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Foreword

The species Escherichia coli represents well-known microorganisms that are used
as “working horses” in molecular biology, genomics, and biotechnology. It has
long been recognized that Escherichia coli is also a group of organisms with high
pathogenic potential both intestinally and extraintestinally. In addition, E. coli is a
member of the microbiome in humans, animals, and even plants. In summary,
E. coli is an organism with countless faces and the present book addresses various
aspects of this organism.

Bacteria of Shigella species are strongly related to E. coli, so one could claim
that Shigella organisms belong to the E. coli species. In the first chapter, Ilia
Belotserkovsky and Philippe Sansonetti describe the cell biology of E. coli like
Shigella pathogens causing infections of the gut. Claire Jenkins describes
enteroaggregative E. coli bacteria, which have the capacity to colonize the gut and
to induce gut-associated infectious diseases. Her findings are presented in the
second chapter.

Shigella and a number of E. coli pathogens possess gene clusters encoding for a
Type III secretion system (T3SS). In his chapter, Gad Frankel describes the Type III
system machinery of EPEC, which enables the transport of proteins from
microorganisms. The Type III secretion machineries allow the transfer of effector
molecules to the outside and into intestinal host cells. Intestinal pathogenic E. coli
uses this mechanism to stimulate diseases. The chapter of Abigail Clements
describes the roles of the infected E. coli effectors, while the chapter written by
Helge Karch deals with enterohemorrhagic E. coli (EHEC), which play an
important role in public health issues. EHEC bacteria are able to induce
gut-associated infections. Furthermore, the Shiga toxins—produced by EHEC—are
responsible for diseases outside the gut, e.g., the kidney.

In addition to intestinal infections, E. coli strains may also induce extraintestinal
diseases, such as infections of the urinary tract and systemic infections. Eliora
Ron’s chapter introduces the various types of extraintestinal pathogens containing
the capacity to induce diseases in humans and animals. The analysis of these
pathogens under the “One Health” aspect is of utmost importance, since E. coli is a
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“melting pot” for gene transfer both among various strains of E. coli as well as of
other bacterial species.

Uri Gophna, an expert in genetic analysis of E. coli, describes in his chapter
evolutionary processes and the emerging drug resistance in E. coli—another
important topic in the biology of this microorganism. Next to its role as intestinal
and extraintestinal pathogens, E. coli act is also a commensal bacterium in the gut
of many species. Various sequence types of E. coli play a role in drug resistance,
gene transfer, and pathogenicity. Joseph Paitan illustrates these aspects in his
chapter.

As mentioned, E. coli strains are serious pathogens. Therefore, it is necessary to
develop vaccines in order to combat intestinal and extraintestinal infections. In her
chapter, Mariagrazia Pizza describes these efforts undertaken in the development of
vaccines against different types of E. coli.

Summarizing the articles published in this book on E. coli,, it is clear that these
highly diverse organisms play an important role in many areas from public health to
biotechnology and other fields. I strongly recommend this book for further reading
and discussions.

Halle, Germany Jörg Hacker
President of the German Academy of

Sciences Leopoldina—National
Academy of Sciences

vi Foreword



Contents

Shigella and Enteroinvasive Escherichia Coli . . . . . . . . . . . . . . . . . . . . . 1
Ilia Belotserkovsky and Philippe J. Sansonetti

Enteroaggregative Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Claire Jenkins

The Type III Secretion System of Pathogenic Escherichia coli . . . . . . . . 51
Sabrina L. Slater, Agnes M. Sågfors, Dominic J. Pollard,
David Ruano-Gallego and Gad Frankel

Modulation of Host Cell Processes by T3SS Effectors . . . . . . . . . . . . . . 73
Avinash R. Shenoy, R. Christopher D. Furniss, Philippa J. Goddard
and Abigail Clements

The 2011 German Enterohemorrhagic Escherichia Coli
O104:H4 Outbreak—The Danger Is Still Out There . . . . . . . . . . . . . . . 117
Stefanie Kampmeier, Michael Berger, Alexander Mellmann, Helge Karch
and Petya Berger

Extraintestinal Pathogenic Escherichia coli . . . . . . . . . . . . . . . . . . . . . . 149
Dvora Biran and Eliora Z. Ron

Pandemic Bacteremic Escherichia Coli Strains: Evolution
and Emergence of Drug-Resistant Pathogens . . . . . . . . . . . . . . . . . . . . . 163
Yael Yair and Uri Gophna

Current Trends in Antimicrobial Resistance of Escherichia coli . . . . . . 181
Yossi Paitan

Vaccines Against Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Barbara Nesta and Mariagrazia Pizza

vii



Shigella and Enteroinvasive
Escherichia Coli

Ilia Belotserkovsky and Philippe J. Sansonetti

Contents

1 Introduction.......................................................................................................................... 2
2 Evolution of Enteroinvasive Pathovars of E. Coli ............................................................. 3
3 Colonization of the Intestinal Lumen and Preparation of the Virulence Arsenal ............. 5
4 Subversion of Intestinal Epithelial Cells............................................................................. 6

4.1 Diarrhea-Inducing Toxins........................................................................................... 6
4.2 Invasion to the Colonic Epithelium ........................................................................... 7
4.3 Intracellular Movement, Autophagy Escape, and Dissemination.............................. 11
4.4 Epithelial Integrity Preservation ................................................................................. 12

5 Subversion of the Immune System ..................................................................................... 13
5.1 Manipulation of the Host Innate Immunity ............................................................... 13
5.2 Manipulation of the Host Adaptive Immunity .......................................................... 16

6 Concluding Remarks ........................................................................................................... 17
References .................................................................................................................................. 19

Abstract Shigella and enteroinvasive Escherichia coli (EIEC) are gram-negative
bacteria responsible for bacillary dysentery (shigellosis) in humans, which is
characterized by invasion and inflammatory destruction of the human colonic
epithelium. Different EIEC and Shigella subgroups rose independently from com-
mensal E. coli through patho-adaptive evolution that included loss of functional
genes interfering with the virulence and/or with the intracellular lifestyle of the
bacteria, as well as acquisition of genetic elements harboring virulence genes.
Among the latter is the large virulence plasmid encoding for a type three secretion
system (T3SS), which enables translocation of virulence proteins (effectors) from
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the bacterium directly into the host cell cytoplasm. These effectors enable the
pathogen to subvert epithelial cell functions, promoting its own uptake, replication
in the host cytosol, and dissemination to adjacent cells while concomitantly
inhibiting pro-inflammatory cell death. Furthermore, T3SS effectors are directly
involved in Shigella manipulation of immune cells causing their dysfunction and
promoting cell death. In the current chapter, we first describe the evolution of the
enteroinvasive pathovars and then summarize the overall knowledge concerning the
pathogenesis of these bacteria, with a particular focus on Shigella flexneri.
Subversion of host cell functions in the human gut, both epithelial and immune
cells, by different virulence factors is especially highlighted.

1 Introduction

Bacillary dysentery (or shigellosis) is clinically characterized by severe bloody and
mucous diarrhea associated with fever and abdominal cramps. These symptoms
reflect invasion of bacteria into colonic and rectal mucosa, provoking a strong
inflammatory response that leads to destruction of the colonic epithelium.
Life-threatening complications may also occur including hypoglycemia, bac-
teremia, septicemia, hemolytic uremic syndrome leading to acute renal failure and
toxic megacolon (a lower intestinal occlusion accompanied by perforation and
peritonitis) (van den Broek et al. 2005). Unlike other enteric infections (i.e., rota-
virus, enterotoxigenic E. coli (ETEC), and Vibrio cholerae) that are marked by
severe watery diarrhea, shigellosis is less likely to induce major purge; hence,
dehydration and electrolyte imbalance are less frequent. Shigellosis remains one of
the leading causes of morbidity and mortality mostly in low-income countries
especially among children under 5 years old in endemic regions (Kotloff et al.
2013). In addition, bacillary dysentery contributes to malnutrition causing severe
growth retardation in young children (van den Broek et al. 2005).

The etiological agents of shigellosis are E. coli-related bacteria which, histori-
cally, were divided into Shigella species (with four subgroups) and enteroinvasive
Escherichia coli (EIEC) species, depending on several clinical and biochemical
differences. However, with the development of molecular tools and the rise of the
genomics era, it became clear that these species belong to the same genus as well as
other pathogenic and commensal E. coli (discussed below). The unique feature of
dysentery-causing strains is the ability to invade host cells, which requires specific
molecular adaptations from the bacterial side and induces a particular immune
response from the host side. In the current chapter, we first briefly describe the
evolution of enteroinvasive E. coli subgroups and then focus on the virulence
factors that enable these bacteria to invade and colonize the intestinal mucosa
through manipulation of both epithelium and immune system. Since Shigella
flexneri is the most studied subgroup, it is used as an example throughout this
review while other subgroup specific factors are occasionally discussed.
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2 Evolution of Enteroinvasive Pathovars of E. Coli

Kiyoshi Shiga made the first characterization of bacteria causing bacillary dysentery
in 1898. He noticed the similarities of this strain to E. coli (or Bacillus coli as it was
called back then) and in order to distinguish this clinically relevant strain from
non-virulent E. coli he named it Bacillus dysenterie (Bensted 1956).

In the following years, more strains were isolated by several researchers and in
the 1940s a Shigella genus was established comprising four species: S. dysenteriae,
S. flexneri, S. boydii, and S. sonnei (Ewing 1949; Bensted 1956). Each species can
be further subdivided into several serotypes (15 of S. dysenteriae, 14 of S. flexneri,
20 of S. boydii, and a single serotype of S. sonnei), based on antibody recognition of
the different structures of the lipopolysaccharide (LPS) O-antigen repeat units
exposed on the outer membrane of the bacteria. However, in 1944, strains of E. coli
capable of invading the mucosa of the colon similarly to Shigella were identified
and called enteroinvasive E. coli (EIEC), in contrast to other pathogenic strains of
E. coli that did not penetrate the mucosa (such as enterohemorrhagic, enter-
opathogenic, and enterotoxigenic E. coli, i.e., EHEC, EPEC, and ETEC). Generally,
EIEC shows very similar characteristics to Shigella (and sometimes even share
similar serotypes) with a milder virulence and a higher infectious dose required
(DuPont et al. 1989). In 1958, Shigella was defined as a non-motile bacterium (with
the exception of a few S. flexneri serotype six strains) that does not produce gas
from fermentable carbohydrates and that is much less active in the utilization of
different carbohydrates compared to E. coli (Edwards and Ewing 1986).
Interestingly, S. sonnei stands apart from the rest of the Shigellae, being able to
utilize more diverse sources of carbon. Biochemically, EIEC is much more similar
to Shigella than to nonpathogenic E. coli (Farmer and Davis 1985) and is distin-
guishable from Shigella only by higher prevalence of the ability to ferment mucate
and utilize serine, xylose or sodium acetate (Doyle 1989). With the rise of the
molecular era and the accumulation of whole genome sequences, it became possible
to investigate the relatedness between different species and to get insights into their
evolution. It became evident that both Shigella and EIEC are genetically very
similar and have a very high similarity to non-virulent E. coli, which taxonomically
would put them all into one genus (Lan et al. 2004; Pettengill et al. 2015 and more).
These two pathovars are estimated to have arisen independently on multiple
occasions from commensal E. coli, while the earliest event for Shigella is estimated
to have happened about 50,000–270,000 years ago (Pupo et al. 2000; Pettengill
et al. 2015), coevolving with early humans. This comes well along with the fact that
Shigella naturally infects only Homo sapiens (with the exception of a few
non-human primates). Yet, while Shigella and EIEC are so similar genetically to
other E. coli, what makes the striking clinical difference between the commensal
E. coli and the enteroinvasive strains? When comparing the genomes of Shigella/
EIEC to commensal E. coli K12, which are different by about 1.5% only, two main
features are clearly noticeable: gain of virulence factors and loss of functional genes
interfering with virulence.
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First, all enteroinvasive strains contain an invasion plasmid (pINV) and
pathogenicity islands (PIs) on the chromosome, acquired by horizontal gene transfer
from another genus. This is evident from a different codon usage, abundance of
insertion sequences and the GC content of the genes found on these genetic elements
(e.g., the GC content of genes on pINV is below 40% while the rest of Shigella
genome is around 50%). The invasion plasmid is relatively large (approximately
220 kb) and harbors around 100 genes. However, it possesses a core of 30 kb that is
necessary and sufficient for the enteroinvasive phenotype of the bacteria (Buchrieser
et al. 2000). About 50 genes found in this region encode for structural and auxiliary
proteins of a type three secretion system (T3SS) that comprises a syringe-like
structure (the type three secretion apparatus, T3SA) and proteins translocated
through it, called effectors. The T3SA spans the two membranes of the bacterium
and is inserted into the membrane of the target cell, thus allowing translocation of
virulence factors from the pathogen directly into the host cytoplasm (see chapter
“Type Three Secretion” for more details). There are around 25 T3SS effectors
encoded on the virulence plasmid and 5–7 more encoded on the chromosome. In
addition to the virulence plasmid, there are three main PIs and a multidrug resistance
locus often found on the chromosome of Shigella/EIEC, encoding for about 35
virulence-associated and antibiotic resistance proteins [reviewed in (Parsot 2005;
Ogawa et al. 2008; Schroeder and Hilbi 2008; Parsot 2009)]. The function of the
different virulence factors is discussed in the following sections.

In contrast to virulence factor acquisition, a second feature characterizing
Shigella/EIEC pathogenicity is the loss of function of some genes, so-called black
holes. This loss was suggested to occur due to either interference of these genes
with virulence or adaptation of the bacterium to the intracellular lifestyle with
available nutrients (Maurelli et al. 1998). In fact, while close to 200 genes were
obtained, about 900 genes are missing or were inactivated in S. flexneri during the
divergence from commensal E. coli (Jin et al. 2002; Wei et al. 2003). One reason
for gene loss or inactivation is that their products interfere with the function of the
newly acquired virulence factors. Such an example is the outer membrane protease
OmpT that interferes with the polar localization of the actin nucleator IcsA, which
is necessary for intracellular movement of Shigella and hence for its spread and
virulence (discussed below). Another example is the lysine decarboxylase (encoded
by cadA) that catalyzes the production of the polyamine cadaverine, which was
shown to inhibit the function of Shigella enterotoxins (Sansonetti et al. 1983;
Maurelli et al. 1998). Furthermore, it was found that de novo synthesis of nicoti-
namide adenine dinucleotide (NAD) is inactivated in Shigella since its precursor
(quinolinate) inhibits bacterial virulence (Prunier et al. 2007). Interestingly, despite
the potential benefits of directed motility and attachment to host cells, Shigella/
EIEC does not synthesize functional flagella and fimbria (Bravo et al. 2015). The
most convincing explanation for such loss is that both surface-exposed structures
are potent activators of the host innate immunity, which might interfere with the
mucosal colonization process (Sakellaris et al. 2000; Ramos et al. 2004). In addi-
tion, Shigella/EIEC could afford loosing their autonomous motility due to an
acquired ability of host-derived actin-based intracellular movement (discussed
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below). An alternative explanation for gene inactivation is the abundance of
nutrients inside the host, which renders many bacterial metabolic pathways (e.g.,
lactose fermentation) dispensable (Ito et al. 1991; Yang et al. 2005). Overall, the
importance of these “black holes” for virulence is further supported by the fact that
different Shigella/EIEC strains possess various independent mutations (also called
patho-adaptive mutations) in the same “anti-virulent” gene clusters. A good
example of such convergent evolution is the cad locus: While in some strains of S.
flexneri and EIEC this locus is completely absent, it is present but inactive due to
either insertion sequences or replacement with a prophage in S sonnei and some
other EIEC strains (Day et al. 2001; Casalino et al. 2003; Casalino et al. 2005).

In summary, Shigella and EIEC along with other pathogenic E. coli are all
taxonomically part of the E. coli genus based on sequence similarity. However,
based on biochemical properties, invasive lifestyle, and clinical manifestations,
Shigella and EIEC can be separated from other E. coli and designated as a cohort of
enteroinvasive E. coli pathovars. Nevertheless, they do not represent an evolution-
arily separate group but rather result from a convergent evolution leading to invasive
patho-adaptation. For the sake of simplicity and as most of research work focused on
pathovars initially called Shigella, this name is used throughout this review.

3 Colonization of the Intestinal Lumen and Preparation
of the Virulence Arsenal

Shigella is directly transmitted from person to person by the fecal–oral route or via
ingestion of contaminated food and water. Upon ingestion, the acidic environment
of the stomach induces expression of bacterial periplasmic proteins that contribute
to acid resistance of Shigella (Porter and Dorman 1994), enabling its survival at pH
2.5 for at least 2 h (Gorden and Small 1993). After reaching the intestine, Shigella
encounters a population of microorganisms comprising over 1000 different species
at a very high density of up to 1012 bacteria per gram of feces in the colon (Martins
dos Santos et al. 2010), which is the preferential infection site for Shigella. Given
the extremely low infectious dose [between 10 and 100 bacteria (DuPont et al.
1989)], it is evident that Shigella might have evolved mechanisms to compete for its
niche while being vastly outnumbered by the gut microbiota. In fact, several studies
stressed the inhibitory role of microbiota in Shigella infection [Reviewed in
(Anderson et al. 2016)]. At least one of such mechanisms allowing survival in such
a dense habitat is the secretion by some Shigella isolates (especially S. sonnei) of a
small inhibitory protein called colicin (encoded by shiD in PI-1 on the chromo-
some), which targets phylogenetically related bacteria (Calcuttawala et al. 2015).

Another obstacle on the way of Shigella to the epithelial surface is the mucus
layer that covers the gastrointestinal tract, reaching a thickness of 1 mm in the
colon. It is made primarily of mucins, which are high-molecular weight glyco-
proteins linked through intermolecular disulfide bonds. Besides creating a physical
barrier between the epithelium and the microbiota, this entity is enriched in
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antimicrobial peptides (AMPs) and secretory immunoglobulins A (sIgA) that
restrict bacterial growth, especially in the dense deeper part of the mucus layer.
Since Shigella predominantly lacks motility, it has evolved other ways to reach the
intestinal epithelial cells (IEC). First, Shigella preferentially binds mucus from
human colon (as opposed to mucus from other parts of the gut and mucus from
other mammals), suggesting an explanation for its highly specialized host and tissue
tropism (Izhar et al. 1982; Sudha et al. 2001). This binding occurs through weak
glycan–glycan interactions between the heavily glycosylated mucins and the highly
abundant O-antigen sugar repeats that decorate the outer layer of Shigella’s LPS.
Second, Shigella is predicted to encode at least one of the SPATE Serine Protease
Autotransporters of Enterobacteriaceae related mucinases called Pic and EatA,
which are hypothesized to pave the way for this pathogen to penetrate the mucus
layer (Haider et al. 1993; Henderson et al. 1999; Patel et al. 2004).

While passing through the gastrointestinal tract, Shigella receives important
signals that modulate the function of its virulence factors. The major transcriptional
regulator of virulence genes is VirF whose expression is inhibited by the
histone-like nucleoid-structuring (H-NS) repressor under conditions of low tem-
perature and low osmolarity. Once ingested, the temperature shift leads to VirF
expression that in turn induces another transcription factor, VirB, which directly
controls the synthesis of important virulence genes, including those encoding for
the T3SS (Maurelli and Sansonetti 1988; Porter and Dorman 1994; Durand et al.
2000). Once assembled, the T3SA is not yet ready to target host cells until it binds
bile salts via its needle tip protein IpaD in the intestinal lumen, which introduces a
conformational change and exposes the IpaB protein on the tip of the “secretory
needle.” IpaB together with IpaC forms a pore (called the translocon) inside the host
membrane through which subsequent T3SS effector injection proceeds [(Dickenson
et al. 2011), discussed below]. An additional level of control over the T3SS
function is the sensing of oxygen through the fumarate and nitrate reductase
transcriptional regulator FNR. Anaerobic conditions in the intestine mediate sup-
pression of Spa32 and Spa33 structural components of the T3SA while detection of
O2 in the close vicinity of epithelial cells releases this suppression, promoting
construction of longer T3SA needles (Marteyn et al. 2010). Needle length is critical
for the ability to target the host cell as the surface of Shigella is heavily decorated
with long LPS molecules that otherwise mask T3SA needles (West et al. 2005).

4 Subversion of Intestinal Epithelial Cells

4.1 Diarrhea-Inducing Toxins

One of the hallmarks of shigellosis is the production of bloody mucoid stools.
However, most patients develop an initial phase of watery diarrhea, which is, at
least partially, triggered by two types of toxins encoded on PI-2 and secreted by
several Shigella strains during infection. The first type comprises Shigella
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enterotoxin 1 and 2 (ShET1 and ShET2) encoded by set1A and set1B genes,
respectively (Fasano et al. 1995; Nataro et al. 1995). While the mechanism of their
action is still unknown, at least ShET2 was shown to be secreted through the T3SA
(Farfan et al. 2011). Another toxin causing accumulation of fluids in the intestinal
lumen is the SigA serine protease autotransporter that is able to cleave the intra-
cellular alpha-fodrin altering the cytoskeleton of epithelial cells, although its con-
tribution to the production of watery diarrhea is not clear (Al-Hasani et al. 2009).

Unlike the above-mentioned toxins, Shiga toxin is produced exclusively by S.
dysenteriae type 1 and Shiga-like toxins (SLTs) are produced by certain serotypes
of EHEC from prophage sequences. Shiga toxin is extremely cytotoxic against a
wide variety of cell types (e.g., epithelial, endothelial, leukocytic, lymphoid, and
neuronal cells) and is responsible for the development of vascular lesions in the
colon, the kidney, and the central nervous system. Shiga toxin possesses an AB5
structure with an enzymatically active A–subunit non-covalently associated with
five identical B-subunits. B-subunits mediate binding to the toxin receptor, a neutral
glycolipid of the globo-series, globotriaosylceramide (Gb3) (Lingwood 2003).
Subsequently, the toxin follows the host cell retrograde pathway to reach the
ribosome-enriched endoplasmic reticulum where the A-subunits inhibit protein
synthesis due to their activity as highly specific N-glycosidases that cleave a single
adenine residue from the 28S rRNA component of eukaryotic ribosomes [reviewed
in (Tesh 2010)].

4.2 Invasion to the Colonic Epithelium

4.2.1 Attachment to ECs

Most pathogens have developed numerous molecular devices to adhere and firmly
attach to host cells. However, Shigella seems to be devoid of any common adhe-
sins, pilli, fimbriae, etc. Weak glycan–glycan interactions that serve this pathogen
to bind mucus through the LPS might also contribute to its adsorption to cellular
surfaces thanks to the dense glycocalyx decorating human cells (Day et al. 2015).
Additionally, two ubiquitously expressed proteins were suggested to individually
serve as receptors that promote Shigella invasion: CD44 and a5b1 integrin (Watarai
et al. 1996; Skoudy et al. 2000). These are transmembrane surface proteins that bind
components of the extracellular matrix (hyaluronic acid and fibronectin, respec-
tively) and were suggested to be bound by IpaB (for CD44) and IpaB/C/D (for
a5b1 integrin) T3SA components. In any case, firm adhesion and subsequent
invasion into the cells are not possible without a fully functional T3SS on the
bacterium side and operative actin cytoskeleton machinery on the cell side. It is then
possible that weak initial glycan–glycan interactions allow the bacterium to stay in
contact with the host cell long enough to insert its T3SA needle into the plasma
membrane and to inject T3SS effectors that induce actin rearrangement and
membrane ruffling, ultimately securing the bacterium onto the cell surface
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(discussed below). Besides, activation of the T3SS in response to bile salts triggers
a stronger adhesion of bacteria to IECs, depending on the surface-exposed auto-
transporter IcsA (VirG) in a yet undiscovered mechanism (Brotcke Zumsteg et al.
2014). Additionally, bile salts induce secretion of OspE1 and OspE2 proteins that
remain bound to the outer membrane of Shigella and increase its adherence to
polarized cells (Faherty et al. 2012).

4.2.2 Engulfment by IECs

In order to colonize the colonic mucosa, Shigella must first cross the epithelial
barrier. At least two non-mutually exclusive pathways have been suggested. In both
cases, however, Shigella triggers its uptake into non-phagocytic cells due to the
action of T3SS effectors translocated into the host cells (Fig. 1). The first pathway
suggests that Shigella initially invades microfold (M) cells, a specialized IEC subset
whose role is to sample particles from the gut lumen and present them to the
underlying mucosal lymphoid tissue (transcytosis). Once passed through the M
cells, Shigella invades IECs from their baso-lateral side with a very high efficiency
(Mounier et al. 1992). An alternative pathway of Shigella entry proposes direct
interaction with the apical side of IECs through finger-like protrusions called
filopodia. Usually found in the intercellular junctions, these sensory cellular orga-
nelles probe the environment to establish adhesion structures (Romero et al. 2011).
Bacterial capture by the tip of the filopodia triggers its retraction toward the cell
body where the invasion eventually occurs.

In both pathways, the critical step of Shigella invasion into the host cell is the
T3SS-dependent induction of actin rearrangement and plasma membrane ruffling
that leads to internalization of the bacterium in a macropinocytic-like pathway. This
process is executed by the concerted action of T3SS effectors activating host tyr-
osine kinases and Rho GTPases. Upon contact with the host cell, IpaB interacts
directly with lipids of the plasma membrane leading to the recruitment of IpaC to
the surface of the bacterium. Subsequently, both IpaB and IpaC are secreted into the
host plasma membrane to form a pore (translocon) required for injection of other
effectors into the host cell cytosol (Epler et al. 2009). Interestingly, IpaB directly
binds cholesterol and translocon formation, as well as overall invasion of Shigella
into host cells, is suggested to be dependent on the integrity of the
cholesterol-enriched membrane microdomains (i.e., rafts) (Lafont et al. 2002; van
der Goot et al. 2004) in which both suggested receptors—CD44 and a5b1 integrin
—reside. In addition to its role in translocon formation, IpaC induces actin poly-
merization by activation of signaling via Src tyrosine kinase (Bougneres et al. 2004)
and Cdc42 (Tran Van Nhieu et al. 1999). Furthermore, IpaC directly induces actin
polymerization in vitro (Kueltzo et al. 2003). The IpgB1 and IpgB2 effectors
belonging to WXXE family modulate actin dynamics by mimicking RhoG and
RhoA GTPases, respectively (Table 1). However, these effectors also exert
guanidine exchange factor (GEF) activity toward Rac, Cdc42 (for IpgB1), and
RhoA (for IpgB2) actin regulators [reviewed in (Carayol and Tran van Nhieu
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2013)]. The IpgD phosphatase also participates in induction of membrane ruffling
through hydrolysis of a phosphatidyl-inositol 4,5-bisphosphate lipid, which is
found in the inner leaflet of the plasma membrane and serves as a docking point for
proteins that connect the cortical actin to the membrane (Niebuhr et al. 2000).
De-connecting the cortical actin from the plasma membrane might favor its
remodeling, thus allowing long membrane protrusions. Another effector—IpaA—
binds vinculin and promotes its association with actin filaments, thus mediating
localized actin depolymerization and reduction of the adhesion between cells and
the extracellular matrix. This process contributes to Shigella anchoring to the
membrane ruffles (Tran Van Nhieu et al. 1997) and to completion of the invasion
process by assisting the closure of the bacteria-containing vacuole (Bourdet-Sicard
et al. 1999). Lastly, the invasion process provokes an increase in intracellular
calcium that is necessary for actin polymerization. Subsequently, dense actin fila-
ments in the vicinity of Shigella confines a zone with slower diffusion rates
enabling prolonged local pulses of calcium and probably assisting in effector
concentration close to the entry site (Tran van Nhieu et al. 2013).

