikitenko et al.

Overall Job Run States. Purpose: granted resource-utilization rate assess-
ment by user applications and an estimation of conformity of resources utilization
to allocated limits.

Content: average and total amounts of CPUh, GPUh, disk usage for multiple
logins grouped by whole systems, partitions, job states.

Filtration: by system, by partition, by job states, by time interval, by project,
by login.

Features: job data access segregation: user (own logins), project manager
(own logins and managed projects’ logins), expert (logins of additional projects
assigned to an expert), administrator (all logins, all projects).

Additional features: comparison with allocated quotas for a project; compar-
ison with the same period preceding a displayed interval, quick jump to a job
list corresponding to the selected group (for example, all completed jobs or all
successfully completed jobs in a specified section).

Integral Job Characteristics (Job List). Purpose: qualitative assessment of
resource utilization by jobs, search for abnormal launches, comparison of appli-
cation runs.

Content: a list of jobs with characteristics and color markup.
Filtration: by system, by partition, by job states, by time interval, by project,

by login, by values range for each characteristic, by tags.
Features: job data access segregation: user (own logins), project manager

(own logins and managed projects’ logins), administrator (all logins, all projects).

Detailed Job Information. Purpose: qualitative assessment of resource uti-
lization by a job.

Content: reduced version of JobDigest: integrated characteristics and data
from the resource manager.

Features: job data access segregation: user (own logins), project manager
(own logins and managed projects’ logins), administrator (all logins, all projects).

Additional functions: unique link to the full JobDigest report.

4 Implementation

Let us now describe the technical implementation. All the tools are implemented
as a module of the OctoShell system, which allows using the built-in roles sepa-
ration mechanism, while users get access to a generally familiar interface, so as
to expect a more successful and frequent use of the development by the users.

All necessary data is stored locally in the system and is obtained from a
third-party tool operating in 24/7 mode, which builds a full-format JobDigest,
allocates categories, and so on. The Octoshell job service retrieves all data from
an external supercomputer job data storage and processing service.

Data access is performed using ORM technique, and Ruby on Rails web app
development framework is used. All general data are stored in a database table

Role-Dependent Resource Utilization Analysis for HPC Centers 55

with a structure as shown in Table 1. Fields id, login, start time, end time
are used for indexing. It allows to speed up the most common requests for user
job querying in a selected time interval.

Integral job characteristics are stored using three tables in the database.
The first table contains three fields: id, name, type. The name field holds the

name of the characteristic, and the type field its type (numeric or text). This
table is used to identify what kind of characteristics are available and what kind
of data they present.

Table 1. The structure of the general job information storage table

Attribute Description

id Entry ID

job id Job ID

login System user name

partition Supercomputer partition

account Accounting user name

submit time Submit time of the job

start time Start time of the job

end time End time of the job

timelimit Time limit of the job

job name Name of the job

state State of the job

priority Priority of the job

req cpus Number of requested cores

alloc cpus Number of allocated cores

nodelist List of allocated nodes

The other two tables have the same structure, as shown in Table 2.
Those two tables are used for storing actual integral characteristics data. The

only difference between them is the type of their value field.
The id and task id fields are used for indexing. To obtain the integral

characteristics for a task, one should query the characteristics metainfo from the
first table and query actual data from the corresponding characteristic table.

The service allows displaying the short version of the JobDigest with optional
access to the full JobDigest as an external service.

The structure of the short JobDigest is stored using a table similar to the
one described previously (id, name, type). That table stores the description of
the monitoring sensors used in JobDigest. Values are stored in a table with a
structure as show in Table 3.

56 D. Nikitenko et al.

Table 2. The structure of the job integral characteristics storage table

Attribute Description

id Entry ID

name Name of the characteristic

task id Job entry ID (see Table 1)

value Value

Table 3. The structure of the job dynamic characteristics storage table

Attribute Description

name Name of the characteristic

task id Job entry ID (see Table 1)

time Time

value Value

The id and task id fields are used for indexing. The access to the full Job-
Digest is granted with a unique URL which is stored as usual job characteristics
of text type.

The service allows using tags assigned to a job. Tags are stored in a table
with a structure as show in Table 4.

Table 4. The structure of the job tags storage table

Attribute Description

id Entry ID

name Tag name

task id Job entry ID (see Table 1)

All fields are used for indexing.
Updates are performed using external POST requests.
The first request is used to update general JSON information. If a job is not

present, then a new entry is added.
The second type of request inserts data about the integral characteristics

into the database, and the data is transmitted in the body of a POST request
in JSON format.

Role-Dependent Resource Utilization Analysis for HPC Centers 57

The third type of request inserts the tag data into the database, and the data
is sent in the body of a POST request in JSON format.

The fourth type of request adds to the database data about a series of changes
in the value of the sensor during job operation. The data is sent in the request
body in CSV format.

The overall system workflow is shown in Fig. 2.

Fig. 2. General OctoShell mini JobDigest DB workflow

5 Evaluation

The implemented prototype is available for users of the MSU HPC center. At
present, we are collecting feedback that should aid us in further approach elab-
orations. We hereby thank one of the workgroups at the MSU HPC center for
depicting the interface. All presented data correspond to real research [18,19].

Figure 3 illustrates the interface for the level of overall job run states. We
can see that the “Lomonosv-2” system was used by the project only during the
2017Q2. It is quite nice to see that users did really use the test partition for
testing. The majority of resources have been spent for successfully completed
jobs in the compute partition during the period.

58 D. Nikitenko et al.

Fig. 3. States of selected project jobs for a certain period of time with total resources
utilization example

Figure 4 provides the details for the compute partition run jobs. One can see
job IDs, allocated amount of resources, and actually spent CPU time. This list
can be easily enriched with general integral job characteristics, such as average
CPU user, Load Average, network usage, etc.

Figure 5 shows a prototype of the mini JobDigest tool. We can see all general
data on the job, including command line and node list. Note that we can also see
the average resource utilization rates highlighted with colors based on thresholds.
The job tag corresponding to the job category of jobs with poor cache data stats
has been imported also from the full size JobDigest report.

This type of short but informative report seems to be sufficient for most
regular users for an initial job analysis. Nevertheless, the set of characteristics
in such a brief report is subject to investigation and will be updated based on
users’ feedback.

Role-Dependent Resource Utilization Analysis for HPC Centers 59

Fig. 4. List of selected project jobs for a certain period of time in the specified section
with example of details

Fig. 5. Example of mini JobDigest report (Color figure online)

60 D. Nikitenko et al.

6 Conclusions

In the near future, our plans have a strong focus on usability for regular users.
At the same time, there are at least two levels of analysis to be added to the
prototype. The first is a machine-learning-based module for anomaly detection,
and the second is a role-sensitive situational screen based on earlier research,
known as OctoScreen or TentaView [20].

We would also like to encourage all interested HPC users to contact the
authors if additional implementation and functional details are required.

References

1. Voevodin, V., Voevodin, V.: Efficiency of exascale supercomputer centers and
supercomputing education. In: Gitler, I., Klapp, J. (eds.) ISUM 2015. CCIS, vol.
595, pp. 14–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32243-
8 2

2. Voevodin, V., et al.: Practice of “Lomonosov” supercomputer. Open Syst. J. 7,
36–39 (2012)

3. Gunter, D., Tierney, B., Jackson, K., Lee, J., Stoufer, M.: Dynamic monitoring
of high-performance distributed applications. In: Proceedings of the 11th IEEE
International Symposium on High Performance Distributed Computing, pp. 163–
170 (2002). https://doi.org/10.1109/hpdc.2002.1029915

4. Mellor-Crummey, J., Fowler, R.J., Marin, G., Tallent, N.: HPCVIEW: a tool for
top-down analysis of node performance. J. Supercomput. 23(1), 81–104 (2002).
https://doi.org/10.1023/A:1015789220266

5. Jagode, H., Dongarra, J., Alam, S., Vetter, J., Spear, W., Malony, A.D.: A holistic
approach for performance measurement and analysis for petascale applications.
In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2009. LNCS, vol. 5545, pp. 686–695. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01973-9 77

6. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurr. Comput.: Pract. Exper. J. 22(6), 685–701 (2009).
https://doi.org/10.1002/cpe.1553

7. Kluge, M., Hackenberg, D., Nagel, W.E.: Collecting distributed performance data
with dataheap: generating and exploiting a holistic system view. Procedia Comput.
Sci. J. 9, 1969–1978 (2012). https://doi.org/10.1016/j.procs.2012.04.215

8. Nikitenko, D., et al.: JobDigest - detailed system monitoring-based supercomputer
application behavior analysis. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017.
CCIS, vol. 793, pp. 516–529. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-71255-0 42

9. JobDigest components. https://github.com/srcc-msu/job statistics
10. Nikitenko, D., Voevodin, V., Zhumatiy, S.: Resolving frontier problems of mas-

tering large-scale supercomputer complexes. In: ACM International Conference on
Computing Frontiers (CF 2016), pp. 349–352. ACM, New York (2016). https://
doi.org/10.1145/2903150.2903481

11. Nikitenko, D., Voevodin, V., Zhumatiy, S.: Octoshell: large supercomputer complex
administration system. In: Russian Supercomputing Days International Confer-
ence, Moscow, Russia, CEUR Workshop Proceedings, vol. 1482, pp. 69–83 (2015)

https://doi.org/10.1007/978-3-319-32243-8_2
https://doi.org/10.1007/978-3-319-32243-8_2
https://doi.org/10.1109/hpdc.2002.1029915
https://doi.org/10.1023/A:1015789220266
https://doi.org/10.1007/978-3-642-01973-9_77
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1016/j.procs.2012.04.215
https://doi.org/10.1007/978-3-319-71255-0_42
https://doi.org/10.1007/978-3-319-71255-0_42
https://github.com/srcc-msu/job_statistics
https://doi.org/10.1145/2903150.2903481
https://doi.org/10.1145/2903150.2903481

Role-Dependent Resource Utilization Analysis for HPC Centers 61

12. Nikitenko, D., Stefanov, K., Zhumatiy, S., Voevodin, V., Teplov, A., Shvets, P.: Sys-
tem monitoring-based holistic resource utilization analysis for every user of a large
HPC center. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp.
305–318. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7 24

13. Nikitenko, D.A., et al.: Supercomputer application integral characteristics analysis
for the whole queued job collection of large-scale HPC systems. In: 10th Annual
International Scientific Conference on Parallel Computing Technologies, PCT 2016,
Arkhangelsk, Russian Federation, CEUR Workshop Proceedings, vol. 1576, pp. 20–
30 (2016)

14. Movchan, A., Zymbler, M.: Time series subsequence similarity search under
dynamic time warping distance on the Intel many-core accelerators. In: Amato,
G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp.
295–306. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25087-8 28

15. Rechkalov, T., Zymbler, M.: Accelerating medoids-based clustering with the Intel
many integrated core architecture. In: Proceedings of the 9th International Con-
ference on Application of Information and Communication Technologies (AICT
2015), 14–16 October 2015, Rostov-on-Don, Russia, pp. 413–417. IEEE (2015).
https://doi.org/10.1109/ICAICT.2015.7338591

16. Voevodin, V., Voevodin, V., Shaikhislamov, D., Nikitenko, D.: Data mining method
for anomaly detection in the supercomputer task flow. In: Numerical Computa-
tions: Theory and Algorithms, The 2nd International Conference and Summer
School, Pizzo calabro, Italy, 20–24 June 2016, AIP Conference Proceedings, vol.
1776, pp. 090015-1–090015-4 (2016). https://doi.org/10.1063/1.4965379

17. Antonov, A., et al.: An approach for ensuring reliable functioning of a supercom-
puter based on a formal model. In: Wyrzykowski, R., Deelman, E., Dongarra, J.,
Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015, Part I. LNCS, vol. 9573,
pp. 12–22. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32149-3 2

18. Rudyak, V., Krakhalev, M., Sutormin, V.: Electrically induced structure transition
in nematic liquid crystal droplets with conical boundary conditions. Phys. Rev. E.
96, 052701-1–052701-5 (2017). https://doi.org/10.1103/PhysRevE.96.052701

19. Guseva, D., Rudyak, V., Komarov, P., et al.: Crosslinking mechanisms, structure
and glass transition in phthalonitrile resins: insight from computer multiscale sim-
ulations and experiments. J. Polym. Sci. Part B: Polym. Phys. (2017). https://doi.
org/10.1002/polb.24548

20. Nikitenko, D., Zhumatiy, S., Shvets, P.: Making large-scale systems observable –
another inescapable step towards exascale. Supercomput. Front. Innov. J. 3(2),
72–79 (2016). https://doi.org/10.14529/jsfi160205

https://doi.org/10.1007/978-3-319-49956-7_24
https://doi.org/10.1007/978-3-319-25087-8_28
https://doi.org/10.1109/ICAICT.2015.7338591
https://doi.org/10.1063/1.4965379
https://doi.org/10.1007/978-3-319-32149-3_2
https://doi.org/10.1103/PhysRevE.96.052701
https://doi.org/10.1002/polb.24548
https://doi.org/10.1002/polb.24548
https://doi.org/10.14529/jsfi160205

High-Performance Reconfigurable
Computer Systems with Immersion

Cooling

Ilya Levin, Alexey Dordopulo(B), Alexander Fedorov, and Yuriy Doronchenko

Scientific Research Center of Supercomputers and Neurocomputers (LLC),
106, Italyanskiy alley, Taganrog, Russia 347900

{levin,doronchenko}@superevm.ru, scorpio@mvs.tsure.ru, ss24@mail.ru

Abstract. In the paper, we review the design principles and architec-
ture of reconfigurable computer systems with immersion cooling. We
prove that systems with immersion cooling are the most promising for
the design of high-performance computer complexes. We give selection
criteria and design results for the principal components of the immersion
cooling system. We demonstrate the design of our computational module
prototype, based on advanced Xilinx UltraScale FPGAs and give testing
results for the principal technical solutions. We prove that the designed
immersion cooling system has a high power efficiency and power reserve
for designing advanced reconfigurable computer systems on the basis of
new UltraScale+ FPGAs and other next-generation FPGAs. We suggest
new design solutions for the case of our computational module, as well
as for the layout of the main computational board and other components
of the computational module for use of Xilinx UltraScale+ FPGAs.

Keywords: Immersion cooling system · Liquid cooling
Reconfigurable computer systems · FPGAs
High-performance computer systems · Energy efficiency

1 Introduction

Having considerable advantages in real performance and energetic efficiency in
comparison with cluster-like multiprocessor computer systems, reconfigurable
computer systems (RCS) containing an FPGA computational field of large logic
capacity are used for the implementation of computationally laborious tasks from
various domains of science and technique. An RCS provides adaptation of its
architecture to the structure of any task. In this case, a special-purpose computer
device is created. It hardwarily implements all the computational operations of
the information graph of the task with the minimum delays. Here we have a
contradiction between the implementation of the special-purpose device and its
general-purpose use for solving tasks from various problem areas. It is possible to
solve this contradiction by combining the creation of a special-purpose computer

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 62–76, 2018.
https://doi.org/10.1007/978-3-319-99673-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_5&domain=pdf

High-Performance Reconfigurable Computer Systems 63

device with a wide range of solvable tasks within a concept of reconfigurable
computer systems based on FPGAs which are used as principal computational
resource [1].

A practical experience of maintenance of large RCS-based computer com-
plexes proves that air cooling systems have reached their heat limit. The con-
tinuous increase of both the circuit complexity and the clock rate of each new
FPGA family leads to a considerable growth of the power consumption and max-
imal operating temperature of the chip. So, for the XC6VLX240T-1FFG1759C
FPGAs of a computational module (CM) Rigel-2, the maximum overheat of the
FPGAs relative to an environment temperature of 25 ◦C in operating mode, and
with a power of 1255 W consumed by the CM, is 33.1 ◦C, i.e. the maximum tem-
perature of the FPGA chip in the CM Rigel-2 is 58.1 ◦C. For the XC7VX485T-
1FFG1761C FPGAs of the CM Taygeta, the maximum overheat of the FPGAs
relative to an environment temperature of 25 ◦C in operating mode, and with a
power of 1661 W consumed by the CM, is 47.9 ◦C, i.e. the maximum temperature
of the FPGA of the CM Taygeta is 72.9 ◦C. If we take into account that the per-
missible temperature of an FPGA functioning, providing high reliability of the
equipment during a long operation period, is 65...70 ◦C, then it is evident that
the CM Taygeta maintenance requires a decrease in environment temperature.

According to the obtained experimental data, the conversion from the FPGA
family Virtex-6 to the next family, Virtex-7, leads to an increase of the FPGA
maximum temperature by 11...15 ◦C. Thus, further development of FPGA pro-
duction technologies and conversion to the next FPGA family, Virtex UltraScale
(with a power consumption of up to 100 W for each chip), will lead to an addi-
tional increase in FPGA overheat by 10...15 ◦C. This will shift the range of their
operating temperature limit (80...85 ◦C), which has a negative influence on their
reliability when the workload on the chips reaches up to 85–95% of the available
hardware resource. This circumstance requires a quite different cooling method
which provides for keeping the performance growth rates of advanced RCS.

2 Liquid Cooling Systems for Reconfigurable Computer
Systems

The development of computer technologies leads to the design of computer
technique providing higher performance and, hence, more heat. Dissipation of
released heat is provided by a system of electronic element cooling which trans-
fers heat from the more heated object (the cooled object) to the less heated one
(the cooling system). If the cooled object is constantly heated, then the temper-
ature of the cooling system grows and, for some period of time, will be equal
to the temperature of the cooled object. So heat transfer stops and the cooled
object will get overheated. The cooling system is protected from overheat with
the help of a cooling medium (a heat-transfer agent). Cooling efficiency of the
heat-transfer agent is characterized by the heat capacity and heat dissipation. As
a rule, heat transfer is based either on the principles of heat conduction, which
requires a physical contact of the heat-transfer agent with the cooled object, or

64 I. Levin et al.

on the principles of convective heat exchange with the heat-transfer agent, which
consists in the physical transfer of the freely circulating heat-transfer agent. To
organize heat transfer to the heat-transfer agent, it is necessary to provide heat
contact between the cooling system and the heat-transfer agent. Various radia-
tors – facilities for heat dissipation in the heat-transfer agent are used for this
purpose. Radiators are set on the most heated components of computer systems.
To increase efficiency of heat transfer from an electronic component to a radia-
tor, a heat interface is set between them. The heat interface is a layer of heat-
conducing medium (usually multicomponent) between the cooled surface and
the heat dissipating facility, used for reduction of heat resistance between two
contacting surfaces. Modern processors and FPGAs need cooling facilities with
as low as possible heat resistance, because at present even the most advanced
radiators and heat interfaces cannot provide necessary cooling if an air cooling
system is used.

To organize heat transfer to the heat-transfer agent, it is necessary to provide
heat contact between the cooling system and the heat-transfer agent. Various
heat-sinks-facilities for heat dissipation in the heat-transfer agent – are used
for this purpose. Heat-sinks are set on the most heated components of computer
systems. To increase the efficiency of heat transfer from an electronic component
to a heat-sink, a heat interface is set between them. The heat interface is a
layer of heat-conducing medium (usually multicomponent) between the cooled
surface and the heat dissipating facility, used for reduction of heat resistance
between two contacting surfaces. Modern processors and FPGAs need cooling
facilities with as low as possible heat resistance, because at present even the most
advanced heat-sinks and heat interfaces cannot provide the required cooling if
an air cooling system is used.

Before 2013, air cooling systems were used quite successfully for cooling
supercomputers. But due to a growth of performance and circuit complexity
of microprocessors and FGAs, used as components in supercomputer systems,
air cooling systems have practically reached their limits for advanced supercom-
puters of that time, including hybrid computer systems. The majority of vendors
of computer technique therefore consider liquid cooling systems as an alterna-
tive solution to the cooling problem. Today, liquid cooling systems constitute the
most promising design area for cooling modern intensively operating electronic
components in computer systems.

A considerable advantage of all liquid cooling systems is the heat capacity of
liquids, which is better than that of air (from 1500 to 4000 times), and a higher
heat-transfer coefficient (up to 100 times higher). To cool one modern FPGA
chip, 1 m3 of air or 0.00025 m3 (250 ml) of water per minute is required. Much
less electric energy is required to transfer 250 ml of water than to transfer 1 m3

of air. Heat flow, transferred by similar surfaces at the conventional velocity of
the heat-transfer agent, is 70 times more intensive in the case of liquid cooling
than in the case of air cooling. An additional advantage is the use of traditional,
rather reliable and cheap, components such as pumps, heat exchangers, valves,
control devices, etc. For corporations and companies dealing with equipment

High-Performance Reconfigurable Computer Systems 65

with high packing density of components operating at high temperatures, liquid
cooling is in fact the only possible solution to the problem of cooling modern
computer systems. One more option to increase liquid cooling efficiency consists
in improving the initial parameters of the heat-transfer agent: increasing veloc-
ity, decreasing temperature, creating turbulent flow, increasing heat capacity,
reducing viscosity.

The heat-transfer agent in liquid cooling systems used in computer technique
is a liquid such as water, or any dielectric liquid. Heated electronic components
transfer heat to the permanently circulating heat-transfer agent - a liquid which,
after being cooled in the external heat exchanger, is used again for cooling heated
electronic components. There are several types of liquid cooling systems. In
closed-loop liquid cooling systems, there is no direct contact between liquid and
electronic components of the printed circuit boards [6,7]. In open-loop cooling
systems (liquid immersion cooling systems), electronic components are immersed
directly into the cooling liquid [8,9]. Each type of liquid cooling systems has its
own advantages and disadvantages.

In closed-loop liquid cooling systems all heat-generating elements of the
printed circuit board are enclosed by one or several flat plates with a channel for
liquid pumping [10,11]. So, for example, the cooling system of the SKIF-Avrora
supercomputer [12] is based on the principle “one cooling plate, one printed cir-
cuit board”. The plate, of course, has a complex surface relief to provide tight
heat contact with each chip. In the IBM Aquasar supercomputer, cooling is
based on the principle“one cooling plate, one (heated) chip”. In each case, the
channels of the plates are joined by manifolds into a single loop connected to a
common heat-sink (or another heat exchanger), usually placed outside the com-
puter case and/or rack, or even the computer room. With the help of the pump,
the heat-transfer agent is pumped through the plates and dissipates, by means
of the heat exchanger, the heat generated by the computational elements. In
such systems, it is necessary to provide access of the heat-transfer agent to each
heat-generating element of the calculator, which means a rather complex “piping
system” and a large number of pressure-tight connections. Besides, if it is neces-
sary to provide maintenance of the printed circuit boards without any significant
demounting, then the cooling system must be equipped with special liquid con-
nectors providing pressure-tight connections and simple mounting/demounting
of the system.

In closed loop liquid cooling systems all heat-generating elements of the
printed circuit board are covered by one or several flat plates with a channel
for liquid pumping. So, for example, cooling of a supercomputer SKIF-Avrora
is based on a principle “one cooling plate for one printed circuit board”. The
plate, of course, had a complex surface relief to provide tight heat contact with
each chip. Cooling of a supercomputer IBM Aquasar is based on a principle
“one cooling plate for one (heated) chip”. In each case the channels of the plates
are united by collectors into a single loop connected to a common radiator (or
another heat exchanger), usually placed outside the computer case and/or rack
or even the computer room. With the help of the pump the heat transfer agent

66 I. Levin et al.

is pumped through the plates and dissipates heat, generated by the computa-
tional elements, by means of the heat exchanger. In such system it is necessary
to provide access of the heat transfer agent to each heat-generating element
of the calculator, what means a rather complex “piping system” and a large
number of pressure-tight connections. Besides, if it is necessary to provide main-
tenance of the printed circuit boards without any serious demounting, then the
cooling system must be equipped with special liquid connectors which provide
pressure-tight connections and simple mounting/demounting of the system.

In closed-loop liquid cooling systems, it is possible to use water or glycol
solutions as the heat-transfer agent. However, leak of the heat-transfer agent can
lead to possible ingress of electrically conducting liquid to unprotected contacts
of the printed circuit boards of the cooled computer, and this, in its turn, can be
fatal for both separate electronic components and the whole computer system.
To eliminate failures, the whole complex must be stopped, and the power supply
system must be tested and dried up. The control and monitoring systems of such
computers always contain many internal humidity and leak sensors. Cooling
systems with liquid at negative pressure are frequently used to solve the leak
problem. In these systems, water is not pumped in under pressure but instead
is pumped out, thus practically excluding leaks of liquid. If the air-tightness of
the cooling systems is damaged, then air enters the system but no leak of liquid
happens. Special sensors are used for detection of leaks, while modular design
allows maintenance without stoppages of the whole system. However, all these
capabilities considerably complicate the design of the hydraulic system.

Another issue affecting closed-loop liquid cooling systems is the dew point
problem. In the section of data processing, the air is in contact with the cooling
plates. It means that if some parts of these plates are too cold and the air in
the section of data processing is warmer and not very dry, then moisture can
condense out of the air on the plates. The consequences of this process are similar
to leaks. This problem can be solved either by hot-water cooling, which is not
effective, or by controlling and keeping at the required level the temperature
and humidity parameters of the air in the section of data processing, which is
complicated and expensive.

The design becomes even more complicated when it is necessary to cool sev-
eral components with a water flow that should be proportional to their heat
generation. In addition to branched pipes, it is necessary to use complex con-
trol devices (simple T-branches and four-ways are not enough). An alternative
approach is to use an industrial device with flow control, but in this case, the
user cannot considerably change the configuration of the cooled computational
modules.

In open-loop liquid cooling systems, the principal component is the heat-
transfer agent, which is a dielectric liquid based, as a rule, on a white mineral oil
that provides a much higher heat storage capacity than the air does in the same
volume. According to their design, these systems contain printed circuit boards,
servers of computational equipment, and a bath that is filled with heat-transfer
liquid and placed into a computer rack. The heat generated by the electronic

High-Performance Reconfigurable Computer Systems 67

components is dissipated by the heat-transfer agent, which flows within the whole
bath. We can mention here some advantages of immersion liquid cooling systems:
simple design and capability of adaptation to the changing geometry of printed
circuit boards, simplicity of mani-folds and liquid connectors, no problems with
control of liquid flows, no dew point problem, high reliability and low cost of the
product.

The main problem of open-loop liquid cooling systems is the chemical com-
position of the used heat-transfer liquid which must fulfil strict requirements of
heat transfer capacity, electrical conduction, viscosity, toxicity, fire safety, sta-
bility of the main parameters and reasonable cost.

Considering the given advantages and disadvantages of the two types of liq-
uid cooling systems, we can affirm that open-loop cooling systems for electronic
components of computer systems have more weighty advantages. In this connec-
tion, when dealing with advanced RCS, it is reasonable to use direct immersion of
heat-generating system components into a mineral oil-based liquid heat-transfer
agent.

At present, the technology for liquid cooling of servers and separate com-
putational modules is being developed by many vendors, and some of them
have achieved success in this direction [9–11]. These technologies, however, are
intended for cooling computational modules containing only one or two micro-
processors. All attempts to adapt this technology for cooling computational mod-
ules, which contain a large number of heat-generating components (an FPGA
field of eight chips), failed due to a number of shortcomings.

The main disadvantages of existing technologies of immersion liquid cooling
[10–14] for computational modules containing FPGA computational fields are:
- poor adaptation of the cooling system for placement into standard computer
racks;
- inefficiency of cooling of electronic component chips with considerable (over 50
W) heat generation;
- the thermal paste between FPGA chips and heat-sinks is washed out during
long-term maintenance;
- the system of cooling-liquid circulation inside the module is designed for one or
two chips but not for an FPGA field, and this fact leads to considerable thermal
gradients.

In the systems based on the IMMERS technology [9], all cooling liquid is
circulating within a closed loop through the chiller, and this fact leads to some
problems:
- complex maintenance stoppages are necessary to remove separate components
and devices;
- it is necessary to use a power specialized pump and hydraulic equipment
adapted to the cooling liquid;
- a complex system for the control of cooling-liquid circulation, which causes
periodic failures;
- high cost of the cooling liquid, produced by only one manufacturer.

68 I. Levin et al.

These disadvantages can be considered as an inseparable part of other exist-
ing open-loop liquid cooling systems since the cooling of RCS computational
modules containing not less than eight FPGA chips has some specific features
compared with the cooling of a single microprocessor.

The special feature of the RCS produced at the Scientific Research Center of
Supercomputers and Neurocomputers is the number of FPGAs, which is not less
than six to eight chips on each printed circuit board, and high packing density.
This considerably increases the number of heat-generating components com-
pared with microprocessor modules, making more complicated the application
of the IMMERS direct liquid cooling technology along with other end solutions
of immersion systems, and requires additional technical and design solutions for
an effective cooling of RCS computational modules.

The use of open liquid cooling systems is efficient owing to the heat-transfer
agent characteristics and the design and specification of the used FPGA heat-
sinks, pump equipment, and heat-exchangers.

The heat-transfer agent must have the best possible dielectric strength, high
heat transfer capacity, the maximum possible heat capacity, and low viscosity.

The heat-sink must have the maximum possible surface of heat dissipation,
must allow the circulation of the heat-transfer agent turbulent flow through itself,
and manufacturability. Specialists at SRC SC & NC have performed heat engi-
neering research and suggested a fundamentally new design of a heat-sink with
original solder pins which create a local turbulent flow of the heat-transfer agent.
The used thermal interface cannot be deteriorated or washed out by the heat-
transfer agent. Its coefficient of heat conductivity can remain permanently high.
SRC SC & NC specialists have created an effective thermal interface that fulfills
all specified requirements, and additionally, its coating and removal technology
has also been improved.

The pumping equipment, that is to say, is not the least of the components of
a CM cooling system. The principal criteria that must be met are the following:
- performance parameters;
- overall dimensions and coordinated placement of the input and the output
fittings;
- the pump must be suitable for interaction with oil products with a specified
viscosity and chemical composition;
- continuous maintenance mode;
- minimal vibrations;
- the pump must have the minimal permissible positive suction head;
- the protection class of the pump electric motor must be not less than IP-55.

The heat exchanger is also an important component of the cooling system. Its
design must be compact and must provide an efficient heat exchange. Research
performed by the SRC SC & NC scientific team has proved that the most suitable
design of the heat exchanger is a plate-type one designed for cooling mineral oil
in hydraulic systems of industrial equipment.

High-Performance Reconfigurable Computer Systems 69

The liquid cooling system must have a control subsystem containing sensors
of level, flow, and temperature of the heat-transfer agent, and a temperature
sensor for cooling components.

3 “SKAT” Reconfigurable Computer System
Based on Xilinx UltraScale FPGAs

The SRC SC & NC scientific team has actively developed since 2013 the cre-
ation of next-generation RCS on the basis of their original liquid cooling system
for computational circuit boards with high packing density and large number
of heat-generating electronic components. The design criteria of computational
modules (CM) of next-generation RCS with an open-loop liquid cooling system
are based on the following principles:
- the RCS configuration is based on a computational module with a 3U height
and 19 width, and self-contained circulation of the cooling liquid;
- one computational module can contain 12 to 16 computational circuit boards
(CCB) with FPGA chips;
- each CCB must contain up to eight FPGAs, with a dissipating heat flow of
about 100 W from each FPGA;
- a standard water cooling system based on industrial chillers must be used for
cooling the liquid.

The principal element in the modular implementation of an open-loop immer-
sion liquid cooling system for electronic components of computer systems is a
new generation reconfigurable computational module (see design in Fig. 1-a).
The new-generation CM casing consists of a computational section and a heat-
exchange section. The casing, which is the base of the computational section,
contains a hermetic container with dielectric cooling liquid, and electronic com-
ponents with elements that generate heat during operation. The electronic com-
ponents can be computational modules (not less than 12 to 16), control boards,
RAM, power supply blocks, storage devices, daughter boards, etc. The compu-
tational section is closed with a cover.

The computational section adjoins the heat exchange section which contains
a pump and a heat exchanger. The pump moves the heat-transfer agent in the
CM through a closed loop: from the computational module, the heated heat-
transfer agent passes into the heat exchanger and is cooled there. From the heat
exchanger, the cooled heat-transfer agent again passes into the computational
module and cools the heated electronic components there. As a result of heat
dissipation, the agent becomes heated and again passes into the heat exchanger,
and so on. The heat exchanger is connected to the external heat-exchange loop
via fittings and is intended for cooling the heat-transfer agent with the help of a
secondary cooling liquid. A plate heat exchanger in which the first and the second
loops are separated can be used as a heat exchanger. So, as the secondary cooling
liquid, it is possible to use water cooled by an industrial chiller. The chiller can
be placed outside the server room and can be connected to the reconfigurable

70 I. Levin et al.

Fig. 1. The design of a computer system based on liquid cooling (a - design of a new
generation CM, b - design of the computer rack)

computational modules by means of a stationary system of engineering services.
The design of the computer rack with mounted CMs is shown in Fig. 1-b.

The computational and the heat exchange sections are mechanically inter-
connected into a single reconfigurable computational module. Maintenance of
the reconfigurable computational module requires its connection to the source
of the secondary cooling liquid (by means of valves), to a power supply block or
to a hub (by means of electrical connectors).

In the casing of the computer rack, the CMs are placed one over another.
Their number is limited by the dimensions of the rack, by technical capabilities
of the computer room, and by the engineering services.

Each CM of the computer rack is connected to the source of secondary cooling
liquid with the help of supply and return manifolds through fittings (or balanced
valves) and flexible pipes; the connection to both the power supply and the hub
is performed via electric connectors.

The supply of cold secondary cooling liquid and the extraction of the heated
one into the stationary system of engineering services connected to the rack are
made via fittings (or balanced valves).

For the purpose of testing technical and technological solutions, and deter-
mining the expected technical and economical characteristics and service perfor-
mance of the designed high-performance reconfigurable computer system with
liquid cooling, we designed a number of models, experimental and technological
prototypes. Figure 2 shows the prototype of a new-generation “SKAT” CM. A
new-design CCB with high packing density was created for this CM.

The CCB of the advanced computational module contains eight Kintex Ultra-
Scale XCKU095T FPGAs; each FPGA has a specially designed thermal interface
and a low-height heatsink for heat dissipation.

High-Performance Reconfigurable Computer Systems 71

Fig. 2. The prototype of the new-generation CM

We have designed an immersion power supply unit providing DC/DC 380/12
V transducing with the power up to 4 kW for four CCBs.

The computational section of the “SKAT” CM contains 12 CCBs with a
power of up to 800 W each, and three power supply units. In addition, all boards
are completely immersed into an electrically neutral liquid heat-transfer agent.

To achieve an effective immersion cooling system, we developed a dielectric
heat-transfer agent with the best possible dielectric strength, high heat transfer
capacity, the maximum possible heat capacity and low viscosity.

The heat exchange section contains pump components and the heat
exchanger, both providing the effective flow and cooling of the heat-transfer
agent. The design height of the CM is 3U.

The performance of a next-generation “SKAT” CM is increased in 8.7 times
in comparison with the “Taygeta” CM. Original design solutions provide more
than triple increasing of the system packing density. Clock frequency and logic
capacity of the FPGAs are also increased. As a result, all this provides such
qualitative increasing of the system specific performance.

Experimental tests of the developed solutions of the immersion liquid cooling
system proved that the temperature of the heat-transfer agent does not exceed
30 ◦C, and the power consumed by each FPGA in operating mode equals 91
W (8736 W for the whole CM). In addition, the maximum FPGA temperature
during heat experiments did not exceed 55 ◦C. All this proves that the designed
immersion liquid cooling system has a reserve and can provide effective cooling
for the designed RCS based on the advanced Xilinx UltraScale+ FPGA family.

4 “SKAT+” Advanced Reconfigurable Computer System
Based on Xilinx UltraScale+ FPGAs

The use of UltraScale+ FPGAs based on the 16FinFET Plus 16-nm technol-
ogy and produced by Xilinx since 2017 will provide a three time increase in
computational performance due to an increase in clock frequency and FPGA
circuit complexity, whereas the size of the computer system will still remain

72 I. Levin et al.

unchanged. However, despite the reduction of relative energetic consumption
due to new technological standards of FPGA manufacturing and also to a cer-
tain power reserve of the designed liquid cooling system, it is expected that
FPGA operating temperatures will approach again their critical values.

In addition, the new FPGAs of the UltraScale+ family have larger geometric
sizes. The size of the FPGAs in the “SKAT” RCS is 42.5 × 42.5 mm. The size
of the FPGAs that will be placed into the“SKAT+” RCS amounts to 45 × 45
mm. Owing to this circumstance, it is impossible to use the existing CCB design
since the width of the printed circuit board will become larger and will not fit
in a standard 19 rack.

In this connection, it is necessary to modify the designed open liquid cooling
system and the CCB design, which will lead to a modification of the whole CM.

At present, the SRC of SC & NC scientific team is working on the design of an
advanced RCS based on Xilinx UltraScale+ FPGAs. Due to these works related
to the modification of the cooling system, we are going to solve the following
problems:

1. Increase the effective surface of heat-exchange between FPGAs and the heat-
transfer agent.

2. Increase the performance of the heat-transfer agent supply pump.
3. Increase the reliability of the liquid cooling system by means of immersed

pumps.
4. Experimentally improve the heat-sink optimal design.
5. Experimentally improve the technology of thermal interface coating.

We have designed a prototype of an advanced computational module with a
modified immersed cooling system (Fig. 3). Some distinctive features of the new
design are immersed pumps and a considerable reliability increase of the CM due
to a reduction of the number of components and simplification of the cooling
system. According to our plans, the heat-exchange section will house only the
heat exchanger. We are working on experimental pump equipments that can
operate in the heat-exchange agent. During modification of the CCB design,

Fig. 3. A prototype of a computational module with a modified immersed cooling
system

High-Performance Reconfigurable Computer Systems 73

we have created a prototype of an advanced board, shown in Fig. 4. The CCB
contains eight UltraScale+ FPGAs of high circuit complexity. To provide room
for the new CCB into a 19 rack, it is necessary to exclude its CCB controller
from its structure. The CCB controller was always implemented as a separate
FPGA and used to provide access to the FPGA computational resources of the
CCB, FPGA programming, and monitoring of the CCB resources.

FPGAs are rather small, but their resource constantly grows with each new
family. At the same time, the variety of functions of the CCB controller grows
only slightly. As a result, the resources required at present for the implemen-
tation of all the CCB controller functions amount to only some percent of the
logic capacity of the FPGAs currently used. In this connection, further imple-
mentation of the CCB controller as a separate FPGA is considered unnecessary.
A single FPGA in the computation field will be able to perform all the functions
of the controller. We need a system of hydraulic balancing for the heat-transfer
agent flow within each hydraulic loop. Such a system will provide an equal flow of
the heat-exchange agent in each computational module inside the computer rack
during servicing of one or several computational modules. The additional subsys-
tem will considerably complicate the cooling system. To simplify the hydraulic
balancing of the heat-transfer system, the SRC SC & NC scientific team (LLC,
Russia) has suggested an engineering solution for balancing the heat-transfer
agent flow in the heat-exchange system (see Fig. 5).

Fig. 4. The prototype of the CCB modified packing

The designed heat-exchange system includes a pump 1, a chiller 2 (that is, a
cooling machine), several circulation loops 3, with heat-exchangers 15, intended
for the heat exchange process between the primary heat-transfer agent (water)
and the secondary one (oil MD-4.5), which is circulating in the computational
modules 4. The circulation of the secondary heat-transfer agent (oil MD-4.5)
in computational modules 4 and heat-exchangers 15 of each circulation loop is
ensured by an additional pump (not shown in Fig. 1) connected to each circula-
tion loop. Heat-exchangers 15 are connected by parallel tubes to supply manifold
6 and return manifold 5. The inlets and outlets of the first (No. 1), second (No. 2),
third (No. 3), etc., circulation loops are arranged along the heat-transfer agent
flow 7 and near the inlets of supply manifold 8 and return manifold 9. The inlets

74 I. Levin et al.

and outlets of the last circulation loop No. 6 in Fig. 1) are situated near the out-
lets of supply manifold 10 and return manifold 11. The return pipe 12 connects
the outlet of return manifold 11 with the chiller 2, the pump 1, and the inlet
of supply manifold 8. Besides, each circulation loop may be complemented with
a balancing valve for finer balance-tuning. The heat-exchange system is filled
with the primary heat-transfer agent (water, antifreeze, etc.), then decreased,
and the pump 1 is switched on. The primary heat-transfer agent is supplied to
the inlet 8 of the supply manifold 6 and then through the circulation loops 3
into the heat-exchangers 15, where heat is transferred from the primary heat-
transfer agent to the secondary one, which is circulating in the computational
modules 4, where the secondary heat-transfer agent (oil MD-4.5) dissipates the
heat from heating electronic components. The primary heat-transfer agent gets
warm and enters the return manifold. There is a return pipe 12 at outlet 11
of the return manifold. Through return pipe 12 and the chiller 2, the primary
heat-transfer agent is again transferred to pipe 1, and then to inlet 8 of supply
manifold 6, and then flows along the closed loop. In the chiller 2, the heated
primary heat-transfer agent is chilled.

Fig. 5. The layout of hydraulic balancing of the heat-exchange system for computa-
tional modules in a computer rack

If a circulation loop in any computational module fails, then the heat-transfer
agent flow is evenly changed in the rest of modules, since the closed trajectory of
the heat-transfer agent flow is similar for all loops, and the distance between each
loop and the pump is the same: pump – inlet of the supply manifold – supply

High-Performance Reconfigurable Computer Systems 75

manifold – circulation loop – return manifold – outlet of the return manifold
– return pipe – chiller – pump. The described engineering solution makes it
possible to balance the hydraulic resistance in all the circulation loops when
the heat-transfer agent flow is pumped through them. No additional hydraulic
balancing system is needed here.

Thanks to breakthrough technical solutions that we have found while design-
ing the “SKAT” RCS with an immersed liquid cooling system, we are now able
to develop this direction of high-performance RCS design, and after some design
improvements, we will be able to create a computer system providing a new level
of computational performance.

5 Conclusions

The use of air cooling systems in the design of supercomputers has practically
reached its limit, since cooling effectiveness decreases as the rate of consumed
and dissipated power grows at the same time as circuits in microprocessors and
other chips become more and more complex. This explains why the use of liquid
cooling in modern computer systems is considered as a priority direction for the
improvement of cooling systems and has excellent prospects of further develop-
ment. Liquid cooling of RCS computational modules containing not less than
eight FPGAs of high circuit complexity has some specific features compared
with the cooling of microprocessors and requires the development of a special-
ized immersion cooling system. The original liquid cooling system that has been
designed for a new-generation RCS computational module provides high main-
tenance characteristics, such as a maximum FPGA temperature not exceeding
55 ◦C, while keeping the heat-transfer agent temperature below 30 ◦C in oper-
ating mode. Thanks to breakthrough solutions found for the immersion liquid
cooling system, it is now possible to mount not less than 12 new-generation CMs,
with a total performance above 1 PFlops, in a single 47U computer rack. The
power reserve of the liquid cooling system for the new-generation CMs ensures
an effective cooling not only for the existing but also for future FPGA families
(Xilinx UltraScale+ and UltraScale 2).

FPGAs, as principal components of reconfigurable supercomputers, provide
a stable, practically linear growth of the RCS performance. This makes the
performance of an RCS based on Xilinx Virtex UltraScale FPGAs similar to
that of the world best cluster supercomputers and opens new possibilities for
the design of super-high performance supercomputers.

76 I. Levin et al.

References

1. Perkowski, M.: FPGA computer architectures. Northcon/93. In: Conference
Record, 12–14 October 1993. https://doi.org/10.1109/northc.1993.505038. ISBN:
0-7803-9972-2

2. Tripiccione, R.: Reconfigurable computing for statistical physics. The weird case of
JANUS. In: IEEE 23rd International Conference on Application-Specific Systems,
Architectures and Processors (ASAP) (2012). https://doi.org/10.1109/asap.2012.
38

3. Baity-jesi, M., et al.: The Janus project: boosting spin-glass simulations using
FPGAs. In: IFAC Proceedings Volumes, Programmable Devices and Embedded
Systems, vol. 12, no. 1 (2013). https://doi.org/10.3182/20130925-3-cz-3023.00039

4. Shaw, D.E., et al.: Anton, a special-purpose machine for molecular dynamics sim-
ulation. Commun. ACM 51(7), 91–97. https://doi.org/10.1145/1364782.1364802

5. Kalyaev, I.A., Levin, I.I., Dordopulo, A.I., Slasten, L.M.: Reconfigurable com-
puter systems based on Virtex-6 and Virtex-7 FPGAs. IFAC Proc. Volumes Pro-
grammable Devices Embed. Syst. 12(1), 210214 (2013). https://doi.org/10.3182/
20130925-3-cz-3023.00009

6. Coolitsystems. http://www.coolitsystems.com/index.php/data-center/liquid-cool
ing-options.html

7. Asetek Data Center Liquid Cooling. http://www.asetek.com/data-center/oem-
data-center-coolers

8. Data Center Cooling: Liquid Immersion - Green Revolution Cooling. http://www.
grcooling.com/carnotjet

9. Immers.ru. http://www.immers.ru/sys/immers660
10. Eurotech HPC. http://www.eurotech.com/aurora
11. RSC Technology. http://www.rscgroup.ru
12. T-platforms. http://www.t-platforms.ru/products/hpc/a-class/cooling.html
13. Iceotope. http://www.iceotope.com/product.php
14. LiquidCool Solutions - Liquid cooled servers for a CRAC - free future. http://

www.liquidcoolsolutions.com

https://doi.org/10.1109/northc.1993.505038
https://doi.org/10.1109/asap.2012.38
https://doi.org/10.1109/asap.2012.38
https://doi.org/10.3182/20130925-3-cz-3023.00039
https://doi.org/10.1145/1364782.1364802
https://doi.org/10.3182/20130925-3-cz-3023.00009
https://doi.org/10.3182/20130925-3-cz-3023.00009
http://www.coolitsystems.com/index.php/data-center/liquid-cooling-options.html
http://www.coolitsystems.com/index.php/data-center/liquid-cooling-options.html
http://www.asetek.com/data-center/oem-data-center-coolers
http://www.asetek.com/data-center/oem-data-center-coolers
http://www.grcooling.com/carnotjet
http://www.grcooling.com/carnotjet
http://www.immers.ru/sys/immers660
http://www.eurotech.com/aurora
http://www.rscgroup.ru
http://www.t-platforms.ru/products/hpc/a-class/cooling.html
http://www.iceotope.com/product.php
http://www.liquidcoolsolutions.com
http://www.liquidcoolsolutions.com

Hybrid Supercomputer Desmos
with Torus Angara Interconnect:

Efficiency Analysis and Optimization

Nikolay Kondratyuk1,2, Grigory Smirnov1, Ekaterina Dlinnova3,
Sergey Biryukov4, and Vladimir Stegailov1(B)

1 Joint Institute for High Temperatures of the RAS, Moscow, Russia
stegailov.vv@mipt.ru

2 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
3 National Research University Higher School of Economics, Moscow, Russia

4 JSC NICEVT, Moscow, Russia

Abstract. The paper describes the first experience of practical deploy-
ment of the hybrid supercomputer Desmos at the Joint Institute for
High Temperatures of the Russian Academy of Sciences (JIHT RAS).
We consider job scheduling statistics, energy efficiency, case studies of
GPU acceleration efficiency and benchmarks of the distributed storage
with a parallel file system.

Keywords: Job accounting and statistics · Energy efficiency
GPU acceleration · Parallel I/O

1 Introduction

Desmos is a supercomputer targeted to molecular dynamics (MD) calculations
that was installed in the JIHT RAS in December 2016. Desmos is the first
application of the Angara interconnect for a GPU-based MPP system [1,2].

Modern MPP systems can combine up to 105 nodes for solving one compu-
tational problem. For this purpose, MPI is the most widely used programming
model. The architecture of the individual nodes can differ significantly and is
usually selected (co-designed) for the main type of MPP system deployment.
The most important component of MPP systems is the interconnect. The inter-
connect properties have a major influence on the scalability of any MPI-based
parallel algorithm. In this work, we describe the Desmos supercomputer, which
is based on cheap 1CPU+1GPU nodes connected by the original Angara inter-
connect.

The JIHT team was supported by the Russian Science Foundation (grant No. 14-
50-00124). The Desmos supercomputer is a part of the Supercomputer Centre of
JIHT RAS. The authors acknowledge the Shared Resource Center “Far Eastern
Computing Resource” IACP FEB RAS (http://cc.dvo.ru) for granting access to the
IRUS17 supercomputer.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 77–91, 2018.
https://doi.org/10.1007/978-3-319-99673-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_6&domain=pdf
http://cc.dvo.ru

78 N. Kondratyuk et al.

The Angara interconnect is a Russian-designed communication network with
a torus topology. The interconnect ASIC was developed by JSC NICEVT
and manufactured by TSMC using the 65 nm process. The Angara architec-
ture uses some principles of both the IBM Blue Gene L/P and the Cray
Seastar2/Seastar2+ torus interconnects. The torus interconnect developed by
EXTOLL is a similar project [3]. The Angara chip supports deadlock-free adap-
tive routing based on bubble flow control [4], direction ordered routing [5,6] and
initial and final hops for fault tolerance [5].

The results of the benchmarks confirmed the high efficiency of commodity
GPU hardware for MD simulations [2]. The scaling tests for electronic structure
calculations also showed the high efficiency of MPI-exchanges over the Angara
network.

In this paper, we combine the results of the Desmos supercomputer perfor-
mance analysis. These results pave the way to optimizations of the supercom-
puter efficiency and could be relevant for other HPC systems.

2 Related Work

Job scheduling determines the efficiency of a supercomputer practical deploy-
ment and is a very important topic in parallel systems (see, e.g., [7]). The every-
day work of supercomputer centers shows a need for separation of cloud-like jobs
(which do not require a high-bandwidth low-latency interconnect between nodes)
from regular parallel jobs. Such a separation is a way for increasing efficiency
of supercomputer deployment [8]. There have been some attempts of statistical
analysis of supercomputers operation in Russian HPC centers (see, e.g., [9]).

The increase of power consumption and heat generation of computing plat-
forms is a significant problem. Measurement and presentation of the results of
performance tests of parallel computer systems become more and more often
evidence-based [10], including the measurement of energy consumption, which
is crucial for the development of exascale supercomputers [11].

Nowadays, partial use of single precision in MD calculations with consumer-
grade GPUs cannot be regarded as a novelty. The results of such projects as Fold-
ing@Home confirmed the broad applicability of this approach. Recent develop-
ments in optimized MD algorithms include the validation of the single-precision
solver (see, e.g., [12]). The authors of [13] give very instructive guidelines for
achieving the best performance at minimal cost in 2015.

The success of the TeraChem package [14] illustrates the amazing perspec-
tives of GPU usage for quantum chemistry.

The ongoing increase of data generated by HPC calculations leads to the
requirement of a parallel file system for rapid I/O operations. However, bench-
marking parallel file system is a complicated (and usually expensive!) task, which
is why accurate results of particular case studies are quite rare (see, e.g. [15]).

Hybrid Supercomputer Desmos with Torus Angara Interconnect 79

3 Statistical Data of Desmos Deployment

The batch system for user jobs scheduling of Desmos is based on Slurm, which
is an open-source workload manager designed for Linux clusters of any size [16].
It is used in many HPC centers worldwide (the paper [16] has been cited more
than 500 times). Slurm has the following main features:

– allocates exclusive and/or non-exclusive access to resources (Compute Nodes)
to users for some time so they can perform a work;

– provides a framework for starting, executing, and monitoring work (normally
a parallel job) on the set of allocated nodes;

– arbitrates conflicting requests for resources by managing a queue of pending
work.

The SlurmDB daemon stores data into a MySQL database. The SlurmDB
daemon runs on the management node. In September 2017, the SlurmDB
database was activated on Desmos, giving us the possibility of detailed anal-
ysis of supercomputer load statistics. The default Slurm tool sreport has quite
limited functionality. That is why we use SQL-queries for accessing the Slur-
mDB for statistical analysis. For example, the following command retrieves and
calculates the duration of allocated jobs:

select timestampdiff(second, from_unixtime(time_start),
from_unixtime(time_end)) as running,
timestampdiff(second, from_unixtime(time_submit),
from_unixtime(time_start)) as waiting,t.*
from desmos_job_table;

Figure 1 shows the distribution of jobs over the number of cores used and over
running time tR. GPU floating point performance is not taken into account when
drawing the iso-levels of Rpeak ∗ tR constant value. This quantity corresponds
to the total number of floating-point operations that CPUs deployed for the
particular job are able execute theoretically during time tR.

Parallel algorithms can be executed either slowly on a modest number of
cores (nodes) or quickly if their parallel scalability justifies using a large number
of processing elements efficiently. Two iso-levels separate three regions of total
number floating-point operations corresponding to individual jobs: less than 10
PFlos, between 10 and 100 PFlops, and above 100 PFlops. The percent values
shown in the blue boxes correspond to the share of each region in the Desmos
total workload since the beginning of SlurmDB logging. We see that the major
part of all the jobs executed on Desmos have been essentially supercomputer-
type jobs.

80 N. Kondratyuk et al.

Fig. 1. Job running time vs. job size. Each point corresponds to one job (Color figure
online)

At the same time, we see that there are jobs that were executed on six cores
or less, i.e. on a single node. This type of jobs can be easily moved away from
the supercomputer either to the cloud or to a personal workstation.

The efficiency of the supercomputer job scheduling policy can be evaluated
by such type of graphs. The more points we see on the right side of the graph,
the more efficient is the end-user collective deployment of the supercomputer.
Users should be motivated to use scalable codes and to choose larger number of
nodes for speeding calculations up. The following Slurm batch system partitions
have been created on the Desmos supercomputer:

Hybrid Supercomputer Desmos with Torus Angara Interconnect 81

Fig. 2. Job waiting time vs. job running time. Each point corresponds to one job. The
percent values shown in the red boxes correspond to the share of each region in the
supercomputer total workload (Color figure online)

82 N. Kondratyuk et al.

– test: max time = 15 min, any number of nodes;
– max1n: max time = 1440 min, min/max number of nodes = 1;
– max8n: max time = 1440 min, min/max number of nodes = 4/8;
– max16n: max time = 720 min, min/max number of nodes = 4/16;
– max32n: max time = 360 min, min/max number of nodes = 4/32.

This policy motivates users to deploy higher numbers of nodes. Also, it pre-
vents overloading the supercomputer with small one-node or two-node jobs.

Another aspect of job scheduling is the waiting time for the job to start
calculation after being submitted to the job queue. Figure 2 shows the correlation
of the job running time tR to the job waiting time tW (i.e. the time between
the moment of job submission into the batch queue and the moment of job
execution). Three levels of ratios tW /tR are shown in Fig. 2. Fortunately, the
majority of jobs (66%) fall into the category with tW < tR. Obviously, jobs with
tW > tR should be regarded as inefficient. Diminishing the number of such jobs
is another criterion of supercomputer efficient usage.

4 Energy Consumption Optimization: The VASP Case
Study

Our recent studies of energy consumption at frequency variation [17–19] show
that a variation of CPU frequency can have a positive effect on reducing energy
consumption for memory-bound algorithms. Here we extend this type of analysis
from the level of a single CPU to the level of a whole supercomputer.

VASP 5.4.1 was compiled for Desmos using gfortran 4.8, Intel MPI and linked
with Intel MKL for BLAS, LAPACK and FFTW calls. The model represents
a GaAs crystal consisting of 80 atoms in the supercell. All 32 nodes are used
for the benchmark runs. Each run corresponds to one complete iteration for
electron density optimisation that consists of 35 steps. We use digital the logging
capabilities of the UPS for digital sampling of the power consumed during the
benchmark runs.

The results of the CPU frequency variation from the 3.5 GHz to 1.2 GHz are
presented in Fig. 3. We see how the level of consumed power decreases when the
CPU frequency decreases. At the same time, the time-to-solution increases.

The lower graph shows the variation of the total energy consumed in two
cases:

– The real benchmark of Desmos shows that no energy saving regime can stem
from CPU frequency variation.

– The hypothetical case with all fans in the chassis switched off shows a shallow
minimum of total energy consumed. The total power consumption of the
chassis fans working at full speed is about 4 kW. If we subtract the fan-
determined power draw from the total power level (e.g., it could be the case
if liquid immersion cooling would be used). This minimum corresponds to
saving about 3.4% of energy at the cost of about 3.8% longer calculations.

Hybrid Supercomputer Desmos with Torus Angara Interconnect 83

80 120 160 200

Time [min]
7

8

9

10
Power [kW]

3 2 1

CPUfreq [GHz]1

2

3
Energy per iteration [kWh]

3.5GHz 3.2GHz 3.0GHz 2.5GHz 2.0GHz 1.5GHz 1.2GHz

3.4%
w/o fans

Fig. 3. Power variation and consumed energy variation on the same VASP test bench-
mark at different CPU frequencies

84 N. Kondratyuk et al.

5 Case Studies of GPU Efficiency

NVIDIA CUDA technology was released in 2007. The past decade became a
time of gradual adoption of this programming paradigm. Nowadays, the CUDA-
enabled software ecosystem is quite mature. The GPU usage in HPC is motivated
not only by energy efficiency but by cost efficiency as well. Consumer cards
with teraflops performance in single precision represent an attractive option for
cheap computational acceleration. The deployment of such commodity GPU
accelerators in the Desmos supercomputer was a carefully planned decision [2].
However, the absence of double-precision capabilities narrows the spectrum of
potential problems that can be solved using this hardware.

In this context, we present benchmarks showing the efficiency of the Desmos
supercomputer for certain workloads.

5.1 Classical Molecular Dynamics with Gromacs

Classical molecular dynamics is an important modern scientific tool (see,
e.g., [20–24]). In Fig. 4, we can see the results of the Intel Xeon-based super-
computer IRUS17 and the Desmos supercomputer on two detailed biomolecular
benchmarks [13] from the Gromacs package.

The cost of each node in Fig. 4 consists of the price of the computational
resources with the corresponding infrastructure excluding the costs of intercon-
nect. The prices of single nodes are estimated according to the price lists from
the ThinkMate.com website at the end of November 2017.

A Desmos node without GPU costs about $ 2600, while a Desmos node with
one GTX 1070 costs $ 3100. An IRUS17 node with two Intel Xeon E5-2698 v4
costs $ 11 000 (IRUS17 consists of dual-node blades in an enclosure), and an
IRUS17 node with two Intel Xeon E5-2699 v4 costs $ 13 000. The labels in Fig. 4
show the amount of nodes. The cost is multiplied by the corresponding number
of nodes.

We see that Desmos is ahead of IRUS17 for these benchmarks, in terms of
both maximum attainable speed of calculation (ns/day) and cost-efficiency.

5.2 Quantum Molecular Dynamics with TeraChem and
GAMESS-US

Quantum chemistry and electronic structure calculations are among the major
consumers of HPC resources worldwide (see, e.g. [25–30]). The TeraChem pack-
age is a rare example of CUDA-based software that deploys very efficiently single-
precision floating point operations of NVIDIA GPU accelerators. In this work, we
compare the performance of TeraChem with the well-know quantum chemistry
package GAMESS-US.

Hybrid Supercomputer Desmos with Torus Angara Interconnect 85

1 10 100

Performance [ns/day]
1000

10000

100000

Cost [$]

1

2

4

8

1

2

4

8

4

8

16

24

32

4

8

16

24

32

1

2

4

8

12

16
20
24
28
32

1

2

4

8

12

16
20

24
28

32

1

2

4

8

16

1

2

4

8

16

Irus17 2 x Xeon® E5-2698 v4 (20 cores)
Irus17 2 x Xeon® E5-2699 v4 (22 cores)
Desmos CPU only Xeon® E5-1650 v3 (6 core)
Desmos CPU + GPU GTX 1070

2x

RIB MEM

Fig. 4. Comparison of the supercomputers Desmos and IRUS17, on two biomolecular
benchmarks (RIB: 2 million atoms, MEM: 82 thousand atoms; see [13])

The test model is the ab initio DFT molecular dynamics of the molecule of
malondealdehyde CH2(CHO)2. The 6–31g basis is used together with the B3LYP
exchange-correlation functional.

TeraChem is not MPI-parallelized and runs on a single node of Desmos (on a
single core with a GTX 1070 accelerator). This hardware gives 0.5 s per one MD
step in this test benchmark for TeraChem. The same level of performance we
see in the CPU-only MPI-parallelized GAMESS-US calculation on 12 Desmos
nodes (0.5 s per one MD step).

86 N. Kondratyuk et al.

It is instructive to compare the peak performance of the hardware under
consideration in these two tests. Twelve Desmos nodes have 4 TFlops of double-
precision peak performance and 540 GB/s DRAM total memory bandwidth.
One GTX 1070 accelerator has 6 TFlops of single-precision peak performance
and 256 GB/s DRAM memory bandwidth. These numbers allow us to conclude
that, with respect to GAMESS-US, the Desmos supercomputer is equivalent
to a 128-TFlop supercomputer (= 32 nodes × 4 TFlops) based on Intel Xeon
Broadwell CPUs.

6 Parallel File System Benchmarks

Many scientific HPC codes generate huge amounts of data. For example, in clas-
sical MD, the limits of the system size are trillions of atoms [31]. Desmos allows
for GPU-accelerated modeling of MD systems with up to 100 million atoms.
On-the-fly methods of data processing help considerably but cannot substitute
post-processing completely. Another unavoidable requirement is the saving of
control (or restart) points during or at the end of the calculation.

All 32 nodes of Desmos have been equipped with fast SSD drives, and the
BeeGFS parallel file system has been installed in order to use all these disks as
one distributed storage.

For comparison, we consider the Angara-K1 supercomputer, located at JSC
NICEVT. This cluster is based on the Angara interconnect as well. Angara-K1
has a dedicated storage server (hardware RAID-adapter Adaptec 5405z, RAID
level: 6 Reed-Solomon, HDD: 8×2 TB SATA2, FS: Lustre 2.10.1, FS type: ext3).

The schemes of the Desmos and Angara-K1 supercomputers and relevant
parameters are given in Fig. 5.

The standard Lennard-Jones benchmark was run with the LAMMPS molec-
ular dynamics package (the benchmark is based on the model “melt” from
the LAMMPS distribution package, the model corresponds to a f.c.c. crystal
of Lennard-Jones particles and has been replicated to 16 million particles).

LAMMPS has two variants for output of large amounts of data. It is possible
to use either standard output methods or MPI-IO capability.

Figure 6 depicts the results of the benchmarks for different sizes of the MD
model. We see that the absolute values of the calculation time are higher for
Angara-K1 than for Desmos. However, the performance degradation due to stor-
ing large files is more pronounced for Desmos. The MPI-IO output gets the
evident benefits of the distributed storage of Desmos.

Hybrid Supercomputer Desmos with Torus Angara Interconnect 87

Fig. 5. The schemes of the supercomputers Desmos and Angara-K1

88 N. Kondratyuk et al.

30 40 50 60 70 80 90 100 110

N atoms [M]
0

100

200

300
Run time [s]

~6.5 GB
~10 GB

~13 GB
~15 GB

~23 GB

30 40 50 60 70 80 90 100 110

N atoms [M]
0

200

400

600
Run time [s]

~6.5 GB

~10 GB

~13 GB

~15 GB

~23 GB

Desmos

mpiio

Angara-K1

no mpiio

mpiio

no mpiio

no output

no output

Fig. 6. Parallel output benchmarks based on the LAMMPS test model for Angara-K1
and Desmos supercomputers

Hybrid Supercomputer Desmos with Torus Angara Interconnect 89

7 Conclusions

The paper presents the results of efficiency and performance analyses of the
Desmos supercomputer.

– The job accounting statistics of the Desmos supercomputer were reviewed.
Two methods of quantitative efficiency monitoring were proposed.

– A variation of CPU frequency was attempted for energy optimization. The
effect of lower energy consumption does indeed show up but the figures
promise no practical benefits.

– GPU-accelerated classical MD with Gromacs runs faster and is more cost
effective on supercomputers similar to Desmos than on wide-spread super-
computers based on expensive Intel Xeon multi-core CPUs.

– GPU-accelerated quantum MD can be effectively computed on Desmos nodes
using single precision. A comparison with the GAMESS-US package shows
that TeraChem is able to efficiently substitute double-precision CPU perfor-
mance with single-precision GPU performance for solving ab initio problems.

– It is shown that BeeGFS effectively combines the distributed storage units
located on the Desmos nodes into a single drive. MPI-IO shows a very good
speed in storing data from the LAMMPS MD calculation on the Desmos
parallel file system. However, LAMMPS MPI-IO shows no benefits in the case
of a conventional storage benchmarked on the Angara-K1 supercomputer.

References

1. Stegailov, V., et al.: Early performance evaluation of the hybrid cluster with torus
interconnect aimed at molecular-dynamics simulations. In: Wyrzykowski, R., Don-
garra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017 Part I. LNCS, vol.
10777, pp. 327–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78024-5 29

2. Vecher, V.S., Kondratyuk, N.D., Smirnov, G.S., Stegailov, V.V.: Angara-based
hybrid supercomputer for efficient acceleration of computational materials science
studies. In: Proceeding of International Conference Russian Supercomputing Days
2017, pp. 557–571 (2017)

3. Neuwirth, S., Frey, D., Nuessle, M., Bruening, U.: Scalable communication archi-
tecture for network-attached accelerators. In: 2015 IEEE 21st International Sym-
posium on High Performance Computer Architecture (HPCA), pp. 627–638 (2015).
https://doi.org/10.1109/HPCA.2015.7056068

4. Puente, V., Beivide, R., Gregorio, J.A., Prellezo, J.M., Duato, J., Izu, C.: Adaptive
bubble router: a design to improve performance in torus networks. In: Proceedings
of the 1999 International Conference on Parallel Processing, pp. 58–67 (1999).
https://doi.org/10.1109/ICPP.1999.797388

5. Scott, S.L., Thorson, G.M.: The Cray T3E network: adaptive routing in a high per-
formance 3D torus. In: HOT Interconnects IV. Stanford University, 15–16 August
1996 (1996)

6. Adiga, N.R., et al.: Blue Gene/L torus interconnection network. IBM J. Res. Dev.
49(2), 265–276 (2005). https://doi.org/10.1147/rd.492.0265

https://doi.org/10.1007/978-3-319-78024-5_29
https://doi.org/10.1007/978-3-319-78024-5_29
https://doi.org/10.1109/HPCA.2015.7056068
https://doi.org/10.1109/ICPP.1999.797388
https://doi.org/10.1147/rd.492.0265

90 N. Kondratyuk et al.

7. Gómez-Mart́ın, C., Vega-Rodŕıguez, M.A., González-Sánchez, J.L.: Fattened back-
filling: an improved strategy for job scheduling in parallel systems. J. Parallel Dis-
trib. Comput. 97(Suppl. C), 69–77 (2016). https://doi.org/10.1016/j.jpdc.2016.06.
013

8. Kraemer, A., Maziero, C., Richard, O., Trystram, D.: Reducing the number of
response time SLO violations by a Cloud-HPC convergence scheduler. In: 2016
2nd International Conference on Cloud Computing Technologies and Applica-
tions (CloudTech), pp. 293–300 (2016). https://doi.org/10.1109/CloudTech.2016.
7847712

9. Mamaeva, A.A., Voevodin, V.V.: Methods for statistical analysis of large supercom-
puter job flow. In: Proceeding of International Conference Russian Supercomputing
Days 2017, pp. 788–799 (2017)

10. Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems: twelve
ways to tell the masses when reporting performance results. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2015, pp. 73:1–73:12. ACM, New York (2015). https://doi.org/
10.1145/2807591.2807644

11. Scogland, T., Azose, J., Rohr, D., Rivoire, S., Bates, N., Hackenberg, D.: Node
variability in large-scale power measurements: perspectives from the Green500,
Top500 and EEHPCWG. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 74:1–
74:11. ACM, New York (2015). https://doi.org/10.1145/2807591.2807653

12. Höhnerbach, M., Ismail, A.E., Bientinesi, P.: The vectorization of the Tersoff multi-
body potential: an exercise in performance portability. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2016, pp. 7:1–7:13. IEEE Press, Piscataway (2016). https://doi.org/
10.1109/SC.2016.6

13. Kutzner, C., Pall, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmuller,
H.: Best bang for your buck: GPU nodes for gromacs biomolecular simulations. J.
Comput. Chemis. 36(26), 1990–2008 (2015). https://doi.org/10.1002/jcc.24030

14. Luehr, N., Ufimtsev, I.S., Mart́ınez, T.J.: Dynamic precision for electron repul-
sion integral evaluation on graphical processing units (GPUs). J. Chem. Theory
Comput. 7(4), 949–954 (2011). https://doi.org/10.1021/ct100701w

15. Mills, N., Alex Feltus, F., Ligon III, W.B.: Maximizing the performance of sci-
entific data transfer by optimizing the interface between parallel file systems and
advanced research networks. Futur. Gener. Comput. Syst. 79(Part 1), 190–198
(2018). https://doi.org/10.1016/j.future.2017.04.030

16. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

17. Vecher, V., Nikolskii, V., Stegailov, V.: GPU-accelerated molecular dynamics:
energy consumption and performance. In: Voevodin, V., Sobolev, S. (eds.) RuSC-
Days 2016. CCIS, vol. 687, pp. 78–90. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-55669-7 7

18. Stegailov, V., Vecher, V.: Efficiency analysis of intel and AMD x86 64 architectures
for Ab initio calculations: a case study of VASP. In: Voevodin, V., Sobolev, S. (eds.)
RuSCDays 2017. CCIS, vol. 793, pp. 430–441. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71255-0 35

https://doi.org/10.1016/j.jpdc.2016.06.013
https://doi.org/10.1016/j.jpdc.2016.06.013
https://doi.org/10.1109/CloudTech.2016.7847712
https://doi.org/10.1109/CloudTech.2016.7847712
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/2807591.2807653
https://doi.org/10.1109/SC.2016.6
https://doi.org/10.1109/SC.2016.6
https://doi.org/10.1002/jcc.24030
https://doi.org/10.1021/ct100701w
https://doi.org/10.1016/j.future.2017.04.030
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/978-3-319-55669-7_7
https://doi.org/10.1007/978-3-319-55669-7_7
https://doi.org/10.1007/978-3-319-71255-0_35
https://doi.org/10.1007/978-3-319-71255-0_35

Hybrid Supercomputer Desmos with Torus Angara Interconnect 91

19. Stegailov, V., Vecher, V.: Efficiency analysis of Intel, AMD and Nvidia 64-Bit
hardware for memory-bound problems: a case study of Ab Initio calculations with
VASP. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017 Part II. LNCS, vol. 10778, pp. 81–90. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78054-2 8

20. Smirnov, G.S., Stegailov, V.V.: Anomalous diffusion of guest molecules in hydro-
gen gas hydrates. High Temp. 53(6), 829–836 (2015). https://doi.org/10.1134/
S0018151X15060188

21. Orekhov, N.D., Stegailov, V.V.: Simulation of the adhesion properties of the
Polyethylene/Carbon nanotube interface. Polym. Sci. Ser. A 58(3), 476–486 (2016).
https://doi.org/10.1134/S0965545X16030135

22. Pavlov, S.V., Kislenko, S.A.: Effects of carbon surface topography on the elec-
trode/electrolyte interface structure and relevance to li-air batteries. Phys. Chem.
Chem. Phys. 18, 30830–30836 (2016). https://doi.org/10.1039/C6CP05552D

23. Antropov, A.S., Fidanyan, K.S., Stegailov, V.V.: Phonon density of states for solid
uranium: accuracy of the embedded atom model classical interatomic potential.
J. Phys.: Conf. Ser. 946(012094), 94 (2018). https://doi.org/10.1088/1742-6596/
946/1/012094

24. Logunov, M.A., Orekhov, N.D.: Molecular dynamics study of cavitation in carbon
nanotube reinforced polyethylene nanocomposite. J. Phys.: Conf. Ser. 946(1), 2044
(2018). https://doi.org/10.1088/1742-6596/946/1/012044

25. Stegailov, V.V., Orekhov, N.D., Smirnov, G.S.: HPC hardware efficiency for quan-
tum and classical molecular dynamics. In: Malyshkin, V. (ed.) PaCT 2015. LNCS,
vol. 9251, pp. 469–473. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21909-7 45

26. Aristova, N.M., Belov, G.V.: Refining the thermodynamic functions of scandium
triflouride SCF3 in the condensed state. Russ. J. Phys. Chemis. A 90(3), 700–703
(2016). https://doi.org/10.1134/S0036024416030031

27. Kochikov, I.V., Kovtun, D.M., Tarasov, Y.I.: Electron diffraction analysis for the
molecules with degenerate large amplitude motions: intramolecular dynamics in
arsenic pentafluoride. J. Mol. Struct. 1132, 139–148 (2017). https://doi.org/10.
1016/j.molstruc.2016.09.064

28. Stegailov, V.V., Zhilyaev, P.A.: Warm dense gold: effective ionioninteraction
and ionisation. Mol. Phys. 114(3–4), 509–518 (2016). https://doi.org/10.1080/
00268976.2015.1105390

29. Minakov, D.V., Levashov, P.R.: Melting curves of metals with excited electrons in
the quasiharmonic approximation. Phys. Rev. B 92, 224102 (2015). https://doi.
org/10.1103/PhysRevB.92.224102

30. Minakov, D., Levashov, P.: Thermodynamic properties of LiD under compression
with different pseudopotentials for lithium. Comput Mat. Sci. 114, 128–134 (2016).
https://doi.org/10.1016/j.commatsci.2015.12.008

31. Eckhardt, W., et al.: 591 TFLOPS multi-trillion particles simulation on Super-
MUC. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2013. LNCS, vol.
7905, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38750-0 1

https://doi.org/10.1007/978-3-319-78054-2_8
https://doi.org/10.1007/978-3-319-78054-2_8
https://doi.org/10.1134/S0018151X15060188
https://doi.org/10.1134/S0018151X15060188
https://doi.org/10.1134/S0965545X16030135
https://doi.org/10.1039/C6CP05552D
https://doi.org/10.1088/1742-6596/946/1/012094
https://doi.org/10.1088/1742-6596/946/1/012094
https://doi.org/10.1088/1742-6596/946/1/012044
https://doi.org/10.1007/978-3-319-21909-7_45
https://doi.org/10.1007/978-3-319-21909-7_45
https://doi.org/10.1134/S0036024416030031
https://doi.org/10.1016/j.molstruc.2016.09.064
https://doi.org/10.1016/j.molstruc.2016.09.064
https://doi.org/10.1080/00268976.2015.1105390
https://doi.org/10.1080/00268976.2015.1105390
https://doi.org/10.1103/PhysRevB.92.224102
https://doi.org/10.1103/PhysRevB.92.224102
https://doi.org/10.1016/j.commatsci.2015.12.008
https://doi.org/10.1007/978-3-642-38750-0_1
https://doi.org/10.1007/978-3-642-38750-0_1

Performance of Elbrus Processors
for Computational Materials Science
Codes and Fast Fourier Transform

Vladimir Stegailov1,2, Alexey Timofeev1,2(B), and Denis Dergunov1,2

1 Joint Institute for High Temperatures of the Russian Academy of Sciences,
Izhorskaya st. 13 Bd.2, Moscow 125412, Russia

stegailov@gmail.com, timofeevalvl@gmail.com
2 National Research University Higher School of Economics, Myasnitskaya st. 20,

Moscow 101000, Russia

Abstract. Modern Elbrus-4S and Elbrus-8S processors provide a level
of floating-point performance close to that of widespread x86 64 CPUs
that are predominantly used in high-performance computing (HPC). The
uniqueness of the software ecosystem of Elbrus processors requires special
attention in the case of their deployment for execution of mainstream
computational codes. In this paper, we consider the performance of one
widely used code for computational materials science (VASP), as well as
FFT libraries. The results for the Elbrus processors are embedded into
the context of performance of modern x86 64 CPUs.

Keywords: Elbrus architecture · VASP · Fourier transform

1 Introduction

A large share of HPC resources installed during the last decade is based on
Intel CPUs. However, the situation is gradually changing. In March 2017, AMD
released the first processors based on the novel x86 64 architecture, called Zen. In
November 2017, Cavium presented the server-grade 64-bit ThunderX2 ARMv8
CPUs, which are to be deployed in new Cray supercomputers. The Elbrus micro-
processors stand among the emerging types of high-performance CPU architec-
tures [1,2].

The diversity of CPU types significantly complicates the choice of the best
variant for a particular HPC system. The main criterion is certainly the time-to-
solution of a given computational task or a set of different tasks, which represents
the envisaged workload of a system under development.

The work was supported by the grant No. 14-50-00124 of the Russian Science Foun-
dation. The authors acknowledge Joint Supercomputer Centre of Russian Academy
of Sciences (http://www.jscc.ru) for the access to the supercomputer MVS1P5. The
authors acknowledge JSC MCST (http://www.msct.ru) for the access to the servers
with Elbrus CPUs. The authors are grateful to Vyacheslav Vecher for the help with
calculations based on hardware counters.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 92–103, 2018.
https://doi.org/10.1007/978-3-319-99673-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_7&domain=pdf
http://www.jscc.ru
http://www.msct.ru

Performance of Elbrus Processors with CMS Codes and FFT 93

Computational materials science provides an essential part of the deploy-
ment time of HPC resources worldwide. The VASP code [3–6] is among the most
popular programs for electronic structure calculations. It makes it possible to
calculate materials properties using non-empirical (so called ab initio) methods.
Ab initio calculation methods based on quantum mechanics are important mod-
ern scientific tools (see, e.g., [7–11]). According to recent estimates, VASP alone
consumes from 15 to 20% of the world’s supercomputing power [12,13]. Such
an unprecedented popularity has led to a special attention directed towards the
optimization of VASP for both existing and novel computer architectures (see,
e.g., [14]).