Fig. 1 Interaction of Shigella with epithelium and immune cells during invasion.Shigella
translocates across the colonic epithelium via specialized M cells. Then bacteria are phagocytosed
by macrophages, which are often found in close vicinity to M cells, but escape from the resulting
phagosome, promote macrophage pyroptosis, and are released to the lamina propria. Having
access to the baso-lateral side of the IECs, Shigella efficiently invades these cells and disseminates
in the epithelium using actin-based motility. The release of pro-inflammatory cytokines (i.e., IL-8)
and “danger-associated” molecules (i.e., ATP) by IECs and pyroptotic macrophages provokes the
recruitment of neutrophils to the site of infection. The antimicrobial activity of neutrophils enables
Shigella elimination but also causes massive tissue destruction that promotes further invasion of
bacteria from the gut lumen (not shown in the scheme). Additionally, Shigella subverts immune
cells such as DCs, B, and T lymphocytes, which it encounters in the lamina propria, the colonic
lymphoid follicles and, with the progression of infection, the mesenteric lymph nodes. Bacteria
ingested by DCs induce rapid cell death by pyroptosis. T cells lose their ability to migrate upon
contact with Shigella, and those who are invaded eventually die while B cells undergo apoptosis
even without being invaded by the bacteria (see text for details)
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Table 1 T3SS effectors of Shigella involved in subversion of host cell processes

Effector Activity/
Function

Host cell
target

Effect on
epithelial
cells

Effect on inflammation and
immune cells

IpaB Forms pore
(translocon)

Cholesterol
CD44

Bacterial
invasion and
vacuolar
rupture

Bacterial escape from
phagosome; Pyroptosis of
MUs; Inhibition of
EC-mediated inflammation

IpaC Forms pore
(translocon)
Actin
polymerization

Actin
Src
Cdc42

Bacterial
invasion and
vacuolar
rupture

Bacterial escape from
phagosome

IpaD T3SS needle
“plug”

TLR2 MU and T cell apoptosis

IpaA Actin
rearrangement

Vinculin Bacterial
invasion
Reduction of
cell–matrix
adhesion

IpgB1 Actin
rearrangement

Rac Bacterial
invasion

IpgB2 Actin
rearrangement

RhoA Bacterial
invasion

IpgD PI4,5P2
conversion to
PI5P

PI4,5P2 Bacterial
invasion and
vacuolar
rupture
Apoptosis
inhibition

Inhibition of T cells
migration; DAMPs
secretion inhibition in EC

VirA Microtubules
degradation
Inhibition of
NFjB
signaling

Tubulin
Calpastatin
Rab1

Bacterial
intra-/
intercellular
dissemination
Apoptosis
inhibition
Golgi
disruption

Inhibition of EC-mediated
inflammation

OspF Inhibition of
MAPK
signaling

ERKp38 Inhibition of EC-mediated
inflammation

OspG Inhibition of
NFjB
signaling

Ubiquitin Apoptosis
inhibition

Inhibition of EC-mediated
inflammation

OspI Inhibition of
NFjB
signaling

UBC13 E2 Apoptosis
inhibition

Inhibition of EC-mediated
inflammation

OspZ Inhibition of
NFjB
signaling

P65 Apoptosis
inhibition

Inhibition of EC-mediated
inflammation

(continued)
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Although the complete picture of the whole invasion process is still not com-
pletely understood, it is evident that Shigella has developed a variety of effectors
that dynamically modulate host actin to promote bacterium engulfment inside
otherwise non-phagocytic cells.

4.3 Intracellular Movement, Autophagy Escape,
and Dissemination

Following internalization, Shigella rapidly (<15 min) lyses the surrounding vacuole
in a T3SS-dependent manner; however, the exact mechanism of this process is still
elusive. It was demonstrated that the translocon components IpaB and IpaC have
been suggested to directly create holes in the membrane of the vacuole (High et al.
1992; Barzu et al. 1997; Blocker et al. 1999; Hume et al. 2003; Harrington et al.
2006). A recent study found that the phosphatase activity of IpgD is necessary for
recruitment of Rab-11 positive recycling endosomes to the Shigella containing
vacuole, thus promoting its rupture through a yet-to-be identified mechanism
(Mellouk et al. 2014).

Once inside the cytosol, Shigella hijacks the host actin machinery for its intra-
cellular movement. The central bacterial mediator of actin polymerization is IcsA
(VirG) that recruits and activates neuronal Wiskott–Aldrich syndrome protein
(N-WASP), which in turn recruits the Arp2/3 complex. Together they act as a
nucleating factor of actin polymerization that propels the bacterium due to the

Table 1 (continued)

Effector Activity/
Function

Host cell
target

Effect on
epithelial
cells

Effect on inflammation and
immune cells

IpaH9.8 Inhibition of
NFjB
signaling

NEMO/
IKKc
U2AF35

Apoptosis
inhibition

Inhibition of EC-mediated
inflammation

IpaH4.5, Inhibition of
NFjB
signaling

p65 Apoptosis
inhibition

Inhibition of EC-mediated
inflammation

IpaH0722 Inhibition of
NFjB
signaling

TRAF2 Apoptosis
inhibition

Inhibition of EC-mediated
inflammation

OspC3 Inflammasome
inhibition

Caspase 4 Pyroptosis
inhibition

Inhibition of EC-mediated
inflammation

IpaJ Membrane
trafficking
inhibition

ARF1 Golgi
disruption

Inhibition of EC-mediated
inflammation

IpaH7.8 Inflammasome
activation

GLMN Pyroptosis of MUs
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localization of IcsA at one pole of Shigella (Egile et al. 1999). In addition to the
actin-nucleating complex, the T3SS-secreted cysteine protease VirA assists the
intracellular movement of Shigella by degrading the dense microtubule network
(Yoshida et al. 2002).

Any intracellular bacterium faces the challenge of being trapped and directed to
degradation by a process called autophagy. This is a complex system used by the
cell for sequestering cytoplasmic content in de novo generated double-membrane
vesicles that subsequently fuse with lysosomes. This process not only allows
recycling of cytosolic components but also enables targeting and destruction of
intracellular pathogens thanks to the specific recognition of common pathogenic
components. When associated with the host membrane upon cell entry, Shigella is
targeted by the autophagy machinery in an IcsA-dependent manner. However, due
to the not-well understood action of another surface protein IcsB, the bacterium
succeeds in escaping using the power of polymerizing actin tails (Ogawa et al.
2005; Mostowy et al. 2010; Campbell-Valois et al. 2015).

In addition to intracellular movement and autophagy escape, actin-based motility
enables Shigella to spread to adjacent epithelial cells through the formation of
protrusions in the cell membrane that preferentially occurs at tri-cellular junctions
(Fukumatsu et al. 2012). Interestingly, when a bacterium is found in the cytosol, its
T3SS is inactive but once pushed against the plasma membrane it is reactivated,
thus allowing a new cycle of cellular invasion to proceed in the neighboring cell
(Kuehl et al. 2014; Campbell-Valois et al. 2014).

Proliferation inside host cells requires dramatic adaptation of the pathogen to a
new environment, in which access to several nutrients such as iron is limited and is
under the control of the host. Due to its intrinsic toxicity, iron is normally
sequestered inside the cytosol by dedicated proteins. Shigella expresses several
siderophores (PI-encoded IucA-D, IutA) and several iron transport systems (such
FecA-E, FecI, FecR) that are able to scavenge the intracellular iron for the bacterial
benefit [reviewed in (Payne et al. 2006)].

4.4 Epithelial Integrity Preservation

Successful replication of Shigella inside IECs induces different stresses and,
together with detection of intracellular bacteria (discussed in the next section), leads
to cell death and destruction of the colonic epithelium. Occurring too early, this
does not only abolish the replicative niche of the bacteria, but also prevents
cell-to-cell spread. Therefore, Shigella evolved to interfere with these processes at
different levels.

The reaction of the cell to the infection and the accumulating damage is to
induce two parallel processes: inflammation (discussed in the next section) and
programed cell death (apoptosis). The master regulator of both processes is the
transcriptional factor nuclear factor kB (NF-kB). Several different signaling path-
ways in the cell lead to its activation and Shigella evolved to interfere with many of
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them via the action of specific plasmid-encoded T3SS effectors, including OspF,
OspG, OspI, OspZ, IpaH9.8, IpaH4.5, IpaH0722 [reviewed in (Ashida et al. 2015;
Killackey et al. 2016)]. The above-mentioned PI4,5P phosphatase effector IpgD
generates PI5P that contributes to epidermal growth factor receptor (EGFR) acti-
vation, which sustains the PI3 K/Akt pro-survival signaling by inducing
Mdm2-mediated proteasomal targeting of the pro-apoptotic factor p53 (Pendaries
et al. 2006). Another effector, VirA, also inhibits the p53 pathway by binding to the
calpain inhibitor calpastatin, thus activating the calpain protease that degrades p53
(Bergounioux et al. 2012). An additional way for epithelial cells to fight intracel-
lular infection is the induction of inflammasome complexes that lead to
pro-inflammatory cell death. Shigella interferes with the non-canonical caspase-4
mediated pathway of inflammasome induction through secretion of the T3SS
effector OspC3 that sequesters caspase-4, thus preventing its activation (Kobayashi
et al. 2013). Besides preventing cell death, Shigella also utilizes strategies to pre-
vent IEC shedding, which is one of the defense mechanisms against intracellular
pathogens. To this end, OspE1/2 increases cell anchoring to the extracellular matrix
by binding to the integrin-like kinase (Kim et al. 2009).

5 Subversion of the Immune System

Every pathogen that breaches the natural barrier of the host has to face the different
facets of the immune system. Some pathogens (including Shigella) evolved an
intracellular lifestyle that aids in the evasion from humoral immunity (i.e., anti-
bodies, complement, reactive oxygen species). However, proliferation of bacteria
inside host cells is detected through various pathogen- and danger-associated
molecular patterns (PAMPs and DAMPs, respectively), thus provoking inflam-
mation and immune cell recruitment to fight the infection. In this section, we
discuss how Shigella, with the help of its virulence factors (Table 1), many of
which are already described in the previous section, subvert both innate and
adaptive immunity.

5.1 Manipulation of the Host Innate Immunity

5.1.1 Non-specific Barrier Subversion

The first non-specific line of defense in the gut is the mucus (discussed above),
which, besides being a physical barrier between the microbiota and the ECs, also
contains antimicrobial peptides (AMPs) that play a crucial role in intestinal
homeostasis and protection against pathogens (Hancock and Diamond 2000;
Sansonetti 2004). Usually, secretion of AMPs is augmented during interaction with
pathogens. However, upon Shigella infection, the production of several peptides
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(i.e., LL-31, human b-defensins 1 and 3) is down-regulated (Islam et al. 2001;
Sperandio et al. 2008). More specifically, mucin-producing polarized human
intestinal ECs infected with Shigella are affected in mucin gene transcription
(particularly MUC5AC), protein glycosylation, and secretion. The modified mucus
is unable to form a thick protective gel staving off the bacteria from IEC surface and
instead creates a thin layer that sticks to the apical side of the cell, thus favoring
even more the infection by the bacteria (Sperandio et al. 2013).

Another non-specific barrier is the complement system, which is found in tissues
and body fluids. Components of this system are able to bind to the bacterial surface,
thus leading to opsonization and lysis (Janeway et al. 2009). However, the presence
of the long polymers of O-antigen at the bacterial surface is important for S. flexneri
resistance to direct complement-mediated serum killing, probably by binding the
complement away from the bacterial membrane (Hong and Payne 1997).
Interestingly, S. sonnei, which has a relatively short LPS (20–25 units, versus up to
100 units of S. flexneri), possesses instead a high-molecular weight capsule. This
capsule is characterized by structural similarity to the LPS O-antigen and exerts
similar function in preventing complement-mediated killing (Caboni et al. 2015).

5.1.2 Intestinal Epithelial Cell Subversion

In addition to their function in nutrient absorption, IECs also play an important role
in recognizing invasive pathogens and recruiting immune cells to the site of infec-
tion. Therefore, the epithelium is considered as a part of the host innate immunity.
Extracellular Shigella can be recognized via the binding of LPS to Toll-like receptor
4 (TLR4), which is mostly found on the plasma membrane of myeloid cells, pro-
voking a pro-inflammatory response (Poltorak et al. 1998; Hoshino et al. 1999).
However, ECs detect mainly intracellular Shigella through the binding of bacterial
cell wall peptidoglycan subunits to cytoplasmatic Nod-like receptors NOD1 and
NOD2, thus leading to both mitogen-activated protein kinase (MAPK) and NF-kB
pro-inflammatory signaling. Activation of these pathways leads to secretion of
different pro-inflammatory cytokines and chemokines, including interleukin-8 (IL-8)
that recruits neutrophils, which are required for eventual pathogen elimination but
also contribute to massive tissue destruction. As mentioned above, several T3SS
effectors are used by Shigella to interfere with these signaling cascades at different
levels, thus reducing the inflammation and helping pathogen proliferation.

Furthermore, secretion of pro-inflammatory molecules (as well as antimicrobial
peptides and mucus) by infected cells relies on effective secretory mechanisms. The
Golgi apparatus is a central organelle involved in secretion of proteins by
eukaryotic cells. Upon infection by Shigella, the Golgi apparatus is completely
disrupted by the action of three T3SS effectors: VirA, IpaJ, and IpaB. VirA and IpaJ
target Rab and ARF GTPases, respectively, two major regulators of membrane
trafficking whose inactivation leads to Golgi fragmentation (Dong et al. 2012;
Burnaevskiy et al. 2013; Burnaevskiy et al. 2015). IpaB also contributes to Golgi
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disruption through its ability to bind and redirect cholesterol from inner membranes
toward the entry site of Shigella in the plasma membrane (Mounier et al. 2012).

Apart from PAMPs, damaged and stressed cells release DAMPs (such as ATP
and uric acid) through plasma membrane hemi-channels, which eventually triggers
inflammation. The T3SS effector IpgD produces PI5P that prevents hemi-channels
opening and therefore reduces the inflammatory response (Puhar et al. 2013).

5.1.3 Phagocytic Cell Subversion

After crossing of the epithelial lining, bacteria encounter phagocytic cells that are
present in intestinal lymphoid follicles, especially macrophages (MUs) that are
located beneath the M cells. During the early stages of infection, Shigella is indeed
phagocytosed by resident macrophages and dendritic cells (DCs). However, these
cells rapidly die when infected with Shigella in vitro (Zychlinsky et al. 1992;
Edgeworth et al. 2002). In fact, Shigella escapes from the phagocytic vacuole into
the cytosol using its T3SS, similarly to the way it happens in IECs. Subsequently,
bacteria multiply within invaded macrophages and dendritic cells and induce their
pro-inflammatory cell death called pyroptosis. This process is initiated by the
recognition of the T3SA needle protein components MxiH and MxiI by neuronal
apoptosis inhibitory proteins (NAIP). NAIP proteins induce NOD-like receptor
(NLRC4)-dependent inflammasome activation that leads to pyroptotic death of
MUs, resulting in secretion of the pro-inflammatory cytokines IL-1b and IL-18
(reviewed in (Bergsbaken et al. 2009). Additionally, besides contributing to
translocon formation, IpaB is able to form an ion channel allowing an influx of
potassium ions (among others) that is recognized by the NLRC4-inflammasome,
further enhancing the pyroptosis process (Senerovic et al. 2012). Furthermore, the
IpaH7.8 T3SS effector induces NLRC3 and NLRC4 inflammasomes (Suzuki et al.
2014). Recently, another pathway resulting in MU death following Shigella
infection describes apoptosis activation via the IpaD T3SA-needle tip protein
[discussed below (Arizmendi et al. 2016)].

Apparently, the rapid killing of phagocytic cells seems to be beneficial to
Shigella, especially due to the fact that once released from dying MUs in the lamina
propria, bacteria can invade epithelial cells from the baso-lateral side (which is a
highly efficient process compared to infection of the apical side of IECs). On the
other hand, pyroptosis-associated neutrophil recruitment eventually promotes the
clearance of Shigella bacteria. Indeed, several observations suggest that Shigella
invests resources in dampening neutrophil recruitment and activation. First, Shigella
expresses a PI-encoded virulence factor, called ShiA, that hinders neutrophil
recruitment in a yet-to-be discovered mechanism (Ingersoll et al. 2003). Second,
during proliferation in epithelial cells Shigella alters the acetylation levels of its LPS,
as compared to “free-living” extracellular bacteria. The decrease of LPS acetylation
reduces its immuno-stimulatory capacity toward phagocytic cells, thus significantly
reducing TLR4-mediated inflammasome activation, IL-1b release from infected
MUs and the capacity to induce oxidative burst in neutrophils (Paciello et al. 2013).
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Controversially, recruitment of neutrophils during the initial steps of infection
might contribute to bacterial colonization by destabilization of the epithelial barrier,
thus allowing Shigella to reach the baso-lateral side of the IECs while bypassing the
M cells (Sansonetti et al. 1999). Another ambiguity is that although neutrophils
indeed efficiently trap and kill Shigella (Weinrauch et al. 2002; Brinkmann et al.
2004), they also undergo T3SS-dependent necrosis (François et al. 2000). Another
important virulence factor enabling Shigella to avoid killing by neutrophils and
MUs is the iron-containing superoxide dismutase FeSOD encoded by the sodB gene
found on the chromosome (Franzon et al. 1990). This enzyme converts superoxide
radicals, produced by phagocytic cells as a part of their bactericidal activity, into
H2O2 and O2 (McCord and Fridovich 1978). Overall, the interplay between neu-
trophils and Shigella in disease progression is still not clear.

5.2 Manipulation of the Host Adaptive Immunity

Shigella-specific immunity elicited upon natural infection is characterized by the
induction of a humoral response directed mainly against LPS and to a lesser extent
against some protein effectors (Islam et al. 1995b; Phalipon et al. 1995; Levine et al.
2007). Protective immunity is serotype specific, pointing out the O-antigen of the
polysaccharide part of LPS as the target for protective antibodies. However,
antibody-mediated protection arises only after several episodes of infection, is of
short duration, and is poorly efficient in limiting reinfection, particularly in young
children (Raqib et al. 2000; Raqib et al. 2002). Considering the instructive role of
innate immunity in the acquired immune response (Luster 2002; Iwasaki and
Medzhitov 2010), modulation of the host innate immune responses by Shigella
certainly affects the development of a protective adaptive immunity. Indeed, several
lines of evidence suggest that Shigella-induced acute inflammation contributes to
the impairment of the adaptive immune response by the production of immuno-
suppressive cytokines (such as IL-10 and TGF-b) (Raqib et al. 1995; Phalipon and
Sansonetti 2007; Sperandio et al. 2008; Sellge et al. 2010). In addition, since
NF-jB is also a major regulator of the adaptive immune response, inhibition of the
NF-jB signaling by Shigella in IEC (as described above) harms not only the innate,
but also the adaptive immunity. Moreover, high levels of MU, DC, B cell, and T
cell death occurs in the lamina propria as seen in colonic biopsies of Shigella-
infected individuals (Islam et al. 1995a; Zychlinsky et al. 1996; Raqib et al. 2002).
In fact, Shigella invades activated T cells, multiplies in their cytosol and eventually
causes cell death in vitro. Furthermore, not only invaded but also T cells just being
in contact with Shigella lose their ability to migrate toward chemo-attractants
in vitro and to migrate inside lymph nodes in vivo. This phenomenon is achieved
thanks to the T3SS effector IpgD that is delivered into the lymphocyte cytoplasm
(along or aside of invasion), resulting in hydrolysis of PI4,5P at the plasma
membrane. This leads to dephosphorylation of the ERM proteins and their inability
to re-localize at one T cell pole upon chemokine stimulus (Konradt et al. 2011;
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Salgado-Pabón et al. 2013). Since constant scanning of antigen presenting cells by
T lymphocytes in the lymph node is a key feature enabling T cell activation,
proliferation, and differentiation, by interfering with this process Shigella dampens
the specific immune response and memory development. Moreover, Shigella is also
able to affect the second facet of the adaptive immunity, i.e., the B lymphocytes, by
invading and killing these cells or just by inducing TLR2-mediated apoptosis
through delivery of T3SA needle tip protein IpaD (Nothelfer et al. 2014).

6 Concluding Remarks

Since their discovery over a hundred years ago, an extensive investigation of
Shigella and EIEC species has yielded an impressive amount of knowledge
regarding different aspects of their epidemiology, physiology, and pathogenicity
mechanisms. However, they still remain among the top four causes of
life-threatening diarrheal diseases among children under 5 years old in sub-Saharan
Africa and South Asia (Kotloff et al. 2013), causing between 28,000 and 34,400
deaths per year in 2011 and 2013, respectively (Lanata et al. 2013; GBD GBD
2013a DALYS and HALE Collaborators et al. 2015). Furthermore, mortality
among Shigella-infected patients above 5 years old adds about 40,000 deaths per
year, overall accounting for about 88.4 million cases of Shigellosis (Lamberti et al.
2014; GBD GBD 2013b Mortality and Causes of Death Collaborators 2015).
Besides mortality, these infections significantly contribute to Shigellosis-associated
disability-adjusted life years: 7 million in 2010 (Murray et al. 2012).

Without any animal reservoir, Shigella is transmitted from person to person
directly through hands and indirectly through contaminated water and food.
Shigellosis is indeed associated with poor sanitation and hygiene and limited access
to clean drinking water, except for S. sonnei whose rates increase with economic
development [reviewed in (Anderson et al. 2016)]. The variety of species and
serotypes associated with shigellosis makes it possible for reinfections to occur
locally or during travel to areas where other serotypes predominate. Moreover,
since Shigella succeeds to impair the development of long-lived protective
immunity, several infections of the same individual with the same serotype are
possible. Healthy individuals with mild infections usually recover without specific
treatment, but because Shigella invades the colonic mucosa, it often causes
dysentery, which is not amenable to oral rehydration. Antibiotic treatment is rec-
ommended for dysentery, severe shigellosis and individuals with compromised
immune systems. However, many studies reveal high rates of resistance to at least
one common antibiotic such as ampicillin, tetracycline, and chloramphenicol
(Sadeghabadi et al. 2014; Khaghani et al. 2014; Cui et al. 2015; Bhattacharya et al.
2015). While these strains can be successfully treated with quinolones and
fluoroquinolones, the emergence of multidrug-resistant strains of Shigella, that are
resistant also to the latter antibiotics, further complicates the treatment, making

Shigella and Enteroinvasive Escherichia Coli 17



prevention of infection critical (Bhattacharya et al. 2014; Aggarwal et al. 2016;
Yang et al. 2016; Poramathikul et al. 2016).

While a comprehensive approach to diarrhea prevention and control is the ideal
solution, water and sanitation infrastructure development might still be out of reach
for many low-income countries. Therefore, a broadly protective vaccine would
become an ideal solution for Shigella-associated burden especially in these coun-
tries. Although several studies in animals and humans have demonstrated the fea-
sibility of such a vaccine, there is no licensed vaccine against Shigella yet [reviewed
in (Mani et al. 2016)]. We believe that in order to develop an efficient vaccine, as
well as new approaches in shigellosis prevention and treatment, we must first
complete our knowledge regarding the different steps of Shigella pathogenesis and
immune evasion. In fact, the first step of the infection, namely the colonization, is the
least explored. It is still unclear how such a small inoculum of 10–100 bacteria is
able to cause a disease, despite Shigella being a non-motile bacterium, which is also
devoid of any classical adhesins. Does it proliferate in the human gut and where?
What is the role of non-specific protective factors of the intestine such as microbiota,
mucus, and antimicrobial peptides in controlling the colonization process? An
additional poorly investigated but intriguing aspect is the ability of Shigella to infect
humans asymptomatically, a situation that can reach up to 60% in endemic regions
and during outbreaks (Cohen et al. 1989; Guerrero et al. 1994; Qadri et al. 1995;
Becker et al. 2015). It is unclear which factors define the balance between clinically
expressed and subclinical infection. Deep sequencing techniques could help to
compare the microbiota composition in stools of both groups. Another aspect is the
role of innate immunity: Does it promotes bacterial spread (and thus acute dysentery)
or limits it? What is the dynamics of adaptive immunity development and how
Shigella impairs this process? Although recent advances in understanding the
interaction of Shigella with each cell type separately have shed some light on these
processes, we still miss the global picture of pathogenesis and immune subversion.
One of the major obstacles in answering these questions is the lack of an appropriate
and convenient animal model for shigellosis. One possible solution is the use of
guinea pigs since Shigella is able to infect the colon of these animals, similarly to
humans, provoking an acute rectocolitis (Shim et al. 2007; Barman et al. 2011).
Detailed microscopic examination of the infected colons during Shigella infection
(using ex- and in vivo techniques) combined with single-cell analysis of the infected
tissues could ameliorate our understanding of the infection process and the role of
the innate immunity. However, there are no adequate genetic tools and sufficient
knowledge of the immune system in guinea pigs. Human xenograft in SKID mice is
another useful model although it is very demanding (Zhang et al. 2001).
Alternatively, several new approaches arise to study infection processes at the organ
level using intestine-derived organoids [reviewed in (Zhang and Sun 2016)] and
microfluidics with the so-called Organs on chip, which recapitulate the epithelial
barrier and some of the immune system components (Kim et al. 2016). Ideally,
extensive analysis of colonic biopsies and blood samples from naturally infected
humans combined with clinical and epidemiological data in endemic regions could
be particularly useful to understand the pathogenic processes.
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In summary, further deciphering of the molecular mechanisms underlying col-
onization, epithelial barrier breaching and immune system subversion as well as
integrating these data into a global picture of Shigella pathogenesis might even-
tually fill the gap between basic sciences and the ability to translate these findings
into disease-control measures.
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Abstract Enteroaggregative Escherichia coli (EAEC, formerly known as
“EAggEC”) cause acute or persistent watery diarrhoea (with or without mucus) in
children, predominantly in low-income countries, and are associated with travellers’
diarrhoea in children and adults in middle and high income countries. The diverse
nature of EAEC is such that not all strains cause disease. Conversely, certain strains
of EAEC possess additional virulence determinants associated with the ability to
cause severe diarrhoea and other symptoms, which might be life-threatening in
vulnerable patients. The EAEC virulence factors described to date are either
encoded on the large virulence plasmid of EAEC (plasmid of aggregative adher-
ence) or on pathogenicity islands on the chromosome. Testing of food and faecal
samples involves the detection of EAEC-associated traits in the matrix followed by
isolation of the organism and confirmation of the presence of EAEC-associated
genes using PCR. The variability of the plasmid structure and virulence gene
sequences and the possibility that this mobile genetic element may be lost has
necessitated the inclusion of chromosomal markers in the molecular screening
assays. There is evidence in the literature of foodborne transmission of EAEC, but
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currently no evidence of a zoonotic reservoir. Fimbriae-mediated adhesion and
biofilm formation are likely to be involved in both clinical manifestations of
infection and attachment to foodstuffs. Multidrug resistance appears to be common
in EAEC and geographically widespread. Whole-genome sequencing has revealed
the mosaic genomic structure of EAEC and provided evidence that horizontal gene
transfer and recombination are the driving force for acquisition of novel genome
features and potentially novel pathogenic mechanisms. This has significant public
health implications in terms of the diversity and pathogenesis of EAEC and its
ability to colonise and cause disease in the human host.

1 Introduction

Enteroaggregative Escherichia coli (EAEC, formerly known as “EAggEC”) cause
acute or persistent watery diarrhoea (with or without mucus) in children, pre-
dominantly in low-income countries (Okeke and Nataro 2001), and are associated
with travellers’ diarrhoea in children and adults in middle- and high-income
countries (Wilson et al. 2001). Other symptoms include nausea and vomiting,
anorexia, borborygmi and tenesmus (Huang et al. 2006). In low-income countries,
the propensity of EAEC to cause persistent diarrhoea for more than two weeks is
associated with significant morbidity.

The diverse nature of EAEC is such that not all strains cause disease.
Conversely, certain strains of EAEC possess additional virulence determinants
associated with the ability to cause severe diarrhoea and other symptoms, which
might be life-threatening in vulnerable patients. EAEC were first described by
Nataro et al. in 1987 and were identified by their ability to aggregately adhere to
tissue culture cells in a distinct stacked-brick pattern (Fig. 1). The ability to
aggregate in this way is mediated by aggregative adherence fimbriae (AAF),
of which there are at least five variants (I, II, III, IV and V). Expression of AAF is
mediated by the plasmid-encoded transcriptional activator AggR (Dudley et al.
2006). More recent studies use the term “typical” EAEC to refer to strains of EAEC
harbouring aggR, and strains without EAEC are referred to as “atypical”.

A study of infectious intestinal disease (IID) in the UK in 1993–96 showed that
EAEC were the most commonly isolated diarrhoeagenic E. coli in patients with
symptoms of gastroenteritis presenting to a doctor (5.1%) (Wilson et al. 2001).
There is evidence in the literature of foodborne transmission of EAEC, mostly
through documented outbreaks and case-control studies. However, relatively little is
known about the burden of EAEC in IID or about the reservoir(s) and transmission
pathways.

This chapter presents an overview of EAEC with respect to clinical presentation,
the pathogenicity mechanisms associated with this group and interrelationships with
other E. coli pathotypes and provides an update of the methods for the detection,
identification and characterisation of EAEC. The public health risk of EAEC
infections arising from the presence of EAEC in the food chain and antimicrobial
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resistance is assessed, and recent insights into this emerging gastrointestinal
pathogen from the analysis of whole-genome sequencing data are summarised.

2 Pathogenicity Mechanisms

Pathogenesis of EAEC is complex as strains are heterogeneous. Case-control
studies have documented the prevalence of putative virulence genes but, for the
most part, have been unable to correlate the presence of specific genes to disease.
The current model of EAEC pathogenesis comprises three steps (Fig. 2):

• Adherence to the intestinal mucosa via aggregative adherence fimbriae,
• Increased mucus production leading to extensive biofilm formation on the

surface of the enterocytes, and
• Secretion of toxins and induction of the inflammatory response.

The EAEC virulence factors described to date are either encoded on the large viru-
lence plasmid of EAEC, designated plasmid of aggregative adherence (pAA) or on
pathogenicity islands on the chromosome (Table 1). The key virulence regulator of
EAEC is AggR, a member of the AraC/XylS family of bacterial transcriptional
regulators, and the defining factor for typical EAEC strains. aggR is located on the
pAA plasmid and controls a number of genes encoding putative virulence factors
located on the pAA and additional factors located on the chromosome. Expression of
the aggregative adherence fimbriae (AAF), dispersin, the dispersin translocator Aat,
and the Aai type VI secretion system, is all regulated by AggR (Morin et al. 2013).

Initial attachment of EAEC to the intestinal mucosa is mediated by AAFs. AAFs
are regarded as the principle adhesin of EAEC and are found exclusively in this
pathotype (Jønsson et al. 2015). AAFs were first described with respect to their role
in the formation of the characteristic stacked-brick aggregative pattern on HEp-2

Fig. 1 EAEC were first
identified by their ability to
aggregately adhere to tissue
culture cells in a distinct
stacked-brick pattern
(Courtesy of Marie
Chattaway, Gastrointestinal
Bacterial Reference Unit,
Public Health England,
London, UK)
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cells (Nataro et al. 1987). Following adhesion to the epithelial surface, the AAFs
have also been associated with epithelial inflammation in vitro, such as interleukin
secretion, disruption of epithelial junctions and triggering migration of polymor-
phonuclear leucocytes (Harrington et al. 2005; Boll et al. 2012). Currently, five
different AAF variants have been identified (AAF I–V), all showing a high level of
conservation of their accessory genes, despite low level of amino acid identity
among the pilin subunits (Jønsson et al. 2015).

The AAFs are members of the chaperone–usher fimbrial group, common to
many Gram-negative bacteria. The operon consists of four proteins: the usher, the
chaperone, the micro-pilin subunit and major pilin subunit. AAFs have a high
isoelectric point (pI 8.9–9.4) relative to other adhesins of the chaperone–usher
family. In the gut, where the pH ranges from 6 to 7.4, the AAFs carry a high
positive charge, which may play a role in binding (Jønsson Ph.D. Thesis, 2017).

The gene encoding dispersin (aap) is located on the pAA lying immediately
upstream of the AggR transcriptional activator and is under AggR control
(Sheikh et al. 2002). Dispersin is a positively charged small protein that binds

Fig. 2 Current model of EAEC pathogenesis (Adapted from a figure by Erik Juncker Boll,
Department of Microbiological infection and Control, Statens Serum Institute, Copenhagen,
Denmark)

30 C. Jenkins



non-covalently to the lipopolysaccharide of the outer membrane of EAEC. It par-
ticipates in formation of a surface coat that acts to disperse the bacteria, partially
counteracting aggregation mediated by aggregative adherence fimbriae permitting
the AAFs to extend from the surface of the bacterium (Jønsson Ph.D. Thesis, 2017).

In addition to the virulence genes on the pAA, a number of pathogenicity islands
(PAIs) have been identified on the chromosome of EAEC. One of these islands
consists of 25 contiguous genes (aaiA-Y), activated by AggR and located on a
117 kb PAI inserted at pheU in EAEC (Dudley et al. 2006). Many of these genes
have homologues in other Gram-negative bacteria and were recently proposed to
constitute a type VI secretion system (T6SS). Distribution studies indicated that
aaiA and aaiC are commonly found in EAEC isolates worldwide, particularly in
strains defined as typical EAEC. These data support the hypothesis that AggR is a

Table 1 Genes and toxins often found in the EAEC pathotype

Common
EAEC factor

Description Location

aggR Master regulator for EAEC plasmid virulence genes,
including aggregative adherence factors, fimbriae AAF/
I-AAF/V, and a large cluster of chromosomal genes
inserted on a pathogenicity island at the PheU locus

pAA

aatA-P Encodes proteins responsible for transporting the dispersin
protein out of the outer membrane of EAEC

pAA

aap Encodes a 10 kDa secreted protein named dispersin and is
responsible for “dispersing” EAEC across the intestinal
mucosa

pAA

aggA Encodes AAF/I mediates adherence to colonic mucosa and
haemagglutination of erythrocytes

pAA

aafA Encodes AAF/II, mediates adherence to colonic mucosa
and haemagglutination of erythrocytes

pAA

agg3A Encodes AAF/III haemagglutination of erythrocytes pAA

agg4A Encodes AAF/IV mediates adherence to colonic mucosa
and haemagglutination of erythrocytes

pAA

agg5A Encodes AAF/V mediates adherence to colonic mucosa and
haemagglutination of erythrocytes

pAA

aaiA-Y PAI encoding a type VI secretion system (T6SS) chromosome

pet A 108 kDa autotransporter protein that functions as a
heat-labile enterotoxin and cytotoxin

pAA

sigA IgA protease-like homologue, enterotoxin and cytotoxin Chromosome

pic Mucinase, immunomodulation, colonisation, lectin-like
haemagglutinin

Chromosome

sepA Shigella extracellular enterotoxin pAA

sat Secreted autotransporter toxin. Enterotoxin and cytotoxin,
impairment of tight junctions, autophagy

pAA

astA astA encodes the enteroaggregative heat-stable toxin
(EAST-1), which has physical and mechanistic similarities
to E. coli STa enterotoxin

pAA
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global regulator of EAEC virulence determinants on both the chromosome and the
plasmid, and builds on the hypothesis that T6SS is an important mediator of
pathogenesis (Dudley et al. 2006).

Another PAI is designated SHE (also found in Shigella flexneri) and encodes the
Serine Protease Autotransporter Pic and ShET1 enterotoxins (Jønsson Ph.D. Thesis,
2017). Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) are a
family of extracellular proteases thought to play a role in EAEC pathogenesis. The
SPATEs are named for their serine protease motif that confers proteolytic capability
and are secreted via a type V secretion system. SPATEs are implicated in immune
evasion, mucosal damage and colonisation. The most commonly found SPATEs in
EAEC include: plasmid-encoded toxin (Pet), protein involved in intestinal coloni-
sation (Pic), secreted autotransporter toxin (Sat), Shigella IgA-like protease
homology (SigA) and E. coli-secreted protein (EspP) (Boisen et al. 2009). All
SPATEs found in EAEC are located on the chromosome, except for Pet which is
located on the pAA.

EAEC strains often produce an enteroaggregative heat-stable toxin (EAST1)
encoded by the plasmid-encoded astA genes and haemolysin E (HlyE), but like
ShET1, these toxins are not specific to EAEC (Harrington et al. 2006).

3 Interrelationships with Other E. Coli Pathotypes

EAEC are one of the six diarrhoeagenic E. coli (DEC) pathotypes defined by their
pathogenicity gene profiles (Tozzoli and Scheutz 2014). These are enteropathogenic
E. coli (EPEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC),
diffusely adherent E. coli (DAEC), Shiga toxin-producing E. coli (STEC), and
EAEC. E. coli can also cause extra-intestinal (ExPEC) infections in humans, pri-
marily urinary tract (caused by uropathogenic E. coli) and sepsis/meningitis (caused
by neonatal meningitis E. coli).

In recent years, the more widespread use of molecular techniques has revealed
that many strains of E. coli harbour virulence genes associated with more than one
pathogenic group. Most of the E. coli virulence factors are encoded by genes carried
on mobile genetic elements (e.g. plasmids, phages and pathogenicity islands), and
the horizontal gene transfer of such elements is the driver for the continuous
emergence of new pathotypes (Tozzoli et al. 2014).

The Stx-producing EAEC O104:H4 strain that caused the large outbreak of HUS
in Germany in 2011 outbreak carried the EAEC genes aggR, aggA, set1, pic and aap
as well as a prophage encoding the stx2 gene (Bielaszewska et al. 2011). This out-
break highlighted the threat to public health associated with strains of E. coli com-
prising more than one single pathotype; however, strains of E. coli comprising
multiple pathotypes had been described previously. Such strains were first reported as
the causative agent of a small HUS outbreak that occurred in France at the beginning
of the 1990s (Morabito et al. 1998), where patients were infected with an E. coli
O111:H2 strain showing the ability to adhere to cultured cells with the stacked-brick

32 C. Jenkins



adhesion mechanism (Nataro and Kaper 1998) and able to produce Stx2 (Morabito
et al. 1998). Furthermore, sporadic cases of infection with Stx-producing EAEC
strains of serotype O104:H4 were retrospectively described in the time period 2000–
2010 soon after the German outbreak (King et al. 2012). Subsequently, a sporadic
HUS case caused by a Stx-producing EAEC O111:H21 and a small outbreak of
infection with a Stx-producing EAECO127:H4 occurred in Northern Ireland in 2012
(Dallman et al. 2012) and in Italy in 2013 (Tozzoli et al. 2014), respectively.

The observation that the genomic backbone of Stx-producing EAEC is similar to
that of non-Stx-producing EAEC, indicates that these strains may emerge following
the acquisition of an Stx-carrying phage from a ruminant reservoir by strains of
EAEC from human sewage (Tozzoli et al. 2014). Countries where EAEC infections
are endemic and treatment of human sewage is limited may represent a source for
the emergence of the Stx-producing EAEC pathotype. It has been proposed that the
occurrence of the EAEC/STEC pathotype E. coli may be an ongoing,
low-frequency event. The occurrence of outbreaks probably relates primarily to
epidemiological opportunities for propagation and dissemination of the organisms
in food or infected carriers.

Other combinations of EAEC pathotypes have been detected, such as those
present in isolates possessing EAEC-associated genes together with
ExPEC-associated traits as described in the E. coli serotypeO78:H10 responsible
for causing an outbreak of UTI in Denmark (Olesen et al. 2012). The outbreak
strain carried a range of virulence genes including fimH (type I fimbriae; ubiquitous
in E. coli); fyuA, traT and iutA (associated with extra-intestinal pathogenic E. coli);
and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap and ORF3 (associated with
EAEC). In a study of ESBL-producing E. coli, eight multidrug-resistant
ESBL-producing EAEC were isolated from urine specimens and one from a
blood culture (Chattaway et al. 2014a, b). The multidrug-resistant EAEC isolates
belonged to sequence type (ST) 38, predominantly associated with urinary tract
infections. It is clear that the spectrum of pathogenic E. coli types is continuous
rather than a rigid list of separated groups.

4 Methods for the Detection, Identification
and Characterisation

Testing of food and faecal samples involves the detection of EAEC-associated traits
in the matrix or in enrichment culture from these matrices, followed by isolation of
the organism and confirmation of the presence of EAEC-associated genes using
PCR. Following the outbreak of Stx-producing EAEC O104:H4 in 2011, the STEC
European Union Reference Laboratory (EU-RL) developed a molecular method-
ology to screen food samples and faecal specimens for the presence of EAEC by the
detection of aggR and aaiC (http://www.iss.it/vtec/index.php?lang=2&anno=2017
&tipo=3).

Enteroaggregative Escherichia coli 33

http://www.iss.it/vtec/index.php?lang=2&anno=2017&tipo=3
http://www.iss.it/vtec/index.php?lang=2&anno=2017&tipo=3


In the 1980s, EAEC were described as exhibiting a characteristic “stacked-brick”
pattern on adhesion to HEp-2 cells monolayers (Nataro et al. 1987). Since then the
HEp-2 adhesion assay has been considered the gold standard for the identification
of the EAEC. Although regarded as a sensitive and specific assay for the identifi-
cation of this E. coli pathogroup, this approach is cumbersome and requires
experienced personnel, specialised facilities making it an unsuitable assay for a
routine testing. Molecular methods have largely replaced the phenotypic adhesion
assay for the identification and characterisation of EAEC. A number of different
PCR protocols are available, targeting a wide variety of genes. Given the recog-
nised heterogeneity of EAEC, the different PCR assays produce variable results
when compared to the phenotypic adhesions assay.

Early studies established evidence that the aggregative adhesion properties of
EAEC were associated with the pAA plasmid, and the design of molecular
screening tools was directed towards the use of sequences from this plasmid (Vial
et al. 1988). Baudry et al. developed a DNA probe, CVD432, which showed a high
degree of correlation with the phenotypic assay (Baudry et al. 1990), although a
number of subsequent studies conducted using the CVD432 probe for screening
EAEC strains isolated from cases of diarrhoea in different geographic locations
showed more variable results (Okeke and Nataro 2001).

In 1995, the first PCR tool was developed based on the sequence of the EcoRI/
PstI fragment of pCVD432 plasmid, later found to correspond to a gene encoding
the aggregative autotransporter, aat (Schmidt et al. 1995). A number of subsequent
studies showed limited correlation between the molecular hybridisation and PCR
assays suggesting that, in spite of the initial strong association of the presence of the
plasmid with the ability to induce the stacked-brick pattern of adhesion, there was a
certain degree of variability in the plasmid structure (Dutta et al. 1999; Tsai et al. 2003).
More recent studies have been aimed at a more complete characterisation of the
plasmid itself, and assays based on the detection of more than one marker have been
deployed (Czeczulin et al. 1999; Cerna et al. 2003; Jenkins et al. 2006; Scheutz
et al. 2014).

The variability of the plasmid structure and sequence, and the possibility that this
mobile genetic element may be lost, has led to the conclusion that chromosomal
markers should be included in the molecular screening assays (Jenkins et al. 2006;
Scheutz et al. 2014). Following extensive genotyping of EAEC in different studies
(Jenkins et al. 2006; Boisen et al. 2012), it was recognised that, similarly to the
plasmid-associated genes, no chromosomal markers are present in 100% of EAEC.
Some markers have been identified as being significantly associated with EAEC
isolated from symptomatic cases, such as the SPATE toxin SepA (Boisen et al.
2012). As described above, the STEC EU-RL PCR assay for screening food
samples and faecal specimens targets the pAA-encoded aggR and aaiC which is
located on the chromosome. This assay is recommended for clinical diagnostic use.

An increasing number of diagnostic microbiology laboratories are implementing
a multiplex gastrointestinal (GI) PCR approach for the detection of GI pathogens in
clinical cases and foods, including target for EAEC. These assays provide a rapid,
standardised, cost-effective pan-pathogen approach for the detection of bacteria

34 C. Jenkins



associated with GI infection and, moving forward, will improve the surveillance of
EAEC disease.

5 Clinical Symptoms and Burden of Disease

EAEC are commonly associated with acute and chronic diarrhoeal illness among
children in both developing and developed and/or industrialised regions and travellers
with diarrhoea. The incubation period of diarrhoeagenic EAEC is typically between 8
and 18 h (Harrington et al. 2006). Infection with EAEC usually presents clinically as
watery diarrhoea, often with mucus, nausea and vomiting, with or without fever
(Huang et al. 2003). Other less common symptoms include anorexia, borborygmi and
tenesmus. Additionally, there is evidence to suggest that the odds of developing
post-infectious irritable bowel syndrome (IBS) are dramatically increased after acute
infectious gastroenteritis with EAEC has been discussed (Sobieszczańska et al. 2007).
A predominant feature of EAEC infection in low-income countries is the propensity
to cause persistent diarrhoea for more than 2 weeks, making these bacteria a sig-
nificant cause of mortality (Huang et al. 2006). The most significant public health
concern stemming from EAEC infections in children in low-income countries is
malnourishment, as persistent EAEC infections lead to chronic inflammation, which
damages the intestinal epithelium and reduces its ability to absorb nutrients.

Studies suggest EAEC are a major cause of diarrhoeal disease, and it has been
estimated that between 2 and 68% of patients with diarrhoea are infected with
EAEC (Nataro et al. 1998; Wilson et al. 2001; Kahali et al. 2004). In the UK IID
study in 1993–96, EAEC were the most commonly isolated enterovirulent E. coli in
patients with symptoms of gastroenteritis presenting to a doctor (5.1%) (Wilson
et al. 2001). In the second IID study in 2008–09, EAEC were isolated from more
than 1.9% of cases in the population and 1.4% of cases presenting to a doctor (Tam
et al. 2012). Data from the IID studies confirmed previous conclusions that con-
cluded that the current definition of EAEC by plasmid gene detection includes true
pathogens and non-pathogenic variants (Chattaway et al. 2013).

6 The Zoonotic Potential of EAEC and Contamination
of the Environment

Reports of animals being a reservoir of EAEC are often based on the presence of
genes that are not specific for EAEC, such as astA, in specimens from both healthy
and sick animals. Most reports originate from parts of the world where pollution by
human faecal waste is common (Table 2). Studies using EAEC-specific targets
have found no evidence of EAEC in animals (Cassar et al. 2004).
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Following the outbreak of Stx-producing EAEC O104:H4 in Germany in 2011,
2000 colonies from faecal samples of 100 cattle from 34 different farms, all located
in the HUS outbreak region of Northern Germany, were screened for genes asso-
ciated with the O104:H4 HUS outbreak strain (terD, rfb(O104), fliC(H4)), STEC
(stx1, stx2, escV), EAEC (pAA, aggR, astA) and ESBL production (bla(CTX-M),
bla(TEM), bla(SHV)) (Wieler et al. 2011). No EAEC were detected. In a similar
study undertaken in France after the 2011 outbreak, 1468 cattle were analysed for
faecal carriage of the Stx-producing E. coli O104:H4 outbreak strain by PCR assays
targeting stx2, wzxO104, fliCH4 and aggR genetic markers. None of the faecal
samples contained the four markers simultaneously, indicating that cattle in France
were not likely to be a reservoir of O104:H4, but results of the test for aggR were
not reported (Auvray et al. 2012). In a recent study in Japan, no EAEC isolates, as
assessed by the presence of aggR, were detected (Akiyama et al. 2015). To date,
there is no evidence that EAEC have a zoonotic reservoir.

Contamination of the environment by EAEC, particularly watercourses, can
occur in parts of the world where human sanitary systems are insufficient, and there
is a high incidence of EAEC in people (Table 2). Prolonged survival of EAEC for
at least several weeks in wet and dry substrates appears to be possible, and envi-
ronmental contamination may also be a pathway for EAEC on salads and other
vegetable produce (Table 2).

7 Foodborne Transmission

There is evidence in the literature of foodborne transmission of EAEC, mostly
through documented outbreaks and case-control studies (Table 3). In Japan, a major
outbreak caused by EAEC O untypeable:H10 in 1993 involving up to 2500 cases
mainly in schoolchildren was associated with school lunches (Itoh et al. 1997). In the
UK in the 1990s, four EAEC outbreaks associated with restaurants, a charity
Christmas dinner and a conference were reported but no specific food vehicle was
identified in any of these outbreaks (Smith et al. 1997). The 2011 German outbreak of
EAEC O104:H4 was epidemiologically linked to contaminated fenugreek seeds
(Frank et al. 2011). In June 2013, a foodborne outbreak was caused by EAEC isolated
from kippered trotters mixed with vegetables, 22 cases and four asymptomatic food
handlers, who probably contaminated the food (Shin et al. 2015) (Table 3).

In two further foodborne outbreaks of gastroenteritis that occurred 10 days apart
among individuals who had meals at the restaurant of a farm holiday resort in Italy
in 2007, an EAEC strain of serotype O92:H33 was isolated from six participants
and one member of staff. A retrospective cohort study indicated a pecorino cheese
made with unpasteurised sheep milk as a possible source of infection (Scavia et al.
2008), but since the outbreak EAEC strain was only isolated from food handlers,
cross-contamination of the food product cannot be excluded, nor can contamination
of food by asymptomatic excretors.
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Table 3 Outbreaks of EAEC and the AMR profile of the outbreak strain

Outbreak Resistance profile Comments Reference

Urinary tract
infection of
multiresistant E. coli
O78:H10, Denmark,
1991

Ampicillin,
chloramphenicol,
streptomycin,
sulphonamides,
tetracyclines and
trimethoprim

Olesen et al.
(2012)

Shiga toxin (Stx)-
producing EAEC
O104:H4 outbreak,
EU, USA and
Canada, 2011

Ampicillin,
amoxicillin/
clavulanic acid,
piperacillin/
sulbactam,
piperacillin/
tazobactam,
cefuroxime,
cefotaxime,
cefpirome and
ceftazidime, and also
was resistant to
streptomycin,
nalidixic acid,
tetracyclines and
trimethoprim and the
sulphonamides but
was susceptible to
the carbapenems

The strain contained
an 88.5-kb
IncI1-ST31 plasmid
—pESBL-EA11—
that encoded
bla-CTX-M-15 and
bla-TEM. Although
not considered
important in
treatment of affected
persons in this
outbreak, the
presence of
resistance genes may
have contributed to
the development and
spread of the
causative organism

Bielaszewska
et al. (2011),
Rasko et al.
(2011), Scheutz
et al. (2014),
EFSA (2011)

Multipathogen
foodborne outbreak,
UK, 2013

Of 20 EAEC isolates
characterised, a
range of resistance
profiles were
identified, ranging
from nalidixic acid
alone through to
ampicillin,
sulphonamides,
streptomycin,
nalidixic acid,
ceftazidime,
cefataxime, ceftiofur
and cefpirome

Ten EAEC serotypes
were identified in
faecal samples
recovered from
patients in the large
and complex
multipathogen
foodborne outbreak
in the UK in
February/March
2013

Dallman et al.
(2014)

Outbreak of E. coli
O untypeable: H10
in Japan in 1993
associated with
school lunches, in
which over 2600
children were
affected

All isolates were
susceptible to
nalidixic acid,
chloramphenicol,
streptomycin,
kanamycin and
cephalothin but were
resistant to
ampicillin

Itoh et al. (1997)
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In an outbreak of gastrointestinal foodborne illness associated with a Street Spice
festival in the UK in 2011 and involving over 400 persons, 29 cases of Salmonella
infection were confirmed. As most cases had reported symptoms characteristic of
EAEC infection, such as abdominal cramps and persistent diarrhoea, further inves-
tigations were carried out retrospectively using a GI PCR assay. A high proportion of
specimens were positive for the aggR target, and EAEC were cultured from 20 cases
(Dallman et al. 2014). Risk factors associated with illness included eating foods from
one particular vendor and eating a food item containing uncooked curry leaves.
Although the E. coli count in colony forming unit (cfu) per ml from the curry leaves
associated with the outbreak was high (>1000 cfu/ml), the testing algorithm at that
time did not include tests specific for EAEC and EAEC were not cultured from the
food samples. Strains of EAECwere detected in the food handlers, and contamination
of the food by the food handlers was thought to be the most likely source (Table 3).

The infection status of food handlers, including asymptomatic carriage of EAEC,
and hygienic conditions applied during the handling and processing of foodstuffs in
some countries appears to be an important factor in contamination of foods at retail,
catering or household level (Oundo et al. 2008). Multiple EAEC adherence factors are
involved in the interaction of EAEC with leaves, and similar colonisation factors are
used to bind such to the gut mucosa and leaf surfaces (Berger et al. 2009). It is thought
that prolonged survival of organisms on dry fenugreek seeds may have been involved
in the Stx-producing EAEC O104:H4 outbreak (EFSA BIOHAZ Panel 2011).

8 Biofilm Formation

Bacterial biofilms are structured communities of bacterial cells enclosed in a
self-produced polymer matrix (consisting of proteins, exopolysaccharide and
nucleic acid) attached to biological and non-biological surfaces. Biofilms allow
bacteria to survive and thrive in hostile environments as well as being associated
with chronic or persistent infections. Bacteria within biofilms can withstand host
immune responses and are less susceptible to antimicrobials and disinfectants.

EAEC form thick biofilms on the intestinal mucosa, and most EAEC strains
form a biofilm on glass or plastic surfaces when grown in cell culture medium with
high sugar and osmolarity. AAFs bind extracellular matrix proteins and show
species specificity in terms of erythrocyte agglutination, suggesting that this binding
specificity could impact on the efficiency and selectivity of biofilm formation.
Transposon mutagenesis confirmed the involvement of genes known to be required
for AAF/II expression, as well as the E. coli chromosomal fis gene, a DNA-binding
protein that is involved in growth phase-dependent regulation, in biofilm formation
(Sheikh et al. 2001). The incompatibility group (Inc) I1 plasmid of EAEC C1096
encodes a type IV pilus that contributes to plasmid conjugation, epithelial cell
adherence and adherence to abiotic surfaces, including via biofilm formation
(Dudley et al. 2006).
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When subjected to low iron conditions, an EAEC strain (042) showed a decrease
in biofilm formation. Conversely, an increase in biofilm formation was observed for
clinical EAEC strains cultured in restricted iron conditions, but the reduction of iron
concentration inhibited the aggregative adherence to HEp-2 cells of all EAEC
strains tested. Low iron availability may therefore modulate biofilm formation and
adhesive properties of EAEC as a result of redox stress (Alves et al. 2010).

AAF-mediated adhesion and biofilm formation are likely to be involved in both
clinical manifestations of infection and attachment to foodstuffs, such as lettuce after
irrigation or washing using water that has become contaminated with human faecal
waste (Berger et al. 2009; Castro-Rosas et al. 2012). Uropathogenic strains in par-
ticular may make use of biofilm formation to persist on epithelial surfaces and
canulae (Boll et al. 2013). A high proportion of EAEC strains associated with
travellers’ diarrhoea produce biofilms, as well as being highly antimicrobial-resistant
(Mohamed et al. 2007; Mendez Arancibia et al. 2009).

9 Antimicrobial Resistance

Although gastrointestinal symptoms associated with EAEC may persist for weeks,
infection is usually self-limiting and the standard recommended treatment is oral
rehydration therapy. However, the symptoms can be debilitating and have a high
socio-economic impact, especially in low-income settings, and treatment may be
sought if the diarrhoea and abdominal pain are severe and/or prolonged. Multidrug
resistance appears to be common in EAEC and geographically widespread.

Isolates of EAEC exhibiting high incidence of resistance to co-trimoxazole,
ampicillin and tetracyclines were detected in studies carried out in Africa and Asia
(Oundo et al. 2008; Chen et al. 2014). During a study in India between 2006 and
2007, an increase in isolates with resistance to quinolones was observed (Raju and
Ballal 2009). Resistance to ampicillin, cefotaxime (encoded by a CTX-M-15
b-lactamase), gentamicin, co-trimoxazole, nalidixic acid and ciprofloxacin has been
reported in EAEC isolates from travellers from India returning to Spain (Vila et al.
2001; Guiral et al. 2011). In studies in Central and South America from 2006 to
2007, the most common E. coli pathogens in cases of diarrhoea were EAEC (14%),
of which greater than 90% of isolates were resistant to antimicrobials (Ochoa et al.
2009).

In Europe, of 160 strains of E. coli identified as EAEC isolated from patients in
the UK with infectious intestinal disease or gastroenteritis between 1993 and 1996,
over 50% were resistant to one or more of eight antimicrobials, and 30 (19%) were
resistant to four or more drugs with one strain being resistant to eight antimicrobials
(Wilson et al. 2001). Multidrug-resistant isolates of EAEC have been described
elsewhere in Europe, notably in Poland and Spain (Sobieszczańska et al. 2003;
Mendez Arancibia et al. 2009)

The most frequently used first-line antimicrobials which have traditionally been
used for the treatment of travellers’ diarrhoea are ampicillin, co-trimoxazole,
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tetracyclines (doxycycline) and quinolones, due to their ready availability and
inexpensive cost (Kong et al. 2015). As EAEC have become increasingly resistant
to various antibiotics, selection of an appropriate antibiotic should take into account
the region of the world where the infection was acquired, as there are different
antimicrobial susceptibility patterns for each geographical region. EAEC infections
have been successfully treated with ciprofloxacin and other fluoroquinolones,
although this group of antimicrobials is not in general regarded as suitable for use in
children. The emergence of multiple antimicrobial-resistant strains often coupled
with resistance to quinolones and third-generation cephalosporins has compromised
treatment in some regions (Kong et al. 2015). The use of antimicrobials to eliminate
carriage of Stx-producing strains from patients or food handlers is still considered a
controversial treatment because of the risk of promoting the development of HUS
by stimulating Stx production (Siefert and Tarr 2012).

Of note for EAEC is the high occurrence of resistance to antimicrobials in
comparison with other E. coli pathotypes associated with food production animals,
specifically STEC. Although AMR has been identified in STEC from both human
infections (Day et al. 2017) and from cattle and beef products (Ennis et al. 2012),
resistance does appear to be less common than in EAEC isolates from cases of
human infection. Possible explanations for this anomaly may be related to either
differences in the innate propensity of STEC and EAEC strains to acquire and
maintain plasmids encoding for AMR, or to antimicrobial selective pressure, with
patients with EAEC infections more likely to have been exposed to antimicrobials
than cattle, the major reservoir of STEC.

10 Whole-Genome Sequencing

Whole-genome sequencing analysis has provided further evidence that EAEC are a
heterogeneous group of pathogens with respect to their genotypic characteristics.
This high level of genetic diversity is apparent at every level from the population
structure, to the genomic architecture of the pAA plasmid, and the presence and
absence of putative virulence genes and their variants on the plasmid and the
chromosome (Jenkins et al. 2005; Rasko et al. 2008; Dallman et al. 2014).

MLST and WGS data provide evidence that prevailing “successful” EAEC
lineages have evolved independently many times and are dispersed throughout the
entire E. coli population (Fig. 3). Pupo et al. (2000) suggested that strains of E. coli
act as genetic repositories with the ability to acquire DNA from multiple sources
and the ability to act as donors. The successful lineages, as defined by MLST
complex, appear to be globally distributed. There is some evidence that certain
lineages may be more pathogenic than others (Chattaway et al. 2014a, b).
ClonalFrame analysis showed that EAEC mutation and recombination rates vary
across the lineages and that both events play an important part in the evolution of
EAEC. Although the dataset was limited, Chattaway et al. (2014a, b) showed that
recombination rate was higher in the STs associated with disease. Analysis of WGS
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data indicates that prophage and phage elements play a significant role in the
evolution of certain E. coli pathovars (Rasko et al. 2008).