The computation of Fourier transforms accounts for a significant part of the
calculation time in software packages for computational materials science. One
of the most time consuming components in VASP is 3D-FFT [15]. FFT libraries
were tested on the Elbrus processor in order to determine the most optimal
tool for computing fast Fourier transforms. The EML library, developed by the
manufacturer of the Elbrus processor, and the most popular FFTW library are
under consideration.

In this work, we present an efficiency analysis of Elbrus CPUs compared with
Intel Xeon Haswell CPUs, using a typical VASP workload example. Here we also
give the results of the test of FFT libraries on Elbrus processors.

2 Related Work

HPC systems are notorious for operating at a small fraction of their peak per-
formance. The deployment of multi-core and multi-socket compute nodes fur-
ther complicates performance optimization. Many attempts have been made to
develop a more or less universal framework for algorithm optimization that takes
into account essential properties of the hardware (see, e.g., [16–18]). The recent
work of Stanisic et al. [19] emphasizes many pitfalls encountered while trying to
characterize both the network and the memory performance of modern machines.

A fast Fourier transform is used in computational modeling programs for
calculations related to quantum computations, Coulomb systems, etc., and takes
a significant part of the program’s running time [20], especially in the case of
VASP [15]. A detailed optimization of the computation of 3D-FFT in VASP to
prepare the code for an efficient execution on multi- and many-core CPUs as
Intel’s Xeon Phi is considered in [15]. In this article, the threading performance
of the widely used FFTW library (Cray LibSci) and Intel’s MKL on the Cray-
XC40 with Intel Haswell CPUs and the modern Cray-XC30 Xeon Phi (Knights
Corner, KNC) system is evaluated. Recently, several 64-bit x86 64 and Armv8
CPUs have been compared using a VASP benchmark test with the focus on the
memory bandwidth [21,22].

At the moment, Elbrus processors are ready for use [1,2], so we decided to
benchmark them using one of the main HPC tools applied in materials science
studies (VASP) and the library that determines the performance of this code
(FFT). The architecture of the Elbrus processors [1,2] allows us to expect that,

94 V. Stegailov et al.

during the execution of the FFT, the butterfly computation occurs in a smaller
number of cycles than it does on such CPUs as Intel’s Xeon Phi.

0 4 8 12
Number of cores per socket

0

10

20

30

40

50

60

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

Elbrus-8S
E5-2697v3 (MVS1P5)
E5-1650v3

Fig. 1. Dependence between the first iteration time in the liquid-Si model test and the
number of cores per socket

3 Methods and Software Implementation

3.1 Test Model in VASP

VASP 5.4.1 is compiled for Intel systems using Intel Fortran, Intel MPI and
linked with Intel MKL for BLAS, LAPACK and FFT calls. For the Elbrus-8S
system, lfortran compatible with gfortran ver.4.8 is used together with MPICH,
EML BLAS, Netlib LAPACK and FFTW libraries.

Our test model in VASP represents a liquid-Si system consisting of 48 atoms
in the supercell. The Perdew–Burke–Ernzerhof model for the xc-functional is
used. The calculation protocol corresponds to molecular dynamics. We use the
first iteration time of the electron density optimization τiter as the target param-
eter of the performance metric.

The τiter values considered in this work range from 5 to 50 s approximately
and correspond to a single CPU performance. At the first glance, these times are
not sufficiently long to be accelerated. However, ab initio molecular dynamics
usually requires 104 to 105 time steps and larger system sizes. That is why
decreasing τiter by several orders of magnitude is an actual problem for modern
HPC systems targeted at materials science computing.

Performance of Elbrus Processors with CMS Codes and FFT 95

0 4 8 12
Balance (Flops/B)

0

1000

2000

3000

R
pe

ak
 x

 T
im

e
fo

r i
te

ra
tio

n
(G

Fl
op

s)

Elbrus-8S
E5-2697v3 (MVS1P5)
E5-1630v3
Flops for computation

76 GFlops

Fig. 2. Dependence between the first iteration time in the liquid-Si model test and the
number of cores per socket, for reduced parameters Rpeakτiter and balance B (Rpeak

is the total peak performance of all the cores used; the balance B corresponds to the
total bandwidth for a single/dual-socket server)

The choice of a particular test model has a certain influence on the bench-
marking results. However, our preliminary tests of other VASP models show that
the main conclusions of this study do not depend significantly on a particular
model.

3.2 Fast Fourier Transform

FFTW 3.3.6 is compiled using lcc, the analogue of gcc for Elbrus systems. As
an input array for the Fourier transforms, a sinusoidal signal, white, pink and
brown noise are used. In this article, we report the results for white noise.

The usual pattern when calling FFT (or MKL through its FFTW interface)
is as follows:

1. Preparation stage: creates plans for FFT computations, e.g., via fftw plan
p=fftw plan dft(..) for FFTW, and via eml Signal FFTInit(...) for
EML.

2. Execution stage: performs FFT computations using the plan created, e.g., via
fftw execute dft(p,in,out) for FFTW, and via eml Signal FFTFwd(...)
for EML.

3. Clean up.

We consider the work of the first two stages as they are the most time con-
suming. Preparation takes the main time when one starts the Fourier transform
once for a fixed size of the input array. When the Fourier transform is repeatedly

96 V. Stegailov et al.

started, the running time of the program can determine the execution time of
the Fourier transform itself.

So, for these two stages, we compare the FFTW and EML libraries on the
processors Elbrus-4S and Elbrus 8S. For the moment, the EML library has fewer
useful functions than the FFTW library. In particular, the size of the input
array can only be a power of two, so the preparation stage has to be partially
implemented by the user. The number of functions in the EML library is much
smaller than that in the FFTW library.

Plan creation with FFTW can be done by planner schemes that
differ in their costs: FFTW ESTIMATE (cheap), FFTW MEASURE (expensive),
FFTW PATIENT (more expensive) and FFTW EXHAUSTIVE (most expensive). Except
for FFTW ESTIMATE , plan creation involves testing different FFT algorithms
together with runtime measurements to achieve the best performance on
the target platform. On servers with Elbrus-4S and Elbrus-8S processors,
the authors, owing to lack of libraries, managed to compile FFTW only in
FFTW ESTIMATE mode, in which the preparation time is short and the execu-
tion time is long.

To average the operating time values and obtain the dispersion of the results,
calculations were repeated 30 to 1000 times. The dispersion of the results was
within 1%, and sometimes did not exceed 0.001%.

4 Results and Discussion

4.1 VASP Benchmark on Elbrus-8S and Xeon Haswell CPUs

VASP is known to be both a memory-bound and a compute-bound code [14].
Figure 1 shows the results of the liquid-Si model test runs.

Performance comparison of different CPUs usually resembles a comparison of
“apples and oranges”. To compare CPUs with different frequencies and different
peak Flops/cycle values, it is better to use the reduced parameter Rpeakτiter
[7,23].

Another reduced parameter that characterizes the memory subsystem is the
so-called balance B, which is the ratio of Rpeak to the CPU memory bandwidth
(in this work, we measure the latter quantity using the STREAM benchmark).

Figure 2 shows the same data as Fig. 1 but in reduced coordinates. This allows
to eliminate the differences in floating-point performance and memory band-
width between dissimilar CPU cores. In these reduced coordinates, the scatter
of data points is much smaller, and there is an evident common trend.

The test model considered fixes the total number of arithmetic operations
(Flops) required for its solution. An increase in Rpeakτiter (that is proportional
to the number of CPU cycles) leads to an increase in overhead due to the limited
memory bandwidth. More CPU cycles are required for the CPU cores involved
in computations to get data from DRAM.

We calculated the number of floating-point operations that corresponds to
τiter. We used a system with Intel Core i7 640UM CPU. This CPU does not

Performance of Elbrus Processors with CMS Codes and FFT 97

support AVX instructions and the performance counters work unambiguously.
The resulting value of NFP = 76 GFlops is shown in Fig. 2 as a dashed-dotted
horizontal line. The ratio Rpeakτiter/NFP indicates the overhead of CPU cycles
that are not deployed for computations because the required data from DRAM
are not available. We should notice that the overall trend in Fig. 2 corresponds
quite well to the limiting case Rpeakτiter → NFP when B → 0.

4.2 Fast Fourier Transform on Elbrus CPUs: EML vs. FFTW

We split the Fourier transformation process into two stages: the preparation
of the algorithm (Figs. 3, 4, 5 and 6), and the execution of the transformation
(Figs. 7, 8, 9 and 10). The preparation takes the main amount of time when one
starts the Fourier transform once. The algorithm execution time can determine
the total running time of the Fourier transform in situations when the Fourier
transform is started many times for a fixed size of the input array.

Fig. 3. Dependence between the FFT preparation time and the size of the input array,
for Elbrus-4S

The preparation time of the FFT algorithm for Elbrus-4S appears to be an
order of magnitude smaller when using the EML library than it is when using
FFTW, for array sizes smaller than 215 (Figs. 3 and 4). For larger array sizes, the
preparation time is only 2 to 3 times smaller with EML than it is with FFTW.
All points have an error less than 1%. As Figs. 5 and 6 show, the difference in
preparation time is even greater for the Elbrus-8S. For array sizes smaller than
215, the preparation time when using EML is 10 to 20 times less than it is when
using FFTW. For larger array sizes (up to 217), the preparation time when using
EML is 50 to 90 times less than it is in the case of FFTW.

98 V. Stegailov et al.

Fig. 4. Dependence between the ratio of FFT preparation time with FFTW to that
with EML and the size of the input array, for Elbrus-4S

We can thus make an interim summary: single launches of the FFT on Elbrus-
4S and Elbrus-8S are more efficient when using the EML library because the
preparation of the FFT algorithm when using EML is faster (2 to 20 times for
Elbrus-4S, and 10 to 90 times for Elbrus-8S) than it is when using FFTW.

And now we consider the second stage of the FFT implementation, namely
the execution of the algorithm. The execution stage of the algorithm takes from
one to several orders of magnitude less time than its preparation stage, so it
has a significant effect only if the algorithm is run multiple times after a single
preparation. This often happens when we need to execute an FFT on a set of
arrays of the same size.

For array sizes less than 211, the execution time of the FFT algorithm using
EML turns out to be from 1 to 10 times greater than it is when using FTTW
(Figs. 9 and 10). For larger array sizes, the situation reverses, and the ratio of
the execution time with FFTW to that with EML increases from 1 to 6 for
array sizes between 214 and 222. Figures 9 and 10 show that the difference in
preparation time is smaller for the Elbrus-8S than for the Elbrus-4S. For arrays
smaller than 212, the execution time when using EML is close to that when using
FFTW. For larger arrays (up to 218), the ratio of execution time with FFTW
to that with EML ranges from 1.4 to 1.9.

On Elbrus-4S, multiple starts (more than 1000) of FFT for small arrays (less
than 211) are more efficient when using FFTW than they are when using EML.
On Elbrus-4S, the execution time when using FFTW is 1 to 10 times faster than
it is when using the EML library. On Elbrus-8S, FFT for arrays of almost all
sizes is more efficient when using the EML library, but the ratio of the execution
time for FFTW to that for EML is less than 2.

Performance of Elbrus Processors with CMS Codes and FFT 99

Fig. 5. Dependence between the FFT preparation time and the size of the input array,
for Elbrus-8S

Fig. 6. Dependence between the ratio of FFT preparation time with FFTW to that
with EML and the size of the input array, for Elbrus-8S

100 V. Stegailov et al.

Fig. 7. Dependence between the FFT execution time and the size of the input array,
for Elbrus-4S

Fig. 8. Dependence between the ratio of FFT execution time with FFTW to that with
EML and the size of the input array, for Elbrus-4S

Performance of Elbrus Processors with CMS Codes and FFT 101

Fig. 9. Dependence between the FFT execution time and the size of the input array,
for Elbrus-8S

Fig. 10. Dependence between the ratio of FFT execution time with FFTW to that
with EML and the size of the input array, for Elbrus-8S

5 Conclusions

We performed test calculations for the VASP model on Intel Xeon Haswell and
Elbrus-8S CPUs with the best choice of mathematical libraries available. Elbrus-
8S shows larger time-to-solution values, but there is not a large gap between the
Elbrus-8S performance and that of Xeon Haswell CPUs. The major target for
optimization, which could significantly speed up VASP on Elbrus-8S, is the FFT
library.

102 V. Stegailov et al.

We tested the native EML library and an unoptimized FFTW library on the
Elbrus-4S and Elbrus-8S processors. Single launches of the FFT on both Elbrus-
4S and Elbrus-8S are more efficient when using the EML library. Nevertheless,
for small arrays (less than 4000), multiple starts (more than 1 000) of FFT are
more efficient with FFTW than they are with EML. On Elbrus-8S, FFT for
arrays of any sizes is more efficient when running with the EML library.

References

1. Kozhin, A.S., et al.: The 5th generation 28nm 8-core VLIW Elbrus-8C processor
architecture. In: Proceedings - 2016 International Conference on Engineering and
Telecommunication, EnT 2016, pp. 86–90 (2017). https://doi.org/10.1109/EnT.
2016.25

2. Tyutlyaeva, E., Konyukhov, S., Odintsov, I., Moskovsky, A.: The Elbrus plat-
form feasibility assessment for high-performance computations. In: Voevodin, V.,
Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 333–344. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-319-55669-7 26

3. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev.
B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558

4. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-
amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269
(1994). https://doi.org/10.1103/PhysRevB.49.14251

5. Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1),
15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

6. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
https://doi.org/10.1103/PhysRevB.54.11169

7. Stegailov, V.V., Orekhov, N.D., Smirnov, G.S.: HPC hardware efficiency for quan-
tum and classical molecular dynamics. In: Malyshkin, V. (ed.) Parallel Computing
Technologies. LNCS, vol. 9251, pp. 469–473. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21909-7 45

8. Aristova, N.M., Belov, G.V.: Refining the thermodynamic functions of scandium
triflouride SCF3 in the condensed state. Russ. J. Phys. Chem. A 90(3), 700–703
(2016). https://doi.org/10.1134/S0036024416030031

9. Kochikov, I.V., Kovtun, D.M., Tarasov, Y.I.: Electron diffraction analysis for the
molecules with degenerate large amplitude motions: intramolecular dynamics in
arsenic pentafluoride. J. Mol. Struct. 1132, 139–148 (2017). https://doi.org/10.
1016/j.molstruc.2016.09.064

10. Minakov, D.V., Levashov, P.R.: Melting curves of metals with excited electrons in
the quasiharmonic approximation. Phys. Rev. B 92, 224102 (2015). https://doi.
org/10.1103/PhysRevB.92.224102

11. Minakov, D., Levashov, P.: Thermodynamic properties of LiD under compression
with different pseudopotentials for lithium. Comput. Mater. Sci. 114, 128–134
(2016). https://doi.org/10.1016/j.commatsci.2015.12.008

12. Bethune, I.: Ab initio molecular dynamics. Introduction to Molecular Dynamics
on ARCHER (2015)

13. Hutchinson, M.: VASP on GPUs. When and how. GPU technology theater, SC15
(2015)

https://doi.org/10.1109/EnT.2016.25
https://doi.org/10.1109/EnT.2016.25
https://doi.org/10.1007/978-3-319-55669-7_26
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1007/978-3-319-21909-7_45
https://doi.org/10.1007/978-3-319-21909-7_45
https://doi.org/10.1134/S0036024416030031
https://doi.org/10.1016/j.molstruc.2016.09.064
https://doi.org/10.1016/j.molstruc.2016.09.064
https://doi.org/10.1103/PhysRevB.92.224102
https://doi.org/10.1103/PhysRevB.92.224102
https://doi.org/10.1016/j.commatsci.2015.12.008

Performance of Elbrus Processors with CMS Codes and FFT 103

14. Zhao, Z., Marsman, M.: Estimating the performance impact of the MCDRAM on
KNL using dual-socket Ivy Bridge nodes on Cray XC30. In: 2016 Proceedings of
the Cray User Group (2016)

15. Wende, F., Marsman, M., Steinke, T.: On enhancing 3D-FFT performance in
VASP. In: CUG Proceedings, p. 9 (2016)

16. Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.:
Perfexpert: an easy-to-use performance diagnosis tool for HPC applications. In:
Proceedings of the 2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE
Computer Society, Washington (2010). https://doi.org/10.1109/SC.2010.41

17. Rane, A., Browne, J.: Enhancing performance optimization of multicore/multichip
nodes with data structure metrics. ACM Trans. Parallel Comput. 1(1), 3:1–3:20
(2014). https://doi.org/10.1145/2588788

18. Mantovani, F., Calore, E.: Performance and power analysis of HPC workloads on
heterogeneous multi-node clusters. J. Low Power Electron. Appl. 8(2), 13 (2018)

19. Stanisic, L., Mello Schnorr, L.C., Degomme, A., Heinrich, F.C., Legrand, A.,
Videau, B.: Characterizing the performance of modern architectures through
opaque benchmarks: pitfalls learned the hard way. In: IPDPS 2017 – 31st IEEE
International Parallel and Distributed Processing Symposium (RepPar Workshop),
Orlando, United States, pp. 1588–1597 (2017)

20. Baker, M.: A study of improving the parallel performance of VASP. Ph.D. thesis,
East Tennessee State University (2010)

21. Stegailov, V., Vecher, V.: Efficiency analysis of Intel and AMD x86 64 architectures
for ab initio calculations: a case study of VASP. In: Voevodin, V., Sobolev, S. (eds.)
RuSCDays 2017. CCIS, vol. 793, pp. 430–441. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-319-71255-0 35

22. Stegailov, V., Vecher, V.: Efficiency analysis of Intel, AMD and Nvidia 64-bit
hardware for memory-bound problems: a case study of ab initio calculations with
VASP. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10778, pp. 81–90. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78054-2 8

23. Nikolskiy, V.P., Stegailov, V.V., Vecher, V.S.: Efficiency of the Tegra K1 and X1
systems-on-chip for classical molecular dynamics. In: 2016 International Conference
on High Performance Computing Simulation (HPCS), pp. 682–689 (2016). https://
doi.org/10.1109/HPCSim.2016.7568401

https://doi.org/10.1109/SC.2010.41
https://doi.org/10.1145/2588788
https://doi.org/10.1007/978-3-319-71255-0_35
https://doi.org/10.1007/978-3-319-71255-0_35
https://doi.org/10.1007/978-3-319-78054-2_8
https://doi.org/10.1007/978-3-319-78054-2_8
https://doi.org/10.1109/HPCSim.2016.7568401
https://doi.org/10.1109/HPCSim.2016.7568401

Performance and Energy Analysis
of Nighttime Satellite Image Archive

Processing Module

Ekaterina Tyutlyaeva1(B), Sergey Konyukhov1, Igor Odintsov1,
Alexander Moskovsky1, and Mikhail Zhizhin2

1 ZAO RSC Technologies, Moscow, Russia
{xgl,s.konyuhov,igor odintsov,moskov}@rsc-tech.ru

2 Institute of Space Research, University of Colorado, Denver, USA
Mikhail.zhizhin@colorado.edu

Abstract. The main goal of this work is to analyze the behavior of
a nighttime image processing module and find out basic estimates of
required computational time and energy consumption for processing
large data archives.

As part of this work, we have performed the code refactoring of the
most computing-intensive module in a system for detecting fishing boat
lights.

The algorithm is capable of detecting isolated bright spikes that are
sharply visible on the sea surface at night. The refactored module has
been optimized for effective usage of multi- and many-core Intel Xeon
architectures. In the paper, we describe the algorithmic complexity for
all computational stages of the module. Also, we have collected detailed
statistic data for two data sets, different input parameter sets, and
three test beds: IntelR© XeonR© E5-2697A (codename Broadwell), IntelR©

XeonR© Gold 6148 (Skylake), and IntelR© Xeon PhiR© 7250 (KNL).
Key correlations between module behavior and energy consumption

are also included in the paper. The results of the study were used for
calculations of the estimate time and energy requirements for a whole
year archive of day/night band (DNB) images from the Visible Infrared
Imaging Radiometer Suite (VIIRS). Moreover, driving factors, including
price and legacy software systems, are presented for discussion.

Keywords: Nighttime imaging processing
Energy consumption analysis · Nighttime image processing module
Archive processing analysis

1 Introduction

The module studied herein is the most computationally intensive part of an
automatic system for detecting fishing boat lights in nighttime images from the
VIIRS multispectral radiometer [1]. The original version was implemented using
the MATLAB programming language.
c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 104–115, 2018.
https://doi.org/10.1007/978-3-319-99673-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_8&domain=pdf

Performance and Energy Analysis of Satellite Image Processing 105

The system is able to detect isolated bright spikes that are sharply visible
on the sea surface at night. In the moonlight, the interference of clouds and the
glint of the moon are taken into account as well.

In our previous work [2], we studied a nighttime infrared remote sensing
algorithm based on the Nelder–Mead method.

Another module based on direct Fourier transformation in a moving window
has been refactored and studied in this work. Contrary to the previous algorithm,
the current module is based on an archive processing approach and processes
multiple images at a time.

The processing algorithms are changed and upgraded periodically, and
archive data require to be re-computed to correct or define the results in compli-
ance with the new implementations. In this regard, archive processing is regularly
encountered in practice.

We have implemented and optimized the module under study using Intel R©

performance libraries and made an analysis of the execution time and energy
consumption depending on the number of cores used and DNB images processed.

2 The Hardware

The codenames and specifications of the studied test beds are listed in Table 1.

Table 1. Test beds specifications

Codename CPU # Cores Memory GB per core

Broadwell IntelR© XeonR©

E5-2697A v4
2 × 16 8x DRAM

Samsung 16GB
DDR4/2133MHz

4

Skylake IntelR© XeonR©

Gold 6148
2 × 20 12 × 16 GB DRAM

DDR4-2400 MHz
4.8

KNL IntelR© Xeon PhiR©

7250
68 MCDRAM

IntelR© 16 GB +
6x DRAM
Micron 32 GB
DDR4/2133MHz

2.8

3 The Algorithm and Implementation Details

In terms of the computation behavior, the algorithm can be divided broadly into
four stages:

106 E. Tyutlyaeva et al.

– Input. At this stage, we use Day/Night Band (DNB) observation data
from nighttime satellite imagery collected by the Visible Infrared Imaging
Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Part-
nership (Suomi NPP). The data were locally stored in HDF5 format. The
HDF5-1.8.19 Technology suite was used for data reading.

– The Preparation stage includes logarithmic transformation of the brightness
histogram (stretch), applying the Wiener filter [3] and computing the Spike
Median Index (SMI).

– The Processing stage is the most computationally intensive in the module.
The Sharpness Index (SI) [4] is computed in a sizeblk ×sizeblk moving win-
dow. This routine repeatedly performs direct Fourier transforms and solves
overdetermined real linear systems.

– Output. The result is locally stored in ENVI format.

We implemented the module using C++ and MPI. We used LAPACK and
FFTW optimized primitives for direct Fourier transforms and the solution of
overdetermined real linear systems.

Each MPI rank processes its own images independently, so there are minimum
communications between processes.

A hybrid (MPI + OpenMP) parallelization scheme was used to effectively uti-
lize the multi-core Intel R© architectures. Preliminary tests indicate that the most
time/energy effective pinning pattern for this module is 1 MPI rank per physical
core and NHyperthreads OpenMP threads per each MPI, where NHyperthreads equals
two for the Broadwell test bed and four for the KNL test bed (hyperthreading
support is turned on for all test beds).

Manual and compiler-supported code vectorization for Intel architectures
were also applied before the analysis stage. The “vectorization” term describes
the use of the Intel R© SSE instruction set, which is an extension to the x86
architecture [10].

The following libraries were used:

– Intel R© MKL Library (2018 Studio);
– Intel R© C++ Compilers 2018;
– Intel R© MPI Library Version 2018;
– HDF5-1.8.19 Technology suite.

4 Study of Performance and Energy Consumption

We have conducted a series of test runs on each of the available hardware test
beds to assess the execution time. Figure 1 presents the median results of the
test.

We vary the values of the input variable sizeblk and the number of processor
cores (Ncores) used on the instrumented runs, where

Performance and Energy Analysis of Satellite Image Processing 107

– Ncores is the number of physical cores used. The number of MPI ranks used
is equal to the number of physical cores used1. Explicit pinning for MPI
processes was used to define a set of processor cores on which the program is
allowed to run.

– sizeblk is the moving window size for the Spectral and Spatial Sharpness
Measure algorithm.

It is important to outline that the number of cores used is equal to the number
of pictures processed, so the ideal timeline graph should be a straight horizontal
line. However, the collective work with memory and I/O slightly increases the
execution time as the number of cores used and pictures processed increases.
Statistics on usage of test beds at full workload for the most typical window
size, sizeblk = 32, is given in Table 2. According to these statistics, overhead
costs on communications does not exceed 0.5%, which is a good result.

Table 2. Statistics on usage of test beds at full workload

Characterization Broadwell Skylake KNL

Images processed 32 40 68

Execution time, sec 39.229 44.188 206.121

Energy consumed, J 9947 10002 30757

Memory usage, MB 19249.27 24178.27 43829.55

Input data, MB 1526.65 1908.31 3257.54

Output data, MB 3048.04 3810.05 6477.07

Computation, % 99.74 99.91 99.56

MPI, % 0.26 0.09 0.44

In order to ensure accurate and precise results, we measured ten training
runs per input variable with freeing page cache, dentries and inodes2 between
runs.

We used the median value of all ten runs and two test data sets as the final
Trun result.

RAPL [5] measurements for energy use were also collected to estimate the
average energy consumption of the module (see Fig. 2).

As can be seen, energy consumption strongly correlates with the execution
time and the size of the moving window (sizeblk). Also, it is worth mentioning
a slight increase in energy consumption after 16 cores for the Broadwell test bed
1 The number of OpenMP threads for the hybrid version is equal to the number of

hyperthreads per core, namely two OpenMP threads per core for the Broadwell test
bed and four for the KNL test bed.

2 A filesystem is represented in memory using dentries and inodes. Inodes are the
objects that represent the underlying files (and also directories). A dentry is an
object with a string name, a pointer to an inode, and a pointer to the parent dentry.

108 E. Tyutlyaeva et al.

Fig. 1. Median execution times. (a) Broadwell test bed, (b) Skylake test bed, (c) KNL
test bed

and after 20 cores for the Skylake test bed. To a great extent, the reason is that
the first physical CPU is fully loaded to this moment, and further MPI processes
are pinned to the second CPU.

Furthermore, we would like to emphasize that we use strong MPI pinning.
Thus, 〈N〉 MPI ranks correspond to N cores used, 〈N〉 images processed, and
Ncores−〈N〉 idle cores. In this regard, there is room for time/energy consumption
optimizations, based on the obtained results.

Performance and Energy Analysis of Satellite Image Processing 109

Fig. 2. Median energy consumption. (a) Broadwell test bed, (b) Skylake test bed, (c)
KNL test bed

5 Analysis of the Processing Stage

According to the times measured (see Fig. 3), the Processing stage is the most
computationally intensive in the module.

As stated above, this routine repeatedly performs computations in a
sizeblk × sizeblk moving window.

Table 3 lists the number of iterations for the moving window sizes studied.
Each iterations includes:

– 2D direct Fourier transform for a sizeblk × sizeblk matrix (O(size2blk ·
log(sizeblk))).

– Vector logarithm calculation (O(log(sizeblk/2)).
– Solving an overdetermined real linear system (O(sizeblk)).

110 E. Tyutlyaeva et al.

Fig. 3. Average times of stages per process. (a) Broadwell test bed, (b) Skylake test
bed, (c) KNL test bed

Table 3. Number of iterations for the moving window sizes studied

Moving window size Number of iterations

16 × 16 3 092 672

32 × 32 766 080

64 × 64 188 000

However, in the case of the Broadwell test bed (see Fig. 4(a)), the time
required to process the data inside the moving window may be considered as
a constant, since the moving window size (sizeblk) processed at each iteration
is comparatively small.

It must therefore be assumed that the number of iterations is the main con-
tributor to the ratio of the processing stage time to sizeblk.

For the KNL test bed (see Fig. 4(c)), a notable decline in processing time in
the sizeblk = 32 case is probably due to features of the cache memory subsystem
implementation.

Performance and Energy Analysis of Satellite Image Processing 111

Fig. 4. Average time spent in the processing stage. (a) Broadwell (b) Skylake (c) KNL

6 Archive Processing

It is difficult to assess the comparative technical potential of each architecture
using the measurement results provided in Sect. 5 because the execution time,
the energy consumption and the number of processed pictures differ among the
test beds.

As regards practical application of multispectral image processing routines,
it may be useful to compare the results assessing test-bed performance and
energy consumption in archive processing mode. Multispectral data processing
algorithms are changed and upgraded systematically, so that archive data re-
computations are regularly encountered in the remote sensing research area.

According to current data, one Visible Infrared Imaging Radiometer Suite
(VIIRS) day/night band (DNB) image corresponds to 5 min of observation data,
and therefore an observation data archive for one year contains approximately
52 560 images, as follows from Eq. (1), where NightAVG = 12h = 720min:

Npictures ≈ (365 ∗ NightAVG)/5. (1)

112 E. Tyutlyaeva et al.

An assumption about a one-year data archive could be made, as a very rough
approximation, using the relation

TotalTime(Ncores) =
Npictures
Ncores

× TimeAVG(Ncores). (2)

According to this assumption, the time required for processing the archive would
amount to 17 h for the Broadwell test bed, 16.1 h for the Skylake test bed, and
42.7 h for the KNL test bed, for the standard 32 × 32 moving window size (see
Table 4).

Table 4. Approximate time to process a one-year archive of DNB data

sizeblk Broadwell Skylake KNL

16 × 16 20.6 h 19.9 h 72.9 h

32 × 32 17.9 h 16.1 h 42.7 h

64 × 64 15.5 h 13.8 h 43.7 h

Energy consumption estimates for processing a one-year archive are summa-
rized in Table 5. According to this table, the energy consumption is minimal
for the new Skylake test bed. The results of this examination show that energy
consumption for archive processing on the KNL test bed is 1.76 times greater
than it is on the Skylake test bed.

Table 5. Approximate energy required to process a one-year archive of DNB data

sizeblk Broadwell Skylake KNL

16 × 16 19 340 kJ 16 651 kJ 39 214 kJ

32 × 32 16 425 kJ 13 142 kJ 23 156 kJ

64 × 64 14 543 kJ 11 478 kJ 25 564 kJ

7 Conclusions

According to our results, the architectures studied in the article are suitable for
satellite image processing. Measurement studies of execution time and energy
consumption indicate that the Skylake test bed shows significantly better results
for execution time as well as for energy consumption in all input cases. By the
way, KNL results are within an acceptable range according to archive processing
requirements.

Performance and Energy Analysis of Satellite Image Processing 113

Price valuations, which include acquisition and depreciation costs, should
also be taken into account. According to official data (https://ark.intel.com/),
the recommended customer price for the processor used in the KNL test bed
(Intel R© Xeon Phi R© 7250) is $2436.00 [8]. The recommended customer price for
the processor used in the Broadwell test bed (Intel R© Xeon R© E5-2697A v4) is
$2891.00 [9]. We studied a 2-socket test bed configuration, so the total acquisition
value for the processors is about $5782. Finally, the recommended price for the
processor used in the Skylake test bed (Intel R© Xeon R© Gold 6148) is $3072.00,
so it is $6144 for two processors in a 2-socket configuration. Of course, this
estimation does not include prices and depreciation costs for other equipment.

Moreover, the cost of developing should also be considered. Currently, the
large project codes are implemented using MATLAB. So the AVX2 and AVX512
support for MATLAB codes could have a significant influence on the final deci-
sion.

8 Future Work

In the future, we plan to find mathematical models suitable to describe the
workload and predict the module behavior in the cluster (multi-node) case. There
are some successful examples of queue-theory applications for imaging service
analysis [7], especially for the data downloading stage.

Moreover, we are looking forward to including a price estimation of our math-
ematical model, taking into account energy intensity per unit of output and
acquisition costs.

As a first approximation, we have used a linear model to predict the execution
time of a given module on a number of cores equal to Ncores [6]:

ln(Trun) ≈ c0 + c1 × ln(Ncores) + c2 × ln(sizeblk). (3)

The relative error between measured time and predicted time is limited to
5% for the Broadwell test bed (see Fig. 5), so that this model could be suitable
for further application.

The coefficient estimates were found using multilinear regression. The coef-
ficients are listed below:

– Broadwell: c0 = 4.1885, c1 = 0.0571, c2 = −0.2201.

https://ark.intel.com/

114 E. Tyutlyaeva et al.

Fig. 5. Measured (solid lines) vs. Predicted (dotted lines) time on the Broadwell test
bed through all available physical cores

Acknowledgments. This research was supported by a grant from the Russian Min-
istry of Education and Science (government contract 14.607.21.0165, unique identifier
RFMEFI60716X0165).

References

1. Elvidge, C., Zhizhin, M., Baugh, K., Hsu, F.-C.: Automatic boat identification
system for VIIRS low light imaging data. Remote Sens. J. 7(3), 3020–3036 (2015).
https://doi.org/10.3390/rs70303020

2. Tyutlyaeva, E., Konyukhov, S., Odintsov, I., Moskovsky, A.: The energy consump-
tion analysis for the multispectral infrared satellite images processing algorithm.
In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 376–387.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0 30

3. Lim, J.: Two-Dimensional Signal and Image Processing, p. 548. Prentice Hall,
Englewood Cliffs (1990)

4. Vu, C.T., Phan, T., Chandler, D.: S3: a spectral and spatial measure of local
perceived sharpness in natural images. IEEE Trans. Image Process. 21, 934–945
(2012)

5. Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., Rajwan, D.: Power-
management architecture of the Intel Microarchitecture Code-Named Sandy
Bridge. IEEE Micro 32(2), 20–27 (2012). https://doi.org/10.1109/MM.2012.12

https://doi.org/10.3390/rs70303020
https://doi.org/10.1007/978-3-319-71255-0_30
https://doi.org/10.1109/MM.2012.12

Performance and Energy Analysis of Satellite Image Processing 115

6. Barnes, B., Rountree, B., Lowenthal, D., Reeves, J., Supinski, B., Schulz, M.: A
regression-based approach to scalability prediction. In: Proceedings of the 22nd
Annual International Conference on Supercomputing (ICS 2008), pp. 368–377.
ACM, New York (2008)

7. Chen, W., Palmer, P., Mackin, S., Crowley, G.: Queuing theory application in
imaging service analysis for small Earth observation satellites. Acta Astronautica
62(10–11), 623–631 (2008). ISSN 0094–5765. https://doi.org/10.1016/j.actaastro.
2008.01.026

8. IntelR© Xeon Phi
TM

Processor 7250 Product Specification. https://ark.intel.com/
products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1 40-GHz-68-core

9. IntelR© XeonR© E5–2697A v4 Product Specification. https://ark.intel.com/ru/
products/91768/Intel-Xeon-Processor-E5-2697A-v4-40M-Cache-2 60-GHz

10. Intel Corporation: A Guide to Vectorization with IntelR© C++ Compilers (2012)

https://doi.org/10.1016/j.actaastro.2008.01.026
https://doi.org/10.1016/j.actaastro.2008.01.026
https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
https://ark.intel.com/ru/products/91768/Intel-Xeon-Processor-E5-2697A-v4-40M-Cache-2_60-GHz
https://ark.intel.com/ru/products/91768/Intel-Xeon-Processor-E5-2697A-v4-40M-Cache-2_60-GHz

Parallel Numerical Algorithms

Fully Homomorphic Encryption
for Parallel Implementation

of Approximate Methods for Solving
Differential Equations

Artem K. Vishnevsky1(B) and Sergey F. Krendelev2,3

1 Joint Stock Company Scientific and Technical Production Enterprise
“Comprehensive Development of Technologies”, Novosibirsk, Russia

vishn.artem@yandex.ru
2 Novosibirsk State University, Novosibirsk, Russia

s.f.krendelev@gmail.com
3 JatBrains Research, Novosibirsk, Russia

Abstract. A parallel fully homomorphic encryption for rational num-
bers is developed in this paper. Parallelism of processing is achieved by
using methods of modular arithmetic. Encryption is constructed by map-
ping the field of rational numbers onto a vector space. Two operations,
namely addition and multiplication, are defined. Addition and multi-
plication tables are constructed, which ensures that a vector space is
closed under these mathematical operations. We show the implemen-
tation of protected recursive computations in rings of the form ZM ,
M = m1m2 . . .mk. We give a criterion of effective use of encryption
for the numerical solution of the Cauchy problem. It is proved that the
efficiency of encryption increases with increasing volumes and accuracy
of computations.

Keywords: Fully homomorphic encryption · Parallel computations
Secure computations · Cloud computations
Chinese remainder theorem · Modular arithmetic
Differential equations · Numerical methods

1 Introduction

Cloud computing is a modern and efficient solution to the use of computing
resources. High performance, parallel computing and scaling flexibility make
cloud computing attractive for knowledge-intensive business areas. The problem
of information security, however, remains unresolved since the model of calcula-
tions has radically changed. This means that the old methods of data protection
either do not work quite right or do not work at all.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 119–134, 2018.
https://doi.org/10.1007/978-3-319-99673-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_9&domain=pdf

120 A. K. Vishnevsky and S. F. Krendelev

How can one make cloud computing safe for users and save all its benefits?
A promising direction for solving this problem is homomorphic encryption.

Homomorphic encryption is a method of secret computing in an untrusted
environment. But the existing encryption methods do not allow us to take advan-
tage of cloud computing since it is not yet clear how to use parallel computing,
how to work with rational numbers in solving real applications [1–5] (solving
differential equations, solving linear equations, etc.).

In this paper, a computational model based on modular arithmetic is con-
sidered for constructing parallel fully homomorphic encryption. For instance,
computer systems such as K-340A and Almaz supercomputers [6–8], etc., are
considered. These computers have high fault tolerance and support parallelism
owing to the fact that for each modulus, calculations can be performed sepa-
rately. Also, for each modulus, the table of multiplication and addition must be
entered, which can significantly speed up the calculation.

The method of parallel fully homomorphic encryption for rational numbers [9]
presented in the work allows us to perform secret calculations by integer meth-
ods, so that each calculation can be carried out for each modulus in parallel.
The introduction of redundant moduli makes it possible to control computa-
tional errors.

1.1 Simple Description of the Idea of Constructing a Parallel Fully
Homomorphic Encryption

As an example, consider the operations of multiplication and addition under a
mapping of the ring of integers Z onto the vector space Fn.

Two integers p and q are represented by pairs of vectors:

p = ax =
[
a1 a2 a3

] ·
⎡

⎣
x1

x2

x3

⎤

⎦ , q = bx =
[
b1 b2 b3

] ·
⎡

⎣
x1

x2

x3

⎤

⎦ .

The product of the numbers p and q in vector representation can be written as

pq = (ax) (bx)
= (a1x1 + a2x2 + a3x3)(b1x1 + b2x2 + b3x3)
= a1x1b1x1 + a2x2b1x1 + a3x3b1x1

+ a1x1b2x2 + a2x2b2x2 + a3x3b2x2

+ a1x1b3x3 + a2x2b3x3 + a3x3b3x3

= (a ⊗ b)(x ⊗ x),

where ⊗ is the Kronecker product.

FHE for Solving Differential Equations 121

In general, if n is the dimension of the vectors, then the product pq takes the
form

pq =

(
n∑

i=1

aixi

) (
n∑

i=1

bixi

)

=
n∑

i,j=1

ajxjbixi =
n∑

i,j=1

biajxixj (1)

= (a ⊗ b)(x ⊗ x).

The integers p and q are uniquely determined by the vectors a and b. The
vector x is common for both p and q, and also for their product pq. Obviously,
the vector x must have some properties that make it possible to represent any
integer using this vector. The coordinates of the vector x can be interpreted as
the coefficients of the Diophantine equation

x1c1 + x2c2 + . . . + xncn = u, (2)

where xi, ci, u ∈ Z. To solve Eq. (2) in integers for any u ∈ Z, it is sufficient
that the vector x has at least two mutually prime coordinates. Thus, the vector
x must contain at least two mutually prime coordinates.

Using this example, we construct the simplest homomorphic encryption.
Obviously, it is not persistent, but in this case, it is important to show the
very principle of constructing an encryption, which will be considered later in
the work. Let x be a secret key. Then the vectors a and b are public keys corre-
sponding to the integers p and q. A homomorphism is defined for multiplication
(1). Homomorphism for addition is defined as p + q = (a + b)x. Encryption
will consist in finding the roots ai, bi ∈ Z, i = 1, 2, . . . , n of the Diophantine
equations

∑n
i=1 aixi = p, and

∑n
i=1 bixi = q. The disadvantage of this encryp-

tion is the exponential growth of the dimension of the vector in the case of
multiplication, which makes it not applicable in practice. The construction of
structural constants for tensor multiplication preserving the dimensionality of a
vector completely reveals the value of the secret key x.

Let us consider how the drawback of the encryption offered in the example
can be eliminated and make it cryptographically stable.

2 Theoretical Bases for the Construction of Parallel Fully
Homomorphic Encryption

Let R be a ring. It is an abelian group with respect to addition. Multiplication
is not necessarily commutative, or associative, and R may even not be unitary.
We will construct a homomorphic mapping. We operate according to algebraic
geometry methods. For this, we choose an arbitrary set Ω and consider the set of
all mappings of the set Ω into the ring R, which we denote as I(Ω,R). We assume
that this set is closed under addition and multiplication. In other words, it forms

122 A. K. Vishnevsky and S. F. Krendelev

a ring with respect to the pointwise multiplication of functions with values in
the ring R. If M ⊂ Ω is a subset, it defines a mapping i : M → Ω which is
called embedding. The embedding mapping induces a mapping i∗ : I(Ω,R) →
I(M,R); this mapping is a ring homomorphism. In particular, when the set
M consists of a single element m ∈ Ω, then I(Ω,R) ∼= R. This design is the
basis for constructing a homomorphic encryption. Thus, in order to construct a
completely homomorphic encryption for a particular ring R, it is necessary to
choose a set Ω, a class of functions I(Ω,R), and a set M .

In concrete applications, the set of linear functions of n variables of the form

h(x1, x2, . . . , xn) = α1x1 + α2x2 + . . . + αnxn,

where αi ∈ R, i = 1, 2, . . . , n, is considered as I(M,R).
It is obvious that the set of such functions is closed under addition and

multiplication by an element of R. However, it is not closed under multiplication.
All possible multiplications are derived from the class I(M,R). Thus, I(M,R)
is not a ring.

In order to make a ring from the set I(M,R), we introduce a set of n3 struc-
ture constants γijk ∈ R, i, j, k = 1, 2, . . . , n. This set is called the multiplication
table. We define the product of two functions

h1(x1, x2, . . . , xn) = α1x1 + α2x2 + . . . + αnxn,

h2(x1, x2, . . . , xn) = β1x1 + β2x2 + . . . + βnxn,

by the following rule:

h1(x1, x2, . . . , xn) ⊗ h2(x1, x2, . . . , xn) =
n∑

k=1

xk

n∑

i,j=1

γijkαiβj .

The introduction of structural constants allows us to equip the set R with the
structure of a linear algebra. In this construction, this set of structural constants
is absolutely arbitrary. Thus, the set I(M,R) consisting of linear functions is, in
general, not a unitary, commutative and associative ring. The set M consists of
a finite number of elements and is the secret key by which the homomorphism
is determined. First, we will consider a scheme of fully homomorphic encryption
for integers, which will be the basis for constructing an encryption for rational
numbers.

2.1 The Basic Scheme of Parallel Fully Homomorphic Encryption
for Integers

Let R be an arbitrary ring, and Ω = Rn a module over R, whose elements will
be called vectors. In this situation, I(M,R) is the set of linear functions from
Rn to R of the form

h1(x1, x2, . . . , xn) = α1x1 + α2x2 + . . . + αnxn.

FHE for Solving Differential Equations 123

In this case, we can write h1(x1, x2, . . . , xn) = (a,x), that is, as a scalar product
where

a = (α1, α2, . . . , αn),
x = (x1, x2, . . . , xn).

Thus, to define a linear function, it suffices to know the vector a. Bearing in
mind that the subsequent exposition deals only with rings of a special kind, we
will replace the notation of an arbitrary ring R with F .

Suppose that a system of linear equations is given:

(a1,x) = d1,

(a2,x) = d2, (3)
. . .

(ak,x) = dk,

where a1,a2, . . . ,ak ∈ Fn. We require that for fixed values d1, d2, . . . , dk ∈ F ,
Eq. (3) has a solution x ∈ Fn. Suppose that it is fixed, although for us, the
only important thing is that it exists. Suppose further that some m ∈ F can be
represented as

m = λ1d1 + λ2d2 + . . . + λkdk,

where λ1, λ2, . . . , λk ∈ F . Then the vector u = λ1a1 + λ2a2 + λkak, according
to standard linear algebra, satisfies the equation (u,x) = m. It follows that
this representation is a homomorphic encryption with respect to addition. By
construction, x is the private key, u is the public key corresponding to the
element m ∈ F .

We shall consider multiplication. Suppose given two elements m1,m2 ∈ F
and two vectors u,v ∈ Fn such that

(u,x) = m1,

(v,x) = m2.

How to find a vector w ∈ Fn such that (w,x) = m1m2 and w depends only on
the vectors u, v? From expression (1), we obtain

m1m2 = (u,x)(v,x) =
n∑

i,j=1

uivjxixj .

According to the system of Eq. (3), there exists a set of vectors s1, s2, . . . , sn ∈
Fn such that (si,x) = xi, i = 1, 2, . . . , n. If we take this set as the set of (3),
then there exists a set of vectors λij, i, j = 1, 2, . . . , n, such that (λij,x) = xixj ,
i, j = 1, 2, . . . , n. Consequently,

124 A. K. Vishnevsky and S. F. Krendelev

n∑

i,j=1

uivjxixj =
n∑

i,j=1

uivj(γij,x)

=
n∑

i,j=1

(uivjγij,x) =

⎛

⎝
n∑

i,j=1

uivjγij,x

⎞

⎠ . (4)

Since the set of vectors γij, i, j = 1, 2, . . . , n, is fixed, a multiplication table
is defined, from which it follows that w =

∑n
i,j=1 uivjγij, and hence (w,x) =

m1m2.
This completely defines the homomorphic encryption. The set of vectors γij

is a public key. Note that when the multiplication table is available, there is no
increase in the number of components of the vector under multiplication.

This variant is given in coordinate notation which is quite cumbersome, so
we introduce an invariant representation.

If the vectors u,v have, respectively, coordinates [u1 u2 . . . un] and
[v1 v2 . . . vn], then the vector of coordinates uivj is denoted by u ⊗ v. In
particular, the vector of coordinates xixj is denoted as x ⊗ x. The equality
m1m2 = (u,x)(v,x) =

∑n
i,j=1 uivjxixj can be written as

m1m2 = (u,x)(v,x) = (u ⊗ v,x ⊗ x).

Equation (4) means that there exists a linear mapping G : Fn → Fn ⊗ Fn such
that x ⊗ x = Gx (G is the matrix of the linear mapping G). In this case,
(u,x)(v,x) = (u⊗v,x⊗x) = (u⊗v,Gx). Since (u⊗v,Gx) = (G�(u⊗v),x)
(G� is the transposed matrix of G), the multiplication is expressed in the form

w = G�(u ⊗ v).

These notations will be used later on.

2.2 Encryption Strength

This encryption has several vulnerabilities. Let us consider them in detail.

Problem 1. Suppose that it is possible to obtain a set of correspondences, i.e.
a number and the corresponding vector, which can be formally written as a set
(di,ai), di ∈ F , ai ∈ Fn, i = 1, 2, . . . , r, r ≥ n. This means that there is a secret
key x ∈ Fn such that

(ai,x) = di. (5)

If we look at (5) as a system of equations for x and the rank of the system
turns out to be equal to n, then solving this system, we obtain a unique vector
x, therefore, there is a secret key.

In order to prevent this possibility, it is necessary to choose vectors ai that
can never give a complete set of linearly independent vectors. For example, this
can be done by choosing k < n in Eq. (3).

FHE for Solving Differential Equations 125

Problem 2. Suppose that there is a set (di,ai), di ∈ F , ai ∈ Fn. According
to the solution of Problem1, this set is not complete, in the sense that we will
never obtain a system of equations with a rank equal to n. Assume that there is
a vector b that does not coincide with any of the ai vectors. On the other hand,
the situation is possible when there are elements λi ∈ F , i = 1, 2, . . . , r, such
that λ1a1 +λ2a2 + . . .+λrar = b. This means that vector b corresponds to the
number d = λ1d1 + λ2d2 + . . . + λrdr.

Since it is assumed that for each specific calculation their parameters are
selected, an attack with known data is not effective. Now we need to extend the
range of encryption to the set of rational numbers.

2.3 Parallel Fully Homomorphic Encryption for Rational Numbers

Suppose that we are given a set of vectors a1,a2, . . . ,ak ∈ Fn, and a pair of
vectors x,y ∈ Fn satisfying the following conditions:

(a1,x) = d1, (a1,y) = e1,

(a2,x) = d2, (a2,y) = e2,

. .
(ak,x) = dk, (ak,y) = ek,

where di, ei ∈ F , i = 1, 2, . . . , n.
The first question that needs to be considered is how to find a vector v ∈ Fn

such that for a given pair m1,m2 ∈ F the following holds:

(v,x) = m1,

(v,y) = m2.

Assume that v = λ1a1 + λ2a2 + . . . + λkak. Then

(v,x) = λ1d1 + λ2d2 + . . . + λkdk = m1,

(u,x) = λ1e1 + λ2e2 + . . . + λkek = m2.

Thus, in order to obtain the desired result, it is necessary that the resulting
system of equations be solvable. We assume that this equation is solvable for
any right-hand side.

The subsequent implementation depends on the presentation of the data.
We will assume that F = Z is the set of integers. Suppose that an integer

z ∈ Z is encrypted. We associate with each z a pair of numbers q ∈ Z, p ∈ N,
such that pz = q. We denote this pair by (q, p).

The set of numbers satisfying the equation pz = q is called the set of rational
numbers. Consequently, the pair (q, p) is a representation for a rational number.

It is obvious that such a representation for a rational number is not single-
valued. We choose two secret vectors x,y ∈ Z

n and construct a ∈ Z
n such that

126 A. K. Vishnevsky and S. F. Krendelev

(a,x) = q,

(a,y) = p.

We shall consider how the addition and multiplication of numbers is defined
in this representation. Consider two numbers z1, z2 and two pairs (q1, p1), (q2, p2)
corresponding to them. According to standard arithmetic, the sum z1+z2 corre-
sponds to the pair (q1p2+q2p1, p1p2), while the product (q1q2, p1p2) corresponds
to the product z1z2.

Suppose that the secret vectors x,y ∈ Z
n are fixed, and two vectors u,v ∈ Z

n

are constructed in such a way that

(u,x) = q1, (u,y) = p1,

(v,x) = q2, (v,y) = p2.

Multiplication. The pair (q1q2, p1p2) corresponds to [(u,x)(v,x), (u,y)(v,y)].
According to the definition of the tensor product, this pair can be rewritten in
the form [(u⊗v)(x⊗x), (u⊗v)(y⊗y)]. Now we can construct a matrix G such
that x ⊗ x = Gx, y ⊗ y = Gy. Then

[(u ⊗ v,x ⊗ x),(u ⊗ v,y ⊗ y)]
= [(u ⊗ v,Gx),(u ⊗ v,Gy)]

= [(G�(u ⊗ v),x),(G�(u ⊗ v),y)].

Multiplication at the vector level takes the form

w = uv = G�(u ⊗ v).

The matrix G� is called the multiplication table. It is an element of the public
key. By construction, (w,x) = q1q2, (w,y) = p1p2.

Addition. The pair (q1p2 + q2p1, p1p2) corresponds to [(u,x)(v,y) + (u,y)
(y,x), (u,y)(v,y)]. According to the definition of the tensor product, this
expression is equal to

[(u ⊗ v,x ⊗ y) + (u ⊗ v,y ⊗ x),(u ⊗ v,y ⊗ y)]
= [(u ⊗ v,x ⊗ y + y ⊗ x),(u ⊗ v,y ⊗ y)].

Now we construct a matrix H such that

x ⊗ y + y ⊗ x = Hx,

y ⊗ y = Hy.

Then

[(u ⊗ v,x ⊗ y + y ⊗ x),(u ⊗ v,y ⊗ y)] =

[(H�(u ⊗ v),x),(H�(u ⊗ v),y)].

FHE for Solving Differential Equations 127

The addition at the vector level takes the form

w = u + v = H�(u ⊗ v).

By construction, (w,x) = q1p2 + q2p1, (w,y) = p1p2. Consequently, w cor-
responds to the sum of two numbers, z1 + z2. This construction is quite similar
in the case of rings of the form ZM , M = m1m2 . . . mk. And calculations are
carried out for each modulus separately.

Obviously, the implementation is based on the coordinate expression of all
the data involved in the computation. Before considering any examples, we must
decide which representation of the tensor product of the vectors x and y will be
used in what follows. In these examples, we will use the left representation.

2.4 Numerical Example

We will encrypt two rational numbers q1
p1

= 3
5 , q2

p2
= 7

10 . The maximum calcula-
tion range for the sum of q1

p1
and q2

p2
will be 65, and for the product, 50. Then,

the values of the mutually prime moduli m1 = 3,m2 = 5,m3 = 7 satisfy the
condition 3 · 5 · 7 > 65.

Let us construct a cryptosystem. Generate a public key: A =

⎡

⎣
8 4 4 9
10 3 8 14
8 3 5 6

⎤

⎦.

Generate private keys: X =

⎡

⎢
⎢
⎣

28
5
12
2

⎤

⎥
⎥
⎦, Y =

⎡

⎢
⎢
⎣

2
7
5
3

⎤

⎥
⎥
⎦, D =

⎡

⎣
310
419
311

⎤

⎦, E =

⎡

⎣
91
123
80

⎤

⎦. It is

not difficult to verify that D = AX, E = AY. To construct the multiplication
and addition tables, we calculate the tensor products:

X ⊗ X =
[
784 140 336 56 140 25 60 10 336 60 144 24 56 10 24 4

]�
,

Y ⊗ Y =
[
4 14 10 6 14 49 35 21 10 35 25 15 6 21 15 9

]�
,

X ⊗ Y + Y ⊗ X =
[
112 206 164 88 206 70 109 29 164 109 120 46 88 29 46 12

]�
.

Let us construct the multiplication and addition tables for moduli 3, 5, and
7. To construct the first column of the multiplication table, we solve a system of
equations:

310λ
(1,1)
1 + 419λ

(1,1)
2 + 311λ

(1,1)
3 = 784,

91λ
(1,1)
1 + 123λ

(1,1)
2 + 80λ

(1,1)
3 = 4.

We find the solution λ
(1,1)
1 = −23569, λ

(1,1)
2 = 17421, λ

(1,1)
3 = 25, which is part

of the secret key. Now mask the obtained values with the public key:
⎡

⎢
⎢
⎢
⎣

g
(1,1)
1

g
(1,1)
2

g
(1,1)
3

g
(1,1)
4

⎤

⎥
⎥
⎥
⎦

= −23569

⎡

⎢
⎢
⎣

8
4
4
9

⎤

⎥
⎥
⎦ + 17421

⎡

⎢
⎢
⎣

10
3
8
14

⎤

⎥
⎥
⎦ + 25

⎡

⎢
⎢
⎣

8
3
5
6

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−14142
−41938
45217
31923

⎤

⎥
⎥
⎦ .

128 A. K. Vishnevsky and S. F. Krendelev

Next, we calculate the result modulo 3, 5, and 7:

⎡

⎢
⎢
⎣

−14142
−41938
45217
31923

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
2
1
0

⎤

⎥
⎥
⎦ (mod 3),

⎡

⎢
⎢
⎣

−14142
−41938
45217
31923

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

3
2
2
3

⎤

⎥
⎥
⎦ (mod 5),

⎡

⎢
⎢
⎣

−14142
−41938
45217
31923

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

5
6
4
3

⎤

⎥
⎥
⎦ (mod 7), The remaining vec-

tor columns of the multiplication table will be calculated similarly. As a result,
the multiplication tables for moduli 3, 5, and 7 are written as:

Gm1 =

⎡

⎢
⎢
⎣

0 2 1 2 1 1 1 1 2 2 0 2 1 2 0 0
2 0 2 1 2 0 0 2 0 1 1 2 0 0 0 1
1 2 0 2 2 1 0 1 0 0 0 0 2 1 0 1
0 0 2 2 0 0 1 1 2 1 2 0 2 1 0 1

⎤

⎥
⎥
⎦ ,

Gm2 =

⎡

⎢
⎢
⎣

3 2 4 3 1 0 4 3 0 1 2 1 1 4 4 1
2 1 4 4 0 4 4 4 0 1 2 1 2 0 4 0
2 1 4 2 2 3 1 4 3 4 0 1 4 3 3 4
3 1 3 4 4 2 3 4 0 2 4 2 0 1 3 4

⎤

⎥
⎥
⎦ ,

Gm3 =

⎡

⎢
⎢
⎣

5 0 6 6 4 1 3 6 4 2 3 3 1 3 3 0
6 0 6 1 5 5 4 2 0 1 2 3 0 0 3 1
4 0 1 5 5 5 4 2 2 1 0 6 4 0 6 0
3 0 0 6 3 5 3 2 2 4 4 0 4 5 0 3

⎤

⎥
⎥
⎦ .

The addition tables for moduli 3, 5, and 7 are the following:

Hm1 =

⎡

⎢
⎢
⎣

1 2 0 0 1 0 2 0 1 0 1 0 1 2 1 2
1 2 2 1 2 1 1 2 2 1 0 1 1 2 1 0
1 2 2 1 2 1 1 2 2 1 0 1 1 2 1 0
0 0 1 1 0 0 2 2 1 2 2 1 1 2 1 0

⎤

⎥
⎥
⎦ ,

Hm2 =

⎡

⎢
⎢
⎣

4 1 4 0 4 4 1 4 2 3 4 2 4 3 2 2
3 0 4 1 3 3 1 0 2 3 4 2 0 4 2 1
0 0 3 1 2 4 1 0 0 4 1 1 2 1 1 2
0 4 3 3 0 0 2 1 4 1 3 4 1 4 4 1

⎤

⎥
⎥
⎦ ,

Hm3 =

⎡

⎢
⎢
⎣

4 5 4 6 1 5 6 3 0 4 0 2 5 0 2 2
3 6 5 3 1 1 6 6 0 0 2 4 0 4 4 4
1 6 0 0 1 1 6 6 2 0 0 0 4 4 0 3
4 3 3 5 0 2 0 2 0 2 6 6 6 5 6 6

⎤

⎥
⎥
⎦ .

Now we encrypt q1
p1

= 3
5 , q2

p2
= 7

10 .

FHE for Solving Differential Equations 129

The encrypted values for q1
p1

= 3
5 modulo 3, 5, and 7 are written as: c(1)m1 =

[2 1 0 1], c(1)m2 = [2 2 2 4], c(1)m3 = [2 5 6 2]. Let us check the correctness of the
encryption. For this, we perform a reverse recovery using the Chinese remainder
theorem: c(1) = CRT3

i=1c
(1)
mi (mod 105) = [2 82 27 79]. Multiply the obtained

value by the keys: c(1)X (mod 105) = 3, c(1)Y (mod 105) = 5.
The encrypted values for q2

p2
= 7

10 modulo 3, 5, and 7 are: c(2)m1 = [2 1 1 0],

c(2)m2 = [1 1 0 2], c(2)m3 = [3 4 6 3].
We shall consider how secure the computations will be. First, we consider

multiplication. Secure computations will be performed in parallel for three mod-
uli. In detail, consider multiplication modulo 3. First, multiply the encrypted
values:

P∗
m1

= c(1)m1
⊗ c(2)m1

= [2 1 0 1] ⊗ [2 1 1 0] (mod 3)
= [1 2 2 0 2 1 1 0 0 0 0 0 2 1 1 0],

and then multiply the result by the multiplication table: Gm1P
∗
m1

= [2 1 0 1]
(mod 3).

The products modulo 5, and modulo 7 are similarly calculated: P∗
m2

=
[1 1 2 2], P∗

m3
= [3 5 1 6].

Next, in accordance with the Chinese remainder theorem, we obtain the
result of the protected multiplication modulo M = 105: P∗ = CRT3

i=1P
∗
mi

(mod 105) = [101 61 57 97]. Decrypt the encrypted result of the multiplication:

P∗X (mod 105) =
[
101 61 57 97

]

⎡

⎢
⎢
⎣

28
5
12
2

⎤

⎥
⎥
⎦ (mod 105) = 21 = 3 · 7 = q1q2 and

P∗Y (mod 105) =
[
101 61 57 97

]

⎡

⎢
⎢
⎣

2
7
5
3

⎤

⎥
⎥
⎦ (mod 105) = 50 = 5 · 10 = p1p2.

Similarly to multiplication, we calculate the results of the protected addition
for each of three moduli, using now the addition tables instead of the tables of
multiplication: S∗

m1
= [0 1 2 0], S∗

m2
= [4 4 1 3], S∗

m3
= [5 5 1 0]. Now, accord-

ing to the Chinese remainder theorem, we obtain the result of the protected
addition: S∗ = CRT3

i=1S
∗
mi

(mod 105) = [54 19 71 63]. Decrypt the encrypted

result of the addition: S∗X (mod 105) =
[
54 19 71 63

]

⎡

⎢
⎢
⎣

28
5
12
2

⎤

⎥
⎥
⎦ (mod 105) =

65 = 3 · 10 + 7 · 5 = q1p2 + q2p1 and S∗Y (mod 105) =
[
54 19 71 63

]

⎡

⎢
⎢
⎣

2
7
5
3

⎤

⎥
⎥
⎦

(mod 105) = 50 = 5 · 10 = p1p2.

130 A. K. Vishnevsky and S. F. Krendelev

3 Parallel Implementation of Numerical Methods for
Secure Computations of Differential Equations

As a particular case, we consider in this paper the numerical solution of the
simplest Cauchy problem: dy

dx = y, y(0) = 1, x ∈ [0, 1]. We will solve the third-
order Runge–Kutta method. Let us write the formula for calculating xk:

xk = 1 + kh +
k(k − 1)

2!
h2 +

k(k − 1)(k − 2)
3!

h3, (6)

where k = 1, 2, . . . , 100, h = 1
100 . The maximum range of calculations does not

exceed 2.8 × 12 × 1012. Calculations are performed for four moduli: m1 = 3931,
m2 = 3943, m3 = 3947, m4 = 3967. So, the condition for applying the Chinese
remainder theorem is met: m1m2m3m4 > 2.8 × 12 × 1012. We use the crypto
scheme from the numerical example.

For the secure calculation of x1, x2, . . . , x100, it is necessary to encrypt the
value 1 and the sampling step h = 1

100 ; the remaining values can be obtained by
performing protected calculations.

The encrypted values of 1 (we will encrypt 70
70) are the following:

Cm1(1) = [1646 138 2190 2816],
Cm2(1) = [2341 1095 2615 2064],
Cm3(1) = [3851 1302 248 583],
Cm4(1) = [3227 1497 1154 1712].

The encrypted values of h = 1
100 (we will encrypt 4

400) are the following:

Cm1(1/100) = [172 3078 834 619],
Cm2(1/100) = [2735 1081 157 3412],
Cm3(1/100) = [2215 2860 2760 540],
Cm4(1/100) = [310 2501 1467 3008].

Below, we give some results of the calculation of (6). For x1 = 1.0100:

Cm1(1.0100) = [1329 3424 43 3421],
Cm2(1.0100) = [3449 1413 3759 1757],
Cm3(1.0100) = [1375 1605 2857 228],
Cm4(1.0100) = [1706 3172 1947 3037].

For x2 = 1.0201:

Cm1(1.0201) = [1666 2170 78 2133],
Cm2(1.0201) = [3555 3877 2848 84],
Cm3(1.0201) = [1420 99 2893 3652],
Cm4(1.0201) = [1566 1891 2391 90].

FHE for Solving Differential Equations 131

For x100 = 2.6567:

Cm1(2.6567) = [963 2486 3121 2034],
Cm2(2.6567) = [650 626 768 1244],
Cm3(2.6567) = [608 241 1347 1176],
Cm4(2.6567) = [2939 2332 2386 2121].

3.1 Estimation of the Effectiveness of Parallel Fully Homomorphic
Encryption for Rational Numbers

In general, formula (6) takes the form:

xk = 1 + kh +
k(k − 1)

2!
h2 + . . . +

k(k − 1) . . . (k − L + 1)
L!

hL, (7)

Let m be the number of encrypted data, n the key dimension, h the sampling
step, h−1 the number of recurrent calculations, and L the number of terms in
(7).

The upper estimate of the homomorphic-encryption time complexity consists
of the following estimates:

– the construction of a cryptosystem requires the calculation of addition and
multiplication tables, for which it is necessary to compute 2n2 systems of
equations of complexity O(n3);

– the encryption of m input data, requires the calculation of m systems of
equations of complexity O(n3);

– deciphering the results for h−1 requires 2h−1 scalar products of vectors of
dimension n.

Thus, the upper estimate of the encryption-algorithm time complexity is

f1 = 2n2n3 + mn3 + 2h−1n. (8)

The upper bound of the time complexity of computing h−1 recursions of (7) for
L in one computational flow is

f2 = 2h−1L. (9)

Thus, the effectiveness of the application of homomorphic encryption is deter-
mined by the criterion of the ratio of (8) to (9):

f1
f2

< 1. (10)

Figures 1, 2 and 3 show the graphs of the dependence of the ratio (10) on the
parameters n, h−1, L.

From Figs. 1 and 2, we see that the encryption efficiency given by criterion
(10) increases as the number of recursion computations h−1 increases, and it

132 A. K. Vishnevsky and S. F. Krendelev

Fig. 1. Evaluating the effectiveness of encryption for n = 10 (key dimension).

Fig. 2. Evaluating the effectiveness of encryption for n = 100 (key dimension).

decreases when the key dimension n increases. But for a certain ratio of h−1

and n, it satisfies the efficiency criterion (10). Figure 3 shows the dependence of
criterion (10) on the number of terms in (7), there is a significant increase in
efficiency when L increases. Thus, the effectiveness of encryption increases with
the increase of volumes and accuracy of recurrent calculations of dy

dx = y.

FHE for Solving Differential Equations 133

Fig. 3. Evaluating the effectiveness of encryption for n = 100 (key dimension) and
fixed h−1 = 104 (number of recurrent calculations).

4 Conclusion

The paper deals with fully homomorphic encryption for rational numbers based
on the methods of modular arithmetic. The operations of addition and multi-
plication are defined. As an example, we considered a protected calculation of a
differential equation by the Runge–Kutta method of the third order. We prove
the effectiveness of the use of homomorphic encryption for numerical methods for
solving differential equations with high accuracy. At the same time, an increase
in the accuracy of calculations associated with a decrease in the discretization
step and an increase in the order of the Runge–Kutta method to values beyond
the computational capacities of one calculator is successfully achieved by apply-
ing modular arithmetic methods. Processing the images of the computational
problem in Zm1 , Zm2 , . . . , Zmk

by independent computational flows makes it
possible to increase the accuracy of calculations to the limit of the resource of
a distributed computing environment. For example, to implement computations
in the range of values from 10−600 to 10600 with moduli of dimension ≈106

(≈264), which ensures the functioning of a 64-bit calculator without overflow,
100 grid-parallel computing flows are needed.

The strength of encryption is based on a one-time application of the key for
one calculation, which excludes the development of statistics on the key by a
cryptanalyst. Resistance to brute-force attacks is based on an infinite number of
keys; the condition is that the size of the vector of the key must be greater than
the number of secret parameters.

134 A. K. Vishnevsky and S. F. Krendelev

References

1. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme.
In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 9

2. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22792-9 29

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32009-5 50

5. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical? (2011). https://doi.org/10.1145/2046660.2046682, http://eprint.iacr.org/
2011/405

6. Krendelev, S.F.: The soviet supercomputer K-340 and secret calculating. Ruscrypto
2015. http://www.ruscrypto.ru/resource/summary/rc2015/02 krendelev.pdf

7. Malashevich, B.M.: Unknown modular supercomputers. http://www.computer-
museum.ru/books/archiv/sokcon11.pdf

8. Akushsky, I.J., Yuditsky, D.I.: Arithmetic in residual classes. Soviet radio (1968)
9. Vishnevskiy, A.K., Krendelev, S.F.: Homomorphic encryption in the ring rational

numbers. Ruscrypto 2017. http://www.ruscrypto.ru/resource/summary/rc2017/02
vishnevskiy krendelev.pdf

https://doi.org/10.1007/978-3-642-20465-4_9
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2046660.2046682
http://eprint.iacr.org/2011/405
http://eprint.iacr.org/2011/405
http://www.ruscrypto.ru/resource/summary/rc2015/02_krendelev.pdf
http://www.computer-museum.ru/books/archiv/sokcon11.pdf
http://www.computer-museum.ru/books/archiv/sokcon11.pdf
http://www.ruscrypto.ru/resource/summary/rc2017/02_vishnevskiy_krendelev.pdf
http://www.ruscrypto.ru/resource/summary/rc2017/02_vishnevskiy_krendelev.pdf

Static Balancing Methods in
Projection-Based Mesh Generation

Algorithm

Sergej K. Grigorjev and Mikhail V. Yakobovskiy(B)

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
Moscow, Russia

sergejgri@gmail.com, lira@imamod.ru

Abstract. The discussion is about parallel guarantied mesh-generation
projection-based algorithm. Main subject of this article is load-balancing
problem in distributed projection-based tetrahedral mesh generation
algorithm. Algorithm is based on construction of triangle prisms, formed
by orthogonal projection of base surface mesh. The advantage of using
projection-based algorithm consists in guarantied tetrahedrisation of 3-
dimensional domain. Main purpose of generated meshes consists in guar-
anteed detection of the topology of three-dimensional domains, which can
be used for mesh adaptation algorithms.

Keywords: MPI · Mesh generation · Unstructured grid
Static load balancing · Triangulation · Rational numbers

1 Introduction

Geometrical calculating meshes are used in numerical modeling of solid envi-
ronment. Generating such meshes is one of the hardest computational problems
due to the large amount of time that is required to generate such type of mesh.
One of ways of accelerating mesh generation is using parallel mesh generation
algorithms.

Creating a parallel program creates an addition amount of tasks, which must
be solved for parallel algorithm to become good. There are various problems,
however, in this paper we consider problem of load balancing.

The main problem of load balancing for any parallel program is distributing
the load of a parallel program over multiprocessor system uniformly [3]. There
are two different classes of load balancing algorithms: static and dynamic. A
static load balancing algorithm does not take into account the previous state or
behavior of a node while distributing the load. On the other hand, a dynamic
load balancing algorithm checks the previous state of a node while distributing
the load, such as CPU load, amount of memory used, delay or network load, and
so on [4].

M. V. Yakobovskiy—With the support of the RFBR grant 17-07-01604 A.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 135–146, 2018.
https://doi.org/10.1007/978-3-319-99673-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_10&domain=pdf

136 S. K. Grigorjev and M. V. Yakobovskiy

Each of these methods has their own advantages and disadvantages. Finding
an optimal static load balancing is in general an NP-complete problem, unless
some special cases [3]. It seems that optimal load balancing algorithm consists
of good initial partitioning, which could be performed by some kind of static
load balancing algorithm, and dynamic part, which redistributes load during the
calculation. One of the principal costs of good initial distribution is expected
to be the machine dependent cost of transferring the computational modules
between processors [3].

In this particular paper we discuss static load balancing algorithm for guaran-
teed projection-based tetrahedral mesh generation algorithm. As this algorithm
consists three major parts [1], each of them must have some kind of the algo-
rithm. The fact that the considered algorithm tries to cover as much different
surfaces as possible leads to a major problem: it is possible for one of compu-
tational modules on any of three main steps of algorithm take more time for
processing, than all other modules together. This paper discusses load balanc-
ing for this type of algorithm is static load balancing algorithms. In this paper
is discussed load balancing algorithms for parts of the algorithm, problems of
creating balance weights for each computational module and some experiments
with different size and topology objects.

2 Mesh-Generation Algorithm

For further explanation, let’s point out main parts of algorithm. As input for
this kind of algorithm we’re using an oriented surface triangulation. For the
purpose of simplicity, we suggest projection axis to be parallel to OZ. Therefore,
all surface triangles are divided into 3 grand category, by the direction of z-
component of their normal: TOP, WALL and BOT. Guaranteed mesh generation
algorithm consists 3 main subsections: first part generates projection of BOT
triangles onto TOP, triangulation of the resulting graph and creating a number
of triangle prism, that covers the volume of the initial body; second - attachment
of lateral faces of all faces with each other; and third - triangulating surface faces
of each prism, so each prism is covered by surface triangulation. Any triangle
prism is defined by six points: 3 points for each base prism triangle, even for
degenerate case. Second important thing to admit is that algorithm uses rational
numbers with arbitrary bit capacity for nominator and denominator in purpose
of excluding any inaccuracies during the main calculation process, leaving them
only to output part [1].

The first part of the algorithm can be described as follows:

1. [Cycle on i.] for i = (1, Nt), for all TOP-triangles.
2. [Find nearest BOT-triangles.] For every i-th TOP-triangle, form an array of

geometrically close BOT-triangles. Denote by N ′ the number of these trian-
gles. Clear LAY substructure.

3. [Cycle on j.] Set j = 1. After the end of the cycle, go to step 8.
4. [Check hitting the projection-space.] Check the intersection of j-th triangle

with the projection-space of i-th triangle. If the intersection was found, go to
step 5, otherwise, go to step 7.

Static Balancing Methods in Projection-Based Mesh Generation Algorithm 137

5. [Screen by TOP-triangles edges.] Execute screening of j-th triangle by edges
of i-th triangle. Proceed to step 6.

6. [Screen by surface of BOT-triangles belonging to the projection-space.] Exe-
cute screening of the region constructed in step 5 by the surface of all triangles
contained in LAY. Store the result in LAY.

7. [Termination condition for j cycle] If j ≤ N ′, then set j = j + 1 and go to
step 4, otherwise, go to step 8.

8. [Triangulate the projection.] Execute the algorithm of 2-dimensional trian-
gulation on data stored in LAY. As a result, LAY structure contains N ′′

triangles.
9. [Cycle on k.] Execute step 10 for each k = (1, N ′′)

10. [Form prisms.] For k-th triangle from LAY, reestablish its projection in the
plane of i-th triangle and the corresponding BOT-triangle. Save these six
points, representing two triangles as a triangle prism.

Second part of the algorithm:

1. [Cycle on i.] For i = (1,M).
2. [Find nearest prisms.] For i-th prism, form an array of geometrically close

prisms. Denote by M ′ the number of such prisms.
3. [Cycle on j.] For j = (1,M ′). After the end of the cycle, go to step 8.
4. [Cycle on k] Execute step 5 for k = (1, 3), on the sides of i-th prism.
5. [Cycle on l] Execute step 6 and, if necessary, step 7, for l = (1, 3), on the

vertices of the upper base of j-th prism.
6. [Check hitting the plane.] Check the hit of l-th vertex in the plane of k-th

side edge of i-ith prism. The result (0 or 1) is stored in his own cell in count
array. If hit occurs, execute step 7.

7. [Inserting vertical edges into topology.] Check the hit of vertical edge of j-th
prism on the side edge of i-th prism. If the hit occus, add intersection point
and parts of this edge into topology of i-th prism.

8. [Calculate number of touches.] Sum the values of count array in sum variable.
If sum = 0, go to step 9. If sum > 0, go to step 10.

9. [Checking intersection of side edges of edges of bases.] Find the intersection
points of vertical edges of i-th prism with edges of bases of j-th prism. Add
these points to topology of i-th prism, dividing corresponding edge into parts.

10. [Building intersection of side edges.] Check hit of parts of edges of bases of
j-th prism on side edge of i-th prism. Add the corresponding elements to i-th
prism topology.

Next important part of the algorithm is using arbitrary bit capacity for rational
numbers. It provides exclusion of any calculation inaccuracies in this particular
algorithm, but leads to a few issues. First issue, that happens while using such
numbers, is an exponential growth of length for nominator and denominator.
During this particular algorithm, however, the maximum length of nominator
and denominator during the calculation is bounded above. To prove this, let’s
consider every part of the algorithm.