The pAA is regarded as a defining feature of EAEC, but recent WGS analysis
has shown the pAA is associated with a wide range of plasmid replicon types and
that it has a diverse genomic architecture (Dallman et al. 2014). WGS data can also
be used to determine the presence or absence of all the major putative EAEC
virulence genes, including aggR, aat, aap, sepA, sigA, pic, aggregative adherence
fimbrial (AAF) types I–V and, more recently, a putative isopentenyl isomerise
(IDI) enzyme (Rasko et al. 2011). WGS data have also been used to determine the
integrity of the chromosomally encoded AAI operon and to provide information on
antibiotic resistance (Dallman et al. 2014).

As yet, WGS is not used routinely for the detection of EAEC either from human
faecal samples or from foods; however, the technology is progressing rapidly and
there is potential of WGS to be used for such purposes (Loman et al. 2013).
Multilocus sequence typing (MLST) and whole-genome sequencing (WGS) data
have made a significant contribution to our understanding of the evolution and
pathogenic potential of enteroaggregative E. coli (EAEC). The mosaic genomic
structure of EAEC facilitates horizontal gene transfer, and recombination is the
driving force for acquisition of novel genome features and potentially novel
pathogenic mechanisms. The EAEC pan-genome is considered open and is still
evolving by gene acquisition and diversification. This has significant public health
implications in terms of the diversity and pathogenesis of EAEC and its ability to
colonise and cause disease in the human host.

Fig. 3 Minimum spanning tree illustrating that EAEC lineages (highlighted in red) has evolved
independently many times and is dispersed throughout the E. coli population (Courtesy of Marie
Chattaway, Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK)
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11 Summary

1. EAEC are a heterogeneous group of pathogens with respect to both phenotypic
and genotypic characteristics. The current model of EAEC pathogenesis
involves the initial adherence to the intestinal mucosa via aggregative adherence
fimbriae under the control of the transcriptional regulator, AggR, biofilm for-
mation on the surface of the enterocytes, secretion of toxins and induction of the
inflammatory response. Key virulence factors are encoded on the pAA or PAI
located on the chromosome.

2. Testing of food and faecal samples involves the detection of EAEC-associated
traits in the matrix or in enrichment culture from these matrices, followed by
isolation of the organism and confirmation of the presence of EAEC-associated
genes using PCR. The STEC EU-RL PCR assay for screening food samples and
faecal specimens targets the pAA-encoded aggR and aaiC which is located on
the chromosome, and is recommended for clinical diagnostic use.

3. EAEC are commonly associated with acute and chronic diarrhoeal illness
among children in both developing and developed and/or industrialised regions
and travellers with diarrhoea. Studies suggest EAEC are a major cause of
diarrhoeal disease. Increasing number of diagnostic microbiology laboratories
are implementing a PCR approach for the detection of EAEC in clinical cases
and foods, and this will improve the surveillance of EAEC disease.

4. There is no evidence that EAEC have a zoonotic reservoir but contamination of
the environment can occur in parts of the world where human sanitary systems
are insufficient and there is a high incidence of EAEC.

5. There is evidence in the literature of foodborne transmission of EAEC, and the
infection status of food handlers, including asymptomatic carriage of EAEC, and
hygienic conditions applied during the handling and processing of foodstuffs in
some countries may be an important factor in contamination of foods at retail,
catering or household level.

6. The ability to form biofilms is linked to the severity of human disease and is
likely to be involved in environmental survival.

7. Multidrug resistance appears to be common in EAEC and geographically
widespread. The emergence of multiple antimicrobial-resistant strains often
coupled with resistance to quinolones and third-generation cephalosporins has
compromised treatment in some regions.

8. Whole-genome sequencing analysis has provided evidence that EAEC exhibit a
high level of genetic diversity and that prevailing “successful” EAEC lineages
have evolved independently many times and are dispersed throughout the entire
E. coli population.

9. The mosaic genomic structure of EAEC facilitates horizontal gene transfer, and
recombination is the driving force for acquisition of novel genome features and
potentially novel pathogenic mechanisms. The emergence of mixed EAEC/
STEC pathotype E. coli is likely to be an ongoing low-frequency event and has
significant public health implications.
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Abstract Infection with enteropathogenic and enterohaemorrhagic Escherichia
coli (EPEC and EHEC), enteroinvasive E. coli (EIEC) and Shigella relies on the
elaboration of a type III secretion system (T3SS). Few strains also encode a second
T3SS, named ETT2. Through the integration of coordinated intracellular and
extracellular cues, the modular T3SS is assembled within the bacterial cell wall, as
well as the plasma membrane of the host cell. As such, the T3SS serves as a
conduit, allowing the chaperone-regulated translocation of effector proteins directly
into the host cytosol to subvert eukaryotic cell processes. Recent technological
advances revealed high structural resolution of the T3SS apparatus and how it could
be exploited to treat enteric disease. This chapter summarises the current knowledge
of the structure and function of the E. coli T3SSs.
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1 Introduction

A healthy gastrointestinal (GI) tract encounters 9 L of fluid per day but only 100–
200 ml of fluid is retained in the stools. Certain pathogenic microorganisms can
alter the movement of ions and water in the gut towards net secretion, resulting in
diarrhoea. With an estimated 2–4 billion incidents per year, acute diarrhoea is a
significant contributor to morbidity and mortality worldwide, posing an immense
burden on global health (Bern et al. 1992; Hodges and Gill 2010; Kosek et al. 2003;
Snyder and Merson 1982). In low- to middle-income countries, diarrhoea is esti-
mated to account for up to 760,000 infant deaths per annum (World Health
Organisation), placing infectious diarrhoea within the five most common causes of
death in children under the age of five (Liu et al. 2015).

Among bacterial agents of diarrhoeal disease, several pathotypes of Escherichia
coli, Salmonella spp., Shigella spp. and Yersinia spp. depend on a specialised
macromolecular syringe, the Type III Secretion System (T3SS), to cause disease.
Through the T3SS, Gram-negative bacteria deliver virulence factors—also named
‘effector proteins’—into host cells or bacterial competitors. The T3SS—also known
as the injectisome—spans the inner and outer bacterial membranes and punctures the
host plasma membrane like a syringe to translocate the effector proteins directly from
the bacteria into the cytosol of host enterocytes. This enables the pathogen to control
host cell signalling pathways, creating an environmental niche in which to thrive. In
some pathogenic strains of E. coli, the T3SS is responsible for the translocation of
over 25 effector proteins. The roles that these effector proteins play in pathogenesis
are discussed in chapter “Modulation of Host Cell Processes by T3SS Effectors”.

The term ‘Type Three Secretion System’ was coined in 1991 following the
observation that Yersinia ‘Yop’ proteins were translocated into host cells in a
general secretory pathway (Sec)-independent manner. Fewer than 10 years later, the
Salmonella T3SS was first visualised using negative staining and electron micro-
scopy (Kubori et al. 1998) soon followed by the E. coli T3SS (Sekiya et al. 2001).
This chapter presents the contribution of this remarkable nanomachine to the
pathogenesis of certain pathotypes of E. coli and reviews current knowledge on the
assembly, regulation, function and importance of the T3SS. Advances in studying
individual components and the impact of effector secretion on host cells have
revealed fascinating complexity and sophistication to this system, indicating that
our understanding of the injectisome during human infection is far from complete.

2 Enteric E. coli and the LEE-Encoded T3SS

Three currently defined pathotypes of E. coli rely on the T3SS and effector proteins
to infect the human gut: enteropathogenic E. coli (EPEC), Shiga toxin-producing
E. coli (STEC), of which enterohaemorrhagic E. coli (EHEC) is a subtype, and
enteroinvasive E. coli (EIEC) (Clements et al. 2011; Gaytán et al. 2016).
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EPEC-induced diarrheoa primarily affects children under the age of 2 in
low-income countries (Chen and Frankel 2005), while EHEC is also capable of
causing haemorrhagic colitis and haemolytic uraemic syndrome in infected patients.
EIEC shares both its virulence mechanism and clinical symptoms with Shigella
spp., and it is believed that current EIEC strains represent an intermediate between
E. coli and Shigella spp. The majority of T3SS components and effectors of EIEC
and Shigella are encoded on the virulence plasmid pINV, while the injectisomes of
EPEC and EHEC along with chaperones, the adhesin intimin, core effector proteins,
a lytic transglycosilase and regulatory proteins are encoded within a genomic
pathogenicity island termed the Locus of Enterocyte Effacement (LEE) (Pallen et al.
2005). Additionally, typical EPEC strains carry the large virulence EPEC adherence
factor (EAF) plasmid, which encodes the bundle forming pilus (BFP) operon as
well as the plasmid-encoded regulator (Per) operon, encoding PerA, PerB and PerC,
which regulate LEE expression (Gomez-Duarte and Kaper 1995).

The LEE is essential for disease in these pathotypes and comprises 41 conserved
genes that allow the T3SS-dependent colonisation of mammalian hosts. Its low G
+C content (38% compared to 50% for the whole genome) suggests it was acquired
via horizontal gene transfer. LEE islands are also found in the closely related
species rabbit EPEC (REPEC), Escherichia albertii (Hyma et al. 2005) and
Citrobacter rodentium, with high degrees of similarity both in terms of gene
repertoire and organisation (Petty et al. 2011) (Fig. 1). The structural components
of the T3SS are encoded on operons LEE1, LEE2, LEE3 and LEE4, except EscD,
encoded on its own ORF. They have been demonstrated to be sufficient to assemble
a functional injectisome (Ruano-Gallego et al. 2015).

3 Regulation of T3SS Expression

Upon ingestion of contaminated food or water, acid resistance of the pathogens
facilitates the survival of the bacteria through the low pH of the stomach (Nguyen
and Sperandio 2012), and environmental signals throughout the intestine are sensed

Fig. 1 The EPEC Locus of Enterocyte Effacement (LEE). This genomic island is organised
into five main operons. It harbours all the necessary genes to assemble a functional T3SS, as well
as regulators and core effector proteins. Minor differences are found in the EHEC and C. rodentium
LEE
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to gradually turn on the virulence factors of the pathogens (Connolly et al. 2015;
Furniss and Clements 2017). These signals include temperature (Umanski et al.
2002), host signals (De Nisco et al. 2018) and microbiota signals (Carlson-Banning
and Sperandio 2018).

At the site of infection, the host hormones adrenaline and noradrenaline and the
quorum-sensing molecules auto-inducers 2 and 3 are produced by the gastroin-
testinal cells and sensed by A/E pathogens to induce the expression of the T3SS
(Hughes and Sperandio 2008; Russell et al. 2007; Sperandio et al. 1999). The
interplay between the host and microbiome is of significant importance to protect
the intestine against infections, as A/E pathogens can sense and take advantage of
an unbalanced gut environment. For example, a diet that is poor in fibre causes
rapid microbiota-derived degradation of intestinal mucin and thus promotes both a
more oxygenic environment and the availability of by-products like the short fatty
acids succinate, butyrate and fucose (Desai et al. 2016; Pacheco et al. 2012), all of
which activate expression of the T3SS.

Environmental signals are largely integrated by A/E pathogens through sensor
kinases (Moreira et al. 2016) including quorum sensing that affects internal specific
and global transcriptional regulators: PerC (EPEC)/PchABC (EHEC) or the
histone-like nucleoid-structuring protein (H-NS) (Bustamante et al. 2001), among
others (Martínez-Santos et al. 2012). The coordinate effects of these signals activate
LEE transcription as well as distinct fimbrial and non-fimbrial adhesins that par-
ticipate in the initial attachment to enterocytes. Most of these signals converge to
regulate the transcription of the first gene encoded in operon LEE1: the
LEE-encoded regulator (ler) (Bingle et al. 2014; Mellies et al. 1999). Constitutively
expressed at low levels, Ler activates the transcription of operons LEE2-LEE5
counteracting the inhibitory effect of H-NS (Bustamante et al. 2001; Elliott et al.
2000; Winardhi et al. 2014), but also functions as a repressor of LEE1 itself
(Berdichevsky et al. 2005; Bhat et al. 2014), creating a negative feedback
loop. Extra-LEE genes that are known to be regulated by Ler in EPEC include
non-LEE-encoded effectors (Nle) and espC (Mellies et al. 2001), which encodes an
autotransporter extracellular serine protease that is thought to play various roles in
pathogenicity (Navarro-Garcia et al. 2014; Salinger et al. 2009). In contrast, the
EHEC homologue of espC, espP, is not Ler-regulated.

In addition to Ler, other LEE-encoded regulators of the T3SS expression include
GrlR (the negative regulator) and GrlA (the positive regulator) (Jimenez et al. 2010;
Russell et al. 2007). GrlA interacts with the promoter of LEE1 to activate its
transcription, however GrlR is able to inhibit this activation by binding directly to
GrlA (Padavannil et al. 2013). The action of ClpXP protease on GrlR releases GrlA
under T3SS-inducing conditions (Iyoda and Watanabe 2005), but additional post-
translational modifications may be necessary for full activation (Alsharif et al.
2015).
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4 Assembly of the T3SS

The assembly of the T3SS requires input from transcriptional regulators, chaper-
ones, environmental cues and molecular switches. Though not yet comprehensively
understood, T3SS construction can be categorised into four stages: (i) assembly of
the basal body and export apparatus, (ii) assembly of the inner rod and needle,
(iii) assembly of the filament and translocon and (iv) secretion of effectors. The

Fig. 2 Schematic representation of the E. coli T3SS. The T3SS consists of a number of coaxial
ring-like structures. It comprises an export apparatus (red) a base complex and a needle filament
(blue) through which unfolded effectors are channelled. At the distal end of the injectisome is a
pore that inserts into the host membrane. The cytoplasmic ATPase complex (green) powers
injectisome assembly as well as the translocation of effector proteins
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complete E. coli injectisome is 23 nm long, 8–9 nm wide and is comprised of
around 3.5 MDa of protein (Fig. 2). Throughout this chapter, E. coli nomenclature
will be used, though the Salmonella, Shigella and Yersinia nomenclature can be
found in Table 1.

5 Assembly of the Basal Body and Export Apparatus

There are four major components of the injectisome: the needle, the basal body, the
export apparatus and the cytoplasmic protein complexes. The order of construction
is disputed within the field and between species, which may represent divergence in
the assembly pathway. An ‘outside-in’ model has been proposed for Yersinia
beginning with the outer membrane ring and working inwards towards the export
apparatus (Diepold et al. 2010, 2011) and the reverse ‘inside-out’ model has been
described for Salmonella and E. coli (Wagner et al. 2010). This ‘inside-out’ model
begins with nucleation of the inner membrane export apparatus components EscR,
EscS and EscT forming a stable complex. EscRST recruits the export gate EscV
oligomeric ring and the autoprotease EscU, completing the 5-member export
apparatus EscRSTUV (Diepold et al. 2011). Autoproteolytic cleavage of EscU is an
important signal for the union of the basal body and the export apparatus. The basal
body ring components are exported via the Sec pathway, inserted within the bac-
terial membranes and come together with the export apparatus. A homo-oligomeric
EscD ring at the inner membrane encircles the EscJ ring, which does not possess a
transmembrane region but is instead tethered to the inner membrane. In the peri-
plasm, EscD interacts with the outer membrane ring of EscC (Creasey et al. 2003a;
Ogino et al. 2006) and is presumed to bind the EscJ ring. EscC belongs to the
secretin family of proteins found in several bacterial secretion systems. Unlike other
T3SS where the insertion and oligomerisation of the secretin are directed by pilotin,
a lipoprotein not identified in A/E pathogens, EscC is believed to be regulated by
other T3SS components (Gauthier and Finlay 2003). Assembly and coupling of the
membrane rings to the export complex are followed by the formation of the EscQ
cytosolic ring sorting complex, which recruits EscN and EscL, two parts of the
three-component ATPase complex (Biemans-Oldehinkel et al. 2011). The ATPase
complex is only activated upon the conformational change in EscL induced by the
binding of EscO to EscN (Romo-Castillo et al. 2014). The function of the ATPase
complex will be discussed in a later section.

Formation of the basal body is the only stage of assembly where components are
directed by the Sec pathway. Once assembled, the estimated dimensions of the
EPEC T3SS basal body are 16.7 ± 1.9 nm wide at the outer membrane ring,
18.1 ± 2.5 nm wide at the inner membrane ring and 31.4 ± 4.3 nm tall (Sekiya
et al. 2001). This immature structure can secrete the so-called early- and
mid-substrates required for construction of the inner rod, needle, tip and translocon.
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6 The C-Ring/Sorting Complex

Multiple EscQ subunits make up the C-ring/sorting complex that sits at the foot of
the basal body (Biemans-Oldehinkel et al. 2011; Pallen et al. 2005). In the flagellar
T3SS, the C-ring is a three-component structure that has been attributed to gen-
erating flagellar torque and rotational switching, though whether this translates to
the injectisome is debated. However, based on data from the Salmonella T3SS, the
C-ring has been proposed to form a so-called ‘sorting platform’ (Lara-Tejero et al.
2011). Co-immunoprecipitation experiments show that the Salmonella EscQ
homologue is predominantly associated with translocon proteins, but after deletion
of translocator substrates is instead occupied by late effector proteins. These
experiments also showed its interaction with the ATPase complex subunit homo-
logues of EscN and EscL (Biemans-Oldehinkel et al. 2011). Most EscQ homo-
logues have an internal translation site, giving rise to both the full length protein
and a truncated C-terminal product, homologous to two of the three flagellar C-ring
components (Bzymek et al. 2012; Lorenz et al. 2012; Notti et al. 2015). However, it
is not clear whether EscQ expressed by A/E pathogens is produced in this way, and
it is currently thought that the sorting platform is composed of EscQ, EscL and
EscK, a crucial protein for substrate secretion (Soto et al. 2017).

7 The ATPase Complex

EscN, EscL and EscO together constitute the T3SS ATPase complex. It is located at
the base of the export apparatus and has structural similarity to both the flagellar
and the F1 ATPase. At the core of this complex is the multifunctional,
multi-domain protein EscN. The EscN N-terminus facilitates its hexameric
self-oligomerisation, while the central domain harbours a conserved ATPase
domain and the C-terminus is the proposed recognition site for T3SS substrates.
Aside from energising the secretion process, EscN is thought to serve as a docking
site for the chaperone-substrate complex (Gauthier and Finlay 2003; Thomas et al.
2004), enabling the ATP hydrolysis-dependent uncoupling of these complexes, and
unfolding of the protein which is to be secreted. As the needle pore is 2–3 nm wide
this unfolding is essential for T3SS assembly. Binding of EscO to EscN promotes a
change of conformation in EscL that activates EscN (Biemans-Oldehinkel et al.
2011; Romo-Castillo et al. 2014). Due to the structural similarity to the F1 ATPase,
it is assumed that effector translocation is powered by a combination of ATP
hydrolysis and proton motive force (Ibuki et al. 2011; Imada et al. 2007;
Romo-Castillo et al. 2014; Zarivach et al. 2007). There is currently not enough data
to confirm that EscN is the sole energiser of the T3SS, and due to a lack of high
quality structural data, the mechanics of energising is still poorly understood.
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8 Inner Rod and Needle Assembly

Once the basal body and the export apparatus join, EscI monomers assemble to
create a hollow inner rod. EscI is also thought to have a role in substrate regulation, a
theory supported by the fact that EscI interacts with EscU and EscP, components that
contribute to substrate recognition and regulation. As the T3SS must penetrate the
bacterial peptidoglycan layer, the specialised lytic transglycosilase EtgA, a pepti-
doglycan degrading enzyme, is required for this step of the assembly (García-Gómez
et al. 2011). EtgA interacts directly with EscI, a relationship shown to enhance EtgA
enzymatic activity (Burkinshaw et al. 2015). The EscF polymer, which forms the
needle of the T3SS, is believed to be generated simultaneously with EscI (Gaytán
et al. 2016). To prevent premature self-polymerisation of EscF, co-chaperones EscE
and EscG bind EscF in the bacterial cytoplasm (Sal-Man et al. 2013).

At 23 nm long and 8–9 nm wide (Ogino et al. 2006; Sekiya et al. 2001), the
EPEC injectisome is the shortest T3SS, compared to Salmonella enterica (25–
80 nm), Shigella flexneri (45–50 nm), Yersinia pestis (41 nm) and Yersinia ente-
rocolitica (58 nm). Despite this variation between bacterial genera, needle length
tends to be conserved within species, perhaps reflecting its role in determining host
tropism. Needle completion also controls the switch from the secretion of early
substrates to middle and late substrates for the assembly of the filament and
translocon structures (Buttner 2012; Minamino et al. 2004). In EPEC, the speci-
ficity switch occurs when EscP interacts with EscU, causing a conformational
change in EscU that ultimately signals a substrate switch from injectisome com-
ponents to translocated proteins (Feria et al. 2012). There are several suggested
mechanisms for this switch. One hypothesis, named the infrequent ruler model,
proposes that EscP is occasionally secreted in an elongated form and its passage
through the needle is hindered by EscF subunits. Thus, as the needle grows, the
chance of EscP interacting with EscU in the cytosol is increased (Feria et al. 2012).
This is an adaptation of the ruler model first published in 2003, wherein EscP is
anchored to both the tip of the growing filament and the basal body: once EscP is
stretched to its maximum capacity, EscF is no longer incorporated into the needle
and the substrate switches (Journet et al. 2003). In both models, the length of EscP
determines substrate switching, hence the name ‘ruler protein’. In an alternative
model, the inner rod regulates the needle length and timing of the
substrate-switching event. Overexpression of the Yersinia inner rod protein results
in shorter needles, while mutations presumed to slow inner rod assembly cause an
elongated needle (Wood et al. 2008). Accordingly, EPEC EscI has also been shown
to interact with EscP and EscU (Creasey et al. 2003a; Sal-Man et al. 2012). It is
likely that needle length and substrate switching is in fact controlled by a combi-
nation of these models.
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9 Filament and Translocon Assembly

The T3SS EspA filament is an extension of the EscF needle structure that is
polymorphous among EPEC and EHEC isolates (Daniell et al. 2001a; Neves et al.
2003a). After translocation through the T3SS, EspA subunits self-polymerise via
their C-terminal coiled-coil domains, with the completed filament averaging 90 nm
in length (Daniell et al. 2001b; Delahay et al. 1999; Knutton et al. 1998). These
coiled-coil domains are not only important for filament assembly, but also for
prohibiting the immature polymerisation of EspA in the bacterial cytosol, where
they are bound by the chaperone CesAB (Yip et al. 2005). Unlike the needle, the
filament displays a more variable length seemingly dependent on the availability of
EspA subunits, and can be up to 700 nm long (Crepin et al. 2005; Sekiya et al.
2001). The filament has proposed roles in bacterial adhesion and sensing of
mammalian cells (Cleary et al. 2004). Interestingly, once intimate attachment has
been achieved the EspA filament is disassembled by an unknown mechanism, and
is absent from the mature A/E lesions (Dahan et al. 2004; Knutton et al. 1998).

The translocon is assembled by hetero-oligomerisation of EspB and EspD with
6–8 subunits, and has a pore size of 3–5 nm (Ide et al. 2001). It is responsible for
puncturing the mammalian cell membrane, with both components predicted to
possess transmembrane domains. Additionally, EspD comprises a C-terminal
coiled-coil domain, which is necessary for A/E lesion formation (Daniell et al.
2001b). It was recently shown that host cells may be able to sense this puncturing,
as contact with the EPEC injectisome was sufficient to induce activation of NF-jB,
which in turn is subverted by anti-inflammatory effectors (Litvak et al. 2017).

10 The Roles of Chaperones in T3SS Assembly
and Secretion

Chaperones are required in the bacterial cytoplasm throughout the assembly of the
T3SS, and for the translocation of late effectors during the infection of host cells.
They tend to be small acidic proteins and hold roles in delivering subunits and
effectors to the export complex, preventing homo- and hetero-oligomerisation or
degradation of substrates in the cytoplasm. Chaperones are also thought to play a
role in defining the substrate hierarchy. Eight chaperones have been characterised in
the LEE, and are classified according to their substrate: those that are specific for
one effector protein (Class IA: CesF and CesL), several effectors (Class IB: CesT),
translocators (Class II: CesAB, CesD and CesD2), and needle subunits (Class III:
EscE and EscG) (reviewed in Gaytán et al. 2016; Izoré et al. 2011).

Together, class II chaperones control the secretion of translocators EspA, EspB,
EspD. With the exception of CesD2, which only has one substrate (EspD) (Neves
et al. 2003b), these chaperones work in coordination. Secretion of EspB and EspD
requires CesD (Wainwright and Kaper 1998). EspB also interacts with CesAB, as
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does EspA, prior to secretion (Creasey et al. 2003b; Yip et al. 2005). In addition to
CesAB, EspA is also chaperoned by CesA2 (Su et al. 2008). Both class III chap-
erones, EscG and EscE, are important for EscF secretion, as discussed above
(Sal-Man et al. 2013). EscF is sometimes referred to as an ‘early substrate’, while
the translocators EspA, EspB and EspD are ‘mid-substrates’ (Table 1).

Upon the completion of T3SS assembly, a disputed external signal leads to a
second substrate switch from translocators to effectors, which are injected into host
cells via the completed T3SS. This event involves the regulatory SepD-SepL-CesL
complex. SepD and SepL, dubbed the gatekeeper proteins, simultaneously promote
translocator secretion while preventing the premature translocation of late effectors
(Deng et al. 2004, 2015; O’Connell et al. 2004). While the mechanism of promoting
translocator secretion is unclear, it is thought that the interaction between SepL and
the effector protein Tir is responsible for preventing effector secretion. Under the
established effector hierarchy, Tir is the first effector to be translocated, and thus its
interaction with SepL prevents translocation of any other effectors (Thomas et al.
2007; Wang et al. 2008). The Tir binding site of SepL is shared with the inner
membrane ring protein EscD, perhaps playing a role in relief from the suppression
of late effector secretion (Wang et al. 2008). Furthermore, in A/E pathogens
removal of calcium from growth medium switches the secretion specificity from
translocators to effectors (Deng et al. 2005; Gaytán et al. 2017; Ide et al. 2003;
Kenny et al. 1997); under normal calcium conditions, the ruler protein EscP binds
extracellular calcium flowing into the incomplete injectisome, stabilising its inter-
action with SepL and inhibiting effector secretion (Shaulov et al. 2017). However,
contact between EspA/B/D and the host membrane does not play a role in speci-
ficity switching, as previously thought (Gaytán et al. 2017).

11 The ETT2: A Second T3SS?

In 2001, analysis of the EHEC O157:H7 genome revealed a second type III
secretion system cluster, designated the E. coli Type Three Secretion System 2
(ETT2). The ETT2 locus appears to have been inserted into the E. coli genome
immediately upstream tRNA glyU locus, spanning 27.5 kb and 35 open reading
frames (ORFs) (Ren et al. 2004). It was initially noted that the ETT2 is remarkably
homologous to the S. enterica serovar Typhimurium T3SS, SPI-1, with some genes
sharing up to 64% identity with their Salmonella counterparts. This homology
guided further analysis of each ORF, leading to the discovery that several genes in
the ETT2 contain frameshift mutations, rendering it non-functional. However,
fragments of the ETT2 have been identified in a variety of enteric E. coli isolates
from several mammalian and avian sources (Osawa et al. 2006; Zhou et al. 2014).
The isoform of each ETT2 identified is now categorised from ‘type A’ to ‘type K’
per its completeness, where type A encodes all 35 ORFs (Cheng et al. 2012).
Interestingly, the ETT2 is considered intact in the emerging enteropathogen
E. albertii, which gives a more specific idea of when the locus was acquired (Ooka
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et al. 2015). As such, ETT2 classification may provide an insight into the phylo-
genetic origin of E. coli isolates.

A secretion-competent ETT2 has never been identified, therefore the question of
its function remains unsolved. In earlier works, it was suggested that proteins
encoded by the ETT2 could complement the function of the LEE-encoded T3SS
This now seems unlikely, given the mutational attrition within ORFs in the ETT2
and the lack of ETT2-specific effectors. Interestingly, deletion of ETT2 genes
impacts several aspects of bacterial virulence (Ideses et al. 2005), although the
mechanistic details behind these observations remain unclear. Two ETT2 encoded
regulators, EtrA and EivF, repress LEE expression and therefore reduce bacterial
adherence (Zhang et al. 2004). This could explain why an DetrA mutant was also
deficient in intracellular survival (Wang et al. 2017). A third regulator, EtrB, was
shown to activate LEE expression by direct interaction with Ler, the master reg-
ulator of the LEE pathogenicity island (Luzader et al. 2016). More recently, Wang
et al. showed that deletion of the ETT2 putative ATPase EivC inhibited the flagellar
motility of the avian pathogenic E. coli strain APCE94. The lack of motility was
attributed to downregulation of the flagellum and upregulation of fimbrial genes.
Additionally, the DeivC strain had significantly decreased intracellular survival
compared to WT APCE94 (Wang et al. 2016). Together, these observations suggest
that the ETT2 is not just an artefact, as it was once assumed.

12 In Vitro and in Vivo Tools to Study the E. coli T3SS

Significant strides have been made delineating the molecular mechanisms that
underpin T3SS-dependent virulence in enteric E. coli, aided by technical advances in
fluorescence microscopy, electron cryotomography and single-cell super-resolution
techniques. Our structural understanding of T3SS architecture is becoming
increasingly clear as crystal structures of components are being solved, and defined
functions during infection are being assigned to T3SS components and effectors.
Numerous studies in vivo have demonstrated the importance of the T3SS for A/E
virulence, including a study with human volunteers that confirmed the requirement
for structural T3SS components (EspB and EspA) for the development of diarrhoea
(Donnenberg et al. 1993; Tacket et al. 2000). However, furthering our understanding
of the T3SS requires robust in vitro and in vivo models that do not rely on the
availability of human samples. Intestinal biopsies have historically been used for
in vitro organ culture (IVOC) models to demonstrate how A/E pathogens attach to
the apical portion of intestinal crypts (Shaw et al. 2005). However, for biochemical
assays, in vitro studies typically use cultured cells (such as HeLa cells or polarised
Caco-2 cells) (Wong et al. 2011).

In vivo models of A/E pathogenesis allow studies of the complex interplay
between the pathogen and its host as well as the intestinal microbiota, which is
known to play a vital role in disease development. A variety of surrogate species
have been infected with EPEC and EHEC, including Caenorhabditis elegans, pigs,
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baboons, macaques, infant rabbits, ferrets and cows (Ritchie 2014; Law et al. 2013),
but these techniques inevitably suffer from the bacterium not representing a natural
pathogen. Therefore, closely related animal-specific A/E pathogens serve as a better
proxy for human infection: the use of REPEC is limited as it causes high mortality
(Milon et al. 1999), but C. rodentium is an indispensable tool for studying A/E
pathogenesis. C. rodentium causes transmissible murine colonic hyperplasia with
A/E lesions indistinguishable from those caused by EPEC and EHEC (Collins et al.
2014; Schauer et al. 1995). In general, murine models benefit from the availability
of inbred or genetically manipulated mice that can be maintained under germ-free
or controlled pathogenic conditions. The C. rodentium model continues to give
invaluable insights into the physiological outcomes of the translocation of effector
proteins in vivo and can be combined with biochemical techniques such as mass
spectrometry to uncover strategies used by A/E pathogens to circumvent immune
responses and cause disease.

13 Exploiting the T3SS to Treat Disease

The genetic variety of pathogenic E. coli strains underpins their success but makes
treatment of disease difficult. Rehydration therapy is currently the most effective
way to manage symptoms of E. coli infection, which can become dangerous if it is
not self-limiting. The traditional treatment for unidentified bacterial infections
associated with diarrhoea is often antibiotics. Broad-spectrum antibiotics may kill
the offending bacterium but will also affect commensals. Additionally, some
antibiotics can exacerbate expression of Shiga toxins if they are present (Freedman
et al. 2016), which can lead to HUS and ultimately renal failure. These problems
could be bypassed by targeting the T3SS: the injectisome is not required for growth,
so its inhibition should not enforce selective pressure on targeted bacteria. Further,
the T3SS is only conserved in pathogenic bacteria, so commensals will not be
affected by treatment, and the development of anti-T3SS drugs for E. coli could be
adapted to target other T3SS-expressing pathogens.

There are several elements of type III secretion that can be targeted. Aside from
inhibiting the basal body, vaccines can be developed against the translocon and
needle, LEE regulatory elements can be manipulated, effectors can be counteracted
and secretion can be inhibited (Charro and Mota 2015). One of the most studied
classes of anti-T3SS compounds is salicylidene acylhydrazides (SAHs), which
subvert secretion in several ways. First, SAHs interact with the inner membrane
proteins of the basal body to restrict the passage of effectors. Owing to its homology
with the T3SS basal body, SAHs have also been shown to block the flagellar
apparatus, effectively reducing bacterial motility. Lastly, SAHs have been shown to
interact with proteins involved in E. coli metabolism, resulting in the downregu-
lation of T3SS gene expression (Mcshan and Guzman 2015).

Although other classes of compounds have been shown to inhibit the T3SS, their
development as drugs is hindered by their toxicity to eukaryotic cells, their
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similarity to existing drugs against which pathogens have gained resistance, diffi-
culty introducing the compound into the gut, or lack of a clear bacterial target for
their action. Owing to the intricacy of LEE regulation, our incomplete knowledge of
T3SS effectors and the problems with anti-T3SS compounds described above,
vaccines against the bacterial surface structures represent the most promising
treatment candidates (O’Ryan et al. 2015). For example, self-polymerisation of
EspA can be inhibited by treatment with synthetic EspA-like coiled-coil domains,
which effectively outcompete endogenous EspA interactions to inhibit the secretion
of effectors and A/E lesion formation (Larzábal et al. 2010). Additionally, when
produced either in planta or in vitro and administered orally to ruminants, EspA
itself is able to act as a vaccine to reduce bacterial shedding (Miletic et al. 2017;
Potter et al. 2004). Indeed, many other injectisome proteins and pathogenic E. coli
virulence factors are highly immunogenic in ruminants, including flagellin, intimin,
Tir, EspB and EspD. Antibodies against these proteins have been identified in
bovine and human colostrum and offer protection for both calves and human infants
against EHEC colonisation (Loureiro et al. 1998; Vilte et al. 2008), often by
reducing ruminants’ shedding (McNeilly et al. 2015).

Although the complexity of the T3SS presents an obstacle for inhibiting its
action, it is a targeted membrane-specific nanomachine capable of secreting cargo,
and this itself is an exploitable property (González-Prieto and Lesser 2018).
Recently, all of the structural components of the EPEC injectisome were inserted in
five independent transcriptional units, or engineered LEEs (eLEE), into the genome
of the commensal strain E. coli K-12. Rational design of each eLEEs meant their
expression can be controlled, avoiding the intricate regulation found in the A/E
pathogens. The resulting strain, named synthetic injector E. coli (SIEC), was
demonstrated to assemble functional injectisomes and efficiently translocate
T3-substrate proteins (Ruano-Gallego et al. 2015). Indeed, several studies have also
demonstrated its use as a drug delivery system by engineering a signal sequence
from an effector onto the protein of interest. This includes delivery of a
nuclear-targeted recombinase for editing the genome of induced pluripotent stem
cells (Bichsel et al. 2011), delivery of antigens for immunotherapy (Le Gouëllec
et al. 2013) and delivery of angiogenic inhibitors for the shrinkage of tumours (Shi
et al. 2016).

A current challenge in the field is shifting from studying T3SS effector proteins
and injectisome components in isolation to applying a holistic approach that con-
siders the role of effectors in context of the full effector repertoire, while also
considering spatio-temporal regulatory mechanisms. Many mechanistic details on
the assembly and regulation of the T3SS must still be elucidated, including fully
defining the signal that triggers the translocation of effector proteins upon contact of
host cells. Answering these questions will help design strategies to interfere with
the system to help relieve the global burden of enteric E. coli infections on human
health.
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Abstract Two of the enteric Escherichia coli pathotypes—enteropathogenic
E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)—have a conserved type 3
secretion system which is essential for virulence. The T3SS is used to translocate
between 25 and 50 bacterial proteins directly into the host cytosol where they
manipulate a variety of host cell processes to establish a successful infection. In this
chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins
and processes that they target—the actin cytoskeleton, small guanosine triphos-
phatases and innate immune signalling pathways that regulate inflammation and
cell death. Many of these translocated proteins have been extensively characterised,
which has helped obtain insights into the mechanisms of pathogenesis of these
bacteria and also understand the host pathways they target in more detail. With
increasing knowledge of the positive and negative regulation of host signalling
pathways by different effectors, a future challenge is to investigate how the specific
effector repertoire of each strain cooperates over the course of an infection.

1 Introduction

Most Escherichia coli strains share a common genetic backbone of approximately
4.1 Mbp. However, significant divergence has occurred over the past 4.5 million
years as a consequence of Horizontal Gene Transfer (HGT). Lineage-specific
acquisition of large groups of virulence genes (termed Pathogenicity Islands, PAIs),
plasmids and prophages have given rise to a range of E. coli pathotypes with
genomes up to 1 Mb larger than those of commensal E. coli strains. These strains,
known as the pathogenic E. coli, have the ability to cause a broad range of diseases
in different hosts (Croxen and Finlay 2010; Blattner et al. 1997).

Six distinct enteric (also known as diarrheagenic) E. coli pathotypes are currently
recognised. Of these, enteropathogenic E. coli (EPEC) and enterohaemorrhagic
E. coli (EHEC), alongside the murine pathogen Citrobacter rodentium (Petty et al.
2010), the rabbit diarrheagenic E. coli (RDEC) (Agin et al. 1996) and the emerging
pathogen Escherichia albertii (Huys et al. 2003; Nimri 2013) are characterised by
the formation of an ultrastructural lesion on the apical surface of the intestinal
epithelium known as an ‘Attaching and Effacing (A/E)’ lesion (Knutton et al. 1987;
Moon et al. 1983). Therefore, these pathogens are collectively referred to as the A/E
pathogens. A/E lesions result from the effacement of the brush border microvilli and
significant rearrangement of the actin cytoskeleton underneath adherent bacteria.
This ability is conferred on the A/E pathogens by a 35 kb PAI known as the Locus
of Enterocyte Effacement (LEE) (McDaniel et al. 1995) which encodes a type 3
secretion system (T3SS) (Elliott et al. 1998; Jarvis et al. 1995) and a suite of effector
proteins (Wong et al. 2011).

74 A. R. Shenoy et al.



The T3SS is critically important for the virulence of the A/E pathogens, and the
effectors delivered by the T3SS target many fundamental processes within the
infected host cell. Different pathotypes and indeed different isolates within those
pathotypes encode a unique T3SS effector repertoire, and whilst we now have an
excellent understanding of how many of these effectors function individually, we
know less about the cooperation or antagonism of the entire effector repertoire for
each strain.

This chapter describes many of the host cell processes targeted by T3SS effectors
found in the A/E pathogens. Often this work has been performed with a single
EPEC or EHEC strain (or in some cases with C. rodentium). Throughout this
chapter when we refer to the pathotype, it is with the assumption that the effectors
have the same function across the A/E pathogens, unless specifically stated
otherwise.

2 Pathotype Definitions: EPEC and EHEC

EPEC and EHEC are the most extensively studied of the E. coli pathotypes, and the
original pathogenic E. coli strain described by Bray and colleagues in 1945 was an
EPEC strain (Bray 1945). The EPEC pathotype can be subdivided into typical and
atypical strains. Typical EPEC carries the EPEC adherence factor (EAF) plasmid
that encodes the type IV bundle-forming pilus (BFP) responsible for the classic
localised adherence phenotype on epithelial cells (Donnenberg et al. 1992). In
contrast, atypical EPEC is a diverse group of isolates that are often genetically more
similar to other E. coli pathotypes than they are to typical EPEC (Ingle et al. 2016).
However, due to the presence of the LEE and the absence of shiga toxin, these
strains are classified as EPEC. The current genetic definition for EPEC and EHEC is
therefore based on molecular detection of the EAF plasmid (bfp+), the LEE PAI
(eae+) and shiga toxin genes (stx+) with typical EPEC defined as bfp+, eae+, stx−,
atypical EPEC as bfp−, eae+, stx− and EHEC as bfp−, eae+, stx+. Phylogenetic
analysis further categorises EHEC strains into EHEC1 and EHEC2 and typical
EPEC into EPEC1-4 lineages (Hazen et al. 2013; Lacher et al. 2007).

The diversity within the pathotypes includes diversity within the T3SS effectors
that are encoded by each strain. The lineage of the LEE at least partly dictates the
effector repertoire for a particular strain, despite many effectors being
non-LEE-encoded (NLE) (Ingle et al. 2016), and whilst the prototypical EPEC
strain E2348/69 encodes at least 25 T3SS effectors (Deng et al. 2012), some EPEC
and EHEC strains can encode up to 50 effectors (Tobe et al. 2006). Table 1 contains
a summary of the activity of all currently recognised T3SS effectors from EPEC and
EHEC, and Fig. 1 shows the genetic organisation of phage-encoded effectors from
the EHEC strain Sakai. Beyond the effectors already described, it is likely that
additional T3SS effectors remain to be discovered from recently sequenced aEPEC
strains (Ingle et al. 2016).
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In this chapter, we discuss effectors grouped based on their ability to manipulate
the actin cytoskeleton, the small guanosine triphospatases (GTPases) and innate
immune signalling pathways.

3 Manipulation of Actin by Tir

Found in a wide range of eukaryotic cells, where it is often the most abundant protein
in a cell, actin is involved in an array of different cellular processes. Actin is extre-
mely dynamic and is found in both monomeric (G-actin) and various filamentous
(F-actin) forms. Actin filaments together with microtubules and intermediate fila-
ments are key components of the cell cytoskeleton, controlling cell shape and the
organisation of cellular components. Considering its central role in the cell, it is
unsurprising that numerous pathogens target actin and/or actin-binding proteins.

Tir, the translocated intimin receptor, is involved in the subversion of host cell
actin and allows the A/E pathogens to intimately adhere to the surface of infected
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Fig. 1 Exchangeable Effector Loci (EEL) of EHEC O157. Seven EELs within prophages (Sp3,
6, 9, 10, 11, 14 and 17) and the two Pathogenicity Islands (SpLe3 and LEE) of EHEC O157 strain
Sakai are depicted. Prophage EELs that are predicted to encode only effector pseudogenes have not
been included (Sp4 and 12). All prophage EELs are flanked at one end by prophage genes, with
only the terminal prophage gene indicated here. Similarly, the SpLE3 and LEE PI are flanked by IS
elements/remnants; only the terminal ones are shown. Effectors located on non-phage EELs are not
shown. Gene and EEL nomenclature follows that of Tobe et al. (2006) (for further details on the
T3SS genes encoded within the LEE PI, refer to Fig. 1)
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cells and form the A/E lesion (Wong et al. 2011). Due to this central role, Tir has
been studied extensively and is arguably the most studied of the LEE effectors.
Translocated Tir inserts into the host plasma membrane (PM) in a hairpin-loop
topology and acts as the receptor for the bacterial outer membrane adhesin intimin
(Kenny et al. 1997; Hartland et al. 1999). Binding to Tir by intimin induces Tir
clustering, leading to downstream signalling events that result in the formation of
actin-rich ‘pedestal’-like structures underneath adherent bacteria (Campellone et al.
2004). However, despite its central role, there are differences in the mechanism by
which Tir from different E. coli pathotypes acts. Typically, EPEC Tir relies on the
phosphorylation of a tyrosine residue, Y474, to recruit the host adaptor protein Nck
and subsequently neural Wiskott–Aldrich syndrome protein (N-WASP) and the
actin-related protein 2/3 (Arp2/3) complex, triggering actin polymerisation beneath
attached bacteria (Wong et al. 2011). On the other hand, EHEC Tir lacks a Y474

equivalent and instead promotes Nck-independent actin polymerisation via a con-
served Asn-Pro-Tyr motif (NPY458, which is also found in EPEC Tir as NPY454) to
recruit N-WASP and Arp2/3 (Brady et al. 2007). Tir only produces weak actin
polymerisation in vitro through the NPY458 pathway (Campellone and Leong
2005), and in order to overcome this and induce robust actin polymerisation, EHEC
Tir cooperates with the non-LEE-encoded effector TccP/EspFU. TccP interacts with
Tir indirectly via the adapter proteins IRSp53 and insulin receptor tyrosine kinase
substrate (IRTKS) (Weiss et al. 2009; Vingadassalom et al. 2009). Together, EHEC
Tir and TccP/EspFU strongly activate Arp2/3, resulting in similar actin polymeri-
sation to that seen during EPEC infection (Garmendia et al. 2004). Unusually,
EPEC-2 strains can use both the Nck and TccP2 pathways to promote actin
recruitment at the bacterial attachment site (Whale et al. 2006).

Intriguingly, whilst Tir is indispensable for A/E lesion formation in vivo, none of
the pathways discussed above are necessary for the recruitment of N-WASP or A/E
lesion formation at mucosal surfaces (Crepin et al. 2010). Therefore, other, as yet
unknown, host factors must play a role in Tir-mediated actin polymerisation and A/
E lesion formation in vivo. A growing body of work implicates Tir-mediated
signalling in regulation of the lipid content of the host PM at the bacterial attach-
ment site which may play a role in A/E lesion formation in vivo (Smith et al. 2010;
Sason et al. 2009). Recently an EPEC strain with all T3SS effectors deleted,
excepting Tir, was found to form pedestals on cultured cells but not A/E lesions on
mucosal tissue (Cepeda-Molero et al. 2017). When all NLE effectors were absent,
only marginal A/E lesions could be observed indicating that at least one NLE
effector contributes to Tir-mediated A/E lesion formation. One example of this is
the ubiquitination of JNK by NleL, which has been demonstrated to contribute to
bacterial attachment and A/E lesion formation by EHEC, but is not present in EPEC
(Sheng et al. 2017). Therefore whilst Tir is central to actin polymerisation and A/E
lesion formation, it does not act alone in these processes.
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4 Modulation of Host Small GTPases

After the translocation of Tir, the T3SS translocates additional effectors, detailed in
Table 1. T3SS effectors function to repurpose host cell processes, creating a
favourable environment in the gut for the replication and onward transmission of
the infecting pathogen. Whilst EPEC/EHEC effectors manipulate a wide variety of
host cell processes, subversion of host small GTPases is a recurring theme in
effector function and an important paradigm in host–pathogen interaction more
broadly. Due to the involvement of small GTPases in almost all essential cellular
processes, a variety of pathogenic organisms have evolved to target small GTPases
as a means to manipulate host cell function, with EPEC/EHEC being no exception.

Small GTPases are evolutionarily conserved hydrolase enzymes that function as
molecular switches to control, amongst other things, protein recycling and actin
dynamics at the plasma membrane (Donaldson et al. 2016; Heasman and Ridley
2008). Six major subfamilies make up the small GTPases: Ras, Rho, Rab, Ran,
ARF and MIRO. These subfamilies are grouped together based on amino acid
sequence, structure and cellular roles (Reis et al. 2009; Goitre et al. 2014), but
common to all small GTPases is the ability to bind guanosine triphosphate
(GTP) and hydrolyse GTP to guanosine diphosphate (GDP), via the universal
20 kDa ‘G-domain’ (Vetter and Wittinghofer 2001).

In order to efficiently cycle between the GTP-bound active state and the
GDP-bound inactive form at specific times and in specific locations within the cell,
small GTPases interact with a number of accessory proteins, known as
Guanine-nucleotide Exchange Factors (GEFs), GTPase Activating Proteins (GAPs)
and in the case of the Ras, Rho and Rab subfamilies (all of which are prenylated at
their C-termini) Guanine Dissociation Inhibitors (GDIs) (Cherfils and Zeghouf
2013). Together, these accessory proteins allow small GTPases to exert fine spa-
tiotemporal control over a range of different cellular events.

GEFs activate small GTPases, and whilst many structurally distinct eukaryotic
GEF families exist, the mechanistic basis for their activation of small GTPases is
conserved. In the cytosol, GEFs form a transient complex with the GDP-bound
form of their cognate GTPase, promoting the dissociation of GDP and the
recruitment of GTP to the nucleotide-free GEF/GTPase complex. GTP binding
displaces the GEF, creating the GTP-bound, active form of the GTPase (Bos et al.
2007). All small GTPases undergo conformational changes when GTP-bound to
allow the recruitment of effector proteins and the stimulation of downstream sig-
nalling cascades. For the Ras, Rho, Rab, ARF and MIRO GTPases activation
results in both effector recruitment and insertion into cellular membranes, consistent
with the roles of these GTPases in directing membrane traffic, cytoskeletal rear-
rangements and organelle movement (Cherfils and Zeghouf 2013; Tang 2015).

Acting in opposition to GEFs, GAPs promote the inactivation of small GTPases
by catalysing GTP to GDP hydrolysis. Classically, nucleotide hydrolysis occurs
through the provision of an arginine by the GAP (the conserved ‘arginine finger’
motif) to the GTPase. This results in a conformational change leading to
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GTP-hydrolysis (Bos et al. 2007). In the case of the prenylated GTPases (Ras, Rho,
Rab), GAPs act in concert with GDIs, a third family of regulatory proteins that aid
in the extraction of these GTPases from membranes. Once a prenylated GTPase has
been extracted from a membrane, the GDI remains associated with the GDP-bound
GTPase, maintaining it in a soluble state (Cherfils and Zeghouf 2013).

Subversion of small GTPases by EPEC/EHEC effectors is frequently achieved
through mimicry of these accessory proteins, often, but not exclusively, to modulate
Rho family GTPases.

4.1 Rho GTPases

The Rho GTPases were the second family of small GTPases to be described in
humans, following their initial description in Aplysia spp. (sea slugs) (Madaule and
Axel 1985). The 20 Rho GTPases are subdivided into ‘classically activated’ and
‘atypical’ proteins. Classically activated Rho GTPases are regulated by GEFs and
GAPs, as described above, and are subdivided into four families based on amino
acid sequence: the Rho subfamily (RhoA, RhoB, RhoC); the Rac subfamily (Rac1,
Rac2, Rac3, RhoG); the Cdc42 subfamily (Cdc42, RhoQ and RhoJ); and the RhoF/
RhoD subfamily.

The Rho subfamily (RhoA, RhoB and RhoC) are involved in the regulation of
the actomyosin cytoskeleton and contractile stress fibre formation. Activation of
RhoA and/or RhoC (which share 92% amino acid identity (Heasman and Ridley
2008)) in response to extracellular stimuli recruits the Rho-associated coiled-coil
containing kinase (ROCK), a serine/threonine kinase involved in the formation of
focal adhesions and actin stress fibres, acting in opposition to lamellipodia for-
mation and cell migration (Ridley 2015). RhoB, which shares 84% amino acid
identity with RhoA (Heasman and Ridley 2008), is involved in the regulation of
endocytic trafficking and may play a role in the regulation of epithelial cell–cell
contacts (Vega et al. 2015).

The Rac proteins act in opposition to the Rho subfamily and serve, in conjunction
with other small GTPase families, to promote cell migration, membrane ruffling and
lamellipodia formation by promoting cortical actin polymerisation (Ridley 2015;
Santy et al. 2005). This occurs primarily through the activation of N-WASP and
subsequent recruitment of the WASP family veroprolin-homologue (WAVE) regu-
latory complex (WRC), leading to Arp2/3-mediated actin polymerisation.

The Cdc42 family coordinates the actin cytoskeleton and apical–basolateral
polarity in many eukaryotes, through regulation of filopodia and recruitment of the
Par complex. Cdc42 promotes actin polymerisation, the bundling of F-actin into
filopodia and the membrane curvature necessary for cell protrusions to form
(Heasman and Ridley 2008) whilst also recruiting the Par complex (Martin-Belmonte
et al. 2007) to the apical–lateral border of epithelial cells (Heasman and Ridley 2008).
Localisation of the Par complex at the apical domain allows the polarised trafficking
of proteins and the formation of polarised cell–cell barriers, such as tight junctions.
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4.2 Map, EspT and EspM Mimic Host Rho GEFs

Rho GTPase function is manipulated by both intracellular and extracellular
pathogens during infection, including Shigella spp., Salmonella enterica sv.
Typhimurium (STm), Pseudomonas aeruginosa, Yersinia spp., EPEC and EHEC to
facilitate bacterial invasion, and, in the case of extracellular pathogens, avoid
unwanted internalisation into host cells. The WxxxE family of proteins are a major
group of effectors found across Gram-negative pathogens. These effectors act as
Rho GEFs, mimicking host proteins to activate endogenous Rho GTPases (Alto
et al. 2006; Huang et al. 2009; Klink et al. 2010). The EPEC/EHEC effectors Map
(Huang et al. 2009), EspT (Bulgin et al. 2009b) and EspM (Tobe et al. 2006;
Arbeloa et al. 2008) are members of this family.

The LEE-encoded effector Map acts as a Dbl family GEF mimic, activating
Cdc42 (Huang et al. 2009) to induce the formation of transient filopodia around
infecting bacteria (Kenny et al. 2002) before re-localising to the mitochondria via
an N-terminal mitochondrial targeting sequence (Kenny et al. 2002; Kenny and
Jepson 2000). Whilst the contribution of filopodia formation to the infectious
process of A/E pathogens remains unclear, a Δmap mutant of C. rodentium is
attenuated in vivo and shows a significant colonisation defect (Mundy et al. 2004).
Intriguingly, the induction of filopodia by Map has been shown to be dependent on
Map’s binding to ERM-binding phosphoprotein 50 (EBP50) at the plasma mem-
brane (Alto et al. 2006; Simpson et al. 2006). However, the molecular details of
Map’s dependence on this interaction also remain unclear. In addition, Tir regulates
Map-induced filopodia formation (Berger et al. 2009; Kenny et al. 2002) and
together Tir and Map have been implicated in both the effacement of microvilli
during infection and the rapid loss of function of the host sodium-glucose trans-
porter SGLT-1 (Dean et al. 2006). This may have relevance for understanding the
rapid-onset watery diarrhoea induced by EPEC/EHEC and provides a possible
explanation as to why this watery diarrhoea is refractive to oral rehydration therapy
in severe cases of infection (Dean et al. 2006). In addition, the interaction between
Map and EBP50 has been shown to contribute to the development of diarrhoea
during infection (Simpson et al. 2006), possibly through modulation of intestinal
barrier function (Dean and Kenny 2004). The multiple phenotypes attributed to
Map reflect the diverse roles of Cdc42 as a modulator of actin dynamics, cell cycle
progression, cell polarity and membrane trafficking (Etienne-Manneville 2004).

EspT is a WxxxE effector found in a small subset of EPEC strains (Arbeloa et al.
2009). EspT-carrying strains are capable of invading non-phagocytic cells and
forming intracellular actin pedestals (Bulgin et al. 2009b). Like the other WxxxE
effectors, EspT is a GEF mimic, activating the host Rho GTPases Rac1 and Cdc42
(Bulgin et al. 2009a), resulting in the formation of lamellipodia and membrane
ruffles on the surface of infected cells and subsequently the intracellular phenotype
described above. The intracellular pathogens Shigella flexneri and STm also make
use of this method of cell invasion (Cossart and Sansonetti 2004). Interestingly,
despite the small number of EPEC strains that carry EspT, the causative strain of an
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unusual outbreak of EPEC in Finland in the winter of 1987, in which adults as well
as children were affected, was found to carry EspT (Viljanen et al. 1990). It is
tempting to speculate that the presence of EspT may have been responsible for the
expanded host range of this particular strain.

The homologous WxxxE effectors EspM1 and EspM2 were initially identified in
EHEC O157:H7 Sakai using a bioinformatics screen for homologues of known
T3SS effectors (Tobe et al. 2006) and share significant sequence identify with the
EPEC B171 effector TrcA, another WxxxE effector (Arbeloa et al. 2008). EspM
effectors are RhoA GEFs (Arbeloa et al. 2010) and EPEC/EHEC strains that carry
EspM effectors are associated with severe human infections (Arbeloa et al. 2009).

Whilst all EspM effectors induce the formation of actin stress fibres within
infected cells (Arbeloa et al. 2008; Simovitch et al. 2010), the phenotypes displayed
by the EspM effectors are subtly different. For example, whilst both EspM1 from
EHEC O157:H7 Sakai and TrcA from EPEC B171 induce the formation of parallel
stress fibres that are confined to the bacterial infection site, EspM2 from EHEC
O157:H7 Sakai induces parallel stress fibre formation throughout infected cells,
which are linked to the plasma membrane through focal adhesions (Arbeloa et al.
2008). Stress fibre formation is a consequence of RhoA activation and downstream
signalling mediated by the recruitment of the RhoA effector ROCK (Arbeloa et al.
2008, 2010).