138 S. K. Grigorjev and M. V. Yakobovskiy

First part includes building intersections between 2 different initial surface
triangles ribs. The equation for calculation intersection point between two lines
is known:

x − x1

x2 − x1
=

x − x3

x4 − x3
(1)

which is taken from the canonical equation of the line. So the answer is:

x =
x1(x4 − x3) − x3(x2 − x1)

(x4 − x3) − (x2 − x1)
(2)

In the worst case, each addition and subtraction increases the length of the
nominator (3) and denominator (4):

n2 = 2n1 + 1 (3)

n2 = 2n1 (4)

Here n1 is a bit capacity before operation, and n2 - after it. So, based on
Eq. (2) and using (3) and (4), maximum bit capacity for any coordinate would
be for the nominator (5) and the denominator (6), n1 is the bit capacity of the
initial surface point coordinate, n2 is a bit capacity of builded point. This is
the maximum theoretical length of stored coordinates for the first part of the
algorithm.

n2 = 6n1 + 3 (5)

n2 = 6n1 + 2 (6)

For second part of the algorithm, we are building same kind of intersection
points, but initial points coordinates, which are used in (2) could be from points,
which are created on a first stage of the algorithm. So, in this case the result
maximum bit capacity for a point coordinate nominator in the worst case would
be:

n2 = 36n1 + 21 (7)

Second issue - is very hard to handle in terms of using MPI, is described
further.

The most time-consuming part of the algorithm is docking prisms with each
other, as it would be shown in practical section. Therefore, the main focus of this
paper would be on the static load balancing algorithm of this particular part.

Problems of its load balancing for parallel distributed realization of this algo-
rithm are main topic of this paper.

3 Load-Balancing Problem

3.1 General Parallel Realization Problem in Case of Load Balancing

Arbitrary bit capacity, while providing exclusion of any calculation inaccuracies,
is very hard to handle in terms of using MPI. It is known, that using arbitrary

Static Balancing Methods in Projection-Based Mesh Generation Algorithm 139

bit capacity for rational numbers leads to exponential growth of length for nom-
inator and denominator. And even fixed, a priory calculable maximum length is
still much larger, than any standard type. And, as long as all points coordinates
is also stored in such type, it is difficult to use MPI communications with it,
and it leads to an increase in transmission time. Therefore, during the realiza-
tion of any balancing algorithms it is necessary to minimalize number of MPI
communications.

3.2 Load Balancing for the Projection Part

As soon as algorithm is positioned as guaranteed volume coverage algorithm, it
is clear that under any TOP triangle could be literally any number of triangles.
Furthermore, as is shown on Figs. 1 and 2, there could be other TOP triangles
underneath it. On Fig. 1 on the left is shown initial volume, which needs to be
filled, and part of the surface triangulation on the right. As it was mentioned in [1]
the problem of too many BOT triangles fall underneath one TOP triangles could
be solved in some cases by inserting an additional 0-thickness plates between
TOP and BOT triangles. For example, in Fig. 2 underneath the pointed triangles
we could place an additional inner plate so under each triangle of the mesh would
be close in size number of triangles. But it does not work in example, shown on
Fig. 1. For this kind of surface it is impossible to find place for plate, because
there are no free space left for plate where we need to insert it (see Fig. 4).

Fig. 1. Example of a surface with Np = 23068 points and Nt = 46174 surface triangles

And, moreover, while we are creating a projection, we must check all tri-
angles underneath considered triangle. But, during creating one projection it is
unnecessary to communicate with other processes, so it is possible to create such
initial triangles distribution, that at least some kind of load balancing could be
achieved.

140 S. K. Grigorjev and M. V. Yakobovskiy

Fig. 2. Example of possible occasions for triangles mutual location

Creating a load balancing algorithm requires some kind of load weight, which
could be used as weight for each element. As it is described in [1] using a 2-
dimensional geometrical cache is necessary to decrease computational complexity
for projection algorithm due to optimization of element search. As it is mentioned
in [2], 2-dimensional cache can provide find all elements, which are close to the
initial. So, as long as this type of cache could return all triangles that should be
reviewed by projection algorithm, we can use number of BOT triangles, that is
close to reviewed TOP triangle, as our balance weight.

But, on the other hand, such way concludes one major problem: if there are
many colliding TOP and BOT triangles in the same cell of cache, One of the
worst case scenarios is shown on Fig. 1 on the right. All surface of the cylinders,
whose axis is parallel to the main projection axis, contains a large number of
TOP and BOT triangles. That leads to one major problem: for all these TOP
triangles their balance weight would be significantly higher, then for same tri-
angles outside of the problem area. And, more than that, it is almost impossible
to algorithmically find all BOT triangles, which would fall into projection onto
current TOP triangle by any of their part (without, of course, creating full pro-
jection).

All this problem concludes into simple, but reasonably effective decision:
for quasi-uniform surface mesh equal initial distribution leads into reasonable
load balancing (the result would be mentioned below). Of course, this approach
couldn’t be used for other kind of meshes (for example, mesh on Fig. 2). It
seems that solution for this problems, that concludes in good (by any criterion)
balancing, requires and additional specific research.

Static Balancing Methods in Projection-Based Mesh Generation Algorithm 141

3.3 Load Balancing for Attachment Part

This is the hardest part of the algorithm in terms of computational complexity
and calculation time. The näıve way of balancing this part concludes into using
just the same idea as in the first part. In that case, every triangle prism is
represented as a triangle, which lays on OXY plane. This approach leads to two
major problems. First, any prism is a 3-dimensional object. And 2 prisms could
intersect with each other by a number of cases, which is shown on Fig. 3.

Fig. 3. Possible cases of collision of prisms, excluding the case with 0-thickness plates.

And, even more, they could be situation, when two or more prism are one
above the other, without any colliding. Second, that partially follows previous
paragraph, as long as docking of prisms is necessary, with every considered prism
on a local process all its neighbor-prism must be stored, at minimum all 6 points,
that define a prism. As we mentioned early, every point is stored as three rational
numbers with arbitrary bit capacity. This concludes to extremely large memory
usage, so it is necessary for the prism on each process to be as close to each other
as possible.

This concludes us to main challenge: create a load balancing algorithm for
prism docking, which guarantees as much domain integrity as possible and pro-
vides reasonable load balancing.

First of all, to separate whole array of prisms into any number of subdomains
we need to create a graph, each vertex of this graph will represent a prism, and
each edge should represent neighborhood relationship. While it is not known

142 S. K. Grigorjev and M. V. Yakobovskiy

direct relationships between all prisms at this point of algorithm, we could use
similar idea of creating of some kind of cache.

Fig. 4. Example with a large number of prisms laying in almost the same area.

On Fig. 4 is shown one of the worst case scenarios, when large amount of
prisms are almost at the same place of space. On the left each triangle repre-
sents a surface for prism. On the right is shown much more closely the scale of
problem in that particular case. This example leads to immediate conclusion:
we cannot use 2-dimensional cache for this part of algorithm, because it would
lead us directly to O(N2) operations, where N number of prisms To decrease
this complexity as much as possible it is suggested to use 3-dimensional cache.
There is second approach to resolving this problem, which would be described
in Experiments-part.

With the same idea of caching with 2D-case, in 3D-case each cell of program
cache represents a parallelepiped. For the simplicity of terminology, from here
and below each cache cell would be named “cube”. This approach significantly
lowers the amount of prisms that have fallen into each cube of cache. The most
important usage of this idea consists in using the approximate number of neigh-
bors for each prism as balance weight of prism, and this approximate neighbor-
ship relation for constructing edges for graph. Therefore it is formed a weighted
graph, which is already distributed through the all processes. It is important,
that this approach is not an ideal. For example, Fig. 5, where is shown result-
ing surface for body from Fig. 1. These topological artifacts, so called “stars”,
cannot be optimized by any kind of geometrical cache.

Second trouble consists in separating this formed distributed graph on a
number of domains, with minimum weight difference and least numbers of con-
nections, which represents our demand to minimize the number of locally stored
prisms. In purpose resolving this problem we use ParMETIS [5] for graph sepa-
ration.

Static Balancing Methods in Projection-Based Mesh Generation Algorithm 143

Fig. 5. Example of low efficiency of the 3D-cache.

Main problems of this algorithm consist this approach does not take in
account time of inserting new vertices and edges into prisms, and does not con-
sider any WALL triangles, that directly affect the calculation time.

3.4 Load Balancing for Triangulation of Prism Faces

It is the least expensive part of the algorithm. First thing that we have to
mention that most of the prisms consists only 6 points, therefore for them it
is necessary to add only 3 edge to each of them. Second thing that we should
mention, that computational complexity for 2-dimensional triangulation depends
mainly on number of vertices [2]. So, the main problem therefore is to decide, is
it necessary to redistribute prisms after previous step of the algorithm or no.

The way of constructing previous weights for each prism is arguably inaccu-
rate, so for each prism there would be a number of incorrect neighbors. Therefore,
for the most prisms their weight is pretty much same.

This leads us to initial suggestion, that for purpose of load balancing of this
stage of algorithm we could use distribution from previous stage. The advanced
solution includes using number of vertices as a balance weight for this stage
balancing.

4 Practical Experiments

From all of the experimental data we would consider at first all data about
balancing load while docking the prisms. All experiments were done on 4 MPI-
processes, on the one calculating node. All the data in Tables 1, 2 and 3 consists
only time for docking of prisms.

First experiment is using surface, shown on Fig. 1. Total number of prisms
in this experiment - 203 332.

144 S. K. Grigorjev and M. V. Yakobovskiy

Table 1. Experiment with different cache sizes, time for the second step of the algo-
rithm. Sizei – number of cells in that direction.

Dimension of cache and
its size:
sizex * sizey * sizez

Process 1,
work time,
minutes

Process 2,
work time,
minutes

Process 3,
work time,
minutes

Process 4,
work time,
minutes

2D-cache 100 * 100 * 1 248.23 239.29 224.75 248.94

3D-cache 100 * 100 * 4 188.62 235.84 230.21 212.18

The imbalance, which is shown in Table 1, is caused by the fact, that the
balance weight value of each prism does not include the time of inserting new
points and ribs, which are essentially created during this step of the algorithm.
Increasing size of cache by 4 times caused further increase of imbalance from 10%
in the first experiment to 20% in the second, but decreases calculation time.

Next idea for improving quality of balancing and further increasing load
consists in rotating surface mesh around its center, so the least amount of prisms
would have any additional points on their faces or edges; the result for this is
shown in Table 3.

Table 2. Experiment with different cache sizes. Rotated surface.

Dimension of cache and
its size:
sizex * sizey * sizez

Process 1,
work time,
minutes

Process 2,
work time,
minutes

Process 3,
work time,
minutes

Process 4,
work time,
minutes

2D-cache 100 * 100 * 1 190.87 190.25 200.87 191.14

3D-cache 100 * 100 * 4 124.26 119.20 115.96 113.16

Simplification of prisms faces leads to significant increase of balance quality:
now, first experiment provides almost only 5% of imbalance between processes,
and second - near 9% of imbalance. Increasing imbalance while increasing cache
size is provided by the fact that some prisms would eventually lose their balance
weight, but the total number of new vertices and edges for each prism is constant,
so for smaller prism there would be much less work to do, while for bigger prism
there are still the same amount of work, which is represented by decrease of
computational time.

The experiment shown in Table 3 shows, how initial surface triangulation of
the same region will affect current algorithm (see Fig. 6). In this case the task
is to fill inner part of these planes. As it is mentioned earlier, main difference is
made by the amount of new vertices and edges, which are inserted into specific
prism. Cache size for this experiment is 100 * 100 * 10.

Now let’s consider the last stage of the algorithm.
In Table 4 is shown test of hypothesis, which was described earlier about

using initial distribution for previous stage. Surprisingly, the results are much

Static Balancing Methods in Projection-Based Mesh Generation Algorithm 145

Fig. 6. Two different surface triangulations

Table 3. Experiment with the same initial surface, Nt – number of surface triangles.

Mesh parameters, number
of triangles

Process 1,
work time,
minutes

Process 2,
work time,
minutes

Process 3,
work time,
minutes

Process 4,
work time,
minutes

Left mesh, Nt = 6115 92.052 98.204 96.409 117.529

Right mesh, Nt = 10997 253.704 269.194 296.033 295.033

better than they were to be expected. The weight imbalance in all cases is near
27%. This result is arguably bad, because it is still definitely high imbalance.
But, for the same time, we can admit that even without creating any specific
algorithm for this stage, using just what left from previous part, we already have
a distribution of data that could be used for much easier data redistribution
algorithm.

Table 4. Third stage load balance using the same distribution as in the second stage.

Mesh description Process 1,
work time,
minutes

Process 2,
work time,
minutes

Process 3,
work time,
minutes

Process 4,
work time,
minutes

First example (Fig. 1) 25.122 20.413 29.575 23.325

First example (Fig. 1)
rotated

24.73 18.414 22.509 18.122

First plane (Fig. 5, left) 11.01 11.028 12.182 16.382

Second plane (Fig. 5,
right)

29.852 21.071 28.441 17.489

146 S. K. Grigorjev and M. V. Yakobovskiy

5 Conclusion

Load balancing is hard and important task for all parallel programs. During
this work created static load balancing algorithm, which is based on three-
dimensional cache for generating graph and uses ParMETIS library for sepa-
rating graph. Reviewed main problems of static load balancing in application to
guarantied mesh generation algorithm. It is proved, that using three-dimensional
cache significantly decreases total calculation time, but increases load imbalance
between each processes. Founded, that using initial balancing for second stage
of the algorithm provides a reasonable load balancing for the third stage.

References

1. Grigorjev, S.K., Yakobovskiy, M.V.: Practical aspects of realization of projection
tetrahedral mesh generation method. In: Proceedings of an International Scientific
Conference on Parallel Computational Technologies (PaVT 2016), Arkhangelsk, 28
March–1 April 2016, pp. 499–504. Publishing Center of SUSU, Chelyabinsk (2016).
ISBN 978-5-696-04801-7

2. Skvorcov, A.V.: Trianguljacija Delone i ejo primenenie [Delaunay triangulation and
its application], 128 p. Tomsk State University, Tomsk (2002). ISBN 5-7511-1501-5

3. Iqbal, M.A., Saltz, J.H., Bokhari, S.H.: Performance tradeoffs in static and dynamic
load balancing strategies. Technical report 86–13, NASA Langley Research Center,
Hampton, VA (1986)

4. Shah, N., Farik, M.: Static load balancing algorithms in cloud computing: challenges
and solutions. Int. J. Sci. Technol. Res. 4(10), 365–367 (2015). ISSN 2277–8616

5. Karypis, G.: METIS and ParMETIS. In: Padua, D. (ed.) Encyclopedia of Parallel
Computing, pp. 1117–1124. Springer, Boston (2011). https://doi.org/10.1007/978-
0-387-09766-4. ISBN 978-0-387-09766-4

https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4

Fine-Grained Parallel Algorithms
in TIM-3D Code

Andrey Alexandrovich Voropinov(B) and Ivan Gennadievich Novikov

FSUE Russian Federal Nuclear Center – All-Russian Research Institute
of Experimental Physics, Sarov, Russia
{AAVoropinov,IGNovikov}@vniief.ru

Abstract. TIM-3D is a continuum-mechanics simulation code that uses
arbitrary-shape unstructured polyhedral Lagrangian meshes. Parallelism
in TIM-3D is provided at three levels in the mixed-memory model. The
first two levels use space decomposition in the MPI-based distributed-
memory model. At the first level, calculations are parallelized in task
fragments (domains). At the second level, calculations within one domain
are parallelized in para-domains. At the third level, iterations of cal-
culation loops are parallelized in the OpenMP-based shared-memory
model. The paper considers the fine-grained paralleling algorithms (sec-
ond level). These algorithms are complementary to the OpenMP shared-
memory parallelism implemented earlier. The fine-grained paralleling can
be done both with overlapping in one row of para-domain interface cells
and without overlapping. These approaches are compared in their paral-
lel efficiency using one of test simulations.

Keywords: TIM-3D code · Distributed-memory parallelism · MPI
Unstructured meshes

1 Introduction

TIM-3D [1] is an unsteady continuum-mechanics simulation code that employs
unstructured arbitrary-shape polyhedral Lagrangian meshes. Cells can have an
arbitrary number of faces, and the faces can have an arbitrary number of nodes
connecting an arbitrary number of cells and edges. Figure 1 shows some simple
examples of meshes used in the code.

Parallelism in TIM-3D is provided at three levels. This approach is an exten-
sion of the three-level parallelism in TIM-2D [2] to the three-dimensional case.
The first two levels use space decomposition in the MPI-based distributed-
memory model. At the first level, calculations are parallelized in task fragments
(domains). At the second level, calculations within one domain are parallelized
in para-domains. At the third level, iterations of calculation loops are paral-
lelized in the OpenMP-based shared-memory model. These approaches can be
used both together in different combinations, and separately in one calculation.

Earlier, TIM-3D used shared-memory model parallelism [3]. Shared-memory
parallelism is not sufficient, because the number of memory-sharing processor
c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 147–161, 2018.
https://doi.org/10.1007/978-3-319-99673-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_11&domain=pdf

148 A. A. Voropinov and I. G. Novikov

Fig. 1. Examples of polyhedral meshes used in TIM-3D

cores in up-to-date cluster computers is not very large. TIM-3D uses decompo-
sition into domains. This involves solving a contact interaction problem between
domains. Domains are calculated independently. This circumstance is used for
the first level of parallelism. Its constraint is a small number of domains (usually
up to 10). Thus, in order to remove the constraints on the number of computa-
tional resources engaged, an intermediate level of parallelism is required: at the
sub-domain level, where the domain is divided into smaller geometric “grains”.
These fine-grained paralleling algorithms are described in the present paper.

The development of the parallel algorithms is based on the following princi-
ples:

– Identity of calculation outputs in any mode of calculations.
– Scalability, or possibility of running calculations on any number of cores with

easy switch-over between the modes from one start to another for a single
task.

– Minimum memory consumption—to run tasks that are too large for the mem-
ory available to a single core.

– Optimum utilization of computational resources. Prevention of imbalance, or
in-process balancing when this occurs.

To facilitate the development of computational programs:

– Universal data representation in any mode of calculations.
– Minimum revision of codes to make them parallel; the burden of managing

parallel computations lies with a set of supporting programs.

2 Data Decomposition

Efficient use of computational programs on parallel computers requires decom-
position to ensure uniform distribution of work load among computer cores with
as little communication as possible. Decomposition in the distributed-memory
model includes distribution of data among processes (data decomposition) in
such a way that the number of data transfers and the volume of communicated

Fine-Grained Parallel Algorithms in TIM-3D Code 149

data between them is minimum. For distributed-memory parallelism, TIM-3D
uses space decomposition. Decomposition principles for fine-grained parallelism
are as follows:

– The decomposition is performed by cells (cells are the basic computing mesh
elements in TIM-3D).

– All domain cells are distributed among compacts so that each cell belongs to
only one compact.

– Each domain is split into compacts irrespective of other domains.

The problem of decomposition for fine-grained parallelism comes down to
solving a problem of graph partitioning into subgraphs. This is accomplished by
the following algorithm:

– A graph representing the mesh structure is built based on the unstructured
mesh. Graph nodes correspond to mesh cells, and graph edges, to neighbor-
hoods between cells.

– Graph nodes are assigned the weight reflecting the computational load associ-
ated with the corresponding cell. Weights of graph edges are used to introduce
additional decomposition properties. For example, extending compacts along
boundaries reduces the number of data transfers in contact interaction calcu-
lations.

– The problem of graph partitioning into subgraphs is solved using algorithms
from the ParMeTiS or SCOTCH libraries [4–6] and our own hybrid (topolog-
ical and geometric) decomposition algorithm.

Examples of resulting decompositions done by SCOTCH algorithms and by
our own algorithm are shown in Fig. 2.

Fig. 2. Examples of decompositions: SCOTCH (left), hybrid (right)

150 A. A. Voropinov and I. G. Novikov

3 Fine-Grained Parallelism

TIM-3D uses the staggered centering stencil. Kinematic quantities (velocities,
accelerations, coordinates) are assigned to cell nodes, while thermodynamic
quantities (energy, pressure, density, etc.) are assigned to cells. As a result,
the key issue associated with the fine-grained parallelism is the way of calcu-
lating the mesh nodes (cell vertices) surrounding the cells belonging to different
compacts (para-boundary nodes). For simplicity, let us illustrate this with the
two-dimensional case shown in Fig. 3. In the figure, the white cells belong to
compact 1, and the yellow ones, to compact 2.

Fig. 3. A mesh fragment partitioned into compacts (Color figure online)

In accordance with the difference scheme of TIM-3D [1], a closed integration
contour of cell centers and edge centers is constructed to calculate a node. For
the two-dimensional case of interest, an example of an integration contour for
the node V in Fig. 4 is marked by a green line. The integration contour is defined
by the centers of the surrounding cells C1, C2, C3, C4, and the “centers” of the
edges V V1, V V2, V V3, V V4. In conformity with the integration contour, the node
V is calculated using the quantities in both the cells C1, C2, C3, C4, and the
nodes V , V1, V2, V3, V4.

If the integration contour is preserved, we obtain the first type of fine-grained
parallelism (with one layer of overlapping cells). In order to preserve the node
integration contour on the side of the first para-domain, the cells C2, C3 do
not need to be generated completely, i.e. no information on the nodes V5, V6 is
required. However, if we do not attach these nodes to the first para-domain, the
mesh will be incomplete, and some operations on the cells C2, C3, for example,
definition of mesh nodes, volume calculations, or determination of the center, will
be unavailable. In this case, the attached cells need to be described in the data
structure in a special way and accounted for in different computing algorithms.
As the highest possible transparency of parallelism for computing algorithms
is one of the basic paralleling principles, it was decided to include such nodes
into para-domains as attached nodes, i.e. the nodes V3, V5, V6 are attached with
respect to para-domain 1.

Fine-Grained Parallel Algorithms in TIM-3D Code 151

Fig. 4. Node integration contour (Color figure online)

On the other hand, the integration contour can be represented as a set of
closed contours on the side of each cell (this representation is also used in the
difference scheme to determine the node mass [1]). Similarly, the integration
contour can also be represented as a set of closed contours on the side of each
para-domain. Such a partitioning for the case under consideration is shown in
Fig. 5, where the partitioning line of the integration contour is marked with red.
When the integration contour is partitioned, the nodes along the para-domain
interface are divided into pairs (or proportional to the number of para-domains
connected at the node), for example, the node V is partitioned into V ′ and V ′′.
For each node, a separate integration contour is used to determine the mass and
accelerations, which are then combined to calculate the common velocity. Such
an integration contour partitioning in the simulation makes it possible not to use
the overlapping between para-domains. A similar approach is used for “no-slip”
boundaries [7] and for fine-grained parallelism in TIM-2D [8].

Fig. 5. Node integration contour partitioning during fine-grained paralleling without
overlapping (Color figure online)

152 A. A. Voropinov and I. G. Novikov

A similar volume element in the three-dimensional case is constructed as fol-
lows (see Fig. 6). Consider node i. Let the point j be the center of a cell adjacent
to the node i. We draw three planes through the center j of the polyhedron
(Fig. 6):

– the first passing through the node of interest i and one of the edges connected
at this node and belonging to the cell having its center at j, for example, ii1;

– the second passing through the node i and the center c1 of one of two faces
of polyhedron j to which the edge ii1 also belongs;

– the third passing through the middle i2 of the same edge ii1 and the center
c1 of the face.

The triangular pyramid jii2c1 is part of the volume of the mass belonging to
the node i. Using the same procedure, we construct another triangular pyramid
with another edge belonging both to the face c1, the node i and the cell of
interest centered at j. Now we proceed to other faces belonging to the cell j and
the node i at the same time. The number of such faces is equal to the number
of faces of the polyhedral angle corresponding to the node i and the cell j (in
most cases, they are three).

This resulting set of triangular pyramids generates the polyhedron belonging
to the node on the face of the cell of interest j.

Fig. 6. Nodal cell element in TIM-3D

Interactions between para-domains are always pairwise. One can there-
fore speak about introducing para-boundaries. Para-boundaries include para-
boundary nodes and faces separating the cells calculated in different para-
domains. The para-boundaries also contain cell elements in the overlapping layer
(if it is used): attached and near-boundary cells, faces, nodes.

Domain partitioning into para-domains does not change the difference scheme
of TIM-3D in both fine-grained parallel modes, ensuring the identity of their
results with that of the serial mode.

Finite-difference codes generally employ fine-grained parallelism with over-
lapping (see, e.g., [9–11]). A similar approach is to fill in missing data that are

Fine-Grained Parallel Algorithms in TIM-3D Code 153

needed to calculate equations (see, e.g., [12]). The approach with node integra-
tion contour partitioning has been proposed for TIM-2D [8]. The present work
considers its extension to the three-dimensional case.

If one compares the approaches, then each of them will have both advan-
tages and disadvantages. The non-overlapping method demands less communi-
cation, because only nodal quantities are exchanged, whereas both nodal and
cell-centered quantities are exchanged in the mode with overlapping. The vol-
ume of communicated data in the non-overlapping mode is also much smaller,
because only data on para-boundary nodes are transferred, whereas in the mode
with overlapping, this volume also includes data on the nodes of the overlapping
layer. This results in higher efficiency of the non-overlapping mode. This app-
roach is more convenient for algorithm programming, because all cell elements
are computable, and the para-domain is in fact nearly identical to the mathemat-
ical domain. A constraint of the non-overlapping approach is that the difference
scheme of the code should allow for integration contour partitioning. The draw-
back of the non-overlapping approach is that new limitations of the algorithms
involving cell analysis around nodes at the para-domain interface occur. Exam-
ples of such algorithms include mesh maintenance algorithms (for example, it
becomes impossible to combine directly cells from different para-domains). The
computational load also increases a little because of the recovery of the common
node integration contour.

The mode with overlapping is free of these limitations and drawbacks, which
makes it more general. But its efficiency turns out to be a little lower because
of the growing volume of exchanged data and number of data transfers.

4 Specific Features of Cell Neighborhood
in the Three-Dimensional Case

In the three-dimensional case, para-domain generation has a number of spe-
cific features that distort the mesh structure in the para-domain. Such features
are impossible or exceptional in the two-dimensional case, while in the three-
dimensional case they are present in quite consistent decompositions.

The first class of features occurs at para-domain interfaces. They are cell
neighborhoods along an edge or across a node (see Fig. 7). Such features make
it difficult to describe the mesh structure [13], for example, to get a list of
surrounding cells for nodes.

Features of the second class occur at outer domain boundaries. They include
outbreaks of para-domains to the outer boundary with one edge or node. The
simplest example of such a feature is the decomposition of a regular spherical
mesh into columns or rows (see Fig. 8). The features of this class cause problems
in calculations of contact interactions since they involve calculations of surface
interactions, even though edges and nodes do not generate any surfaces.

These features constitute a certain challenge for the non-overlapping fine-
grained parallelism because they directly influence calculations of the respective
mesh nodes. These problems are not so evident in the overlapping mode since

154 A. A. Voropinov and I. G. Novikov

Fig. 7. Features in para-domain cell neighborhood: neighborhood along an edge (left),
neighborhood across a node (right)

Fig. 8. Example of single-point outbreaks of para-domains onto the outer surface

the data of the feature are mostly transferred to an attached layer which is not
processed. Nevertheless, these features should be kept in mind in this mode too.

To solve the above-mentioned problems, an additional object, a boundary
node, has been introduced into the algorithms. This object is introduced for
nodes at both outer and parallel boundaries. The following information is stored
for boundary nodes:

– A full set of boundary conditions (both outer and parallel).
– A number of countable quantities essential for contact interaction calcula-

tions, such as vectors of outward normals, work, etc.

Fine-Grained Parallel Algorithms in TIM-3D Code 155

– Specifically for fine-grained parallelism, numbers of all faces connected at the
boundary node are stored.

The storage of additional boundary node information makes it possible to
incorporate arising features into the algorithms.

5 Fine-Grained Paralleling Algorithms

Fine-grained parallelism in para-domains includes processing of interior and
near-boundary mesh elements. Cell calculations are therefore strictly associated
with para-domains. However, this poses a question regarding nodes: how to cal-
culate para-boundary nodes? As stated in Sect. 3 above, in the non-overlapping
mode, para-boundary nodes are firstly calculated independently in each para-
domain and then matched. This requirement is removed in the overlapping fine-
grained paralleling mode, and para-boundary nodes can be calculated by any
process calculating surrounding para-domains. As node calculations are rather
inexpensive in TIM-3D, calculations of para-boundary nodes are backed up in
this case. In TIM-3D, gas dynamic quantities are calculated in two major steps:

1. Calculations of nodal quantities, such as velocities, coordinates (calculation
of the equation of motion). Node calculations are performed using data from
neighbor nodes and surrounding cells from the previous time step.

2. Calculations of cell quantities, such as density, pressure, energy (calculation
of the energy equation). These are done with updated node locations of the
cells under consideration, based on which changes in the cell volume at an
iteration time step are calculated.

The overlapping mode encounters the issue of data update in attached mesh
elements (cells and nodes). This update is performed by asynchronous commu-
nication in para-boundary, near-boundary and attached elements. Calls of com-
munication procedures are placed in such a way that the required information
is updated before its use.

A flow diagram of a time step involving fine-grained paralleling with overlap-
ping is shown in Fig. 9. The flow diagram for the non-overlapping mode remains
the same, except for missing transfer of cell quantities. Likewise, once information
is received, an additional integration contour recovery operation is performed.

The green boxes in Fig. 9 represent the calls of asynchronous communication
procedures for nodal quantities, and the yellow boxes, for cell quantities; dashed
lines are actual data streams between processes. The flow diagram shows that
data transfers are combined with calculations of interior cells and nodes, which
enables their parallel running. Communication involves packaging and unpack-
aging of quantities in the buffer array.

156 A. A. Voropinov and I. G. Novikov

Fig. 9. Flow diagram of nodal and cell quantities in the overlapping fine-grained par-
alleling mode (Color figure online)

Fine-Grained Parallel Algorithms in TIM-3D Code 157

6 Distinctive Features of Non-overlapping Fine-Grained
Parallelism

The approaches employed in TIM-3D paralleling algorithms are basically similar
to those employed in TIM-2D [2]. In addition, most computational modules in
both codes use the same programs for the two-dimensional and three-dimensional
cases. The major difference in the parallelism of TIM-3D lies in the fine-grained
paralleling algorithms with non-overlapping cell layers.

In TIM-2D, the integration contour partitioning scheme is used to calculate
the no-slip boundary motion, when no partitioning is allowed at the domain
boundary not only for the normal, but also for the tangential velocity component.
In TIM-2D, the non-overlapping fine-grained parallelism is implemented by a
modified algorithm for no-slip boundary calculations [7].

In the three-dimensional case, however, the approach employing the contact
interaction algorithms cannot be used for a number of reasons. The main one is
that the boundary interface in the two-dimensional case is a combination of two
broken lines. Each line is drawn using a strictly defined series of boundary points
in each domains. The three-dimensional case involves surfaces, and it is impos-
sible in this case to set up a strict series of points and hence ensure the node-
to-node point matching especially with active execution of mesh maintenance
algorithms (to maintain the required shape of Lagrangian cells). In addition,
contact interaction algorithms in the three-dimensional case become much more
complicated themselves, primarily as a result of the transition to surface interac-
tion. This makes the contact interaction algorithms significantly more expensive.
Note that even in the two-dimensional case, calculations of boundary points are
several times more expensive than calculations of interior points. It is therefore
preferable to prevent the buildup of boundary points in the three-dimensional
case.

For these reasons, in the three-dimensional case, for the non-overlapping
fine-grained parallelism, it was decided to implement a program matching nodal
quantities upon exchange of accelerations and masses for para-boundary nodes,
rather than to use the contact interaction algorithms.

The node integration contour recovery algorithm is as follows:

– Prior to starting a calculation, masses of para-boundary nodes are calculated
over the integration contour belonging to the para-domain of interest. That
is, one para-boundary node has its own mass in different para-domains, and

its total mass is the sum of its masses in the para-domains (mi =
k∑

j=1

mj is the

mass of the para-boundary node i with respect to k para-domains (k ≥ 2), mj

is the mass of the para-boundary node in the corresponding para-domain).
– The para-boundary nodes are calculated in each para-domain completely

independently. Here, no forces are applied from the side of the parallel bound-
ary (the parallel boundary serves as a free surface with pressure PG = 0).

– Once all the para-boundary nodes are calculated, their resulting accelerations
and masses are exchanged between the para-domains. Generally speaking,

158 A. A. Voropinov and I. G. Novikov

node masses do not vary in the course of gas dynamic equation calculations,
but their variations are possible as a result of the execution of mesh main-
tenance algorithms. In addition, more complicated algorithms may require
some additional quantities, so whole sets of nodal quantities are exchanged.

– Once the exchange is over, total accelerations, velocities and positions of
para-boundary nodes are calculated in each para-domain as follows:

an+1
i =

k∑

j=1

mian+1
j

k∑

j=1

mj

− total acceleration of node i;

vn+1
i = vn

i + τan+1
i − total velocity of node i;

rn+1
i = rni + τvn+1

i − updated node position;

where τ is the time step.

Note that the additional update can lead to truncation errors due to specific
features of machine arithmetics, i.e., the resulting velocity calculated by different
processes can differ in its 16th digit. This error can build up with time and result
in mismatch between para-boundary nodes (a gap or overlapping between para-
domains). Although the mismatch is tiny, some algorithms can be sensitive even
to such discrepancies. To overcome this problem, (1) the resulting velocity is
rounded by assuming that near-zero accelerations and velocities are zero, and
(2) the velocities and node positions are averaged at time instant n. Velocities
and coordinates are calculated as follows:

vn+1
i =

k∑

j=1

vn
j

k
+ τan+1

i − total velocity of node i;

rn+1
i =

k∑

j=1

rnj

k
+ τvn+1

i − updated node position.

This prevents any mismatch between matched para-boundary nodes belong-
ing to different para-domains.

7 Measurements of Parallel Efficiency

To assess the parallel efficiency, we used the functions Sp = t1
tp

(speedup of
calculations), and Ep = t1

ptp
·100% (parallel efficiency), where t1 is the calculation

time on one processor of the parallel computer (serial calculations), tp is the
calculation time on p processors.

For the test, we chose a planar-wave problem [14]. The calculation was run
on an unstructured hexahedral mesh of 1 million cells. The results of time,

Fine-Grained Parallel Algorithms in TIM-3D Code 159

acceleration and efficiency measurements are summarized in Table 1. We used
as a basic unit the time for running the calculation of one compute node with
OpenMP parallelism only. This allowed us to evaluate the efficiency of the fine-
grained paralleling block in the mixed mode.

The results indicate that the efficiencies of the fine-grained parallel modes
with and without overlapping are close up to 10 compute nodes, whereas, for
a greater number of nodes, the efficiency of the non-overlapping parallel mode
becomes higher (by 7 to 10 %). This is explained by a smaller number of data
transfers and a smaller volume of communicated data.

Table 1. Measured speedup and parallel efficiency

Mode→ With overlapping Without overlapping

Core count Node count Time, s Speedup Efficiency Time, s Speedup Efficiency

16 1 4012.10 1 100% 4012.10 1 100%

32 2 2224.96 1.80 90.16% 2268.58 1.76 88.42%

64 4 1116.10 3.59 89.86% 1144.32 3.50 87.65%

128 8 629.42 6.37 79.67% 594.82 6.74 84.31%

160 10 515.88 7.77 77.77% 495.80 8.09 80.92%

256 16 359.40 11.16 69.77% 321.14 12.49 78.08%

320 20 303.34 13.22 66.13% 266.54 15.05 75.26%

384 24 264.42 15.17 63.22% 230.37 17.41 72.56%

512 32 222.41 18.03 56.37% 186.29 21.53 67.30%

640 40 193.15 20.77 51.92% 164.17 24.43 61.09%

800 50 169.12 23.72 47.44% 143.87 27.88 55.77%

1600 100 146.71 27.34 27.34% 110.78 36.21 36.21%

8 Conclusions

The paper describes two fine-grained parallel methods used in TIM-3D code.
In the first method, the whole node integration contour is preserved, and para-
domains overlap in one layer of cells. The overlapping layer serves for node and
cell data communication. In the second method, the node integration contour
is partitioned, and para-domain interactions are calculated. These methods are
close in their parallel efficiency on a small number of compute nodes (up to
10), while, on a large number of nodes, the non-overlapping method turns out
to be 7 to 10 % more efficient. The higher efficiency is achieved owing to a
smaller number of data transfers and a smaller volume of communicated data.
Most calculations in TIM-3D are performed in the non-overlapping fine-grained
parallel mode.

The algorithms developed are complementary to the OpenMP parallelism
implemented earlier in TIM-3D.

160 A. A. Voropinov and I. G. Novikov

References

1. Sokolov, S.S., Panov A.I., Voropinov, A.A., et al.: The code TIM for three-
dimensional continuum mechanics simulations on unstructured polyhedral
Lagrangian meshes. In: Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe
modelirovanie fizicheskikh protsessov, no. 3, pp. 37–52 (2005). (in Russian)

2. Voropinov, A.A., Sokolov, S.S.: The method of three-level paralleling in the
code TIM-2D. In: Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe mod-
elirovanie fizicheskikh protsessov, no. 4, pp. 70–77 (2013). (in Russian)

3. Voropinov, A.A., Novikov, I.G., Sobolev, I.V., Sokolov, S.S.: Paralleling of the code
TIM in the shared-memory model using the OpenMP interface. Vychislitel’nye
metody i programmirovanie. 8(1), 134–141 (2007). (in Russian)

4. Polovnikova, T.N., Voropinov, A.A.: Experience of using the SCOTCH and MeTiS
libraries in unstructured mesh decomposition in the code TIM. In: Shagaliev,
R.M. (ed.) Proceedings of the XII International Workshop on Supercomputing
and Mathematical Modeling, pp. 282–288. FSUE RFNC-VNIIEF, Sarov (2011).
(in Russian)

5. ParMETIS: Parallel graph partitioning and fill-reducing matrix ordering. http://
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

6. Pellegrini, F.: SCOTCH: Static mapping, graph, mesh and hypergraph partition-
ing, and parallel and sequential sparse matrix ordering package. http://www.labri.
fr/perso/pelegrin/scotch/

7. Voropinov, A.A., Novikov, I.G., Sokolov, S.S.: Calculations of contact interaction
between domains in the code TIM-2D. In: Voprosy atomnoi nauki i tekhniki. Ser.
Matematicheskoe modelirovanie fizicheskikh protsessov, no. 2, pp. 5–20 (2008). (in
Russian)

8. Voropinov, A.A., Novikov, I.G., Sokolov, S.S.: Fine-grained paralleling methods
in the code TIM-2D. In: Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe
modelirovanie fizicheskikh protsessov, no. 3, pp. 24–33 (2012). (in Russian)

9. Pronin, V.A.: Paralleling methods for two-dimensional gas dynamics simulations
on unstructured meshes with variable topology in the code MEDUZA. In: Voprosy
atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh prot-
sessov, no. 1, pp. 54–67 (2011). (in Russian)

10. Gasilov, V.A., Diachenko, S.V., Boldarev, A.S., et al.: Application pack-
age MARPLE3D for pulsed magnetically driven plasma simulations on high-
performance computers, p. 20. Keldysh Institute of Applied Mathematics, Moscow
(2011, preprint). (in Russian)

11. Lyapin, V.V., Korolev, R.A., Vetchinnikov, A.V.: A paralleling method with two-
dimensional mesh decomposition for numerical solution of the two-dimensional
heat transfer equation using the code KORONA-2D. In: Voprosy atomnoi nauki
i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, no. 2, pp.
69–77 (2014). (in Russian)

12. Andrianov, A.N., Efimkin, K.N.: An approach to implementation of numerical
methods on unstructured meshes. Vychislitel’nye metody i programmirovanie 8,
6–17 (2007). [in Russian]

13. Voropinov, A.A., Sokolov, S.S., Panov, A.I., Novikov, I.G.: Polyhedral arbitrary-
structure mesh description format in the code TIM. In: Voprosy atomnoi nauki i
tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, no. 3–4, pp.
55–63 (2007). (in Russian)

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/

Fine-Grained Parallel Algorithms in TIM-3D Code 161

14. Bondarenko, Yu.A., Voronin, B.L., Delov, V.I., et al.: Description of a test suite for
two-dimensional gas dynamic codes and programs. Part 1. Test requirements. Tests
1–7. In: Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie
fizicheskikh protsessov, no. 2, pp. 3–9 (1991). (in Russian)

Modified Componentwise Gradient
Method for Solving Structural Magnetic

Inverse Problem

Elena N. Akimova1,2(B) , Vladimir E. Misilov1,2, and Andrey I. Tretyakov1,2

1 Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS,
Yekaterinburg, Russia

aen15@yandex.ru, out.mrscreg@gmail.com, fr1z2rt@gmail.com
2 Yeltsin Ural Federal University, Yekaterinburg, Russia

Abstract. An original variant of the componentwise gradient method
is constructed to solve a nonlinear magnetic inverse problem: using mag-
netic data, find a boundary surface between two layers with constant
arbitrarily directed magnetizations. An efficient parallel algorithm is cre-
ated and implemented on a multicore CPU and multiple GPUs to solve
the problem. We study the efficiency and speedup of the parallel algo-
rithm. We solve various model problems with synthetic magnetic data
on a fine grid. A comparison of the proposed method with the conju-
gate gradient method shows that the new one allows for a significant
reduction of computation time.

Keywords: Componentwise gradient method · Parallel algorithms
Magnetic inverse problem · Multicore CPU and multiple GPUs

1 Introduction

The solution of structural gravity problems and magnetic inverse problems has
an extraordinary importance in the study of the Earth’s crust structure [1–3].

This paper deals with the problem of finding an interface between layers with
different magnetizations using known magnetization contrast, interface depth,
and magnetic field [4,5].

The problem is described by a nonlinear integral equation of the first kind
and thus is ill-posed. It is therefore necessary to use iterative regularization
methods [6].

Real observations are performed on large areas. To increase the accuracy and
the level of detail, it is essential to use finer grids, which leads to big data sets.
The application of modern computing technologies and parallel computations
makes it possible to significantly reduce computation time.

This work was partly supported by the Ural Branch of the Russian Academy of
Sciences (project no. 18-1-1-8).

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 162–173, 2018.
https://doi.org/10.1007/978-3-319-99673-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_12&domain=pdf
http://orcid.org/0000-0002-4462-5817

Modified Componentwise Gradient Method 163

An effective method to determine the structural boundary in the case of
arbitrarily directed magnetization was constructed in [7,8] on the basis of the
linearized conjugate gradient method.

A time-efficient componentwise gradient method for solving gravity inverse
problems was constructed in [9]. In the present paper, we use this method to
solve the magnetic inverse problem of finding a magnetization interface in the
case of an arbitrarily directed magnetization. Here, we modify the method for
better performance. The modification consists in offsetting the indices of the
components with respect to the angle of the magnetization vector.

Moreover, we construct a parallel algorithm based on the modified compo-
nentwise method and implement this parallel algorithm using the Intel CPUs and
NVIDIA Tesla GPUs of the Uran supercomputer, which is installed at the Insti-
tute of Mathematics and Mechanics of the Ural Branch of the Russian Academy
of Sciences. We also investigate the efficiency and speedup of the parallel algo-
rithm and compare it with a conjugate gradient-based algorithm in terms of
iteration number and computation time.

2 Problem Statement

Let us introduce a cartesian coordinate system in which the x0y plane coincides
with the Earth’s surface and the z axis is directed downwards, as shown in
Fig. 1. Assume that the lower half-space consists of two layers with constant
magnetizations J1 and J2, divided by the surface sought, which is described by
a bounded function ζ = ζ(x, y), and lim

|x|+|y|→∞
(h − ζ(x, y)) = 0 for some h.

Fig. 1. Two-layer medium for the magnetic problem

164 E. N. Akimova et al.

The function ζ must satisfy the following equation:

ΔZ(x′, y′, 0) =
1
4π

∞∫

−∞

∞∫

−∞

[
ΔJx(x − x′) + ΔJy(y − y′) − ΔJzh(

(x′ − x)2 + (y′ − y)2 + h2
)3/2

− ΔJx(x − x′) + ΔJy(y − y′) − ΔJzζ(x, y)(
(x′ − x)2 + (y′ − y)2 + ζ2(x, y)

)3/2
]

dx dy, (1)

where ΔJx,ΔJy,ΔJz are the components of the magnetization contrast ΔJ =
J2 − J1, and ΔZ(x, y, 0) is the vertical component of the anomalous magnetic
field measured at the Earth’s surface.

A preliminary processing of data with the aim of extracting the anomalous
field from the measured magnetic data is performed using a technique described
and implemented in [10].

Equation (1) is a nonlinear two-dimensional integral equation of the first
kind.

After discretization of the region Π = {(x, y) : a � x � b, c � y � d}
by means of an n = M × N grid and approximation of the integral operator
using quadrature rules, we obtain a vector F on the right-hand side and an
approximation of the solution vector z of dimension n. Equation (1) can be thus
written as

ΔFi =
ΔxΔy

4π

∑
j=1..n

[
ΔJx(xi − xj) + ΔJy(yi − yj) − ΔJzh(

(xi − xj)2 + (yi − yj)2 + h2
)3/2

− ΔJx(xi − xj) + ΔJy(yi − yj) − ΔJzzj(
(xi − xj)2 + (yi − yj)2 + z2j

)3/2
]
, (2)

We can rewrite the equation as

A(z) = F. (2a)

3 Numerical Methods for the Solution of the Problem

3.1 Linearized Conjugate Gradient Method

The linearized conjugate gradient method (LCGM) has the following form [11]:

zk+1 = zk − ψ
〈pk, S(zk)〉
‖A′(zk)pk‖2

pk,

pk = S(zk) + βkpk−1,

p0 = S(z0), (3)

βk = max

{〈
S(zk),

(
S(zk) − S(zk−1)

)〉
‖S(zk−1)‖2

, 0

}
,

S(z) = A′(z)T
(
A(z) − F

)
,

Modified Componentwise Gradient Method 165

where zk is the approximation of the solution in the kth iteration, k ∈ N, and ψ
is a damping factor.

A parallel algorithm based on this method was developed and implemented
in [8] for NVIDIA GPUs using CUDA technology.

3.2 Componentwise Gradient Method

The componentwise gradient method (CWM) has the following form [9]:

zk+1
i = zki − ψ

Ai(zk) − Fi

‖∇Ai(zk)‖2
(

∂Ai(zk)
∂zi

)
, (4)

where zi is the ith component of the solution approximation, i = 1, . . . , n, k ∈ N,
and ψ is a damping factor.

The main idea of this method is to minimize the residual Ai(z) − Fi at one
grid node i by changing the value zi at this node. The idea is based on the
fact that the value of a gravity or magnetic (in the case of vertically directed
magnetization) field depends on 1/r2. Thus, the value of zi exerts the greatest
influence on the field value Fi at the node directly situated above it. In the case
of an arbitrarily directed magnetization, the correlation between zi and Fi is
weaker, so this method will not be as effective as it is for vertical magnetization.

3.3 Modified Componentwise Gradient Method

Let us find the approximation of a new point j at which Fj is mostly influenced
by zi in the case of an arbitrarily directed magnetization. This point is displaced
from the point i by the biases x̄ and ȳ. To find x̄, we need to solve the following
problem:

x̄ = arg max
x

[
− ΔJx(x) − ΔJzh(

x2 + h2
)3/2

]
.

The necessary condition for maximum is

d

dx

[
− ΔJx(x) − ΔJzh(

x2 + h2
)3/2

]
= 0.

Write the derivative:

−ΔJx(2x2 − h2) + 3ΔJzhx(
x2 + h2

)5/2 = 0.

Evidently, x �= 0 for the case of nonvertical magnetization and the surface
lies below the Earth’s level, i.e. h > 0, so that

ΔJx(2x2 − h2) + 3ΔJzhx = 0.

166 E. N. Akimova et al.

Write the roots of this equation:

x̄1,2 =

(− 3ΔJz ± √
8ΔJ2

x + 9ΔJ2
z

)
h

4ΔJx
.

Assume that ΔJz > 0. Then, obviously, the relation sgn(ΔJx) = sgn(x̄) must
hold. Only the first root (the one with the plus sign) satisfies this condition. For
ΔJz < 0, we have the second root (the one with the minus sign).

The ȳ bias can be found in the same way. We can now write the modified
componentwise gradient method (MCWM) as follows:

zk+1
i = zki − ψ

Aj(zk) − Fj

‖∇Aj(zk)‖2
(

∂Aj(zk)
∂zi

)
,

j = i + M

(− 3ΔJz + sgn(ΔJz)
√

8ΔJ2
y + 9ΔJ2

z

)
h

4ΔJyΔy
(5)

+

(− 3ΔJz + sgn(ΔJz)
√

8ΔJ2
x + 9ΔJ2

z

)
h

4ΔJxΔx
,

where Δx and Δy are the grid element sizes.
We should also check whether the offsetted indices are out of the grid. If so,

we should use the boundary values.

4 Parallel Implementation

The parallel algorithms based on the componentwise methods were implemented
on a multicore CPU, using OpenMP technology, and NVIDIA M2090 GPUs,
using CUDA technology.

Note that storing a Jacobian matrix for a 29×29 grid takes more than 512 GB.
The elements of the Jacobian matrix in the constructed algorithms are cal-

culated on-the-fly, which means that the value of an element is computed when
calling this element, without storing it previously in memory.

The most expensive operation is to compute the values of the integral opera-
tor and its Jacobian matrix. This operation consists of four nested loops. In the
OpenMP implementation, the outer loops are parallelized using ‘#pragma omp
parallel’, whereas the inner loops are vectorized using ‘#pragma simd’ directives.
When using multiple GPUs, two outer loops are distributed to the GPUs, and
two inner loops are executed on each GPU. The CPU transfers the data between
the host memory and GPUs, and then calls the kernel functions.

The adjustment of the kernel execution parameters for the grid size is an
important problem. In [12], we proposed an original method for automatic
adjustment of parameters. This method is based on rescaling the optimal param-
eters found for a reference grid size.

This imposes some constraints on the input data and GPUs configuration:

– the grid size must be divisible by 128 (128, 256, 512, 1024, . . .);
– the number of GPUs must be a power of 2 (1, 2, 4, 8, . . .).

Modified Componentwise Gradient Method 167

5 Numerical Experiments

The model problems consisted in finding the interface between two layers.
Figure 2 shows the model surface z∗ considered in all model problems.

Figures 3, 4, 5, 6 and 7 show the model magnetic fields ΔZi(x, y, 0). These
fields were obtained by solving the direct problem for the surface with the asymp-
totic plane H = 10 km and various magnetization contrasts:

ΔJ1 = (0, 0, 1)A/m,

ΔJ2 = (0.19, 0.19, 1)A/m,

ΔJ3 = (0.41, 0.41, 1)A/m,

ΔJ4 = (0.71, 0.71, 1)A/m,

ΔJ5 = (1.23, 1.23, 1)A/m.

These contrasts correspond to magnetization direction angles of 0◦, 15◦, 30◦,
45◦, and 60◦.

The problems were solved on the Uran supercomputer nodes (two eight-core
Intel E5-2660 CPUs and eight NVIDIA Tesla M2090 GPUs) by the following
three methods:
– linearized conjugate gradient method (LCGM) (3);
– componentwise gradient method (CWM) (4);
– modified componentwise gradient method MCWM (5).

The reconstructed interfaces are shown in Fig. 8.
The condition ‖A(z) − F‖/‖F‖ < ε, ε = 0.011, was taken as termination

criterion for all methods. The parameter ψ was set at 0.85 in the CGM for 60◦,
as well as in the CWM and MCWM for 45◦. In the CWM and MCWM for 60◦,
it was set at 0.75. Everywhere else, it was set at 1.

The relative error of all solutions is δ = ‖z − z∗‖/‖z∗‖ < 0.01.
Table 1 summarizes the numbers of iterations N and average execution times

T for 10 runs on two eight-core Intel E5-2660 CPUs (16 cores) with a 512 × 512
grid.

Speedup and efficiency coefficients are used to analyse the scaling of parallel
algorithms. The speedup is expressed as Sm = T1/Tm, where T1 is the execution
time of a program running on one GPU, and Tm is the execution time for m
GPUs. The efficiency is defined as Em = Sm/m. The ideal values are Sm = m
and Em = 1, but real values are lower because of the overhead.

Table 2 summarizes the average execution times for the CWM method on a
512 × 512 grid for various numbers of GPUs.

The experiments show that the constructed modified algorithms are very
effective. New algorithms are more economical in terms of operations and time
at each iteration step. For the model problems, the componentwise method has
a better performance in terms of number of iterations and computation time
than the conjugate gradient methods. The parallel algorithms demonstrate an
excellent scaling; the efficiency is more than 100% for eight GPUs. Probably, this
is due to a non-optimal automatic adjustment of the kernel execution parameters
for some configurations of GPUs.

168 E. N. Akimova et al.

Fig. 2. The original surface z∗

Fig. 3. Model gravitational field for an angle of 0◦

Modified Componentwise Gradient Method 169

Fig. 4. Model gravitational field for an angle of 15◦

Fig. 5. Model gravitational field for an angle of 30◦

170 E. N. Akimova et al.

Fig. 6. Model gravitational field for an angle of 45◦

Fig. 7. Model gravitational field for an angle of 60◦

Modified Componentwise Gradient Method 171

Fig. 8. Reconstructed surfaces for various magnetization angles

Table 1. Comparison of methods

Magnetization angle CGM CWM MCWM

N T (min) N T (min) N T (min)

0◦ 20 120 6 36 6 36

15◦ 20 120 6 36 6 36

30◦ 20 120 8 48 7 42

45◦ 25 150 10 60 9 54

60◦ 26 156 16 96 14 84

172 E. N. Akimova et al.

Table 2. Execution times (in minutes) of the parallel CWM algorithm on multiple
GPUs

Magnetization angle Number of GPUs

1 2 4 8

Execution time T , minutes

0◦ 7.6 2.8 1.3 0.7

15◦ 7.6 2.8 1.3 0.7

30◦ 8.3 3.3 1.5 0.9

45◦ 10.8 4.5 2.3 1.1

60◦ 17.7 7.9 4.2 2.1

6 Conclusions

We constructed an original variant of a componentwise gradient method for a
structural magnetic inverse problem consisting in finding a contact surface in
the case of an arbitrarily directed magnetization.

We developed parallel algorithms based on the componentwise gradient
method and its modified variant. The parallel algorithms were implemented on a
multicore CPU, using OpenMP technology, and on multiple GPUs, using CUDA
technology. Model problems with fine grids were solved. The parallel algorithms
demonstrated an excellent scaling and nearly 100% efficiency.

The componentwise gradient methods (CWM and MCWM) are very effective
for solving problems with a nearly vertical magnetization direction; in this case,
computation times are reduced by a factor of 2 to 4. For greater magnetization
angles, the modified componentwise gradient method (MCWM) show better
computation times compared to the unmodified componentwise method.

References

1. Martyshko, P.S., Byzov, D.D., Martyshko, M.P.: Solving the structural inverse
problem of magnetic prospecting with respect to demagnetization for a two-layer
medium model. Dokl. Earth Sci. 453(2), 1264–1267 (2013). https://doi.org/10.
1134/S1028334X1312012X

2. Akimova, E.N., Martyshko, P.S., Misilov, V.E.: Algorithms for solving the struc-
tural gravity problem in a multilayer medium. Dokl. Earth Sci. 453(2), 1278–1281
(2013). https://doi.org/10.1134/S1028334X13120180

3. Martyshko, P.S., Pyankov, V.A., Akimova, E.N., Vasin, V.V., Misilov, V.E.: On
solving a structural gravimetry problem on supercomputer “Uran” for the Bashkir
Predural’s area. In: GeoInformatics 2013 – 12th International Conference on Geoin-
formatics: Theoretical and Applied Aspects (2013)

4. Malkin, N.R.: On solution of inverse magnetic problem for one contact surface (the
case of layered masses). DAN SSSR, Ser. A (9), 232–235 (1931)

https://doi.org/10.1134/S1028334X1312012X
https://doi.org/10.1134/S1028334X1312012X
https://doi.org/10.1134/S1028334X13120180

Modified Componentwise Gradient Method 173

5. Akimova, E.N., Martyshko, P.S., Misilov, V.E.: Parallel algorithms for solving
structural inverse magnetometry problem on multicore and graphics processors.
In: Proceedings of 14th International Multidisciplinary Scientific GeoConference
SGEM 2014, vol. 1, no. 2, pp. 713–720 (2014)

6. Bakushinskiy, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications.
Mathematics and Its Applications, 258 p., vol. 301. Springer Science & Business
Media, Heidelberg (1994). https://doi.org/10.1007/978-94-011-1026-6

7. Misilov, V.E.: On solving the structural inverse magnetic problem of finding a con-
tact surface in the case of arbitrary directed magnetization. In: 15th EAGE Inter-
national Conference on Geoinformatics: Theoretical and Applied Aspects (2016)

8. Akimova, E.N., Martyshko, P.S., Misilov, V.E., Tretyakov, A.I.: On solving the
inverse structural magnetic problem for large grids on GPUs. In: AIP Conference
Proceedings, vol. 1863, p. 050010 (2017). https://doi.org/10.1063/1.4992207

9. Akimova, E.N., Misilov, V.E.: A fast componentwise gradient method for solving
structural inverse gravity problem. In: Proceedings of 15th International Multidis-
ciplinary Scientific GeoConference SGEM 2015, vol. 3, no. 1, pp. 775–782 (2015)

10. Martyshko, P.S., Fedorova, N.V., Akimova, E.N., Gemaidinov, D.V.: Studying the
structural features of the lithospheric magnetic and gravity fields with the use of
parallel algorithms. Izv. Phys. Solid Earth 50(4), 508–513 (2014). https://doi.org/
10.1134/S1069351314040090

11. Akimova, E.N., Martyshko, P.S. and Misilov, V.E.: A fast parallel gradient algo-
rithm for solving structural inverse gravity problem. In: AIP Conference Proceed-
ings, vol. 1648, p. 850063 (2015). https://doi.org/10.1063/1.4913118

12. Akimova, E.N., Misilov, V.E., Tretyakov, A.I.: Optimized algorithms for solv-
ing structural inverse gravimetry and magnetometry problems on GPUs. In:
Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp. 144–155. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67035-5 11

https://doi.org/10.1007/978-94-011-1026-6
https://doi.org/10.1063/1.4992207
https://doi.org/10.1134/S1069351314040090
https://doi.org/10.1134/S1069351314040090
https://doi.org/10.1063/1.4913118
https://doi.org/10.1007/978-3-319-67035-5_11

Parallel Multipoint Approximation
Method for Large-Scale Optimization

Problems

Victor P. Gergel1(B), Konstantin A. Barkalov1(B), Evgeny A. Kozinov1,
and Vassili V. Toropov1,2

1 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
{victor.gergel,konstantin.barkalov,evgeny.kozinov}@itmm.unn.ru

2 Queen Mary University of London, London, UK
v.v.toropov@qmul.ac.uk

Abstract. The paper presents a new development in the Multipoint
Approximation Method (MAM) that makes it capable of handling large-
scale problems. The approach relies on approximations built in the space
of design variables within the iterative trust-region-based framework of
MAM. With the purpose of solving high dimensionality problems in
a reasonable time, a parallel variant of the Multipoint Approximation
Method (PMAM) has been developed. It is supposed that the values of
the objective function and those of the constraints are computed using
distributed memory (on several cluster nodes), whereas the optimization
module runs on a single node using shared memory. Numerical experi-
ments have been carried out on a benchmark example of structural opti-
mization.

Keywords: Design optimization · Multidisciplinary optimization
Multipoint approximation method · Parallel computing

1 Introduction

In the present paper, the multipoint approximation method (MAM) [1–3] and
its application to large-scale optimization problems are considered. In problems
with a large (in the order of hundreds) number of design variables, MAM has
proved to be efficient, e.g., in turbomachinery applications [4–6]. This method is
an iterative optimization technique based on mid-range approximations built in
trust regions. A trust region is a subdomain of the design space in which a set of
design points, produced according to a small-scale design of experiments (DoE),
is evaluated. These and a subset of previously evaluated design points are used to
build metamodels of the objective and constraint functions that are considered
to be valid within a current trust region. The trust region will then translate

This study was supported by the Russian Science Foundation, project No. 16-11-
10150.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 174–185, 2018.
https://doi.org/10.1007/978-3-319-99673-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_13&domain=pdf

Parallel Multipoint Approximation Method 175

and change size as optimization progresses. The trust region strategy has gone
through several stages of development to account for the presence of numerical
noise in the response function values [7,8] and occasional simulation failures [9].
The mid-range approximations used in the trust regions, as originally suggested
in [1] for structural optimization problems, are intrinsically linear functions (i.e.
nonlinear functions that can be reduced to a linear form by a simple transfor-
mation) for individual substructures, and an assembly of them for the whole
structure. This was enhanced by the use of gradient-assisted metamodels [3],
the use of simplified numerical models which is also termed the multi-fidelity
approach [10], and the use of analytical models derived by genetic programming
[11]. One of the recent developments [12] involves the use of approximation
assemblies, i.e. a two stage approximation building process that is conceptually
similar to the original one used in [1] but is free from the limitation that lower
level approximations are linked to individual substructures.

The Moving Least-Squares Method (MLSM) was proposed in [13] for smooth-
ing and interpolation of scattered data and was later used in the mesh-free form
of the finite element method (FEM) [14]. As suggested in [15], it can be used
as a technique for metamodeling and in multidisciplinary optimization (MDO)
frameworks. The MLSM is a weighted least-squares method where the weights
depend on the Euclidean distance from a sample point to where the surrogate
model is to be evaluated. The weight value for a certain sample point decays
as the distance increases. Describing the weight decay with a Gaussian function
tends to be the most useful option, even though many others have been evaluated
in [16]. As demonstrated in [17], the cross-validated MLSM can be used both
for design variable screening and for surrogate modeling. In order to create an
efficient MDO framework for problems with disparate discipline attributes, the
optimization approach of MAM was extended in [18] to the use of local DOEs
and MLS approximations built in different subspaces of the total design variable
space corresponding to the individual disciplines. The subspaces are finally com-
bined into the total design variable space in which the resulting MDO problem
is solved.

This paper presents a Parallel Multipoint Approximation Method that makes
it capable of handling problems with numbers of design variables in the order of
thousands. The parallel variant of the algorithm (with the use of shared mem-
ory) has been developed with the purpose of minimizing the work time of the
part of the algorithm related to constructing the approximation and solving the
approximated problem, but not related to computing the values of the objective
function and constraints. The processes of computing the values of the objective
function and constraints (with the use of distributed memory) are supposed to
be already parallelized.

2 The Multipoint Approximation Method

It would be useful to start with a brief description of MAM. A typical formulation
of a constrained optimization problem that MAM works with is as follows:

176 V. P. Gergel et al.

min
ai≤xi≤bi

F0(x)

s.t. Fj(x) ≤ 1, j = 1, . . . ,M,
(1)

where x is a vector of design variables, a and b are the lower and upper bounds
for the design variables, respectively, F0(x) is the objective function, and Fj(x)
are the constraints. The numbers of design variables and constraints are n and
M , respectively. MAM attempts to solve this problem by using approximations
of the objective function and constraints in a series of trust regions. The trust
region strategy seeks to zoom in on the region where the constrained minimum
is achieved. It aims at finding a trust region that is sufficiently small for the
approximations to be of sufficiently good quality to improve the design and
contains the point of the constrained minimum as an interior point. The main
loop of the MAM is organized as follows.

Algorithm (MAM).

1. Initialization: choose a starting point x0 and initial trust region [a0, b0] such
that x0 ∈ [a0, b0].

2. On the kth iteration, the current approximation to the constrained minimum
is xk, and the current trust region is [ak, bk] ⊂ [a0, b0].
(a) Design of Experiments (DoE). A set of points xi

k ∈ [ak, bk] is chosen to
be used for building approximations. Responses are evaluated at the DoE
points and approximations are built using the obtained values. Currently,
the pool of approximation methods available in MAM consists of meta-
model assemblies [12] and the moving least-squares metamodels [13–16].
Other metamodel types could be used as well.
Denote the approximate objective function and constraints by ˜F k

0 (x) and
˜F k
j (x), respectively.

(b) The original optimization problem (1) is replaced by the following:

min
ak
i ≤xk

i ≤bi

˜F k
0 (x)

s.t. ˜F k
j (x) ≤ 1, j = 1, . . . , M.

(2)

The approximate problem (2) is solved using Sequential Quadratic Pro-
gramming (SQP). The solution of this problem determines the center of
the next trust region.

(c) The size of the next trust region is determined depending on the quality
of approximations on the previous iteration, on the history of points xk,
and on the size of the current trust region [7].

(d) The termination criterion is checked (it is a part of the trust region strat-
egy and depends on the position of the point xk+1 in the current trust
region, the size of the current trust region and the quality of approxima-
tions). If the termination criterion is satisfied, the algorithm proceeds to
step 3. Otherwise, it returns to step 2.

3. Optimization terminates. The obtained approximation to the solution of prob-
lem (1) is xk+1.

Parallel Multipoint Approximation Method 177

The approximations ˜F k
j (x), j = 0, . . . ,M, are selected in such a way that

their evaluation is inexpensive as compared to the evaluation of the original
response functions Fj(x). For example, intrinsically linear functions were suc-
cessfully used for a variety of design optimization problems in [3,19]. The approx-
imations are determined by means of the weighted least squares:

min
P

∑

p=1

wpj

[

Fj(xp) − ˜F k
j (xp, aj)

]2

. (3)

In (3), minimization is carried out with respect to the tuning parameters aj ; wpj

are the weight coefficients, and P is the number of sampling points in Design of
Experiments (DoE), which must not be less than the number of parameters in
the vector aj .

The weight coefficients wpj strongly influence the difference in the quality
of the approximations in different regions of the design variable space. Since in
realistic constrained optimization problems the optimum point usually belongs
to the boundary of the feasible region, the approximation functions should be
more accurate in such domain. Thus, the information at the points located near
the boundary of the feasible region is to be treated with greater weights. In
a similar manner, a larger weight can be allocated to a design with a better
objective function (see [3,19]).

As optimization steps are carried out, a database with response function
values becomes available. In order to achieve good quality approximations in
the current trust region, an appropriate selection of DoE points must be made.
In this work, DoE points in each trust region are generated randomly. Gen-
erally, points located far from the current trust region would not contribute
to the improvement of the quality of the resulting approximations in the trust
region. For this reason, only points located in a neighborhood of the current trust
region are taken into account, as depicted in Fig. 1. A box in the space of design

Fig. 1. Current trust region (smaller box) and its extension (larger box): points outside
the larger box are not used for building the approximate functions

178 V. P. Gergel et al.

variables, which is approximately 1.5 to 1.8 times larger than the box represent-
ing the current trust region, was found by numerical experimentation to be a
reasonable choice for the size of the neighborhood.

In this work, an approach is used that is based on the assembly of different
approximate models {ϕl} into one metamodel using the following form (note
that the indices j and k are suppressed to simplify notation):

˜F (x) =
NF
∑

l=1

blϕl(x), (4)

where NF is the number of regressors in the model pool {ϕl}, and bl are the cor-
responding regression coefficients. The procedure used consists of two subsequent
steps. In the first step, the parameters al of individual functions (regressors) ϕl in
(4) are determined by solving a weighted least-squares problem using a specified
DoE of P points:

min
P

∑

p=1

wp [F (xp) − ϕl(xp, al)]
2
,

where minimization is carried out with respect to the tuning parameters al.
In the second step, based on the same DoE and keeping the obtained param-

eters al fixed, a vector b in (4) is estimated using the following formulation:

min
P

∑

p=1

wp

[

F (xp) − ˜F (xp, b)
]2

,

which leads to solving a linear system of NF equations with NF unknowns bl,
where NF is the number of regressors in the model pool {ϕl}.

The selection of the regressors {ϕl} is based on the number of sampling points
currently located in the trust region. In the mid-range approximation framework,
inexpensive approximate models for objective and constraint functions are built
using the minimum required number of sampling points. The simplest case is
that of a linear function of the tuning parameters a:

ϕ(x) = a0 +
N

∑

i=1

aixi.

This structure can be extended to an intrinsically linear function. Such func-
tions are nonlinear but they can be reduced to linear ones by simple transfor-
mations. The most useful function among them is the multiplicative function

ϕ(x) = a0

N
∏

i=1

xi
ai .

Intrinsically linear functions have been successfully used for a variety of
design optimization problems. The advantage of these approximation functions

Parallel Multipoint Approximation Method 179

is that a relatively small number N + 1 (N is the number of design variables) of
tuning parameters ai is to be determined, and the corresponding least-squares
problem is solved easily. This is the most important feature of such approxima-
tions as it allows applying them to large-scale optimization problems.

Other intrinsically linear functions may be considered in the model pool, e.g.,

ϕ(x) = a0 +
N

∑

i=1

ai/xi,

ϕ(x) = a0 +
N

∑

i=1

aix
2
i ,

ϕ(x) = a0 +
N

∑

i=1

ai/x2
i ,

ϕ(x) = a0 +
N

∑

i=1

aix
3
i ,

ϕ(x) = a0 +
N

∑

i=1

ai/x3
i .

As more points are added to the database, the approximations may be
switched to higher quality models, e.g., a rational model

ϕ(x) =
a1 + a2x1 + a3x2 + ... + an+1xn

1 + an+2x1 + an+3x2 + ... + a2n+1xn
. (5)

The coefficients in (5) are determined using a least-squares approach which
reduces to a nonlinear optimization problem with a constraint on the sign of
the denominator (positive or negative). The latter is necessary in order to pre-
vent the denominator from crossing the zero axis within a specified trust region.
One may note that this formulation may yield an objective function with many
local minima. Currently, this problem is resolved using optimization restarts
from a specified number of initial guesses randomly generated in a trust region.

Tests results demonstrated that, although the above functions may describe
the global behavior rather poorly, such approximations prove to be efficient in
the mid-range approximation framework of MAM.

3 Parallel Multipoint Approximation Method

Let us consider possible methods of parallelization that could be applied to the
problems considered.

First, one can parallelize the computation of the functions describing the opti-
mized object. This way is an obvious as well as necessary one since, in industrial
design optimization problems, the computation of even a single function value

180 V. P. Gergel et al.

may take several hours. However, this method is a specific one for each par-
ticular problem. Here the computation issues are addressed at the level of the
application software in which the industrial modeling is performed (e.g., Ansys,
OpenFOAM, etc.).

Second, one can correct the algorithm with the purpose of parallel computing
several values of the objective function and constraints at different points of the
search domain. According to the MAM rules, in design of experiments, P sam-
pling points are formed in the current trust region at each iteration. The function
values at these points can be computed on different processors (nodes) in par-
allel. The above corresponds to the parallelization of Step 2a of the algorithm
using distributed memory. The number of sampling points generated within each
iteration may be set equal to P = k · NP , where NP is the number of available
processors (or nodes), and k ≥ 1. In terms of time, the latter will be equiva-
lent to NP function evaluations per step. This method has been implemented
successfully in [20] and has demonstrated a good efficiency since, for numbers
of design variables of the order of 100, time is mainly consumed by the func-
tion evaluations, whereas the work of the MAM itself (in the sequential regime)
introduces a minor overhead.

However, when the number of variables becomes of the order of 1000, the
work of the sequential part of MAM begins to affect the total problem solving
time essentially (assuming that the time of computing the objective function
values remains constant). Thus, for the problem considered in Sect. 4, the time
of execution of a single iteration of the method increased by a factor of more
than 4000 (from 1.5 up to 6000 s) when increasing the number of variables from
100 up to 1000. Another approach to the parallelization of the algorithm has
therefore been applied within the framework of the present study: namely, the
computational rules of MAM providing for the construction of the approxima-
tion, the solution of the approximated problem, and the choice of the next trust
region (Steps 2b, 2c, and 2d of the algorithm) were parallelized.

In order to find the most time-consuming parts of the sequential program
developed earlier, we applied the Intel VTune Amplifier XE. The analysis per-
formed has shown that the most time-consuming operations in the execution of
MAM are matrix multiplication, the solution of the SLAE when constructing the
approximations, and the solution of the approximating problem by SQP. Matrix
multiplication and solution of SLAE are standard operations implemented in
many high-performance libraries. Here we used the corresponding parallel meth-
ods from the Intel MKL library. We parallelized the SQP method ourselves using
OpenMP.

4 Numerical Example

The example considered in this study is a classical engineering optimization
problem known as the scalable cantilevered beam [21]. The engineering object
to be optimized is shown in Fig. 2 (taken from [21]).

The design variables are the widths bi and heights hi of the segments. The
number of segments N can be chosen arbitrarily. The total length of the beam is

Parallel Multipoint Approximation Method 181

Fig. 2. The cantilevered beam

500 cm, the lengths of the segments are li = 500/N cm. There are N geometric
constraints (the aspect ratios of the blocks, i.e. heights divided by widths, should
not exceed 20) and N constraints on the stress, calculated at the left end of
each segment (stresses should not exceed σ̄ = 14 000N/cm2). There is also a
constraint on the displacement at the tip, which should not exceed 2.5 cm. The
load is P = 50 000 N; the Young’s modulus is E = 2 · 107 N/cm2.

The deflection yi at the right end of the ith segment is given by the following
recursive formulas:

y0 = y′
0 = 0,

y′
i = P ·li

E·Ii

[

L + li
2 −

i
∑

j=1

lj

]

+ y′
i−1,

yi = P ·l2i
2E·Ii

[

L −
i

∑

j=1

lj + 2li
3

]

+ y′
i−1li + yi−1.

The moment of inertia of the ith segment is Ii = bih
3
i /12, and the bending

moment at its left end is Mi = P [L + li − ∑i
j=1 lj]. The maximum bending

stress in the ith segment is then given by the following formula:

σi =
Mihi

2Ii

We should look for a design of smallest volume V =
∑N

i=1 bihili. The widths
bi vary from 1.0 to 10.0 cm and the heights hi from 5.0 to 100.0 cm. The opti-
mization problem is formulated as follows:

min
b,h

V (b, h)

s.t. 1.0 ≤ bi ≤ 10.0,
5.0 ≤ hi ≤ 100.0,

yN ≤ 2.5,
σi ≤ σ̄ = 14000,

hi

bi
≤ 20.

182 V. P. Gergel et al.

With N = 50 segments (corresponding to 100 design variables), the SQP
solution of the problem is V = 63704.598 cm3. The optimal values of the design
variables are given below (the first 50 entries are the widths, and the last 50
entries are the heights of the segments):

b = [3.246, 3.224, 3.202, 3.179, 3.156, 3.133, 3.109, 3.085, 3.061, 3.036,
3.011, 2.985, 2.959, 2.933, 2.905, 2.878, 2.850, 2.821, 2.792, 2.762,
2.731, 2.700, 2.668, 2.635, 2.602, 2.567, 2.532, 2.495, 2.458, 2.419,
2.379, 2.338, 2.295, 2.250, 2.204, 2.156, 2.105, 2.052, 1.996, 1.936,
1.873, 1.805, 1.732, 1.651, 1.562, 1.462, 1.345, 1.196, 1.023, 1.000] ,

h = [64.919, 64.480, 64.033, 63.581, 63.122, 62.656, 62.184, 61.703, 61.216, 60.720
60.216, 59.703, 59.182, 58.651, 58.110, 57.558, 56.996, 56.423, 55.837, 55.239
54.628, 54.003, 53.363, 52.707, 52.035, 51.344, 50.635, 49.906, 49.155, 48.381
47.582, 46.754, 45.897, 45.008, 44.082, 43.116, 42.105, 41.041, 39.919, 38.729
37.462, 36.102, 34.630, 33.020, 31.240, 29.241, 26.910, 23.919, 20.465, 14.639] .

By MAM, we obtained the solution V = 63935.360 cm3, using 2201 function
evaluations (as compared to almost 10 000 evaluations used by SQP). The num-
ber of points in the trust region used to build the approximations was 200. The
optimal values of the design variables obtained by MAM are given below:

b = [3.238, 3.204, 3.202, 3.170, 3.176, 3.128, 3.108, 3.089, 3.057, 3.003
3.027, 2.986, 2.959, 2.952, 2.885, 2.855, 2.864, 2.847, 2.803, 2.762
2.737, 2.722, 2.630, 2.645, 2.590, 2.558, 2.547, 2.480, 2.693, 2.391
2.368, 2.310, 2.307, 2.227, 2.176, 2.149, 2.106, 2.016, 2.007, 1.925
1.864, 1.843, 1.758, 1.635, 1.582, 1.934, 1.332, 1.173, 1.026, 2.419] ,

h = [64.764, 64.083, 64.036, 63.392, 63.518, 62.566, 62.153, 61.772, 61.149, 60.054
60.534, 59.728, 59.182, 59.033, 57.695, 57.105, 57.274, 56.943, 56.057, 55.233
54.747, 54.433, 52.590, 52.902, 51.802, 51.150, 50.943, 49.597, 51.567, 47.811
47.373, 46.190, 46.140, 44.543, 43.525, 42.991, 42.119, 40.308, 40.141, 38.506
37.268, 36.839, 35.153, 32.702, 31.615, 28.304, 26.642, 23.447, 20.536, 9.417] .

The solution obtained by MAM is very close to the reference solution
obtained by SQP, except for the last design variable (the height of the last
segment), which indicates that the problem is insensitive to this variable near
the optimum, making it hard for metamodels to capture this dependence. Both
SQP and MAM solutions are, however, feasible and differ only slightly in the
value of the objective function.

Next, let us compare the work time of the sequential and parallel algorithms
when solving large-scale problems. The dimensionality N of the problem being
solved was varied from 100 up to 1000 design variables, which corresponds to a
variation of the number of segments of the cantilevered beam from 50 to 500. The
number of points in the trust region used to build the approximations was 2N .
Both algorithms were run on a single node of the cluster (the specifications of the

Parallel Multipoint Approximation Method 183

node are listed below), the parallel algorithm employed all 16 processors cores
available. Since the time of computing the objective function and the constraints
in the test problem was negligible, these were computed on the same node.

Table 1. Time and speedup

N TMAM TPMAM Speedup

100 15.4 11.9 1.3

200 167 89 1.9

400 2476 837 3.0

600 9678 2777 3.5

800 27826 6948 4.0

1000 67674 13771 4.9

Table 2. Function evaluations

N IMAM FMAM FSQP

100 10 2201 9901

200 10 4402 28143

400 11 9599 84211

600 10 13200 146046

800 10 17600 221079

1000 10 22000 305308

Table 1 reflects the work time (in seconds) of the sequential algorithm and
that of the parallel one subject to the number of variables. The number of MAM
iterations IMAM as well as the number of function evaluations FMAM required
for solving the problem are presented in Table 2. For comparison purposes, the
number of function value computations FSQP that would be required to solve
the initial (non-approximated) problem by the SQP method is also given. In
all conducted experiments, the objective function values in the sequential and
parallel versions of the algorithm were the same (up to computational errors)
and negligibly differed from the solution obtained by SQP. The reduction of the
number of the function evaluations required to solve the problem using MAM
as compared to the use of SQP was demonstrated visibly.

The computational experiments were carried out on a high-performance clus-
ter at Lobachevsky State University of Nizhny Novgorod. A cluster node includes
two Intel Sandy Bridge E5-2660 2.2 GHz CPUs and 64 Gb RAM. Each CPU has
8 cores, i.e. a total of 16 physical cores were available at the node. MS Visual
Studio 15 and Intel Fortran Compiler were used to implement the algorithm.

184 V. P. Gergel et al.

5 Conclusions

Recent developments in the Multipoint Approximation Method (MAM) made
it capable of solving large-scale industrial optimization problems. The fact that
MAM solves the initial problem by using approximations of the objective func-
tion and constraints is the primary distinctive feature of the method. Within
the framework of the present study, we developed a parallel version of MAM ori-
ented to the reduction of the work time of the optimization algorithm (assuming
that the computation of the values of the objective function and constraints has
already been parallelized). The experiments performed have demonstrated an
acceptable speedup when solving large-scale problems employing 16 cores on a
single cluster node. The performance was demonstrated on a benchmark example
of structural optimization known as the scalable cantilevered beam.

References

1. Toropov, V.: Simulation approach to structural optimization. Struct. Optim. 1,
37–46 (1989)

2. Toropov, V.: Multipoint approximation method in optimization problems with
expensive function values. In: Sydow, A. (ed.) Proceedings of the 4th International
Symposium on Systems Analysis and Simulation, pp. 207–212. Elsevier (1992)

3. Toropov, V., Filatov, A., Polynkin, A.: Multiparameter structural optimization
using FEM and multipoint explicit approximations. Struct. Optim. 6, 7–14 (1993)

4. Shahpar, S., Polynkin, A., Toropov, V.: Large scale optimization of transonic
axial compressor rotor blades. In: 49th AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference, article no. 2008–2056.
AIAA (2008)

5. Polynkin, A., Toropov, V., Shahpar, S.: Design optimization of aircraft engine
components. In: Proceedings of 7th ASMO UK/ISSMO Conference on Engineering
Design Optimization, Process and Product Improvement (2008)

6. Polynkin, A., Toropov, V., Shahpar, S.: Multidisciplinary optimization of turboma-
chinery based on metamodel built by genetic programming. In: 13th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference (2010)

7. van Keulen, F., Toropov, V., Markine, V.: Recent refinements in the multi-
point approximation method in conjunction with adaptive mesh refinement. In:
McCarthy, J.M. (ed.) Proceedings of ASME Design Engineering Technical Confer-
ences and Computers in Engineering Conference, pp. 1–12. ASME, Irvine (1996)

8. Toropov, V., van Keulen, F., Markine, V., de Boer, H.: Refinements in the multi-
point approximation method to reduce the effects of noisy responses. In: 6th
AIAA/NASA/ISSMO Symposium Multidisciplinary Analysis and Optimization,
pp. 941–951. AIAA (1996)

9. Toropov, V., Markine, V., Holden, C.: Use of mid-range approximations for
optimization problems with functions of domain-dependent calculability. In: 3rd
ISSMO/UBCAD/UB/AIAA World Congress of Structural and Multidisciplinary
Optimization (1999)

10. Toropov, V., Markine, V.: The use of simplified numerical models as mid-range
approximations. In: 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, pp. 952–958 (1996)

Parallel Multipoint Approximation Method 185

11. Toropov, V., Alvarez, L.: Creation of multipoint approximations using genetic pro-
gramming. In: Parmee, I.C. (ed.) Adaptive Computing in Design and Manufacture,
3rd International Conference, pp. 21–24. PEDC, Dartington (1998)

12. Polynkin, A., Toropov, V.: Mid-range metamodel assembly building based on linear
regression for large scale optimization problems. Struct. Multidiscip. Optim. 45(4),
515–527 (2012). https://doi.org/10.1007/s00158-011-0692-1

13. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods.
Math. Comput. 87, 141–158 (1981)

14. Liszka, T.: An interpolation method for an irregular net of nodes. Int. J. Num.
Meth. 20, 1599–1612 (1984)

15. Choi, K., Youn, B., Yang, R.-J.: Moving least squares method for reliability-based
design optimization. In: 4th World Congress of Structural and Multidisciplinary
Optimization, Dalian, China (2001)

16. Toropov, V., Schramm, U., Sahai, A., Jones, R., Zeguer, T.: Design optimization
and stochastic analysis based on the moving least squares method. In: Herskovits,
J., Mazorche, S., Canelas, A. (eds.) 6th World Congress of Structural and Multi-
disciplinary Optimization, article no. 9412 (2005)

17. Polynkin, A. Toropov, V.: Recognition of design variable inter-dependencies
using cross-validated moving least-squares method. In: Proceedings of the 51st
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, art. no. 2010–2985. AIAA (2010)

18. Ollar, J., Toropov, V., Jones. R.: Mid-range approximations in sub-spaces for
MDO problems with disparate discipline attributes. In: 15th AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference, article no. 2014–2437. AIAA
(2014). https://doi.org/10.2514/6.2014-2437

19. van Keulen, F., Toropov, V.: New developments in structural optimization using
adaptive mesh refinement and multi-point approximations. Eng. Optim. 29, 217–
234 (1997). https://doi.org/10.1080/03052159708940994

20. Polynkin, A., Toropov, V., Shahpar, S.: Adaptive and parallel capabilities in the
multipoint approximation method. In: 12th AIAA/ISSMO Multidisciplinary Anal-
ysis and Optimization Conference, art. no. 2008–5803. AIAA (2008). https://www.
doi.org/10.2514/6.2008-5803

21. Vanderplaats, G.: Multidiscipline Design Optimization. Vanderplaats Research &
Development Inc., Colorado Springs (2001)

https://doi.org/10.1007/s00158-011-0692-1
https://doi.org/10.2514/6.2014-2437
https://doi.org/10.1080/03052159708940994
https://www.doi.org/10.2514/6.2008-5803
https://www.doi.org/10.2514/6.2008-5803

High-Performance Computation of Initial
Boundary Value Problems

Valery Il’in(B)

Institute of Computational Mathematics and Mathematical Geophysics,
Novosibirsk State University, Novosibirsk, Russia

ilin@sscc.ru

https://icmmg.nsc.ru/ru/content/employees/ilin-valeriy-pavlovich

Abstract. This paper considers the efficient methods and high- per-
formance parallel technologies for the numerical solution of the multi-
dimensional initial boundary value problems, with a complicated geom-
etry of a computational domain and contrast properties of a material
on the heterogeneous multi-processor systems with distributed and hier-
archical shared memory. The approximations with respect to time and
space are carried out by implicit schemes on the quasi-structured grids.
At each time step, the iterative algorithms are used for solving the sys-
tems of linear or nonlinear equations that, in general, are non-symmetric
with a special choice of the initial guess. The scalable parallelism is pro-
vided by two-level iterative domain decomposition methods, with param-
eterized intersection of subdomains in the Krylov subspaces, which are
accelerated by means of a coarse grid correction and polynomial or other
types of preconditioning. A comparative analysis of the performance and
speed up of the computational processes is presented, based on a simple
model of parallel computing and data structures.

Keywords: Nonstationary boundary value problems
High-order approximations · Stability · Initial guess
Iterative processes · Domain decomposition · Scalable parallelism

1 Introduction

In this paper, we consider various numerical approaches to solving multi-
dimensional initial boundary value problems (IBVPs) for nonstationary partial
differential equations (PDEs) in complicated computational domains with real
data, and offer a comparative analysis of their performance on modern heteroge-
neous multi-processor systems (MPS) with distributed and hierarchical shared
memory. In general, we will assess the efficiency of numerical solutions of a class
of mathematical problems by the volume of computational resources required
to provide the accuracy needed on a particular type of MPS. Of course, such a

The work is supported by the Russian Science Foundation (grant 14-11-00485 P)
and the Russian Foundation for Basic Research (grant 16-29-15122 ofi-m).

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 186–199, 2018.
https://doi.org/10.1007/978-3-319-99673-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_14&domain=pdf

High-Performance Computation of Initial Boundary Value Problems 187

statement is not quite clear, and we should refine many details in this important
concept. A simple way to do this consists in measuring run time and using these
measurements as a performance criterion. Other tools could be the estimation
of computing time and communication time based on a certain model for the
implementation of the problem on MPS. In what follows, we will use the second
approach and consider simple representations for both the arithmetical execu-
tion time Ta and the communication time Tc. In total, the performance of the
numerical solution of the problem will be defined by the run time Tt = Ta + Tc.
We suppose here that the arithmetical units do not work during data transfer,
although the whole picture can be more complicated.

The performance is characterized by two main aspects: mathematical effi-
ciency of numerical methods and computational technologies for software imple-
mentation on a particular hardware architecture. The algorithmic issues depend
on two main mathematical stages: discrete approximation of the original con-
tinuous problem and numerical solution of the resulting algebraic task. It is
important that we do not examine model problems but problems with real data:
multi-dimensional boundary value problems in computational domains with a
complicated geometry, multi-connected and multi-scaled (in general) piece-wise
smooth boundaries and contrast properties of a material, which provide singu-
larities of the solution to be sought. It means that in order to ensure a high
numerical resolution and accuracy of the computational model, we must use fine
grids with a very small time step τ and a spatial step h. So we have, in princi-
ple, a “super task” with a very large number of degrees of freedom (d. o. f.) or
a high dimension of the corresponding discrete problem. In general, the origi-
nal problem can be nonlinear and multi-disciplinary or multi-physical, i.e. it is
described either by a system of PDEs or by the corresponding variational rela-
tions for unknown vector functions. Also, the mathematical statement may not
be a direct one with all the coefficients of the equations given and with initial and
boundary conditions, it may be instead an inverse problem that includes vari-
able parameters to be found from the condition of minimization of some given
objective functional of the unknown solution. For simplicity, however, we will
mainly consider direct IBVPs for a single linear scalar equation. A review of the
corresponding models can be found in [11] (see also the literature cited therein).
We also do not consider in detail other computational steps of the mathemati-
cal modeling (grid generation, post-processing, visualization of the results, etc.)
since they are of a more general type and are almost defined by the problem
specifications.

The approximation approaches are divided into temporal and spatial dis-
cretizations. If we carry out the spatial approximation at first by the finite volume
method, the finite element method or any other method [2], then we will obtain
a system of ordinary differential equations (ODEs). There are various explicit
and implicit, multi-stage and/or multi-step algorithms of different orders [3] that
may be applied to solve such a system. It is important to remark that modern
computational trends give preference to methods of high order of accuracy since

188 V. Il’in

they make it possible to decrease the amount of data communication, which is
not only a slow operation but an energy consuming process.

If we use schemes that are implicit with respect to time, thereby providing a
stable procedure for numerical integration, it will be necessary to solve at each
step a system of linear algebraic equations (SLAEs) of special type, with large
sparse matrices. This is the most expensive computational stage as it requires
a large number of arithmetical operations and a big amount of memory, and
both grow nonlinearly when the number of d. o. f. increases [4]. In this case, the
main tool to ensure a high performance is the scalable parallelization of domain
decomposition methods (DDM), which belongs to a special field of computational
algebra (see, for example, [5–7]). A detailed review of parallelization approaches
for nonstationary problems is presented in [8,9]. In what follows, we will con-
sider direct IBVPs only, whereas the ideal of engineering problems consists in
solving inverse problems, which involves computing optimized parameters of the
mathematical model under the condition of constrained optimization of a given
objective functional. However, this is a topic that requires a special research.

The paper is structured as follows. In Sect. 2, the example of the heat transfer
equation is considered regarding various aspects of temporal and spatial approxi-
mations. Section 3 deals with geometrical and algebraic issues of DDM as applied
to nonstationary problems. In the last Section, we discuss an application of the
given analysis for the parallel solution of practical problems.

2 Discretization Issues of Nonstationary Problems

Let us consider the initial boundary value problem (IBVP)

∂u

∂t
+ L(u) = f(x, t), x ∈ Ω ⊂ Rd, d ≥ 2,

Ω̄ = Ω ∪ Γ, 0 < t ≤ Te < ∞, u
∣
∣
t=0

= u0(x),

l(u)
∣
∣
Γ

= g(x, t), x = (x1, . . . , xd),

(1)

where t and x are, respectively, temporal and spatial variables; u0(x) is a given
initial guess; L is some differential operator, possibly, a nonlinear one and, in
general, a matrix operator. In this case, the unknown u = (u1, . . . , uNu

)T is a
vector function. We call task (1) a multi-disciplinary or multi-physics problem.
Here Ω̄ denotes a bounded d-dimensional computational domain with boundary
Γ =

⋃NΓ

k=1 Γk; l is a boundary-condition operator, which can be of various types
li (Dirichlet, Neumann or Robin) at the corresponding boundary segments Γi; f
and g are functions that may depend on the unknown solution. We suppose that
IBVP (1) describes a practical problem with real data. This means, for example,
that the computational domain Ω̄ may have a complicated geometry, possibly,
with multi-connected piecewise smooth curvilinear boundary surfaces Γk. As an
illustration, the following linear scalar differential operator of the second order
is considered in (1):

High-Performance Computation of Initial Boundary Value Problems 189

Lu = −
n∑

i,j=1

∂

∂xi

(

ai,j(x)
∂u

∂xj

)

+
n∑

i=1

bi
∂u

∂xi
+ cu = f(x). (2)

The corresponding boundary conditions can be written down as

αku + βk

d∑

i,j=1

ai,j
∂u

∂xj
cos(n, xj) = gk, |αk| + |βk| �= 0, x ∈ Γk, (3)

where n denotes the outward unit normal to Γk.
Note that if the original system of PDEs is complex and has temporal deriva-

tives of high order, it can always be transformed into a first order real system
by including additional unknown functions. Also, formulas (1) can describe an
inverse problem if it contains variable parameters p = (p1, . . . , pNp

)T , which
should be optimized by means of the minimization of a prescribed objective
functional. For simplicity, the original IBVP is written in the classical differen-
tial form, and it can be re-described in a variational style. It is supposed that
the input data ensures the smoothness of the numerical methods in all cases.
One more remark: in general, some boundary segments Γk can move, but we will
primarily consider the boundary Γ fixed.

The approximation of the original problem (1) can be made in two steps. In
the first step, we generate a spatial grid Ωh, which, in the three-dimensional case
(d = 3), for example, a set of nodes (vertices), edges, faces (possibly, curvilinear),
and finite elements or volumes. After applying the spatial approximation using
the finite volume method, the finite element method, the discontinuous Galerkin
method or other approaches, we obtain a system of N ordinary differential equa-
tions:

Bu̇h + Auh = fh,

u̇h, uh, fh ∈ RN ; B,A ∈ RN,N ,
(4)

where u̇ denotes the time derivative of u, and the components of the vector
fh = {fl} and of the matrices B = {bl,l} and A = {al,l} may, in general, depend
on the unknown solution.

In a simple case, the unknown vector uh = {uh
l } consists of approximate

nodal values of the original solution (u)h = {u(xl)} but, basically, it can include,
for instance, other functionals, and some derivatives of u at different points. The
vector (u)h of the discretized unknown solution satisfies the equation

B(u̇)h + A(u)h = (f)h + ψh, ψ = O(hγ), (5)

where ψh is the spatial approximation (truncation) error of Eq. (4), h is the
maximal distance between neighboring grid nodes, and γ > 0 is the order of the
approximation. The matrix A in (4) can be defined as

(Auh)l ≡ al,lul +
∑

l′∈ωl

al,l′ul′ = fl, l ∈ Ωh, (6)

where Ωh can be considered to be a set of indices that determine the number
N = O(h−1) of all unknowns, and ωl denotes the stencil of the lth node, i.e. the

190 V. Il’in

set of neighboring nodes. In other words, ωl is the union of the column numbers
of the nonzero elements in the lth row of the matrix A (the number of such
values will be denoted as Nl). The total set made up by all ωl, l = 1, . . . , N ,
determines the portrait of the sparse matrix A (Nl
 N). Note that Nl does not
depend on the matrix dimension N , which can be estimated as N ≈ 107 ÷ 1010

for a large-size real problem. Moreover, for d = 3, we have Nl ≈ 10 ÷ 30 for
the first or the second order schemes, whereas Nl > 100 for the fourth to sixth
orders of accuracy.

To solve ODEs (4), it is possible to apply various multi-stage and/or multi-
step numerical integrators of different orders of accuracy with respect to the
time step τn. For simplicity, we consider the two-step weighted scheme

B
un+1 − un

τn
+ θ(Aun+1 − fn+1) = (1 − θ)(fn − Aun),

θ ∈ [0, 1], n = 0, 1, . . . ,

(7)

where n is a time-step number; θ = 0 corresponds to the explicit Euler method,
otherwise, we have an implicit algorithm. If θ = 1/2, formula (7) corresponds
to the Crank–Nicolson scheme, which has the second order approximation error
ψτ = O(τ2), τ = maxn{τn}; besides, ψτ = O(τ) for θ �= 1/2. Here and in what
follows, we omit the index “h” for the sake of brevity. If we denote by (u)n

a vector whose components are the values of the exact solution u(tn,xl), and
substitute it for un in (7), then we have

B
(u)n+1 − (u)n

τn
+ θ[A(u)n+1 − (f)n+1] = (1 − θ)[(f)n − A(u)n] + ψn, (8)

where ψn = ψτ + ψh is the total, i.e. temporal and spatial, approximation error
of the numerical scheme.

If relations (7) are nonlinear, we should use quasi-linearization for each n,
i.e. apply the iterative process and solve SLAEs at each “nonlinear” step.

In the implicit scheme with θ �= 0, we have to solve a large algebraic sys-
tem by some iterative approach, even for the original linear IBVP, since direct
(noniterative) algorithms are too expensive in our case (matrices B + τnθA are
supposed to be nonsingular). Finally, from (7), we do not calculate un+1 but
some approximate value ũn+1, which produces the residual vector

rn = (1 − θ)(f̃n − Aũn) − B
ũn+1 − ũn

τn
+ θ(Aũn+1 − f̃n+1). (9)

Now let us determine the total vector of the original solution, zn+1 = (u)n+1−
ũn+1. It follows from (8) and (9) that the vectors zn+1, rn and ψn are connected
by a relation that, for the reduced original problem (the elements of the matrices
A and B, as well as those of the vectors fn are supposed to be independent of
u and t), can be written down as

C1z
n+1 = C2z

n + τn(ψn − rn),
C1 = B + θA, C2 = B − (1 − θ)A.

(10)

High-Performance Computation of Initial Boundary Value Problems 191

If
‖τn(ψn − rn)‖ ≤ τ‖ψ‖ (11)

for some vector norm, then we obtain from (10) the following estimate:

‖zn+1‖ ≤ ρ‖zn‖ + τρ1‖ψ‖,

ρ = ‖C−1
1 C2‖, ρ = ‖C−1

1 ‖.
(12)

It follows from the considerations above that if the iterative residual rn at
each time step has the same order of accuracy as the approximation error ψn,
then the total solution error does not change the order of accuracy. One impor-
tant issue in solving a nonstationary problem consists in choosing the initial
guess for the iterative solution of SLAEs at each time step. It is natural that
the un values would be a good approximation to un+1 to reduce the number of
iterations, provided that the time step τn is sufficiently small. Another simple
approach is based on the linear extrapolation with respect to time:

un+1 = un + (un − un−1)τn/τn−1 + O(τ2). (13)

In this case, we need to save the numerical solution for one additional time step.
One of the popular methods for solving ODEs is based on the application of
predictor-corrector schemes. For example, if we use in (7) the Crank–Nicolson
scheme, for which θ = 1/2 and ψτ = O(τ2), or any other implicit method, this
involves including a preliminary predictor stage for computing an approximate
value of un+1 by the simple explicit formula

B(ûn+1 − un) = τn(fn − Aun) ≡ τnrn, (14)

where B is a diagonal or another easily invertible matrix, and ûn+1 is considered
to be a predicted value of un+1. It can be interpreted as a zero iteration, un+1,0 =
ûn+1, and corrected by m iterations of the form

B(un+1,s − un) = τn[θ(fn+1 − Aun+1,s−1) + (1 − θ)(fn − Aun)],
s = 1, . . . ,m.

(15)

This approach is called PCm and in practice provides an acceptable small resid-
ual

rn+1,s = τn[θ(fn+1 − Aun+1,s−1) + (1 − θ)rn] − B(un+1,s − un)

in a few iterations.
An improved idea to choose the initial guess can be proposed based on the

least-squares method (LSM; see [10]). Let us save several previous time-step
solutions un−1, . . . , un−q, and compute the value un+1,0 by means of the linear
combination

un+1,0 = un + c1v1 + . . . + cqvq = un + V c,

vl = un − un−l, l = 1, . . . , q,

c = (c1, . . . , cq)T ∈ Rq, V = (v1, . . . , vq) ∈ RN,q.

(16)

192 V. Il’in

The system of Eq. (7) can be rewritten as

Cun+1 ≡ (τ−1
n B + θA)un+1 = gn+1,

gn+1 = [τ−1
n B + (1 − θ)A]un + θfn+1 + (1 − θ)fn.

(17)

So it follows from relation (16) that the initial residual rn+1,0 = gn+1 −
Cun+1,0 of system (17) satisfies the equality

rn+1,0 = rn − CV c. (18)

Formally, here we can set rn+1,0 = 0 and obtain overdetermined SLAE for the
vector c:

Wc ≡ CV c = τn, W ∈ RN,q. (19)

The generalized normal (with a minimal residual) solution of this system can
be computed by the SVD (Singular Value Decomposition) algorithm or by the
least-squares method (LSM), which gives the same result in exact arithmetics.
The LSM gives the “small” symmetric system

Gc ≡ WT Wc = WT τn, G = V T CT CV ∈ Rq,q, (20)

which is nonsingular if W is a full-rank matrix. It is easy to verify that Eq. (20)
implies the orthogonality property of the residual:

WT rn+1,0 = 0. (21)

Note that, instead of the LSM approach (20), (21), it is possible to apply the
so-called deflation principle [11], which uses the following orthogonality property
instead of (21):

V T rn+1,0 = 0. (22)

In this case, we have to solve SLAE

Hc ≡ V T CV c = V T c, H ∈ Rq,q, (23)

to determine the vector c. If this vector is computed from system (20) or (23),
then the initial guess un+1,0 for SLAEs (17) is determined from (16). For solving
system (17) at each time step, it is natural to apply some preconditioned iterative
method in Krylov subspaces. The stopping criterion of such iterations is

‖rn+1,m‖ = ‖gn+1 − Cun+1,m‖ ≤ ε‖gn+1‖ (24)

for some given tolerance ε
 1. If condition (24) is satisfied, we set un+1 =
un+1,m and go to the next time step.

High-Performance Computation of Initial Boundary Value Problems 193

3 Geometrical and Algebraic Issues of Algorithms

The general scheme of solution of nonsteady IBVPs can be described as having
two main parts. The first one consists in generating an algebraic system at
each time step. Usually, this stage is parallelized easily enough, with a linear
speedup when the number of computer units grows. The more complicated stage
includes solving the algebraic system of equations, linear or nonlinear (SLAEs or
SNLAEs); such tasks require a large amount of computational resources (memory
and number of arithmetic operations) as the number of d. o. f. grows.

If we have SNLAEs at each time step, the solution methods involve a two-
level iterative process. At first, some type of quasi-linearization is applied, and
at each “nonlinear” iteration (Newton or Jacobi type, for example), we need
to solve SLAEs, usually with a large sparse ill-conditioned matrix. This second
stage will be the main issue in our considerations in what follows.

The main tool to achieve scalable parallelism on modern MPS is based on a
domain decomposition method that can be interpreted in an algebraic or geo-
metrical framework. Also, domain decomposition methods can be considered at
both the continuous and the discrete levels. We use the second approach and
suppose that the original computational domain Ω has already been discretized
into a grid computational domain Ωh. So, in what follows, the DDM is imple-
mented only in grid computational domains, and the upper index “h” will be
omitted for brevity.

Let us decompose Ω into P subdomains (with or without overlap):

Ω =
P⋃

q=1

Ωq, Ω̄q = Ωq ∪ Γq, Γq =
⋃

q′∈ωq

Γq,q′ , Γq,q′ = Γq ∩ Ω̄q′ , q′ �= q. (25)

Here Γq is the boundary of Ωq, which is composed of the segments Γq,q′ , q′ ∈ ωq,
and ωq = {q1, . . . , qMq

} is a set of Mq contacting or conjugate subdomains.
Formally, we can also denote by Ω0 = Rd \ Ω the external subdomain:

Ω̄0 = Ω0 ∪ Γ, Γq,0 = Γq ∩ Ω̄0 = Γq ∩ Γ, Γq = Γ i
q ∪ Γq,0, (26)

where Γ i
q =

⋃

q′ �=0 Γq,q′ and Γq,0 = Γ e
q stand for the internal and external parts of

the boundary of Ωq. We also define the overlap Δq,q′ = Ωq

⋂
Ωq′ of neighboring

subdomains. If Γq,q′ = Γq′,q and Δq,q′ = Ø, then the overlap of Ωq and Ωq′ is
empty. In particular, we suppose in (25) that each of the P subdomains has no
intersection with Ω0 (Ωq

⋂
Ω0 = Ø).

The idea of the DDM involves the definition of the sets of IBVPs that should
be equivalent to the original problem (1) in all subdomains:

∂uq

∂t
+ Luq(x) = fq, x ∈ Ωq, lq,q′(uq)

∣
∣
Γq,q′

= gq,q′ ≡ lq′,q(uq′)
∣
∣
Γq′,q

,

q′ ∈ ωq, lq,0uq

∣
∣
Γq,0

= gq,0, q = 1, . . . , P.
(27)

Interface conditions in the form of Robin boundary conditions (instead of (3),
for simplicity) are imposed in each segment of the internal boundaries of the
subdomains, with the operators lq,q′ from (27):

194 V. Il’in

αquq + βq
∂uq

∂nq

∣
∣
∣
∣
Γq,q′

= αq′uq′ + βq′
∂uq′

∂nq′

∣
∣
∣
∣
Γq′,q

,

|αq| + |βq| > 0, αq · βq ≥ 0.

(28)

Here αq′ = αq and βq′ = βq; nq is the outer normal to the boundary segment
Γq,q′ of the subdomain Ωq. Strictly speaking, two pairs of different coefficients,
α
(1)
q , β

(1)
q and α

(2)
q , β

(2)
q , should be given for conditions of type (28) on each piece

Γq,q′ , q′ �= 0, of the internal boundary. For example, α
(1)
q = 1, β

(1)
q = 0 and

α
(2)
q = 0, β

(2)
q = 1 formally correspond, respectively, to the continuity of the

solution sought and its normal derivative. The additive Schwarz algorithm in
DDM is based on an iterative process in which the BVPs in each subdomain Ωq

are solved simultaneously, and the right-hand sides of the boundary conditions
in (27) and (28) are taken from the previous iteration.

We implement the domain decomposition in two steps. At the first one, we
define subdomains Ωq without overlap, i.e. contacting grid subdomains have no
common nodes, and each node belongs to only one subdomain. Then we define
the grid boundary Γq = Γ 0

q of Ωq, as well as the extensions of Ω̄t
q = Ωt

q ∪ Γ t
q ,

Ω0
q = Ωq, t = 0, . . . ,Δ, layer by layer:

Γq ≡ Γ 0
q =

{

l′ ∈ ω̂l, l ∈ Ωq, l′ /∈ Ωq, Ω1
q = Ω̄0

q = Ωq ∪ Γ 0
q

}

,

Γ t
q =

{

l′ ∈ ω̂l, l ∈ Ωt−1
q , l′ ∈ Ωt−1

q , Ωt
q = Ω̄t−1

q = Ωt−1
q ∪ Γ t−1

q

}

.
(29)

Here Δ stands for the parameter of extension or overlap.
At each time step, the algebraic interpretation of the DDM, after the approx-

imations of BVPs (27) and (28), is described by the block version of SLAEs (17),

Cq,quq +
∑

r∈ω̂q

Cq,rur = gq, q = 1, . . . , P, (30)

where indices “n + 1” have been omitted for brevity; Cq,q and uq, fq ∈ RNΔ
q

are a block diagonal matrix and subvectors with components belonging to the
corresponding subdomain ΩΔ

q ; NΔ
q is the number of nodes in ΩΔ

q .
The implementation of the interface conditions between adjacent subdomains

can be described as follows. Let the lth node be a near-boundary one in the
subdomain Ωq. Then we write down the corresponding equation in the form

(Dq,qu)l ≡
(

cl,m + θl

∑

m/∈ωq

cl,m

)

ul +
∑

m∈ωq

cl,mum =

= gl +
∑

m/∈ωq

cl,m(θlul − um).
(31)

Here θl is some parameter that corresponds to different types of boundary condi-
tions at the boundary Γq, namely θl = 0 corresponds to the Dirichlet condition,

High-Performance Computation of Initial Boundary Value Problems 195

θl = 1 corresponds to the Neumann condition, and θl ∈ (0, 1) corresponds to the
Robin boundary condition.

If we denote D = block-diag{Dl,l}, then a simple variant of DDM is described
as the Schwarz (or block Schwarz–Jacobi) iterative method

Dus+1 = (D − C)us + g, s = 0, 1, (32)

Improved versions of this approach are given by preconditioned algorithms
in Krylov subspaces. Firstly, let us consider the advanced choice of the precon-
ditioning matrices.

In the case of an overlapping domain decomposition, the additive Schwarz
iterative algorithm is defined by the corresponding preconditioning matrix BAS ,
which can be described as follows (see [7]). For the subdomain ΩΔ

q with overlap

parameter Δ, we define a prolongation matrix RT
q,Δ ∈ RN,NΔ

q that extends the

vectors uq = {ul, l ∈ ΩΔ
q } ∈ RNΔ

q to RN according to the relations

(RT
q,Δuq)l =

{

(uq)l if l ∈ ΩΔ
q ,

0 otherwise.

The transpose of this matrix defines a restriction operator that restricts vec-
tors in RN to the subdomain ΩΔ

q . The diagonal block of the preconditioning
matrix BAS , which represents the restriction of the discretized BVP to the
qth subdomain, is expressed by Ĉq = Rq,ΔCRT

q,Δ. In these terms, the additive
Schwarz preconditioner is defined as

BAS =
P∑

q=1

BAS,q, BAS,q = RT
q,ΔĈ−1

q Rq,Δ.

Also, it is possible to define the so-called restricted additive Schwarz (RAS)
preconditioner by considering the prolongation RT

q,0 instead of RT
q,Δ, i.e.

BRAS =
P∑

q=1

BRAS,q, BRAS,q = RT
q,0Ĉ

−1
q Rq,Δ.

Note that BRAS is a nonsymmetric matrix, even if C is a symmetric one.
The third way to define the preconditioner consists in the weighted determi-

nation of the iterative values in the intersections of the subdomains. For example,
if the set of node indexes Sh

q =
⋂

q′ Ωh
q′ belongs to ns+1

q grid subdomains Ωh
q′ , and

we have ns+1
q different values of us+1

l for l ∈ Sh
q , then it is natural to compute

the real next iterative value of the subvector un+1
q by means of the least-squares

condition for the corresponding residual subvector.
Another type of preconditioning matrix which is used for DDM iterations

in Krylov subspaces is responsible for the coarse grid correction or aggregation
approach, which is based on a low-rank approximation of the original matrix C.
We define a coarse grid, or macrogrid, Ωc and the corresponding coarse space

196 V. Il’in

with Nc
 N degrees of freedom, as well as some basic functions wk ∈ RN , k =
1, . . . , Nc. We suppose that the rectangular matrix W = (w1, . . . , wNc

) ∈ RN,Nc

has full rank. Then we define the coarse grid preconditioner Bc as

B−1
c = WĈ−1WT , Ĉ = WT CW ∈ RNc,Nc ,

where the small matrix Ĉ is a low-rank approximation of C; W is called the
restriction matrix, and the transposed matrix WT is the prolongation matrix.

Let us consider now the construction of the preconditioned iterative processes
in Krylov subspaces. We offer a general description of the multi-preconditioned
semi-conjugate residual (MPSCR) iterative method [12]. Let r0 = f0 − Cu0

be the initial residual of algebraic system (17), and let B
(1)
0 , . . . , B

(m0)
0 be a

set of some nonsingular easily invertible preconditioning matrices. Using them,
we define a rectangular matrix composed of the initial direction vectors p0k,
k = 1, . . . ,m0:

P0 = [p01 · · · p0m0
] ∈ RN,m0 , p0l = (B(l)

0)−1r0, (33)

which are assumed to be linearly independent.
Successive approximations un and the corresponding residuals rn will be

determined with the help of the recursions

un+1 = un + Pnᾱn = u0 + P0ᾱ0 + · · · + Pnᾱn,

rn+1 = rn − CPnᾱn = r0 − CP0ᾱ0 − · · · − CPnᾱn.
(34)

Here ᾱn = (α1
n, . . . , αmn

n)T are mn-dimensional vectors. The direction vectors
pn

l , l = 1, . . . ,mn, which form the columns of the rectangular matrices Pn =
[Pn

1 · · · Pn
mn

] ∈ RN,mn , are defined as orthogonal vectors in the sense of satisfying
the relations

PT
n CT CPk = Dn,k = 0 for k �= n, (35)

where Dn,n = diag{ρn,l} is a symmetric positive definite matrix since the matri-
ces Pk have full rank, as is supposed.

Orthogonality properties (35) provide the minimization of the residual norm
‖rn+1‖2 in the Krylov block subspace of dimension Mn:

KMn
= Span{P0, . . . , C

n−1Pn−1}, Mn =
n−1∑

k=0

mk (36)

provided that we define the coefficient vectors ᾱn and the matrices Pn by the
formulas

ᾱn = {αn,l} = (D−1
n,n)−1PT

n CT r0, (37)

Pn+1 = Qn+1 −
n∑

k=0

Pkβ̄k,n, (38)

High-Performance Computation of Initial Boundary Value Problems 197

where the auxiliary matrices

Qn+1 = [qn+1
1 · · · qn+1

mn
], qn+1

l = (B(l)
n+1)

−1rn+1, l = 1, . . . , mn, (39)

have been introduced; B
(l)
n+1 are some nonsingular easily invertible precondition-

ing matrices, and β̄k,n are coefficient vectors that are determined, after substi-
tution of (38) into orthogonality conditions (35), by the formula

β̄k,n = D−1
k,kPT

k CT CQn+1. (40)

Let us remark that a successful acceleration of various Krylov algorithms can
be attained by least-squares approaches [13].

4 Parallel Implementation of the Method

The parallel implementation of the numerical approaches we have considered
consists, in general, of the following main stages:

(a) at each time step the grid constructing and or reconstructing the mesh at
each time step if it is necessary, i.e. if the solution changes dresfiarlly in time;

(b) computing the coefficients of a discrete algebraic system, and recomputing
these coefficients if the input data of the original problem depend on time;

(c) at each time step, implementing nonlinear iterations if the coefficients of the
original IBVP depend on the unknown solution;

(d) solving SLAEs by means of domain decomposition methods in Krylov sub-
spaces;

(e) postprocessing and visualization of the numerical results obtained;
(f) solving the inverse or the optimal IBVP which includes constraint minimiza-

tion of the objective parameterized functional based on the optimization
methods and on solution of a set of direct problems, presented by the above
stages;

(g) control of the general computational process and decision-making in the
results of mathematical modeling.

The “d” stage is the most expensive in terms of the required computational
resources, and it is also the most investigated in the sense of achieving scalable
parallelism. The main numerical and technological tools here are based on both
domain decomposition methods and hybrid programming: MPI (Message Pass-
ing Interface system), open-MP type multi-thread computing, vectorization of
operations and use of special computational units, for instance, GPGPU (see
[14] and references therein). The DDMs represent two-level iterative processes
in the Krylov subspaces. The upper level includes the distributed version of the
MPSCR method (33)–(40), for example. In the case of a symmetric matrix C,
this algorithm becomes simpler and transforms into a multi-preconditioned con-
jugate residual (MPCR) method with short recursions. Here matrix-vector oper-
ations are parallelized easily by means of efficient functions from the SPARSE

198 V. Il’in

BLAS library. To minimize inter-processor communication time, a special array
buffering is implemented. The main speedup is attained by synchronously solving
the auxiliary algebraic subsystems for subdomains on the corresponding proces-
sors. It is important that SLAEs can have diverse matrix structures and be solved
by various direct or iterative algorithms. In a sense, we have here a heteroge-
neous block iterative process, and minimizing the general run-time is not simply
in such cases. In this situation, the balancing domain decomposition problem is
a nonstandard task that should be solved in terms of general computer resource
consuming minimization.

The scalable parallelization of the other computational stages (a–c) should
also be based, naturally, on the domain decomposition principle. Within the
conception of the basic system of modeling (BSM; see [15]), each stage would be
implemented by the corresponding BSM kernel subsystem which is interacted
by means of distributed data structures.

References

1. Il’in, V.P.: Mathematical Modeling, Part I: Continuous and Discrete Models.
SBRAS Publ., Novosibirsk (2017). (in Russian)

2. Il’in, V.P.: Finite Element Methods and Technologies. ICM&MG SBRAS, Novosi-
birsk (2007). (in Russian)

3. Il’in, V.P.: Methods of Solving the Ordinary Differential Equations. NSU Publ.,
Novosibirsk (2017). (in Russian)

4. Il’in, V.P.: Problems of parallel solution of large systems of linear algebraic equa-
tions. J. of Math. Sci. 216, 795–804 (2016). https://doi.org/10.1007/s10958-016-
2945-4

5. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publ., New York
(2002). https://doi.org/10.1137/1.9780898718003

6. Il’in, V.P.: Finite Difference and Finite Volume Methods for Elliptic Equations.
ICM&MG SBRAS Publisher, Novosibirsk (2001). (in Russian)

7. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Meth-
ods: Algorithms, Theory and Parallel Implementaion. SIAM, Philadelphia (2015).
https://doi.org/10.1137/1.9781611974065

8. Gander, M.J., Guttel, S.: ParaExp: a parallel integrator for linear initial value
problems. SIAM J. Sci. Comput. 35, 123–142 (2013). https://doi.org/10.1137/
110856137

9. Karra, S.: A hybrid Pade ADI scheme of high-order for convection-diffusion prob-
lem. Int. J. Numer. Methods Fluids 64, 532–548 (2010). https://doi.org/10.1002/
fld2160

10. Lawson, G.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Inc.,
Upper Saddle River (1974). https://doi.org/10.1137/1.9781611971217

11. Saad, Y., Yeung, M., Erhel, J., Guyomarc’h, F.: A deflated version of the Conjugate
Gradient Algorithm. SIAM J. Sci. Comput. 21, 1909–1926 (2000). https://doi.org/
10.1137/s1064829598339761

12. Il’in, V.P.: Multi-preconditioned domain decomposition methods in the Krylov
subspaces. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2016. LNCS, vol. 10187,
pp. 95–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57099-0 9

https://doi.org/10.1007/s10958-016-2945-4
https://doi.org/10.1007/s10958-016-2945-4
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9781611974065
https://doi.org/10.1137/110856137
https://doi.org/10.1137/110856137
https://doi.org/10.1002/fld2160
https://doi.org/10.1002/fld2160
https://doi.org/10.1137/1.9781611971217
https://doi.org/10.1137/s1064829598339761
https://doi.org/10.1137/s1064829598339761
https://doi.org/10.1007/978-3-319-57099-0_9

High-Performance Computation of Initial Boundary Value Problems 199

13. Il’in, V.P.: Least squares methods in Krylov subspaces. J. Math. Sci. 224, 900–910
(2017). https://doi.org/10.1007/s10958-017-3460-y

14. Il’in, V.: On the parallel strategies in mathematical modeling. In: Sokolinsky, L.,
Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp. 73–85. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67035-5 6

15. Gladkikh, V.S., Il’in, V.P.: Basic System of Modeling (BSM): conception, archi-
tecture and methodology. In: Conference Proceedings of “Modern Problems of
Mathematical Modeling, Image Processing and Parallel Computing”, pp. 151–158.
RTU Publ., Rostov (2017). https://doi.org/10.23947/2587-8999-2017-2-194-200.
(in Russian)

https://doi.org/10.1007/s10958-017-3460-y
https://doi.org/10.1007/978-3-319-67035-5_6
https://doi.org/10.23947/2587-8999-2017-2-194-200

A Study of Euclidean Distance Matrix
Computation on Intel Many-Core

Processors

Timofey Rechkalov and Mikhail Zymbler(B)

South Ural State University, Chelyabinsk, Russia
trechkalov@yandex.ru, mzym@susu.ru

Abstract. Computation of a Euclidean distance matrix (EDM) is a
typical task in a wide spectrum of problems connected with data analysis.
Currently, many parallel algorithms for this task have been developed
for GPUs. However, these developments cannot be directly applied to
the Intel Xeon Phi many-core processor. In this paper, we address the
task of accelerating EDM computation on Intel Xeon Phi in the case
when the input data fit into the main memory. We present a parallel
algorithm based on a novel block-oriented scheme of computations that
allows for the efficient utilization of Intel Xeon Phi vectorization abilities.
Experimental evaluation of the algorithm on real-world and synthetic
datasets shows that it is highly scalable and outruns analogues in the
case of rectangular matrices with low-dimensional data points.

Keywords: Euclidean distance matrix · OpenMP · Intel Xeon Phi
Data layout · Vectorization

1 Introduction

Computation of a Euclidean distance matrix (EDM) is a typical subtask in a
wide spectrum of practical and scientific problems connected with data analy-
sis [5]. The elements of an EDM are squared Euclidean distances1, which can be
interpreted as distances between data points of a set or distances between data
points belonging to two sets of data points. These two cases correspond to square
and rectangular EDMs, respectively. Square EDMs are extensively exploited in
audio and video information retrieval [7,19], signal processing [5], hierarchical
clustering of DNA microarray data [2], and so on. Rectangular EDMs play an
important role in clustering-related applications, where it is necessary to cal-
culate distances between cluster centers and data points subject to clustering,
e.g., segmentation of medical images [12,21], fuzzy clustering of DNA microarray
data [4], and so on.

1 Strictly speaking, an EDM should contain Euclidean distances, and not the squares
thereof. However, we adhere to this ambiguous convention in order to ensure com-
patibility with most papers related to EDMs [5].

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 200–215, 2018.
https://doi.org/10.1007/978-3-319-99673-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_15&domain=pdf
http://orcid.org/0000-0001-7491-8656

A Study of Euclidean Distance Matrix Computation on Intel MIC Systems 201

In this paper, we address the computation of both square and rectangular
EDMs and formally define the problem as follows. Let us consider two non-
empty finite sets of n and m data points in d-dimensional Euclidean space. Now
we assign the first set data points to the rows of a matrix A ∈ R

n×d, and
the second set data points to the rows of a matrix B ∈ R

m×d. Let us denote by
a1,·, . . . , an,· and b1,·, . . . , bm,·, where ai,·, bj,· ∈ R

d, the rows of the matrices A
and B, respectively. Then the Euclidean distance matrix D ∈ R

n×m consists of
the rows d1,·, . . . , dn,·, where di,· ∈ R

m, di,j = ‖ai,· − bj,·‖2, and ‖ · ‖ denotes
the Euclidean norm2.

Since EDM computation has time complexity O(nmd), this task is often the
most time-consuming stage of an entire problem, and it is therefore considered
as a subject of parallelization for different hardware architectures.

At the present time, many parallel algorithms for EDM computation have
been developed for GPUs [1,2,10,13]. These developments, however, cannot be
directly applied to Intel Xeon Phi many-core systems [3,18]. Intel Xeon Phi
is a series of products based on Intel Many Integrated Core (MIC) architec-
ture, which provides a large number of compute cores with a high local memory
bandwidth and 512-bit wide vector processing units. Being based on the Intel
x86 architecture, Intel Xeon Phi supports thread-level parallelism and the same
programming tools as a regular Intel Xeon CPU, and serves as an attractive
alternative to GPUs. Currently, Intel offers two generations of MIC products,
namely Knights Corner (KNC) [3] and Knights Landing (KNL) [18]. The former
is a coprocessor with up to 61 cores, which supports native applications as well
as offloading of calculations from a host CPU. The latter provides up to 72 cores
and, unlike the first, is a bootable device that runs applications only in native
mode.

In this paper, we address the task of accelerating EDM computation on the
Intel Xeon Phi KNL system. In what follows, we assume that all the data involved
in the computation fit into the main memory. The paper makes the following
contributions. We propose a parallel algorithm based on a novel block-oriented
scheme of computations, which allows for the efficient utilization of Intel Xeon
Phi KNL vectorization abilities, more efficient than straightforward techniques
such as data alignment and auto-vectorization. The algorithm versions devel-
oped in the course of the work are experimentally evaluated on real-world and
synthetic datasets, and it is shown that our approach is highly scalable and out-
runs analogues in the case of rectangular matrices with low-dimensional data
points.

The paper is structured as follows. Section 2 discusses related works. In
Sect. 3, we describe the parallel algorithm proposed for Euclidean distance matrix
computation on Intel MIC systems. We give the results of the experimental eval-
uation of our algorithm in Sect. 4. Finally, in Sect. 5, we summarize the results
obtained and propose directions for further research.

2 Note that this definition also covers the case A ≡ B.

202 T. Rechkalov and M. Zymbler

2 Related Work

Chang et al. [2] suggested a CUDA-based parallel algorithm for EDM compu-
tation on GPUs. This algorithm assumes that the EDM is square (n = m)
and both n and d are multiples of 16. The number 16 comes from the algorith-
mic design fitting the NVIDIA GPU architecture. The algorithm basic idea can
be briefly described as follows. According to the nature of CUDA, threads are
organized into 16 × 16 two-dimensional blocks, and the blocks are then orga-
nized in an n

16 × n
16 two-dimensional grid. Thus, a thread orients itself through

a quadruplet (bx, by, tx, ty), where two pairs (bx, by) and (tx, ty) are block and
thread indices, respectively. In this coordinate system, a thread calculates the
d16·by+ty,16·bx+tx entry of the EDM. At each iteration, all threads firstly load
two 16 × 16 submatrices into shared memory. Each thread, after synchroniza-
tion, calculates and accumulates its own partial Euclidean distance. Then the
threads need to be synchronized again before proceeding to the next pair of sub-
matrices. The authors reported on an algorithm speedup by a factor of up to 44
on NVIDIA Tesla C870 (with a peak performance of 0.5 GFLOPS) compared
with the CPU implementation.

Li et al. [13] proposed a chunking method to compute an EDM on large
datasets in a multi-GPU environment. The method supposes the implemen-
tation of a GPU algorithm that is suitable for calculating Euclidean distance
submatrices. Then the authors used a MapReduce-like framework to split the
computation of the final EDM into many small independent jobs which calculate
partial submatrices. The framework also dynamically allocates GPU resources
to those independent jobs for maximum performance. The authors reported on
a speedup of the method by a factor of up to 15 on three NVIDIA Tesla 1060
(0.9 GFLOPS each).

Kim et al. [10] suggested a padding strategy for the algorithm given in [2],
which expands the matrix of input data points by adding rows and columns
of zeros, so that data of any size may be processed by a simple CUDA kernel
function. These authors reported on a speedup of the algorithm by a factor of
up to 47 on NVIDIA Tesla C2050 (1.03 TFLOPS) compared with the CPU
implementation.

Arefin et al. [1] extended the approaches suggested in [2,10,13]. Together
with the EDM, the input data points are also chunked. Since this operation
is carried out by an external memory programming environment, the proposed
method is comparatively slower (by a factor of up to 30) than the original one.
However, this method is feasible when the input dataset is so large that it fits
into neither the GPU memory nor the host memory.

Wu et al. [20], Lee et al. [12], and Jaros et al. [9] indirectly touched upon
the problem of EDM computation on Intel MIC systems. The authors of these
papers accelerated a k-means data clustering algorithm on Intel Xeon Phi and
considered EDM computation as a subtask.

In [20], the authors suggested a heterogeneous approach to parallelizing a
k-means algorithm in which CPU and Xeon Phi KNC are involved. Accord-
ing to the algorithm idea, the CPU reassigns data points to clusters and then

A Study of Euclidean Distance Matrix Computation on Intel MIC Systems 203

offloads data points and cluster centroids on to the coprocessor. Thus, Xeon Phi
KNC repeatedly computes an EDM for data points and centroids. To achieve a
more efficient utilization of memory bandwidth and cache, the algorithm stores
data as an array of structures. The authors reported that the clustering algo-
rithm achieves a speedup by a factor of up to 24 and its scalability decreases
dramatically if more than 56 threads are employed.

The authors of [9] use a relatively similar approach and offload computations
to Intel Xeon Phi KNC. We include in our review the solutions given in [9,
20] regarding them as precursors of our approach, yet we avoid a comparison
since those solutions employ an outdated approach and partial results on run
time and speedup of the EDM computation stage cannot be extracted from the
experimental results.

In [12], the authors exploit straightforward techniques such as data alignment
and auto-vectorization, as depicted in Algorithm1 (in what follows, we will refer
to it as Straightforward).

Algorithm 1. Straightforward(in A, B; out D)
1: #pragma omp parallel for
2: for i from 1 to n do
3: sum ← 0
4: for j from 1 to m do
5: assume aligned(ai,·, 64)
6: assume aligned(bj,·, 64)
7: for k from 1 to d do
8: sum ← sum + (ai,k − bj,k)2

9: end for
10: di,j ← sum
11: end for
12: end for

Here, lines 5–6 signal the C compiler that the memory space is aligned to a
specific size. Otherwise, the compiler assumes that the loop accesses unaligned
memory spaces, and splits the loop, even though the start addresses of the mem-
ory spaces are aligned in reality. Thus, the loop in line 7 is vectorized without
loop peeling, since the start addresses of the data points involved in calcula-
tions are aligned and, from the signals received, the compiler knows that they
are aligned to the vector processor unit (VPU) width (i.e. the number of floats
stored in the VPU).

Next, when the loop for distance calculation is vectorized, even if the start
address of the first data point is aligned to the VPU width, the start address of
the second data point will not be aligned if the dimension d is not a multiple
of the VPU width, and will start to cause loop peelings from then on, so the
loop will therefore be vectorized inefficiently. To solve this problem, the authors
pad input data points with zero elements to the nearest integer multiple of the
VPU width. Since the size of each input data point is a multiple of the VPU

204 T. Rechkalov and M. Zymbler

width, the loop is vectorized without splitting and is compiled in just two vector
operations.

However, in high-performance computations, data layout can significantly
affect the efficiency of memory access operations [8]. In the next section, we will
show an application of data layouts to EDM computation.

3 Accelerating EDM Computation with Intel Xeon Phi

Our approach is different in two ways from the Straightforward algorithm.
Firstly, we propose a novel scheme of computations that allows for the efficient
use of Intel Xeon Phi vectorization abilities. Secondly, we exploit a sophisticated
data layout to store data points in main memory. We consider these matters
below, in Sects. 3.1 and 3.2, respectively.

3.1 Computational Scheme

The basic idea of our approach is to modify the computational scheme in such a
way that more operations will be vectorized compared with the straightforward
approach. Straightforward iteratively calculates one distance value between
two data points, so the inner loop (cf. Algorithm1, line 7) is compiled in two
vector operations (i.e. elementwise vector difference and multiplication).

Unlike Straightforward, the method we suggest iteratively calculates sev-
eral distance values between a point from the first set of data points and block
points from the second set of data points, where block is a parameter of the
algorithm. Algorithm 2, which we will refer to as Blockwise, implements such
a computational scheme.

In lines 1–7, we change the data layout of the second set of data points (we will
discuss this below, in Sect. 3.2) and produce its copy for further computations.
The outer loop (line 9) is parallelized. It scans the first set of data points. The
loop in line 10 scans the blocks of the second set of data points. The loop in
line 12 provides for calculations through the coordinates of data points within a
block. The loop in line 15 calculates the distances, it is compiled in two vector
operations. In lines 13 and 14, we notify the compiler about the alignment of a
point from the first set and a block of points from the second set, respectively.
Finally, the loop in line 20 stores distances in the resulting matrix and is compiled
in one vector operation (additionally, this loop is preceded by a signal to the
compiler about the alignment of the rows of the resulting matrix).

To ensure that the blocks in the matrix representing the second set of data
points have the same size, the number of rows m must be a multiple of block. We
must therefore increase m up to the nearest integer that is a multiple of block
by padding the B matrix with redundant zero rows.

Moreover, in order to guarantee an efficient vectorization of operations involv-
ing the B matrix, the block parameter must be a multiple of widthV PU , where
widthV PU denotes the number of floats stored in the VPU. Also, to derive greater

A Study of Euclidean Distance Matrix Computation on Intel MIC Systems 205

Algorithm 2. Blockwise(in A, B, layout, block; out D)
1: if layout is SoA then
2: Permute(B, m, B̃)
3: else if layout is ASA then
4: Permute(B, block, B̃)
5: else
6: � Current layout is AoS, no permutation needed
7: end if
8: #pragma omp parallel for
9: for i from 1 to n do

10: for j from 1 to � m
block

� do

11: sum ← 0
12: for k from 1 to d do
13: assume aligned(ai,·, 64)
14: assume aligned(b̃j+k,·, 64)
15: for � from 1 to block do
16: sum� ← sum� + (ai,k − b̃j+k,�)

2

17: end for
18: end for
19: assume aligned(di,·, 64)
20: for k from 1 to block do
21: di,j·block+k ← sumk

22: end for
23: end for
24: end for

benefits from the vectorization of computations, the B matrix should be the
largest of the two sets of data points considered.

We should note, however, that our approach supposes the empirical choice of
the block parameter in accordance with the above-mentioned requirements (we
discuss this below, in Sect. 4).

3.2 Application of Data Layouts

Figure 1 depicts the definitions of the basic data layouts in the C programming
language [8]. The AoS (Array of Structures) layout simply stores the structures
in an array; it is often referred to as a baseline implementation. In the SoA
(Structure of Arrays) layout, all components are stored in separate arrays. This
can lead to coalesced memory access if the access pattern supposes reading of
adjoining elements. The ASA (Array of Structures of Arrays) layout partitions
the data in chunks according to the block parameter. ASA-block generalizes to
the other layouts, namely ASA-1 corresponds to AoS, and ASA-m corresponds
to SoA. This sophisticated data layout allows for a reduction of the number of
processor cache misses during EDM computations.

Algorithm 3 transforms a data matrix from one layout to another in parallel.
For a given block parameter and a matrix B ∈ R

m×d with AoS layout, the

206 T. Rechkalov and M. Zymbler

typedef struct {
f loat x ;
f loat y ;
f loat z ;

} AoS ;

AoS B[m];

(a) Array
of Structures

typedef struct {
f loat x [m] ;
f loat y [m] ;
f loat z [m] ;

} SoA ;

SoA B;

(b) Structure
of Arrays

typedef struct {
f loat x [b lock] ;
f loat y [b lock] ;
f loat z [b lock] ;

} ASA;

ASA B[� m
block

�];
(c) Array of Structures
of Arrays

Fig. 1. Basic data layouts

Algorithm 3. Permute(in B, block; out B̃)
1: #pragma omp parallel for
2: for j from 1 to � m

block
� do

3: for i from 1 to d do
4: for k from 1 to block do
5: b̃j·d+i,k ← bj·block+k,i

6: end for
7: end for
8: end for

algorithm produces a matrix B̃ ∈ R
d·
⌈

m
block

⌉
×block with ASA-block layout (or

with SoA layout if block = m).

4 Experimental Evaluation

4.1 Background of the Experiments

Objectives. In the experiments, we studied the following aspects of our app-
roach. We investigated its performance and scalability compared with both the
Straightforward algorithm of Lee et al. [12] and the EDM computational
algorithm from Intel Math Kernel Library (MKL)3 optimized for Intel Xeon
Phi. We combined the Blockwise algorithm with the AoS, SoA and ASA-512
layouts, ran all the competitors on an Intel MIC system for different datasets,
measured the run time (after deduction of the I/O time required for reading
input data and writing the results), and calculated their speedup and parallel
efficiency.

Here we understand these characteristics of parallel-algorithm scalability in
the following manner. Speedup and parallel efficiency of a parallel algorithm
employing k threads are calculated, respectively, as s(k) = t1

tk
and e(k) = t1

k·tk ,
where t1 and tk are the run times of the algorithm when one and k threads are
employed, respectively.

3 Intel Math Kernel Library 2018 Release Notes.

https://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-2018-release-notes

A Study of Euclidean Distance Matrix Computation on Intel MIC Systems 207

We compared the performance and scalability for both square and rectangu-
lar matrices; the latter were the same used by Lee et al.

In order to make sure that the computational scheme proposed gives ben-
efits on vectorization for MIC systems, we compared the performances of the
Blockwise algorithm (we took the results for the data layout where the algo-
rithm performed best), the Straightforward algorithm, and the Intel MKL
algorithm, on both Intel Xeon and Intel Xeon Phi and for the same datasets.

Also, datasets and experimental results on performance for the algorithm of
Kim et al. [10] on NVIDIA Tesla C20504 were compared with the best results of
Blockwise on Intel Xeon Phi (the aforesaid systems have approximately the
same peak performance).

Finally, we present the results of the experiments carried out to choose the
number 512 as the block parameter value.

Datasets. In the experiments, we compared the algorithms using the datasets
described in Table 1. The Census [14] and the FCS Human [6] datasets are from
real-world applications. The MixSim dataset and the ADS datasets were syn-
thesized by artificial data generators described in [15,16], respectively. The ADS
(Aligned Data Set) datasets were used for the experimental evaluation of the
Straightforward algorithm in [12]. The PRND (Pseudo Random Numbers)
datasets were used by Kim et al. for the experimental evaluation of their algo-
rithm [10].

Table 1. Datasets used in experiments

Dataset d n m Type Semantic

MixSim 5 35 · 210 35 · 210 Synthetic Created by a synthetic data generator [15]

Census 67 35 · 210 35 · 210 Real US Census Bureau population surveys [14]

FCS Human 423 18 · 210 18 · 210 Real Aggregated human gene information [6]

ADS-16 16 106 103 Synthetic Used in [12] for experimental evaluation

ADS-32 32

ADS-64 64

ADS-256 256

PRND-50 50 15 · 103 15 · 103 Synthetic Used in [10] for experimental evaluation

PRND-100 100

PRND-150 150

PRND-200 200

For the experiments, we took the largest parts of the MixSim and Census
datasets that fit in the main memory of the hardware the algorithms were evalu-
ated on. In order to meet the requirements for the block parameter (cf. Sect. 3.1),
we took from MixSim, Census and FCS Human numbers of data points that are

4 NVIDIA Tesla C2050/C2070 Data sheet.

http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf

208 T. Rechkalov and M. Zymbler

multiples of block = 512 (the original FCS Human dataset was padded with zero
points).

To evaluate the Straightforward algorithm on datasets in which the
dimension is not a multiple of widthV PU = 16, we increased d up to the nearest
integer multiple of 16 by padding the data points with zeros. To evaluate our
approach on the datasets used by Lee et al. and Kim et al., in which the numbers
of data points are not multiples of 512, we increased n and m up to the nearest
integers that are multiples of 512 by padding the datasets with zero points.

Hardware. We conducted experiments on a node of the Tornado SUSU super-
computer [11] (cf. Table 2 for the specifications of both the host and the MIC
system).

Table 2. Hardware specifications

Specifications Host MIC system

Model, Intel Xeon X5680 Phi (KNC), SE10X

Physical cores 2×6 61

Hyperthreading factor 2 4

Logical cores 24 244

Frequency, GHz 3.33 1.1

VPU size, bit 128 512

Peak performance, TFLOPS 0.371 1.076

4.2 Results and Discussion

Scalability. Figures 2 and 3 depict the run time, speedup and parallel efficiency
of the competitors on square and rectangular matrices, respectively.

Regarding the experiments on square matrices, we can see that the Intel
MKL algorithm outruns the competitors, and Blockwise(ASA-512) holds the
second place (with roughly the same performance on the MixSim dataset with d
padded to 16). At the same time, the Intel MKL algorithm shows almost the
worst speedup and parallel efficiency among the competitors. All the algorithms
(except Intel MKL and Blockwise(SoA)) show a close-to-linear speedup and
up to 80% efficiency when the number of threads matches the number of physi-
cal cores the algorithm is running on. However, when more than one thread per
physical core is employed, only Blockwise(ASA-512) displays the aforemen-
tioned tendency, showing a speedup by a factor of up to 200 and at least 80%
efficiency, whereas the speedup of the other algorithms slows or even drops down
and their parallel efficiency diminishes accordingly.

Experiments on rectangular matrices deal with larger datasets and show
the following. Blockwise(ASA-512) outruns the competitors on the ADS-16

A Study of Euclidean Distance Matrix Computation on Intel MIC Systems 209

(a) MixSim dataset (d padded to 16): run time, speedup and efficiency

(b) Census dataset (d padded to 80): run time, speedup and efficiency

(c) FCS Human dataset (d padded to 432): run time, speedup and efficiency

Fig. 2. Run time and scalability on square matrices

and ADS-32 datasets, and shows roughly the same performance as the Intel
MKL algorithm on the ADS-64 dataset. On the ADS-256 dataset, the Intel
MKL algorithm beats the competitors. Regarding scalability, we see a similar
picture as for square matrices. Blockwise(ASA-512) shows a close-to-linear
speedup and up to 90% parallel efficiency when the number of threads matches
the number of physical cores. In the range from 60 to 240 threads, our algorithm
scalability remains the best, giving a speedup by a factor of up to 160 and at
least 70% efficiency. We can conclude that Blockwise(ASA-512) performs its
best on rectangular matrices with low-dimensional data points (approximately
when d ≤ 32).

210 T. Rechkalov and M. Zymbler

(a) ADS-16 dataset: run time, speedup and efficiency

(b) ADS-32 dataset: run time, speedup and efficiency

(c) ADS-64 dataset: run time, speedup and efficiency

(d) ADS-256 dataset: run time, speedup and efficiency

Fig. 3. Run time and scalability on rectangular matrices

A Study of Euclidean Distance Matrix Computation on Intel MIC Systems 211

Benefits of Vectorization. Table 3 shows the performance results of
Blockwise(ASA-512) for the Intel Xeon and Intel Xeon Phi platforms compared
with Straightforward. As we can see, Blockwise(ASA-512) is 3.5 to 8 times
faster on Intel Xeon Phi than it is on the host consisting of two Intel Xeon CPUs.
The Straightforward algorithm, in the same manner as Blockwise(ASA-
512), is faster on Intel Xeon Phi than on two Intel Xeon hosts. However, our
algorithm shows a greater ratio of run times on the said platforms. Also, we
should remind that the Intel MKL algorithm outruns our Blockwise(ASA-
512) in the case of high-dimensional data (approximately when d > 32) on both
platforms.

Table 3. Run times on ADS datasets, s

Dataset Intel Xeon Phi (KNC) 2×Intel Xeon CPU Ratio of run times

1.076 TFLOPS 0.371 TFLOPS 2×CPU/Phi

Blockwise
(ASA-512)

Intel
MKL

Straight-
forward

Blockwise
(ASA-512)

Intel
MKL

Straight-
forward

Blockwise
(ASA-512)

Straight-
forward

ADS-16 0.28 0.76 1.05 1.04 3.02 1.00 3.7× 1.0×
ADS-32 0.51 0.78 1.15 1.76 3.14 1.79 3.5× 1.6×
ADS-64 0.98 0.88 1.36 3.78 3.81 4.25 3.9× 3.1×
ADS-256 3.71 1.92 3.79 30.32 5.14 31.41 8.2× 8.3×

Comparison with the GPU Solution. The performance results of our solu-
tion compared with the algorithm proposed by Kim et al. [10] are summarized
in Table 4. We can see that Blockwise(ASA-512) is up to two times faster on
Intel Xeon Phi than the algorithm of Kim et al. is on NVIDIA Tesla C2050.
However, the Intel MKL algorithm still outruns Blockwise(ASA-512) on Intel
Xeon Phi in the case of such small datasets.

Table 4. Run time on PRND datasets, s

Dataset Intel Xeon Phi 2×Intel Xeon NVIDIA Tesla

1.076 TFLOPS 0.371 TFLOPS 1.03 TFLOPS

Blockwise
(ASA-512)

Intel
MKL

Blockwise
(ASA-512)

Intel
MKL

Kim
et al. [10]

PRND-50 0.19 0.07 0.35 0.74 0.82

PRND-100 0.32 0.08 0.59 0.89 1.01

PRND-150 0.45 0.10 0.78 1.01 1.21

PRND-200 0.58 0.12 1.60 1.16 1.41

Choice of the block Parameter. The preceding experimental results were
obtained after an empirical research was carried out to choose the value of

212 T. Rechkalov and M. Zymbler

the block parameter. The value block = 512 was determined as follows. We
ran Blockwise(ASA-block) on Intel Xeon Phi for different values of block on
datasets with n = m = 215 random data points having different dimensions:
d = 3, 5, 67, and 129 (cf. Fig. 4). After that, we chose block = 512 as the value
that gives the best performance for the most corresponding values of d.

Fig. 4. Performance of Blockwise(ASA-block) for different values of block

Discussion. To finish the presentation of the experimental results, we should
mention both memory and run time overheads of our approach.

Memory overhead is due to the following reasons. First, for an efficient uti-
lization of the Intel Xeon Phi vectorization abilities, our algorithm requires that
the cardinality of the second set of data points be a multiple of block. If it is
not so, then the value of m must be increased up to the nearest integer that
a is multiple of block by padding the dataset with zero points. Thus, in the
worst case, we will have d · (block − 1) redundant zero elements. Second, before
computing an EDM, we create a copy of the matrix that represents the second
set of data points and fills this copy with the elements of the original matrix
permuted in a proper way. So we additionally need d ·max(n,m) redundant data
elements (here we use the “max” function since, to derive greater benefits from
the vectorization of computations, the B matrix should be the largest of the two
sets of data points). Thus, the total memory overhead for our solution amounts
to d · (block − 1 + max(n,m)) elements.

The Straightforward algorithm, unlike our solution, requires that the
dimension d be a multiple of widthV PU . If d does not meet this requirement, then
it must be increased up to the nearest integer multiple of widthV PU by padding
the data points with zeros. Thus, in the worst case, it will cost (widthV PU −
1) · (m + n) redundant zero elements. Returning to the experimental results
in which Blockwise(ASA-512) outruns Straightforward, we can conclude
that, in the case of rectangular matrices with low-dimensional data points, our
algorithm yields less memory overhead than Straightforward.

As for the run time overhead related to the permutation of matrix elements,
our experiments showed that the run time of the permutation step is negligibly
small compared with the computation run time (less than one percent).

A Study of Euclidean Distance Matrix Computation on Intel MIC Systems 213

To conclude, we should also remind that the performance of the
Blockwise(ASA-block) algorithm depends on the block parameter, which must
be determined through empirical research.

5 Conclusions

In this paper, we touched upon the problem of Euclidean distance matrix (EDM)
computation, which is a typical subtask in a wide spectrum of practical and scien-
tific problems connected with data analysis. At present, many parallel algorithms
for EDM computation have been developed for GPUs. These developments, how-
ever, cannot be directly applied to modern Intel Xeon Phi many-core systems,
which serve as an attractive alternative to GPUs. We addressed the task of
accelerating EDM computation on the Intel Xeon Phi Knights Landing (KNL)
system in the case when all data involved in the computations fit in the main
memory.

We proposed a novel parallel algorithm for EDM computation, called
Blockwise, which is different in two ways from the approach that exploits
straightforward techniques such as data alignment and auto-vectorization.
Firstly, we use a block-oriented scheme of computations that allows for the
efficient use of the Intel Xeon Phi vectorization abilities. Secondly, we apply
a sophisticated data layout to store data points in main memory so as to reduce
the number of processor cache misses during EDM computations.

We performed an experimental evaluation of the algorithm on real-world
and synthetic datasets organized as square and rectangular matrices, and com-
pared our solution with analogues. The experimental results show the following.
Blockwise demonstrates a close-to-linear speedup and at least 80% parallel
efficiency when the number of threads matches the number of physical cores
the algorithm is running on. When Blockwise employs more than one thread
per physical core, its speedup and parallel efficiency become sublinear but they
remain the best among other competitors. Our algorithm outruns the straight-
forward approach and the algorithm from Intel Math Kernel Library (MKL)
in the case of rectangular matrices with low-dimensional data points (approxi-
mately when d ≤ 32). As for the case of high-dimensional data points (d > 32),
the Intel MKL algorithm outruns the competitors on both square and rectan-
gular matrices, while Blockwise shows roughly the same performance as the
straightforward approach.

Further studies of EDM computation on Intel MIC processors might elabo-
rate on the following topics: applications of our approach to different clustering
algorithms (e.g., k-means [12], PAM [17], and others), development of an ana-
lytical model that would be able to predict the performance of the Blockwise
algorithm and determine the value of the block parameter for best performance.

Acknowledgments. This work was financially supported by the Russian Foundation
for Basic Research (grant No. 17-07-00463), by Act 211 of the Government of the
Russian Federation (contract No. 02.A03.21.0011) and by the Ministry of Education
and Science of the Russian Federation (government order 2.7905.2017/8.9).

214 T. Rechkalov and M. Zymbler

References

1. Arefin, A.S., Riveros, C., Berretta, R., Moscato, P.: Computing large-scale dis-
tance matrices on GPU. In: The 7th International Conference on Computer Science
and Education, ICCSE 2012, Melbourne, Australia, 14–17 July 2012, pp. 576–580.
IEEE Computer Society (2012). https://doi.org/10.1109/ICCSE.2012.6295141

2. Chang, D., Jones, N.A., Li, D., Ouyang, M., Ragade, R.K.: Compute pair-
wise Euclidean distances of data points with GPUs. In: Proceedings of the
IASTED International Symposium on Computational Biology and Bioinformatics,
CBB’2008, Orlando, Florida, USA, 16–18 November 2008, pp. 278–283. IASTED
(2008)

3. Chrysos, G.: Intel R© Xeon Phi coprocessor (codename Knights Corner). In: 2012
IEEE Hot Chips 24th Symposium (HCS), Cupertino, CA, USA, 27–29 August
2012, pp. 1–31 (2012). https://doi.org/10.1109/HOTCHIPS.2012.7476487

4. Dembélé, D., Kastner, P.: Fuzzy c-means method for clustering microarray data.
Bioinformatics 19(8), 973–980 (2003)

5. Dokmanic, I., Parhizkar, R., Ranieri, J., Vetterli, M.: Euclidean distance matrices:
essential theory, algorithms, and applications. IEEE Sig. Process. Mag. 32(6), 12–
30 (2015)

6. Engreitz Jr., J.M., Daigle, B.J., Marshall, J.J., Altman, R.B.: Independent com-
ponent analysis: mining microarray data for fundamental human gene expression
modules. J. Biomed. Inform. 43(6), 932–944 (2010)

7. Foote, J.: An overview of audio information retrieval. Multimed. Syst. 7(1), 2–10
(1999)

8. Hassan, Q.F.: Innovative Research and Applications in Next-Generation High Per-
formance Computing. IGI Global, Hershey (2016). https://doi.org/10.4018/978-1-
5225-0287-6

9. Jaros, M., et al.: Implementation of k-means segmentation algorithm on Intel Xeon
Phi and GPU: application in medical imaging. Adv. Eng. Softw. 103, 21–28 (2017)

10. Kim, S., Ouyang, M.: Compute distance matrices with GPU. In: Proceedings of
the 3rd Annual International Conference on Advances in Distributed and Parallel
Computing, ADPC’2012, Bali, Indonesia, 17–18 September 2012 (2012). https://
doi.org/10.5176/2251-1652 ADPC12.07

11. Kostenetskiy, P., Safonov, A.: SUSU supercomputer resources. In: Sokolinsky, L.,
Starodubov, I., (eds.) PCT’2016, International Scientific Conference on Paral-
lel Computational Technologies, Arkhangelsk, Russia, 29–31 March 2016. CEUR
Workshop Proceedings, vol. 1576, pp. 561–573 (2016)

12. Lee, S., Liao, W., Agrawal, A., Hardavellas, N., Choudhary, A.N.: Evaluation of
K-means data clustering algorithm on Intel Xeon Phi. In: Joshi, J., et al. (eds.)
2016 IEEE International Conference on Big Data, BigData 2016, Washington DC,
USA, 5–8 December 2016, pp. 2251–2260. IEEE (2016)

13. Li, Q., Kecman, V., Salman, R.: A chunking method for Euclidean distance matrix
calculation on large dataset using multi-GPU. In: Draghici, S., Khoshgoftaar, T.M.,
Palade, V., Pedrycz, W., Wani, M.A., Zhu, X. (eds.) The 9th International Confer-
ence on Machine Learning and Applications, ICMLA 2010, Washington, DC, USA,
12–14 December 2010, pp. 208–213. IEEE Computer Society (2010). https://doi.
org/10.1109/ICMLA.2010.38

14. Meek, C., Thiesson, B., Heckerman, D.: The learning-curve sampling method
applied to model-based clustering. J. Mach. Learn. Res. 2, 397–418 (2002)

https://doi.org/10.1109/ICCSE.2012.6295141
https://doi.org/10.1109/HOTCHIPS.2012.7476487
https://doi.org/10.4018/978-1-5225-0287-6
https://doi.org/10.4018/978-1-5225-0287-6
https://doi.org/10.5176/2251-1652_ADPC12.07
https://doi.org/10.5176/2251-1652_ADPC12.07
https://doi.org/10.1109/ICMLA.2010.38
https://doi.org/10.1109/ICMLA.2010.38

A Study of Euclidean Distance Matrix Computation on Intel MIC Systems 215

15. Melnykov, V., Chen, W.C., Maitra, R.: MixSim: an R package for simulating data
to study performance of clustering algorithms. J. Stat. Softw. 51(12), 1–25 (2012).
https://doi.org/10.18637/jss.v051.i12

16. Narayanan, R., Özisikyilmaz, B., Zambreno, J., Memik, G., Choudhary, A.N.:
Minebench: a benchmark suite for data mining workloads. In: Proceedings of the
2006 IEEE International Symposium on Workload Characterization, IISWC 2006,
San Jose, California, USA, 25–27 October 2006, pp. 182–188. IEEE Computer
Society (2006)

17. Rechkalov, T., Zymbler, M.: Accelerating medoids-based clustering with the Intel
Many Integrated Core architecture. In: 9th International Conference on Applica-
tion of Information and Communication Technologies, AICT 2015, 14–16 October
2015, Rostov-on-Don, Russia - Proceedings, pp. 413–417 (2015). https://doi.org/
10.1109/ICAICT.2015.7338591

18. Sodani, A.: Knights Landing (KNL): 2nd generation Intel R© Xeon Phi processor.
In: 2015 IEEE Hot Chips 27th Symposium (HCS), Cupertino, CA, USA, 22–25
August 2015, pp. 1–24. IEEE (2015)

19. Valenzise, G., Gerosa, L., Tagliasacchi, M., Antonacci, F., Sarti, A.: Scream and
gunshot detection and localization for audio-surveillance systems. In: Fourth IEEE
International Conference on Advanced Video and Signal Based Surveillance, AVSS
2007, Queen Mary, University of London, London, United Kingdom, September 5–7
2007, pp. 21–26. IEEE Computer Society (2007)

20. Wu, F., Wu, Q., Tan, Y., Wei, L., Shao, L., Gao, L.: A vectorized K-means algo-
rithm for intel many integrated core architecture. In: Wu, C., Cohen, A. (eds.)
APPT 2013. LNCS, vol. 8299, pp. 277–294. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45293-2 21

21. Zou, J., Chen, L., Chen, C.L.P.: Ensemble fuzzy c-means clustering algorithms
based on KL-Divergence for medical image segmentation. In: Li, G., et al. (eds.)
2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai,
China, 18–21 December 2013, pp. 291–296. IEEE Computer Society (2013)

https://doi.org/10.18637/jss.v051.i12
https://doi.org/10.1109/ICAICT.2015.7338591
https://doi.org/10.1109/ICAICT.2015.7338591
https://doi.org/10.1007/978-3-642-45293-2_21
https://doi.org/10.1007/978-3-642-45293-2_21

Parallel Method of Pseudoprojection
for Linear Inequalities

Irina Sokolinskaya(B)

South Ural State University, 76 Lenin prospekt, Chelyabinsk 454080, Russia
Irina.Sokolinskaya@susu.ru

Abstract. This article presents a new iterative method for finding an
approximate solution of a linear inequality system. This method uses
the notion of pseudoprojection which is a generalization of the opera-
tion of projecting a point onto a closed convex set in Euclidean space.
Pseudoprojecting is an iterative process based on Fejer approximations.
The proposed pseudoprojection method is amenable to parallel imple-
mentation exploiting the subvector method, which is also presented in
this article. We prove both the subvector method correctness and the
convergence of the pseudoprojection method.