In addition to promoting stress fibre formation, EspM1 and EspM2 disrupt the
architecture of a polarised cell monolayer when translocated into epithelial cells
during EHEC infection. This phenotype is dependent on RhoA (Simovitch et al.
2010) and is likely a consequence of the mislocalisation of both tight junction
proteins and the basolateral protein b1-integrin that is induced by EspM, although it
is important to note that EspM does not seem to decrease the barrier function of
tight junctions (Simovitch et al. 2010). In conjunction with their effect on stress
fibre formation, the ability of the EspM effectors to disrupt the integrity of the cell
monolayer is indicative of the pleotropic consequences of aberrant RhoA activation.
This is particularly noteworthy, as RhoA GTP-GDP exchange does not disrupt the
RhoA/EspM complex, suggesting that RhoA is activated irreversibly upon binding
of EspM (Arbeloa et al. 2010). On this point, it is interesting to note that the EHEC
T3SS effectors EspO1 and EspO2 have been shown to interact directly with EspM2
to counteract stress fibre formation and prevent cell detachment caused by excessive
RhoA activation (Morita-Ishihara et al. 2013). Finally, both EspM1 and EspM2
have been reported to modulate pedestal formation, supressing this process early
during EHEC infection. However, the relevance of this accessory role in pedestal
formation during infection is unclear (Simovitch et al. 2010). Taken together, the
diverse phenotypes attributed to EspM demonstrate the multifaceted nature of
RhoA’s regulation of the actin cytoskeleton and cell–cell junctions.
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4.3 EspH Inactivation of Host GEFs

Operating in conjunction with the EPEC/EHEC WxxxE effectors (Map, EspT and
EspM), the LEE-encoded effector EspH inactivates multiple host Rho GEFs
through binding to their Dbl-homology and pleckstrin homology (DH-PH) domain,
preventing Rho GTPase activation (Dong et al. 2010). In this way, EspH represses
filopodia formation and enhances pedestal formation beneath adherent bacteria (Tu
et al. 2003), acting in concert with Tir to recruit N-WASP to the bacterial attach-
ment site (Wong et al. 2012a). In addition, EspH in isolation promotes cell
detachment and caspase-3 activation through the disassembly of focal adhesions
(Wong et al. 2012b) and is able to prevent phagocytosis of EPEC by macrophages
(Dong et al. 2010). Ingeniously, EspH does not affect the WxxxE effectors,
allowing EPEC/EHEC to replace the endogenous Rho GEFs with bacterial mimics
to exclusively control Rho GTPase activation in infected cells (Wong et al. 2012b).
In fact, EspT and EspM (but not Map) counteract the focal adhesion disassembly
induced by EspH, suggesting that EspH acts in collaboration with NLE WxxxE
effectors that are also present in the infecting strain to negate its negative conse-
quences and completely control host Rho GTPase function in infected cells (Wong
et al. 2012b).

4.4 EspW Targets Microtubules and Control of Cell Shape

First identified in the same bioinformatics screen which identified EspM1 and
EspM2 (Tobe et al. 2006), EspW has subsequently been found throughout the
sequenced EHEC O157:H7 strains as well as in a number of non-O157:H7 EHEC
strains, EPEC O111:H9 and a range of EPEC clinical isolates (Sandu et al. 2017).
A truncated version of EspW, EspW1-206 has also been observed in the EHEC
O157:H7 progenitor strain EPEC O55:H7 (Sandu et al. 2017; Feng et al. 1998),
although the function of this truncated protein remains unknown.

Unlike Map, EspT and EspM, EspW does not possess the WxxxE motif. Instead,
full-length EspW promotes Rac-1-dependent actin remodelling during infection via
interaction with the C-terminus of the host microtubule motor Kinesin-12 (Kif15)
(Sandu et al. 2017), a homotetrameric protein (Drechsler et al. 2014) capable of
forming parallel bundles of microtubules in vitro (Drechsler and McAinsh 2016).
Ectopically expressed EspW promotes the formation of large flower-shaped actin
ruffles on the surface of cells and, during EHEC infection, Kif15 is recruited to the
actin pedestal where it localises with EspW. However, EspW is not required for the
recruitment of Kif15 to the site of EHEC attachment, and instead, Kif15 may serve
to restrict EspW to the pedestal (Sandu et al. 2017). Instead, the absence of espW
results in significant cell shrinkage and rounding during EHEC infection, a phe-
notype that can be rescued by chemical activation of Rac1 (Sandu et al. 2017).
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Therefore, it appears that EspW plays a role in maintaining cell shape during
infection, via Rac1-mediated actin rearrangement, although the putative link
between EspW’s interacting partner, Kif15, and Rac1 remains to be elucidated.

4.5 EspG Manipulates Cell–Cell Contacts and the Host Cell
Surface

Like Map and EspH, EspG is a LEE-encoded effector and thus is highly conserved
across EPEC and EHEC strains. In fact, EspG is one of the most conserved effectors
across the A/E pathogens (Hazen et al. 2013). However, unlike the effectors dis-
cussed above, EspG does not target host Rho GTPases, but rather ARF and Rab
GTPases (Fig. 2).

EspG is able to bind to ARF GTPases, likely promoting the recruitment of a
specific subset of ARF effectors (Selyunin et al. 2011, 2014) whilst simultaneously
acting as a TBC domain-like Rab GAP (Dong et al. 2012). Thus, EspG has been

Fig. 2 Host cell targets of the LEE-encoded effector EspG. During infection of host epithelial
cells, EspG binds to ARF6 whilst also interacting with Rab35. In this way, EspG leads to the
formation of enlarged ‘stalled recycling structures’ (Furniss et al. 2016) and prevents the recycling
of endocytosed host proteins back to the PM (Clements and Furniss 2014). EspG also alters
paracellular permeability via modulation of tight junctions, although the mechanism of this is
unclear at present (Glotfelty et al. 2014; Matsuzawa et al. 2004). In macrophages, EspG prevents
phagocytosis of attached bacteria by binding to ARF6 and ARF1, ultimately preventing the
WAVE-dependent Arp2/3-mediated actin polymerisation necessary for efficient uptake of the
bacteria into the macrophage (Humphreys et al. 2016)
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referred to as a ‘catalytic scaffold’. During infection of epithelial cells, EspG binds
to the GTP-bound, active form of the ARF GTPase ARF6 (Dong et al. 2012;
Selyunin et al. 2011; Furniss et al. 2016) whilst simultaneously directing its
Rab GAP activity towards the Rab GTPase Rab35 (Furniss et al. 2016), disrupting
this important signalling axis (Donaldson et al. 2016; Clements and Furniss 2014).
In epithelial cells, EspG has been implicated in the modulation of host tight
junctions (Glotfelty et al. 2014; Tomson et al. 2005; Morampudi et al. 2017) as well
as in the removal of a range of host cell surface proteins from the plasma membrane
(Clements and Furniss 2014; Morampudi et al. 2017; Gill et al. 2007; Guttman et al.
2007). The ability of EspG to affect a range of cell surface and cell–cell junction
proteins likely arises from its ability to prevent correct recycling of host cell surface
proteins, likely via the formation of ‘stalled recycling structures’ (Furniss et al.
2016), a phenotype that is dependent on EspG’s ability to function as a Rab GAP
(Clements and Furniss 2014). However, the breadth of EspG’s effect on the host
cell surface is yet to be determined.

With regard to EspG’s promotion of the GTP-bound, active form of ARF6,
elegant in vitro work in which membrane-associated actin polymerisation was
reconstituted using phospholipid-coated beads has revealed that EspG is able to
block recruitment of the ARF6 effector ARNO, preventing formation of the WRC,
an important mediator of macropinocytosis and phagocytosis. In this way, EspG
plays a role in resisting phagocytosis by macrophages (Humphreys et al. 2016).
Whether this role for EspG-stabilised ARF6 is restricted to phagocytic cells, or
plays a role during infection of epithelial cells, remains to be determined.

4.6 Conclusion

Modulation of host small GTPases is central to the infection strategy of EPEC and
EHEC and represents a fundamental strategy employed by pathogenic organisms.
Of the six LEE-encoded effectors, three (Map, EspH and EspG) are known to
modulate one or more host small GTPases either directly (Map, EspG) or indirectly
(EspH), whilst Tir also possesses a putative GAP domain (Kenny et al. 2002).
A number of NLE effectors also target small GTPases. The WxxxE effectors EspT
and EspM act as Rho GEF mimics in order to modulate the host cytoskeleton,
whilst EspW activates Rac1 through binding to the microtubule motor Kif15. The
glutamine deamidase Cif reduces RhoA protein levels and increases stress fibres,
which exemplifies yet another strategy of manipulating small GTPase function.
Many effectors that target small GTPases do so in order to allow manipulation of
the actin cytoskeleton, a hallmark of A/E pathogen infection. The mechanism by
which these effectors cooperate with and/or antagonise each other and Tir, and how
the spatial and, temporal control necessary for these complex processes to occur is
achieved remain to be determined.

In addition, whilst much progress has been made towards understanding the
molecular details of GTPase subversion by individual EPEC/EHEC effectors,
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a number of unanswered questions remain, particularly regarding the effectors EspG
and EspW. Simultaneously, bacterial effectors that manipulate host GTPase func-
tion are excellent tools for the study of fundamental eukaryotic cell biology.

5 NF-jB and Cell Death Signalling in Host Cells

Mammalian innate immunity relies on the detection of microbes by families of
pattern recognition receptors such as the Toll-like receptors (TLRs), NOD and
leucine-rich repeat domain-containing proteins (NLRs), AIM2-like receptors
(ALRs), C-type lectin receptors (CLRs) amongst others (Kawai and Akira 2011;
Broz and Dixit 2016; Newton and Dixit 2012). Proteins from most of these families
induce transcriptional upregulation of cytokines that are responsible for inflam-
mation, which if left unchecked can lead to tissue damage. Amongst the most
proinflammatory cytokines are Tumour necrosis factor (TNF) and Interleukin-1
(IL-1) family proteins, which also upregulate their own expression in a feedforward
mechanism (Newton and Dixit 2012). Thus, cytokine production amplifies
inflammation and immunity, and as we discuss in the following sections, EPEC and
EHEC have evolved several mechanisms to potently suppress or evade inflam-
matory and cell death signalling (summarised in Figs. 3 and 4).

Detection of microbial molecules through the TLRs results in nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-jB)-dependent transcriptional
upregulation of proinflammatory cytokines. The TLRs and IL-1 receptor-1 (IL1R1)
share sequence similarity in their intracellular region called the Toll-IL-1 receptor
domain (TIR), and signalling by these families of receptors is similar (Newton and
Dixit 2012). Intestinal epithelial cells (IECs) express several pattern recognition
receptors and cytokine receptors, including TLR4, TLR5, TNF receptor, IL-1
receptor and IL-18 receptor (related to IL1R1), and are therefore capable of initi-
ating as well as responding to inflammation.

TIR domains recruit the adaptor myeloid differentiation primary response 88
(MyD88) to activate mitogen-activated protein kinase (MAPK) and NF-jB pathways
through the recruitment of a number of protein kinases, ubiquitin E3 ligases and
ubiquitin-binding proteins, amongst others. Some TLRs, such as TLR4 and TLR3,
also signal via the adaptor protein TIR-domain-containing adapter-inducing
interferon-b (TRIF) which also has a TIR. MyD88 recruits and activates
IL1R-associated kinase (IRAK) family kinases that in turn recruit the
TNFR-associated factor (TRAF) family E3 ligases TRAF6 and TRAF3.
Ubiquitylation of the receptor complex recruits the transforming growth factor
beta-activated kinase 1 (TAK1; also called MAP3K7) via the ubiquitin-binding
proteins TAK1-binding proteins 2 and 3 (TAB2 and TAB3). TAB2/3 bind polyu-
biquitin chains and recruit a TAK1-TAB1 complex, resulting in TAK1 K63 ubiq-
uitylation by TRAFs at the receptor. TAK1 is a central regulator of NF-jB and
MAPK and is involved in a range of innate immune pathways. Activation of NF-jB
via TAK1 is called canonical NF-jB signalling, which is common to TLRs, IL-1

88 A. R. Shenoy et al.



receptors and TNFR1 signalling (Newton and Dixit 2012; Ajibade et al. 2013; Skaug
et al. 2009). In contrast, TLR3/4 signalling via TRIF induces type I interferons (IFNs)
via the interferon stimulatory factor (IRF) family of transcription factors.

Active TAK1 phosphorylates and activates IjB kinases (IKKs) and MAPKs.
The IKKs phosphorylate the inhibitor of NF-jB inhibitory proteins (IjB), resulting
in its proteasomal degradation, nuclear translocation of NF-jB and subsequently
transcriptional activation of NF-jB-regulated genes. The three MAPK branches;
Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38
MAPK, phosphorylate and induce the nuclear translocation of the activator protein
1 (AP1) transcription factor. The synergistic action of NF-jB and AP1 enhances
gene transcription, inflammation and antimicrobial responses.

TNF signalling activates canonical NF-jB via TAK1 via markedly different
receptor-proximal mechanisms (Skaug et al. 2009; Chan et al. 2015). TNF family

Fig. 3 Manipulation of TLR, TNFR1 and IL1R signalling by EPEC/EHEC. Schematics show
signalling by TNFR1 via TRADD, TLR/IL-1-like receptors via MyD88 and TLR3/4 signalling via
TRIF. Inhibitory effectors (EspL, NleB, NleC, NleD, NleE, NleL and Tir) are shown in brown and
activating effectors (NleF, a functional T3SS and Tir) are shown in green. TRADD, TRAF6 and
RIPK1 are prominent receptor-proximal proteins targets, whereas JNK, p38 and NF-jB exemplify
downstream signalling targets in the host
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receptors have death domains (DDs) in their intracellular regions that recruit
DD-containing adaptors instead of TIR-containing adaptors. The TNFR1 adaptor
TNFR1-associated DD-containing protein (TRADD) recruits receptor-interacting
serine/threonine kinase 1 (RIPK1) and a different set of TRAF E3 ligases, including
TRAF2, TRAF5 and the cellular inhibitors of apoptosis (cIAP) proteins. Ubiquitylation
of RIPK1, by both K63 and linear chains, recruits TAK1 via TAB2/TAB3.
Downstream induction of NF-jB and MAPK-dependent genes sustains inflammation.

Another unique aspect of DD-containing receptors is their ability to activate
apoptosis or necroptosis by forming distinct receptor complexes. These complexes
differ depending on the context (e.g. differential ubiquitylation) and cell type (e.g.
myeloid versus epithelial cells). For example, TNF does not induce death in most
cells but increases NF-jB-dependent proinflammatory cytokine production and
inflammation. NF-jB activation by TNF results in the upregulation of several
NF-jB-dependent genes that prevent cell death, including cellular inhibitor of
apoptosis (cIAPs), B cell lymphoma 2 (BCL2) proteins, the caspase-8-inhibitor
cellular FLICE-like inhibitory protein (cFLIP) and the ubiquitin-editing enzyme
A20 amongst others. Altered signalling by TNF can, however, induce apoptosis via
a process called receptor-induced apoptosis signalling, also known as the
cell-extrinsic signalling pathway (Chan et al. 2015).

The outcome of TNF signalling is fine-tuned by ubiquitylation and caspase-8
activity. Reduced ubiquitylation of the TNFR1-complex, for example, by deubiq-
uitylating enzymes or reduced activity of cIAPs E3 ligases, results in the formation
of an apoptosis-inducing cytosolic complex that contains a related adaptor
Fas-associated protein with death domain (FADD), RIPK1 and caspase-8 (Chan
et al. 2015). Catalytic activation of caspase-8 into its p18/p10 processed form leads
to cleavage of the BH3 interacting domain death agonist (BID) protein that induces
mitochondrial damage, activation of caspases-9, -3, -6 and -7 and apoptosis. In
some cases, such as LPS-induced sepsis or hepatic toxicity induced by TNF,
BID-independent apoptosis proceeds via a mechanism that relies on JNK and
reactive oxygen species (ROS) (Chen et al. 2007; Ni et al. 2009; Wu et al. 2007).

TNF-induced apoptosis is also prevented by cFLIP which prevents full
caspase-8 activation but promotes cell survival by facilitating caspase-8-mediated
cleavage and inactivation of RIPK1. An alternative scenario emerges when the
proteolytic activity of caspase-8 is impaired or protein kinase activity of RIPK1 is
increased, both of which can lead to necroptosis via the activation of RIPK3 and
mixed lineage kinase domain-like pseudokinase (MLKL) (Chan et al. 2015). Just as
in the TNF pathway, reduced caspase-8 activity during TLR4 or TLR3 signalling
also induces necroptotic cell death.

In the case of the TNF-like molecules First Apoptosis Signal receptor Ligand
(FASL) and TNF-related apoptosis-inducing ligand (TRAIL), which signal via
TNFR-like receptors FAS and Death Receptor 5 (DR5), respectively, FADD
directly recruits caspase-8 to the receptor complex to trigger apoptosis. FADD is
thus critical for apoptosis and/or necroptosis by TNFR family receptors. Although
traditionally thought to be the initiator caspase in the extrinsic apoptosis pathway,
the cell survival role of caspase-8 is now better understood, including in IECs.
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The nucleotide-binding oligomerization domain (NOD) and leucine-rich repeat
domain (LRR) containing (NLR) proteins NOD1 and NOD2 can also activate
NF-jB and MAPK pathways. These two cytosolic receptors of peptidoglycan
components require RIPK2 to activate TAK1 (Caruso et al. 2014).

5.1 EPEC/EHEC-Induced NF-jB Activation

As flagellated Gram-negative bacteria, EPEC/EHEC molecules such as LPS and
flagellin, amongst others, are likely to serve as potent triggers of inflammation by
activating TLR pathways. Subsequent release of TLR/NLR-induced proinflamma-
tory cytokines could further amplify inflammation during infection. A large body of
work exists on the redundancy of effectors used by EPEC to block NF-jB acti-
vation. This has provided credence to the idea that EPEC actively subverts innate
immune detection and stealthily limits intestinal inflammation to cause disease. The
ablation of various LEE and non-LEE effectors in EPEC (e.g. loss of nleB, nleC,
nleD and nleE; see below for a description on their roles) or additional removal of
flagellin (fliC) revealed that these strains strongly induce NF-jB activation and IL-8
secretion in epithelial cells (Litvak et al. 2017). However, the host signalling
pathway(s) responsible for NF-jB activation remained a mystery. By reconstituting
the EPEC LEE locus encoding the T3SS and related effectors in E. coli K12, it was
established that a functional T3SS system, but not effectors, was essential for
NF-jB activation in infected epithelial cells. Further, whilst host cell
contact-induced T3SS triggering induced NF-jB activation, ectopic expression of
individual T3SS structural protein in host cells did not. Loss of Myd88, Traf6 and
Ripk2 in the host did not affect NF-jB activation, ruling out TLR/IL1R-MyD88 or
NOD1/NOD2-RIPK2 signalling as the underlying NF-jB-activating pathways.
However, other possibilities remain to be tested. As nleB, nleC and nleE were
essential to inhibit T3SS-dependent NF-jB activity, the as yet unknown pathway
must still converge on the canonical NF-jB pathway which is targeted by these
effectors. For example, the involvement of TRIF-dependent NF-jB signalling,
autocrine activation by cytokines such as TNF (via TNFR1-TRADD), oligosac-
charide sensing by C-type lectin receptors or cytosolic RNA sensing by RIG-I-like
helicases has not been ruled out (Litvak et al. 2017).

5.2 Tir-Mediated Modulation of TLR and TNF Signalling

EPEC Tir induces actin pedestals via the phosphorylation of Tyr474 and Tyr454
residues. The C. rodentium model of in vivo infection allowed an investigation into
the role of Tir phosphorylation and inflammation. Notably, translocation of Tir with
both tyrosines intact led to higher CXCL1 and CXCL2 production by purified
enterocytes from infected mice (Crepin et al. 2015). Mutation of both tyrosine
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residues (Y451A/Y471A in C. rodentium Tir) reduced CXLC1 and CXCL2 pro-
duction. Intriguingly, whilst actin-rich pedestals were absent on enterocytes during
in vivo during infection with C. rodentium Y451A/Y471A Tir, colonisation and
formation of A/E lesions were comparable to WT C. rodentium Tir. Importantly,
loss of both tyrosine residues and actin polymerisation correlated with reduced
colonic neutrophil influx at day 14 post-infection, which is the initial stage of
pathogen clearance. Whilst further investigation is required, these findings suggest a
positive regulation of NF-jB signalling by Tir in a manner that requires both
Tyr471 and Tyr451 (Crepin et al. 2015).

Tir can also inhibit NF-jB activation (Ruchaud-Sparagano et al. 2011; Yan et al.
2013; Yan et al. 2012). The tyrosine phosphorylation motifs around Tyr483 or
Tyr511 residues in EPEC Tir are similar to immune tyrosine-based inhibitory
motifs (ITIMs). In the host, tyrosine phosphatases recruited via ITIMs dephos-
phorylate various signalling proteins and dampen signal transduction. Recruitment
of Src homology region 2 domain-containing phosphatase-1 (SHP1; also called
PTPN6) to tyrosine phosphorylated EPEC Tir enhanced interaction between SHP1
and TRAF6 leading to reduced TRAF6 ubiquitylation. This impaired the produc-
tion of proinflammatory TNF and IL-6 from EPEC-infected macrophages.
Mutational inactivation of the tyrosine residue in individual ITIMs increased
inflammatory cytokine production and mutation of both ITIMs increased it further,
pointing to an additive role of the two motifs. Similar effects are reported via the
recruitment of the related SHP2 phosphatase (Yan et al. 2013). Another study
reported that EPEC infection of epithelial cells inhibited their response to exoge-
nous TNF in a Tir-dependent manner. They found Tir-dependent proteasomal
degradation of TRAF2 was responsible for reduced TNF-induced IL-8 production
in HeLa and polarised Caco2 cells. Interestingly, these effects could be recapitu-
lated by delivery of Tir by an almost effectorless strain of Yersinia, which pointed to
a non-essential role of Tir in suppressing NF-jB (Ruchaud-Sparagano et al. 2011).

5.3 NleE and Inhibition of TAB2 and TAB3

NleE was the first EPEC/EHEC effector demonstrated to have an NF-jB inhibitory
activity (Nadler et al. 2010; Newton et al. 2010). Ectopic expression of NleE alone
was sufficient to block NF-jB activation by exogenous TNF and IL-1b. This
suggested that NleE acted at a common hub, the most upstream of which is TAK1.
A subsequent study revealed that NleE methylates a critical zinc-coordinating
cysteine residue in TAB2 (C673) and TAB3 (C692) and impairs their ability to bind
polyubiquitin chains (Zhang et al. 2011). Methylated TAB2/3 fails to recruit
TAB1-TAK1 to active TRAFs, which results in potent inhibition of NF-jB via both
cytokines. Unusually, NleE uses S-adenosine L-methionine as a cofactor for
methylation, and a C-terminal IDSY(M/I)K motif is essential for catalytic activity.
The broad involvement of TAK1 in canonical NF-jB and MAPK activation in
many cell types underscores the importance of NleE in A/E and other enteric
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pathogens such as Shigella flexneri and S. boydii which express the related OspZ
effector. The DBS 100 strain of C. rodentium lacking nleE is markedly impaired in
colonisation in mice and thus causes less intestinal pathology (Wickham et al.
2007); in contrast, nleE-lacking ICC 169 C. rodentium have similar virulence as
wildtype bacteria (Marches et al. 2005).

5.4 NleB Subverts FADD-Dependent Signalling

NleB has N-acetyl glucosamine transferase (GlcNAc) activity and adds a single
GlcNAc to its target proteins TRADD, FADD and GAPDH that are involved in
signalling via the TNFR family of receptors (Li et al. 2013; Pearson et al. 2013;
Gao et al. 2013; El Qaidi et al. 2017; Scott et al. 2017). Thus, ectopic expression of
NleB inhibits TNF-induced, but not IL-1b-induced, NF-jB activity. In addition,
NleB also blocks apoptosis induced by FASL, which directly recruits FADD and
triggers apoptosis (Newton et al. 2010). Whilst O-GlcNAc’ylation is known in host
cells, and is reversible, N-GlcNAc’ylation is presumably irreversible, which helps
explain the potency of NleB action. Mutational analyses of NleB indicated that
catalytic activity requires the DXD motif, Tyr219 and Glu253. C. rodentium
lacking nleB are highly defective for virulence and cannot colonise mice (Pearson
et al. 2013; Gao et al. 2016; Kelly et al. 2006). Infection of FASL- or FAS-deficient
mice with C. rodentium showed increased morbidity and delayed clearance of the
pathogen. This suggested that inhibition of enterocyte apoptosis by A/E pathogens
may promote colonisation and disease pathogenesis. C. rodentium NleB was also
shown to GlcNAc’cylate GAPDH, which binds TRAF3 to promote its ubiquity-
lation (Gao et al. 2013). Ectopic expression of NleB reduced TRAF3 ubiquitylation
and impaired type I interferon (IFN) production in response to stimulation of TLR4
or TLR3 with LPS or poly(I:C), respectively (Gao et al. 2016).

5.5 NleD and Proteolytic Inactivation of MAPKs

As an nleB/nleE double-mutant strain still blocked JNK activation by TNF, further
studies based on this initial finding led to the identification of NleC and NleD as
suppressive factors with protease activities (Baruch et al. 2011). NleD and NleC
have related HExxH motifs for zinc coordination and metalloprotease activity.
NleD cleaves the p38 and JNK kinases, but not ERK. Direct cleavage of JNK2 by
NleD occurred within the protein kinase activation loop. UV irradiation induces
JNK-dependent apoptosis that can be blocked by NleD. More recent biochemical
studies have identified the molecular specificity of NleD; for example, Arg203 in
NleD and NleD-like proteases are essential for cleavage of p38 but dispensable for
JNK proteolysis (Creuzburg et al. 2017). NleD has also been reported to block
RNAseL expression and production of type I IFNs in human Caco2 IECs infected
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with EPEC. IFNs maintain the expression of tight junction proteins whose reduced
expression accelerated barrier breakdown and increased trans-epithelial electrical
resistance (Long et al. 2014).

5.6 NleC and Proteolytic Inactivation of NF-jB

NleC is a zinc metalloprotease that cleaves NF-jB family proteins, including p65,
c-Rel, RelB and p50 (Baruch et al. 2011; Pearson et al. 2011; Yen et al. 2010;
Muhlen et al. 2011; Sham et al. 2011). Like NleD, the protease activity relies on a
HExxH motif that coordinates zinc ions. In addition, NleC also cleaves the acetyl-
transferase p300, which is a positive regulator of NF-jB-dependent IL-8 production
(Shames et al. 2011). Cleavage occurs within the DNA-binding domains of NF-jB
subunits, which results in their inactivation (Li et al. 2014; Turco and Sousa 2014;
Giogha et al. 2015; Hodgson et al. 2015). The conserved 22EIIE25 and 177PVLS180

motifs in p65 are involved in binding to NleC. Different homo- or hetero-dimers of
NF-jB subunits have subtly different gene targets in cells, and by acting on multiple
subunits, NleC has broadly suppressive effects on NF-jB-mediated transcription.

5.7 EspT and Activation of NF-jB

EspT (discussed in ‘Map, EspT and EspM mimic host Rho GEFs’) activates Rac1
and promotes invasion. However, EspT-mediated activation of Rac1 also induces
NF-jB in a manner that is independent of bacterial invasion (Bulgin et al. 2009a, b;
Arbeloa et al. 2009). The related STm effector SopE activates Rac1 and triggers
NOD1-dependent NF-jB activation (Keestra et al. 2013). Whether EspT functions
similarly remains to be tested.

5.8 NleF in Inhibiting Apoptosis and Activating NF-jB

NleF interacts with caspases-4, -8 and -9 (Blasche et al. 2013; Pallett et al. 2017)
and the COP1 vesicle protein Tmp21 (Olsen et al. 2013). Recombinant NleF
potently inhibits caspase-4 (IC50 * 14 nM), caspase-8 (IC50 * 40 nM) and
caspase-9 (IC50 * 80 nM) (Blasche et al. 2013). Here we discuss the cellular
effects of NleF-mediated inhibition of caspase-8/9; NleF-caspase-4 interactions are
discussed in the section on inflammasomes. The cocrystal structure of
caspase-9-NleF revealed that insertion of four C-terminal residues of NleF into the
caspase-9 active site inhibits its proteolytic activity in a manner similar to the
inhibitor peptide zEAD-Dcmbk. NleF, which partially localises to mitochondria,
can block the intrinsic caspase-9-dependent apoptosis induced by staurosporine. As
a direct inhibitor of caspase-8, ectopic expression of NleF could potently block
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FASL- and TRAIL-induced receptor-mediated apoptosis. Whilst NleF and NleB
both block apoptosis, they act at different steps in the pathway. By inhibiting a
receptor-proximal step, NleB causes severe dampening of the immune response
compared to NleF which acts ‘downstream’ on caspases (Blasche et al. 2013; Pallett
et al. 2017; Pollock et al. 2017; Song et al. 2017). This is reflected by the relatively
marked attenuation caused by nleB deletion as compared to nleF deletion in
C. rodentium (Kelly et al. 2006; Pallett et al. 2017).

A second role of NleF is activation of NF-jB. EPEC increases NF-jB activity
early during infection (1.5 h post-infection), dependent on the presence of NleF
(Pallett et al. 2014). Consistent with this, EPEC infection-induced IL-8 production
in IECs in vitro was NleF-dependent. The underlying mechanisms of NleF action
on NF-jB were caspase-4, -8 and -9-independent.