Keywords: Linear inequality system · Iterative method
Fejer approximations · Pseudoprojection · Parallel algorithm
Convergence

1 Introduction

In various numerical problems, we are often confronted with the task of solving
a system of linear inequalities:

li(x) =
n∑

j=1

aijxj − bi � 0 (i = 1, . . . ,m) (1)

under the condition that system (1) is consistent. In the general case, the task
of solving a system of linear inequalities is a difficult one. Thus, in practice,
methods making it possible to find an approximate solution in a finite number
of iterations are frequently applied. In [1,2], Motzkin and Agmon proposed a
relaxation method for finding an approximate solution of a consistent system
of linear inequalities. Let us consider the main idea of this relaxation method.
When considering system (1), it is convenient to use a geometric language. Thus,
we look upon x = (x1, . . . , xn) as a point in n-dimensional Euclidean space
R

n, and each inequality li(x) � 0 as a half-space Pi. The set of solutions of

I. Sokolinskaya—The study has been partially supported by the RFBR according to
research project No. 17-07-00352-a and by the Government of the Russian Federation
according to Act 211 (contract No. 02.A03.21.0011).

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 216–231, 2018.
https://doi.org/10.1007/978-3-319-99673-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_16&domain=pdf

Parallel Method of Pseudoprojection 217

system (1) therefore is the convex polytope M =
m⋂

i=1

Pi. Each equation li(x) = 0

defines an hyperplane Hi. In [2], the following iterative algorithm for finding an
approximate solution of the system (1) is proposed. Below, λ such that 0 < λ < 2
is a parameter of the algorithm. The parameter λ is called the coefficient of
relaxation.

1. Choose an arbitrary point x0 ∈ R
n.

2. x := x0.
3. If x ∈ M then a solution is found; go to Step 8.
4. Select a half-space Pi such that dist(x, Pi) = max

j
dist(x, Pj)1.

5. Calculate the point x′ which is the orthogonal projection of x onto hyperplane
Hi.

6. x := x + λ(x′ − x).
7. Go to Step 3.
8. Stop.

Thus, the algorithm computes a sequence of points x0, x1, . . . , xk, xk+1, . . .,
where xk+1 = xk + λ(x′

k − xk), and x′
k is the orthogonal projection of the point

xk onto hyperplane Hi bounding the half-space Pi, so that

dist(xk, Pi) = max
j

dist(xk, Pj).

There are two alternatives: (1) the process terminates after K steps with the
point xk ∈ M ; (2) the process continues indefinitely, producing an infinite
sequence {xk}. In [1], Agmon showed that if 0 < λ < 2 and the sequence {xk}
is infinite, then xk converges, as k → ∞, to a point on the boundary of the
polytope M . In this case, we can use the condition dist(xk, Pi) < ε as a stopping
criterion. Here, ε > 0 is an arbitrarily small positive quantity. After stopping,
the last point xk is taken as an approximate solution of system (1).

The Motzkin–Agmon method has been extended in a number of works. In [3],
a generalized relaxation method was proposed and investigated, based on the
introduction of so-called subcavities. In certain cases, this generalized method
provides faster convergence in comparison with the Motzkin–Agmon method.
In [4,5], an extension of the relaxation method was considered for finding the
common point of convex sets. In [6], the relaxation method is extended for solv-
ing systems of non-linear inequalities. In [7], a new parameter “cone angle” is
introduced and the convergence and finiteness of the relaxation method for dif-
ferent values of this parameter are investigated. In [8,9], an extension of the
relaxation method for systems with an infinite number of linear inequalities in
a finite-dimensional space was proposed and investigated. In [10], the underre-
laxation method with 0 < λ < 1 is studied, and new bounds on convergence are
obtained when the linear inequalities are processed in a cyclical order. In [11,12],
a combined relaxation method for non-linear convex variational inequalities is
described and studied.
1 Here dist(x, P) = inf {‖x − y‖ : y ∈ P}.

218 I. Sokolinskaya

In 1922, Leopold Fejer introduced the following definition of the closeness of
points to a closed set M in the Euclidean space R

n (see [13]). If x and x′ are
points of Rn such that

‖x − y‖ > ‖x′ − y‖ (2)

for every y ∈ M , then we say that x′ is point-wise closer than x to the set
M . If x is such that there is no point x′ which is point-wise closer than x to
M , then x is called the closest point to the set M . Fejer pointed out that the
set of closest points to M is identical to the convex hull of the set M . Using
this observation, Eremin in [14,15] introduced and investigated Fejer mappings,
making it possible to construct iterative methods for solving problems of vari-
ous types: systems of convex inequalities and problems of convex programming,
ill-posed problems of mathematical physics in the presence of additional func-
tional constraints, and others. The notion of pseudoprojecting a point onto a
convex bounded set was introduced in [16]. The pseudoprojection operation is
an extension of the projection operation using Fejer mappings. Based on the
pseudoprojection operation, the authors of [16] developed a pseudoprojection
method for solving linear inequality systems. This method is an extension of the
relaxation method proposed by Motzkin and Agmon. Based on the pseudopro-
jection method, a set of parallel methods for solving large-scale non-stationary
linear programming problems was developed and investigated in [16–19].

An iterative method for solving systems of linear inequalities based on deter-
mining the centroid is proposed in [20]. Each inequality defines a half-space of
feasible points. The method starts with an arbitrary point in R

n as an initial
approximation, and then calculates at each step the centroid of a subsystem
of masses placed at the reflections of the previous iterate with respect to the
bounding hyperplanes of only the violated half-spaces defined by the system of
inequalities. This centroid is taken as the new iterate. In [21], a similar method
is presented. In this method, each iterate lies in the half line determined by
the previous one and a convex combination of its orthogonal projections on all
the half spaces defined by the inequalities. The authors of [22] describe another
iterative method for solving a system of linear inequalities in which each step
consists of finding the orthogonal projection of the current point onto a hyper-
plane corresponding to a surrogate constraint constructed through a positive
combination of a group of violated constraints. Note that the last three methods
can be efficiently parallelized.

The present article is devoted to the development and investigation of a par-
allel pseudoprojection method to find an approximate solution of a system of
linear inequalities. The method starts with an arbitrary point in R

n as an ini-
tial approximation, and then calculates a pseudoprojection of this point onto
a convex polytope defined as the set of feasible solutions of linear inequality
system (1). The subvector method is used to parallelize the Fejer process. The
main idea of this method is that the vector determining the current approxima-
tion is divided into subvectors. For each subvector, a certain number of Fejer
iterations is performed in parallel. Then the modified subvectors are combined

Parallel Method of Pseudoprojection 219

into a single vector. The calculations are repeated until the required precision of
approximation is obtained.

The rest of the paper is organized as follows. The formal definitions of Fejer
mapping, Fejer process, as well as that of the pseudoprojection operation are
given in Sect. 2. Section 3 is devoted to describing the algorithm for constructing
a pseudoprojection onto a convex closed set. Section 4 describes the method of
subvectors used for parallelization of the pseudoprojection algorithm. In Sect. 5,
we prove the convergence theorem for the pseudoprojection calculation algo-
rithm. The results obtained are summarized in Sect. 6, and further research
directions are outlined herein.

2 Fejer Mappings and the Pseudoprojection Operation

Let us consider a consistent system of m linear inequalities,

Ax � b, (3)

given in the n-dimensional Euclidean space R
n and written in matrix form. The

matrix A has dimension m × n. Let M be a polytope defined as the set of
feasible solutions of linear inequality system (3). Such a polytope is always a
closed convex set. A single-valued mapping ψ : Rn → R

n is said to be fejerian
relatively to a set M (or briefly, M -fejerian) if

ψ (y) = y,∀y ∈ M ; ‖ψ (x) − y‖ < ‖x − y‖ , ∀y ∈ M, ∀x /∈ M. (4)

Let ai be an i-th row of the matrix A (i = 1, . . . ,m). Let us denote by 〈ai, x〉
the dot product of vectors ai and x. It is known [15,23] that the mapping

ϕ (x) = x − λ

m

m∑

i=1

max {〈ai, x〉 − bi, 0}
‖ai‖2

· ai (5)

is a continuous single-valued M -fejerian mapping for the relaxation coefficient
0 < λ < 2. We will use the notation

ϕs(x) = ϕ . . . ϕ(x)︸ ︷︷ ︸
s

.

The Fejer process generated by the mapping ϕ for an arbitrary initial approx-
imation x0 ∈ R

n is the sequence {ϕs(x0)}+∞
s=0. It is known [15] that the Fejer

process converges to a point belonging to the polytope M :

{ϕs(x0)}+∞
s=0 → x̄ ∈ M. (6)

Let us denote this concisely as lim
s→∞ ϕs(x0) = x̄. Let the ϕ-projection (pseudo-

projection) of a point x ∈ R
n on the polytope M be understood as the mapping

πϕ
M (x) = lim

s→∞ ϕs(x).

220 I. Sokolinskaya

3 Parallel Algorithm for Constructing a Pseudoprojection

Let us introduce the following notation. Given an arbitrary linear subspace
P ⊂ R

n, let us denote by πP (x) the orthogonal projection of x ∈ R
n onto

the linear subspace P. Everywhere below, a linear subspace will be called simply
a subspace. Denote by ρ(P, x) = min

p∈P

‖p − x‖ the distance between the point x

and the subspace P. Let the linear manifold L be constructed from subspace
P by translating it by a vector z: L = P + z. Denote by πL (x) the orthogonal
projection of x ∈ R

n onto the linear manifold L:

πL (x) = πP (x) + z. (7)

Let ϕ ∈ {Rn → R
n} be a single-valued continuous M -fejerian mapping, where

M is a convex closed set. Let us define a decomposition of the space R
n into a

direct sum of orthogonal subspaces: Rn = P1 ⊕ . . . ⊕ Pr, where Pi⊥Pj for i �= j.
Let us construct a linear manifold Li for each subspace

Pi (i = 1, . . . , r)

in the following way. Suppose that x̄i ∈ Arg min
x∈M

ρ(Pi, x). Define z̄i = π
P

⊥
i
(x̄i) ∈

P
⊥
i . Here, P

⊥
i denotes the orthogonal complement to the subspace Pi. Let us

construct the linear manifold Li by translating Pi by a vector z̄i:

Li = Pi + z̄i. (8)

For each i ∈ {1, . . . , r}, define the mapping ϕi ∈ {Rn → Li} as

ϕi (x) = πLi
(ϕ (πLi

(x))) . (9)

Assume that s is a positive integer and ε is a positive real number. The following
algorithm calculates the pseudoprojection of the point 0 ∈ R

n (0 is the zero
vector) onto the polytope M .

Algorithm S :

1. k := 0; x0 = 0 ∈ R
n.

2. xk+1 :=
r∑

i=1

(
ϕi

s (πLi
(xk)) − z̄i

)
.

3. If ‖xk+1 − xk‖ < ε ∨ dM (xk+1) < ε then go to 6.
4. k := k + 1.
5. Go to 2.
6. Stop.

The performance of algorithm S for n = 2 and s = 2 is shown in Fig. 1. To
apply the algorithm S to an arbitrary initial point x0 ∈ R

n, you must transfer
the origin to the point x0. In Step 3, the algorithm computes the residual function

dM =
m∑

j=1

max {〈aj , x〉 − bj , 0}. (10)

Parallel Method of Pseudoprojection 221

Fig. 1. The work of algorithm S: x1
k = πL1(xk), x1

k+1 = ϕ1
2(x1

k); x2
k = πL2(xk),

x2
k+1 = ϕ2

2(x2
k).

This function determines the degree of closeness of the point xk+1 to the polytope
M . We will show later on that the positive integer s is an important parameter
influencing the potential scalability of algorithm S. By increasing s, we increase
the resource of parallelism inherent in algorithm S. However, if one takes too
large a value for the parameter s, then the sequence {xk} may converge to
a point that does not belong to the polytope M . In this case, the iterative
process will stop when the condition ‖xk+1 − xk‖ < ε, included in the stopping
criterion, is satisfied. If this happens, one needs to decrease the value of s and
repeat the computational process. It is obvious that the most compute-intensive
step of algorithm S is Step 2, in which the Fejer process is implemented. To
parallelize this step, the subvector method discussed below can be applied. The
main idea of the method is as follows. For each subspace, a simultaneous Fejer
process is performed. After every s steps, the results obtained on the subspaces
are combined into one vector which is taken as the next approximation. If the
stopping criterion checked in Step 3 is satisfied, then the last approximation is
accepted as pseudoprojection. Otherwise, calculations continue.

4 Subvector Method

Let us consider the subvector method, applied to parallelize Step 2 of the S
algorithm. Let r ∈ N be such that r � n, where n is the space dimension. For

222 I. Sokolinskaya

simplicity, we always assume that r is a multiple of n: n = r · l. Assume that

{e1, . . . , en} (11)

is an orthonormal basis of the space R
n. Let us define the linear subspaces as

Pi = Lin({e1+(i−1)l, . . . , el+(i−1)l}) (12)

for i = 1, . . . , r. In Eq. (12), Lin denotes the linear hull of vectors. It is obvious
that Pi⊥Pj for i �= j, and P1 ⊕ . . . ⊕ Pr = R

n. Let x̄i ∈ Arg min
x∈M

ρ(Pi, x).

Denote z̄i = π
P

⊥
i
(x̄i) ∈ P

⊥
i (i = 1, . . . , r). For i = 1, . . . , r, define the mapping

τi ∈ {Rn → R
l} as follows. Let (x1, . . . , xn) be the coordinates of a vector x ∈ R

n

in the orthonormal basis (11). Then,

τi(x) = (x1+(i−1)l, . . . , xl+(i−1)l). (13)

Denote by τ̄i : Pi → R
l the restriction of the mapping τi to subspace Pi ⊂ R

n.
In the basis (11), an arbitrary vector has the following coordinates:

x = (0, . . . , 0, x1+(i−1)l, . . . , xl+(i−1)l, 0, . . . , 0).

By comparing this with (13), we see that τ̄i is a one-to-one correspondence.
Hence, τ̄i has the inverse mapping τ̄−1

i . In the context of Eqs. (5) and (8), let us
define the mapping ϕi ∈ {Rn → Li} as

ϕi(x) = τ̄−1
i

(
τi(x) − λ

m

m∑
j=1

max
{〈τi(aj), τi(x)〉 +

〈
aj , z̄

i
〉 − bj , 0

}
‖aj‖2 · τi(aj)

)
. (14)

The following theorem shows that we can use Eq. (14) to calculate ϕi(x) in
Step 2 of algorithm S.

Theorem 1. The mapping ϕi (i = 1, . . . , r) defined by Eq. (14) satisfies Eq. (9).

Proof. From Eq. (5), we obtain

πLi
(ϕ (πLi

(x))) = πLi

⎛

⎝πLi
(x) − λ

m

m∑

j=1

max {〈aj , πLi
(x)〉 − bj , 0}

‖aj‖2
· aj

⎞

⎠ .

By expanding the parentheses, we obtain

πLi
(ϕ (πLi

(x))) = πLi
(x) − πLi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πLi
(x)〉 − bj , 0}

‖aj‖2
· aj

⎞

⎠ .

According to Eq. (8), we have

πLi
(ϕ (πLi

(x)))

= πPi
(x) + z̄i −

⎛

⎝πPi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πPi
(x) + z̄i〉 − bj , 0}

‖aj‖2
· aj

⎞

⎠ + z̄i

⎞

⎠ .

Parallel Method of Pseudoprojection 223

By expanding the parentheses and eliminating z̄i, we transform the equation
above to the form

πLi
(ϕ (πLi

(x))) = πPi
(x) − πPi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πPi
(x) + z̄〉 − bj , 0}

‖aj‖2
· aj

⎞

⎠ .

By distributivity of the dot product over the addition, this is equivalent to the
equation

πLi
(ϕ (πLi

(x)))

= πPi
(x) − πPi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πPi
(x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2

· aj

⎞

⎠ .

Transform now the right side of the last equation as follows:

πLi (ϕ (πLi (x)))

= τ̄−1
i

(
τ̄i

(
πPi (x) − πPi

(
λ

m

m∑
j=1

max {〈aj , πPi (x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2 · aj

)))
.

Since the mapping τ̄i is linear, this implies that

πLi (ϕ (πLi (x)))

=τ̄−1
i

(
τ̄i (πPi (x)) − τ̄i

(
πPi

(
λ

m

m∑
j=1

max {〈aj , πPi (x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2 · aj

)))
.

By comparing the subscripts in (12) and (13), we find that τ̄i (πPi
(x)) = τi (x).

Applying this to the right side of the preceding equation, we obtain

πLi
(ϕ (πLi

(x)))

= τ̄−1
i

⎛

⎝τi (x) − τi

⎛

⎝ λ

m

m∑

j=1

max {〈aj , πPi
(x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2

· aj

⎞

⎠

⎞

⎠ .

The mapping τ̄i is linear, therefore this means that

πLi (ϕ (πLi (x))) =

τ̄−1
i

(
τi (x) − λ

m

m∑
j=1

max {〈aj , πPi (x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2 · τi (aj)

)
.

Let us compare again the subscripts in (12) and (13), we obtain

πLi (ϕ (πLi (x))) = τ̄−1
i

(
τi (x) − λ

m

m∑
j=1

max {〈τi(aj), τi(x)〉 + 〈aj , z̄〉 − bj , 0}
‖aj‖2 · τi (aj)

)
.

Finally, compare the last equation and Eq. (14), and we obtain that

ϕi (x) = πLi
(ϕ (πLi

(x))) .

Q.E.D.

224 I. Sokolinskaya

5 Convergence Theorem

We will prove now the convergence theorem for algorithm S. For this we will
need the two lemmas given below. The first lemma shows that each mapping
ϕi ∈ {Li → Li} constructed by algorithm S is Fejerian for the set Li ∩ M .

Lemma 1. Consider a convex closed set M ⊂ R
n and a single-valued M -

fejerian mapping ϕ ∈ {Rn → R
n}. Let P be a proper linear subspace of the space

R
n, and suppose that T = P

⊥ is the orthogonal complement of the subspace P.
Assume that

x̄ ∈ Arg min
x∈M

ρ(P, x).

Write x̄ as a sum of orthogonal vectors taken from the subspaces P and T:

x̄ = πP(x̄) + πT(x̄).

Denote z̄ = πT(x̄) ∈ T. Construct the linear manifold L as a translation of P by
the vector z̄:

L = P + z̄.

Define the mapping ϕL ∈ {L → L} as

ϕL (x) = πL (ϕ (πL (x))) . (15)

Take
ML = L ∩ M. (16)

Then, the mapping ϕL is ML-fejerian.

Proof. Let us start by showing that

ϕL(y) = y, ∀y ∈ ML. (17)

Let y ∈ ML. Then, by (16), y ∈ M . Since the mapping ϕ is M -fejerian, then
ϕ(y) = y. Taking into account that y ∈ L, we see that

ϕL(y) = πL(ϕ(πL(y))) = πL(ϕ(y)) = πL(y) = y,

and so Eq. (17) holds.
Let us show now that

‖ϕL(x) − y‖ < ‖x − y‖ , ∀y ∈ ML, ∀x /∈ ML. (18)

Assume that
y ∈ ML, x ∈ L, x /∈ ML.

By (16), it follows that x /∈ M in this case. Since the mapping ϕ is M -fejerian,
then

‖ϕ(x) − y‖ < ‖x − y‖ . (19)

Parallel Method of Pseudoprojection 225

Construct the decomposition of ϕ(x) and y as a sum of two orthogonal vectors
belonging to P and T:

ϕ(x) = πP(ϕ(x)) + πT(ϕ(x)), (20)
y = πP(y) + z̄. (21)

We now substitute these decompositions into (19) and obtain

‖πP(ϕ(x)) + πT(ϕ(x)) − (πP(y) + z̄)‖ < ‖x − y‖ , (22)

which, after rearrangement, yields

‖(πP(ϕ(x)) − πP(y)) + (πT(ϕ(x)) − z̄)‖ < ‖x − y‖ . (23)

Note that (πP(ϕ(x)) − πP(y)) ∈ P and (πT(ϕ(x)) − z̄) ∈ T are mutually orthog-
onal vectors. As we know, the square of the norm of a sum of orthogonal vectors
is equal to the sum of the squares of their norms, so it follows from (23) that

‖πP(ϕ(x)) − πP(y)‖2 + ‖πT(ϕ(x)) − z̄‖2 < ‖x − y‖2. (24)

The left side of the inequality is a sum of two non-negative terms. This means
that, if we remove the second one, we obtain a valid inequality:

‖πP(ϕ(x)) − πP(y)‖2 < ‖x − y‖2,
from which, in turn, we get

‖πP(ϕ(x)) − πP(y)‖ < ‖x − y‖ . (25)

By construction of L, we have πP(ϕ(x)) = πL(ϕ(x))−z̄. Substitute this expression
into (25), and we obtain

‖πL(ϕ(x)) − z̄ − πP(y)‖ < ‖x − y‖ ,

which is equivalent to

‖πL(ϕ(x)) − (πP(y) + z̄)‖ < ‖x − y‖ . (26)

But x ∈ L, so we may conclude that x = πL(x). If we substitute the expression
πL(x) for x into the left side of (26), then we obtain

‖πL(ϕ(πL(x))) − (πP(y) + z̄)‖ < ‖x − y‖ .

Taking into account (15) and (21), this implies

‖ϕL(x) − y‖ < ‖x − y‖ ,

i.e., inequality (18) holds. Q.E.D.

To prove the convergence theorem, we need an additional lemma.

226 I. Sokolinskaya

Lemma 2. Let {xk} be the sequence of points produced by algorithm S in Step 2:

xk+1 :=
r∑

i=1

(
ϕi

s (xk) − z̄i
)
; k = 0, 1, . . . (27)

Under the conditions of algorithm S, let us define

MLi
= Li ∩ M (i = 1, . . . , r).

If
xi
0 = πLi

(x0), xi
k+1 = ϕi(xi

k), (28)

then
ϕi

s (xk) = xi
s·(k+1), ∀k ∈ Z�0. (29)

Proof. Our proof will be by induction on k. Let k = 0. By Eq. (9), we have

ϕi
s (x0) = ϕs−1

i (πLi
(ϕ (πLi

(x0)))) .

According to the first equation in (28), we obtain

ϕi
s (x0) = ϕs−1

i

(
πLi

(
ϕ

(
xi
0

)))
. (30)

But xi
0 ∈ Li, so we may write xi

0 = πLi
(xi

0). Now we substitute the expression
πLi

(xi
0) for xi

0 into (30), and obtain

ϕi
s (x0) = ϕs−1

i

(
πLi

(
ϕ

(
πLi

(
xi
0

))))
.

Taking (9) into account, we get

ϕi
s (x0) = ϕi

s
(
xi
0

)
.

By applying the second equation from (28), we obtain

ϕi
s (x0) = ϕs−1

i

(
xi
1

)
.

If we repeat this substitution another (s − 1) times, we obtain

ϕi
s (x0) = xi

s,

that is, the induction basis holds. Now let k > 0, and consider the trivial equation

ϕi
s (xk) = ϕi

s (xk) . (31)

According to (27), xk :=
r∑

j=1

(
ϕs

j (xk−1) − z̄j
)
. Substitute this expression into

the right side of (31) to obtain

ϕi
s (xk) = ϕi

s

⎛

⎝
r∑

j=1

(
ϕs

j (xk−1) − z̄j
)
⎞

⎠ .

Parallel Method of Pseudoprojection 227

From this, by the induction hypothesis, it follows that

ϕi
s (xk) = ϕi

s

⎛

⎝
r∑

j=1

(
xj

s·k − z̄j
)
⎞

⎠ ,

which is equivalent to

ϕi
s (xk) = ϕs−1

i

⎛

⎝ϕi

⎛

⎝
r∑

j=1

(
xj

s·k − z̄j
)
⎞

⎠

⎞

⎠ .

Using now (9), we obtain

ϕi
s (xk) = ϕs−1

i

⎛

⎝πLi

⎛

⎝ϕ

⎛

⎝πLi

⎛

⎝
r∑

j=1

(
xj

s·k − z̄j
)
⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠ .

According to (7) and (8), this implies

ϕi
s (xk) = ϕs−1

i

⎛

⎝πLi

⎛

⎝ϕ

⎛

⎝πPi

⎛

⎝
r∑

j=1

(
xj

s·k − z̄j
)
⎞

⎠ + z̄i

⎞

⎠

⎞

⎠

⎞

⎠ .

Remember that xj
s·k − z̄j ∈ Pj (j = 1, . . . , r) and Pi⊥Pj for i �= j. Then the

last implies
ϕi

s (xk) = ϕs−1
i

(
πLi

(
ϕ

(
xi

s·k − z̄i + z̄i
)))

,

i.e.
ϕi

s (xk) = ϕs−1
i

(
πLi

(
ϕ

(
xi

s·k
)))

. (32)

Since xi
s·k ∈ Li, we have xi

s·k = πLi

(
xi

s·k
)
. Substitute the expression πLi

(
xi

s·k
)

for xi
s·k into (32) and obtain

ϕi
s (xk) = ϕs−1

i

(
πLi

(
ϕ

(
πLi

(
xi

s·k
))))

.

Together with Eq. (9), this implies

ϕi
s (xk) = ϕs−1

i ϕi

(
xi

s·k
)
,

which is equivalent to
ϕi

s (xk) = ϕi
s
(
xi

s·k
)
.

By applying the second equation from (28), we obtain

ϕi
s (xk) = ϕs−1

i

(
xi

s·k+1

)
.

Repeating this substitution another (s − 1) times, we finally arrive at

ϕi
s (xk) = xi

s·k+s,

i.e.
ϕi

s (xk) = xi
s(k+1).

Q.E.D.

228 I. Sokolinskaya

Now we are ready to prove the convergence theorem for algorithm S.

Theorem 2. Let {xk} be the sequence of points produced by algorithm S in
Step 2:

xk+1 :=
r∑

i=1

(
ϕi

s (xk) − z̄i
)
; k = 0, 1, . . . (33)

Then
{xk}+∞

k=0 → x̄ ∈ M.

Proof. Under the conditions of algorithm S, let us define

MLi
= Li ∩ M (i = 1, . . . , r).

According to Lemma 1, the mapping ϕi is MLi
-fejerian. Take

xi
0 = πLi

(x0), xi
k+1 = ϕi(xi

k). (34)

The continuity of the mappings πLi
and ϕ (see [23]) implies the continuity of

the mappings ϕi. Hence, by Lemma 39.1 in [23], we may affirm that

{xi
k}+∞

k=0 → x̄i ∈ MLi
, ∀i ∈ {1, . . . , r}. (35)

Now let us define

x̄ =
r∑

i=1

(
x̄i − z̄i

)
. (36)

Fix an arbitrary real number ε > 0. By (35), there exists a number Ki such that

∥∥xi
k − x̄i

∥∥ <
ε√
r
, ∀k > Ki. (37)

Let K = max
1�i�r

Ki. We will show that the inequality ‖xk − x̄‖ < ε holds for any

k > K. Fix an arbitrary k > K. By (33), we may write

‖xk − x̄‖ =

∥∥∥∥∥

(
r∑

i=1

(
ϕi

s (xk−1) − z̄i
)
)

− x̄

∥∥∥∥∥ ,

and by (36), we obtain

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
ϕi

s (xk−1) − z̄i
) −

r∑

i=1

(
x̄i − z̄i

)
∥∥∥∥∥ .

After rearrangement, this yields

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
ϕi

s (xk−1) − z̄i − x̄i + z̄i
)
∥∥∥∥∥ ,

Parallel Method of Pseudoprojection 229

which is equivalent to

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
ϕi

s (xk−1) − x̄i
)
∥∥∥∥∥ . (38)

According to Lemma 2, this implies

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
xi

s·k − x̄i
)
∥∥∥∥∥ . (39)

Remember now that xi
s·k = πPi

(
xi

s·k
)
+ z̄i and x̄i = πPi

(
x̄i

)
+ z̄i, and substitute

these expressions into (39):

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
πPi

(
xi

s·k
)

+ z̄i − πPi

(
x̄i

) − z̄i
)
∥∥∥∥∥ ,

i.e.

‖xk − x̄‖ =

∥∥∥∥∥

r∑

i=1

(
πPi

(
xi

s·k
) − πPi

(
x̄i

))
∥∥∥∥∥ . (40)

Note that both vectors under the summation sign in (40) are mutually orthogo-
nal. The square of the norm of a sum of orthogonal vectors is equal to the sum
of the squares of their norms. It thus follows from (40) that

‖xk − x̄‖2 =
r∑

i=1

∥∥πPi

(
xi

s·k
) − πPi

(
x̄i

)∥∥2
.

This is equivalent to

‖xk − x̄‖2 =
r∑

i=1

∥∥πPi

(
xi

s·k
)

+ z̄i − πPi

(
x̄i

) − z̄i
∥∥2

.

Since xi
s·k = πPi

(
xi

s·k
)

+ z̄i and x̄i = πPi

(
x̄i

)
+ z̄i, we obtain

‖xk − x̄‖2 =
r∑

i=1

∥∥xi
s·k − x̄i

∥∥2
.

In view of (37), this implies

‖xk − x̄‖2 <

r∑

i=1

(
ε√
r

)2

= r

(
ε√
r

)2

= ε2,

i.e.
‖xk − x̄‖ < ε.

Q.E.D.

230 I. Sokolinskaya

6 Conclusion

A new iterative method for solving linear inequality systems is proposed in the
article. This method is based on the operation of pseudoprojecting a point onto
a polytope which is defined as the set of feasible solutions of a linear inequal-
ity system in Euclidean space. The pseudoprojection operation is an extension
of the projection operation. It exploits Fejer iterative processes developed by
Eremin in [14,15,23]. For an effective parallelization of the pseudoprojection
algorithm, we suggest here the subvector method. Also, we proved the conver-
gence theorem for the pseudoprojection algorithm. The algorithm that computes
the pseudoprojection was implemented in C++ using the OpenMP parallel pro-
gramming library. Computational experiments have confirmed the effectiveness
of the proposed method of parallelization for computer systems using multi-core
accelerators Intel Xeon Phi [16]. As future research, we intend to do the fol-
lowing: implement the pseudoprojection algorithm in C++ language using the
MPI library and the BSF algorithmic skeleton [24]; perform an analytical and
experimental evaluation of the scalability of this parallel program on cluster
computing systems; compare the proposed algorithm with other parallel itera-
tive algorithms by performing computational experiments on cluster computing
systems.

References

1. Agmon, S.: The relaxation method for linear inequalities. Can. J. Math. 6, 382–392
(1954). https://doi.org/10.4153/CJM-1954-037-2

2. Motzkin, T.S., Schoenberg, I.J.: The relaxation method for linear inequalities. Can.
J. Math. 6, 393–404 (1954). https://doi.org/10.4153/CJM-1954-038-x

3. Merzlyakov, Y.I.: On a relaxation method of solving systems of linear inequalities.
USSR Comput. Math. Math. Phys. 2, 504–510 (1963). https://doi.org/10.1016/
0041-5553(63)90463-4

4. Bregman, L.M.: The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Comput. Math. Math. Phys. 7, 200–217 (1967). https://doi.org/10.1016/0041-
5553(67)90040-7

5. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the
common point of convex sets. USSR Comput. Math. Math. Phys. 7, 1–24 (1967).
https://doi.org/10.1016/0041-5553(67)90113-9

6. Germanov, M.A., Spiridonov, V.S.: On a method of solving systems of non-linear
inequalities. USSR Comput. Math. Math. Phys. 6, 194–196 (1966). https://doi.
org/10.1016/0041-5553(66)90066-8

7. Goffin, J.L.: The relaxation method for solving systems of linear inequalities. Math.
Oper. Res. 5, 388–414 (1980). https://doi.org/10.1287/moor.5.3.388

8. González-Gutiérrez, E., Todorov, M.I.: A relaxation method for solving systems
with infinitely many linear inequalities. Optim. Lett. 6, 291–298 (2012). https://
doi.org/10.1007/s11590-010-0244-4

9. González-Gutiérrez, E., Hernández Rebollar, L., Todorov, M.I.: Relaxation meth-
ods for solving linear inequality systems: converging results. TOP 20, 426–436
(2012). https://doi.org/10.1007/s11750-011-0234-4

https://doi.org/10.4153/CJM-1954-037-2
https://doi.org/10.4153/CJM-1954-038-x
https://doi.org/10.1016/0041-5553(63)90463-4
https://doi.org/10.1016/0041-5553(63)90463-4
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1016/0041-5553(67)90113-9
https://doi.org/10.1016/0041-5553(66)90066-8
https://doi.org/10.1016/0041-5553(66)90066-8
https://doi.org/10.1287/moor.5.3.388
https://doi.org/10.1007/s11590-010-0244-4
https://doi.org/10.1007/s11590-010-0244-4
https://doi.org/10.1007/s11750-011-0234-4

Parallel Method of Pseudoprojection 231

10. Mandel, J.: Convergence of the cyclical relaxation method for linear inequalities.
Math. Program. 30, 218–228 (1984). https://doi.org/10.1007/BF02591886

11. Konnov, I.: Combined Relaxation Methods for Variational Inequalities. LNE, vol.
495. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56886-2

12. Konnov, I.V.: A modified combined relaxation method for non-linear convex vari-
ational inequalities. Optimization 64, 753–760 (2015). https://doi.org/10.1080/
02331934.2013.820298

13. Fejér, L.: Über die Lage der Nullstellen von Polynomen, die aus Minimumforderun-
gen gewisser Art entspringen. In: Hilbert, D. (ed.) Festschrift, pp. 41–48. Springer,
Heidelberg (1982). https://doi.org/10.1007/978-3-642-61810-9 6

14. Eremin, I.I.: Methods of Fejer’s approximations in convex programming. Math.
Notes Acad. Sci. USSR 3, 139–149 (1968). https://doi.org/10.1007/BF01094336

15. Vasin, V.V., Eremin, I.I.: Operators and Iterative Processes of Fejér Type. Theory
and Applications. Walter de Gruyter, Berlin, New York (2009)

16. Sokolinskaya, I., Sokolinsky, L.: Revised pursuit algorithm for solving non-
stationary linear programming problems on modern computing clusters with many-
core accelerators. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS,
vol. 687, pp. 212–223. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
55669-7 17

17. Sokolinskaya, I.M.: Scalable algorithm for non-stationary linear programming prob-
lems solving. In: 2017 2nd International Ural Conference on Measurements (Ural-
Con), pp. 49–53 (2017). https://doi.org/10.1109/URALCON.2017.8120685

18. Sokolinskaya, I., Sokolinsky, L.B.: Scalability evaluation of NSLP algorithm for
solving non-stationary linear programming problems on cluster computing systems.
In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 40–53.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0 4

19. Sokolinskaya, I., Sokolinsky, L.B.: On the solution of linear programming problems
in the age of big data. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS,
vol. 753, pp. 86–100. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67035-5 7

20. Censor, Y., Elfving, T.: New methods for linear inequalities. Linear Algebra Appl.
42, 199–211 (1982). https://doi.org/10.1016/0024-3795(82)90149-5

21. De Pierro, A.R., Iusem, A.N.: A simultaneous projections method for linear
inequalities. Linear Algebra Appl. 64, 243–253 (1985). https://doi.org/10.1016/
0024-3795(85)90280-0

22. Yang, K., Murty, K.G.: New iterative methods for linear inequalities. J. Optim.
Theory Appl. 72, 163–185 (1992). https://doi.org/10.1007/BF00939954

23. Eremin, I.I.: Teoriya lineynoy optimizatsii [The theory of linear optimization]. Pub-
lishing House “Yekaterinburg”, Ekaterinburg (1999). (in Russian)

24. Sokolinsky, L.B.: Analytical estimation of the scalability of iterative numerical
algorithms on distributed memory multiprocessors. Lobachevskii J. Math. 39, 571–
575 (2018). https://doi.org/10.1134/S1995080218040121

https://doi.org/10.1007/BF02591886
https://doi.org/10.1007/978-3-642-56886-2
https://doi.org/10.1080/02331934.2013.820298
https://doi.org/10.1080/02331934.2013.820298
https://doi.org/10.1007/978-3-642-61810-9_6
https://doi.org/10.1007/BF01094336
https://doi.org/10.1007/978-3-319-55669-7_17
https://doi.org/10.1007/978-3-319-55669-7_17
https://doi.org/10.1109/URALCON.2017.8120685
https://doi.org/10.1007/978-3-319-71255-0_4
https://doi.org/10.1007/978-3-319-67035-5_7
https://doi.org/10.1007/978-3-319-67035-5_7
https://doi.org/10.1016/0024-3795(82)90149-5
https://doi.org/10.1016/0024-3795(85)90280-0
https://doi.org/10.1016/0024-3795(85)90280-0
https://doi.org/10.1007/BF00939954
https://doi.org/10.1134/S1995080218040121

Supercomputer Simulation

GPU Acceleration of Bubble-Particle
Dynamics Simulation

Ilnur A. Zarafutdinov1(B), Yulia A. Pityuk1, Azamat R. Gainetdinov1,
Nail A. Gumerov1,2, Olga A. Abramova1, and Iskander Sh. Akhatov3

1 Center for Micro and Nanoscale Dynamics of Dispersed Systems,
Bashkir State University, Ufa, Russia

ilnurzaraf2@gmail.com, pityukyulia@gmail.com
2 Institute for Advanced Computer Studies, University of Maryland,

College Park, USA
3 Skolkovo Institute of Science and Engineering (Skoltech), Moscow, Russia

Abstract. Clusters containing bubbles and solid particles are used in
many fields of industry. For instance, the study of bubble-particle inter-
action can be useful for surface cleaning in microelectronics and froth
flotation in oil distillation.

The present work discusses the joint 3D dynamics of bubbles and solid
spherical particles in the presence of an acoustic field in an unbounded
ideal incompressible liquid. To solve the problem, we chose the bound-
ary element method (BEM) which requires only the discretization of
the boundary of the computational domain. However, the application of
the conventional BEM for the direct simulation of large particle-bubble
systems is normally limited by memory, computational complexity, and
speed. To perform such simulations, we propose a numerical approach
based on the GPU acceleration of the BEM code.

The method includes the solution of linear algebraic equations with
a dense matrix of special type, using for this the generalized minimal
residual method with calculation of the matrix-vector product on graph-
ics processors using CUDA technology. We also discuss the performance
of the method and run test computations of bubble-particle clusters.

Keywords: Bubbles · Particles · Acoustic field · Potential flow
Boundary element method · Graphics processors · CUDA technology

1 Introduction

Clusters containing bubbles and solid particles have wide applications in many
industries. For example, the study of the interaction between bubbles and solid
particles can be used in biotechnology and medicine for sterilization of medical
instruments at low temperatures, tartar removal, lithotripsy, drug delivery to dis-
eased organs, surgical operations on complex organs, as well as for microsurface
cleaning (microchips, silicon substrate) in microelectronics and semiconductor

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 235–250, 2018.
https://doi.org/10.1007/978-3-319-99673-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_17&domain=pdf

236 I. A. Zarafutdinov et al.

industry. Froth flotation is used for water purification from organic substances
and solid sediment, separation of mixtures, accelerating sedimentation in chemi-
cal, petrochemical, food and other industries. Thus, the study of bubble-particle
clusters is relevant from a fundamental point of view, and has wide applications.

Recent theoretical, numerical and experimental investigations are mainly
devoted to the analysis of the behavior of the bubble near a solid surface [1,2]
and near a solid sphere [3,4]. There currently exist several models of the inter-
action between bubbles and solid objects. In [5], Lagrange equations of the fifth
order of accuracy were used for the description of the dynamics of a cluster con-
taining spherical bubbles and spherical elastic or solid particles in a potential
flow of liquid in the presence of an acoustic field or shock wave.

A large number of works are devoted to the bubble-particle interaction in
flotation processes. Derjaguin and Dukhin [6] studied the interaction of bub-
bles and particles by introducing a three-zone model for particles of small and
medium sizes. In zone 1, when the particle is far from the bubble, hydrodynamic
forces prevail. The particle moves towards the bubble under the action of inertial
and gravitational forces. In zone 2, when the particle approaches the bubble, a
tangential flow appears near the bubble surface. In zone 3, when the particle is
located very close to the bubble, surface forces, such as Van der Waals and elec-
trostatic forces, should be considered. Accounting for forces in zones 2 and 3 is a
highly difficult task. For this reason, a model of interaction between bubbles and
particles only for zone 1 was considered in [7]. It is shown that the concentration
of bubbles and particles depends on the collision intensity, adhesion, and bubble
stability. A more detailed overview of the bubble-particle interaction in zone 1
can be found in [8].

The adhesion process of particle-bubble interaction was experimentally stud-
ied in [9,10] by measuring a particle trajectory on the surface of a large air
bubble. Basarova et al. [11] carried out similar experiments to measure the
trajectory of bubbles on the surface of a large stationary particle. In recent
years, researchers have begun to use the methods of computational fluid dynam-
ics for efficient simulation of collisions of bubbles and particles in a flotation
cell [12], and in a turbulent environment [13]. Despite the fact that these models
have practical significance for industry, many physical phenomena, such as the
motion of bubbles and particles, interfacial forces and film drainage process, have
not been fully understood. Furthermore, the dynamics of the cluster containing
bubbles and solid particles, especially in the three-dimensional case, has been
poorly studied. In most theories associated with the dynamics of bubbles and
particles, three-dimensional effects are neglected. Moreover, a qualitative study
of the behavior of bubbles and particles in the presence of an acoustic field is
not carried out, for an accurate description of the process of interaction between
particles and bubbles at a micro-level and small time. They are rather focused
on a quantitative and approximate description of the problem.

The present study is devoted to the development of mathematical models and
the implementation of the corresponding program codes based on efficient meth-
ods and algorithms for three-dimensional simulation of bubble-particle interac-
tion in an acoustic field. The numerical approach is based on the boundary

GPU Acceleration of Bubble-Particle Dynamics Simulation 237

element method (BEM), which requires only the surface discretization, thereby
allowing to reduce the effective dimension of the problem by one. Thus, larger
size problems can be solved using the BEM. Moreover, using known bound-
ary values, we can calculate unknown values at any point of the computational
domain. We used the BEM for potential flows [14]. Despite the BEM advan-
tages, large-scale three-dimensional problems remain computationally very com-
plex and resource-intensive. So the most important aspect is the development
and application of methods to accelerate resource-intensive computing. For many
years, progress in studying the behavior of large disperse systems was mainly
empirical, with just several examples of large-scale direct simulations (e.g., for
bubble dynamics [15]). Nowadays, modern computational methods and power-
ful computer resources allow to implement codes for fast large-scale microfluid
dynamics simulations. A striking example of powerful hardware resource is that
of a highly parallel, multi-threaded, multi-core graphics processing unit (GPU)
having a large processing power and large memory bandwidth. Using GPUs not
only to display graphics but also to speed up problems unrelated to graphics
became a revolution in the last decade. GPUs could overtake central processing
units (CPUs) owing to the large number of vertex and fragment processors.

In the present study, to accelerate computations of bubble-particle dynam-
ics, a GPU is used since its architecture is best suited to conduct calculations
with parallelization for a dense matrix of special type. We chose for this purpose
a GPU manufactured by NVIDIA owing to its prevalence and accessibility, as
well as to the availability of a user-friendly technology for CUDA programming.
The CUDA programming language is an extension of the C/C++ language [16].
Multi-core processors work in groups: a group of threads simultaneously per-
forms the same instructions for a set of data, and at the same time, can work
with thousands of threads in parallel [17]. So the parallel algorithms should be
developed taking into account the specific features of multi-core processors. In
previous works, the authors successfully applied GPUs to accelerate BEM simu-
lations of droplet [19,20] and bubble [21] dynamics. The developed approach is
validated for bubble-particle interaction, including the spherical case of a bubble
in an acoustic field. After that, simulations are extended to study the dynamics
of small and large clusters with different structures including deformable bubbles
and spherical solid particles.

2 Problem Statement

2.1 Mathematical Model

Consider the motion of a bubble (corresponding to the index “b”) of volume Vb

bounded by a surface Sb, and a solid spherical particle (corresponding to the
index “p”) of volume Vp bounded by a surface Sp, both in an unlimited inviscid
incompressible liquid. The motion of a liquid in a gravity field of acceleration g
is described by the Euler equations:

ρl
dv
dt

= − � p + ρlg, � · v = 0,
d

dt
=

∂

∂t
+ v · �, (1)

238 I. A. Zarafutdinov et al.

where p, v and ρl are, respectively, the pressure, the velocity and the density of
the liquid. Next, we assume that the liquid is at rest at infinity:

v||r|→∞ → 0. (2)

Moreover, we assume that the flow is potential, that is, v = �φ, where φ is
the velocity potential, which satisfies the Laplace equation �2φ = 0 and can be
expressed by a Cauchy–Lagrange integral,

∂φ

∂t
+

1
2

|∇φ|2 =
p∞ − pg + 2γk

ρl
+ g · x, x ∈ Sb, (3)

where x is the space coordinate of the point to which this equation is applied,
p∞ is the liquid pressure far from the bubble and the particle, γ is the surface
tension, and k is the mean surface curvature.

The gas pressure pg is determined according to some polytropic process:

pg(t) = pg0

(
Vb0

Vb

)k

, pg0 = p0 +
2γ

a0
, (4)

where κ is the polytropic exponent, subscript “0” refers to the initial value at
t = 0, V is the bubble volume, and a is the equivalent bubble radius.

The liquid pressure p∞ changes according to the acoustic field:

p∞(t) = p0 + pa(t), pa(t) = Pa sin(ωt + ϕ), (5)

where p0 is the liquid pressure in the absence of the acoustic field, pa is the
acoustic pressure; Pa, ω and ϕ are, respectively, the amplitude, the frequency
and the phase shift of the acoustic field.

The motion of the nodes on the surface of the bubble and the particle is
described by the kinematic equation

nb · v|x=xb
= nb · dxb

dt
, np · v|x=xp

= np · dxp

dt
, (6)

or relative to the velocity potential:

∂φ

∂n

∣∣∣
x=xb

= nb · dxb

dt
,

∂φ

∂n

∣∣∣
x=xp

= np · dxp

dt
, (7)

where n is the normal to the surface pointing towards the liquid.
In the absence of a particle, the problem for the bubble can be integrated

using relation (6). Indeed, this relation shows that the pressure can be computed
if the position of the bubble surface is known. If the potential on the surface is
also known, then one can solve the Dirichlet problem for the Laplace equation
and determine the normal derivative, and according to Eq. (7), the normal veloc-
ity of the points on the surface, which can be integrated and the bubble surface
position can be updated. The value of the potential then can be updated using
the Cauchy–Lagrange integral (3), and so one can solve the problem for the next

GPU Acceleration of Bubble-Particle Dynamics Simulation 239

instance of time. The velocity of the bubble surface motion can be found from
the first condition (6) (more detailed information can be found in [21]).

Unfortunately, this scheme does not work for the rigid body since the pressure
here is not determined by the position of the surface alone, as it is in the case
of the bubble. The Cauchy–Lagrange integral (3) can be used to determine the
surface pressure, and then the force on the rigid body could be computed using
Newton’s second law. Thus, the force acting on a particle has two components,
the first due to gravity, and the second due to the liquid:

Fp = mpg −
∫
Sp

pn dS. (8)

The mathematical model can be easily expanded to the case of multiple bubble-
particle clusters.

2.2 Boundary-Integral Formulation

To simulate a cluster containing only bubbles, the mathematical model is reduced
to the solution of the Laplace equation, for which the boundary-integral equa-
tions (for the velocity potential φ, where φ||y|→∞ = 0) can be written as fol-
lows [21]:

L [q] (y) − M [φ] (y) =

⎧⎪⎨
⎪⎩

−φ (y) , y /∈Sb, y /∈Vb,

−1
2
φ (y) , y ∈Sb,

0, y ∈Vb.

(9)

Here the BEM uses a formulation in terms of boundary integral equations (BIE)
whose solution with boundary conditions gives φ(x) and q(x) = ∂φ(x)/∂n(x) on
the boundary and subsequently determines φ(y) for the external and boundary
domain point y; L[q] and M [φ] are potentials of simple and double layers.

In the presence of rigid particles in a cluster, the following modifications
of the boundary-integral formulation (9) is used. The momentum conservation
equation describing the particle dynamics can be written as

dVp

dt
=

(
1− ρl

ρp

)
g+

ρl
mp

[
d

dt

∫
Sp

φn dS +
∫
S

(
1
2
| � φ|2n − ∂φ

∂n
� φ

)
dS

]
(10)

or
dUp

dt
=

(
1 − ρl

ρp

)
g +

ρl
mp

∫
S

(
1
2
| � φ|2n − ∂φ

∂n
� φ

)
dS, (11)

where Up = Vp − ρl
ml

∫
Sp

φn dS.

Taking into account (10), relation (7) can be reduced to the form

q(x) = n(x)
ρ

mp

∫
Sp

φ(z)n(z)dS(z) + F (x), x ∈ Sp, F (x) = Upn(x). (12)

240 I. A. Zarafutdinov et al.

Equation (12) makes it possible to eliminate the normal derivative on the
particle surface and results in the following boundary integral equation

1
2
φ(y) = Mb[φ] − Lb[q] + Mp[φ] − Qp[φ] − Hp[y], y ∈ S = Sp ∪ Sb, (13)

where

Qp[φ](y) =
∫
Sp

Θ(y,x)φ(x) dS(x), Θ(y,x) =
ρ

mp
Np(y) · n(x),

Hp(y) = Lp[F](y) =
∫
Sp

F (x)G(y,x) dS(x) = Up · Np(y),

Np(y) = Lp[n](y) =
∫
Sp

n(x)G(y,x) dS(x),

(14)

Li[q](y) =
∫
Si

q(x)G(y,x) dS(x),

Mi[φ](y) =
∫
Si

φ(x)
∂G(y,x)
∂n(x)

dS(x), i = b, p.

(15)

Here G(y,x) and ∂G(y,x)/∂n(x) are the Green’s functions for the Laplace equa-
tion and its normal derivative:

G(y,x) =
1

4πr
,

∂G(y,x)
∂n(x)

=
n · r
4πr3

, r = y − x, r = |y − x|. (16)

If the potential and its normal derivative are known at time t on the surface
S(t) = Sb(t) ∪ Sp(t), then the surface can be propagated to time t + �t, as well
as the values of the potential on the bubble surface, φb(t+�t,xb(t+�t)). Then
the unknowns at t + �t in integral equation (13) are the normal derivative on
the bubble surface, which we denote by qb, and the potential on the particle
surface, which we denote by φp. This integral equation can be split into two
parts corresponding to evaluation points y on the bubble surface and on the
particle surface, respectively. We have then

Lb[qb](y) − Jp[φp](y) =
(

Mb − 1
2
I

)
[φb](y) − Hp(y), y ∈ Sb,

Lb[qb](y) −
(

Jp − 1
2
I

)
[φp](y) = Mp[φb](y) − Hp(y), y ∈ Sp,

(17)

where Jp[φp](y) = Mp[φp](y) − Qp[φp](y) is a singular boundary operator com-
bining the double layer Mp and the regular operator Qp.

3 The Algorithm

The program code is developed on the basis of the above-mentioned mathe-
matical model and the corresponding boundary-integral formulation for joint

GPU Acceleration of Bubble-Particle Dynamics Simulation 241

Fig. 1. Issues related to the algorithm

bubble-particle dynamics. The steps of algorithm using the BEM are shown in
Fig. 1. The numbers indicate the basic program modules needed for the correct
operation of the software. The purpose of each module is described below.

1. Discretize the surface. The surface is approximated by a mesh with tri-
angular elements. We used a Delaunay triangulation in which the valence of the
vertices is not less than 5 and the triangles satisfy the quality criterion q > 0.6,
where

q =
4S

√
3

l21 + l22 + l23
. (18)

Here l1, l2 and l3 are the length of the triangle sides, and S is its area. The
accuracy of the approximation depends on the surface density of the mesh, which
is characterized by the number of vertices N of the triangular elements. In the
case of smooth surfaces, the computational nodes are chosen in the vertices. It
is important that if the bubble shape deviates from that of a sphere, the surface
topology still remains unchanged. In the case of several bubbles and particles,
the surface of each object is discretized. A discretization of the spherical object
used for calculations with N = 642 is shown in Fig. 2(a).

2. Input initial parameters. The determination of the initial physical and
computational parameters of the problem is an important point. The initial
parameters for the bubble are the initial position and the potential in the nodes
on the bubble surface. The initial parameters for the spherical particle are the
initial position and the velocity of the mass center. The physical parameters
are the cluster structure (the number of particles and bubbles, their sizes) and
its physical characteristics (particle density, gas pressure, polytropic exponent),

242 I. A. Zarafutdinov et al.

the liquid parameters (density, pressure), and the acoustic field parameters
(amplitude, frequency, phase shift). All physical parameters are expressed in
a dimensionless form. The reference length is chosen as the initial bubble
radius: L∗ = ab0; the pressure scale: P ∗ = p0; the density scale: ρ∗ = ρl;
the reference velocity: U∗ =

√
p0/ρl. Then the corresponding reference time

is T ∗ = L∗/U∗ = ab0/
√

p0/ρl. Dimensionless parameters and variables will be
decorated with a prime. Note that when determining the physical parameters of
a problem, it is important to pay attention to the fact that the physical process
must be described by a mathematical model (in this case, the model of potential
flow). Computational tests are performed for a′

b0 = 1, a′
p0 = 1, ρ′

l = 1, ρ′
p = 2,

p′
0 = 1, ω′/(2π) = 0.2, γ′ = 0.073, κ′ = 1.4, g′ = 0.

The computational parameters are the number of computational nodes, the
time step (in this case, �t′ = 0.01, which satisfies Courant criterion), the max-
imum number of time steps, the visualization and storage methods, and the
schemes for solving the ordinary differential equation (ODE).

3. Output data, render the interface shape. At each time step, the system
dynamics is visualized and the results are saved using a chosen method (plots,
screenshots), and data is saved (coordinates and velocity potentials of the ver-
tices of the bubble, coordinate and velocity of the center of the particle, the
bubble volume).

4. Is it an exit condition? The software execution is terminated when a certain
maximum time value is reached or when the system reaches a state which is not
taken into account in the model (e.g., topology change).

5. Compute the geometry of the triangulated surface. To calculate the
boundary integrals by quadrature formulas, it is necessary to calculate geometric
characteristics, such as the area of triangular elements, the area of the surface
part related to a certain node (median splitting is used), the normal in the
computational nodes of the surface. To calculate the mean curvature of the
surface, the fitted paraboloid method is used on each mesh node [22].

6. Is it a large-scale problem? Depending on the problem size, we choose an
approach to the solution. If the number of unknown systems exceeds a certain
value determined by the memory and performance characteristics of the work-
station, then we use the generalized minimal residual method (GMRES) with
calculation of the matrix-vector product on graphics processors. Otherwise, the
BEM matrix is calculated directly and stored in the system memory, and the
system of linear algebraic equations (SLAE) is solved by direct methods. More
detailed information can be found in Sect. 4.

7. Compute the BEM matrices and the singular parts of the boundary
integrals. Using the vertex collocation method and quadrature formulas, each
boundary integral from Eqs. (14) and (15) can be represented as a matrix of the
appropriate size (depending on the number of computational nodes). Singular
elements of matrices are determined on the basis of integral identities and test
solutions. In case of a large-scale problem, it is necessary to storage just the
singular parts of the BEM matrices.

GPU Acceleration of Bubble-Particle Dynamics Simulation 243

8. Solve a linear algebraic system. Equations (17) can be discretized, and
as a result, a SLAE is obtained for the unknown values qb and φp in the nodes
on the surface of the bubble and the particle, respectively.

9. Evolve the boundary. To describe the system dynamics, the following time
marching is used. Time marching is the determination of all needed variables at
time step t + �t as all those variables are known at time step t. The variables
can be divided into two groups: those whose values at the next time step are
determined immediately using a system of differential equations (principal or
primary variables), and those whose values are computed from the values of
the primary variables and needed for computation of the right-hand sides of the
differential equations for primary variables (auxiliary or secondary variables). Of
course, some physically important quantities can be also computed and output.

The primary variables for the present problem are the coordinates of the
bubble surface xb (3Nb cartesian coordinates for Nb points sampling the bubble
surface), the potential φb on the bubble surface (Nb values at the bubble surface
sampling points), the coordinates of the center of mass of the particle Rb (3
cartesian coordinates), the modified velocity of the particle center Up (3 carte-
sian coordinates). This amounts to 4Nb ×Mb +6Mp primary variables, where M
is the number of corresponding objects. The ODE describing the bubble-particle
dynamics are

dxb

dt
= vb,

dφb

dt
=

1
2
|vb|2 +

p∞ − pg + 2γk

ρl
+ g · xb,

dRp

dt
= Vp,

dUp

dt
=

(
1 − ρl

ρp

)
g +

ρl
mp

∫
S

(
1
2
| � φ|2n − ∂φ

∂n
� φ

)
dS.

(19)

The program code provides a choice of methods for solving this ODE. The most
optimal scheme (from the point of view of time and accuracy of calculations) is a
combination of two methods: it is possible to use the fourth-order Runge–Kutta
scheme (to preserve history) for the initial time steps, and then the Adams–
Bashforth scheme of the sixth order.

10. Is the mesh quality OK? When solving dynamic problems by the BEM,
there are problems with the mesh destabilization associated with errors in cal-
culations of geometrical characteristics, such as surface integrals, normal area,
tangential component, due to the surface discretization of the triangular ele-
ments. At each time step or after several time steps (depending on the time
step), it is therefore necessary to check the quality of the surface triangulation
according to quality criterion (18). If q < 0.6, then a mesh stabilization method
should be used.

11. Fix the mesh. To stabilize the mesh, we developed and implemented a new
approach based on the use of a spherical filter [21], which removes the arising

244 I. A. Zarafutdinov et al.

−1
0

1

−1

0

1
−1

−0.5

0

0.5

1

xy

z

(a) Triangulation (b) Benchmark

Fig. 2. Structure of a bubble-particle cluster for performance test (Color figure online)

noise from the bubble surface. The method is based on a parametric representa-
tion of the surface by spherical harmonics. The use of the spherical filter allows
one to calculate several oscillation periods of a strongly collapsing bubble. More-
over, for the mesh stabilization, a correction of the tangential component of the
velocity is also applied [21].

4 GPU Acceleration

Since the problem is a nonstationary one, it is necessary to build the BEM
matrices at each time step and solve the SLAE (17). As the number of objects
increases, the complexity of the problem grows, and more memory is needed
to store the BEM matrices. Since the system matrices are of a special type, it
is not necessary to store the elements of a matrix, it is sufficient to calculate
a matrix-vector product (MVP). In the present study, we calculated all MVPs
from Eq. (17) on the GPU. The paralleled codes for the left-hand side (LHS)
and the right-hand side (RHS) are implemented using CUDA technology. To
solve the SLAE, we use the unpreconditioned general minimal residual method
(GMRES) [18], where we redefine the MVP and execute the code for the LHS
on the GPU.

Calculations are performed on a workstation equipped with an Intel Xeon
5660 2.8 GHz CPU (12 physical + 12 virtual cores), 12 GB RAM, and one GPU
NVIDIA Tesla C2050 (3 GB of global memory). To test the performance of
the program code, we consider a benchmark consisting of a cluster containing
bubbles (blue color) and particles (red color) under an acoustic field of amplitude
P ′
a = 0.7, and a distance d′ = 7 between the centers of nearest objects (Fig. 2).

Figure 3 demonstrates the dependence between the run time of one MVP for
the LHS and RHS of Eq. (17) and the matrix size, using different architectures,
precisions and methods. The run time for the MVP calculation and the SLAE
solution for different computational points is summarized in Table 1. From the
figures and the table, it is evident the speedup of the code implemented on the
GPU using the parallel computing platform CUDA (taking into account the

GPU Acceleration of Bubble-Particle Dynamics Simulation 245

106 107 108 109 1010
10−3

10−2

10−1

100

101

102

N

tim
e,

 s
ec

.
RHS, GPU
RHS, CPU
LHS, GPU
LHS, CPU

(a) Comparison of codes on CPU and
GPU

106 107 108 109 1010
10−3

10−2

10−1

100

101

N

tim
e,

 s
ec

.

RHS, GPU (double−precision)
RHS, GPU (single−precision)
LHS, GPU (double−precision)
LHS, GPU (single−precision)

(b) Comparison for single and double
precision

Fig. 3. Wall-clock time of one MVP calculation for the LHS and the RHS

wall-clock time for data transfer) as compared with the code implemented on
the CPU using the direct method. Moreover, the MVP for the LHS requires
less computational time than for the RHS due to the complexity of calculating
the BEM matrix corresponding to Hp (see Eqs. (14) and (17)). Although the
calculation of one MVP for the LHS with single precision requires less time
than the corresponding calculation with double precision (see Fig. 3(b)), the
convergence of the GMRES with single precision is worse, which is seen from
the run time of the SLAE. Moreover, in the case using single precision, we
could not achieve the same accuracy. As an average, ∼12 to 13 (maximum 18)
iterations are required for the GMRES with double precision to converge to a
relative residual error
10−6.

Table 1. Run time of one MVP calculation for the LHS and RHS, and SLAE solution

Bubbles/particles 1/1 5/5 10/10 15/15 20/20 30/30

N 1248 6420 12840 19260 25680 38520

LHS CPU 0.0024 0.0520 0.3401 – – –

GPU, double prec. 0.0022 0.0208 0.0785 0.1837 0.3123 0.7111

GPU, single prec. 0.0020 0.0150 0.0550 0.1215 0.2066 0.4870

RHS CPU 0.0365 1.0574 71.9801 – – –

GPU, double prec. 0.0035 0.0368 0.1439 0.3340 0.5693 1.2967

GPU, single prec. 0.0031 0.0272 0.0999 0.2209 0.3794 0.8884

SLAE direct method 0.0728 3.2013 63.7664 – – –

GMRES, double prec. 0.0185 0.0444 0.1420 0.3206 0.5400 1.2069

GMRES, single prec. 0.1064 0.3178 0.9451 2.4379 4.0785 17.7282

246 I. A. Zarafutdinov et al.

5 Some Physical Results

On the basis of the developed software, it is possible to simulate the interaction
between bubbles and rigid spherical particles in the presence of an acoustic field.
In this section, we present both some illustrative calculations of the bubble-
particle dynamics and a physical analysis of the numerical results obtained.

−1 0 1 2 3 4 5

−1

0

1

x’

y’

t’ = 0 t’ = 5 t’ = 18.7

(a) Ox y plane visualization (b) 3D visualization at t = 5

Fig. 4. Bubble-particle interaction

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

−0.5

0

0.5

1

x’

y’

t’ = 0 t’ = 17 t’ = 25

(a) Ox y plane visualization (b) 3D visualization at t = 17

Fig. 5. Particle-bubble-particle interaction

The program code was tested and examined for convergence and calculation
accuracy. First, for the interaction of a bubble and a rigid particle at a distance
d′ = 9, we obtained a good agreement between the simulation results and the
solution of the Rayleigh–Plesset equation for the radius dynamics of a single
spherical bubble in an acoustic field of amplitude P ′

a = 0.5, neglecting viscos-
ity [23]. The relative error in the L∞ space for Nb = 642 is 2.31%. Then we
decreased the distance between bubble and particle. Figure 4 shows the bubble-
particle dynamics at d′ = 4, on the Ox′y′ plane (a), and in the three-dimensional
case (b). It should be noted that when the bubble expands, the particle is repelled

GPU Acceleration of Bubble-Particle Dynamics Simulation 247

(a) t = 0 (b) t = 13.7

Fig. 6. Dynamics of two bubbles and three particles

(a) t = 0 (b) t = 4.25

Fig. 7. Dynamics of eight bubbles and one particle

(a) t = 0 (b) t = 4.7

Fig. 8. Dynamics of eighteen bubbles and nine particles

248 I. A. Zarafutdinov et al.

from it, and when the bubble shrinks, the particle is attracted to it. This pro-
cess is associated with the formation of hydrodynamic flows generated by the
oscillations of the bubble.

Second, we considered the dynamics of a system “particle-bubble-particle” in
which the centers of all three objects lie on one line. The initial distance between
the centers of nearest objects is d′ = 4. The particle-bubble-particle interaction
is shown in Fig. 5, where one can see that the particles move symmetrically
towards the bubble.

After small-scale tests, we considered the dynamics of bubble-particle clusters
with ordered structure in the presence of an acoustic field of amplitude P ′

a = 0.7.
First, we simulated clusters containing two bubbles and three particles (Fig. 6),
and eight bubbles and one particle (Fig. 7), with centers located on the Ox′y′

plane. As we can see from the figures, a bubble jet appears pointing towards the
central particle. It is worth noting that, in the presence of two or more bubbles,
the bubble volume change is significantly different from that in the case of a
single-bubble system. This is associated with the secondary Bjerknes forces.
The second test involved a cubic cluster containing eighteen bubbles and nine
particles. In this case, we obtained the total number of computational nodes
N = 17 334. The run time for this test was about 30 minutes for 500 time
steps. Figure 8 illustrates the cluster dynamics; here we also observe bubble-jet
formation.

6 Conclusions

In this article, we developed an algorithm to simulate the interaction of bubbles
and solid particles in the presence of an acoustic field. The algorithm is based on
the three-dimensional boundary element method for potential flows. We used a
GPU to speedup computations and increase the problem size. Performance tests
have shown the effectiveness of the implemented GPU codes.

We considered various cases, including small bubble-particle clusters and
more complex systems containing a few bubbles and particles. The analysis of
the bubble-particle dynamics shows that hydrodynamic flows generated by oscil-
lating bubbles have a notable influence on the particle behavior. It should be
noted that particles also affect the bubble dynamics, especially during the bubble
compression stage.

We consider to considerably increase in further research the problem scale and
reduce calculation time using algorithmic (fast multipole method) and hardware
(heterogeneous computing architecture (CPU + GPU)) acceleration [19–21]. We
also plan to expand and test the code for clusters containing non-spherical par-
ticles and bubbles, taking into account the torque. Also, qualitative comparison
with experimental data shall be conducted.

This study is partially supported by the Skoltech Partnership Program and
grant of the President of Russia (MK-3503.2017.8).

GPU Acceleration of Bubble-Particle Dynamics Simulation 249

References

1. Tomita, Y., Robinson, P.B., Tong, R.P., Blake, J.R.: Growth and collapse of cavi-
tation bubbles near a curved rigid boundary. J. Fluid Mech. 466, 259–283 (2002).
https://doi.org/10.1017/S0022112002001209

2. Brujan, E.A., Keen, G.S., Vogel, A., Blake, J.R.: The final stage of the collapse
of a cavitation bubble close to a rigid boundary. Phys. Fluids 14, 85–92 (2002).
https://doi.org/10.1063/1.1421102

3. Miao, H., Gracewski, S.M.: Response of an ultrasonically excited bubble near a
fixed rigid object. Acoust. Res. Lett. Online 6, 144–150 (2005). https://doi.org/
10.1121/1.1898344

4. Gracewski, S.M., Miao, H., Dalecki, D.: Ultrasonic excitation of a bubble near a
rigid or deformable sphere: implications for ultrasonically induced hemolysis. J.
Acoust. Soc. Am. 117, 1440–1447 (2005). https://doi.org/10.1121/1.1858211

5. Hay, T.A., Hamilton, M.F., Ilinskii, Yu.A., Zabolotskaya, E.A.: Coupled pulsation
and translation of a gas bubble and rigid particle. In: AIP Conference Proceedings,
vol. 1022, pp. 209–212 (2008). https://doi.org/10.1063/1.2956188

6. Derjaguin, B.V., Dukhin, S.S.: Theory of flotation of small and medium-size par-
ticles. Trans. Inst. Min. Metall. 70, 221–246 (1961)

7. Phan, C.M., Nguyen, A.V., Miller, J.D., Evans, G.M., Jameson, G.J.: Investiga-
tions of bubble-particle interactions. Int. J. Miner. Process. 72, 239–254 (2003).
https://doi.org/10.1016/S0301-7516(03)00102-9

8. Dai, Z., Fornasiero, D., Ralston, J.: Particle-bubble collision models - a
review. Adv. Colloid Interface Sci. 96, 54 (2000). https://doi.org/10.1016/S0001-
8686(99)00030-5

9. Nguyen, A.V., Evans, G.M.: Attachment interaction between air bubbles and par-
ticles in froth flotation. Exp. Therm. Fluid Sci. 28, 381–385 (2004). https://doi.
org/10.1016/j.expthermflusci.2002.12.001

10. Verrelli, D.I., Koh, P.T.L., Nguyen, A.V.: Particle-bubble interaction and attach-
ment in flotation. Chem. Eng. Sci. 66, 5910–5921 (2011)

11. Basarova, P., Machon, V., Hubicka, M., Horn, D.: Collision processes involving
a single rising bubble and a larger stationary spherical particle. Int. J. Miner.
Process. 94, 58–66 (2010). https://doi.org/10.1016/j.minpro.2009.11.004

12. Koh, P.T.L., Schwarz, M.P.: CFD modelling of bubble-particle collision rates and
efficiencies in a flotation cell. Miner. Eng. 16, 1055–1059 (2003). https://doi.org/
10.1016/j.mineng.2003.05.005

13. Liu, T.Y., Schwarz, M.P.: CFD-based modelling of bubble-particle collision effi-
ciency with mobile bubble surface in a turbulent environment. Int. J. Miner. Pro-
cess. 90, 45–55 (2009)

14. Canot, E., Achard, J.-L.: An overview of boundary integral formulations for poten-
tial flows in fluid-fluid systems. Arch. Mech. 43, 453–98 (1991)

15. Bui, T.T., Ong, E.T., Khoo, B.C., Klaseboer, E., Hung, K.C.: A fast algorithm
for modeling multiple bubbles dynamics. J. Comput. Phys. 216, 430–453 (2006).
https://doi.org/10.1016/j.jcp.2005.12.009

16. CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html

17. NVIDIA Programming Guide. http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html

18. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869
(1986). https://doi.org/10.1137/0907058

https://doi.org/10.1017/S0022112002001209
https://doi.org/10.1063/1.1421102
https://doi.org/10.1121/1.1898344
https://doi.org/10.1121/1.1898344
https://doi.org/10.1121/1.1858211
https://doi.org/10.1063/1.2956188
https://doi.org/10.1016/S0301-7516(03)00102-9
https://doi.org/10.1016/S0001-8686(99)00030-5
https://doi.org/10.1016/S0001-8686(99)00030-5
https://doi.org/10.1016/j.expthermflusci.2002.12.001
https://doi.org/10.1016/j.expthermflusci.2002.12.001
https://doi.org/10.1016/j.minpro.2009.11.004
https://doi.org/10.1016/j.mineng.2003.05.005
https://doi.org/10.1016/j.mineng.2003.05.005
https://doi.org/10.1016/j.jcp.2005.12.009
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1137/0907058

250 I. A. Zarafutdinov et al.

19. Itkulova(Pityuk), Yu.A., Solnyshkina, O.A., Gumerov, N.A.: Toward large scale
simulations of emulsion flows in microchannels using fast multipole and graphics
processor accelerated boundary element method. In: ASME 2012 International
Mechanical Engineering Congress and Exposition, pp. 873–881 (2012). https://
doi.org/10.1115/IMECE2012-86238

20. Abramova, O.A., Pityuk, Yu.A., Gumerov, N.A., Akhatov, I.Sh.: High-performance
BEM simulation of 3D emulsion flow. In: Sokolinsky, L., Zymbler, M. (eds.) PCT
2017. CCIS, vol. 753, pp. 317–330. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-67035-5 23

21. Itkulova(Pityuk), Yu.A., Abramova, O.A., Gumerov, N.A., Akhatov I.S.: Simula-
tion of bubble dynamics in three-dimensional potential flows on heterogeneous com-
puting systems using the fast multipole and boundary element methods. Numer.
Methods Program. 15, 239–257 (2014). (in Russian)

22. Zinchenko, A.Z., Rother, M.A., Davis, R.H.: A novel boundary-integral algorithm
for viscous interaction of deformable drops. Phys. Fluid. 9(6), 1493–1511 (1997).
https://doi.org/10.1063/1.869275

23. Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. J. Fluid Mech. 9,
145–185 (1977). https://doi.org/10.1146/annurev.fl.09.010177.001045

https://doi.org/10.1115/IMECE2012-86238
https://doi.org/10.1115/IMECE2012-86238
https://doi.org/10.1007/978-3-319-67035-5_23
https://doi.org/10.1007/978-3-319-67035-5_23
https://doi.org/10.1063/1.869275
https://doi.org/10.1146/annurev.fl.09.010177.001045

VM2D: Open Source Code for 2D
Incompressible Flow Simulation

by Using Vortex Methods

Kseniia Kuzmina1,2, Ilia Marchevsky1,2(B), and Evgeniya Ryatina1,2

1 Bauman Moscow State Technical University, Moscow, Russia
{kuz-ksen-serg,evgeniya.ryatina}@yandex.ru, iliamarchevsky@mail.ru
2 Ivannikov Institute for System Programming, Russian Academy of Sciences,

Moscow, Russia

Abstract. The article describes an open source C++ code we have
developed for 2D incompressible flow simulation using vortex methods.
The code has a modular structure, and allows users to simulate flows
around airfoils (also, around a system of airfoils) and compute unsteady
hydrodynamic loads acting the airfoils. It is also possible to simulate
hydroelastic regimes of airfoil motion in the flow by using weakly and
strongly coupling strategies. The software implements well known algo-
rithms and also original numerical schemes developed by the authors,
thereby significantly increasing the accuracy of simulations compared to
traditional algorithms. The software makes it possible to run simulations
in parallel mode; OpenMP and MPI technologies are supported.

The VM2D source code is available on GitHub under GNU GPL
license.

Keywords: Vortex method · Incompressible flow
Hydrodynamic loads · Fluid-structure interaction · Hydroelasticity
MPI · OpenMP · Open source code · Boundary integral equation

1 Introduction

Vortex methods of simulation of flows around airfoils are based on the considera-
tion of vorticity as a primary computed variable and on a fundamental principle
discovered by N. E. Zhukovsky in 1906: an immovable airfoil affects an inviscid
incompressible flow just as an attached vortex sheet placed on the surface line of
the airfoil [1]. Later, this principle was developed and generalized by S. A. Chap-
lygin and M.W. Kutta. According to these results, it is possible to replace the
airfoil with a vortex sheet and then determine somehow the intensity of this
vortex sheet. For some airfoils of simple shapes (elliptical airfoils and Zhukovsky
wing airfoils), it can be found by using a technique based on conformal map-
pings. Such solutions can be used as benchmarks for verification of numerical
algorithms.

The research is funded by Russian Science Foundation (proj. 17-79-20445).

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 251–265, 2018.
https://doi.org/10.1007/978-3-319-99673-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_18&domain=pdf

252 K. Kuzmina et al.

When solving the Navier–Stokes equations, the classical Zhukovsky approach
remains correct in principle both for movable and immovable airfoils. It is neces-
sary, however, to simulate the vorticity flux [2] from the body surface to the flow.
This means that the vortex sheet that simulates the airfoil surface line influence
should be considered as a free vortex sheet instead of being an attached one.
According to Lighthill’s approach, this phenomenon can be modelled as a result
of vorticity generation on the surface line K. Then the vorticity, which is con-
centrated in this vortex sheet with intensity γ(r), r ∈ K, becomes part of the
vortex wake and moves in the flow according to the governing equations.

In order to simulate a movable airfoil in a viscous flow, both attached and
free vortex sheets as well as attached source sheets might be considered.

2 Reconstruction of Flow Variables

In meshless Lagrangian vortex methods, which are used for incompressible flow
simulation, vorticity is a primary computed variable, while velocity and pressure
fields can be reconstructed by using the known vorticity distribution in the flow.

Vorticity distribution in the flow is simulated by a set of vortex elements,
namely elementary vorticity fields corresponding to circular vortices with some
given shape of vorticity distribution, for example, Rankine’s vortex or Lamb’s
vortex (Fig. 1).

Fig. 1. Circumferential velocity induced by Rankine’s and Lamb’s vortices, with unit
circulation and vorticity distributions; ε is Rankine’s vortex radius. Lamb’s vortex
parameters are such that more than 0,998 of the total vorticity is inside an ε-circle; the
difference of velocities at r/ε > 1 is less than 0.2%

2.1 Velocity Reconstruction

The simplest way to compute the flow velocity at an arbitrary point r in the
flow domain S is by means of the Biot–Savart law:

V (r) =
∫

S

Ω(ξ)
2π

k × (r − ξ)
|r − ξ|2 dSξ + V ∞, (1)

VM2D: Open Source Code for 2D Incompressible Flow Simulation 253

where Ω(ξ) is a vorticity field, k is a unit vector orthogonal to the flow plane,
V ∞ is the incident-flow velocity. For simplicity, we suppose the airfoils to be
immovable.

The computational cost of this method, however, is extremely high; it is
proportional to N2, where N is the number of vortex elements, as it is necessary
to take into account the mutual influence of all pairs of vortices. In practice, this
fact strongly restricts the capabilities of vortex methods since computation time
becomes unacceptably high at N ∼ 10 000 . . . 100 000, even if parallel algorithms
are used.

Fast approximate methods are being used to solve this problem. The most
suitable are the following:

– Barnes–Hut-type fast method, firstly developed for the gravitational N -body
problem [3] and then adapted by prof. G. Ya. Dynnikova for vortex meth-
ods [4];

– fast method based on the solution of a Poisson auxiliary equation for a stream
function on a coarse mesh using the fast Fourier transform (FFT) [5].

The computational complexity of both methods is proportional to N log N , their
accuracies are comparable if the parameters choice is optimal. Note, however,
that the derivation of quantitative estimations for the accuracy of fast methods
is a nontrivial task.

2.2 Pressure Reconstruction and Loads Computation

In order to determine the pressure distribution in the flow domain, an analogue
of the Cauchy–Lagrange integral can be used [6]. However, in practice, it is
necessary, as a rule, to determine hydrodynamic loads (forces and torque) acting
on the airfoil in the flow. It is possible to use for this purpose integral formulae
derived by prof. G. Ya. Dynnikova and adapted to several types of problems
being solved by means of vortex methods [7]:

– flow around an immovable airfoil;
– flow around a rigid airfoil in translational motion;
– flow around a rigid airfoil in rotational motion;
– flow around a rigid airfoil in arbitrary motion.

These integral formulae have been obtained by integrating the pressure distribu-
tion over the airfoil surface line. Approximate formulae have also been derived by
prof. G. Ya. Dynnikova to take into account the influence of viscous stresses. In
practice, viscous stress influence becomes essential only for flows at Re < 1 000.

3 Vorticity Generation on Airfoil Surface Line

Vorticity in a viscous incompressible flow is generated only at the airfoil surface
line. The intensity of the vortex sheet, which is formed during a small time
interval, is described by boundary integral equation. There are two possible
ways to write down such equation:

254 K. Kuzmina et al.

– Singular integral equation of the first kind with Hilbert-type kernel Qn:

− 1
2π

∮

K

(r − ξ) · τ (ξ)
|r − ξ|2︸ ︷︷ ︸
Qn(r , ξ)

γ(ξ) dlξ = fn(r), r ∈ K, (2)

where τ is the unit tangent vector at the corresponding point of the airfoil
surface line. Specially derived quadrature formulae should be used to compute
the Cauchy principal value of the integral. Discrete Vortices Method-type
quadrature formulae are used in most cases [8], yet their accuracy is not very
high and they require a special surface line discretization which cannot be
easily done in cases of airfoils of complex shape, or when they are deformable.

– Fredholm-type integral equation of the second kind:

1
2π

∮

K

(r − ξ) · n(ξ)
|r − ξ|2︸ ︷︷ ︸
Qτ (r , ξ)

γ(ξ)dlξ − γ(r)
2

= fτ (r), r ∈ K, (3)

where n is the unit normal vector, and the kernel Qτ is bounded by one half
of the maximal curvature of the airfoil (this means that, in case of a smooth
airfoil, the kernel is a uniformly bounded function).
For this approach, we develop a hierarchy of numerical schemes of the first
and second order of accuracy adapted for flow simulation around smooth and
non-smooth airfoils [9–11].

The right-hand sides of both equations are, respectively, the normal and the
tangent components of the flow velocity at the corresponding point of the airfoil
surface line:

fn(r) = −V ω(r) · n(r), fτ (r) = −V ω(r) · τ (r), (4)

where

V ω(r) = V ∞ +
N∑

i=1

Q(i)(r) (5)

is the influence of the incident flow and vortex elements which simulate the vortex
wake. It is important to correctly take into account the influence of vortices
that are located in close proximity to the airfoil, first of all, in a boundary
layer. Numerical experiments show that the second approach and the numerical
schemes based on it are much more accurate compared to the first approach [12].

4 Vorticity Evolution in a Flow

The simulation of the vortex wake evolution in an inviscid incompressible flow
is rather easy using the vortex method: it is just necessary to find a numerical
solution of a system of ordinary differential equations,

dri

dt
= V (ri), i = 1, . . . , N, (6)

VM2D: Open Source Code for 2D Incompressible Flow Simulation 255

where ri is the position of the i-th vortex element. It means that vorticity is just
being translated in the flow domain at flow velocity.

There are several known approaches that take into account viscosity influ-
ence: random walk method [13], particle strength exchange (PSE) method [14],
diffusive velocity method [15], but it seems that the most suitable method
for 2D flows simulation is the viscous vortex domains (VVD) method, devel-
oped by G. Ya. Dynnikova and co-authors [16]. Within the framework of the
VVD method, the motion of the vortex elements simulating the vortex wake is
described by an ODE system,

dri

dt
= V (ri) + W (ri), i = 1, . . . , N, (7)

whereas their circulations remain the same.
An efficient approach, which is also considered as an important part of the

VVD method [16], is known for the computation of the diffusive velocity,

W (r) = −ν∇ ln |Ω(r)| = −ν
∇Ω(r)
Ω(r)

, (8)

which is proportional to the flow viscosity ν and depends both on the vorticity
distribution in the flow domain in a neighborhood to the point r and on the
shape of the flow region boundary (if there is such in a neighborhood to r).

5 VM2D Open Source Code

The vortex method is a powerful tool for numerical simulations in a wide range
of engineering applications: aerodynamical loads estimation for aircrafts and
aircraft trail simulation, simulation of hydroelastic oscillations of structural ele-
ments interacting with a flow, and solution of problems of industrial aerody-
namics. The application of vortex methods is limited to flow regimes with low
subsonic Mach numbers, when the influence compressibility can be neglected.

For such problems, especially hydroelastic ones, vortex methods can be very
efficient, at least compared to “traditional” mesh methods, where it is necessary
to deform or reconstruct the mesh at each time step. Moreover, for vortex meth-
ods, the computational cost of solving a hydroelastic problem remains nearly
the same as for a flow simulation around an immovable airfoil, and, in fact, it
is much easier to implement a numerical scheme with a strong coupling (again,
compared to mesh methods).

At the same time, vortex methods have not been implemented in widespread
software. Scientific groups developing new modifications of vortex methods have,
of course, their own codes, but those are “private”, they are not available to
other scientists and engineers. As far as we know, there are no open source
codes implementing vortex methods (neither 2D nor 3D).

We have developed such a code, named VM2D, for 2D incompressible-flow
simulation around movable and immovable airfoils, and also for solving cou-
pled fluid-structure interaction (FSI) problems. This is an open-source software,
available on GitHub: https://github.com/vortexmethods/VM2D.

https://github.com/vortexmethods/VM2D

256 K. Kuzmina et al.

5.1 The Structure of the VM2D Code

The source code is written in C++ and has a modular structure. It is a cross-
platform software and can be compiled under Windows and Linux by using
MSVC, GCC or Intel C++ Compiler (as well as other compilers supporting the
C++11 standard). The Eigen external library is used in VM2D for the numerical
solution of linear equations systems and fast Fourier transform.

OpenMP and MPI technologies are used for computation acceleration on
multi-core and multiprocessor cluster systems.

5.2 Problems Description in VM2D

It is possible to use VM2D for solving a particular problem or a set of similar
(or not similar) problems. For every problem to be solved, a separate directory
should be created with the same name as the problem. The list of problems
should be saved in the problems text file, which normally has the following
structure:

problems = {
wing00deg(np = 1, alpha = 0, tau = 0.015),
wing05deg(np = 2, alpha = 5, tau = 0.015),
wing10deg(np = 2, alpha = 10, tau = 0.010)

};

In the simplest case, it is enough to leave the parentheses empty, but there are
two parameters (pspfile and np) whose default values are the following: ‘pass-
port’ for pspfile, that is, the problem passport is stored in the file passport
inside the directory of the same name as the problem; and 1 for np, which is
the number of processors used for the solution in parallel mode through MPI
technology. Note that OpenMP technology for parallelization of the algorithm
in shared-memory mode is used for every multi-core processor.

All other parameter in curly brackets are the definitions of arbitrary variables
which a user can later use inside ‘passport’ files for their unification and for
notational convenience.

The following notations and rules are used:

– “//”—one-line comment;
– “/* ... */”—multi-line comment;
– line break—the same as a blank space;
– “;”—separator between different parameters;
– “,”—separator between different parameters inside the list of parameters (in

parentheses), or separator between the components of arrays and vectors;
– blank spaces and tabs are ignored;
– parameter names are not case sensitive.

In the above-considered example of problems text file, where a user plans to
solve three problems of flow simulation around a wing airfoil (as it follows from
the names of the problems) for different angles of incidence, the passport file
can be the same for all the problems and it may have the following structure:

VM2D: Open Source Code for 2D Incompressible Flow Simulation 257

/*------------------------------*- VM2D -*----------------*------------*\

| ## ## ## ## #### ##### | | Version 1.0 |

| ## ## ### ### ## ## ## ## | VM2D: Vortex Method | 2017/12/01 |

| ## ## ## # ## ## ## ## | for 2D Flow Simulation *-------------*

| #### ## ## ## ## ## | Open Source Code |

| ## ## ## ###### ##### | www.github.com/vortexmethods/VM2D |

| |

| Copyright (C) 2017 Ilia Marchevsky, Kseniia Kuzmina, Evgeniya Ryatina |

| File name: ./wing00deg/passport |

| Info: Parameters of the problem to be solved |

---/

//Physical Properties

rho = 1.0;

vInf = {1.0, 0.0};

timeAccel = 0.5;

nu = 0.001;

//Time Discretization Properties

timeStart = 0;

timeStop = 10.0;

dt = $tau;

deltacntText = 10;

deltacntBinary = 0;

//Wake Discretization Properties

vortexType = vortexRankine;

eps = 0.015;

epscol = 0.010;

distKill = 10.0;

delta = 1e-5;

//Numerical Schemes

linearSystemSolver = eigenLU;

velocityComputation = velocityBiotSavart;

wakeMotionIntegrator = explicitEuler;

//Airfoils and wake

airfoil = {

wing(basePoint = {0.0, 0.0}, scale = 1.0, angle = $angle,

panelsType = panelsRectilinear,

boundaryCondition = boundaryConstLayerAver,

mechanicalSystem = mechanicsRigidImmovable) };

wake = {};

The meanings of the parameters contained in the passport are described in
Table 1. Note that the list of parameters most probably will be modified in future
versions of VM2D.

The choice of numerical schemes determines the following numerical methods:

258 K. Kuzmina et al.

Table 1. Main parameters in VM2D passport file

Parameter name Brief description

Physical properties

rho Density of the flow

vInf Incident flow velocity

timeAccel Time required for uniform acceleration of the incident flow from zero
velocity to vInf

nu Flow kinematic viscosity

Time discretization properties

timeStart Physical time at which the simulation starts (normally 0.0)

timeStop Physical time at which the simulation stops

dt Time step

deltacntText Period (in steps) for vortex wake storage to text file

deltacntBinary The same for binary file (VTK format)

Wake discretization properties

vortexType Vortex element type

eps Typical radius of the vortex element

epscol Maximum distance at which two vortices can merge into one vortex (if
some additional conditions are satisfied)

distKill Distance at which the vortex wake is removed from the simulation

delta A small distance at which vortex elements are placed over the airfoil
surface line after being generated

– linearSystemSolver— method for solution of linear algebraic systems;
– velocityComputation—method for computation of velocities in the flow;
– wakeMotionIntegrator—method for numerical integration of ODE systems.

Files containing airfoils geometry are stored in the airfoils directory; these
are text files of a very simple format which becomes clear from examples. The
following parameters should be specified in parentheses after the file name:

– basePoint—point where the airfoil center should be placed;
– scale—scale factor for the airfoil;
– angle—angle of incidence;
– panelsType—surface-line approximation method;
– boundaryConditionSatisfaction—numerical method for boundary condi-

tion satisfaction (integral equation solution), which determines the numerical
scheme used for computation of the vortex sheet intensity;

– mechanicalSystem—numerical scheme for coupling strategy implementation
in coupled FSI problems.

All the parameters used in the simulation must be defined in the passport file.
For some of them there are predefined default values. Default values with the
lowest priority are specified just inside the code; defaults with higher priority
can be specified by the user in the defaults file. The description (in terms of

VM2D: Open Source Code for 2D Incompressible Flow Simulation 259

integer values) for verbal expressions of some options (such as vortexRankine,
velocityBiotSavart and others) is given in the switchers file.

Note that two parameters are not defined explicitly in this passport, namely
the time step dt, and the angle alpha of incidence of the airfoil. These parameters
are marked with “$”, which means that their values are equal to user-defined
variables included in the problems file, in parentheses after the names of the
corresponding problems.

If the flow around a system of airfoils is to be simulated, it is possible to
specify more than one airfoil. In this case, the corresponding section of the
passport file has the following structure:

airfoil =

{ square_160points(basePoint = {0.0, 0.0}, angle = 45.0, scale = 1.0),

circle_200points(basePoint = {1.2, -0.2}, angle = 0.0, scale = 0.5) };

In this example, the interference phenomenon for two airfoils is simulated: a
circular airfoil (scaled by a factor of 0.5) placed behind a square airfoil (installed
at an angle of incidence of 45◦). All other parameters will be set to default values.

If the user wants to use a previously simulated vorticity distribution, it can
be uploaded by specifying the corresponding file name in the fileWake section
of the passport. The files containing the descriptions of vortex wakes should be
stored in the directory wakes.

5.3 Documentation

The programmer’s guide to VM2D is generated automatically by using the
doxygen tool. It includes full information about all the classes imple-
mented in VM2D: description of all the class members and methods. Rela-
tionships between the classes are shown in graphical mode, as well as exe-
cution diagrams of the functions. An html-version is available at http://
vortexmethods.github.io/VM2D/, and is updated automatically via Travis-CI
service after every modification of the source code and its push on
GitHub. The pdf-version of the programmer’s guide, also generated auto-
matically by doxygen and then compiled with LaTEX , is available at
https://github.com/vortexmethods/VM2D/pdf/VM2-code.pdf.

5.4 Main Classes in VM2D

The file where the main function (the entry point of the C++ program) is deter-
mined is VM2D.cpp. Its structure is very simple; a Queue class instance is created,
a list of problems to be solved is loaded and the ‘numerical conveyer’ is started.
It runs until all the problems from the list described in problems file are solved.
All available processors, which work using MPI, are split into subgroups accord-
ing to the number of processors required for the simulation of each particular
problem. If the number of processors is less than the total number of processors
required for the simultaneous solution of all the problems from the list, then the

http://vortexmethods.github.io/VM2D/
http://vortexmethods.github.io/VM2D/
http://rawgit.com/vortexmethods/VM2D/master/doc/pdf/VM2D-code.pdf

260 K. Kuzmina et al.

Queue class works as a real queue with ‘fifo’ discipline. All subgroups of proces-
sors work in asynchronous mode; global synchronization is performed every some
ΔT seconds (the so-called ‘time quantum’), when the queue state is updated,
finished problems are replaced with new ones, etc. The necessary “universal”
constants and functions are defined in the defs.h and defs.cpp files.

The basic and auxiliary classes defined in VM2D are listed in Table 2.

Table 2. Classes defined in VM2D

Class name Brief description

Basic classes

Queue List of problems to be solved, organizes its solution in parallel mode accord-
ing to the number of required and available processors

Task The state of the problem in Queue and its description (passport)

Passport Full definition of the problem (its passport)

World2D All the properties and current state of a particular problem from the queue;
the instance of this class is the main object in the numerical simulation of
the flow around airfoils

Airfoil abstract class—the geometry of the airfoil

Wake Describes vortex wake

Sheet Determines attached and free vortex sheets and attached source sheets
placed on the surface lines of airfoils

Boundary abstract class—the numerical scheme used for the integral equation solution
with respect to the unknown free vortex sheet intensity

Velocity abstract class—the numerical method for computation of velocities in the
flow

Mechanics abstract class—the coupling strategy for hydroelastic problems

Auxiliary classes

numvector template class which determines an array of specified length consisting of
variables of a specified type; for ‘numerical’ vectors, all basic arithmetic
operations are defined, including the vector product (operator^) for 3-
dimensional vectors consisting of float and double variables

Point2D Inherits numvector<double, 2> and has the necessary MPI-descriptor

Vortex2D Properties of the vortex element (its position and circulation), including
the corresponding MPI-descriptor

Parallel Properties of the MPI-communicator created for a particular problem

Preprocessor Tools for input files preprocessing: comments exclusion, replacement of line-
breaks with blank spaces, multiple spaces and tabs removal; the result is
used as input data for StreamParser

StreamParser Tools for input files parsing after preprocessing; it is used for reading all
text files, including problems, defaults, passport, etc.

Times Class with structures for time statistics assembling Ant tools for its saving
to the timestat file

VM2D: Open Source Code for 2D Incompressible Flow Simulation 261

5.5 Abstract Classes Implementations

There are four main abstract classes in VM2D:

Airfoil, Boundary, Velocity, Mechanics,

whose implementations correspond to different modifications of vortex meth-
ods; some of them are briefly described in the beginning of this paper.

The inheriting classes have names consisting of the name of the parent class
and an additional word which specifies the particular method implemented there.
The most important implementations of the abstract classes are given in Table 3.

Table 3. Abstract classes implementations

Class name Brief description

For the Airfoil class

Rectilinear Piecewise rectilinear (polygonal) approximation of the airfoil surface line

Elliptic Piecewise elliptical approximation of the airfoil surface line

For the Boundary class

MDV ‘Classical’ discrete vortex method, singular integral equation solution

VortColl Similar to the ‘classical’ discrete vortex method, but with Fredholm-type
integral equation solution

ConstLayerAver Piecewise constant vortex sheet approximation, Fredholm-type integral
equation solution using Galerkin approach

LinearLayerAver Discontinuous piecewise linear vortex sheet approximation, Fredholm-type
integral equation solution

FEMLayerAver Continuous (except for specified angle points) piecewise linear vortex
sheet approximation, Fredholm-type integral equation solution

For the Velocity class

BiotSavart Direct velocity computation using the Biot–Savart law; O(N2)
computational complexity

BarnesHut Fast multipole method based on a Barnes–Hut-type hierarchial tree
construction; O(N logN) computational complexity

Fourier Fast method based on the solution of a Poisson auxiliary problem for
stream function on a coarse mesh using fast Fourier transform;
O(N logN) computational complexity

For the Mechanics class

RigidImmovable Flow simulation around a rigid immovable airfoil

RigidGivenLaw Flow simulation around a rigid airfoil in arbitrary motion prescribed
according to a given law

RigidWCoupled Flow simulation around a rigid airfoil in a weakly coupled FSI problem

RigidSCoupled Flow simulation around rigid airfoil in a strongly coupled FSI problem

Note that some of the described classes are not implemented in the current
version of the VM2D code; they will be available in future versions, maybe in a
slightly different state than it is described here.

262 K. Kuzmina et al.

5.6 Results of Simulation

The results of simulation are saved in files in the directory with the same name
as the problem being solved. Files containing the description of the vortex wake
at particular time steps (every deltacnt steps) are saved in the snapshots
subdirectory in text or/and VTK formats.

Hydrodynamic loads acting the airfoils are saved in forces-airfoil-n for
all time steps; their positions and velocities are saved in position-airfoil-n
files; time statistics is stored in the timestat file. The program log is shown on
screen. It can be redirected to a file by using the standard command prompt/shell
operator >.

5.7 VM2D Compilation and Execution

In order to compile the VM2D code, it firstly should be downloaded or cloned
from the GitHub repository:

https://github.com/vortexmethods/VM2D

Then a subdirectory build should be created in the directory where the
repository has been cloned, and from there, the command “cmake ..” should
be executed (or with the necessary CMake parameters). The MPI implementa-
tion and the Eigen library should be preliminarily installed and configured in
your system, of course, additionally to some C++ compiler (C++11 standard
compatible).

After such preparation, the code can be compiled. In order to run a simula-
tion, it is necessary to execute the program from the folder where the problems
file containing a list of problems description is placed. If it is necessary, it can
be executed in parallel mode by using mpirun/mpiexec.

6 Some Results of Flow Simulation

Some results of flow simulation using VM2D are shown below.

6.1 Development of an Unsteady Flow Behind a Circular Cylinder

The initial (symmetrical) phase of the wake development behind a circular cylin-
der, at Reynolds number Re = 1 000, is shown in Fig. 2. The next phase (when
instability becomes apparent) is shown in Fig. 3.

The computed time dependencies of the unsteady drag force and lift force
coefficients for a circular cylinder are shown in Fig. 4.

Drag force and lift force dimensionless coefficients are in good agreement
with experimental data, as well as the Strouhal number which corresponds to
the dimensionless vortex shedding frequency.

https://github.com/vortexmethods/VM2D

VM2D: Open Source Code for 2D Incompressible Flow Simulation 263

Fig. 2. Vortex wake behind a cylinder at the initial phase of its development

Fig. 3. Instability development of the vortex wake behind a circular cylinder

Fig. 4. Unsteady drag and lift force coefficients for a circular cylinder

6.2 The Blasius Solution

When the simulation physical time is rather high, viscous flow around a thin
plate becomes steady (Fig. 5). The simulation results (horizontal and vertical
components of the flow velocity in a boundary layer) are in excellent correspon-
dence with the analytical solution obtained by Blasius.

Fig. 5. Steady regime of the flow around a thin plate

264 K. Kuzmina et al.

6.3 Circular Airfoil Wind Resonance

This occurs when the natural frequency of a mechanical subsystem (Fig. 6) is
close to the vortex shedding frequency. The problem has been solved in the
framework of the weakly coupled (“step-by-step”) approach.

Fig. 6. The coupled FSI problem statement

The dependency between the oscillation amplitude and the natural frequency
Shω is shown in Fig. 7a. The results for maximum amplitude, resonance frequency
and hysteresis properties (Fig. 7b) are in good agreement with experiments.

Fig. 7. Amplitude of a circular airfoil oscillations: initial state in equilibrium position
(left), initial state is close to resonance oscillations (right): hysteresis loop is shown

6.4 Autorotation Simulation of the Savonius Rotor

Initially, the rotor has zero angular velocity and it starts spinning under hydro-
dynamic torque. The simulation has been performed as a strongly coupled FSI
problem. The initial phases and time dependency for the angular velocity is
shown in Fig. 8. The steady regime parameters are the same as those computed
by other researchers.

Fig. 8. The Savonius rotor spinning process in a flow, and its angular velocity

VM2D: Open Source Code for 2D Incompressible Flow Simulation 265

References

1. Tokaty, G.: A History and Philosophy of Fluid Mechanics. Courier Corporation,
Dover (1994)

2. Lighthill, M.J.: Introduction. Boundary layer theory. In: Rosenhead, J. (ed.) Lam-
inar Boundary Layers, pp. 54–61. Oxford University Press, New-York (1963)

3. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature
324, 446–449 (1986). https://doi.org/10.1038/324446a0

4. Dynnikova, G.Ya.: Fast technique for solving the N -body problem in flow sim-
ulation by vortex methods. Comput. Math. Math. Phys. 49, 1389–1396 (2009).
https://doi.org/10.1134/S0965542509080090

5. Morgenthal, G., Walther, J.H.: An immersed interface method for the Vortex-In-
Cell algorithm. Comput. Struct. 85, 712–726 (2007). https://doi.org/10.1016/j.
compstruc.2007.01.020

6. Dynnikova, G.Y.: An analog of the Bernoulli and Cauchy-Lagrange integrals for
a time-dependent vortex flow of an ideal incompressible fluid. Fluid Dyn. 35(1),
24–32 (2000). https://doi.org/10.1007/BF02698782

7. Dynnikova, G.Ya.: The integral formula for pressure field in the nonstationary
barotropic flows of viscous fluid. J. Math. Fluid Mech. 16(1), 145–162 (2014).
https://doi.org/10.1007/s00021-013-0148-z

8. Lifanov, I.K.: Singular Integral Equations and Discrete Vortices. VSP, Utrecht
(1996)

9. Kuzmina, K.S., Marchevsky I.K., Milani, D., Ryatina, E.P.: Accuracy compari-
son of different approaches for vortex sheet discretization on the airfoil in vor-
tex particles method. In: Proceedings of V International Conference on Particle-
Based Methods – Fundamentals and Applications, Hannover, Germany, pp. 691–
702 (2017)

10. Kuzmina, K.S., Marchevskii, I.K., Moreva, V.S., Ryatina, E.P.: Numerical scheme
of the second order of accuracy for vortex methods for incompressible flow simu-
lation around airfoils. Russ. Aeronaut. 60(3), 398–405 (2017). https://doi.org/10.
3103/S1068799816030114

11. Kuzmina, K.S., Marchevsky, I.K., Ryatina, E.P.: Exact analytical formulae for
linearly distributed vortex and source sheets influence computation in 2D vortex
methods. J. Phys.: Conf. Ser. 918, 012013 (2017). https://doi.org/10.1088/1742-
6596/918/1/012013

12. Kuzmina, K.S., Marchevsky, I.K., Moreva, V.S.: Vortex sheet intensity compu-
tation in incompressible flow simulation around airfoil by using vortex methods.
Math. Models Comput. Simul. 10(3), 276–287 (2018). https://doi.org/10.1134/
S2070048218030092

13. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796
(1973). https://doi.org/10.1017/S0022112073002016

14. Degond, P., Mas-Gallic, S.: The weighted particle method for convection-diffusion
equations. Part I: the case of an isotropic viscosity. Math. Comput. 53, 485–507
(1989). https://doi.org/10.2307/2008716

15. Ogami, Y., Akamatsu, T.: Viscous flow simulation using the discrete vortex model-
the diffusion velocity method. Comput. Fluids. 19, 433–441 (1991). https://doi.
org/10.1016/0045-7930(91)90068-S

16. Dynnikova, G.Y.: The Lagrangian approach to solving the time-dependent Navier-
Stokes equations. Doklady Phys. 49(11), 648–652 (2004). https://doi.org/10.1134/
1.1831530

https://doi.org/10.1038/324446a0
https://doi.org/10.1134/S0965542509080090
https://doi.org/10.1016/j.compstruc.2007.01.020
https://doi.org/10.1016/j.compstruc.2007.01.020
https://doi.org/10.1007/BF02698782
https://doi.org/10.1007/s00021-013-0148-z
https://doi.org/10.3103/S1068799816030114
https://doi.org/10.3103/S1068799816030114
https://doi.org/10.1088/1742-6596/918/1/012013
https://doi.org/10.1088/1742-6596/918/1/012013
https://doi.org/10.1134/S2070048218030092
https://doi.org/10.1134/S2070048218030092
https://doi.org/10.1017/S0022112073002016
https://doi.org/10.2307/2008716
https://doi.org/10.1016/0045-7930(91)90068-S
https://doi.org/10.1016/0045-7930(91)90068-S
https://doi.org/10.1134/1.1831530
https://doi.org/10.1134/1.1831530

Modeling of Nonstationary Two-Phase
Flows in Channels Using Parallel

Technologies

Yury Perepechko , Sergey Kireev(B) , Konstantin Sorokin ,
and Sherzad Imomnazarov

N.A. Chinakal Institute of Mining, SB RAS,
54, Krasniy Prospekt, Novosibirsk 630091, Russia

perep@igm.nsc.ru, kireev@ssd.sscc.ru

Abstract. The work is devoted to the modeling of a nonstationary flow
of compressible two-phase mixtures. We construct a continuum approxi-
mation to a thermodynamically consistent model of two-velocity hydro-
dynamics under the assumption of phase equilibrium with respect to
temperature. The parallel implementation of the control volume method
is based on the methods of domain decomposition. The numerical algo-
rithm stability is studied using problems of two-velocity flows in inclined
channels that inhomogeneous with respect to the volume fraction of
phases. The results of numerical simulation prove the effectiveness of
the approach used.

Keywords: Mathematical modeling · Viscous compressible fluid
Two-phase mixture · Numerical simulation
Control volume method · Domain decomposition methods

1 Introduction

Interest in mathematical modeling of nonstationary nonisothermal two-phase
mixtures is determined by the need to describe the hydrodynamics of such media
as suspensions, emulsions, aerosols, and granular media, regarding technologi-
cal processes in various heat-exchange systems, transportation of oil and gas,
and micro-tunneling in soil, as well as by the necessity to study natural pro-
cesses, for example, in the mantle-crust fluid, and fluid-magmatic systems. In
the description of the mentioned technological processes and natural systems,
researchers use various mathematical models obtained in the framework of such
methodological approaches as the averaging method, the variational method,
and the method of conservation laws. The equations of the models of two-speed
hydrodynamics obtained by averaging are nonhyperbolic [1], which leads to an

This work was supported by the Russian Scientific Foundation under Project No.
17-77-20049 (Russia).

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 266–279, 2018.
https://doi.org/10.1007/978-3-319-99673-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_19&domain=pdf
http://orcid.org/0000-0003-4008-5320
http://orcid.org/0000-0003-2217-8777
http://orcid.org/0000-0001-5722-9410
http://orcid.org/0000-0002-3910-5155

Modeling of Nonstationary Two-Phase Flows 267

ill-posed Cauchy problem. By the variational methods [2–4] and the method of
conservation laws [5–8], one obtains confined models of heterogeneous media,
where equations are thermodynamically consistent. This property ensures the
physical correctness of the obtained solutions, a point that is of special impor-
tance in the analysis of compressible two-phase media. This property also allows
using efficient numerical methods. The control volume method is currently one
of the most widespread in numerical simulation of two-phase media. Difference
algorithms built on the control volume method are formally divided into two
groups: those based on the calculation of the density [9] with explicit approxi-
mation in time, and those based on the calculation of the pressure [10,11] partly
or fully implicit in time. The schemes of the second group are more suitable for
the analysis of a hydrodynamic system taking into account dissipative processes
of various types.

In this paper, we consider the hydrodynamics of two-phase compressible
media using on the example of a nonstationary nonisothermal flow of two-phase
mixtures of viscous liquids in the presence of an impurity and taking into account
thermal and diffusion effects. The equations of the thermodynamically consis-
tent model of a compressible two-phase medium were obtained by the method of
conservation laws [6,7]. Their differential implementation is based on the control
volume method [10,11] which guarantees the integral preservation of the basic
parameters of the model. The parallel implementation is based on the methods
of domain decomposition. The stability of the numerical algorithm and the effi-
ciency of the parallel algorithm are considered for the problem of a two-phase
homogeneous flow in a vertical channel. The numerical simulation results are
given for the problem of a two-phase flow in arbitrary inclined channels with
nonuniform distribution of the volume content of phases in the flow. In this
approach, we considered beforehand such models of two-velocity media as filtra-
tion in saturated porous and granular media [6,7,12], and the convection of a
compressible two-phase medium [13].

2 The Mathematical Model

This paper considers a model of the dynamics of mixtures of compressible viscous
fluids to a two-speed hydrodynamic approximation in the presence of impurities
and taking into account the surface tension of the dispersed phase. A two-phase
medium has the following structure: the particles of each phase move relative to
each other and together constitute a two-speed continuum whose unit volume is
characterized by two densities, two velocities, entropy, specific surface (a num-
ber of drops of the dispersed phase), and impurity concentration. As mentioned
above, the governing equations for such a medium are derived from the con-
servation laws [6,7]. The method is based on fundamental physical principles:
the harmonization of the first and the second laws of thermodynamics, the laws
of conservation of mass, energy, and momentum, and the group invariance of
the equations. Setting the form of the internal energy of the two-phase medium,
namely E0 = E0 (ρ, ρα, J, j, j0, S) determines its thermodynamic properties. The
first law of thermodynamics can thus be formulated as

268 Y. Perepechko et al.

dE0 = TdS + μdρ + μαdρα + ςσdJ + (u1 − u2, dj0) , (1)

where ρ = ρ1+ρ2; j = ρ1u+ρ2v are, respectively, the density and the momentum
of the two-velocity medium; μ, μα are the chemical potentials of the two-phase
medium and the impurities; σ is the surface tension tensor; ς is the surface area
of the dispersed phase; and j0 = j − ρu2 is the relative density of the pulse
phases. The impurity concentration is determined by the ratio c = ρα/ρ.

The pressure is determined by the thermodynamic formula [14]

p = −E0 + TS + μ1ρ1 + μαρα + ςσJ + (u1 − u2) j0, (2)

dp = SdT + ρdμ1 + ραd (μα − μ1) + ςJdσ + j0d (u1 − u2) . (3)

Since we are considering here a two-phase medium flowing in a gravity field,
the expressions of the internal energy and the chemical potential must contain
a term conditioned by the additional energy of the system in the gravity field:
ρϕ = (ρ1 + ρ2 + ρα) ϕ. Here ϕ is the gravity field potential. The state of thermo-
dynamic equilibrium of this medium is determined by the following conditions:

∇ (μ1 + ϕ) = 0, ∇
(

μ2 +
ςJ

ρ2
σ + ϕ

)
= 0,

∇ (μα + ϕ) = 0, ∇T = 0, u1 = u2 = 0.
(4)

The full system of constitutive equations of the hydrodynamics of a two-phase
mixture with impurities, taking into account dissipative effects may be written
as

∂ρ

∂t
+ div j = 0,

∂J

∂t
+ div (Ju1) = 0, (5)

∂ρα

∂t
+ div (c1ρ1u1 + c2ρ2u2 + Lα) = 0 (6)

∂ji

∂t
+ ∂k (ρ1u1iu1k + ρ2u2iu2k + Pδik − (ζ1 + ζ12) δik divu1

− (ζ2 + ζ12) δik divu2 − (η1 + η12)
(

∂ku1i + ∂iu1k − 2
3
δik divu1

)

− (η2 + η12)
(

∂ku2i + ∂iu2k − 2
3
δik divu2

))
= ρg,

(7)

∂u2i

∂t
+ (u2,∇) u2i = −1

ρ
∂iP + ς

J

ρ
∂iσ +

ρ1
2ρ

∂iw2 − 1
ρ2

b (ji − ρu1i)

+
1
ρ2

∂k

(
η2

(
∂ku2i + ∂iu2k − 2

3
δik divu2

)

+η12

(
∂ku1i + ∂iu1k − 2

3
δik divu1

))
+

1
ρ2

∂ (ζ2 divu2 + ζ12 divu1) + gi,

(8)

∂S

∂t
+ div

(
S1u1 + S2u2 +

Lq

T
− μαLα

T

)
=

R

T
. (9)

Modeling of Nonstationary Two-Phase Flows 269

The dissipative function R is given by the formula

R =
1
ρ2

b (ji − ρu1i)
2 + κ

(∇T

T

)2

+ 2ν∇
(μα

T

)
∇T

+DT 2
(
∇

(μα

T

))2

+
1
2
η1∂ku1i +

1
2
η2∂ku2i + η12∂ku1i∂ku2i

+ζ1 (divu1)
2 + ζ2 (divu2)

2 + ζ12 divu1 divu2.

(10)

Dissipative flows associated with thermal and diffusion phenomena have the form

Lq = −κ
1
T

∇T − νT∇
(μα

T

)
, Lα = −ν

1
T

∇T − DT∇
(μα

T

)
. (11)

Here and above, p is the pressure; S is the entropy density, and g is the
acceleration of free fall. The impurity concentration in the phase is given by
c1ρ1 = ρα

ρ ρ1+2λ1ρ2, c2ρ2 = ρα

ρ ρ2−2λ1ρ2 [15]. The entropy density of the phases
is expressed as S2 = ρ2

ρ S − 2
(
λ2 − λ1

ρμα

T

)
ρ2
ρ , S1 = ρ1

ρ S + 2
(
λ2 − λ1

ρμα

T

)
ρ2
ρ .

The kinetic coefficients of interfacial friction b, shear viscosity of the phases ηi,
thermal conductivity of the two-phase medium κ, and the coefficient ν are all
functions of the thermodynamic parameters. Effects of bulk viscosity are not
taken into account.

The equation of state of the two-phase medium to a linear approximation is
given by

δρ = ραδp − ρβδT, δs =
cp

T
δT − 1

ρ
βδp. (12)

The coefficients of volumetric compression α, thermal expansion β, and specific
heat capacity cp are supposed additive over the phases. The presence of impuri-
ties is considered to an approximation of the ideal solution. The surface tension
and the chemical potential of the impurities are determined by the ratios

σ = σ0
(Tc − T)

(Tc − Tref)
− a2 ln (1 + a3c) , μα = d1P + d2T + R̄T ln (c) , (13)

where R̄ is the universal gas constant.

3 The Numerical Algorithm

The computational algorithm is based on the application of the control volume
method for the integration of the original governing equations, along with an
iterative procedure IPSA [16] for the calculation of a pressure field consistent
with the flow field. For the calculation of the flows through the faces of the control
volumes (approximation of the convective terms), we use an implementation of
the HLPA scheme of second order of accuracy [17]. A scheme fully implicit in
time is used. For the diffusion terms, we use a finite-difference approximation. All
calculations are performed on uniform rectangular grids with shifted distribution
of the nodes. The scheme of the numerical algorithm is shown in Fig. 1.

270 Y. Perepechko et al.

Fig. 1. Scheme of the numerical algorithm

The main computational complexity of the algorithm is in the solution of the
systems of linear algebraic equations (SLAE) that result from discretization of
the equations of the system. For solving most of these equations, it is possible to
apply an alternating direction method (ADM), which is an alternate tridiagonal
sweep along the coordinate directions until the conditions of convergence are
met. In addition, the study has shown that for the considered class of problems
in two-velocity hydrodynamics, the sweep in one of the directions has virtually
no effect on the process of convergence, so it was excluded. This algorithm was
implemented for solving most of the system equations. In the case of the pressure-
correction equation, however, the ADM may diverge. There is therefore a need
to use other methods of solution.

Modeling of Nonstationary Two-Phase Flows 271

To solve the pressure-correction equation, it was decided to use the PETSc
library [18]. This choice is based on the fact that the PETSc library contains a
large number of subprograms for solving systems of linear algebraic equations
by various methods, including interfaces to external solvers, and supports the
use of parallel computing systems with distributed memory (MPI library). After
comparing the solvers implemented in the PETSc library, we chose the biconju-
gate gradients stabilized (BiCGStab) method to be used in a parallel program.
In addition, the usability of the solver for solving the remaining equations of the
system was built into the parallel program.

4 Parallel Implementation

A parallel program based on the above model and methods was developed. The
program makes it possible to simulate nonstationary two-phase flows in chan-
nels on distributed memory supercomputers (clusters). The parallel program was
written in Fortran and parallelized using the MPI library. The parallel imple-
mentation is based on a domain decomposition method. The simulation domain
is divided into subdomains along both directions. In this case, all arrays of grid
values are appropriately cut and distributed between parallel processes (Fig. 2).
The number of subdomains in each direction is an implementation parameter.
The shadow edges of subdomains have a width of two cells, which corresponds
to the size of the difference schemes used.

The parallel program developed uses two solvers: our own ADM implemen-
tation, and an implementation of the BiCGStab method in the PETSc library.
Each of these implementations has certain advantages and disadvantages, which
are discussed below.

The advantage of the parallel implementation of the ADM is that it does
not require that the sparse matrix be explicitly built, i.e., no data redistribution
between parallel processes is necessary. The decomposition of data structures
(2D arrays) applied by this method is done in a natural way (Fig. 2). Possible
imbalances of computational load due to the sequential nature of the sweep algo-
rithm are leveled through the use of a pipelined algorithm [19,20]. The essence
of the algorithm lies in the fact that when you run the sweep for a large number
of rows, each process starts its part of the calculation of the next row before
the end of the calculation of the previous one by other processes. At that, the
adjacent processes transmit the sweep coefficients of the respective rows in the
sweep direction.

The disadvantages of the existing implementation of the ADM are the fol-
lowing. Firstly, the ADM requires a sweep to be carried on in the direction of the
Y-axis, which leads to inconsistent memory traversal and, consequently, to loss
of productivity. Secondly, the current implementation of the ADM does not use
vectorization, and the auto-vectorization is impossible owing to the sequential
nature of the algorithm.

In contrast to the ADM, the BiCGStab method is implemented in the opti-
mized PETSc library, in turn, using the optimized Intel MKL library. This to

272 Y. Perepechko et al.

some extent ensures that at a low level all the necessary optimizations, such as
efficient use of cache and vectorization, are fulfilled. Another feature of using
PETSc is the requirement to build the SLAE matrix explicitly, i.e. some sort
of redistribution of data between processes is still required. To minimize data
exchanges, the PETSc library supports various methods of distribution of the
elements of the global matrix SLAE between processes, including those con-
sistent with the used 2D decomposition of the solution vector. This consistent
distribution was used in the parallel program.

Y

X

Fig. 2. 2D decomposition of the simulation domain

5 Performance Evaluation

To evaluate the performance of the parallel program the following computing
resources were used:

– MVS-10P cluster [21]. Each cluster node contains 2 × 8-core Intel Xeon E5-
2690 2.9 GHz (16 cores per node, 2 threads per core), 64 GB RAM, and 2
× MIC accelerators (not used in tests). From now on, these nodes will be
referred to as SandyBridge.

– NKS-1P cluster [22], consisting of two different partitions:
• KNL partition with nodes containing 1 × 72-core Intel Xeon Phi 7290

1.5 GHz (72 cores per node, 4 threads per core), 96 GB RAM, 16 GB
MCDRAM. These nodes will henceforward be referred to as KNL.

• Broadwell partition with nodes containing 2 × 16-core Intel Xeon E5-
2697Av4 2.6 GHz (32 cores per node, 2 threads per core), 128 GB RAM.
As of now, these nodes will be referred to as Broadwell.

The following cluster software was used:

– On MVS-10P cluster: Intel Fortran Compiler v.14.0.1, PETSc v.3.8.2 (built
with Intel MKL v.11.1 update 1), Intel MPI library v.4.1.

– On NKS-1P cluster: Intel Fortran Compiler v.17.0.4, PETSc v.3.8.2 (built
with Intel MKL v.2017.0 update 3), Intel MPI library v.2017 update 3.

Modeling of Nonstationary Two-Phase Flows 273

Fig. 3. Comparison of two variants of solvers using different mesh sizes

PETSc, similar to Intel MKL, may be run using several OpenMP threads.
However, only MPI parallelization was used in this work, and the number of
OpenMP threads was explicitly set to one.

The following two variants of solvers were used in the parallel program and
compared:

– Variant 1: ADM solver is used for solving the equation of motion and the
transfer equation, BiCGStab solver from PETSc library is used for solving
the pressure-correction equation.

– Variant 2: BiCGStab solver from PETSc library is used for solving all equa-
tions.

As a test problem we consider the problem of a pressure flow of compressible
fluids in a vertical channel in a gravity field. The dimensions of the computational
domain were LX = 1.0m, LY = 0.15m. In all cases, the calculation time for 10
time steps is given.

The first step in the study was to determine the optimal parameters of decom-
position of the region for two different versions of the program. Figure 3 presents
the calculation results on the KNL nodes for two of the solvers used.

A more detailed view of the execution time is shown in Fig. 4. One can see
that the largest components of the execution time correspond to the solution
of the equations of motion (“V” on graphs) and the solution of the pressure-
correction equation (“P” on graphs). The other computation steps are almost
always negligible. The times for the solution of the pressure-correction equation
are equal in both variants, as expected, because the same BiCGStab solver is
used. But the solution of the equations of motion by the ADM solver is slower
than by the BiCGStab solver (more than twice for the fastest cases). One more
thing is that the ADM solver is much more dependent on the domain decompo-
sition parameters than the BiCGStab.

The next step of the parallel program analysis is the evaluation of the scal-
ability within cluster node. In Fig. 5 execution times for different cluster nodes

274 Y. Perepechko et al.

Fig. 4. Components of execution time for 400×400 mesh size on KNL, for two different
solvers. Here V – solution of the equations of motion, P – solution of the pressure-
correction equation, Other – all the other computations

depending on the number of MPI processes are shown. The mesh size 400 × 400
is used. The KNL node supports 288 hardware threads (72 cores, 4 threads per
core) and is capable of running 288 MPI processes. The Fig. 5a shows that the
least execution time is obtained for 64 MPI processes. A more thorough analysis
showed that the optimal number of MPI processes for the KNL node is 72 (one
thread per core). The Broadwell node supports 64 hardware threads (32 cores, 2
threads per core) and is capable of running 64 MPI processes. The Fig. 5b shows
that the optimal number of MPI processes for the Broadwell node depends on
the solver used. For variant 1 the optimal number is 32, whereas for variant 2
it is 32 or 64. The SandyBridge node supports 32 hardware threads (16 cores, 2
threads per core) and is capable of running 32 MPI processes. The Fig. 5c shows
that the optimal number of MPI processes for the SandyBridge node, equally to
the Broadwell node, depends on the solver used. For variant 1 the optimal num-
ber is 16, and for variant 2, it is 16 or 32. These results will be taken into account
in further tests. A comparison of best execution times for different cluster nodes
is presented in Table 1.

Table 1. Best execution times for different types of cluster nodes and different variants
of solvers (mesh size 400 × 400, 10 time steps)

KNL node Broadwell node SandyBridge node

Variant 1 (ADM + BiCGStab) 687 s 151 s 835 s

Variant 2 (BiCGStab) 406 s 86 s 273 s

Modeling of Nonstationary Two-Phase Flows 275

Fig. 5. Execution time depending on the number of MPI processes for one KNL node
(a), one Broadwell node (b), and one SandyBridge node (c)

Parallelization speedup for all three types of nodes is shown in Fig. 6. As
can be seen, the BiCGStab solver (variant 2) scales better than the ADM solver
(variant 1). The maximum parallelization efficiency achieved within the nodes
is 20 to 30% for variant 1, and 50 to 80% for variant 2.

Fig. 6. Parallelization speedup depending on number of MPI processes for one KNL
node (a), one Broadwell node (b), and one SandyBridge node (c)

The final step is the performance evaluation using several cluster nodes.
Figures 7 and 8 show the results for cluster nodes of different types for two
mesh sizes: 400×400 (Fig. 7) and 800×800 (Fig. 8). The number of cores shown
at the X axis corresponds to the number of MPI processes used.

For the KNL nodes the limit of scalability for the 400×400 grid was reached
on 8 nodes, whereas for the 800 × 800 grid, on 12 nodes. The use of a large
number of MPI processes is adduced to explain these results. To push forward

276 Y. Perepechko et al.

Fig. 7. Execution time (a, b, c) and speedup compared to a single core (d, e, f) using
several cluster nodes of different types, mesh size: 400 × 400

Fig. 8. Execution time (a, b, c) and speedup compared to a single core (d, e, f) using
several cluster nodes of different types, mesh size: 800 × 800

Modeling of Nonstationary Two-Phase Flows 277

the border of scalability, one can use parallelization in OpenMP threads inside a
node. On the nodes Broadwell and SandyBridge, we did not note the approach
of the scalability limit for the number of nodes considered.

In Fig. 9, a weak scaling efficiency for cluster nodes of different types is pre-
sented. A strong decrease in efficiency is observed for all types of nodes. The
reason is that, besides usual parallel execution overhead, the number of itera-
tions of the underlying numerical methods increases when the mesh size grows.
For example, the number of IPSA iterations in the first time step equals 18 at a
mesh size of 200 × 200, 28 at 400 × 400 mesh size and 69 at 800 × 800.

Fig. 9. Weak scaling efficiency for KNL (a), Broadwell (b), and SandyBridge (c) cluster
nodes

Numerical simulation results are given for problems related to a nonstation-
ary flow of compressible fluid mixture in an arbitrarily inclined channel with
nonuniform distribution of phases across the section of the channel. The stud-
ied problem relates to a pressurized flow in an inclined channel of dimensions
LX = 1.0m, LY = 0.15m. Figure 10 shows the distribution of the dispersed
phase density for various angles of channel inclination.

(a) (b)

Fig. 10. Distribution of droplets of the dispersed phase for 20k, 30k, 40k, 50k, 100k
steps: (a) channel inclination 0◦, (b) channel inclination 25◦

278 Y. Perepechko et al.

6 Conclusion

On the basis of the study into the problem of a nonstationary nonisothermal flow
of a mixture of viscous compressible fluids, we can draw the following conclusions:

– The highest acceleration in the problem considered was specific for the nodes
KNL, namely 221 times on 12 nodes (864 cores) on an 800 × 800 grid. Pri-
marily, this is explained by the fact that only on the KNL nodes it became
possible to run the task on such a large number of cores. Another record of
acceleration is 161 times on eight Broadwell nodes (256 cores) on an 800×800
grid. The Broadwell nodes have shown a higher parallelization efficiency.

– Broadwell nodes showed the minimum work time on all grid sizes and for
both versions of solvers used. Of the remaining node types, the KNL node in
most cases shows a better performance than the SandyBridge node. However,
when using multiple nodes, the SandyBridge nodes achieve less computation
time due to better scalability.

– Of the two versions of solvers used, the fastest in almost all cases is the
BiCGStab from the PETSc library.

Future plans: to optimize the ADM solver, to use parallelization in both
solvers with OpenMP threads and to study the possibility of using other solvers,
e.g. PARDISO in Intel MKL.

References

1. Kraiko, A.N., Sternin, L.E.: Theory of flows of a two-velocity continuous medium
containing solid or liquid particles. Appl. Math. Mech. 29, 418–429 (1965). https://
doi.org/10.1016/0021-8928(65)90059-6

2. Bedford, A., Drumheller, D.S.: A variational theory of immiscible mixture. Arch.
Ration. Mech. Anal. 68, 37–51 (1978). https://doi.org/10.1007/BF00276178

3. Gavrilyuk, S.L., Saurel, R.: Mathematical and numerical modeling of two-phase
compressible flows with microinertia. J. Comput. Phys. 175, 326–360 (2002).
https://doi.org/10.1006/jcph.2001.6951

4. Prix, R.: Variational derivation of Newtonian multi-fluid hydrodynamics. Phys.
Rev. D. 69, 043001 (2004). https://doi.org/10.1103/PhysRevD.69.043001

5. Landau, L.D.: The theory of superfluidity of helium II. J. Phys. (USSR) 5, 71–79
(1941). https://doi.org/10.1103/PhysRev.60.356

6. Dorovsky, V.N.: Mathematical models of two-velocity media. I. Math. Comput.
Model. 21(7), 17–28 (1995). https://doi.org/10.1016/0895-7177(95)00028-Z

7. Dorovsky, V.N., Perepechko, Y.V.: Mathematical models of two-velocity media.
II. Math. Comput. Model. 24(10), 69–80 (1996). https://doi.org/10.1016/S0895-
7177(96)00165-3

8. Romenski, E., Resnyansky, A.D., Toro, E.F.: Conservative hyperbolic formulation
for compressible two-phase flow with different phase pressures and temperatures.
Q. Appl. Math. 65(2), 259–279 (2007). https://doi.org/10.1090/S0033-569X-07-
01051-2

9. Godunov, S.K., Zabrodin, A.V., Ivanov, M.I., Kraiko, A.N., Prokopov, G.P.:
Numerical solution of multidimensional problems of gas dynamics. Moscow Izdatel
Nauka (1976). (in Russian)

https://doi.org/10.1016/0021-8928(65)90059-6
https://doi.org/10.1016/0021-8928(65)90059-6
https://doi.org/10.1007/BF00276178
https://doi.org/10.1006/jcph.2001.6951
https://doi.org/10.1103/PhysRevD.69.043001
https://doi.org/10.1103/PhysRev.60.356
https://doi.org/10.1016/0895-7177(95)00028-Z
https://doi.org/10.1016/S0895-7177(96)00165-3
https://doi.org/10.1016/S0895-7177(96)00165-3
https://doi.org/10.1090/S0033-569X-07-01051-2
https://doi.org/10.1090/S0033-569X-07-01051-2

Modeling of Nonstationary Two-Phase Flows 279

10. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momen-
tum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15,
1787–1806 (1972). https://doi.org/10.1016/0017-9310(72)90054-3

11. Date, A.W.: Introduction to Computational Fluid Dynamic. Cambridge University
Press, New York (2005)

12. Dorovsky, V.N., Perepechko, Y.V.: A hydrodynamic model for a solution in
fracture-porous media. Rus. Geol. Geophys. 37(9), 117–128 (1996)

13. Perepechko, Y.V., Sorokin, K.E.: Two-velocity dynamics of compressible het-
erophase media. J. Eng. Thermophys. 22(3), 241–246 (2013). https://doi.org/10.
1134/S1810232813030089

14. Dorovsky, V.N., Perepechko, Y.V., Sorokin, K.E.: Two-velocity flow containing
surfactant. J. Eng. Thermophys. 26(2), 160–182 (2017). https://doi.org/10.1134/
S1810232817020047

15. Dorovsky, V.N.: The hydrodynamics of particles suspended in a melt with the self-
consistent concentration field of an admixture. I. Comput. Math. Appl. 35(11),
27–37 (1998). https://doi.org/10.1016/S0898-1221(98)00081-9

16. Yeoh, G.H., Tu, J.: Computational Techniques for Multi-phase Flows. Butterworth-
Heinemann, Oxford (2010). https://doi.org/10.1016/B978-0-08-046733-7.00003-5

17. Wang, J.P., Zhang, J.F., Qu, Z.G., He, Y.L., Tao, W.Q.: Comparison of robustness
and efficiency for SIMPLE and CLEAR algorithms with 13 high-resolution con-
vection schemes in compressible flows. Numer. Heat Transf. Part B 66, 133–161
(2014). https://doi.org/10.1080/10407790.2014.894451

18. PETSc - Portable, Extensible Toolkit for Scientific Computation. https://www.
mcs.anl.gov/petsc

19. Povitsky, A.: Parallelization of the pipelined thomas algorithm. ICASE Report No.
98–48, NASA Langley Research Center, Hampton (1998)

20. Sapronov, I.S., Bykov, A.N.: A parallel-pipelined algorithm. Atom 4, 24–25 (2009)
21. MVS-10P cluster, JSCC RAS. http://www.jscc.ru
22. NKS-1P cluster, SSCC SB RAS. http://www.sscc.icmmg.nsc.ru

https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1134/S1810232813030089
https://doi.org/10.1134/S1810232813030089
https://doi.org/10.1134/S1810232817020047
https://doi.org/10.1134/S1810232817020047
https://doi.org/10.1016/S0898-1221(98)00081-9
https://doi.org/10.1016/B978-0-08-046733-7.00003-5
https://doi.org/10.1080/10407790.2014.894451
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://www.jscc.ru
http://www.sscc.icmmg.nsc.ru

Supercomputer Simulation
of Cathodoluminescence Transients

in the Vicinity of Threading Dislocations

Karl K. Sabelfeld and Anastasiya Kireeva(B)

Institute of Computational Mathematics and Mathematical Geophysics,
6, Prospekt Lavrentjeva, Novosibirsk 630090, Russia

karl@osmf.sscc.ru, kireeva@ssd.sscc.ru

Abstract. The article deals with the implementation of the Monte
Carlo method for simulation of cathodoluminescence transients in the
vicinity of threading dislocations in semiconductors. The Monte Carlo
algorithm is based on the random-walk-on-spheres method proposed by
K. K. Sabelfeld for solving drift-diffusion-reaction parabolic equations.
The cathodoluminescence intensity depends on the dislocation density,
the recombination of excitons on dislocations and semiconductor sur-
face, and the exciton diffusion length. To investigate the behavior of
the cathodoluminescence characteristics for long times, we use a paral-
lel implementation of the code involving the distribution of simulated
exciton trajectories between MPI processes and OpenMP threads. The
simulation results are contrasted with the exact solution of the equation.

Keywords: Cathodoluminescence · Threading dislocations
Random-walk-on-spheres method · Monte Carlo method
Parallel implementation · MPI with OpenMP programming

1 Introduction

Cathodoluminescence microscopy is a powerful technique to examine the internal
structure of semiconductors. In particular, it is widely used to study the optical
properties of gallium nitride (GaN) and indium gallium nitride (InGaN) [1], on
the basis of which blue light-emitting diodes (LEDs), which are efficient lighting
sources for energy saving, are constructed [2]. The cathodoluminescence (CL)
and electron-beam induced current (EBIC) techniques are applied to analyze
dislocations in crystals. Understanding a carrier dynamics around dislocations
can help to achieve a high efficiency of LEDs. Threading dislocations act as
non-radiative centers for excitons (bound pairs of an electron and hole) and
are seen as dark spots in CL images [3,4]. Transient behavior of CL intensity
depends mainly on the dislocation density, diffusion length, and exciton life time.

The support of the Russian Science Foundation under grant No. 14-11-00083 is kindly
acknowledged.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 280–293, 2018.
https://doi.org/10.1007/978-3-319-99673-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_20&domain=pdf

Supercomputer Simulation of Cathodoluminescence Transients 281

Thus, the CL intensity transients can be used for determination of the param-
eters of these materials. However, the investigation of CL around dislocations
requires picosecond temporal and nanoscale spatial resolutions, which is diffi-
cult to achieve [1]. Computer simulation of CL allows to calculate CL intensity
transients for various parameters values with the required resolution.

In [1], a model of exciton diffusion and recombination on a single dislocation is
proposed based on the two-dimensional transient diffusion equation. The authors
determined the effective radius of the dislocation, the diffusion length and the
effective exciton lifetime by adjusting the model parameters for the experimental
data. In [5], a three-dimensional Monte Carlo-based model of the steady-state
CL emission is presented. The electron-hole pair generation under an incident
electron beam is simulated by means of the Monte Carlo method. The resulting
steady-state carrier distribution in the semiconductor volume is calculated using
Berz and Kuiken’s formulation [6] of the diffusion and surface-recombination
processes.

In [7], we suggested a random-walk-on-spheres (RWS) method for the calcu-
lation of CL and EBIC maps. This stochastic method is based on a reciprocity
theorem formulated and proven in [7] for a general case of the Robin bound-
ary condition. This approach was used in [4], where we derived exact solutions
in the case of one threading dislocation with general boundary conditions on
the dislocation and plane surfaces. In [8], this algorithm was generalized to the
drift-diffusion-reaction problem. In [9], we extended the RWS method to tran-
sient drift-diffusion-reaction equations. In [9], we derived the probability density
of the first passage time and the probability density of the exit-position distribu-
tion on a sphere, and also formulated and proved the reciprocity theorem for the
general case of the transient drift-diffusion-reaction equation with general Robin
boundary conditions. This allows to directly calculate the flux to the boundary,
which appears in many practical problems, for instance, in the simulation of
fluxes on threading dislocations and surface (EBIC) in crystals.

In the present paper, we are interested in the simulation of CL and EBIC
intensity transients for various threading dislocation densities, i.e. the number of
dislocations per unit area. The diffusion and surface recombination of excitons
are described by the transient diffusion-reaction equation, which is solved by
the Monte Carlo RWS method with the probability densities of the first passage
time and the exit point on the sphere that were derived in [9]. According to
the Monte Carlo approach [10], many independent exciton trajectories must be
simulated to obtain the CL and EBIC intensity with sufficient accuracy. For the
reduction of computation time, a parallel implementation of the Monte Carlo
method simulating CL and EBIC transients is developed. The general approach
to the parallel implementation of Monte Carlo algorithms is to distribute inde-
pendent tasks among the processors of a supercomputer [11,12]. We provide a
parallel implementation of the Monte Carlo RWS method using hybrid program-
ming with MPI and OpenMP. The parallel code efficiency has been studied with
respect to the number of MPI processes and OpenMP threads in the “NKS-1P”
cluster of the Siberian Supercomputer Center of the SB RAS.

282 K. K. Sabelfeld and A. Kireeva

The paper is organized as follows. In the second section, we give the formu-
lation of the problem, the transient diffusion-reaction equation and the RWS
method for solving this equation. Section 3 presents the parallel implementa-
tion of the Monte Carlo RWS algorithm and its efficiency. The CL transients
obtained by simulation for various threading dislocation densities are shown in
Sect. 4. This section also presents a comparison of the simulation results and the
exact solution of the transient diffusion-reaction equation in a special case.

2 Algorithm for Simulation of CL and EBIC Intensity
Transients

2.1 The Transient Diffusion-Reaction Equation

The problem of the simulation of CL and EBIC transients can be formulated
as follows [4,9]. The half space G = R3

+ = {(x, y, z) : z ≥ 0} is considered as
crystal domain containing a family of dislocations. The dislocations are assumed
to be circular semicylinders with axes perpendicular to the plane z = 0. The
boundary Γ of the domain G consists thus of the plane Γz = {(x, y, z) : z = 0}
and the surfaces of the semicylinders Γd. An instantaneous impulse of excitons
is injected at the initial time t = 0 into the domain according to a generation
function f(r). The change of the exciton concentration u in the domain G with
respect to time t is governed by the equation

∂u

∂t
= DΔu(r, t) − λ2u + f(r)δ(t), r ∈ G, t ∈ [0, T]. (1)

Here r is a space coordinate, D is a constant diffusion coefficient, and λ2 = 1/tlive,
where tlive is the mean life time of the exciton. The following initial and Robin
(third type) boundary conditions are imposed:

u(r, 0) = 0, r ∈ G,

(D∇u · ν + Su)
∣
∣
Γ

= 0, (2)

where ν is the outward normal unit vector to the surface, and S denotes the
recombination velocity on the boundary Γ . The Robin boundary conditions sim-
ulate a partial reflection of particles from the boundary. The fraction of particles
adsorbed onto the boundary is determined by the recombination velocity S.

When we use Eq. (1), we assume that the conditions of existence and unique-
ness of the regular solution of Robin boundary value problem (2), given in [13],
are satisfied. In the case considered here, they are satisfied because all the equa-
tion coefficients are bounded.

The EBIC intensity is defined as the flux of excitons to the boundary Γz =
{(x, y, z) : z = 0}:

Ie(r, t) =
∫ t

0

dτ

{

−D

∫

Γz

∂u

∂ν
dx dy

}

. (3)

Supercomputer Simulation of Cathodoluminescence Transients 283

Analogously, the total flux Id(r, t) to the surface of the dislocations is defined.
The CL intensity is defined as the total concentration of excitons annihilated in
the domain G: Icl(r, t) = 1 − Ie(r, t) − Id(r, t).

According to the reciprocity theorem formulated and proved in [9, pp. 201–
202], to calculate the flux of the solution u to a boundary part Γi over time inter-
val [0, T], from an instantaneously released at time t = 0 point source positioned
at r = r0, one has to find at this point a solution of the adjoint homogeneous
equation

∂w

∂τ
= DΔw(r, τ) − λ2w, r ∈ G, τ = T − t, τ ∈ [T, 0], (4)

vanishing at time t = T : w(r, T) = 0, and on the boundary parts Γk for all k �= i,
and having value Si on the boundary Γi:

(D∇w · νk + Skw)|Γk
= Skδik, δik =

{

0, if i �= k,

1, otherwise,
(5)

where δik is the Kronecker delta, νk is the outward normal unit vector to the
surface, and Sk is the recombination velocity on the boundary part Γk. The
adjoint equation (4) is solved backward in time, starting with zero “initial”
condition at time τ = T . Based on the reciprocity theorem, the transient fluxes
Ie(r, t) and Id(r, t) can be calculated by the RWS algorithm described below in
the next section.

A more efficient technique to compute the CL intensity when there are many
boundaries is to calculate directly the concentration of the absorbed particles,
without calculating the total flux to all boundaries. This can be done by using the
reciprocity theorem for the absorbed concentration, formulated in ([9], pp. 202–
203). This theorem claims that the concentration of particles absorbed inside
the domain satisfies the inhomogeneous adjoint equation

∂w

∂τ
= DΔw(r, τ) − λ2w + λ2, r ∈ G, τ = T − t, τ ∈ [T, 0], (6)

with zero initial and boundary conditions. The solution of Eq. (6) can be found
by using the RWS algorithm.

2.2 Random-Walk-on-Spheres Algorithm for the Transient
Diffusion-Reaction Equation

According to [7,9], a random diffusion-reaction walk-on-spheres process in a
domain G, starting in a point x0 ∈ G at time t0 = 0, is constructed as a Markov
chain of points {(xk, τk)}, k = 0, 1, . . .:

xk+1 = xk + ωkRk, tk+1 = tk + τk, k = 0, 1, . . . , (7)

where ωkRk is a random point uniformly distributed on a sphere S(xk, Rk),
with the center placed at xk and radius Rk equal to the minimal distance to

284 K. K. Sabelfeld and A. Kireeva

the boundary Γ . Time τk is the first time exit, that is, the random time at
which a diffusing particle first leaves the sphere S(xk, Rk). The time τk has the
distribution density pt(τ) derived in [9]:

pt(τ) =
2
Q

∞∑

n=1

(−1)n+1 π2n2D

R2
k

exp
{

−
(

π2n2D

R2
k

+ λ2

)

τ

}

, (8)

where Q =
λRk√

D

sinh
(

λRk√
D

) .

In each sphere, the survival probability QRk is calculated by the formula (9).
This is the probability for a particle to survive inside the sphere and reach the
surface of this sphere independently from time:

QRk =
Rk/L

sinh (Rk/L)
, (9)

where L =
√

D · tlive is the diffusion length.
The process is stopped with a probability FRk = 1 − QRk . The conditional

probability density of the life time of a particle before it is absorbed inside the
sphere can be derived using a Green-function approach suggested in [9]. We omit
the long calculations and give the final result:

pads(τ) =
2λ2

FRk

∞∑

n=1

(−1)n+1 exp
{

−
(

π2n2D

R2
k

+ λ2

)

τ

}

. (10)

The walking process is stopped if the diffusing particle enters a neighborhood
Γε of the boundary Γ . The set Γε is defined as

Γε = {x ∈ G : ρ(x,y) < ε, y ∈ Γ}, (11)

where ρ(x,y) is the minimum distance between a point x ∈ G and a point y ∈ Γ .
To calculate the CL and EBIC transients, we start the RWS process in the

source position r0 at time t0 = T , and the time runs backwards according to
the reciprocity theorem. The scorers for the CL and EBIC intensity throughout
time t ∈ [t0, 0] are written during simulation.

Based on [9], the algorithm for CL and EBIC simulation conforming to the
diffusion-reaction equation (1) with conditions (2) can be formulated as follows:

Algorithm A1:

1. Initiation:
Set all scores to zero: It

cl := 0 for the CL intensity, It
e := 0 for the EBIC,

It
d := 0 for the flux on dislocations.

2. Set the index of the walking step of the trajectory to 1: i := 1;
generate the coordinates of the starting position of exciton: xi = r0, according
to the generation function f(r);
set τ := 0 for the exciton current time.

Supercomputer Simulation of Cathodoluminescence Transients 285

3. Construct a sphere S(xi, Ri) centered at xi with radius Ri equal to the min-
imal distance from xi to the boundaries Γz and Γd.

4. Calculate the survival probability QRk using formula (9).
5. If the exciton does not survive:

simulate the time of absorption τads inside the sphere, with density pads(τ)
(10) and using the Devroye algorithm [14];
increase the exciton current time: τ := τ + τads;
increment by 1 the CL intensity for time τ : Iτ

cl := Iτ
cl + 1;

terminate the trajectory;
go to step 2 to start a new trajectory.

6. If the exciton survives:
simulate the first passage time τs, with density pt(τ) (8) and using the Devroye
algorithm [14] and the exit position xi+1 on the sphere S(xi, Ri), which is
uniformly distributed on the surface of S(xi, Ri);
increase the exciton current time: τ := τ + τs;
set xi+1 as new coordinate for the exciton.

7. If xi+1 hits an ε-neighborhood Γε of one of the boundary parts Γk, then
calculate the recombination probability using the formula

PΓk =
hSk

D + hSk
, (12)

where h is the step for the reflection from the boundary Γk.
(a) If the exciton recombines on the boundary part Γk:

add 1 to the score of the flux to the boundary part Γk for time τ ;
terminate the trajectory;
go to step 2 to start a new trajectory.

(b) If the exciton does not recombine on the boundary:
a random walk trajectory is reflected in the direction opposite to the
normal direction νk to the point xi+1 − hνk , i.e. the new coordinate of
the exciton is xi+1 := xi+1 − hνk .

8. If τ ≥ T , i.e. the exciton current time τ exceeds the preset time T , then
terminate the trajectory;
go to step 2 to start a new trajectory.

9. If τ < T , then increase the walking step: i := i + 1, and go to step 3 to
continue.

The CL, EBIC and flux on the dislocations are obtained by averaging the
scores over N independent trajectories.

3 Parallel Implementation of the Algorithm for
Simulation of CL and EBIC Intensity Transients

The number of trajectories N for the Monte Carlo simulation of the CL and
EBIC must be quite large since the number of steps of the RWS algorithm that

286 K. K. Sabelfeld and A. Kireeva

are required to achieve a statistical accuracy ε is O(| ln ε|/ε2) and N ∼ 1/ε2 [9].
We developed a parallel implementation of the Monte Carlo RWS method using
the OpenMP and MPI standards. We applied the general approach to the par-
allel implementation of Monte Carlo algorithms [11,12]. At first, N independent
trajectories are distributed among nmpi MPI processes. Then, for each MPI pro-
cess, (N/nmpi) trajectories are distributed among nomp OpenMP threads. The
OpenMP threads simultaneously calculate the values of the characteristics It

cl, It
e,

It
d using their own arrays. Each MPI process sums up the values obtained by its

child OpenMP threads. After computing all the trajectories, the root MPI pro-
cess gathers the values obtained for the characteristics and averages them. The
code uses the parallel 128-bit linear congruential generator of pseudo-random
numbers implemented in [15].

The efficiency of the parallel implementation of the CL and EBIC simulation
code was evaluated in a computer experiment with the following values of the
parameters: diffusion length: L = 100 nm; exciton lifetime: tlive = 1ns; disloca-
tion radius: Rdis = 3nm; dislocation density: ρdis = 10−5 nm−1; recombination
velocity on the boundary Γ : S = 105 nm/ns; size of the neighborhood for the
plain Γz: εz = 0.01 nm, and for the dislocations Γd: εd = 0.001 nm; number of
trajectories: N = 108. Simulations were performed on the “NKS-1P” cluster,
put into operation in 2017 in the Siberian Supercomputer Center of the Siberian
Branch of the Russian Academy of Sciences (SSCC SB RAS)1. The “NKS-1P”
cluster consists of two partitions: 20 “Broadwell” nodes and 16 “KNL” nodes.
The “Broadwell” computation node is equipped with two Intel Xeon E5-2697v4
processors having 16 cores and 32 threads each, which amounts to a total of 64
threads on the node. The “KNL” computation node consists of one Intel Xeon
Phi 7290 processor having 72 cores with four threads each, in all, 288 threads
on the node.

At first, the efficiency of the parallel implementation of the code was assessed
using a single computational node. We tested three distinct distributions of tra-
jectories among MPI processes and OpenMP threads:

1. using only MPI processes, each having a single OpenMP thread;
2. using only OpenMP threads created by a single MPI process;
3. using a combination of MPI processes and OpenMP threads in such a way

that all node resources are busy.

In Fig. 1, the characteristics of the parallel implementation for the first
distribution are shown: computational time T (nmpi), speedup S(nmpi) =
T (1)/T (nmpi), and efficiency Q(nmpi) = S(nmpi)/nmpi.

The “Broadwell” partition computational time for any nmpi is less than that
of the “KNL” partition (Fig. 1a). The “Broadwell” speedup and efficiency fall
when nmpi > 32 (Fig. 1b, c); this behavior can be explained by the fact that the
“Broadwell” node has two processors with 16 cores each. So, when all cores of
the node are involved, a further increase of nmpi leads to a drop in efficiency.
A similar result is obtained for the “KNL” partition. A sharp drop in S and

1 SSCC SB RAS website: http://www.sscc.icmmg.nsc.ru.

http://www.sscc.icmmg.nsc.ru

Supercomputer Simulation of Cathodoluminescence Transients 287

Fig. 1. Characteristics of the code parallel implementation using only MPI processes,
each having a single OpenMP thread: (a) computational time, (b) speedup, (c) efficiency.

Q occurs when moving to the next level of core loading. For example, when
nmpi ≤ 72, only one MPI process is executed per core. When nmpi = 73, one
of the cores executes two MPI processes, while the other cores execute only one
MPI process and then are idle. The root MPI process waits for completion of
all processes to calculate the average values of the characteristics, so the load
imbalance leads to an increase in waiting time. A further increase in the number
of MPI processes up to nmpi = 144 leads to a more uniform load of the cores, so
that the efficiency increases. The drop in S and Q for nmpi = 145 and nmpi = 217
can be explained in the same way.

In the case of the second distribution, when the trajectories are distributed
only among OpenMP threads created by a single MPI process in each node,
the efficiency and speedup smoothly decrease when the number of threads nomp

increases without sharp jumps (Fig. 2).

288 K. K. Sabelfeld and A. Kireeva

Fig. 2. Efficiency of the code parallel implementation using only OpenMP threads
created by a single MPI process.

Tables 1 and 2 summarize the characteristics of the code parallel implementa-
tion for the third case of distribution, for the “Broadwell” and “KNL” partitions.
The trajectories are distributed among MPI processes and OpenMP threads,
so that all node resources are busy, i.e. nmpi + nomp = 64 for “Broadwell”,
and nmpi + nomp = 288 for “KNL”. The tables show the characteristic values
averaged over 10 code executions. For the “Broadwell” partition, the minimal
computational time was achieved for the parallel code implementation using 32
MPI processes and 2 OpenMP threads. For the “KNL” partition, the minimal
computational time was achieved for nmpi = 74 with nomp = 4. These results
are adequate to the architecture of computational nodes: the “Broadwell” node
includes 32 cores with two threads each, while the “KNL” node has 72 cores
with 4 threads each.

Table 1. Characteristics of the code parallel implementation executed on a single
computational node of the “Broadwell” partition.

nmpi; nomp 1;64 2;32 4;16 8;8 16;4 32;2 64;1

T , s 105.05 73.60 47.88 44.20 43.98 41.11 41.23

S 1 1.43 2.19 2.38 2.39 2.56 2.55

Table 2. Characteristics of the code parallel implementation executed on a single
computational node of the “KNL” partition.

nmpi; nomp 1;288 2;144 4;72 8;36 9;32 16;18 18;16 32;9 36;8 72;4 144;2 288;1

T , s 125.48 97.98 84.22 78.75 77.66 72.61 75.56 76.56 75.29 71.93 74.64 77.17

S 1 1.28 1.49 1.59 1.62 1.73 1.66 1.64 1.67 1.74 1.68 1.63

Furthermore, the efficiency of the parallel code was investigated with regards
to the number of computational nodes when the optimal ratio between nmpi and
nomp is used on each node, namely nmpi = 32 with nomp = 2 for “Broadwell”,
and nmpi = 74 with nomp = 4 for “KNL”. The speedup of the code parallel

Supercomputer Simulation of Cathodoluminescence Transients 289

implementation is close to linear for the both partitions (Fig. 3). As shown in
Fig. 3, the plots of the speedup for “Broadwell” and “KNL” overlap.

Fig. 3. Speedup of the code parallel implementation depending on the number of com-
putational nodes. (Note that the lines for “Broadwell” and “KNL” overlap).

4 Results of the Simulation of CL, EBIC and Flux on
Dislocations

The CL intensity, the EBIC signal and the flux on the dislocations are simulated
in a parallel implementation of the code using for each node the optimal number
of MPI processes and OpenMP threads that were found above.

First, to verify the code that implements the Monte Carlo RWS algorithm
(A1), we compare the simulation results against the exact solution of the
diffusion-reaction equation (1) in the case of recombination only on the top
plane Γz, for which we obtained the result explicitly:

u(t)∗ = λ2 · exp(−λ2t) · exp
(

Dt

z2
s

)

erfc

(√
Dt

zs

)

, (13)

where zs is a size of the exciton source along the axis Z.
The following model parameters are taken for the calculations: diffusion

coefficient: D = 10000 nm/ns2; exciton lifetime: tlive = 1ns; diffusion length:
L =

√
Dtlive = 100 nm; recombination velocity on the top plane: Sz = 105 nm/ns,

and on the dislocation surface: Sd = 0nm/ns; dislocation radius: Rdis = 3nm;
value of the neighborhood of the boundary Γz: ε = 0.01 nm, and that of Γd:
ε = 0.001 nm; number of trajectories: N = 109. The exciton position is gener-
ated at random. The coordinates x and y are uniformly chosen on the XY plane;
the z-coordinate has exponential distribution z ∼ Exp(0.01), so the mean size
of the exciton source along the axis Z is zs = 100. The size of the domain is set
equal to Xs × Ys = 1000 × 1000 nm2 along the axes X and Y , and infinity along
the axis Z.

As shown in Fig. 4, the CL intensity obtained by simulation for a domain
without dislocations is in a good agreement with the exact solution u(t)∗.

290 K. K. Sabelfeld and A. Kireeva

Fig. 4. Comparison of the simulation result with the exact solution for a domain with-
out dislocations.