Fig. 4 Suppression of apoptosis and necroptosis by EPEC/EHEC. FAS and death receptor 5
(DR5) mediate FADD and caspase-8 dependent apoptosis. TNFR1 mediates apoptosis or
necroptosis in a context-specific manner (see text). TNFR1-induced apoptosis via RIPK1 and
caspase-8 typically requires inhibition of NF-jB activity and/or protein translation, and
necroptosis requires inhibition of caspase-8 or reduced RIPK1 ubiquitylation. The cytosolic
protein DAI directly induces necroptosis via RIPK3. The mechanisms of NleH-mediated inhibition
of apoptosis via BAX-inhibitor 1 are poorly understood (depicted by ? marks)
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5.9 NleH-Mediated Inhibition of NF-jB and Apoptosis

NleH1 and NleH2 reportedly inhibit NF-jB activity in cells via two different
mechanisms. There is evidence that NleH1/2 binding to ribosomal protein S3
(RPS3), a subunit of NF-jB, prevents NF-jB nuclear translocation (Gao et al.
2009). Another study reported that transfection of EPEC NleH1/2 reduced IKK-b
activity, IjB degradation and NF-kB activation in response to TNF stimulation
(Royan et al. 2010). However, an alternative mechanism was suggested based on
the finding that NleH1 inhibited IKK-b-mediated RPS3 phosphorylation on the key
Ser209 residue required for its nuclear translocation (Wan et al. 2011; Pham et al.
2012). In contrast to NleH1, NleH2 inhibits NF-jB by blocking IjB degradation
(Gao et al. 2013). Deletion of both NleH proteins in EPEC revealed a relatively
weak inhibitory activity on TNF-induced NF-jB activation and KC-induction
in vivo. C. rodentium encodes a single NleH, and its deletion reduced NF-jB
reporter activity in the colonic mucosa in vivo. Complementation of DnleH
C. rodentium suggested that NleH1 but not NleH2 has more anti-NF-jB activity
(Gao et al. 2013). EHEC lacking NleH1 and NleH2 showed increased colonisation
of calves; however, the mechanisms for this are unclear (Hemrajani et al. 2008).
Thus, whilst several reports exist on NF-jB-suppressive roles for NleH proteins,
the underlying mechanisms that have been proposed remain to be reconciled.

NleH proteins are related to Shigella OspG and have an atypical protein kinase
structure and a C-terminal PSD-95/Disc Large/ZO-1 (PDZ) motif (Pham et al. 2012;
Martinez et al. 2010; Halavaty et al. 2014). NleH1 is reported to undergo
autophosphorylation but does not phosphorylate RPS3 or IKK-b. The v-Crk sarcoma
virus CT10 oncogene-like protein (CRKL) protein was identified as an NleH1 sub-
strate and implicated in inhibiting RPS3 phosphorylation (Pham et al. 2013). The
crystal structure of NleH2 revealed that it might not require autophosphorylation for
full activity due to the lack of the conserved Arg residue in the HRD motif typically
found in other protein kinases (Halavaty et al. 2014). Furthermore, p38 and JNK
inhibition independently of the kinase domain has also been reported for NleH
proteins. The PDZ motif, also implicated in NF-jB inhibition, may also have addi-
tional subversive roles, for example, via binding to PDZ-containing proteins such as
Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) (Martinez et al. 2010).

In addition, EPEC NleH1 and NleH2 block pro-caspase-3 proteolysis and
apoptosis induced by staurosporine, brefeldin A, tunicamycin or Clostridium dif-
ficile TcdB toxin (Hemrajani et al. 2010; Robinson et al. 2010). The ER-resident
BAX-inhibitor protein 1 (BI-1) has been identified as an NleH1-binding partner and
is required for NleH1-mediated inhibition of cellular apoptosis. BI-1 inhibits
apoptosis, particularly when induced by ER-stress or Ca+2 elevation by blocking the
action of BCL2 family protein BAX. Notably, the kinase activity of ectopically
expressed NleH1 is dispensable for its anti-apoptotic roles. Consistent with this,
C. rodentium DnleH induces reduced pro-caspase-3 cleavage in vivo (Hemrajani
et al. 2010).
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5.10 EspL Cleaves RHIM-Domain Proteins

The receptor-interacting protein (RIP) homotypic interaction motifs (RHIMs) present
in signalling proteins such as TRIF, RIPK1, RIPK3, DAI (DNA-dependent activator
of IFN-regulatory factors, also called ZBP1), amongst others, are essential for signal
transduction by these proteins. An unconventional Cys-His-Asp catalytic triad and
protease activity of EspL against these RHIM-containing proteins inactivates their
respective signalling pathways (Pearson et al. 2017). For example, inactivation of
RIPK1 by EspL redundantly inhibits TNF-dependent NF-jB activation in EspL
expressing cells. Similarly, cleavage of TRIF abrogates TLR3- and TLR4-induced
type I IFN production in EspL expressing cells. Importantly, cleavage of RIPK1 and
RIPK3 also abrogates necroptosis induced by TNRF1 and DAI. During EPEC
infection, levels of RIPK1 drop early post-infection in an EspL activity-dependent
manner, and RIPK3 levels drop later during infection, suggesting a preference for
RIPK1. Furthermore, EspL is only active against RIPK1 before it assembles into
oligomeric amyloid-like fibrils that trigger necroptosis. C. rodentium DespL is cleared
much faster during infection as compared to wildtype C. rodentium which points to
the importance of EspL in vivo (Pearson et al. 2017).

5.11 NleL-Mediated Inhibition of JNK

NleL has ubiquitin E3-ligase activity that is biochemically similar to eukaryotic
E6-AP Carboxyl Terminus (HECT) family proteins (Lin et al. 2011; Piscatelli et al.
2011); however, NleL is structurally unrelated to HECT ligases. NleL can
monoubiquitylate JNK1 at Lys68 and reduce its interaction and phosphorylation by
the upstream kinase MKK7 (Sheng et al. 2017). NleL can also target JNK2 and
JNK3 and thus reduce AP1 activity in cells. JNK was also found to regulate EHEC
Tir-mediated pedestal formation and bacterial attachment to cells, thus suggesting a
role for NleL in this process.

5.12 EspJ and Non-receptor Tyrosine Kinases

EspJ is uniquely able to couple amidation and ADP-ribosylation (Young et al.
2014) and targets this biochemical activity to non-receptor tyrosine kinases (Pollard
DJ et al. 2018). EspJ can ADP-ribosylate Src to inhibit complement receptor 3
(CR3) and FccR-mediated phagocytosis (Young et al. 2014). Proteomic analysis of
IECs isolated from mice infected with C. rodentium (WT, DespJ or DespJ com-
plemented with a catalytically inactive EspJ) indicates a broad immunomodulatory
effect of EspJ through regulation of multiple tyrosine kinases including Src, Abl,
Csk, Tek and Syk families (Pollard et al. 2018).
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6 Inflammasome Signalling Pathways

Inflammasomes are multimolecular scaffolds that activate caspase-1 (Broz and Dixit
2016; Eldridge and Shenoy 2015). Oligomeric inflammasome complexes form a
single ‘speck’ or ‘focus’ (*1–3 lm in size) per cell upon their activation by
microbial and environmental cues. The inflammatory outcomes of caspase-1 acti-
vation include the release of proinflammatory cytokines such as IL-1b and IL-18,
alarmins such as IL-1a and HMGB1, and lytic cell death via pyroptosis. The
inactive pro-caspase-1 zymogen undergoes autoproteolytic activation within
inflammasome foci. Pro-IL-1b and pro-IL-18 are biologically inert precursors that
require proteolytic maturation. Gasdermin-D (GSDMD) is also inert until it is
processed, which releases the N-terminus fragment that inserts within membranes
and forms pores. GSDMD pores cause release of ions leading to swelling and
eventual cell lysis and may also facilitate the release of small proteins, including
mature IL-1b and IL-18 from macrophages. IL-1a and HMGB1 release is also
regulated by inflammasomes through mechanisms that are poorly understood;
however, caspase-1 does not proteolytically process either protein (Broz and Dixit
2016; Eldridge and Shenoy 2015). Mature IL-1b and IL-1a have overlapping
immune roles, for example, in elevating body temperature (causing fever), inducing
proinflammatory cytokines and acute phase proteins, and as neutrophil attractants.
IL-18 is especially important for neutrophil recruitment, the induction of type II
interferon (IFNc) from lymphocytes and tissue repair in the intestine.
Inflammasomes thus orchestrate the early innate immune responses to infection and
help launch effective adaptive immune responses. Differential expression of
inflammasome sensors and substrates results in distinct outcomes following
inflammasome activation in different cell types. Inflammasome signalling is best
understood in macrophages and dendritic cells; however, intestinal epithelial cells
also express several inflammasome signalling proteins and the pro-IL-18 substrate.

Inflammasomes sensors are modular proteins and share conserved domains.
Examples include proteins from the NLR proteins with a PYD (pyrin domain;
NLRPs) or NLRs with a CARD (caspase activation and recruitment domain;
NLRCs), AIM2-like receptors (ALRs) and the non-NLR/ALR sensor called
PYRIN. Caspase-1 has a CARD at its N-terminus which recruits it to inflamma-
some complexes, typically via the small adaptor protein PYCARD (protein with a
PYD and CARD) also called ASC (apoptotic speck-associated protein containing a
CARD). Whilst CARD-containing NLRs (e.g. NLRC4) can directly recruit
caspase-1 for pyroptosis, for reasons not completely clear, ASC is required for
optimal IL-1b and IL-18 processing by NLRC4 inflammasomes. EPEC and EHEC
T3SS components, RNA and LPS have previously been suggested to activate
inflammasomes in various cell types.

EPEC infection activates NLRC4 and NLRP3 inflammasomes, both of which
rely on upstream receptors or molecules for their activation. The NLRC4 inflam-
masome requires proteins of a NLR subfamily called NAIPs (NLRs with apoptosis
inhibitor repeat proteins) which contain N-terminal BIRs (baculovirus inhibitor of
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apoptosis repeat domains). NAIP genes have diversified in the mouse, four of which
have been characterised extensively: NAIP1 binds the T3SS needle proteins,
NAIP2 binds the T3SS rods, and NAIP5 and NAIP6 bind flagellins. In contrast, a
single human NAIP produces at least two isoforms that are capable of binding T3SS
needle, rod and flagellin. Ligand-bound NAIPs stimulate NLRC4 oligomerization,
ASC recruitment and caspase-1 activation (Vance 2015; Zhao and Shao 2015).

The NLRP3 inflammasome can be activated in two ways; by loss of cellular K+

through bacterial pore-forming toxins or host proteins that can form pores
(‘canonical’ signalling), or by cytosolic LPS (‘non-canonical’ signalling).
Non-canonical NLRP3 activation requires upstream activation of caspase-4 (pre-
viously called caspase-11 in the mouse) or caspase-4 and caspase-5 in the human
(Broz and Dixit 2016; Eldridge and Shenoy 2015). Caspase-4, -5 are cytosolic
receptors for LPS and are directly activated by LPS binding. Therefore, unlike
caspase-1 which is oligomerised within inflammasome scaffolds, current evidence
suggests LPS binding is sufficient to induce oligomerisation and activation of
caspase-4. Active caspase-4 can also proteolytically process GSDMD and cause
pyroptosis in myeloid cells and IECs. The efflux of K+ via GSDMD or pannexin-1
pores activates NLRP3-ASC-caspase-1 inflammasome which is essential for IL-1b
and IL-18 processing in macrophages (Ruhl and Broz 2015; Kayagaki et al. 2015;
Yang et al. 2015). Recombinant Shiga-like toxins Stx1 and Stx2 activate the
NLRP3 inflammasome in THP1 macrophage-like cells in a manner that depended
on their N-glycosidase activity (Lee et al. 2015). In contrast, Stx was dispensable
during EHEC infection or mouse macrophages in which NLRP3 activation was
reported via E. coli RNA:DNA hybrids that gain access to the host cytosol inde-
pendently of the T3SS (Kailasan Vanaja et al. 2014). As discussed further below,
EPEC LPS can activate caspase-4 in different cell types. The mouse C. rodentium
infection model has highlighted the importance of inflammasomes in host defence
against A/E pathogens. Loss of inflammasome genes, such as Nlrp3, Nlrc4, Casp1/
4, Il1b and Il18, resulted in greater pathogen burdens at late stage of infection and
higher morbidity (Gurung et al. 2012; Liu et al. 2012; Alipour et al. 2013;
Song-Zhao et al. 2014; Nordlander et al. 2014). More recent work has highlighted
the critical role of the microbiome in C. rodentium colonisation (Collins et al.
2014). Additional studies are required to dissect the contribution of the host
genotype and the microbiome to the outcomes of C. rodentium infection in Nlrp3-/-

and Nlrc4-/- mice to identify the relative contribution of these inflammasomes to
host defence against A/E pathogens. In vivo studies have pointed to an important
role for IEC-intrinsic inflammasome in innate immunity to C. rodentium.
How EPEC proteins activate, suppress or evade detection by inflammasomes is
discussed next and summarised in Fig. 5.
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6.1 EPEC FliC, EscI, EscF and the NLRC4 Inflammasome

Due to its presence in diverse pathogenic bacteria, the T3SS is a major target for
detection by the host immune system. The T3SS is evolutionarily related to the
bacterial flagellar basal body, and the first studies on NLRC4 identified a role for it
in detecting STm flagellin (Miao et al. 2006). The role of NLRC4 in detecting
EPEC is evident from the lack of inflammasome response by Nlrc4-/- mouse
macrophages (Zhao et al. 2011). During C. rodentium infection, Nlrc4-/- show
marked weight loss between days 6–12 post-infection and increased pathogen
burden (Nordlander et al. 2014). This was accompanied by increased intestinal

Fig. 5 Inflammasomes signalling during EPEC/EHEC infection. Schematics depict the
canonical (left) and non-canonical (right) inflammasome activation pathways. T3SS structural
proteins that activate inflammasomes are shown in green (EscI, EprJ and EprI), and effectors that
suppress inflammasomes are shown in yellow (EspC, NleA and NleF). EHEC RNA:DNA hybrids
gain access to the cytosol independently of the LEE T3SS. The EHEC ETT2 needle protein EprI is
a ligand for human NAIP (not depicted) and mouse NAIP1. The LEE T3SS and ETT2 rod proteins
are reported to activate murine NLRC4 via NAIP2. EspC blocks necrosis by regulating the T3SS
pore, and whether this form of death is pyroptotic is not known (depicted by ?). EHEC bacteria and
purified OMVs stimulate non-canonical signalling via caspase-4 in mouse macrophages. EPEC
and EHEC NleF can block caspase-4 in IECs. The transcriptional upregulation of NLRP3 and
pro-IL-1b require NF-jB activity which may be suppressed by the actions of other effectors that
are not depicted (see text and Fig. 3)
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inflammation and pathology. However, the production of antibodies, IFNc and
IL17A were higher in Nlrc4-/- animals, pointing to reduced early innate immune
responses but a relatively competent adaptive immune response later during
infection. Bone marrow chimera experiments indicated that NLRC4 signalling in
the non-haemopoietic compartment was required for host defence. Consistent with
this, NLRC4 expression was detected in intestinal crypts, which may respond by
producing IL-18. However, as discussed next, EPEC has evolved mechanisms that
largely allows it to escape detection by the NAIP-NLRC4 system, especially in
human cells.

A novel cytosolic protein delivery approach using flagellin or T3SS proteins
fused to the non-catalytic N-terminal regions of the anthrax lethal factor (LnF) plus
protective antigen (PA) helped dissect NLRC4 signalling induced by individual
bacterial molecules (Zhao et al. 2011). Flagellin proteins from STm (FliC) and
Legionella (FlaA) interact with NAIP5 when delivered via LnF-PA. However,
EPEC and EHEC flagella do not interact with NAIP5 or activate NLRC4 inflam-
masomes (Zhao et al. 2011). In agreement with this, a DfliC EPEC E2348/69 strain
has unaltered inflammasome activation in mouse macrophages, which suggests that
EPEC/EHEC flagellins evade detection by inflammasomes.

As a T3SS-deficient EPEC (DescN) fails to activate inflammasomes in macro-
phages, NLRC4 likely detects a T3SS component. Almost all strains of EHEC and
EPEC also encode remnants of a second T3SS called ETT2 (Zhou et al. 2014).
Frameshift inactivation and deletion of several genes within ETT2 point to a
non-functional injectisome. EPEC strains have a deletion in ETT2 resulting in the
loss of rod and needle genes; in contrast, EHEC strain Sakai encodes the complete
ORFs for rod (EprJ) and needle (EprI). In a study that used transient transfection of
the EPEC LEE T3SS rod protein EscI or the EHEC ETT2 rod EprJ in mouse
macrophages, both proteins induced NLRC4-dependent pyroptosis (Miao et al.
2010). A subsequent study confirmed that EPEC EscI is a ligand for mouse NAIP2
and that a DesfFDfliC EPEC strain fails to activate inflammasomes during infection
of mouse macrophage (Zhao et al. 2011). Various T3SS rod proteins, including the
Salmonella Pathogenicity Island 1 (SPI-1) rod protein PrgJ, activate the
NAIP2-NLRC4 system. However, as the extensively used human macrophage cell
lines (THP1 and U937) do not respond to flagellin or T3SS rods, the search for
activators of human NLRC4 continued, leading to the identification of the T3SS
needle CprI from Chromobacterium violaceum as a ligand for human NAIP and
mouse NAIP1 (Zhao et al. 2011; Yang et al. 2013). Interestingly, the LEE T3SS
needle protein EscF from EPEC and EHEC fails to bind to human or mouse NAIP
and exemplifies another evasion mechanism (Zhao et al. 2011; Yang et al. 2013). In
contrast, the EHEC ETT2 needle protein EprI, which is related in sequence to SPI-1
needle PrgI, readily activates human and mouse NAIP-NLRC4 (Miao et al. 2010).
Whether EprI or EprJ are expressed and secreted by EHEC remains to be tested
during infection.
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6.2 EPEC EspC and Regulation of the T3SS Pore

The T3SS pore has the potential to activate NLRP3 by promoting K+ efflux
(Guignot et al. 2015; Serapio-Palacios and Navarro-Garcia 2016). Whilst this has
been suggested in the case of effectorless strains of Yersinia, whether this happens
during EPEC infection has not been tested. However, in epithelial cells, the EPEC
serine protease autotransporter of enterobacteriaceae (SPATE) family effector EspC
targets EspA-EspD subunits of the T3SS translocon upon host cell contact. This
effectively down-regulates pore formation and reduces EPEC-induced cytotoxicity.
Therefore, a DespC strain is more cytotoxic to epithelial cells. However, the
mechanisms of cytotoxicity and indeed whether this is inflammasome-dependent
pyroptosis remains to be tested.

6.3 NleA and Suppression of NLRP3 Inflammasomes

The EPEC effector protein NleA (also called EspI) can inhibit NLRP3 inflamma-
somes in human THP1 cells (Yen et al. 2015). A screen of deletion mutants of
non-LEE islands identified NleA in inhibiting NLRP3 activation by preventing its
deubiquitylation. In naïve cells, ubiquitylation restrains NLRP3 activity, which is
relieved by its deubiquitylation by BRCC3. NleA interaction with NLRP3 impaired
its deubiquitylation, thus reducing oligomeric foci formation. How NleA affects
NLRP3 ubiquitylation remains to be elucidated mechanistically. NleA was previ-
ously reported to block COPII vesicle trafficking and protein secretion by directly
binding to host Sec24 (Kim et al. 2007). However, NleA-dependent reduced IL-1b
secretion can be attributed to caspase-1 inhibition and not protein secretion inhi-
bition as IL-1b (and IL-18) do not have signal peptides for ER-Golgi-mediated
trafficking and secretion and are released via an unconventional secretion mecha-
nism. Loss of nleA in C. rodentium severely reduces intestinal colonisation and
inflammation, indicating its importance in vivo (Mundy et al. 2004).

6.4 NleE and Suppression of Inflammasome Priming

Inflammasome sensors such as NLRP3 and mouse caspase-4 require priming for
post-translational licensing and increased expression (Yen et al. 2015). Importantly,
pro-IL-1b expression is upregulated by NF-jB signalling in myeloid cells. As
discussed previously, NF-jB inhibition by several EPEC effectors could potentially
reduce mature IL-1b production in macrophages. A role for NleE in reducing
pro-IL-1b expression was evident during infection of THP1 macrophages. The
other NF-jB inhibitory effectors such as NleC and NleB are predicted to have
similar suppressive roles on pro-IL-1b production.
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6.5 EHEC OMVs/LPS and the Non-canonical Activation
of Inflammasomes

EHEC, EPEC and C. rodentium were amongst the first Gram-negative pathogens
shown to activate caspase-4 in macrophages in a TLR4- and TRIF-dependent
manner (Gurung et al. 2012; Kayagaki et al. 2011; Rathinam et al. 2012). However,
these studies used EPEC/EHEC/Cr that were grown in condition that does not
induce T3SS, LEE or non-LEE effectors, presumably to avoid NLRC4 activation.
How LPS from these bacteria gains access to cytosolic caspase-4 has remained
elusive. Studies using outer membrane vesicles (OMVs) from non-LEE expressing
EHEC or E. coli K12 showed that OMVs are endocytosed via processes that require
Rab7 (Vanaja et al. 2016) and TLR4-TRIF (Gu et al. 2018; Santos et al. 2018).
OMVs gain access to the cytosol via mechanisms that are not entirely clear but
require the guanylate-binding proteins (GBPs), including GBP2 and GBP5 (Gu
et al. 2018; Santos et al. 2018; Finethy et al. 2017). Mouse caspase-4 and GBPs are
IFN-inducible genes, and their expression needs to be upregulated for optimal
inflammasome activation (Rathinam et al. 2012). Thus, in naïve mouse macro-
phages, caspase-4 activation is delayed and can take up to 10 h. In contrast, both
human caspase-4 and caspase-5 are constitutively expressed, further pointing to
likely differences in human macrophages.

6.6 NleF and Suppression of Caspase-4 Activity

Human caspase-4 was reported to be inhibited (IC50 * 5 nM) by purified NleF in a
manner that required its four C-terminal residues, which were also critical for
NleF-caspase-4 interaction (Pallett et al. 2017). In addition, mouse caspase-4 was
potently inhibited by C. rodentium NleF. Moreover, EPEC induced
caspase-4-dependent pro-IL-18 processing in human Caco2 IECs. The direct pro-
cessing of pro-IL-18 by caspase-4 in IECs, independently of NLRP3, was also
reported during STm infection. EPEC DnleF affected markedly increased mature
IL-18 production by IECs, pointing to a physiologically relevant subversive role for
NleF during infection. In the C. rodentium infection model, higher IL-18 release
was observed in colonic explants of mice infected with DnleF C. rodentium than the
wildtype pathogen. Colonic explants from C. rodentium or DnleF infected Casp4-/-

mice did not secrete detectable IL-18, which indicated that early IL-18 production
was caspase-4-dependent in vivo. Importantly, reduced IL-18 levels correlated with
lower colonic influx of neutrophils. Thus, NleF-mediated caspase-4-inhibtion
blocked early neutrophil responses to infection (Pallett et al. 2017). Similarly,
EHEC NleF is reported to block caspase-4-dependent pyroptosis and IL-1b con-
version in HT29 IECs (PMCID: PMC5448047). Subversion of IEC caspase-4 by
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A/E pathogens points to inflammasome-dependent antimicrobial host defence. An
important outstanding question is how LPS from extracellular A/E pathogens is
able to localise to the cytosol, and whether any effectors may be involved in the
process.

7 Conclusion

Innate immune signalling leading to the transcriptional upregulation of proinflam-
matory cytokines and type I IFNs as well as removal of infected cells via pro-
grammed cell death are essential for effective antimicrobial immunity. A/E
pathogens encode effectors with distinct biochemical activities to block multiple
steps of signal transduction by a broad range of pattern recognition receptors and
cytokine receptors. Transcriptional responses as well as rapid post-translational
pathways, exemplified by TLRs and inflammasomes, respectively, are targeted by
A/E pathogens for robust inhibition of host responses. Future studies should focus
on the temporal nature of stimulatory and inhibitory actions of various effectors
during infection.

8 Summary and Perspectives

A/E pathogens predominantly cause diarrheagenic disease in children but distinct
pathotypes are increasingly associated with disease in adults. A number of LEE and
NLE effectors are together responsible for damaging the intestinal lining, sup-
pressing host responses and causing disease. Studies on T3SS-delivered effectors
have led to the identification of exciting biochemical activities such as GEF mimics,
arginine-GlcNac’lase, deamidase, combined deamidase and ADP-ribosylase,
unconventional proteases, caspase inhibitors and ubiquitin ligases. Future studies
should focus on the collective spatiotemporal nature of effector function and their
contribution to intestinal disease.
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Abstract Enterohemorrhagic Escherichia coli (EHEC) are Shiga toxin
(Stx) producing bacteria causing a disease characterized by bloody (or non-bloody)
diarrhea, which might progress to hemolytic uremic syndrome (HUS). EHEC
O104:H4 caused the largest ever recorded EHEC outbreak in Germany in 2011,
which in addition showed the so far highest incidence rate of EHEC-related HUS
worldwide. The aggressive outbreak strain carries an unusual combination of vir-
ulence traits characteristic to both EHEC—a chromosomally integrated
Stx-encoding bacteriophage, and enteroaggregative Escherichia coli—pAA
plasmid-encoded aggregative adherence fimbriae mediating its tight adhesion to
epithelia cells. There are currently still open questions regarding the 2011 EHEC
outbreak, e.g., with respect to the exact molecular mechanisms resulting in the
hypervirulence of the strain, the natural reservoir of EHEC O104:H4, and suitable
therapeutic strategies. Nevertheless, our knowledge on these issues has substantially
expanded since 2011. Here, we present an overview of the epidemiological, clin-
ical, microbiological, and molecular biological data available on the 2011
German EHEC O104:H4 outbreak.

1 Introduction

Commensal Escherichia coli (E. coli) are part of the human gut microbiota (Human
Microbiome Project 2012). Pathogenic E. coli strains, however, can cause various
intestinal and extraintestinal diseases in humans (Kaper et al. 2004). Among them
are the enterohemorrhagic E. coli (EHEC), which causes diarrhea, hemorrhagic
colitis (bloody diarrhea), and hemolytic uremic syndrome (HUS, characterized by
hemolytic anemia, thrombocytopenia, and acute kidney injury) (Karch et al. 2005).
The hallmark of EHEC pathogenesis is the production of Shiga toxins (Stx), which
irreversibly inhibit host cell protein synthesis and lead to cell death (Karpman et al.
1998; Tarr et al. 2005). The majority of EHEC infections and EHEC-associated
HUS have been attributed to the serotype O157:H7 (Karch et al. 2005). Strains
belonging to serogroups other than O157, however, have been also recognized as
clinically important (Johnson et al. 2006; Mellmann et al. 2008b). For example,
almost one-third of the 524 EHEC isolates from HUS patients that were used to
generate the German HUS-associated E. coli (HUSEC) reference strain collection
belonged to non-O157 serotypes (Mellmann et al. 2008b).

The largest EHEC outbreak ever recorded in Germany took place from May to
July 2011. Nearly 4000 EHEC gastroenteritis and more than 850 HUS cases were
reported, leading to 54 deaths (Robert-Koch-Institut 2011). This was also the largest
incidence of EHEC-associated HUS worldwide. Moreover, the infections were
characterized by an unusually high rate of progression to HUS (Frank et al. 2011b),
further suggesting that the strain responsible for it is highly virulent. EHEC of the rare
serotype O104:H4 (EHEC O104:H4) was identified as the causative agent for the
outbreak. Interestingly, with respect to virulence gene content the outbreak strain is a
hybrid of EHEC and enteroaggregative E. coli (EAEC) (Brzuszkiewicz et al. 2011;
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Mellmann et al. 2011; Rasko et al. 2011). EAEC is another type of intestinal
pathogenic E. coli associated with acute and persistent diarrhea (Nataro et al. 1998).
Besides having a chromosomally integrated Stx bacteriophage, EHEC O104:H4
carries a pAA plasmid-encoded aggregative adherence fimbriae (a characteristic
feature of EAEC), mediating its tight adherence to cultured epithelial cells
(Bielaszewska et al. 2011). Up to date, only a few sporadic or small outbreak-related
cases of infections associated with other EHEC strains displaying an aggregative
adherence phenotype have been reported (Morabito et al. 1998; Mellmann et al.
2008b; Jourdan-da Silva et al. 2012). Therefore, it remains unclear if the severity and
dimensions of the 2011 EHEC O104:H4 outbreak were due to a particularly virulent
strain or favorable outbreak settings or both.

In this chapter, we aimed to provide an overview of the current knowledge on
the 2011 EHEC O104:H4 outbreak and its highly pathogenic causative agent. We
summarized the epidemiological and clinical data on the outbreak. Furthermore, we
described the genomic organization of EHEC O104:H4, as well as the factors and
mechanisms, which were shown to contribute to its virulence. Last, but not least, we
reviewed the treatment approaches used during the outbreak and other still exper-
imental therapeutic strategies.