The next task is to investigate the CL intensity transients depending on the
dislocation density. In this test, the recombination velocity on the dislocation
surface is Sd = 105 nm/ns, the number of dislocations Ndis is increased from 1
to 1000, while the other parameters remain the same as in the previous test.
The dislocation density is calculated as the ratio Ndis/(Xs · Ys) nm−2. Figure 5
shows the transient CL intensity and the flux on the dislocations in a logarithmic
scale. When the dislocation density increases, the excitons recombine faster on
the dislocation surface, rather than self-annihilate, so the CL intensity decreases.
The larger Ndis is, the larger the recombination rate is. Thus, at the beginning,

Fig. 5. Influence of the number of dislocations on the CL intensity (a), and the flux
on dislocations (b).

Supercomputer Simulation of Cathodoluminescence Transients 291

the flux on dislocations for larger Ndis is greater; later, both the number of
excitons and the flux Id decrease with time.

In addition to the dislocation density, the recombination velocity on the
dislocation surface also influences the CL intensity. To analyze the recombination
velocity effect, the number of dislocations is set at Ndis = 10, and Sd is increased
from 10 to 105 nm/ns. The other parameters do not change. The character of
the recombination velocity influence on the CL intensity is similar to that of
the dislocation density effect (Fig. 6a), although it is less pronounced. So Icl

slightly decreases when Sd increases, whereas the differences between Icl curves
for various Ndis are quite clear (Fig. 5a). The flux on the dislocation surface
visibly increases (Fig. 6b), but there is no such a change in recombination rate
with time, as it is the case when Ndis increases.

Fig. 6. Influence of the surface recombination velocity on the CL intensity (a), and the
flux on dislocations (b).

Another parameter influencing the CL intensity and boundary fluxes is the
diffusion length. Figure 7 shows the CL intensity, the EBIC signal and the flux
on the dislocations calculated for Ndis = 10, Sd = 105 nm/ns and the same
values as above for the rest of the parameters. When the diffusion length L
increases, the excitons reach the boundaries faster, so the recombination rate on
both boundaries, Γz and Γd, increases. Thus, for larger L, a larger fraction of
excitons is recombined on the boundaries and the CL intensity decreases.

292 K. K. Sabelfeld and A. Kireeva

Fig. 7. Influence of the diffusion length on the CL intensity (a), the EBIC signal (b),
and the flux on dislocations (c).

5 Conclusions

We have presented in this paper parallel implementations of the Monte Carlo
method for simulation of cathodoluminescence transients in the vicinity of dis-
locations. The simulation algorithm is based on the random-walk-on-spheres
method for solving transient diffusion-reaction equations [9]. The parallel imple-
mentation uses MPI and OpenMP programming. The parallel code efficiency was
analyzed for different numbers of MPI processes and OpenMP threads within a
single node for both partitions, “Broadwell” and “KNL”, of the “NKS-1P” clus-
ter. Moreover, a linear speedup was obtained for the code executed on multiple
computational nodes, each using the optimal ratio of MPI processes to OpenMP
threads.

The CL intensity, the EBIC signal and the flux on the dislocations were sim-
ulated using the parallel code. The simulation results were compared against the
exact solution of the transient diffusion-reaction equation without dislocations,

Supercomputer Simulation of Cathodoluminescence Transients 293

and it was demonstrated that the calculated CL intensity is in good agreement
with the theoretical value. We also investigated the dependence of the CL inten-
sity for various dislocation densities, recombination velocities on the dislocation
surface, and diffusion lengths.

References

1. Liu, W., Carlin, J.F., Grandjean, N., Deveaud, B., Jacopin, G.: Exciton dynamics
at a single dislocation in GaN probed by picosecond time-resolved cathodolumi-
nescence. Appl. Phys. Lett. 109(4), 042101-1–042101-5 (2016). https://doi.org/10.
1063/1.4959832. Article ID 042101

2. Weisbuch, C., Piccardo, M., Martinelli, L., Iveland, J., Peretti, J., Speck, J.S.: The
efficiency challenge of nitride light-emitting diodes for lighting. Phys. Status Solidi
A 212(5), 899 (2015). https://doi.org/10.1002/pssa.201570427

3. Rosner, S.J., Carr, E.C., Ludowise, M.J., Girolami, G., Erikson, H.I.: Correlation
of cathodoluminescence inhomogeneity with microstructural defects in epitaxial
GaN grown by metalorganic chemical-vapor deposition. Appl. Phys. Lett. 70(4),
420–422 (1997). https://doi.org/10.1063/1.118322

4. Sabelfeld, K.K., Kaganer, V.M., Pfüller, C., Brandt, O.: Dislocation contrast in
cathodoluminescence and electron-beam induced current maps on GaN(0001). J.
Phys. D 50, 405101 (2017). https://doi.org/10.1088/1361-6463/aa85c8

5. Phang, J.C.H., Pey, K.L., Chang, D.S.H.: A simulation model for cathodolumi-
nescence in the scanning electron microscope. IEEE Trans. Electron Dev. 39(4),
782–791 (1992). https://doi.org/10.1109/16.127466

6. Berz, F., Kuiken, H.K.: Theory of life time measurements with the scanning elec-
tron microscope: steady state. Solid-State Electron. 19, 437–445 (1976). https://
doi.org/10.1016/0038-1101(76)90003-4

7. Sabelfeld, K.K.: Splitting and survival probabilities in stochastic random walk
methods and applications. Monte Carlo Methods Appl. 22(1), 55–72 (2016).
https://doi.org/10.1515/mcma-2016-0103

8. Sabelfeld, K.K.: Random walk on spheres method for solving drift-diffusion prob-
lems. Monte Carlo Methods Appl. 22(4), 265–275 (2016). https://doi.org/10.1515/
mcma-2016-0118

9. Sabelfeld, K.K.: Random walk on spheres algorithm for solving transient drift-
diffusion-reaction problems. Monte Carlo Methods Appl. 23(3), 189–212 (2017).
https://doi.org/10.1515/mcma-2017-0113

10. Sabelfeld, K.K.: Monte Carlo Methods in Boundary Value Problems. Springer,
Berlin (1991)

11. Rosenthal, J.S.: Parallel computing and Monte Carlo algorithms. Far East J. Theor.
Stat. 4, 207–236 (2000)

12. Esselink, K., Loyens, L.D.J.C., Smit, B.: Parallel Monte Carlo simulations. Phys.
Rev. E 51(2), 1560–1568 (1995). https://doi.org/10.1103/physreve.51.1560

13. Friedman, A.: Partial Differential Equations of Parabolic Type. Courier Dover
Publications, Mineola (2008)

14. Devroye, L.: The series method for random variate generation and its application
to the Kolmogorov-Smirnov distribution. Am. J. Math. Manag. Sci. 1(4), 359–379
(1981). https://doi.org/10.1080/01966324.1981.10737080

15. Marchenko, M.: Parallel pseudorandom number generator for large-scale Monte
Carlo simulations. In: Malyshkin, V. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 276–
282. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73940-1 28

https://doi.org/10.1063/1.4959832
https://doi.org/10.1063/1.4959832
https://doi.org/10.1002/pssa.201570427
https://doi.org/10.1063/1.118322
https://doi.org/10.1088/1361-6463/aa85c8
https://doi.org/10.1109/16.127466
https://doi.org/10.1016/0038-1101(76)90003-4
https://doi.org/10.1016/0038-1101(76)90003-4
https://doi.org/10.1515/mcma-2016-0103
https://doi.org/10.1515/mcma-2016-0118
https://doi.org/10.1515/mcma-2016-0118
https://doi.org/10.1515/mcma-2017-0113
https://doi.org/10.1103/physreve.51.1560
https://doi.org/10.1080/01966324.1981.10737080
https://doi.org/10.1007/978-3-540-73940-1_28

Supercomputer Simulation of Promising
Nanocomposite Anode Materials

for Lithium-Ion Batteries: New Results

Vadim M. Volokhov, Dmitry A. Varlamov(B), Tatyana S. Zyubina,
Alexander S. Zyubin, Alexander V. Volokhov, Elena S. Amosova,

and Gennady A. Pokatovich

Institute of Problems of Chemical Physics of the RAS, Chernogolovka, Russia
{vvm,dima,zyubin,vav,aes,pga}@icp.ac.ru

Abstract. Following a considerable number of computational experi-
ments on various supercomputer resources, we constructed a quantum-
chemical and molecular-dynamics model of various nanocomposite
components of Si–C-based anode materials for Li-ion batteries. Also, we
simulated various aspects of processes occurring inside Li-ion batteries
during multiple charge-discharge cycles. Simulation results of stable Si–
C nanorods and flexible 3D Si–C fibrous-paper electrodes are presented
as the most promising electrodes for Li-ion batteries.

Keywords: Computer simulation · Silicon–carbon nanocomposites
Li-ion batteries · VASP applied package · Quantum chemistry
Molecular dynamics · 3D Si–C fibrous-paper electrodes · Si–C nanorods

1 Introduction

In this work, we present new results obtained within the framework of the project
“Computer simulation of absorption and transport properties of solid electrolytes
and nanostructured electrodes based on carbon and silicon in Li-ion batter-
ies”, which aims for the supercomputer simulation of quantum-chemistry and
molecular-dynamics processes in new nanocomposite materials (based on silicon
and carbon) and solid electrolytes with high ionic conductivity and transport.
Structural and energetic processes occurring in the modeled nanostructures and
on the “interface” between them have been described in detail in a number of
our previous publications [1–9]. Computer simulation of nanostructures and pro-
cesses occurring in them has been carried out to improve previous models. Here
is a brief description of new results obtained during this simulation.

Li-ion batteries (LIB) are currently the most promising and common types of
power sources and batteries. LIB are based on the transport of Li-ions through a
liquid or solid electrolyte from cathode to anode (and back when charging). The
design of new types of LIB is required to improve their efficiency parameters,
such as energy capacity, number of charge-discharge cycles, resistance to external
c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 294–305, 2018.
https://doi.org/10.1007/978-3-319-99673-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_21&domain=pdf

Supercomputer Simulation of Nanocomposite Materials 295

conditions (temperature), production and disposal safety from the environmental
point of view, and cost (prime cost of materials in main components).

LIB are to date the most promising power sources for use in electric vehicles,
portable electronics, portable power tools, etc. [10,11]. However, some charac-
teristics of LIB need to be improved. One of them is the discharge capacity of
the negative electrode (NE). The most popular material for NE is graphite, with
a theoretical capacity of 372 mAh · g−1 (or 837 mAh · cm−3) for LiC6, which
is not very high. Silicon is regarded as a prospective candidate for negative-
electrode active component. Compared with carbon, solid Si is able to accom-
modate a tenfold amount of lithium, with a specific capacity of ∼4200 mAh ·g−1

(or 9785 mAh · cm−3) for Li4.2Si. However, this advantage cannot be exploited,
owing to deep structural transformations leading to rapid changes in volume
and resulting in electrode destruction. One of the possible solutions to the prob-
lem is searching for noncrystalline forms of silicon (such as nanoparticles, thin
films/fibers, nanowires, etc.) capable of maintaining its shape after multiple
lithiation-delithiation processes. To avoid stress-induced fracturing, it is nec-
essary to increase the electrode stability during Li insertion and extraction, so
the silicon particle size must be below ∼1µm. There are a number of different
types of silicon nanostructures that can resist the stress caused by changes in
silicon volume during lithium insertion without impairing the electrochemical
properties of the electrode: silicon nanopowders, nanowires, nanofibers, nan-
otubes, nanorods, thin films, and so on. Quasi-one-dimensional materials based
on nanostructured silicon, such as nanorods and nanowires, seem to be preferable
for various reasons. First of all, they can provide a significant volumetric expan-
sion of silicon and reduce the lithium migration path in the volume owing to
small axial dimensions. Furthermore, in some cases, they yield improved results
in electron transport.

Simulated materials might be the basis for the design and creation of new
types of electrochemical and ecologically safe LIB. These power sources would
be able to operate at low and medium temperatures, provide significantly higher
energy densities, and improve operational and cost characteristics. The simula-
tion of lithiation processes (saturation of the anode by lithium = discharge pro-
cess) and delithiation (lithium ions return to the electrolyte and cathode = charge
process) is a basic operation for the comprehension of processes related to LIB
functioning in general, estimation of limiting factors and prediction of the most
promising nanocomposite materials.

The synthesis of new nanocomposite materials and the study of their prop-
erties and predictable applications are only possible within the framework of
detailed computer simulations of crystalline composite structures, elementary
processes and mechanisms of chemical reactions and transport processes at the
molecular level.

Experimental studies of factors having a major influence on the solution of
the issues listed above are complex, expensive, not always possible and, in most
cases, do not determine clearly the mechanisms of ongoing physical and chemical
processes, the reasons for their differences depending on the composition of the
system and external conditions, possible directions of reactions, etc. At the same

296 V. M. Volokhov et al.

time, the experimental (analogue) simulation of the influence of a number of
factors on the properties of the constituent components of LIB and processes
occurring in them are labor-intensive and costly tasks.

Since experiments give only initial and final information about processes,
it is quite difficult to build a genuine analytical model. Such tasks can be
solved partially in laboratory conditions, where analytic experiments give incom-
plete or indirect information about mechanisms and structures of experimental
components. Modern numerical methods of quantum-chemistry and molecular-
dynamics simulation can provide a substantial assistance in determining the
characteristics of processes and assessing the impact of individual factors with
a high degree of accuracy. These methods allow obtaining new theoretical data
on the structure and properties of both nanostructured cathode-anode systems
and ion-conducting solid electrolytes, making it possible to subsequently develop
new highly effective materials for electrochemical devices. A detailed simulation
of elementary processes as well as mechanisms of lithiation/delithiation and ion-
transport processes in LIB at the micro level may lead to a better control over
chemical reactions occurring in them, allowing to design the most appropriate
anode materials in terms of electricity generation efficiency, lithiation processes,
stability during multiple charge-discharge cycles, cost of LIB and environmental
recycling.

Also, the models created can be reviewed for adequacy by comparing them
(and the properties of materials modeled on their basis) with observable analyt-
ical, experimental and theoretical data published in specialized literature.

For this task, we carried out a detailed quantum-chemical and molecular-
dynamics simulation of various nanosystems based on carbon and silicon, both
in cluster approximation and for periodic boundary conditions with projector-
augmented wave (PAW), using VASP and Gaussian on a number of high-
performance computing resources [1–3].

The objects of the computer simulation are composites based on carbon and
silicon that are able to repeatedly absorb Li without damage and are promis-
ing materials for Li-ion power sources (Si–C nanorods, 3D Si–C fibrous-paper
nanopapers with active crystal surfaces).

Silicon nanorods can be used for producing stable high-capacity negative elec-
trodes. The use of this quasi-one-dimensional material can also help to save the
initially high silicon capacity by distributing distortion and stress among degrees
along structural units. The discharge capacity of such electrodes is 1038mAh·g−1

after 170 charge-discharge cycles, which is higher than that of porous or single-
crystal silicon. The discharge capacity of negative electrodes based on silicon
nanorods is 2000mAh · g−1 after 25 lithium insertion/extraction cycles. The
high capacity and good cyclability of silicon nanorods can be explained by struc-
tural features and a large specific surface, which ensures contact of the electrode
with the electrolyte, thereby facilitating lithium transport and its accumulation
on the boundary. However, capacity decreases during cycling. Degradation of a
silicon-based negative electrode occurs when it is charged to 100% of its capac-
ity. Degradation of silicon nanowires is caused by silicon loss and reduction of

Supercomputer Simulation of Nanocomposite Materials 297

the diameter of nanowires during cycling. Thus, the optimization of the cycling
mode based on variation of the insertion depth of lithium into silicon particles
can stabilize the cycling performance of Si-based negative electrodes. Another
way to avoid rapid degradation of Si-based negative electrodes consists in using
composites with carbon, aluminum or copper. This helps to increase conductiv-
ity and flexibility of the negative-electrode material. Thus, understanding the
processes that occur both on the surface and in the volume of silicon nanorods
during multiple lithium insertion/extraction cycles facilitates the development
of stable high-capacity materials for negative electrodes of LIB.

In previous works [4–9], we studied lithium-absorbing composites based on
silicon deposited on the surface of nitrogen-doped silicon carbide, as well as
silicon nanoclusters placed on a grid of amorphous carbon. Another promising
structure was considered in [4,6], namely silicon nanorods, which are superior
in their stability to nanoclusters: as the diameter of nanorods increases, their
specific energy approaches that of a crystal. This can contribute to cycling perfor-
mance, owing to the stability of the initial Si nanorod structure and the presence
of free space around the rods. A part of the present work is devoted to modeling
lithium insertion and extraction processes by such silicon nanorods.

The most promising are flexible 3D Si–C fibrous-paper electrodes [13], syn-
thesized by simultaneous electrospraying of Si and PAN (polyacrilinitrile) nan-
oclusters followed by their electrospinning and carbonization. Batteries of flexible
3D Si/C fibrous paper are extremely attractive for use in electrical vehicles, flex-
ible electronic devices, space and military applications, owing to easily scalable
and simple synthetic methods, good mechanical properties and their excellent
electrochemical characteristics at high loading with Si. Combined technologies
allow for a uniform incorporation of Si nanoparticles into textile carbon matri-
ces to form fibrous paper of nano-Si–C-composite. Flexible 3D Si–C electrodes
of fibrous paper demonstrate a very high total capacity of ≈1600mAh · g−1,
with a loss in power lower than 0.079% per cycle for 600 cycles at stable power.
Their extraordinary efficiency is explained by the unique architecture of flexible
3D Si/C fibrous paper, which is a stable network of ion-conduction channels con-
sisting of Si/C clusters uniformly distributed in a carbon fibrous matrix (with
strong adhesion between carbon fibers and Si nanoparticles). It can be assumed
that during lithiation, the silicon clusters break up into nanoclusters of a definite
size and retain this size in the subsequent (de)lithiation to form a reproducible
2Li/1Si structure. In the present work, we model this process for translated
nanofibers such as [SinCm]k (k = ∞) with n ranging from 12 to 16 and m
ranging from 8 to 19.

2 Simulation Methods

For modeling the systems under study, we employ the same approach as in earlier
works [1–9], combining the use of density functional theory (DFT) with periodic
boundary conditions using VASP (Vienna Ab initio Simulation Package, https://
www.vasp.at). The basis set consists of PAW projector plane-waves with an

https://www.vasp.at
https://www.vasp.at

298 V. M. Volokhov et al.

appropriate pseudo-potential and PBE (Perdew–Burke–Ernzerhof) functional.
The energy limit (Ec), which determines the completeness of the basis set, is
400 eV.

The use of this approach for modeling crystalline silicon gives a unit-cell
parameter of 5.47 Å and a dissociation energy De/n of 4.57 eV, which is quite
consistent with experimental data: 5.43 Å and 4.64 eV, respectively. For model-
ing one- and two-dimensional structures (surfaces, tubes, rods, etc.), the sizes
of multiplied cells are chosen in order that the distances between the nearest
surfaces of a periodically repeated system are no less than 10 Å.

For simulation of atom redistribution after Li insertion or extraction, we used
nonempirical molecular dynamic modeling, namely the MD-VASP approxima-
tion, which implements the same algorithms as in ordinary structure optimiza-
tion but with rougher criteria of calculation accuracy (Ec = 200 eV, prec = low).
Initially, the system is heated to the preset temperature (as a rule, 600 K), then
it is equilibrated with a Nosé thermostat at this temperature (when equilibrium
is attained, the potential energy fluctuations cease, which occurs usually within
10 000 femtosecond) and then cooled to 0 K. The final structure is refined by
means of optimization with an ordinary accuracy (Ec = 400 eV, prec = normal).

The energetic stability of the combination system was evaluated as De/n(Li),
which is calculated as the difference between its energy and the energy of the
substrate (a silicon rod) and isolated lithium atoms, divided by the number of
lithium atoms n:

De

n(Li)
= − 1

n
[E(SimLin) − E(Sim) − nE(Li)].

For metallic lithium, this value in terms of the approximation used is 1.61 eV,
whereas the experimental value is 1.64 eV.

2.1 Estimation of Adequacy of the Models

To assess the adequacy, reliability and accuracy of the constructed computer
models of nanocomposite materials and processes with their participation, we
test these models by various methods. Fist of all, there should be neither obvious
contradictions between a model and the physical and chemical effects observed
during the evolution of real simulated systems (for example, during heating-
cooling cycles), nor inconsistencies in the physical and chemical states of sim-
ulated substances (for example, formation of metallic lithium or decomposition
of electrolytes). The test program of a model includes the following methods:

1. Comparison of data obtained in the simulation with independent exter-
nal data (analytical, experimental, theoretical, reference) by contrasting the
parameters obtained (for example, average bond energy of atoms in a crystal,
parameters of a crystal cell, photoelectronic absorption spectra, etc.) with
those already known from literature or reference sources.

2. Comparison of simulation data acquired during operation of the model as a
whole with data obtained earlier during operation of separate components or
processes of the model.

Supercomputer Simulation of Nanocomposite Materials 299

3. Verification of the correctness and stability of the model using various
combinations of simulated substances, e.g., nanocomposite electrodes and
solid/polymeric electrolytes with various external parameters and multiple
lithiation/delithiation cycles.

4. Assessment of the correctness and independence of the model when carrying
out computational experiments on various high-performance resources with
various configurations of computer equipment (random access and disk mem-
ory, number of compute nodes, versions of the application packages used).

The main test method consists of mass computational experiments on various
computing resources using the created computer model with a wide range of
input parameters, and subsequent analysis of the results to select data for com-
parison. Later, we carry out a consistency analysis of the results obtained from
the point of view of physical and chemical criteria, verify their correctness and
compare them with independent external data or with an array of previous
results of model operation obtained for separate components. A fairly accurate
numerical estimation of the level of compliance with directly observable data is
possible for calculated quantitative parameters.

This test program allows to estimate both the general adequacy of the model
to the processes simulated and the correctness of using the results obtained
for analytical conclusions regarding nanocomposite electrodes on the basis of
carbon-silicon and solid/polymeric electrolytes for new types of LIB.

We used the Gaussian package (http://gaussian.com) for comparing and esti-
mating the accuracy of the simulation of some nano-objects at the DFT/B3LYP
level. By comparing different levels of calculation, we noted that the computed
values used in VASP and Gaussian for average bond energies and distances of
identical objects give consistent results with an accuracy of ranging from 0.02
to 0.04 eV and, respectively, from 0.005 to 0.01 Å.

It should be noted that the difference between the computation results at
B3LYP/6-31G(d,p), PBE/6-31G(d,p) and PBE/PAW levels are in the range
from 0 to 2% for distances, and from 1 to 13% for energies. The calculation
level chosen yields the following calculation accuracy in computer models: the Si
crystal lattice calculated parameters a = b = c are 5.48 Å (experimental: 5.43 Å),
the Si–Si distance is 2.37 Å (experimental: 2.34 Å), and the energy of the crystal
is 4.44 eV (experimental: 4.52 eV).

The adequacy of the computer models was also evaluated by comparing the
values calculated on the basis of their physico-chemical characteristics (opti-
cal and X-ray spectra, thermodynamic measurements, energy parameters) with
those observed in physical experiments. For example, the calculated structural
parameters for crystal electrolytes (a = b = 8.79 Å and c = 12.80 Å) are in good
agreement with those in X-ray experiments (a = b = 8.72 Å and c = 12.63 Å).

http://gaussian.com

300 V. M. Volokhov et al.

3 Computational Complexity and Efficiency of
Calculations

In the past, such computer simulations were hindered by a catastrophic lack
of computing resources, since calculating the behavior of small/medium atomic
clusters of Si7−126 type, even in a simplified form, would require months, and
modeling systems as a whole (containing thousands of atoms) would take approx-
imately n · 106 CPU-hours per year.

These simulations have become feasible only in recent times, using high-
performance supercomputing centers and grid polygons. Currently, the use of
computing resources with speeds of the order of teraflops and petaflops allows to
make sufficiently detailed simulations of geometrical and energy characteristics
of modeled nanostructures. It is also possible to study the effects of various
factors and processes occurring in these nanostructures for a variety of conditions
determining the efficiency of LIB created.

Let us summarize the computational complexity and use efficiency of com-
putational resources in the process of quantum-chemical simulation of the struc-
tures we have studied. We used the IPCP cluster (176 dual-node HP Proliant,
making a total of 1472 cores based on 4- and 6-core Intel Xeon processors 5450
and 5670 3 GHz, 8 and 12 GB of RAM per node; InfiniBand DDR communication
network; Gigabit Ethernet transport and network management; hard drives: no
less than 36 GB per node), and the “Lomonosov-1,2” supercomputing installa-
tions at the SCC of MSU, having various pools of processors (8 to 128 CPU) with
obligatory presence of local drives and no less than 2 GB of RAM per core [12].

A sufficiently effective speedup of VASP for this type of tasks was observed for
40 to 48 CPU cores. The subsequent growth of the efficiency of parallelization
of the task is limited (or even reduced) by the rate of data exchange due to
a significant increase in the amount of data being transferred between nodes.
Thus, increasing the number of CPU over 48 (at least for this task variant) is
meaningless for the moment. If the number of processors is more than 64, the
dependence between the speedup and the number of processors is practically
absent or even falls [3].

The average effective time for calculation of Sin clusters (from n = 2 to 350)
and CnSim nanofibers increases as the dimension of the silicon-carbon fragment
increases, taking up to 4 days (78 h on a pool based on 4-core Intel Xeon 5450
3 GHz processors) and even more (owing to complications of the structure). The
calculation of lithiated large mesostructures of silicon and aggregates reinforced
with nanorods or 3D Si–C nanofibrous paper takes tens of days to complete.

The most critical calculation parameter is the amount of memory per core,
which has an effect of acceleration of calculations when the number of allocated
cores is decreased since the amount of RAM per core increases. For molecular-
dynamics calculations, we used 14 000 steps per calculation (for example, heating
up to 400 K during 2000 steps, holding at 400 K during 10 000 steps, cooling down
to 10 K during 2000 steps, and optimizing the structure in standard mode; the
model time step was 1 femtosecond). The calculation of complex structures, such

Supercomputer Simulation of Nanocomposite Materials 301

as Li-saturated nanofibers with solid electrolytes, requires up to 30 000 CPU-
hours.

The total number of computing experiments run at all stages of the
work exceeds 2000. The use of computing resources is estimated as follows:
“Lomonosov-1,2” SC: about 30 to 40% of the total number of experiments;
IPCP cluster: 50 to 60%; IPCP workstations: 2 to 3%.

4 Simulation Results

4.1 Computer Simulation of Various Types of Porous
Nanocomposite Materials Based on Carbon and Silicon

We have constructed computer models of the following types of Si–C nanocom-
posites (in addition to the previously simulated):

– silicon clusters with silicon carbide core (rod-shaped), 1.2 to 2.8 nm in diam-
eter, and nanofibers of SinCm type, n/m = 1 to 3;

– infinite carbon nanofibers coated with silicon nanoclusters and translated to
mesostructures (for example, “nanopapers”).

The structure of the inner part of the silicon rods is close to that of a crystal,
and the faces correspond to its reduced surface, as it was considered in [6].

Lithiation/Delithiation of Silicon Rods. Already with the presence of only
two layers of silicon around the axis (L2, diameter 12.5 Å; Fig. 1), the De/n(Si)
value for an endless rod turns out to be quite high (4.14 eV). When the number of
layers increases to L = 3 and L = 4 with a diameter of 19 and 26 Å, respectively,
the De/n(Si) value increases up to 4.28 and 4.35 eV (and with a further increase
in the number of layers, it tends to the corresponding value for a crystal), which
is higher than that for isolated polyhedral Si clusters of similar diameter. Thus,
for a Si350 cluster with a diameter of ∼23 Å, this value reaches 4.04 eV.

When lithium is inserted into quasi-crystalline silicon rods, their regular
structure is disturbed and does not recover even when the metal is completely
extracted. Thus, the probability of distortion of the rod shape, as well as rod
agglomeration and destruction in the process of cycling is high. These effects
can be avoided either by reinforcing the rods with a rigid material that does
not interact with lithium (for example, silicon carbide) or by encircling them
with insulating layers that prevent agglomeration (for example, amorphous car-
bon). With lithium saturation, the transverse dimensions of the rods increase
significantly, at least by a factor of two.

If Li/Si > 1/2, lithium easily redistributes in the volume, i.e. it is freely
inserted into the rod or extracted from it. At a lower concentration, Li distribu-
tion within a silicon rod becomes substantially heterogeneous, and its transition
between the outer layer and the inner part of the rod is difficult. Thus, when
using such systems as a negative electrode material, the Li/Si ratio should not
be reduced to less than 0.5.

302 V. M. Volokhov et al.

Initial Si nanorods

L = 2, De/n = 4.14 eV, L = 3, Si216, De/n = 4.28 eV, L = 4, De/n = 4.35 eV,
D = 12.5 Å D = 19 Å D = 26 Å

Lithiation

Li/Si = 1/1, D = 28 Å Li/Si = 2/1, Initial Li/Si = 2/1, Final
Li216/Si216 D = 33 Å

Li/Si = 3/1 Initial Li/Si = 3/1, Final, D = 38 Å

Delithiation

Li/Si = 6/8, D = 26 Å Li/Si = 4/8, Final, Li/Si = 3/8, Final

Li/Si = 2/8 Final Li/Si = 1/8 Final Li/Si = 0/8 Final, Li0/Si216

Fig. 1. Cross sections of Si rods with various diameters (D) and lithiation/delithiation
Li/Si ratios (Li–yellow balls, Si–green balls) (Color figure online)

Supercomputer Simulation of Nanocomposite Materials 303

4.2 Quantum-Chemical Simulation of Transport Processes of
Lithium Ions in Nanocomposite Materials Based on Carbon
and Silicon

On the basis of the constructed models of nanocomposites (see above), we
made [1–9] a quantum-chemical simulation of various processes occurring during
charge-discharge cycles of LIB (i.e. processes of lithiation and delithiation on
electrodes based on the above described nanostructures).

Fig. 2. The structure of space-replicated fragments of [Si12C8], [Si12C10], and [Si16C19]
nanofibers from three different angles (a, b, c). In the notation of the structures, the
first number corresponds to the number of silicon atoms (n), the second number is the
number of carbon atoms (m), and the third number (after the comma) is the isomer
number on the energy scale starting from the isomer with the lowest energy

A majority of characteristics of these processes have been established, includ-
ing:

1. Li-ion transport processes and processes of lithium consistent implementation
in Si–C nanostructures of various types and dimensions.

2. Structural and energetic changes of nano-objects in processes of absorption
of lithium atoms.

3. Possible paths and migration barriers for lithium atoms in the process of
nanoparticle saturation.

4. Construction of models of sequential removal of lithium atoms from lithiated
nanoparticles and determination of structural and energetic changes identified
in this process.

5. Determination of the limits of resistance to fracturing for nanoparticles during
delithiation processes.

Thus, the results of quantum-chemical modeling (Fig. 2) allow us to conclude
that infinite space-replicated nanofibers, such as [SinCm]k (k = ∞) with n rang-
ing from 12 to 16 and m from 8 to 19, can be used as anodes in lithium-ion
batteries, since they change their volume during cycling by 6 to 8% starting
from the third cycle. For practical use, we recommend anodes subjected to no

304 V. M. Volokhov et al.

less than 3 to 4 lithiation-delithiation cycles, with already stabilized relative
changes in their structure and volume on lithiation not exceeding 10% of the
initial value.

5 Conclusions

On the basis of a large number (more 200) of numerical experiments involving
computer quantum-chemistry and molecular-dynamics simulation, we modeled
the structures and surfaces of solid electrodes (Si–C nanorods and 3D Si–C
nanofibers) for LIB, their interaction with various nano-objects based on carbon
and silicon having different morphologies, spatial rigidity values, power charac-
teristics, and saturation potentials with lithium ions. We also calculated trans-
port processes of lithium ions (delithiation-lithiation) in nanocomposites, includ-
ing structural energy characteristics and structures evolving over time (depend-
ing on the number of lithiation cycles). The model structures calculated, the
characteristics of anode materials for LIB and their interaction during charge
and discharge were used to simulate the whole picture of lithiation and delithi-
ation processes in Li-ion cells, the interaction of lithium ions with the surface of
carbon and silicon nanomaterials, to determine the capacity of the anode mate-
rials, and also to model both components and new LIB types in general. These
results will be used to determine optimal conditions for the synthesis and pro-
duction of the most energetically favorable and industrially suitable electrolytes
and anode materials for new types of Li-ion power sources.

References

1. Volokhov, V.M., Varlamov, D.A., Zyubina, T.S., Zyubin, A.S., Volokhov, A.V.,
Amosova, E.S.: The supercomputer simulation of nanocomposite components and
transport processes in the Li-ion power sources of new types. In: Voevodin, V.,
Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 299–312. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71255-0 24

2. Volokhov, V., Varlamov, D., Zyubina, T., Zyubin, A., Volokhov, A., Amosova,
E.: Supercomputer simulation of components and processes in the new type Li-ion
power sources. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp.
275–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67035-5 20

3. Volokhov, V.M., Varlamov, D.A., Zyubina, T.S., Zyubin, A.S., Volokhov, A.V.:
The supercomputer simulation of processes of interaction silicon-carbonic nanos-
tructured electrodes and solid electrolytes in new types of Li-ion power sources.
In: Russian Supercomputing Days 2016, Proceedings of the International Scientific
Conference, 26–27 September 2016, Moscow, pp. 690–699 (2016). (in Russian)

4. Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Y.A., Volokhov, V.M.: Silicon- and
carbon-based anode materials: a quantum-chemical modeling. Russ. J. Inorg.
Chem. 61(1), 48–54 (2016). https://doi.org/10.1134/s0036023616010241

5. Zyubina, T.S., Zyubin, A.S., Dobrovolsky, Yu.A., Volokhov, V.M.: Quantum chem-
ical modeling of nanostructured silicon Sin (n = 2-308). The snowball-type struc-
tures. Russ. Chem. Bull. 65(3), 621–630 (2016). https://doi.org/10.1007/s11172-
016-1346-7

https://doi.org/10.1007/978-3-319-71255-0_24
https://doi.org/10.1007/978-3-319-67035-5_20
https://doi.org/10.1134/s0036023616010241
https://doi.org/10.1007/s11172-016-1346-7
https://doi.org/10.1007/s11172-016-1346-7

Supercomputer Simulation of Nanocomposite Materials 305

6. Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Y.A., Volokhov, V.M.: Quantum-
chemical modeling of lithiation of a silicon-silicon carbide composite. Russ. J. Inorg.
Chem. 61(11), 1423–1429 (2016). https://doi.org/10.1134/s0036023616110231

7. Zyubina, T.S., Zyubin, A.S., Dobrovolsky, Yu.A., Volokhov, V.M.: Lithiation-
delithiation of infinite nanofibers of the SinCm type - the possible promising anodic
materials for lithium-ion batteries. Quantum-chemical modeling. Russ. J. Elec-
trochem. 52(10), 988–991 (2016). https://doi.org/10.1134/S1023193516100141

8. Zyubina, T.S., Zyubin, A.S., Dobrovolsky, Yu.A., Volokhov, V.M.: Quantum-
chemical modeling of lithiation-delithiation of infinite fibers [SinCm]k (k = ∞)
for n = 12–16 and m = 8–19 and small silicon clusters. Russ. J. Inorg. Chem.
61(13), 1677–1687 (2016). https://doi.org/10.1134/s0036023616130040

9. Zyubina, T.S., Zyubin, A.S., Dobrovolsky, Yu.A., Volokhov, V.M.: Migration of
lithium ions in a nonaqueous nafion-based polymeric electrolyte: quantum-chemical
modeling. Russ. J. Inorg. Chem. 61(12), 1545–1553 (2016). https://doi.org/10.
1134/s0036023616120238

10. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657
(2008). https://doi.org/10.1038/451652a

11. Kang, B., Ceder, G.: Battery materials for ultrafast charging and discharging.
Nature 458, 190–193 (2009). https://doi.org/10.1038/nature07853

12. Voevodin, Vl.V., et al.: Practice of a supercomputer “Lomonosov”. Open Syst. 7,
36–39 (2012). (inRussian)

13. Xu, Y., Zhu, Y., Han, F., Luo, C., Wang, C.: 3D Si-C fiber paper electrodes fab-
ricated using a combined electrospray/electrospinning technique for Li-ion bat-
teries. Adv. Energy Mater. 5(1), 1400753 (2014). https://doi.org/10.1002/aenm.
201400753

https://doi.org/10.1134/s0036023616110231
https://doi.org/10.1134/S1023193516100141
https://doi.org/10.1134/s0036023616130040
https://doi.org/10.1134/s0036023616120238
https://doi.org/10.1134/s0036023616120238
https://doi.org/10.1038/451652a
https://doi.org/10.1038/nature07853
https://doi.org/10.1002/aenm.201400753
https://doi.org/10.1002/aenm.201400753

Parallel Solution of Sediment
and Suspension Transportation Problems

on the Basis of Explicit Schemes

Alexander I. Sukhinov1, Alexander E. Chistyakov1,
and Valentina V. Sidoryakina2(B)

1 Don State Technical University, Rostov-on-Don, Russia
sukhinov@gmail.com, cheese 05@mail.ru

2 Taganrog University, Named After A. P. Chekov – Branch of Rostov State
University of Economics, Taganrog, Russia

cvv9@mail.ru

Abstract. The article has been devoted to construction and investiga-
tion of parallel algorithms for the numerical realization of 3D models
of suspended matter transportation and deposition and 2D models of
bottom sediment transportation in sea coastal systems on the basis of
explicit schemes with regularization terms that provide improved stabil-
ity quality. The developed models take into account coastal currents and
stress near the bottom caused by wind waves, turbulent spatial-three-
dimensional motion of the water medium, particle size distribution and
porosity of bottom sediments and hydraulic size of suspended particles,
complicated shoreline shape and bottom relief and other factors. The
numerical realization of the suspension transportation problem is carried
out on the basis of explicit regularized difference schemes. The discrete
model is constructed by means of including additional term according
to idea of B. Chetverushkin – a discrete analogue of a second-order dif-
ference derivative with a small factor has been inserted in right side
diffusion-advection equation. The value of the small factor determined
on the basis of physical considerations and stability conditions. Com-
pared with traditional parallel algorithms oriented to the use of implicit
schemes, the use of explicit regularized algorithms allows to reduce the
time of numerical solution of problems on a multi-core computing system
with distributed memory containing 2048 cores and a peak performance
of 18 Tflops in 12–80 times. The program package constructed by the
authors for parallel realization given models has practical significance: it
will allow to improve the accuracy of the real-time forecast and the valid-
ity of the engineering solutions taken for coastal infrastructure projects.

Keywords: Coastal zone · Mathematical model · Nonlinear task
Linearized task · Difference scheme

This paper was partially supported by the grant No. 17-11-01286 of the Russian
Science Foundation.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 306–321, 2018.
https://doi.org/10.1007/978-3-319-99673-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_22&domain=pdf

Parallel Solution of Sediment and Suspension Transportation Problems 307

1 Introduction

Transportation of sediment, siltation and deformation of the bottom in coastal
and shallow water systems in the South of Russia significantly effect the safety of
navigation, the conditions for the reproduction of marine bioresources in shallow
water reservoirs, changes in recreational zones, etc. The creation and application
of precision models of these processes with predictive accuracy is an actual prob-
lem of mathematical modeling of water systems, since it allows predicting both
the results of anthropogenic impact associated with the construction and recon-
struction of coastal infrastructure in the South of Russia, and the consequences
of the evolution of weather and climate phenomena – an increase frequency and
intensity of storms, precipitation of extreme precipitation, etc. [1–3]. In connec-
tion with the foregoing, it is topical to create a set of predictive interrelated
models of sediment transport, suspension and deformation of the bottom, meth-
ods for their numerical implementation, allowing in the operational mode to
perform predictive modeling of these phenomena [4,5]. Existing models of sedi-
ment transport in the coastal zone do not have the necessary predictive accuracy
and do not fully take into account the spatial-three-dimensional nature of the
water movement and the complex form of the shoreline [6,7].

A complex of proposed transport models for multicomponent bottom sedi-
ment and suspensions (weighed particles) is taking into account:

– turbulent 3D motion of water medium;
– complicated form of coast line;
– real shape of water basin bottom, in particular, presence of relatively deep

and narrow ship canals;
– presence of several types- components of particles- in suspension flow as well

as in bottom sediment with different sizes and hydrophysical characteristics.

The method of full parallel algorithm constructing is based on idea of B.N.
Chetverushkin of explicit schemes regularization [8]. The second order time
derivatives with small multipliers have been included in left side of transport
equations. It allows to improve (to raise) the acceptable time step - O(h2) to the
value - O(h3/2), where h - is norm of step spacing.

The proposed schemes allow efficient implementation on high-performance
computing systems, which in turn will allow improving the accuracy of the oper-
ational forecast and the validity of the engineering decisions taken when creating
coastal infrastructure objects.

2 Complex of Mathematical Models

The set of interrelated mathematical models is used to describe the hydrody-
namic processes of the coastal zone, including models for the transport of sus-
pensions, sediments, water movement and turbulence.

308 A. I. Sukhinov et al.

2.1 Continuous 3D Model of Diffusion-Convection-Aggregation of
Suspensions

Let us consider a continuous mathematical model for the propagation of suspen-
sions of various types in an aqueous medium, taking into account the diffusion
and convection of suspensions, the action on the suspension of gravity, the mutual
transformation of particles of various types, the presence of a bottom and a free
surface.

We will use a rectangular Cartesian coordinate system Oxy, where the axis
Ox passes over the surface of the unperturbed water surface and is directed
towards the sea. Let h = H + η – total depth of the water area, [m]; H – depth
at the unperturbed surface of the reservoir, [m]; η – elevation of the free surface
relative to the geoid (sea level), [m] (Fig. 1).

z = H(x, y)

z

y

x
O

xη

Fig. 1. Introduction of the coordinate system.

In the model, we move from the z-coordinate system to the θ-coordinate
system for which we use the Descartes coordinate system in the horizontal plane,
and as a vertical coordinate a dimensionless variable θ, θ ∈ [0; 1].

In the θ-coordinate system, the water column is divided into the same number
of layers at each point, regardless of depth, so when we use the ‘new’ coordinate
system, some problems associated with adding and subtracting layers are solved
[9,10].

When we go to the θ-coordinate system, we use formula:

θ = a − (a − b)(z − η)
h

, xθ = x, yθ = y, (1)

where θ = a = 0 on the free surface of the reservoir (upper boundary), θ = b = 1
at the bottom (Fig. 2).

Next, instead of expressions (1), we use

θ =
z − η

h
, xθ = x, yθ = y. (2)

Parallel Solution of Sediment and Suspension Transportation Problems 309

θ = a = 0

z = 0

h

η

θ = b = 1

Fig. 2. The θ-coordinate system.

Suppose that there are R types of particles in the water volume V = {0 ≤ x ≤
Lx, 0 ≤ y ≤ Ly, 0 ≤ θ ≤ 1}, which at the point (x, y, θ) and at the time t have
a concentration cr = cr(x, y, θ, t), [mg/l]; t – time variable, [sec]; r = 1, 2, . . . , R
(Fig. 3).

Fig. 3. Scheme of transformation of particles of different types.

The system of equations describing the behavior of particles will look like
this:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cr

∂t
+

∂(ucr)
∂x

+
∂(vcr)

∂y
+

a − b

h

∂((w + wg,r)cr)
∂θ

=

= μ

(
∂2cr

∂x2
+

∂2cr

∂y2

)

+
(

a − b

h

)2
∂

∂θ

(

ν
∂cr

∂θ

)

+ Fr,

F1 = (α2c2 − β1c1) + Φ1(x, y, θ, t),
. . .
Fr = (βr−1cr−1 − αrcr) + (αr+1cr+1 − βrcr) + Φr(x, y, θ, t),
. . .
FR = (βR−1cR−1 − αRcR) + ΦR(x, y, θ, t), r = 2, . . . , R − 1,

(3)

where u, v, w – the components of the velocity vector U of the fluid, [m/sec];
wg,r – the hydraulic size or the rate of deposition of particles of the r-th type,
[m/sec]; μ, η – the coefficients of horizontal and vertical diffusion of particles of
the r-th type, [m2/sec]; αr, βr – particle conversion rates of the r-th type into
(r − 1)-th and (r + 1)-th type, αr ≥ 0, βr ≥ 0 [m/sec]; Φr – power of sources of
particles of the r-th type, [mg/l sec].

310 A. I. Sukhinov et al.

The terms on the left side (apart from the time derivative) of the first equa-
tion of system (3) describe the convection of particles: their transport under the
action of fluid flow and gravity. The terms on the right-hand side describe the
diffusion of suspensions and their transformation from one type to another. The
vertical diffusion coefficient is chosen to be different from the horizontal diffusion
coefficient due to the fact that the effect of the difference in these coefficients is
often observed in different media and can be caused by various factors.

Suppose that D is the domain, where the process takes place, and S – its
boundary, which is a piecewise smooth line. The domain of setting the system
(3) is the cylinder CT = D × (0, T) heights T with base D(x, y) = {0 < x <
Lx, 0 < y < Ly}. Its boundary consists of a lateral surface S × [0, T] and two
bases: the lower D̄ × {0} – bottom and top D̄ × {T} – the unperturbed surface
of water (Fig. 4).

Fig. 4. The area of solution of the problem of transportation of suspended matter.

Add to the system (3) the initial and boundary conditions (assuming that
the deposition of particles on the bottom is irreversible):

– initial conditions at time t = 0

c1(x, y, θ, 0) ≡ c10(x, y, θ), . . . , cr(x, y, θ, 0) ≡ cr0(x, y, θ), . . . ,
cR(x, y, θ, 0) ≡ cR0(x, y, θ), r = 2, . . . , R − 1; (4)

– boundary conditions on the cylindrical (lateral) boundary of the region S
cylinder CT

∂c1

∂n
= · · · =

∂cr

∂n
= · · · =

∂cR

∂n
= 0, if (U Γ,n) ≤ 0, (5)

∂c1

∂n
= −uΓ

μ
c1, . . . ,

∂cr

∂n
= −uΓ

μ
cr, . . . ,

∂cR

∂n
= −uΓ

μ
cR, if (U Γ ,n) ≥ 0,

(6)

Parallel Solution of Sediment and Suspension Transportation Problems 311

where n – the outer normal to the boundary of the domain S, U Γ – the veloc-
ity vector of the fluid at the boundary S, uΓ – the velocity vector projection
U Γ on the direction of the normal n on the border of the region S;

– boundary conditions on the water surface

∂c1

∂θ
= · · · =

∂cr

∂θ
= · · · =

∂cR

∂θ
= 0; (7)

– boundary conditions at the bottom [11]

∂c1

∂n
= −wg,1

ν
c1, . . . ,

∂cr

∂n
= −wg,r

ν
cr, . . . ,

∂cR

∂n
= −wg,R

ν
cR. (8)

2.2 Nonlinear 2D Model of Sediment Transport

For simplicity, we assume that in the equation of transport of sediment transport,
the axes Ox, Oy are consistent with the directions of the coordinate axes of the
models of the hydrodynamic block, in which the components of the velocity
vector of the water medium and the coefficient of turbulent exchange along the
vertical direction are calculated. Further, for simplicity, the case is considered
when the normal to the shoreline is directed to the north, coinciding with the
axis Ox; the axis Oy is directed to the east.

The reformation of the coastal zone of the water areas due to the movement
of water and solid particles will be described for the case when the sediment par-
ticles move in one direction (the side of the shore). In the work, the assumption
is made that the sediments move only in one direction – the resultant trans-
fer. The motion of the particles in the direction opposite to the direction of the
resulting transfer will be neglected.

Let the sediments that participate in sediment transport consist Q of frac-
tions, each of which has a relative fraction Vq in the total volume and density
ρq, q = 1, 2, . . . , Q.

The equation of sediment transport, which generalizes the known equation
(see [12–14]) and takes into account the complex granulometric composition of
the bottom material, will be written in the form

(1 − ε̄)
∂H

∂t
+ div

(
Q∑

q=1

Vqkqτb

)

= div

(
Q∑

q=1

Vqkq
τbc,q

sinϕ0
grad H

)

+

+
R∑

r=1

wg,r

ρ∗
r

cr,

(9)

where ε̄ =
∑Q

q=1 Vqεq – the averaged over fractions porosity of bottom materials;
εq – porosity of q-type sediment fraction; τb – the vector of tangential stress sat
the water bottom; τbc,q – the critical value of the tangential stress for the q-th
fraction; τbc,q = aq sin ϕ0, ϕ0 – an angle of repose of soil in the water; ρ∗

r – density
of particles of suspended matter of the r-th type, which move in accordance with
Eq. (3); kq = kq(H,x, y, t) – the nonlinear coefficient, determined by the relation:

312 A. I. Sukhinov et al.

kq ≡ Aω̄dq

((ρq − ρ0)gdq)β

∣
∣
∣
∣τb − τbc,q

sinϕ0
grad H

∣
∣
∣
∣

β−1

, (10)

(ρq, dq – density and characteristic particle size of the q-th fraction, respectively;
ρ0 – density of the aquatic environment; g – the gravity acceleration; ω̄ – the
averaged wave frequency; A and β – dimensionless constants).

As with the equation of transport of suspensions, the region of specifying
Eq. (9) is the cylinder CT = D × (0, T), D(x, y) = {0 < x < Lx, 0 < y < Ly}.

We supplement Eq. (9) by the initial condition assuming that the function of
the initial conditions belongs to the corresponding class of smoothness:

H(x, y, 0) = H0(x, y). (11)

Let us formulate the conditions on the boundary of the region, starting from
physical considerations:

|τb|
∣
∣
y=0

= 0, (12)

H(Lx, y, t) = H2(y, t), 0 ≤ y ≤ Ly, (13)

H(0, y, t) = H1(y, t), 0 ≤ y ≤ Ly, (14)

H(x, 0, t) = H3(x), 0 ≤ x ≤ Lx, (15)

H(x,L′
y, t) = H4(x, t), 0 ≤ x ≤ Lx, L′

y < Ly. (16)

We assume that there is always a layer of liquid of finite thickness in the
considered region and for the indicated time interval there is no dehydration of
the region, that is

H(x, y, t) ≥ C ≡ const > 0, 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ t ≤ T. (17)

The mathematical models of the transport of suspensions and sediments
described above are also supplemented by models of the motion of the aquatic
environment and turbulence, the equations of which are solved in the hydrody-
namic block by the method of correction to pressure.

3 Linearization of 2D Sediment Transport Model

We construct a uniform grid ωt in increments of τ (i.e. the set of points ωt =
{tn = nτ, n = 0, 1, . . . , N, Nτ = T}) and we realize the linearization of the
initial-boundary value problem (9)–(17) [15–17] to create a linearized model on
the time interval 0 ≤ t ≤ T .

We linearize the term div
(∑Q

q=1 Vqkqτb

)
and the coefficient kq by choos-

ing their values at the time t = tn, n = 0, 1, . . . , N and considering Eq. (9) in
the time interval tn−1 < t ≤ tn, n = 1, 2, . . . , N . It is assumed that we know
the function H(n)(x, y, tn−1) ≡ H(n−1)(x, y, tn−1) and its partial derivatives at
spatial variables.

Parallel Solution of Sediment and Suspension Transportation Problems 313

In the case, if n = 1, it is enough to take the function with the initial con-
ditions H(1)(x, y, t0), i.e. H(1)(x, y, t0) ≡ H0(x, y). If n = 2, . . . , N , the function
H(n)(x, y, tn−1) = H(n−1)(x, y, tn−1) is assumed to be known, since it is assumed
that the problem (9)–(17) for the previous time interval tn−2 < t ≤ tn−1 is
solved.

We introduced the notation:

(kq)n−1 ≡ Aω̄dq

((ρq − ρ0)gdq)β

∣
∣
∣
∣τb − τbc,q

sinϕ0
Hn−1(x, y, tn−1)

∣
∣
∣
∣

β−1

, (18)

n = 1, 2, . . . , N , then we write Eq. (3) after linearization in the form:

(1 − ε̄)
∂Hn

∂t
+ div

(
Q∑

q=1

(Vqkq)n−1τb

)

= div

(
Q∑

q=1

(Vqkq)n−1 τbc,q

sin ϕ0
grad Hn

)

+

+
R∑

r=1

wg,r

ρ∗
r

cr, tn−1 < t ≤ tn, n = 1, . . . , N (19)

and with the initial conditions:

H1(x, y, t0) = H0(x, y), . . . , Hn(x, y, tn−1) = Hn−1(x, y, tn−1), . . . ,

HN (x, y, tN−1) = HN−1(x, y, tN−1), n = 2, . . . , N − 1. (20)

The equation component div
(∑Q

q=1(Vqkq)n−1τb

)
is a well-known function

of the right side at such linearization. The boundary conditions (11)–(17) are
expected to be completed for all time intervals tn−1 < t ≤ tn, n = 1, 2, . . . , N .

Note that the coefficients (Vqkq)n−1, n = 1, 2, . . . , N depend on the spatial
coordinates x, y and the time variable tn−1, n = 1, 2, . . . , N , that are defined
by the choice of the interval τ of the grid ωt i.e. (kq)n−1 = (kq)n−1(x, y, tn−1),
n = 1, 2, . . . , N .

Using the methods described in [18], an estimate is obtained guaranteeing the
continuous convergence of positive solutions H̃(x, y, t) linearized initial-boundary
value problem to the solution of the original nonlinear problem in the norm of
a Hilbert space L1(D) at τ → 0, Nτ = T

‖H̃(T) − H(T)‖L1(D) ≤ 1
2C(1 − τ)

τLxLyC∗T, (21)

where C∗ – constant, C∗ > 0.

4 Discretization of Models

4.1 Discretization of the Suspension Transport Model

The problem was solved on the basis of an explicit scheme. Advantages of the
explicit scheme are insignificant computational complexity for determining the

314 A. I. Sukhinov et al.

solution on the time layer, natural parallelism and relative simplicity of software
implementation on multiprocessor systems, greater physical proximity to the
simulated processes. To increase the stability margin of the explicit scheme, it
is proposed in [8] to use regularized schemes. For the construction of an explicit
regularized scheme according to the idea of B. Chetverushkin we supplement
the first equation of the system (3) by the term τ∗

2
∂2cr

∂t2 with the second time
derivative:

∂cr

∂t
+

τ∗

2
∂2cr

∂t2
+

∂(ucr)
∂x

+
∂(vcr)

∂y
+

a − b

h

∂((w + wg,r)cr)
∂θ

=

μ

(
∂2cr

∂x2
+

∂2cr

∂y2

)

+
(

a − b

h

)2
∂

∂θ

(

ν
∂cr

∂θ

)

+ Fr, (22)

where τ∗ ∼ τ/c – the regularization parameter, τ – the grid spacing, c – the
speed of sound in an aquatic environment.

Select an option τ∗ is determined by the need to ensure an acceptable step
in time when calculating the three-layer explicit scheme, as well as the proxim-
ity of the solutions of the newly obtained equation and the original equation.
Parameter τ∗ is determined on the basis of an estimate of the minimum time
for the movement of particles in a cell of a spatial grid from one boundary to
another. For example, for shallow coastal areas with a spatial mesh cell size
20m×20m×0.1m depending on the granulometric composition of suspensions,
this value is in the range 1–50 s.

For the numerical realization of the discrete mathematical model of the
hydrodynamic problem posed, a uniform grid is introduced:

ω̄ = ωt × ωx × ωy × ωθ,

ωt = {tn = nτ, n = 0, . . . , N, Nτ = T},

ωx = {xi = ihx, i = 0, . . . , Nx, Nxhx = Lx},

ωy = {yj = jhy, j = 0, . . . , Ny, Nyhy = Ly},

ωθ = {θk = khθ, k = 0, . . . , Nθ, Nθhθ = 1},

where τ – the time step, hx, hy, hθ – steps in space, N – the number of time
layers, T – the upper time limit, Nx, Ny, Nθ – the number of steps in space, Lx,
Ly – borders on space.

The condition for the stability of an explicit regularized scheme is τ ≤
O(‖h‖3/2), ‖h‖ =

√
h2

x + h2
y + h2

θ, where τ is the time step, which is a less strin-
gent requirement in comparison with the condition for explicit scheme, without
regularization term – τ ≤ O(‖h‖2).

On the basis of the balance method, Eq. (22) can be approximated, with the
discrete analogue of the regularized equation for calculating the transport of a
suspension takes the form [10]:

(cr)n+1
i,j,k − (cr)n

i,j,k

τ
+

τ∗

2
(cr)n+1

i,j,k − 2(cr)n
i,j,k + (cr)n−1

i,j,k

τ2

Parallel Solution of Sediment and Suspension Transportation Problems 315

+
(ucr)n

i+1/2,j,k − (ucr)n
i,j,k

hx
+

(ucr)n
i,j,k − (ucr)n

i−1/2,j,k

hx

+
(vcr)n

i,j+1/2,k − (vcr)n
i,j,k

hy
+

(vcr)n
i,j,k − (vcr)n

i,j−1/2,k

hy

+
a − b

h

((w + wg,r)cr)n
i,j,k+1/2 − ((w + wg,r)cr)n

i,j,k

hθ

+
a − b

h

((w + wg,r)cr)n
i,j,k − ((w + wg,r)cr)n

i,j,k−1/2

hθ

= μ

((cr)n
i+1,j,k − (cr)n

i,j,k

h2
x

− (cr)n
i,j,k − (cr)n

i−1,j,k

h2
x

)

+μ

((cr)n
i,j+1,k − (cr)n

i,j,k

h2
y

− (cr)n
i,j,k − (cr)n

i,j−1,k

h2
y

)

+
(

a − b

h

)2

νi,j,k+1/2

(cr)n
i,j,k+1 − (cr)n

i,j,k

h2
θ

−
(

a − b

h

)2

νi,j,k−1/2

(cr)n
i,j,k − (cr)n

i,j,k−1

h2
θ

+ (Fr)n
i,j,k. (23)

To calculate the components of the velocity vector of the aquatic environ-
ment, a three-dimensional model of hydrodynamic flow around the bottom relief
is used, taking into account the bottom friction and the level rise.

For an unregularized analogue of the scheme (23), there are restrictions on
space steps

uhx

μ
≤ 2,

vhy

μ
≤ 2,

whθ

μ
≤ 2

and the time step limitation τ ≤
(

μ

h2
x

+
μ

h2
y

+
μ

h2
θ

)−1

.

4.2 Discretization of Sediment Transport Model

To construct an explicit scheme, we perform the regularization of Eq. (19):

(1 − ε̄)
∂Hn

∂t
+

τ∗∗

2
∂2Hn

∂t2
+ div

(
Q∑

q=1

(Vqkq)n−1τb

)

=

= div

(
Q∑

q=1

(Vqkq)n−1 τbc,q

sinϕ0
grad Hn

)

+
R∑

r=1

wg,r

ρ∗
r

cr, (24)

tn−1 < t ≤ tn, n = 1, . . . , N.

316 A. I. Sukhinov et al.

where τ∗∗ – the small factor introduced in the same way as the formulation of
the suspension transport problem. The value of τ∗∗ has been determined on the
basis of evaluation of the time for the movement of particles within the cell of
the spatial grid.

We construct a finite-difference scheme that approximates Eq. (24) using the
computational grid ω, considering that the grid is in time ωt – previously defined
(see point 3), and the region D, as in the case of discretization of the suspension
transport model, we cover with a uniform rectangular grid in increments hx, hy

on spatial directions Ox, Oy respectively:

ω = ωt × ωx × ωy.

Using the balance method, we obtain a difference scheme that approximates
the regularized continuous problem of sediment transport:

(1 − ε̄)
Hn+1

i,j − Hn
i,j

τ
+

τ∗∗

2
Hn+1

i,j − 2Hn
i,j + Hn−1

i,j

τ2

+
Q∑

q=1

((Vqkqτb,x)n
i+1/2,j − (Vqkqτb,x)n

i−1/2,j

hx

+
(Vqkqτb,y)n

i,j+1/2 − (Vqkqτb,y)n
i,j−1/2

hy

)

=
τbc,q

sin ϕ0

Q∑

q=1

(

(Vqkq)n
i+1/2,j

Hn
i+1,j − Hn

i,j

h2
x

− (Vqkq)n
i−1/2,j

Hn
i,j − Hn

i−1,j

h2
x

)

+
τbc,q

sinϕ0

Q∑

q=1

(

(Vqkq)n
i,j+1/2

Hn
i,j+1 − Hn

i,j

h2
y

− (Vqkq)n
i,j−1/2

Hn
i,j − Hn

i,j−1

h2
y

)

+
R∑

r=1

wn
g,r

(ρ∗
r)n

cn
r , (25)

where

(Vqkqτb,x)n
i+1/2,j =

(Vqkqτb,x)n
i+1,j + (Vqkqτb,x)n

i,j

2
,

(Vqkqτb,y)n
i,j+1/2 =

(Vqkqτb,y)n
i,j+1 + (Vqkqτb,y)n

i,j

2
,

(kq)n
i+1/2,j =

Aω̄dq

∣
∣
∣(τb)n

i+1/2,j − τbc,q

sin ϕ0
(gradH)n

i+1/2,j

∣
∣
∣

((ρq − ρ0)gdq)β
.

Values grad H
∣
∣n
i+1/2,j

, gradH
∣
∣n
i,j+1/2

will be written in the form

(gradH)n
i+1/2,j =

Hi+1,j − Hi,j

hx
i +

Hi+1/2,j+1 − Hi+1/2,j−1

2hy
j ,

Parallel Solution of Sediment and Suspension Transportation Problems 317

(gradH)n
i,j+1/2 =

Hi+1,j+1/2 − Hi−1,j+1/2

2hx
i +

Hi,j+1 − Hi,j

hy
j ,

The approximation of the boundary conditions for brevity of the exposition
is not reducible.

The estimation, which guarantees implicit difference scheme stability in mesh
space ch,τ may be presented in the form:

‖Hn‖ch,τ
≤ ‖H0‖ch

+ max
(
‖H1‖ch,τ

, ‖H2‖ch,τ
, ‖H3‖ch,τ

)
+

(1 − ε̄)

(
n∑

m=0

Q∑

q=1

(∥
∥
∥(Vqkq(tm)τb,x)m

0
x

∥
∥
∥

ch,τ

+
∥
∥
∥(Vqkq(tm)τb,y)m

0
y

∥
∥
∥

ch,τ

)

+ (26)

max
r

‖wn
g,r‖

min
r

(ρ∗
r)n

R∑

r=1

‖cn
r ‖ch,τ

)

.

It is found that the approximation error of the discrete sediment transport
model is a quantity of order O(τ + h2

x + h2
y).

We note that in the numerical realization of the coupled model of suspension-
sediment transport the value of permissible time step is less than minimum
among regularizing factors τ∗, τ∗∗ for explicit schemes (23) and (25).

5 Estimation of Computational Complexity Suspension
Transport Model Realization on a Multiprocessor
Computer System

Since in the numerical solution of the problems of sediment transport and trans-
port of suspended particles, the latter is the main difficulty, its consideration
will be presented in the framework of this paper.

Computational complexity algorithm Qneiavn for the suspension transport
problem numerical realization on the basis implicit scheme is estimated:

Qneiavn = nτn(ε)NxNyqPTM,

where qPTM – the number of arithmetic operations for one iteration MATM
(modified alternating-triangular method) (qPTM ∼ 50); n(ε) = O(Nmax) –
the number of iterations; Nmax – the number of nodes in space; Nmax =
max{Nx, Ny}, Nx, Ny – the number of steps along the coordinate axes Ox, Oy

respectively; nτn = T/τn – the number of time layers for the implicit scheme, T
– calculated time interval, τn – the time step for an implicit scheme.

For an explicit scheme such an estimate has the form:

Qiavn = nτn(ε)NxNyqiavn,

318 A. I. Sukhinov et al.

where qiavn – the number of operations for the transition to the next time layer
by an explicit regularized scheme (qiavn ∼ 14); nτn = T/τn – the number of time
layers for an explicit scheme, τr – the time step for an explicit scheme.

Numerical experiments have been fulfilled for grids kNx × kNy × Nz, Nx =
122, Ny = 102, Nz = 13, where k = 1, 2, 4. Table 1 shows the values of the time
steps. The accuracy of the calculations is about one percent of the solution for
explicit regularized and implicit schemes for the different number of nodes of
grids.

Table 1. The values of steps for a temporary variable for explicit and implicit schemes.

Grid size Explicit scheme

101 × 101 × 11 201 × 201 × 11 401 × 401 × 11

Step by time 0.072 0.036 0.025

Grid size Implicit scheme

101 × 101 × 11 201 × 201 × 11 401 × 401 × 11

Step by time 0.2 0.1 0.075

Based on the results of numerical experiments, the following estimate is
obtained, showing the time gain for the explicit scheme with respect to the
implicit scheme, in the case of grid sizes with 101 × 101 × 11 (the number of
iterations 8): Qneiavn/Qiavn ≈ 10.286, and in the case of grid sizes 201×201×11
(the number of iterations 10): Qneiavn/Qiavn ≈ 12.857, in the case of mesh sizes
401 × 401 × 11 (the number of iterations 12): Qneiavn/Qiavn ≈ 14.286.

Table 2 shows the times for executing the transitions between layers for an
explicit scheme and the execution of one iteration by an implicit scheme, as
well as the values of the acceleration and efficiency of parallel algorithms. The
calculated grid consisted of 101×101×11 knots. From the numerical estimates of
the ratio of the times for solving the model problem to the explicit and implicit
schemes, it can be concluded that when the size of the computational grid is
increased, the gain in the calculation time of the explicit scheme only increases.

Table 2. Comparison of parallel algorithms based on explicit and implicit schemes.

Number of calculators 1 2 4 8 16 32 64

Explicit scheme Time, sec 0.00271 0.00074 0.00052 0.00029 0.00025 0.00060 0.00125

Acceleration 1 3.662 5.212 9.345 10.84 4.517 2.168

Efficiency 1 1.831 1.303 1.168 0.677 0.141 0.034

Implicit schema Time, sec 0.01183 0.00446 0.00232 0.00179 0.00231 0.00365 0.00642

Acceleration 1 2.652 5.099 6.609 5.121 3.241 1.843

Efficiency 1 1.326 1.275 0.826 0.32 0.101 0.029

The time gain for an explicit scheme 10.286 14.201 10.513 14.544 21.772 14.334 12.102

Parallel Solution of Sediment and Suspension Transportation Problems 319

Table 2 shows the times of execution for one time step for explicit scheme and
one iteration for implicit schemes as well as the values of the acceleration and
efficiency of parallel algorithms. The calculated grid consisted of 101 × 101 × 11
knots. From the numerical estimates of the ratio of the times for solving the
model problem to the explicit and implicit schemes, it can be concluded that
when the size of the computational grid is increased, the gain in the calculation
time of the explicit scheme only increases.

When solving a problem on a grid containing 101 × 101 × 11 knots, the
maximum acceleration for an explicit scheme was achieved on 16 cores and equal
to 10.84. For the implicit scheme, the maximum acceleration, equal to 6.609, was
achieved on 8 cores. Thus, the gain in time for the explicit scheme in relation
to the implicit scheme was 16.871 times. Table 3 shows the times for executing
the transitions between layers for the explicit scheme and the execution of one
iteration by an implicit scheme on the computational grid 5001 × 5001 × 101
nodes. In this case, the gain of the explicit scheme in time on 512 cores of the
supercomputer system was 71.547 times.

Table 3. Time of execution of time steps by an explicit scheme and one iteration by
an implicit scheme and values Acceleration and efficiency of parallel algorithms.

Number of calculators 1 2 4 8 16 32 64 128 256 512

Explicit scheme Time, sec 163 82 53 18 14 7.8 4.4 1.7 0.987 0.715

Acceleration 1 1.98 3.06 8.68 11.5 20.93 37.1 96.05 165.434 228.36

Efficiency 1 0.99 0.76 1.08 0.72 0.654 0.58 0.75 0.646 0.446

Implicit schema Time, sec 370 188 127 48.9 47.2 31.8 18.2 7.6 6.318 5.8805

Acceleration 1 1.967 2.924 7.555 7.837 11.61 20.29 48.33 58.563 62.921

Efficiency 1 0.984 0.731 0.944 0.49 0.363 0.317 0.378 0.229 0.123

The time gain for an explicit scheme 19.74 19.94 20.76 23.63 29.33 35.47 36.38 38.89 55.691 71.547

6 Conclusion

The complex of coupled multicomponent mathematical models have been pre-
sented for sediment bottom material and suspended particles transport in coastal
systems. In these model many types of particles with different densities and
medium sizes have been included. These models are satisfying the basic conser-
vation laws, including mass conservation law. For the indicated mathematical
models, the formulation of the initial and boundary conditions is described.
Conservative stable difference schemes are constructed and investigated. Par-
allel algorithms, based on implicit and regularizes explicit schemes have been
presented. A comparative analysis of the efficiency of the use of implicit and
explicit regularized difference schemes in the numerical implementation of the
problems under consideration is given. It is shown that the use of explicit regu-
larized schemes leads to significant time savings (more than 10 times), compared
to previously used algorithms based on implicit schemes.

320 A. I. Sukhinov et al.

References

1. Sukhinov, A.A., Sukhinov, A.I.: 3D model of diffusion-advection-aggregation sus-
pensions in water basins and its parallel realization. In: Parallel Computational
Fluid Dynamics, Multidisciplinary Applications, Proceedings of Parallel CFD 2004
Conference, Las Palmas de Gran Canaria, Spain, pp. 223–230. Elsevier, Amster-
dam (2005). https://doi.org/10.1016/B978-044452024-1/50029-4

2. Sukhinov, A.I., Sukhinov, A.A.: Reconstruction of 2001 ecological disaster in the
Azov sea on the basis of precise hydrophysics models. In: Parallel Computational
Fluid Dynamics, Multidisciplinary Applications, Proceedings of Parallel CFD 2004
Conference, Las Palmas de Gran Canaria, Spain, pp. 231–238. Elsevier, Amsterdam
(2005). https://doi.org/10.1016/B978-044452024-1/50030-0

3. Alekseenko, E., Roux, B., Sukhinov, A., Kotarba, R., Fougere, D.: Coastal hydro-
dynamics in a windy lagoon. J. Comput. Fluids 77, 24–35 (2013). https://doi.org/
10.1016/j.compfluid.2013.02.003

4. Alekseenko, E., Roux, B., Sukhinov, A., Kotarba, R., Fougere, D.: Nonlinear hydro-
dynamics in a mediterranean lagoon. J. Nonlinear Process. Geophys. 20(2), 189–
198 (2013). https://doi.org/10.5194/npg-20-189-2013

5. Sukhinov, A.I., Chistyakov, A.E., Alekseenko, E.V.: Numerical realization of the
three-dimensional model of hydrodynamics for shallow water basins on a high-
performance system. J. Math. Models Comput. Simul. 3(5), 562–574 (2011). (in
Russian)

6. Leontyev, I.O.: Coastal Dynamics: Waves, Moving Streams. Deposits Drifts,
GEOS, San Moscow (2001). (in Russian)

7. Liu, X., Qi, S., Huang, Y., Chen, Y., Pengfei, D.: Predictive modeling in sediment
transportation across multiple spatial scales in the Jialing River Basin of China.
Int. J. Sediment Res. 30(3), 250–255 (2015)

8. Chetverushkin, B.N.: Resolution limits of continuous media models and their math-
ematical formulations. J. Math. Models Comput. Simul. 5(3), 266–279 (2013). (in
Russian)

9. Sukhinov, A.I.: Precise fluid dynamics models and their application in predic-
tion and reconstruction of extreme events in the sea of Azov. J. Izv. Taganrog.
Radiotech. Univ. 3, 228–235 (2006). (in Russian)

10. Sukhinov, A.I., Protsenko, E.A., Chistyakov, A.E., Shreter, S.A.: Comparison of
numerical efficiency of explicit and implicit schemes as applied to sediment trans-
port in coastal systems. J. Vychisl. Metody Program. Novye Vychisl. Tekhnol.
16(3), 328–338 (2015). (in Russian)

11. Marchuk, G.I.: Numerical Solution of the Problems of Atmosphere and Ocean
Dynamics. Gidrometeoizdat, Leningrad (1974). (in Russian)

12. Sukhinov, A.I., Chistyakov, A.E., Protsenko, E.A.: Mathematical modeling of sed-
iment transport in the coastal zone of shallow reservoirs. J. Math. Models Comput.
Simul. 6(4), 351–363 (2014). (in Russian)

13. Sukhinov, A.I., Chistyakov, A.E., Protsenko, E.A.: Sediment transport mathemat-
ical modeling in a coastal zone using multiprocessor computing systems. J. Num.
Methods Program. 15(4), 610–620 (2014). (in Russian)

14. Sidoryakina, V.V., Sukhinov, A.I.: Well-posedness analysis and numerical imple-
mentation of a linearized two-dimensional bottom sediment transport problem.
J. Comput. Math. Math. Phys. 57(6), 978–994 (2017). https://doi.org/10.7868/
S0044466917060138

https://doi.org/10.1016/B978-044452024-1/50029-4
https://doi.org/10.1016/B978-044452024-1/50030-0
https://doi.org/10.1016/j.compfluid.2013.02.003
https://doi.org/10.1016/j.compfluid.2013.02.003
https://doi.org/10.5194/npg-20-189-2013
https://doi.org/10.7868/S0044466917060138
https://doi.org/10.7868/S0044466917060138

Parallel Solution of Sediment and Suspension Transportation Problems 321

15. Sukhinov, A.I., Sidoryakina, V.V., Sukhinov, A.A.: Sufficient conditions for con-
vergence of positive solutions to linearized two-dimensional sediment transport
problem. J. Vestnik Don State Tech. Univ. 1(88), 5–17 (2017). (in Russian)

16. Sukhinov, A., Chistyakov, A., Sidoryakina, V.: Investigation of nonlinear 2D
bottom transportation dynamics in coastal zone on optimal curvilinear bound-
ary adaptive grids. In: MATEC Web of Conference XIII International Scientific-
Technical Conference ‘Dynamic of Technical Systems’ (DTS 2017), Rostov-on-Don,
vol. 132 (2017). https://doi.org/10.1051/matecconf/201713204003

17. Sukhinov, A.I., Sidoryakina, V.V., Sukhinov, A.A.: Sufficient convergence condi-
tions for positive solutions of linearized two-dimensional sediment transport prob-
lem. J. Comput. Math. Inf. Tech. 1(1), 21–35 (2017). (in Russian)

18. Sukhinov, A.I., Sidoryakina, V.V.: On the convergence of solutions of linearized
on a time grid sequence problem to the solution of nonlinear problems of sediment
transport. J. Math. Models. 29(11), 19–39 (2017). (in Russian)

19. Samarskiy, A.A., Gulin, A.V.: Numerical Methods. Nauka, Moscow (1989). (in
Russian)

20. Samarskiy, A.A.: Theory of Difference Schemes. Nauka, Moscow (1989). (in Rus-
sian)

https://doi.org/10.1051/matecconf/201713204003

Three-Dimensional Mathematical Model
of Wave Propagation Towards the Shore

Alexander Sukhinov, Alexander Chistyakov, and Sophia Protsenko(B)

Don State Technical University, Rostov-on-Don, Russia
sukhinov@gmail.com, cheese 05@mail.ru, rab55555@rambler.ru

Abstract. To describe wave processes, we use here a system of Navier–
Stokes equations containing three equations of motion in regions with
dynamically varying geometry of the computational domain. The pres-
sure correction method was used to approximate the hydrodynamic
model difference schemes that describe the mathematical model of wave
propagation towards the shore. This model was constructed on the basis
of an integro-interpolation method using a scheme with weights. An
adaptive alternating-triangular iterative method was used to solve the
system of equations. The practical significance of the numerical algo-
rithms and the complex of programs implementing them is determined
by the possibility of application in the study of hydrophysical processes
in coastal water systems, as well as in the construction of the velocity
and pressure fields of the aquatic environment. They also make it possi-
ble to assess the hydrodynamic effect on shore protection structures and
coastal structures in the presence of surface waves.

Keywords: Coastal structures · Surface gravitational waves
Mathematical model of wave propagation towards the shore
Three-dimensional wave processes · Sediment transport

1 Introduction

The study of hydrodynamic processes of coastal waters is connected with the
investigation of the influence of wave processes generated either in the open sea
or in the coastal zone of reservoirs. The movement of waves can exert negative
effects on the behavior of the coastal zone, i.e. transformation of the bottom sur-
face resulting from the rise of bottom sediments, abrasion (i.e. the destruction
process of the banks of various water systems by waves and surf). The result of
the interaction of waves with the bottom surface and the coastal slope consists
of refraction, diffraction and changes in wave structure. The most significant fac-
tors are fluctuations in water surface level, wind phenomena, currents, transport
of bottom materials, and deformation of the coastal slope. A characteristic fea-
ture of coastal waters is the significant influence of the bottom surface on wave
processes, which makes it difficult to study tidal phenomena in coastal regions
of seas and river mouths. The influence of wave processes on the coastal zone
c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 322–335, 2018.
https://doi.org/10.1007/978-3-319-99673-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_23&domain=pdf

Three-Dimensional Mathematical Model of Wave Propagation 323

can be ambivalent: wave processes can have a significant effect on the accumu-
lation and abrasion of the coastal zone of the reservoir and directly on coastal
structures. We bring into focus the problem of practical application of computa-
tionally effective methods for simulation the hydrodynamic processes, making it
possible to obtain a fairly accurate approximate numerical solution. At present,
there is a need to construct a set of interrelated models of three-dimensional
wave processes intended for modeling wave processes.

2 Statement of the Problem of Wave Hydrodynamics

The initial equations of hydrodynamics of shallow water bodies are [1–3]:
— the equation of motion (Navier–Stokes):

u′
t + uu′

x + vu′
y + wu′

z = −1
ρ
p′

x + (μu′
x)

′

x +
(
μu′

y

)′

y
+ (νu′

z)
′

z ,

v′
t + uv′

x + vv′
y + wv′

z = −1
ρ
p′

y + (μv′
x)

′

x +
(
μv′

y

)′

y
+ (νv′

z)
′

z ,

w′
t + uw′

x + vw′
y + ww′

z = −1
ρ
p′

z + (μw′
x)

′

x +
(
μw′

y

)′

y
+ (νw′

z)
′

z + g;

(1)

— the equation of continuity in the case of variable density:

ρ
′
t + (ρu)

′

x + (ρv)
′

y + (ρw)
′

z = 0, (2)

where V = {u, v, w} are the components of the velocity vector, p is the pressure,
ρ is the density, μ, ν are the horizontal and vertical components of the coefficient
of turbulent exchange, g is the acceleration of gravity.

The system of Eqs. (1)–(2) is considered under the following boundary con-
ditions:

— at the entrance

u(x, y, z, t) = u(t), v(x, y, z, t) = v(t),
p′

n(x, y, z, t) = 0, V ′
n(x, y, z, t) = 0;

(3)

— lateral border (shore and bottom)

ρμ(u′)n(x, y, z, t) = −τx(t), ρμ(v′)n(x, y, z, t) = −τy(t),
Vn(x, y, z, t) = 0, p′

n(x, y, z, t) = 0;

— upper limit

ρμ(u′)n(x, y, z, t) = −τx(t),
ρμ(v′)n(x, y, z, t) = −τy(t),

w(x, y, t) = −ω − p′
t

ρg
, p′

n(x, y, t) = 0,

324 A. Sukhinov et al.

Fig. 1. The geometry of the computational domain

where ω is the evaporation rate of the liquid, τx, τy are the components of the
tangential stress [4,5]. The components of the tangential stress for the free sur-
face can be expressed as τx = ρaCp (|w|) wx |w|, τy = ρaCp (|w|) wy |w|, where
w is the vector of the wind speed relative to the water, ρa is the density of the

atmosphere, and Cp(x) =

{
0.0088, x < 6, 6 m/s;
0.0026, x ≥ 6, 6 m/s;

is a dimensionless coefficient.

Figure 1 shows the geometry of the computational domain. The components
of the tangential stress for the bottom, taking into account the notations intro-
duced, can be written as τx = ρvCp (|V |) u |V |, τy = ρvCp (|V |) v |V |, where ρv

is the density of bottom sediments.
The approximation considered below makes it possible to construct on the

basis of the measured velocity pulsations the coefficient of vertical turbulent
exchange, which is inhomogeneous with respect to depth [4]:

nu = C2
s Δ2 1

2

√(
∂U

∂z

)2

+
(

∂V

∂z

)2

, (4)

where U, V are time-averaged pulsations of the horizontal velocity components,
Δ is the characteristic scale of the grid, and Cs is a dimensionless empirical
constant whose value is usually determined by calculating the decay process of
homogeneous isotropic turbulence.

3 The Discrete Model of Hydrodynamics of Shallow
Water Reservoirs

The computational domain is inscribed in a parallelepiped. A uniform grid is
introduced for the numerical implementation of the discrete mathematical model
of the posed hydrodynamic problem:

w̄h =
{
tn = nτ, xi = ihx, yj = jhy, zk = khz;

n = 0 . . . Nt, i = 0 . . . Nx, j = 0 . . . Ny, k = 0 . . . Nz;

Ntτ = T, Nxhx = lx, Nyhy = ly, Nzhz = lz
}
,

Three-Dimensional Mathematical Model of Wave Propagation 325

where τ is the time step, hx, hy, hz are the space steps, Nt is the number of
time layers, T is the upper bound of the time coordinate, Nx, Ny, Nz are the
number of nodes for the spatial coordinates, lx, ly, lz are the boundaries along
the parallelepiped, respectively, in the direction of the axes Ox, Oy and Oz.

To solve the hydrodynamic problem, we used the pressure correction method.
In the case of a variable density, this method can be written as [7,11]:

ũ − u

τ
+ uū′

x + vū′
y + wū′

z =
(
μū′

x

)′

x
+

(
μū′

y

)′

y
+

(
νū′

z

)′

z
,

ṽ − v

τ
+ uv̄′

x + vv̄′
y + wv̄′

z =
(
μv̄′

x

)′

x
+

(
μv̄′

y

)′

y
+

(
νv̄′

z

)′

z
,

w̃ − w

τ
+ uw̄′

x + vw̄′
y + ww̄′

z =
(
μw̄′

x

)′

x
+

(
μw̄′

y

)′

y
+

(
νw̄′

z

)′

z
+ g,

p′′
xx + p′′

yy + p′′
zz =

ρ̂ − ρ

τ2
+

(ρ̂ũ)
′

x

τ
+

(ρ̂ṽ)
′

y

τ
+

(ρ̂w̃)
′

z

τ
,

û − ũ

τ
= −1

ρ
p̂′

x,
v̂ − ṽ

τ
= −1

ρ
p̂′

y,
ŵ − w̃

τ
= −1

ρ
p̂′

z,

(5)

where V = {u, v, w} are the components of the velocity vector, {û, v̂, ŵ},
{ũ, ṽ, w̃} are the components of the velocity vector fields in the “new” and
intermediate time layers, respectively, ū = (ũ + u) /2, ρ̂ and ρ is the density
distribution of the aqueous medium in the new and previous time layers, respec-
tively.

In the discrete mathematical models of hydrodynamics, we take into account
the “fullness” of the control cells, which makes it possible to increase the real
accuracy of the solution when the investigated region has a complex geometry,
by improving the approximation of the boundary.

Denote by oi, j,k the “fullness” of the cell (i, j, k) [8]. The degree of “fullness”
of a cell is determined by the pressure of the liquid column inside the cell. If
the average pressure at the nodes belonging to the cell vertices is greater than
the pressure of the liquid column inside the cell, then we say that the cell is full
(oi, j,k = 1). In the general case, the “fullness” of a cell can be calculated by the
following formula [7]:

oi,j,k =
Pi,j,k + Pi−1,j,k + Pi,j−1,k + Pi−1,j−1,k

4ρghz
, (6)

where P = p + ρgz is the pressure.
Let us introduce the coefficients q0, q1, q2, q3, q4, q5, and q6 to describe the

“fullness” of regions located in a vicinity of the cell (control areas). The value
characterizes the “fullness” of the region

q0 – D0: {x ∈ (xi−1, xi+1), y ∈ (yj−1, yj+1), z ∈ (zk−1, zk+1)},
q1 – D1: {x ∈ (xi, xi+1), y ∈ (yj−1, yj+1), z ∈ (zk−1, zk+1)},
q2 – D2: {x ∈ (xi−1, xi), y ∈ (yj−1, yj+1), z ∈ (zk−1, zk+1)},
q3 – D3: {x ∈ (xi−1, xi+1), y ∈ (yj , yj+1), z ∈ (zk−1, zk+1)},
q4 – D4: {x ∈ (xi−1, xi+1), y ∈ (yj−1, yj), z ∈ (zk−1, zk+1)},

326 A. Sukhinov et al.

q5 – D5: {x ∈ (xi−1, xi+1), y ∈ (yj−1, yj+1), z ∈ (zk, zk+1)},
q6 – D6: {x ∈ (xi−1, xi+1), y ∈ (yj−1, yj+1), z ∈ (zk−1, zk)}.
The filled parts of the regions Dm will be denoted by Ωm, where m = 0 . . . 6.

In accordance with this, the coefficients qm can be calculated from the formulas

(qm)i, j,k =
SΩm

SDm

,

(q0)i, j,k =
1
2

(
(q1)i, j,k + (q2)i, j,k

)
,

(q1)i, j,k =
oi+1, j,k + oi+1, j+1,k + oi+1, j,k+1 + oi+1, j+1,k+1

4
,

(q2)i, j,k =
oi, j,k + oi, j+1,k + oi, j,k+1 + oi, j+1,k+1

4
,

(q3)i, j,k =
oi+1, j+1,k + oi, j+1,k + oi+1, j+1,k+1 + oi, j+1,k+1

4
,

(q4)i, j,k =
oi, j,k + oi+1, j,k + oi, j,k+1 + oi+1, j,k+1

4
,

(q5)i, j,k =
oi, j,k+1 + oi+1, j,k+1 + oi+1, j+1,k+1 + oi, j+1,k+1

4
,

(q6)i, j,k =
oi, j,k + oi+1, j,k + oi+1, j+1,k + oi, j+1,k

4
.

In the case of boundary conditions of the third kind, c′
n(x, t) = αnc + βn,

the discrete analogs of the convective transfer operator uc′
x and the diffusion

transfer operator (μc′
x)

′

x, obtained with the help of the integro-interpolation
method taking into account the partial “fullness” of the cells, can be written as

uc′
x � (q1)i ui+1/2

ci+1 − ci
2hx

+ (q2)i ui−1/2
ci − ci−1

2hx
,

(
μc′

x

)′

x
� (q1)i μi+1/2

ci+1 − ci
h2
x

− (q2)i μi−1/2
ci − ci−1

h2
x

− ∣∣(q1)i − (q2)i
∣∣ μi

αxci + βx

hx
.

The approximations for the remaining coordinate directions can be similarly
expressed. The approximation error of the mathematical model is

O
(
τ + ‖h‖2

)
,

where ‖h‖ =
√

h2
x + h2

y + h2
z. The conservation of the flow at the discrete level

of the developed hydrodynamic model has been proved, as well as the absence
of nonconservative dissipative terms obtained as a result of the discretization of
the system of equations. A sufficient condition for the stability and monotony
of the developed model is determined on the basis of the maximum principle [6]
with constraints on the spatial coordinate steps:

hx < |2μ/u| , hy < |2μ/v| , hz < |2ν/w| , or Re ≤ 2N,

where Re = |V | · l/μ is the Reynolds numbers, l is the characteristic size of the
region, and N = max {Nx, Ny, Nz}.

The discrete analogs of the system of Eq. (5) are solved by an adaptive mod-
ified alternating-triangular method of variational type.

Three-Dimensional Mathematical Model of Wave Propagation 327

4 Method for Solving the Grid Equations

The resulting grid equations can be written in matrix form [13]:

Ax = f, (7)

where A is a linear positive-definite operator (A > 0). To find the solution of
problem (7), we will use an implicit iterative process:

B
xm+1 − xm

τm+1
+ Axm = f. (8)

In Eq. (8), m is the iteration number, τ > 0 is an iteration parameter, and B is an
invertible operator, which is called the preconditioner or stabilizer. The inversion
of the operator B in (8) should be substantially simpler than the direct inversion
of the original operator A in (7). To construct the operator B, we proceed from
the additive representation of the operator A0 which is the symmetric part of
the operator A:

A0 = R1 + R2, R1 = R∗
2, (9)

where A = A0 + A1, A0 = A∗
0, A1 = −A∗

1.
The preconditioner operator can be written as

B = (D + ωR1)D−1(D + ωR2), D = D∗ > 0, ω > 0, (10)

where D is a certain operator.
If the operators R1 and R2 are defined, and the methods for finding the

parameters τm+1, ω and the operator D are indicated, then relations (9)–(10)
define a modified alternate-triangular method (MATM) for the solution of the
problem.

Finally, the algorithm of the adaptive modified alternating-triangular method
of minimal corrections for calculating the grid equations with a non selfadjoint
operator has the form

B(ωm)wm = rm, rm = Axm − f, ω̃m =

√
(Dwm, wm)

(D−1R2wm, R2wm)
,

s2m = 1 − (A0w
m, wm)2

(B−1A0wm, A0wm) (Bwm, wm)
, km =

(
B−1A1w

m, A1w
m

)

(B−1A0wm, A0wm)
,

θm =
1 −

√
s2

mkm

(1+km)

1 + km (1 − s2m)
, τm+1 = θm

(A0w
m, wm)

(B−1A0wm, A0wm)
,

xm+1 = xm − τm+1w
m, ωm+1 = ω̃m,

(11)

where rm is the discrepancy vector, wm is the correction vector, and as operator
D, we take the diagonal part of the operator A.

328 A. Sukhinov et al.

5 Parallel Version of the Algorithm for Solving the Grid
Equations

Let us consider the parallel algorithm for calculating the correction vector [14]:

(D + ωmR1)D−1(D + ωmR2)wm = rm,

where R1 is a lower-triangular matrix, and R2 is an upper-triangular matrix. To
this end, we solve successively the systems

(D + ωmR1)ym = rm, (D + ωmR2)wm = Dym.

Fig. 2. Scheme of calculation of the vector ym

Firstly, we calculate the vector ym, starting the calculation in the lower left
corner. Then the calculation of the correction vector wm starts in the upper
right corner. Figure 2 shows the calculation of the vector ym.

Table 1 shows the results of the calculation of the acceleration and the effi-
ciency depending on the number of processors for the parallel variant of the
adaptive alternating-triangular method.

Table 1. Dependence of the acceleration and the efficiency on the number of processors.

Number of processors Time, sec. Acceleration Efficiency

1 7.490639 1 1

2 4.151767 1.804 0.902

4 2.549591 2.938 0.734

8 1.450203 5.165 0.646

16 0.882420 8.489 0.531

32 0.458085 16.351 0.511

64 0.265781 28.192 0.44

128 0.171535 43.668 0.341

Three-Dimensional Mathematical Model of Wave Propagation 329

As Table 1 shows, the algorithm of the alternating-triangular iterative
method and its parallel realization on the basis of a decomposition in two spa-
tial directions can be effectively applied to solve hydrodynamic problems for a
sufficiently large number of calculators (p ≤ 128).

6 Measurement of Parameters of Wave Processes on the
Basis of Full-Scale Observations

A full-scale experiment was conducted to measure various parameters of wave
propagation in shallow water. On the basis of experimental data, we obtained
the values of the spectrum of the water level-elevation function. To process the
results of full-scale measurements, a trigonometric interpolation polynomial was
used. The Fourier series coefficients are calculated according to the expression

Xk =
N−1∑

n=0

(
xne− 2πikn

N

)
,

where [xn] is a given sequence of numbers with a constant discretization step of
dimension N .

If a = Re x, b = Imx, then the trigonometric function passing through the
points {n, xn} can be written as

ξ(t) =
1
N

⎡

⎣a0 + aN/2 cos(πt) + 2
N/2−1∑

n=1

(
an cos

(
2πtn

N

)
− bn sin

(
2πtn

N

))
⎤

⎦

Table 2 contains the depths at which the measurements were made, the wave
period values, mean and maximum wave heights, the dispersion of the level-
elevation function (which is depth-dependent), and the correlation coefficients
for both the normal and lognormal distributions.

Figure 3 shows the result obtained with the interpolation trigonometric poly-
nomial taking into account the fact that the spectrum of the level-elevation
function lies in a certain range. The continuous red line represents the function
obtained by interpolating the trigonometric polynomial, the blue crosses show
the level-elevation function as obtained by means of experimental measurements.

The points in Fig. 4 correspond to the values of the wave spectrum, and the
lines represent the functions distributed according to the normal and lognor-
mal laws and having mathematical expectations and variances corresponding to
actual field data.

Wave processes can be described by three quantities: mathematical expec-
tation (wave period), dispersion and amplitude of the normal or log-normal
distribution of the spectrum components. These three values were obtained by
processing the results of the full-scale experiment and are used as boundary
conditions for mathematical models of wave hydrodynamic processes.

330 A. Sukhinov et al.

Table 2. Parameters of sea waves

No Depth,

cm

Wave

period,

s

Average

wave height,

cm

Maximum

value of wave

height, cm

Dispersion of

the

level-elevation

function

Correlation for

the normal

distribution

Correlation for

the lognormal

distribution

1 12.73 3.18 1.43 3.26 3.38 0.6762240 0.7281816

2 21.65 3.18 2.21 5.12 2.87 0.7197073 0.7549785

3 34.29 3.25 2.67 6.63 2.58 0.7675635 0.8080973

4 47.69 3.20 2.903 7.278 2.373 0.8043428 0.8151663

5 50.22 3.23 3.408 8.779 2.465 0.8007264 0.8223494

6 56.95 3.32 3.42 10.05 2.539 0.8252073 0.8349985

7 58.25 3.09 3.53 13.74 2.46 0.7045178 0.7501032

8 75.28 3.48 3.59 12.71 2.31 0.8046488 0.8281662

9 83.35 3.05 4.47 14.64 2.49 0.7677805 0.8044246

10 123.25 3.23 4.671 15.74 2.32 0.7871638 0.8280977

Fig. 3. Approximation of the level-elevation function (Color figure online)

Fig. 4. The spectrum of the function of elevation level: 1 – normal distribution, 2 –
lognormal distribution

Three-Dimensional Mathematical Model of Wave Propagation 331

7 Software Implementation of the Model of Wave
Hydrodynamics

The software package consists of the following blocks: a control block (contains a
cycle over a time variable; following functions are called by the block: calculation
of the velocity field without taking into account the level-elevation function,
calculation of the level function, calculation of the two-dimensional velocity field,
verification of the presence on the water surface of the structure, and data I/O);
a block for entering initial distributions for the calculation of the flow velocity
and level functions (initial velocity field distributions, level-elevation functions,
and initial values of cell fullness are specified); a block for constructing the grid
equations of the velocity field without taking into account the level-elevation
function; a block for constructing the grid equations of the field of the level-
elevation function (pressure); a block for checking the presence on the surface
of the aquatic environment of the structure; a block for calculating the velocity
field taking into account the level-elevation function (calculation of the values
of the velocity field in the next time layer); a block for calculating the grid
equations by a modified adaptive alternating-triangular method of variational
type; a block for output of the values of the velocity field and level-elevation
functions. Figure 5 shows the scheme of the program algorithm.

Fig. 5. Diagram of the algorithm of the program complex

8 Results of Numerical Experiments

On the basis of full-scale data, we were able to develop a three-dimensional
model of wave hydrodynamic processes that describes the motion of an aquatic
environment taking into account the propagation of waves towards the shore.
A modern software package adapted for simulation of hydrodynamic wave pro-
cesses was developed. The field of application of this package is the construction
of velocity and pressure fields of aquatic environments, and the evaluation of
the hydrodynamic impact exerted by surface waves on the shore. Based on the

332 A. Sukhinov et al.

developed complex of programs, a numerical simulation of hydrodynamic wave
processes in the coastal zone of a shallow water body was carried out.

The practical significance of the numerical algorithms and the complex of
programs that implements them is determined by the possibility of their appli-
cation to the study of hydrophysical processes in coastal water systems, to the
construction of the velocity and pressure fields of aquatic environments, and
the evaluation of the hydrodynamic impact of surface waves on the shoreline.
The constructed program complex allows for the specification of the shape and
intensity of the source of oscillations, and the geometry of the reservoir bot-
tom. Figure 6 shows the results of numerical experiments on the simulation of
the propagation of wave hydrodynamic processes when a wave recedes from the
shore, taking into account the geometries of the shore of the object located in
the liquid and the bottom of the reservoir.

Fig. 6. The field of the velocity vector of the aquatic environment (XOZ-plane cut)

As an example of practical use of the problem-oriented program complex, we
solved the problem of calculating the velocity and pressure fields. The selected
modeling site is 50 by 50 m and has a depth of 2 m; the peak point rises 2 m above
sea level. The disturbance source is given at some distance from the shoreline.

Three-Dimensional Mathematical Model of Wave Propagation 333

At the initial time, the liquid is at rest. To solve this problem, a 100 × 100 × 40
grid is used, and the time step is 0.01 s.

Figure 6 shows the field of the velocity vector of the aquatic environment
when the wave approaches the shore. Zones of flooding and shallowing are formed
while the level-elevation function dynamically changes. Figure 7 shows that the
land area was flooded by an incident wave. An accounting on flooding and dehu-
midification of coastal areas was carried out by recalculating the fullness of
calculated cells. The proposed approach makes it possible to solve problems in
domains with a complex and dynamically rearranged geometry of the boundary.

Fig. 7. Level and bottom elevation functions

It should be noted that the software package developed here has a distinctive
feature, namely the wave propagation towards the shore is taken into account
when modeling the propagation of the surface oscillations.

334 A. Sukhinov et al.

9 Conclusion

The work is devoted to the development of a model of three-dimensional wave
processes aimed at simulating wave processes taking into account the wave prop-
agation to the shore. A full-scale experiment was conducted to measure various
parameters of wave propagation in shallow water. On the basis of experimental
data, we obtained the values of the spectrum of the water level-elevation func-
tion. A description of the developed program complex is given. This program
complex allows for the specification of the shape and intensity of the source of
oscillations, and also takes into account the flooding and drainage of coastal
areas. Further studies on the calculation of wave force effects on surface objects
and objects of coastal infrastructure, and bottom-surface geometry are possible
on the basis of the software package developed here.

References

1. Sukhinov A.I., Sukhinov A.A.: 3D model of diffusion-advection-aggregation sus-
pensions in water basins and its parallel realization. In: Parallel Computational
Fluid Dynamics, Mutidisciplinary Applications, Proceedings of Parallel CFD 2004
Conference, Las Palmas de Gran Canaria, Spain, pp. 223–230. Elsevier, Amster-
dam (2005). https://doi.org/10.1016/B978-044452024-1/50029-4

2. Gushchin, V.A., Kostomarov, A.V., Matyushin, P.V., Pavlyukova, E.R.: Direct
numerical simulation of the transitional separated fluid flows around a sphere
and a circular cylinder. J. Wind Eng. Industr. Aerodyn. 90(4–5), 341–358 (2002).
https://doi.org/10.1016/S0167-6105(01)00196-9

3. Sukhinov A.I., Sukhinov A.A.: Reconstruction of 2001 ecological disaster in the
Azov Sea on the basis of precise hydrophysics models. In: Parallel Computational
Fluid Dynamics, Multidisciplinary Applications, Proceedings of Parallel CFD 2004
Conference, Las Palmas de Gran Canaria, Spain, pp. 231–238. Elsevier, Amsterdam
(2005). https://doi.org/10.1016/B978-044452024-1/50030-0

4. Gushchin, V.A., Kostomarov, A.V., Matyushin, P.V.: 3D visualization of the
separated fluid flows. J. Vis. 7(2), 143–150 (2004). https://doi.org/10.1007/
BF03181587

5. Alekseenko, E., Roux, B., Sukhinov, A., Kotarba, R., Fougere, D.: Coastal hydro-
dynamics in a windy lagoon. Comput. Fluids 77, 24–35 (2013). https://doi.org/
10.1016/j.compfluid.2013.02.003

6. Alekseenko, E., Roux, B., Sukhinov, A., Kotarba, R., Fougere, D.: Nonlinear hydro-
dynamics in a mediterranean lagoon. Nonlinear Process. Geophys. 20, 189–198
(2017). https://doi.org/10.5194/npg-20-189-2013

7. Sukhinov, A.I., Chistyakov, A.E., Alekseenko, E.V.: Numerical realization of the
three-dimensional model of hydrodynamics for shallow water basins on a high-
performance system. Math. Models Comput. Simul. 3(5), 562–574 (2011). https://
doi.org/10.1134/S2070048211050115

8. Sukhinov, A.I., Chistyakov, A.E., Protsenko, E.A.: Mathematical modeling of sed-
iment transport in the coastal zone of shallow reservoirs. Math. Models Comput.
Simul. 6(4), 351–363 (2014). https://doi.org/10.1134/S2070048214040097

https://doi.org/10.1016/B978-044452024-1/50029-4
https://doi.org/10.1016/S0167-6105(01)00196-9
https://doi.org/10.1016/B978-044452024-1/50030-0
https://doi.org/10.1007/BF03181587
https://doi.org/10.1007/BF03181587
https://doi.org/10.1016/j.compfluid.2013.02.003
https://doi.org/10.1016/j.compfluid.2013.02.003
https://doi.org/10.5194/npg-20-189-2013
https://doi.org/10.1134/S2070048211050115
https://doi.org/10.1134/S2070048211050115
https://doi.org/10.1134/S2070048214040097

Three-Dimensional Mathematical Model of Wave Propagation 335

9. Sidoryakina, V.V., Sukhinov, A.I.: Well-posedness analysis and numerical imple-
mentation of a linearized two-dimensional bottom sediment transport problem.
Comput. Math. Math. Phys. 57(6), 978–994 (2017). https://doi.org/10.7868/
S0044466917060138

10. Favorskaya, A.V., Petrov, I.B.: Numerical modeling of dynamic wave effects
in rock masses. Dokl. Math. 95(3), 287–290 (2017). https://doi.org/10.1134/
S1064562417030139

11. Belotserkovskii, O.M., Gushchin, V.A., Shchennikov, V.V.: Decomposition method
applied to the solution of problems of viscous incompressible fluid dynamics. Com-
put. Math. Math. Phys. 15, 197–207 (1975)

12. Kvasov, I.E., Leviant, V.B., Petrov, I.B.: Numerical study of wave propagation in
porous media with the use of the grid-characteristic method. Comput. Math. Math.
Phys. 56(9), 1620–1630 (2016). https://doi.org/10.1134/S0965542516090116

13. Sukhinov, A.I., Chistyakov, A.E.: Adaptive modified alternating triangular
iterative method for solving grid equations with a non-self-adjoint operator.
Math. Models Comput. Simul. 4(4), 398–409 (2012). https://doi.org/10.1134/
S2070048212040084

14. Nikitina, A.V., et al.: Optimal control of sustainable development in the biological
rehabilitation of the Azov Sea. Math. Models Comput. Simul. 9(1), 101–107 (2017).
https://doi.org/10.1134/S2070048217010112

15. Sukhinov, A., Chistyakov, A., Nikitina, A., Semenyakina, A., Korovin, I., Schaefer,
G.: Modelling of oil spill spread. In: 5th International Conference on Informatics,
Electronics and Vision, ICIEV 2016, 28 November 2016, pp. 1134–1139 (2016).
https://doi.org/10.1109/ICIEV.2016.7760176

16. Chetverushkin, B.N., Shilnikov, E.V.: Software package for 3D viscous gas flow sim-
ulation on multiprocessor computer systems. Comput. Math. Math. Phys. 48(2),
295–305 (2008). https://doi.org/10.1007/s11470-008-2012-4

17. Davydov, A.A., Chetverushkin, B.N., Shil’nikov, E.V.: Simulating flows of incom-
pressible and weakly compressible fluids on multicore hybrid computer systems.
Comput. Math. Math. Phys. 50(12), 2157–2165 (2010). https://doi.org/10.1134/
S096554251012016X

18. Sukhinov, A.I., Nikitina, A.V., Semenyakina, A.A., Chistyakov, A.E.: Complex of
models, explicit regularized schemes of high-order of accuracy and applications for
predictive modeling of after-math of emergency oil spill. In: Workshop Proceedings,
vol. 1576, pp. 308–319 (2016)

https://doi.org/10.7868/S0044466917060138
https://doi.org/10.7868/S0044466917060138
https://doi.org/10.1134/S1064562417030139
https://doi.org/10.1134/S1064562417030139
https://doi.org/10.1134/S0965542516090116
https://doi.org/10.1134/S2070048212040084
https://doi.org/10.1134/S2070048212040084
https://doi.org/10.1134/S2070048217010112
https://doi.org/10.1109/ICIEV.2016.7760176
https://doi.org/10.1007/s11470-008-2012-4
https://doi.org/10.1134/S096554251012016X
https://doi.org/10.1134/S096554251012016X

Supercomputer Modeling
of Hydrochemical Condition of Shallow
Waters in Summer Taking into Account

the Influence of the Environment

Alexander I. Sukhinov1, Alexander E. Chistyakov1, Alla V. Nikitina2(B),
Yulia V. Belova1, Vladimir V. Sumbaev2, and Alena A. Semenyakina3

1 Don State Technical University, Rostov-on-Don, Russia
sukhinov@gmail.com, {cheese 05,yuliapershina}@mail.ru

2 Southern Federal University, Rostov-on-Don, Russia
nikitina.vm@gmail.com, valdec4813@mail.ru

3 “Supercomputers and Neurocomputers Research Center” Co. Ltd.,
Taganrog, Russia

j.a.s.s.y@mail.ru

Abstract. The paper deals with the development and research of a
mathematical model for hydrophysical processes which involves the use
of modern information technologies and computational methods with the
aim to improve the accuracy of predictive modeling of ecological condi-
tion of shallow waters during the summer. The model takes into account
the following factors: movement of water flows; microturbulent diffu-
sion; gravitational settling of pollutants; nonlinear interaction of plank-
ton populations; nutrient, temperature and oxygen regimes; and impact
of salinity. A scheme with weights is proposed for the discretization of
the proposed model. This scheme significantly reduces both error and
computation time. The practical significance of the paper is determined
by the software implementation of the model and the determination of
the limits and prospects of its practical use. Experimental software is
designed on the basis of a supercomputer for mathematical modeling of
possible development scenarios of shallow water ecosystems taking into
account the influence of the environment. For this, we consider as an
example the Sea of Azov in the summer period. The software paral-
lel implementation involves decomposition methods for computationally
intensive diffusion-convection problems taking account of the architec-
ture and parameters of a multiprocessor computer system. The software
complex contains a model for fluid dynamics which includes equations of
motion in three coordinate directions.

Keywords: Mathematical model · Hydrochemical process
Field investigation · Algorithm · Supercomputer

This paper was partially supported by grant No. 17-11-01286 from the Russian Sci-
ence Foundation.

c© Springer Nature Switzerland AG 2018
L. Sokolinsky and M. Zymbler (Eds.): PCT 2018, CCIS 910, pp. 336–351, 2018.
https://doi.org/10.1007/978-3-319-99673-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99673-8_24&domain=pdf

Supercomputer Modeling of Hydrochemical Condition of Shallow Waters 337

1 Introduction

Many studies in recent decades have dealt with prediction models for biogeo-
chemical cycles as stochastic systems, for example, the paper by Straten and
Keesman [1]. Numerous models were calibrated according to observational data
by various researchers, such as Park [2], Bierman [3], Chen [4], Jorgensen [5],
Williams [6], and others. Most models contain the Michaelis–Menten equation
as a limit to the development of phytoplankton nutrients. The construction of
hydrobiological models of shallow waters requires three-dimensional models of
biogeochemical cycles with high resolution.

In July 2017, members of the staffs of Don State Technical University, the
Southern Federal University and the Southern Scientific Center of the Russian
Academy of Sciences (RAS) went on an expedition to the Sea of Azov aboard
the Scientific Research Vessel (SRV) “Deneb”. The main task of the expedition
was to carry out a comprehensive research of the current condition and spatial-
temporal changes in the hydrobiological regime of the Sea of Azov. The route of
the SRV “Deneb” is shown in Fig. 1.

Fig. 1. Research expedition in 2017

Various systems from the “Analytical GIS” portal, developed by the Institute
for Information Transmission Problems of the RAS for complex geoinformational
analysis of spatial-temporal processes and phenomena, were used along with
expedition data and literature sources for modeling hydrophysical processes in
shallow waters (the Sea of Azov).

2 Problem Statement

The model of the biochemical transformation of biogenic nutrients (various forms
of phosphorus, nitrogen and silicon) has the form [7,8,12,13,20–22]

∂qi

∂t
+ div (U, qi) = div (ki grad qi) + Ri,ki = {μi, μi, νi} , i = 1, 10, (1)

338 A. I. Sukhinov et al.

where qi denotes the concentration of the ith component; u is the velocity vector
of the water flow, u = {u, v, w}; U = u + u0i represents the matter convective
transport velocity, U = {U, V,W}; u0i stands for the velocity of the ith com-
ponent of sedimentation; Ri denotes the chemical-biological source, where the
index i corresponds to the type thereof: 1–3 are substance concentrations from
algae Chlorella vulgaris, Aphanizomenon flos-aquae and Sceletonema costatum;
4 is PO4; 5 is POP; 6 is DOP; 7 is NO3; 8 is NO2; 9 is NH4; 10 is Si (PO4 are
phosphates; POP is suspended organic phosphorus; DOP is dissolved organic
phosphorus; NH4 is ammonium; NO2 are nitrites; NO3 are nitrates; Si is dis-
solved inorganic silicon); μi, νi are diffusion coefficients in horizontal and vertical
directions.

We added an observation model for description of chemical-biological sources
[12]:

Ri = Ci(1 − KR,i)qi − KD,iqi − KE,iqi, i = 1, 3;

R4 =
3∑

i=1

sP Ci (KR,i − 1) qi + KPNq5 + KDNq6;

R5 =
3∑

i=1

sP KD,iqi − KPDq5 − KPNq5;R6 =
3∑

i=1

sP KE,iqi + KPDq5 − KDNq6;

R7 =
3∑

i=1

sNCi (KR,i − 1)
f
(1)
N (q7, q8)

fN (q7, q8, q9)
· q8
q7 + q8

qi + K23q8;

R8 =
3∑

i=1

sNCi(KR,i − 1)
f
(1)
N (q7, q8)

fN (q7, q8, q9)
· q7
q7 + q8

qi + K42q9 − K23q8;

R9 =
3∑

i=1

sNCi (KR,i − 1)
f
(2)
N (q9)

fN (q7, q8, q9)
qi − K42q9, R10 = sSiKD,3q3,

where KR,i,KD,i are specific rates of phytoplankton respiration and mortality;
KE,i denotes the specific rate of phytoplankton excretion; KPD denotes the
specific rate of autolysis; KPN is the ratio of phosphatization; KDN denotes the
ratio of DOP phosphatization; K42 is the specific rate of ammonium oxidation
to nitrites during the nitrification process; K23 is the specific rate of oxidation of
nitrites to nitrates during nitrification; sP , sN , sSi are normalization coefficients
between N, P, and Si contents in organic matter.

The phytoplankton algae growth rate is determined by the expressions

Ci = KN,i min {fP (q4) , fN (q7, q8, q9)} , i = 1, 2;

C3 = KN,3 min {fP (q4) , fN (q7, q8, q9) , fSi (q10)} ,

where KN,i is the maximum specific growth rate of phytoplankton.
To describe the dependence of the nutrient content, let us use the following

relations:
fP (q4) =

q4
q4 + K4

; fSi(q10) =
q10

q10 + K10
;

Supercomputer Modeling of Hydrochemical Condition of Shallow Waters 339

fN (q7, q8, q9) = f
(1)
N (q7, q8) + f

(2)
N (q9) =

(q7 + q8) exp(−Kpsiq9)
K7 + (q7 + q8)

+
q9

K9 + q9
,

where K4, K7, K9, and K10 stand, respectively, for the phosphate, nitrate,
ammonium, and silicon half-saturation constants; Kpsi denotes the ammonium
inhibition coefficient [15].

It is necessary to add initial conditions:

qi (x, y, z, 0) = q0i (x, y, z) , (x, y, z) ∈ G, i = 1, 10. (2)

Let the boundary Σ of the cylindrical domain G be sectionally smooth, and
suppose that Σ = ΣH ∪ Σo ∪ σ , where ΣH is the water bottom surface, Σo is
the unperturbed surface of the aquatic medium, and σ is the lateral (cylindrical)
surface. Let un be the normal component of the water flow velocity vector to
the Σ surface, and let n be the outer normal vector to the boundary Σ. Assume
that the concentrations qi are:

on the lateral boundary: qi = 0 if un < 0;
∂qi

∂n
= 0 if un ≥ 0, i = 1, 10;

at the bottom:
∂qi

∂z
= ε1,iqi, i = 1, 3,

∂qi

∂z
= ε2,iqi, i = 4, 10;

on Σo:
∂qi

∂z
= ϕ(qi), i = 1, 10,

(3)

where ϕ is a given function; ε1,i and ε2,i are nonnegative constants: ε1,i, i = 1, 3,
account for the descent of algae to the bottom and their deposition; ε2,i, i = 4, 10
account for absorption of nutrient by bottom sediments.

3 Model Description

We assume that the process is periodic with period T0 (T0 > 0):

qi(x, y, z, t) = qi(x, y, z, t + T0). (4)

Let us define the functions U+
n =

{
Un, Un ≥ 0;

0, Un < 0,
and U−

n = Un − U+
n on

the surface Σ of the domain G. Divide the interval 0 ≤ t ≤ T0 into sufficiently
small time periods tn ≤ t ≤ tn+1, n = 0, 1, .., Nt − 1, t0 = 0, tNt

= T0. The
initial-boundary problem for the system of equations with linearized right sides
has the form

∂qi

∂t
+ div (U, qi) = div (ki grad qi) + Rn

i (qi) ; (5)

Rn
i (qi) = Cn

i (1 − KR,i)qi − KD,iqi − KE,iqi, i = 1, 3; (6)

Rn
4 (q4) =

3∑

i=1

sP Ci (KR,i − 1) qn
i + KPNqn

5 + KDNqn
6 ;

340 A. I. Sukhinov et al.

Rn
5 (q5) =

3∑

i=1

sP KD,iq
n
i − KPDq5 − KPNq5;

Rn
6 (q6) =

3∑

i=1

sP KE,iq
n
i + KPDqn

5 − KDNq6;

Rn
7 (q7) = Qn · q7 + K23q

n
8 ; Rn

8 (q8) = Qn · q8 + K42q
n
9 − K23q8;

Qn =
3∑

i=1

sNCn
i (KR,i − 1) exp (−Kpsiq

n
9) qn

i

(qn
7 + qn

8) exp (−Kpsiqn
9) + qn

9 (K7 + qn
7 + qn

8) / (K9 + qn
9)

;

Rn
9 (q9) =

3∑

i=1

sNCn
i (KR,i − 1) qn

i

Pn exp (−Kpsiqn
9) / (K7 + (qn

7 + qn
8)) + qn

9

· q9 − K42q9;

Pn = (K9 + qn
9) (qn

7 + qn
8) exp (−Kpsiq

n
9) ; Rn

10 (q10) = sSiKD,3q
n
3

with the corresponding initial and boundary conditions. We suppose that qi ∈
C2 (G) ∩ C1

(
G

) ∩ C1 (0 < t ≤ T), kh (z) , kν (z) , Ri (x, y, z) ∈ C1
(
G

)
. Also, we

assume that the following expressions hold for each n = 0, Nt − 1:

4μi

H2
x

+
4μi

H2
y

+
4νi

H2
z

+ KD,i + KE,i > Tri, i = 1, 3; (7)

4μi

H2
x

+
4μi

H2
y

+
4νi

H2
z

+ K42 > Tr4;
4μi

H2
x

+
4μi

H2
y

+
4νi

H2
z

> Tr5, i = 4, 10;

Tri = KN,i min {fn
P (q4) , fn

N (q7, q8, q9)} (1 − KR,i) , i = 1, 2;

Tr3 = KN,3 min {fn
P (q4) , fn

N (q7, q8, q9) , fn
Si (q10)} (1 − KR,3) ;

Tr4 =
3∑

i=1

sNCn
Fi

(KR,i − 1) qn
i

(K9 + qn
9) (qn

7 + qn
8) exp (−Kpsiqn

9) / (K7 + (qn
7 + qn

8)) + qn
9

;

Tr5 =
3∑

i=1

sNCn
i (KR,i − 1) exp (−Kpsiq

n
9) qn

i

(qn
7 + qn

8) exp (−Kpsiqn
9) + qn

9 (K7 + qn
7 + qn

8) / (K9 + qn
9)

.

If all the conditions above are met, then the solution of the problem exists and
is unique.

The field of water flow velocities calculated in [22,23] was used as input data
for the model (1)–(3).

Supercomputer Modeling of Hydrochemical Condition of Shallow Waters 341

4 Modified Alternating Triangular Method

The grid equations were obtained as a result of finite-difference approximations
of problem (5)–(7) using a scheme with weights [18] and can be written in a
matrix form [14,23,24]:

Ax = f, (8)

where A is a linear positive definite operator (A > 0). We applied an implicit
iteration process to solve problem (8):

B
xm+1 − xm

τm+1
+ Axm = f, (9)

where m stands for the iteration number, τ > 0 is an iteration parameter, B is
some reversible operator called a preconditioner or stabilizer. The inversion of
the operator B in (9) needs to be substantially simpler than the direct inversion
of the original operator A in (8). To construct the operator B, we proceed from
the additive representation of the operator A0 as the symmetric part of the
operator A:

A0 = R1 + R2, R1 = R∗
2, A = A0 + A1, A0 = A∗

0, A1 = −A∗
1. (10)

The preconditioner can be written as

B = (D + ωR1)D−1(D + ωR2), D = D∗ > 0, ω > 0, (11)

where D is some operator.
Relations (9)–(11) define a modified alternating triangular method (MATM)

for the solution of the problem, provided that the operators R1, R2 are defined
and methods for determining the parameters τm+1, ω and the operator D are
indicated.

The algorithm of the adaptive MATM of minimum corrections for calculating
the grid equations with a non-selfadjoint operator has the form

rm = Axm − f, B(ωm)wm = rm, ω̃m =

√
(Dwm, wm)

(D−1R2wm, R2wm)
, (12)

s2m = 1 − (A0w
m, wm)2

(B−1A0wm, A0wm) (Bwm, wm)
, km =

(
B−1A1w

m, A1w
m

)

(B−1A0wm, A0wm)
,

θm =
1 −

√
s2
mkm

(1+km)

1 + km (1 − s2m)
, τm+1 = θm

(A0w
m, wm)

(B−1A0wm, A0wm)
,

xm+1 = xm − τm+1w
m, ωm+1 = ω̃m,

where rm is the residual vector, wm is the correction vector, and the diagonal
part of the operator A is used as operator D [17].

342 A. I. Sukhinov et al.

The estimate of the convergence rate of the method just described can be
written in the form

ρ ≤ ν∗ − 1
ν∗ + 1

, ν∗ = ν
(√

1 + k +
√

k
)2

, k =

(
B−1A1ω

m, A1ω
m

)

(B−1A0ωm, A0ωm)
, (13)

where ν is the condition number of the operator C0, defined as C0 =
B−1/2A0B

−1/2.

5 Parallel Implementation

We describe some parallel algorithms with various types of domain decomposi-
tion for solving problems (1)–(3) on a multiprocessor computer system (MCS).

Algorithm 1.

Each processor is assigned a computational domain after the initial computa-
tional domain is partitioned in two coordinate directions, as shown in Fig. 2.
Adjacent domains overlap over two layers of nodes in the direction perpendicu-
lar to the plane of the partition [24].

The residual vector and its uniform norm are calculated after each processor
receives information for its own part of the domain. Then each processor deter-
mines the maximum module element of the residual vector and sends its value
to all remaining calculators. Now, to calculate the uniform norm of the residual
vector, it is enough to find the maximum element on each processor [16].

Fig. 2. Domain decomposition

The parallel algorithm for calculating the correction vector has the form

(D + ωmR1)D−1(D + ωmR2)wm = rm,

where R1 is a lower-triangular matrix, and R2 is a upper-triangular matrix. For
calculating the correction vector, we should solve the following two equations
simultaneously:

(D + ωmR1)ym = rm, (D + ωmR2)wm = Dym.

Supercomputer Modeling of Hydrochemical Condition of Shallow Waters 343

Fig. 3. Scheme of calculation of the vector ym

Initially, the vector ym is calculated starting in the lower left corner. Then
the correction vector wm is calculated starting in the upper right corner. The cal-
culation scheme for the vector ym is given in Fig. 3 (the transference of elements
after calculation of two layers by the first processor is shown).

In the first step, the first processor operates with the top layer. Then the
transference of overlapping elements to the adjacent processors takes place. In
the next step, the first processor operates with the second layer, while its neigh-
bors operate with the first. The transference of elements after calculation of two
layers by the first processor is shown in Fig. 3. In the scheme for the calculation
of the vector ym, only the first processor does not require additional information
and can independently operate with its part of the domain. Other processors
wait for the results from the previous processor, while it transfers the calculated
values of the grid functions at the grid nodes located in the preceding positions
of this line. The process continues until all the layers are calculated. Similarly, we
can solve systems of linear algebraic equations (SLAE) with an upper-triangular
matrix for calculating the correction vector.

Next, scalar products (12) are calculated, and the algorithm proceeds to the
next iteration layer.

We obtain the following theoretical estimates [19] for the speedup S(1) and
the efficiency E(1) of parallel algorithm 1:

S(1) =
p

1 +
(√

p − 1
) (

36
50Nz

+ 4p
50t0

(
tn

(
1

Nx
+ 1

Ny

)
+ tx

√
p

NxNy

)) ,

E(1) =
S(1)

p
=

1

1 +
(√

p − 1
) (

36
50Nz

+ 4p
50t0

(
tn

(
1

Nx
+ 1

Ny

)
+ tx

√
p

NxNy

)) ,

where p is the total number of processors; t0 is the execution time of an arithmetic
operation; tx is the response time (latency); Nx, Ny, Nz are the numbers of nodes
in the spatial directions.

We have considered the solution of the problem for a rectangular domain. In
the case of a real water medium, the domain may have a complex shape. At the
same time, real speedup is less than the theoretical estimate. The dependence
obtained for the speedup in theoretical estimates can be used as an upper esti-
mate for the speedup of the parallel implementation of the MATM algorithm
with a domain decomposition in two spatial directions.

344 A. I. Sukhinov et al.

Let us describe now the domain decomposition in two spatial directions by
the k-means algorithm.

Algorithm 2.

The k-means method is used for the geometric partition of the computational
domain so as to uniformly load a MCS calculators (processors). This method is
based on the minimization of the functional Q = Q(3) of total variance of the
element scatter (nodes of the computational grid) relative to the gravity center
of subdomains. Let Xi be the set of computational grid nodes contained in the
ith subdomain, i ∈ {1, ...,m}, m is the given number of subdomains.

Q(3) =
∑

i

1
|Xi|

∑

x∈Xi

d2(x, ci) → min,

where
ci =

1
|Xi|

∑

x∈Xi

x

is the center of the subdomain Xi, and d(x, ci) is the distance between the com-
putational node and the center of the grid subdomain in the Euclidean metric.
The k-means method converges only when all subdomain are approximately
equal. The result of the k-means method for model domains is given in Fig. 4
(arrows indicate exchanges between subdomains).

All points on the boundary of each subdomains are required to data exchange
during the computational process. Jarvis’s algorithm is used for this purpose (the
task of constructing the convex hull). A list of neighboring subdomains is made
up for each subdomain. An algorithm was created for data transfer between
subdomains.

Fig. 4. Results of the k-means method for model domain decomposition into 9, 38,
150 (for a two-dimensional domain); into 6 and 10 (for a three-dimensional domain)
subdomains

Supercomputer Modeling of Hydrochemical Condition of Shallow Waters 345

Theoretical estimates for the speedup and efficiency of algorithm 2 were
obtained similarly to the corresponding estimates for algorithm 1:

S(2) =
p · χ

1 +
(√

p − 1
) (

36
50Nz

+ 4p
50t0

(
tn

(
1

Nx
+ 1

Ny

)
+ tx

√
p

NxNy

)) ,

E(2) =
S(2)

p
=

χ

1 +
(√

p − 1
) (

36
50Nz

+ 4p
50t0

(
tn

(
1

Nx
+ 1

Ny

)
+ tx

√
p

NxNy

)) ,

where χ is the ratio of the number of computational nodes to the total number
of nodes (computational and fictitious).

6 Results of Experimental Studies

Parallel algorithms for the adaptive alternating-triangular method were imple-
mented on the multiprocessor computer system (MCS) of the Southern Federal
University (SFU). The peak performance of this MCS is 18.8 TFlops. MCS
includes 8 computational racks. The computational field of the MCS is based on
the HP BladeSystem c-class infrastructure with integrated communication mod-
ules, power supply and cooling systems. Five hundred and twelve single-type
16-core Blade servers HP ProLiant BL685c are used as computational nodes,
each of which is equipped with four 4-core AMD Opteron 8356 2.3 GHz proces-
sors and 32 GB RAM. The total number of computing cores in the complex is
2048; the total amount of RAM is 4 TB.

The results of the parallel implementation of algorithms 1 and 2 for solving
problem (1)–(3) are summarized in Table 1. Here t(j), S(j) and E(j) are, respec-
tively, operating time, speedup and efficiency of the jth algorithm; St

(j) and Et
(j)

are the theoretical estimates of the speedup and efficiency of the j-th algorithm,
j = {1, 2}.

Table 1. Comparison of speedups and efficiencies of the algorithms

p t(1) St
(1) S(1) t(2) Et

(2) E(2)

1 7.491 1.0 1.0 6.073 1.0 1.0

2 4.152 1.654 1.804 3.121 1.181 1.946

4 2.549 3.256 2.938 1.811 2.326 3.354

8 1.450 6.318 5.165 0.997 4.513 6.093

16 0.882 11.928 8.489 0.619 8.520 9.805

32 0.458 21.482 16.352 0.317 15.344 19.147

64 0.266 35.955 28.184 0.184 25.682 33.018

128 0.172 54.618 43.668 0.117 39.013 51.933

346 A. I. Sukhinov et al.

According to Table 1, the algorithms, based on a domain decomposition in
two spatial directions and on the k-means method, can be effectively used for
solving hydrodynamic problems on a sufficiently large number of computational
nodes.

The speedup graphs of algorithms 1 and 2 for the solution of problem (1)–(3),
obtained theoretically and experimentally, are given in Fig. 5.

Fig. 5. Acceleration graphs of developed parallel algorithms: 1 – theoretical estimate
of speedup in algorithm 1; 2 – speedup of algorithm 2, obtained experimentally; 3 –
speedup of algorithm 1, obtained experimentally; 4 – theoretical estimate of speedup
in algorithm 2

The estimate for comparing the efficiency values of algorithms 1 and 2,
obtained experimentally, has the form

δ =

√√√√
n∑

k=1

(
E(2)k − E(1)k

)2
/√√√√

n∑

k=1

E2
(2)k. (14)

We obtained that the efficiency increases by 10 to 20% when using algorithm
2 (based on the k-means method) for solving problem (1)–(3).

7 Program Complex Description

A software complex (SC) was developed for solving problem (1)–(3). Using this
SC, we have been able to calculate the fields of water flow velocities, concentra-
tions of biogenic pollutants, phytoplankton in areas of complex shape (the Sea
of Azov and Taganrog Bay).

The SC was developed for the MCS of the SFU. The SC is intended for math-
ematical modeling of possible development scenarios of environmental conditions
in coastal systems (we considered in this regard the Azov-Black Sea basin). The

Supercomputer Modeling of Hydrochemical Condition of Shallow Waters 347

SC includes computational units allowing: to take into account factors influenc-
ing pollutant distribution in coastal systems (weather conditions, and bottom
relief); to study the dependence of pollutant concentrations, the degree and
size of the affected water zone on the intensity of water flows, hydrophysical
parameters, climatic and meteorological factors. The features of the SC are high
performance, reliability, and high accuracy of simulation results.

New computational units (modules) can be integrated into the developed
SC. A new module was developed for solving the SLAE appearing as a result
of the problem discretization, in which the following methods can be used:
Jacobi method; minimum correction method; steepest descent method (gradient
descent); Seidel method; upper relaxation method; adaptive MATM of varia-
tional type.

Sequentially condensed rectangular grids of sizes 251×351×15, 502×702×30,
1004 × 1404 × 60, etc., were used for mathematical modeling of hydrobiological
and hydrodynamic processes in a three-dimensional domain of complex shape,
namely the Sea of Azov and Taganrog Bay.

The structure of the developed SC is given in Fig. 6.

Fig. 6. The software complex

The SC includes the following units: control unit, oceanological and meteo-
rological databases, interface systems, input-output and visualization systems.
The SC has the user-friendly interface, ensuring the supplementation system of
necessary information in interactive mode.

The high-level language C++ was used for the development of the SC. Mes-
sage Passing Interface technology (MPI) was employed for clusters.

8 Results of Numerical Experiments

Numerical experiments were performed for modeling hydrochemical conditions
of shallow waters in the summer, taking into account the influence of the

348 A. I. Sukhinov et al.

environment [9]. The results are shown in Figs. 7 and 8. The influence of the
Sea of Azov water flow structures on the distribution of phytoplankton con-
centration is shown in Fig. 7. The results of the calculation of concentrations
of biogenic substances (nitrates) based on model (1)–(3) (initial distribution of
water flow fields for the northern wind) are given in Fig. 8.

Fig. 7. Distribution of phytoplankton con-
centration (q2) (μ2 = 5×10−11; ν2 = 10−11)

Fig. 8. Distribution of nitrates concen-
tration (q7) (μ7 = 5×10−10; ν7 = 10−10)

Actual data from the “Analytical GIS” portal (see Fig. 9A) and satellite data
from the SRC “Planeta” [15], shown in Fig. 9B (phytoplankton spots are visible,
revealing the structure of currents), were used for verification of the model (1)–
(3) and validation of the adequacy of the SC.

Fig. 9. A: Ecological data from the “Analytical GIS” portal; B: Satellite image of the
Sea of Azov by the SRC “Planeta”

As criteria for adequacy of the developed models (1)–(3), (5)–(7), we used the
error estimation of the model according to the Teil criterion [25]. Concentrations
of pollution and plankton, calculated for various wind conditions, were taken into
account if the relative error did not exceed 30%.

An analysis of similar SCs was carried out. The overall result is that the
prediction accuracy of changes in pollutants and plankton concentrations in

Supercomputer Modeling of Hydrochemical Condition of Shallow Waters 349

shallow waters increased by 10 to 20%, depending on the model problem of
biological kinetics.

The SC developed by our team implements possible scenarios of ecological
conditions in the Sea of Azov using numerical algorithms for model problems
of biological kinetics of plankton. The results obtained by means of this SC
were compared with those of similar studies concerned with the mathematical
modeling of hydrobiological processes [10,11].

9 Conclusions

Stochiometric ratios of nutrients for different phytoplankton species were stud-
ied. These ratios allow for the determination of a limiting substance. Also,
observational models describing the consumption and accumulation of nutrients
by phytoplankton and its growth rate were considered. We developed a three-
dimensional mathematical model of transformation of phosphorus, nitrogen and
silicon forms in the multi-species phytoplankton evolution problem for shallow
waters. This model takes into account convective transport and diffusion trans-
fer, absorption and release of nutrients by phytoplankton, as well as phosphorus,
nitrogen and silicon cycles.

An analytical research of the continuous model developed in the study
allowed us to obtain inequalities ensuring the existence and uniqueness of the
problem solution. The numerical implementation of the model was carried out on
a multiprocessor computer system with distributed memory. We obtained the-
oretical estimates for the speedup and efficiency of parallel algorithms. Experi-
mental software was designed for mathematical modeling of possible development
scenarios of shallow waters. The example of the Sea of Azov was considered in
this regard. Decomposition methods of grid domains for computationally inten-
sive diffusion-convection problems were employed for the parallel implementa-
tion, taking into account the architecture and parameters of the MCS. Two
parallel algorithms were developed for data distribution among processors. The
algorithm based on the k-means method yielded an increase in efficiency by 10
to 20% compared with the algorithm based on a standard partitioning of the
computational domain.

Thanks to the use of the said MCS, the calculation time for the solution
of the model problem decreased, while maintaining the required accuracy for
modeling of hydrobiological processes in shallow waters. Note that this fact is
one of primary importance in water ecology problems.

References

1. Van Straten, G., Keesman, K.J.: Uncertainty propagation and speculation in pro-
jective forecasts of environmental change: a lake eutrophication example. J. Fore-
cast. 10, 163–190 (1991). https://doi.org/10.1002/for.3980100110

2. Park, R.A.: A generalized model for simulating lake ecosystems. J. Simul. 23(2),
33–50 (1974). https://doi.org/10.1177/003754977402300201

https://doi.org/10.1002/for.3980100110
https://doi.org/10.1177/003754977402300201

350 A. I. Sukhinov et al.

3. Bierman, V.J., Verhoff, F.H., Poulson, T.C., Tenney, M.W.: Multinutrient dynamic
models of algal growth and species competition in eutrophic lakes. In: Modeling
the Eutrophication Process. Ann Arbor Science, Ann Arbor (1974)

4. Chen, C.W.: Concepts and utilities of ecologic models. J. Sanit. Eng. Div. 96(5),
1085–1097 (1970)

5. Jorgensen, S.E., Mejer, H., Friis, M.: Examination of a lake model. J. Ecol. Model.
4(2–3), 253–278 (1978). https://doi.org/10.1016/0304-3800(78)90010-8

6. Williams, B.J.: Hydrobiological Modelling. University of Newcastle, Callaghan
(2006)

7. Sukhinov A.I., Sukhinov A.A.: Reconstruction of 2001 ecological disaster in
the azov sea on the basis of precise hydrophysics models. In: Parallel Compu-
tational Fluid Dynamics, Multidisciplinary Applications, Proceedings of Paral-
lel CFD 2004 Conference, Las Palmas de Gran Canaria, Spain, pp. 231–238.
Elsevier, Amsterdam-Berlin-London-New York-Tokyo (2005). https://doi.org/10.
1016/B978-044452024-1/50030-0

8. Alekseenko, E., Roux, B., Sukhinov, A., Kotarba, R., Fougere, D.: Nonlinear hydro-
dynamics in a mediterranean lagoon. J. Comput. Math. Math. Phys. 57(6), 978–
994 (2017). https://doi.org/10.5194/npg-20-189-2013

9. Sukhinov, A.I., Chistyakov, A.E., Alekseenko, E.V.: Numerical realization of the
three-dimensional model of hydrodynamics for shallow water basins on a high-
performance system. J. Math. Models Comput. Simul. 3(5), 562–574 (2011).
https://doi.org/10.1134/s2070048211050115

10. Sidoryakina, V.V., Sukhinov, A.I.: Well-posedness analysis and numerical imple-
mentation of a linearized two-dimensional bottom sediment transport problem.
J. Comput. Math. Math. Phys. 57(6), 978–994 (2017). https://doi.org/10.1134/
s0965542517060124

11. Sukhinov A., Chistyakov A., Sidoryakina V.: Investigation of nonlinear 2D bottom
transportation dynamics in coastal zone on optimal curvilinear boundary adap-
tive grids. In: MATEC Web of Conferences XIII International Scientific-Technical
Conference “Dynamic of Technical Systems” (DTS-2017), vol. 132, pp. 13–15.
Russian Federation, Rostov-on-Don (2017). https://doi.org/10.1051/matecconf/
201713204003

12. Yakushev E.V., Mikhailovsky G.E.: Mathematical modeling of the influence of
marine biota on the carbon dioxide ocean-atmosphere exchange in high latitudes.
In: Jaehne, B., Monahan, E.C. (eds.) Air-Water Gas Transfer, Selected Papers,
Third International Symposium, pp. 37–48. Heidelberg University. AEON Verlag
& Studio, Hanau (1995)

13. Samarsky, A.A., Nikolaev, E.S.: Methods of Solving Grid Equations. Science,
Moscow (1978)

14. Sukhinov, A.I., Chistyakov, A.E.: Adaptive modified alternating triangular iter-
ative method for solving grid equations with non-selfadjoint operator. J. Math.
Models Comput. Simul. 24(1), 3–20 (2012)

15. SRC “Planeta”. http://planet.iitp.ru/english/index eng.htm
16. Samarskiy, A.A.: Theory of Difference Schemes. Nauka, Moscow (1989)
17. Konovalov, A.N.: The method of steepest descent with adaptive alternately-

triangular preamplification. J. Differ. Equat. 40(7), 953 (2004)
18. Sukhinov, A.I., Chistyakov, A.E., Shishenya, A.V.: Error Estimate of the solution

of the diffusion equation on the basis of the schemes with weights. Math. Models
Comput. Simul. 6(3), 324–331 (2014). https://doi.org/10.1134/s2070048214030120

https://doi.org/10.1016/0304-3800(78)90010-8
https://doi.org/10.1016/B978-044452024-1/50030-0
https://doi.org/10.1016/B978-044452024-1/50030-0
https://doi.org/10.5194/npg-20-189-2013
https://doi.org/10.1134/s2070048211050115
https://doi.org/10.1134/s0965542517060124
https://doi.org/10.1134/s0965542517060124
https://doi.org/10.1051/matecconf/201713204003
https://doi.org/10.1051/matecconf/201713204003
http://planet.iitp.ru/english/index_eng.htm
https://doi.org/10.1134/s2070048214030120

Supercomputer Modeling of Hydrochemical Condition of Shallow Waters 351

19. Chetverushkin, B., et al.: Unstructured mesh processing in parallel CFD project
GIMM. J. Parallel Comput. Fluid Dyn., 501–508 (2005). https://doi.org/10.1016/
b978-044452206-1/50061-6

20. Sukhinov, A.I., Chistyakov, A.E., Semenyakina, A.A., Nikitina, A.V.: Parallel real-
ization of the tasks of the transport of substances and recovery of the bottom
surface on the basis of schemes of high order of accuracy. J. Comput. Methods
Program.: New Comput. Technol. 16(2), 256–267 (2015)

21. Chistyakov, A.E., Hachunts, D.S., Nikitina, A.V., Protsenko, E.A., Kuznetsova,
I.Y.: Parallel Library of iterative methods of the SLAE solvers for problem of
convection-diffusion-based decomposition in one spatial direction. J. Mod. Probl.
Sci. Educ. 1(1), 1786 (2015)

22. Sukhinov, A.I., Nikitina, A.V., Semenyakina, A.A., Protsenko, E.A.: Complex pro-
grams and algorithms to calculate sediment transport and multi-component sus-
pensions on a multiprocessor computer system. J. Eng. J. Don 38(4(38)), 52 (2015)

23. Sukhinov, A.I., Nikitina, A.V., Semenyakina, A.A., Chistyakov, A.E.: A set of mod-
els, explicit regularized schemes of high order of accuracy and programs for predic-
tive modeling of consequences of emergency oil spill. In: Proceedings of the Inter-
national Scientific Conference Parallel Computational Technologies (PCT 2016),
pp. 308–319 (2016)

24. Nikitina, A.V., Semenyakina, A.A., Chistyakov, A.E.: Parallel implementation of
the tasks of diffusion-convection-based schemes of high order of accuracy. J. Vestn.
Comput. Inf. Technol. 7(145), 3–8 (2016). https://doi.org/10.14489/vkit.2016.07.
pp.003-008

25. Sukhinov, A.I., Nikitina, A.V., Chistyakov, A.E., Semenov, I.S., Semenyakina,
A.A., Khachunts, D.S.: Mathematical modeling of eutrophication processes in shal-
low waters on multiprocessor computer system. In: CEUR Workshop Proceedings
of 10th Annual International Scientific Conference on Parallel Computing Tech-
nologies, PCT 2016, 29 March–31 March 2016, Code 121197, vol. 1576, pp. 320–333.
Russian Federation, Arkhangelsk (2016)

https://doi.org/10.1016/b978-044452206-1/50061-6
https://doi.org/10.1016/b978-044452206-1/50061-6
https://doi.org/10.14489/vkit.2016.07.pp.003-008
https://doi.org/10.14489/vkit.2016.07.pp.003-008

Author Index

Abramova, Olga A. 235
Akhatov, Iskander Sh. 235
Akimova, Elena N. 162
Amosova, Elena S. 294
Antonov, Alexander 3

Barkalov, Konstantin A. 174
Belova, Yulia V. 336
Bezrukov, Alexander 31
Biryukov, Sergey 77

Chistyakov, Alexander E. 306, 336
Chistyakov, Alexander 322

Dergunov, Denis 92
Dlinnova, Ekaterina 77
Dordopulo, Alexey 62
Doronchenko, Yuriy 62

Fedorov, Alexander 62
Frolov, Alexey 3

Gainetdinov, Azamat R. 235
Gergel, Victor P. 174
Grigorjev, Sergej K. 135
Gumerov, Nail A. 235

Il’in, Valery 186
Imomnazarov, Sherzad 266

Kireev, Sergey 266
Kireeva, Anastasiya 280
Kokarev, Mikhail 31
Kondratyuk, Nikolay 77
Konshin, Igor 3
Konyukhov, Sergey 104
Kozinov, Evgeny A. 174
Krendelev, Sergey F. 119
Kuzmina, Kseniia 251

Legalov, Alexander I. 16
Levin, Ilya 62

Marchevsky, Ilia 251
Matkovskii, Ivan V. 16
Misilov, Vladimir E. 162
Moskovsky, Alexander 104

Nikitenko, Dmitry 47
Nikitina, Alla V. 336
Novikov, Ivan Gennadievich 147

Odintsov, Igor 104

Perepechko, Yury 266
Pityuk, Yulia A. 235
Pokatovich, Gennady A. 294
Protsenko, Sophia 322

Rechkalov, Timofey 200
Ryatina, Evgeniya 251

Sabelfeld, Karl K. 280
Semenyakina, Alena A. 336
Shaykhislamov, Denis 31
Shvets, Pavel 47
Sidoryakina, Valentina V. 306
Smirnov, Grigory 77
Sokolinskaya, Irina 216
Sorokin, Konstantin 266
Stegailov, Vladimir 77, 92
Sukhinov, Alexander I. 306, 336
Sukhinov, Alexander 322
Sumbaev, Vladimir V. 336

Timofeev, Alexey 92
Toropov, Vassili V. 174
Tretyakov, Andrey I. 162
Tyutlyaeva, Ekaterina 104

Ushakova, Mariya S. 16

Varlamov, Dmitry A. 294
Vasilyev, Vladimir S. 16
Vishnevsky, Artem K. 119
Voevodin, Vadim 31, 47

Voevodin, Vladimir 3
Volokhov, Alexander V. 294
Volokhov, Vadim M. 294
Voropinov, Andrey Alexandrovich 147

Yakobovskiy, Mikhail V. 135

Zarafutdinov, Ilnur A. 235
Zhizhin, Mikhail 104
Zhumatiy, Sergey 31, 47
Zymbler, Mikhail 200
Zyubin, Alexander S. 294
Zyubina, Tatyana S. 294

354 Author Index

	Preface
	Organization
	Contents
	High Performance Architectures, Tools and Technologies
	Hierarchical Domain Representation in the AlgoWiki Encyclopedia: From Problems to Implementations
	1 Introduction
	2 About the AlgoWiki Project
	3 The Basic Concepts Are: Problem, Method, Algorithm and Implementation
	4 Interrelationships Between Basic Concepts
	4.1 From Problem to Method
	4.2 From Method to Algorithm
	4.3 From Algorithm to Implementation
	4.4 From Implementation to Computations
	4.5 Interconnection of Sub-chains

	5 An Example Description of the ``Problem-Method-Algorithm-Implementation'' Chain in the AlgoWiki Encyclopedia
	6 Conclusions
	References

	A Toolkit for the Development of Data-Driven Functional Parallel Programmes
	1 Introduction
	2 Problems of Imperative Paradigm Employment in Parallel Programming
	3 Features of the Computing Model and the Language of Data-Driven Functional Parallel Programming
	4 A Toolkit for Architecture Independent Parallel Programming
	4.1 Translation of Data-Driven Functional Parallel Programmes
	4.2 Parallel Event Machine
	4.3 Optimisation of Data-Driven Functional Parallel Programmes
	4.4 Formal Verification of Data-Driven Functional Parallel Programmes

	5 Overview of Related Works
	6 Conclusions
	References

	Machine Learning Techniques for Detecting Supercomputer Applications with Abnormal Behavior
	1 Introduction
	2 Background and Related Work
	3 Data Preparation for the Anomaly Detection Approach
	3.1 Discriminant Function Analysis

	4 Methodology for Applying Anomaly Detection Method to Other Supercomputers
	5 Conclusions
	References

	Role-Dependent Resource Utilization Analysis for Large HPC Centers
	1 Introduction
	1.1 The Variety of Resource Utilization Analysis Levels
	1.2 The Paper Structure

	2 Background
	3 The Proposed Approach Principles
	3.1 Levels of Analysis
	3.2 User Roles
	3.3 Jumps Between Levels of Analysis
	3.4 Functional Description of the Interface

	4 Implementation
	5 Evaluation
	6 Conclusions
	References

	High-Performance Reconfigurable Computer Systems with Immersion Cooling
	1 Introduction
	2 Liquid Cooling Systems for Reconfigurable Computer Systems
	3 ``SKAT'' Reconfigurable Computer System Based on Xilinx UltraScale FPGAs
	4 ``SKAT+'' Advanced Reconfigurable Computer System Based on Xilinx UltraScale+ FPGAs
	5 Conclusions
	References

	Hybrid Supercomputer Desmos with Torus Angara Interconnect: Efficiency Analysis and Optimization
	1 Introduction
	2 Related Work
	3 Statistical Data of Desmos Deployment
	4 Energy Consumption Optimization: The VASP Case Study
	5 Case Studies of GPU Efficiency
	5.1 Classical Molecular Dynamics with Gromacs
	5.2 Quantum Molecular Dynamics with TeraChem and GAMESS-US

	6 Parallel File System Benchmarks
	7 Conclusions
	References

	Performance of Elbrus Processors for Computational Materials Science Codes and Fast Fourier Transform
	1 Introduction
	2 Related Work
	3 Methods and Software Implementation
	3.1 Test Model in VASP
	3.2 Fast Fourier Transform

	4 Results and Discussion
	4.1 VASP Benchmark on Elbrus-8S and Xeon Haswell CPUs
	4.2 Fast Fourier Transform on Elbrus CPUs: EML vs. FFTW

	5 Conclusions
	References

	Performance and Energy Analysis of Nighttime Satellite Image Archive Processing Module
	1 Introduction
	2 The Hardware
	3 The Algorithm and Implementation Details
	4 Study of Performance and Energy Consumption
	5 Analysis of the Processing Stage
	6 Archive Processing
	7 Conclusions
	8 Future Work
	References

	Parallel Numerical Algorithms
	Fully Homomorphic Encryption for Parallel Implementation of Approximate Methods for Solving Differential Equations
	1 Introduction
	1.1 Simple Description of the Idea of Constructing a Parallel Fully Homomorphic Encryption

	2 Theoretical Bases for the Construction of Parallel Fully Homomorphic Encryption
	2.1 The Basic Scheme of Parallel Fully Homomorphic Encryption for Integers
	2.2 Encryption Strength
	2.3 Parallel Fully Homomorphic Encryption for Rational Numbers
	2.4 Numerical Example

	3 Parallel Implementation of Numerical Methods for Secure Computations of Differential Equations
	3.1 Estimation of the Effectiveness of Parallel Fully Homomorphic Encryption for Rational Numbers

	4 Conclusion
	References

	Static Balancing Methods in Projection-Based Mesh Generation Algorithm
	1 Introduction
	2 Mesh-Generation Algorithm
	3 Load-Balancing Problem
	3.1 General Parallel Realization Problem in Case of Load Balancing
	3.2 Load Balancing for the Projection Part
	3.3 Load Balancing for Attachment Part
	3.4 Load Balancing for Triangulation of Prism Faces

	4 Practical Experiments
	5 Conclusion
	References

	Fine-Grained Parallel Algorithms in TIM-3D Code
	1 Introduction
	2 Data Decomposition
	3 Fine-Grained Parallelism
	4 Specific Features of Cell Neighborhood in the Three-Dimensional Case
	5 Fine-Grained Paralleling Algorithms
	6 Distinctive Features of Non-overlapping Fine-Grained Parallelism
	7 Measurements of Parallel Efficiency
	8 Conclusions
	References

	Modified Componentwise Gradient Method for Solving Structural Magnetic Inverse Problem
	1 Introduction
	2 Problem Statement
	3 Numerical Methods for the Solution of the Problem
	3.1 Linearized Conjugate Gradient Method
	3.2 Componentwise Gradient Method
	3.3 Modified Componentwise Gradient Method

	4 Parallel Implementation
	5 Numerical Experiments
	6 Conclusions
	References

	Parallel Multipoint Approximation Method for Large-Scale Optimization Problems
	1 Introduction
	2 The Multipoint Approximation Method
	3 Parallel Multipoint Approximation Method
	4 Numerical Example
	5 Conclusions
	References

	High-Performance Computation of Initial Boundary Value Problems
	1 Introduction
	2 Discretization Issues of Nonstationary Problems
	3 Geometrical and Algebraic Issues of Algorithms
	4 Parallel Implementation of the Method
	References

	A Study of Euclidean Distance Matrix Computation on Intel Many-Core Processors
	1 Introduction
	2 Related Work
	3 Accelerating EDM Computation with Intel Xeon Phi
	3.1 Computational Scheme
	3.2 Application of Data Layouts

	4 Experimental Evaluation
	4.1 Background of the Experiments
	4.2 Results and Discussion

	5 Conclusions
	References

	Parallel Method of Pseudoprojection for Linear Inequalities
	1 Introduction
	2 Fejer Mappings and the Pseudoprojection Operation
	3 Parallel Algorithm for Constructing a Pseudoprojection
	4 Subvector Method
	5 Convergence Theorem
	6 Conclusion
	References

	Supercomputer Simulation
	GPU Acceleration of Bubble-Particle Dynamics Simulation
	1 Introduction
	2 Problem Statement
	2.1 Mathematical Model
	2.2 Boundary-Integral Formulation

	3 The Algorithm
	4 GPU Acceleration
	5 Some Physical Results
	6 Conclusions
	References

	VM2D: Open Source Code for 2D Incompressible Flow Simulation by Using Vortex Methods
	1 Introduction
	2 Reconstruction of Flow Variables
	2.1 Velocity Reconstruction
	2.2 Pressure Reconstruction and Loads Computation

	3 Vorticity Generation on Airfoil Surface Line
	4 Vorticity Evolution in a Flow
	5 VM2D Open Source Code
	5.1 The Structure of the VM2D Code
	5.2 Problems Description in VM2D
	5.3 Documentation
	5.4 Main Classes in VM2D
	5.5 Abstract Classes Implementations
	5.6 Results of Simulation
	5.7 VM2D Compilation and Execution

	6 Some Results of Flow Simulation
	6.1 Development of an Unsteady Flow Behind a Circular Cylinder
	6.2 The Blasius Solution
	6.3 Circular Airfoil Wind Resonance
	6.4 Autorotation Simulation of the Savonius Rotor

	References

	Modeling of Nonstationary Two-Phase Flows in Channels Using Parallel Technologies
	1 Introduction
	2 The Mathematical Model
	3 The Numerical Algorithm
	4 Parallel Implementation
	5 Performance Evaluation
	6 Conclusion
	References

	Supercomputer Simulation of Cathodoluminescence Transients in the Vicinity of Threading Dislocations
	1 Introduction
	2 Algorithm for Simulation of CL and EBIC Intensity Transients
	2.1 The Transient Diffusion-Reaction Equation
	2.2 Random-Walk-on-Spheres Algorithm for the Transient Diffusion-Reaction Equation

	3 Parallel Implementation of the Algorithm for Simulation of CL and EBIC Intensity Transients
	4 Results of the Simulation of CL, EBIC and Flux on Dislocations
	5 Conclusions
	References

	Supercomputer Simulation of Promising Nanocomposite Anode Materials for Lithium-Ion Batteries: New Results
	1 Introduction
	2 Simulation Methods
	2.1 Estimation of Adequacy of the Models

	3 Computational Complexity and Efficiency of Calculations
	4 Simulation Results
	4.1 Computer Simulation of Various Types of Porous Nanocomposite Materials Based on Carbon and Silicon
	4.2 Quantum-Chemical Simulation of Transport Processes of Lithium Ions in Nanocomposite Materials Based on Carbon and Silicon

	5 Conclusions
	References

	Parallel Solution of Sediment and Suspension Transportation Problems on the Basis of Explicit Schemes
	1 Introduction
	2 Complex of Mathematical Models
	2.1 Continuous 3D Model of Diffusion-Convection-Aggregation of Suspensions
	2.2 Nonlinear 2D Model of Sediment Transport

	3 Linearization of 2D Sediment Transport Model
	4 Discretization of Models
	4.1 Discretization of the Suspension Transport Model
	4.2 Discretization of Sediment Transport Model

	5 Estimation of Computational Complexity Suspension Transport Model Realization on a Multiprocessor Computer System
	6 Conclusion
	References

	Three-Dimensional Mathematical Model of Wave Propagation Towards the Shore
	1 Introduction
	2 Statement of the Problem of Wave Hydrodynamics
	3 The Discrete Model of Hydrodynamics of Shallow Water Reservoirs
	4 Method for Solving the Grid Equations
	5 Parallel Version of the Algorithm for Solving the Grid Equations
	6 Measurement of Parameters of Wave Processes on the Basis of Full-Scale Observations
	7 Software Implementation of the Model of Wave Hydrodynamics
	8 Results of Numerical Experiments
	9 Conclusion
	References

	Supercomputer Modeling of Hydrochemical Condition of Shallow Waters in Summer Taking into Account the Influence of the Environment
	1 Introduction
	2 Problem Statement
	3 Model Description
	4 Modified Alternating Triangular Method
	5 Parallel Implementation
	6 Results of Experimental Studies
	7 Program Complex Description
	8 Results of Numerical Experiments
	9 Conclusions
	References

	Author Index