2 The 2011 EHEC O104:H4 Outbreak

2.1 Time Course and Epidemiology of the Outbreak

On May 1, 2011, first symptoms of EHEC infection attributed to the outbreak
appeared in patients. Two days later the first patient developed HUS. On May 19,
2011, the Robert-Koch-Institut, Germany’s national public health authority, was
informed about a cluster of three cases of HUS in children admitted on the same day
to the university hospital in the city of Hamburg (Frank et al. 2011b). On 22May, the
peak of the outbreak was reached. After this time point, the numbers of new EHEC
infections and associated HUS cases decreased. In the mid of June, only single cases
but no disease clusters were reported. The last recognized infection was recorded on
4 July. Three weeks after no additional case was reported, the end of the outbreak
was declared on July 26, 2011 (Robert-Koch-Institut 2011) (see also Fig. 1).

In total, over 4000 cases of gastroenteritis, 852 HUS cases, and 54 deaths
attributed to the outbreak were reported. Though in every part of Germany cases
occurred, the four northern federal states (Hamburg, Bremen, Lower Saxony, and
Schleswig-Holstein) reported more than 50% of all cases, with an incidence rate of
10/100,000 (Robert-Koch-Institut 2011). Cases linked to this outbreak were also
communicated from other European countries: On May 25, 2011, Sweden reported
nine cases of HUS of whom four had traveled to northern Germany from 8 to 10
May. Denmark reported four cases of gastroenteritis, two of them progressed to
HUS. Here, all cases had a recent travel history to northern Germany. Another two
HUS cases with travel history to northern Germany in the relevant period were
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communicated, one by the Netherlands and other by the UK (Frank et al. 2011a).
German cases could also be linked to 15 cases of an O104:H4 outbreak in
Bordeaux, France, since the pulsed-field gel electrophoresis pattern of the French
isolates was identical but different from pre-outbreaks O104-reference strains
(Mariani-Kurkdjian et al. 2011).

2.2 Diagnostic of the Outbreak Strain

After the HUS clusters were reported to the Robert-Koch-Institute on May 19,
2011, E. coli strains were examined in the national reference laboratory for bacterial
enteritis. On 23 May, conventional PCRs on two cultured isolates revealed that the
outbreak was caused by an stx1- and eae-negative and stx2-positive EHEC strain
(Robert-Koch-Institut 2011). Simultaneous molecular subtyping via partial gnd-
sequencing, fliC-RFLP-typing and multilocus-sequence typing (MLST), performed
in the German national consulting laboratory for HUS revealed an O104:H4 ser-
otype of MLST sequence type (ST) 678 (Bielaszewska et al. 2011; Mellmann et al.
2011). On 26 May, an additional ESBL phenotype with resistances against
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Fig. 1 Time course and epidemiology of the EHEC O104:H4 outbreak. The diagram shows
the epidemiological course of the outbreak including 809 HUS and 2717 EHEC cases with known
onset of diarrhea, reaching its peak on 22nd May 2011(Robert-Koch-Institut 2011). The bottom
line indicates analyses and diagnostic pathways during the outbreak (Karch et al. 2012)
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third-generation cephalosporines was confirmed and the Stx2a subtype was iden-
tified (Bielaszewska et al. 2011; Karch et al. 2012) (see also Fig. 1).

A multiplex PCR of the rfbO104 (gene from the O104 biosynthetic cluster), fliCH4

(gene from the H4 antigen biosynthetic cluster), stx2 and terD (gene from the
tellurite resistance cluster) was initially used to identify outbreak isolates
(Bielaszewska et al. 2011). A real-time multiplex PCR targeting stx2, wzyO104, and
fliCH4 was additionally developed to allow for the rapid and sensitive detection of
EHEC O104:H4 in human stools (Zhang et al. 2012). To further increase diagnostic
specificity, a high throughput alignment-free strategy based on whole genome
sequencing data was developed to design PCR primers which could discriminate
between the 2011 outbreak strain and the closely related HUSEC041 (Pritchard
et al. 2012), which is another stx2 positive O104:H4 strain isolated from a single
HUS patient in 2001 in Germany (Mellmann et al. 2008b).

2.3 Origin, Reservoir, Transmission, and Shedding
of the O104:H4 Outbreak Strain

The identification of the outbreak source was initiated while the outbreak was still
ongoing. In a case-control study including 26 cases and 87 control patients the
source of illness was found to be significantly associated with sprout consumption
in a univariable analysis and with sprout and cucumber consumption in a multi-
variable analysis (Buchholz et al. 2011). Later a study investigating outbreak cases
related to a community center event could show that the consumption of fenugreek
sprouts was significantly associated with the development of symptoms (King et al.
2012). Fenugreek sprouts origin could be traced back to a common import of seeds
from Egypt that arrived in Rotterdam and was distributed to Germany, and then
partly redistributed to the UK from where a portion finally made its way to France
(Karch et al. 2012). After the indirect identification of fenugreek sprouts as the most
probable infection vehicle and establishing a sales stop for this food product at the
beginning of June 2011, no clusters of diseases occurred. Nevertheless, the out-
break strain was not detected on any of the sprout samples analyzed and no con-
tamination was found on investigated farms (European-Food-Safety-Authority
2011). The question when and where the potential contamination occurred is not
clarified as well. A recent study did not show any exceptional or prolonged survival
of culturable EHEC O104:H4 on dry fenugreek seeds. This indicated that the
contamination might have not initially occurred in Egypt, but rather at later stages
of the seed processing (Knodler et al. 2016).

Initial investigations conducted during the outbreak, revealed cattle is unlikely to
be a reservoir of EHEC of serotype O104:H4, different from what was shown for
other EHEC variants like O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28
(Wieler et al. 2011; Auvray et al. 2012; Pierard et al. 2012). However, recent
investigations based on experimental inoculation of the outbreak strain in calves
showed that cattle can at least transiently carry and therefore be a reservoir for
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O104:H4 (Hamm et al. 2016). Infections via contaminated sprouts were considered
to be more likely, thus classifying O104:H4-associated infections as a foodborne
disease (Buchholz et al. 2011; King et al. 2012) even though it remained unclear
which was the main mode of transmission during the outbreak. Two studies
described that smear infections/secondary transmission can easily occur within
household settings, in particular, as shedding of O104:H4 begin prior to develop-
ment of hemorrhagic colitis or HUS (Aldabe et al. 2011; Kuijper et al. 2011;
Diercke et al. 2014). In contrast, trials observing 14 households containing 20
carriers of EHEC O104:H4 could not detect any household transmission in a
prospective follow-up-study (Sin et al. 2013). The overall duration of shedding of
the outbreak strain after the occurrence of symptoms was found to be 14–15 days in
adults and 35–41 days in children (Vonberg et al. 2013).

2.4 Clinical Characteristics and Outcome of Infected
Patients

Prior to 2011, EHEC was described to mainly affect young children and the elderly
equally in both sexes (Rangel et al. 2005; Tarr et al. 2005). During the 2011
outbreak, however, 90% of the cases were recorded in adults (older than 17 years)
(Frank et al. 2011b). Studies performed in 13 pediatric departments reveal that
median age among children suffering from infections with the outbreak strain was
11.5 (Loos et al. 2012). Interestingly, 58% of the gastroenteritis and 68% of the
HUS cases were recorded in female patients (Frank et al. 2011b).

EAEC infections are mostly characterized by watery diarrhea, low fever, and
little or no vomiting. However, cases of bloody stools and persistent diarrhea
(longer than 14 days) are also recorded (Nataro et al. 1998). Typical symptoms of
an EHEC infection include bloody or non-bloody diarrhea, vomiting, and fever.
Patients infected with EHEC O104:H4 developed these symptoms after a median
incubation time of 8.5 days (Werber et al. 2013). This incubation period is con-
siderably longer when compared to the onset of disease upon infections with O157:
H7 (3–4 days) or EAEC 042 (8–18 h) (Nataro et al. 1995; Tarr et al. 2005) (see also
Fig. 2). EHEC-associated illness is self-limiting and the majority of patients exhibit
spontaneous recovery. The percentage of HUS cases among infected individuals
during the 2011 outbreak (22%) was considerably higher than the estimated HUS
rate in O157:H7 outbreaks (Gould et al. 2009), suggesting that EHEC O104:H4 was
exceptionally virulent. Surprisingly, the development of severe symptoms as
hemorrhagic diarrhea and HUS during the 2011 outbreak was shown to steadily
increase with age (King et al. 2012; Menne et al. 2012; Kielstein et al. 2013; Soon
et al. 2013; Werber et al. 2013).

Long- and short-term follow-up studies investigated outcome of patients after
EHEC O104:H4 infection. In pediatric departments, more than two-thirds of
patients suffered from renal complications and received different forms of dialysis
therapy (hemodialysis, hemofiltration, peritoneal dialysis). Severe neurological
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complications occurred in 26%. Short-term outcome after 4 months showed a
recovery of renal function in 94% and neurological symptoms in 18 out of 23
patients (Loos et al. 2012). Other studies performed in adult patients report that
48% of patients with a severe O104:H4-infection displayed neurological symptoms
as disorientation, reduced attention, restlessness, prominent, nervousness, amnestic
deficits, aphasia, epileptic seizure, oculomotor disturbance, myoclonus, and head-
ache. Eight months after the outbreak only 3/217 patients still suffered from neu-
rological symptoms (Magnus et al. 2012). Half of the patients with neurological
symptoms showed abnormalities within MRI imaging, performed within 20 days
after onset of diarrhea. 81% of these are resolved on follow-up investigations
(Lobel et al. 2014). Most frequent psychopathological abnormalities in follow-up
studies after EHEC O104:H4 infections were feelings of anxiety, formal disorders
of thought, disturbances of attention and memory, disturbances of effect, panic
attacks, and disorders of drive and psychomotility. Occurrence of these abnor-
malities was increased with age, family history of heart disease, and higher levels of
C-reactive protein (Kleimann et al. 2014). Prospective follow-up of six patients
with HUS due to O104:H4 did not show end-stage renal diseases but milder forms
of kidney injury including proteinuria (27%), increased serum creatinine (4.4%),
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Fig. 2 Clinical course of EAEC, EHEC O157:H7 and EHEC O104:H4 outbreak strain-
infections. Short-term manifestations and long-term outcome of patients after EAEC, EHEC
O157:H7 and EHEC O104:H4 outbreak strain infections are shown. The clinical course of EAEC
is based on numerous strains and studies (Nataro et al. 1998). In contrast to EAEC 042 (Nataro
et al. 1995) and EHEC O157:H7 (Tarr et al. 2005), after infection with the O104:H4 outbreak
strain (Frank et al. 2011b) incubation time is comparably long and results in HUS in more than 1/5
of all infected patients. Long-term outcome of patients is comparable to disorders observed in
patients after EHEC O157:H7 infections (Jandhyala et al. 2013)
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increased cystatin C (47%), and reduced GFR (47%). In 9 out of 36 patients without
previous hypertension de novo hypertension occurred (Derad et al. 2016).
Additionally, numbers of post-infectious irritable bowel syndromes increased from
9.8% to 23.6% after six months and to 25.3% 12 months after EHEC infection.
Incidence of new irritable bowel syndrome was 16.9% (Andresen et al. 2016). In
summary, outcome of patients suffering from EHEC O104:H4 infections is similar
to patients suffering from O157:H7 diseases (Fig. 2), who presented renal insuffi-
ciency, hypertension, psychopathological and neurological disorders and long-term
gastrointestinal complications in outcome investigations (Siegler 1994; Siegler and
Oakes 2005).

2.5 Predictive and Prognostic Factors

Until recently, clinical trials that address predictive and prognostic factors in EHEC
O104:H4 infected patients are rare. Initial investigations show a correlation of higher
levels of microRNAs circulating in serum of HUS patients with neurological
impairment and thrombocytopenia (Lorenzen et al. 2012). Further studies evaluated
CD55 and CD59 expression on peripheral blood cells in EHEC O104:H4 infected
patients concerning HUS evolvement. Here, data did not support a role for CD55 and
CD59 in HUS development (Dammermann et al. 2013). Parameters reflecting renal
perfusion during ultrasound examinations, however, correlated with severity of
acute kidney injury in patients after EHEC O104:H4 infection and might have
prognostic value within clinical settings (Reising et al. 2016). Further studies in
which levels of angiopoietin-2, an antagonistic receptor ligand known to be involved
in the development of endothelial dysfunction in HUS, were quantified, showed a
predictive relevance for complicated clinical courses in case of early presence of this
protein (Lukasz et al. 2015). Moreover, the same group found neutrophil
gelatinase-associated lipocalin, a biomarker indicating degree of acute kidney injury,
to be significantly increased in patients developing HUS and requiring renal
replacement therapy after EHEC O104:H4 infection (Lukasz et al. 2014).

Since patients will continue to have severe disease and complications from EHEC
O104:H4 infections, further (prospective) research is necessary to clarify predictive
values of mentioned parameters. In particular, studies are needed that evaluate
parameters predicting development of HUS and severe long-term disorders.

3 The “Patchwork” Genome Structure of EHEC O104:H4

Early PCR-based genotyping analysis revealed that with respect to virulence gene
content the 2011 outbreak strain is a hybrid of EHEC and EAEC (Bielaszewska
et al. 2011; Scheutz et al. 2011). Shortly afterward, several next-generation
sequencing-based studies further elucidated the “patchwork” genome structure of
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EHEC O104:H4 (Brzuszkiewicz et al. 2011; Mellmann et al. 2011; Rasko et al.
2011; Rohde et al. 2011) (Fig. 3), which consists of a chromosome (5.3 Mb) and
the plasmids pAA (74 kb), pESBL (89 kb) and pG (1.5 kb small cryptic plasmid).

3.1 The Chromosome

Comparative genomics and phylogenic analysis revealed that the EHEC O104:H4
chromosome has closest sequence relationship to the one of the EAEC strain 55989
(also of serotype O104:H4) and is only distantly related to one of the commonly
isolated EHEC strains (Brzuszkiewicz et al. 2011; Mellmann et al. 2011; Rasko
et al. 2011; Rohde et al. 2011). However, the 2011 EHEC O104:H4 outbreak strain
also harbors a chromosomally integrated bacteriophage encoding Stx, which is not
present in the majority of EAEC strains (including the EAEC strain 55989) and is
the primary virulence factor involved in EHEC pathogenesis. Stxs are classified as
Stx1 or Stx2 type, and further divided into subtypes (Stx1a,c,d and Stx2a–g)
(Scheutz et al. 2012), with Stx2a being the one most often associated with the
severity of illness and development of HUS (Friedrich et al. 2002). The Stx2a phage
in EHEC O104:H4 was found to be closely related to the one in the EHEC
O157:H7 strains EDL933 and Sakai and also integrated into the wrbA site
(Mellmann et al. 2011; Rohde et al. 2011). In contrast to the majority of EHEC
strains associated with HUS (Karch et al. 2005), the chromosome of the 2011
outbreak strain does not encode the LEE (locus of enterocyte effacement)
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Fig. 3 The virulence-associated loci in the “patchwork” genome of EHEC O104:H4.
The EHEC O104:H4 outbreak strain contains both EHEC- (red) and EAEC-associated virulence
loci (blue). The additional genetic elements located on the pESBL plasmid (black) mediate the
phenotypic resistance against third-generation cephalosporines (Mellmann et al. 2011; Rasko et al.
2011)
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pathogenicity island, which is responsible for the intimate bacterial attachment to
the intestinal mucosa and the formation of the characteristic attaching and effacing
lesions (Donnenberg et al. 1993; McDaniel et al. 1995).

Other chromosomally encoded EHEC O104:H4 loci linked to EHEC virulence
are the operons encoding the long polar fimbriae (Lpf) 1 and 2. The lpf operons were
extensively characterized in EHEC O157:H7 and reported to contribute to the
intestinal adherence and colonization in vivo (Jordan et al. 2004; Torres et al. 2004).
In addition, EHEC O104:H4 carries a gene coding for the IrgA homologue adhesin
(Iha), which was shown to confer adherence to non-adherent E. coli and thus pro-
posed to function as a novel adhesin in EHEC O157:H7 (Tarr et al. 2000). The lpf
and iha loci, however, are also present in the closely related EAEC 55989 strain.

The chromosome of EHEC O104:H4 also carries several EAEC (and Shigella) –
specific virulence traits. Similar to EAEC strain 55989, the 2011 outbreak strain has
two chromosomal copies of pic, which encode a SPATE (serine protease auto-
transporters of Enterobacteriaceae) with mucinase activity described to be involved
in EAEC pathogenesis by promoting intestinal colonization and mucus hyper-
secretion (Henderson et al. 1999; Harrington et al. 2009; Navarro-Garcia et al.
2010). Interestingly, set1AB coding for the two subunits of Shigella enterotoxin 1
(ShET1) is found on the opposite strand within the pic coding region. The Shigella
ShET1 homologue is able to elicit an immune response (Fasano et al. 1995), but its
role in EAEC virulence still remains to be elucidated. Moreover, EHEC O104:H4
encodes SigA, another SPATE which is highly prevalent among EAEC strains
(Boisen et al. 2009) and characterized in S. flexneri to be cytotoxic to cultured
human epithelial cells (Al-Hasani et al. 2009).

The whole genome sequencing revealed the presence of several chromosomal
resistance markers in EHEC O104:H4. The 2011 outbreak strain displays tellurite
resistance encoded by the gene cluster terZABCDEF, which is typically found in
EHEC O157:H7 strains but missing in the EAEC strain 55989 (Bielaszewska et al.
2005; Mellmann et al. 2011). The ter operon is located in close proximity to iha on
the TAI (tellurite resistance and adherence conferring island) (Tarr et al. 2000). In
addition, the outbreak strain carries also genomic island-encoded resistance deter-
minants to mercury (the mer operon), ethidium bromide, sulfonamides,
beta-lactams, and tetracyclines (Brzuszkiewicz et al. 2011; Grad et al. 2013).

3.2 The PAA Plasmid

The 2011 EHEC O104:H4 outbreak strain carries a 74 kb pAA virulence plasmid—
another characteristic feature of EAEC strains. Different pAA-encoded aggregative
adherence fimbriae variants (AAF/I to V) confer the distinct “stacked-brick”
adherence of EAEC to cultured human epithelial cells (Nataro et al. 1992;
Czeczulin et al. 1997; Bernier et al. 2002; Boisen et al. 2008; Jonsson et al. 2015).
Both ex vivo and in vivo experiments suggest that the AAF-mediated adherence is a
key step in EAEC pathogenesis (Tzipori et al. 1992; Hicks et al. 1996). The tight
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aggregative adherence of the 2011 outbreak strain to cultured cells is conferred by
the aggDCBA cluster coding for AAF/I (Bielaszewska et al. 2011). In contrast to
EHEC O104:H4, the EAEC strain 55989 carries a different pAA plasmid encoding
another AAF variant, the AAF/III. Even though there is considerable sequence
heterogeneity among the pAA plasmids of these strains, the majority of their
virulence-associated features are found conserved (Rasko et al. 2011).

The pAA of EHEC O104:H4 harbors several other EAEC-specific virulence
loci. The aap gene is coding for the surface protein dispersin, which facilitates
proper fimbrial extension from the bacterial surface and thus contributes to EAEC
adhesion and intestinal colonization (Sheikh et al. 2002; Velarde et al. 2007). The
Aat secretion system, encoded by the aatPABCD operon, was characterized as the
ABC (ATP-binding cassette) transporter responsible for dispersin secretion out of
the bacterial cell (Nishi et al. 2003). The sepA locus, which is not shared between
EHEC O104:H4 and the EAEC strain 55989, encodes the serine protease SepA.
This SPATE is the major extracellular protein of S. flexneri and a sepA deletion was
associated with reduced mucosal inflammation in vivo (Benjelloun-Touimi et al.
1995). The aggR gene is coding for the EAEC master virulence gene regulator
AggR. AggR is an AraC-type transcriptional activator and regulates the expression
of AAF/I, dispersin, Aat and SepA, as well as other pAA- and chromosomally
encoded loci (Nataro et al. 1994; Sheikh et al. 2002; Nishi et al. 2003; Morin et al.
2013; Berger et al. 2016). Recently, it was shown that pAA of EAEC strain 042
also encodes Aar (AggR-activated regulator), which negatively regulates AggR
expression (Santiago et al. 2014). The aar locus is also found transcribed in the
pAA of EHEC O104:H4 (Berger et al. 2016).

3.3 The pESBL Plasmid

The extended-spectrum beta-lactamase (ESBL) phenotype of the EHEC O104:H4
outbreak strain is conferred by the presence of an 89 kb plasmid (Brzuszkiewicz
et al. 2011; Mellmann et al. 2011; Rasko et al. 2011; Rohde et al. 2011). pESBL is a
conjugative IncI1 (incompatibility group I1) plasmid with high sequence similarity
to the pEC_Bactec plasmid isolated from a horse with arthritis (Smet et al. 2010).
pESBL carries the genes blaCTX-M-15 and blaTEM coding for the beta-lactamases
CTX-M-15 and TEM-1, which hydrolyze and confer resistance to penicillins and
extended-spectrum cephalosporins (Shaikh et al. 2015).

3.4 Evolution of EHEC O104:H4

Phylogenetic analyses and comparative genomics based on whole genome
sequencing data led to the formulation of two hypotheses about the evolution of the
EHEC O104:H4 outbreak strain. Due to its high genome sequence similarity to the
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EAEC strain 55989 and the missing LEE pathogenicity island, which is characteristic
to some EHEC strains, it was hypothesized that the 2011 outbreak strain has origi-
nated from an EAEC progenitor that acquired an Stx2 phage (Brzuszkiewicz et al.
2011). Since the loss of Stx-encoding genes has been described as a frequent event
both in vitro and in vivo (Bielaszewska et al. 2007a, b), another evolutionary model
was proposed, in which the 2011 outbreak strain and the EAEC 55989 strain have
evolved from a common Stx producing ancestor with an EAEC genotype (Mellmann
et al. 2011). Whole genome phylogenetic comparison of 53 E. coli and Shigella
strains revealed that the 2011 outbreak strain was present within the distinct clade
formed by the analyzed EAEC strains of O104:H4 serotype and thus further sup-
ported the evolutionary model of Stx phage acquisition by an EAEC ancestor (Rasko
et al. 2011). Similarly, the EHEC strain EHEC O157:H7 strain is believed to have
evolved from enteropathogenic E. coli (another diarrheagenic E. coli pathotype) of
serotype O55:H7 through a series of horizontal gene transfer events including the
acquisition of Stx1- and Stx2-encoding bacteriophages (Feng et al. 1998).

There are several reports describing that Stx phages can lysogenize stx-negative
E. coli strains (Schmidt et al. 1999; Toth et al. 2003; Mellmann et al. 2008a).
Recently, it was shown that regions characteristics to the Stx-encoding phage isolated
from a 2011 outbreak strain were also present in several bovine EHEC isolates.
Moreover, the phage isolated from the outbreak strain and one from the bovine
EHECs were able to form lysogens on an stx-negative EAEC O104:H4 strain by
integrating into its wrbA locus. This led to the conclusion that the 2011 EHEC O104:
H4 outbreak strain could have evolved by acquisition of an Stx phage from a bovine
origin (Beutin et al. 2013). However, only transient lysogens were observed in a study
in which strains belonging to different diarrheagenic E. coli pathotypes, among them
EAEC, were infected by a panel of Stx2 bacteriophages suggesting that the event of a
stable Stx phage acquisition is rather uncommon (Tozzoli et al. 2014).

The evolutionary path of the 2011 E. coli outbreak strain from either a hypo-
thetical EAEC strain 55989 progenitor or Stx producing O104:H4 progenitor is
assumed to involve several other horizontal gene transfer events, such as the
exchange of an AAF/III-encoding plasmid for the pAA plasmid coding for AAF/I
and the acquisition of pESBL (Brzuszkiewicz et al. 2011; Mellmann et al. 2011;
Rasko et al. 2011). Interestingly, the ESBL phenotype is a characteristic feature
only of the 2011 EHEC O104:H4 outbreak strain and not present in other
sequenced stx-positive O104:H4 isolates, suggesting that the plasmid might have
recently been acquired by the outbreak strain or have been unstable in the other
genetic backgrounds (Rasko et al. 2011; Ahmed et al. 2012; Grad et al. 2013).
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4 Virulence Factors and Mechanisms of EHEC O104:H4

4.1 Shiga Toxin—The Cardinal Virulence Factor of EHEC

The link between Stx production and the development of hemorrhagic colitis and
E. coli-associated HUS was established in the 80 s (Karmali et al. 1983; Riley et al.
1983). Stxs are AB5 cytotoxins composed of a 32 kDa enzymatically active A
subunit noncovalently associated with five identical 7.7 kDa B subunits. The A
subunit is a N-glycosidase, while the B pentamer mediates the binding of the Stx
holotoxin to a eukaryotic membrane glycosphingolipid receptor globotriaosylce-
ramide (Gb3Cer) (Donohue-Rolfe et al. 1991). The amount of Gb3Cer present on
the host cell surface appears to correlate with the clinical complications of EHEC
infections. The highest Gb3Cer content is found in the microvascular endothelium
of the kidney, as well as in the colonic microvascular endothelia and the endothelial
vasculature of the cerebellum (Müthing et al. 2009; Bauwens et al. 2013), and is
thus consistent with the observed renal pathology, hemorrhagic colitis and neuro-
logic symptoms, respectively (Jacewicz et al. 1999; Ren et al. 1999; O’Loughlin
and Robins-Browne 2001). A recently published report suggests that Stx is capable
of direct injury of erythrocytes at certain developmental stages of erythropoiesis
(Betz et al. 2016). Stx-mediated damage of erythrocyte progenitor cells may
therefore contribute to anemia observed in EHEC-caused extraintestinal compli-
cations and furthermore explains the huge demand for blood transfusion during
onset of HUS. External Stx is not cytotoxic to macrophages, but it is stimulating the
release of pro-inflammatory cytokines (Tesh et al. 1994; van Setten et al. 1996),
which increase the susceptibility of endothelial cells to Stx by enhancing Gb3
synthesis and expression on the membrane (Louise and Obrig 1991; van de Kar
et al. 1992). However, both cell-free Stx and Stx produced by ingested bacteria are
cytotoxic to the phagocytic single-celled protozoan Tetrahymena thermophila
(Lainhart et al. 2009; Stolfa and Koudelka 2012). Bacterial Stx production was
shown to function as a defense mechanism against predators and to confer a sur-
vival advantage over those bacteria that do not encode Stx (Lainhart et al. 2009),
which suggests that Stx toxicity to humans may have evolved accidentally.

Upon binding to the Gb3Cer receptor, Stx is internalized in a clathrin-dependent
or independent manner and transported by the retrograde pathway from the endo-
somes via the Golgi apparatus to the endoplasmic reticulum (ER) (Sandvig et al.
1992; Romer et al. 2007; Sandvig et al. 2010). The Stx holotoxin dissociates in the
reducing environment of the ER and the enzymatically active A subunit is
translocated to the cytosol, where the A1 portion depurinates an adenine of the 28S
rRNA (Obrig et al. 1987; Endo et al. 1988; Lee et al. 2016) and thus irreversibly
inhibits protein synthesis and induces cell death, inflammatory response or acti-
vation of the ribotoxic stress response (Obrig et al. 1988; Thorpe et al. 2001). From
the cytosol, Stx can reach the nucleus and a body of evidence has been provided
that Stx (like other ribosome-inactivating proteins) is able to remove adenine
moieties not only from rRNA in the cytosol, but can also efficiently depurinate

The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 … 129



DNA in the nucleus. This effect leads to DNA damage observed in cell cultures and
is likely to result from direct DNA-damaging activities and/or indirect DNA repair
inhibition (Brigotti et al. 2002; Sestili et al. 2005) indicating the existence of more
than one retrograde pathway.

Animal experiments have been successfully employed to study EHEC O104:H4
pathogenesis in vivo. Infection of germ-free mice with the 2011 outbreak strain
resulted in the development of acute renal tubular necrosis [ATN; (Al Safadi et al.
2012)]. Such renal damage was previously described in EHEC O157:H7 infection
experiments of streptomycin-treated mice and mainly attributed to Stx2 production
(Wadolkowski et al. 1990). Interestingly, mice infected with EHEC O104:H4 were
characterized by a delayed development of ATN in comparison to the ones infected
with EHEC O157:H7 (at 13–15 days post-infection vs. 5 days (Wadolkowski et al.
1990; Al Safadi et al. 2012), which is consistent with the observed longer incubation
time during the 2011 German outbreak (Frank et al. 2011b). Another study with
EHECO104:H4 and stx-negative variants demonstrated that the 2011 outbreak strain
causes weight loss and mortality in ampicillin-treated mice and that Stx2 is the key
virulence factor responsible for the observed pathogenesis (Zangari et al. 2013).
Moreover, similar observation linking Stx2 production of EHEC O104:H4 to disease
progression was made in two rabbit models (Zangari et al. 2013; Munera et al. 2014).

The stx2 operon is located downstream of the phage late genes and its expression
is solely dependent on phage induction and the resulting transcription from the
phage late promoter (Karch et al. 1999; Wagner et al. 2001). Therefore, the release
of free Stx2 from the bacteria cells is mainly attributed to phage-mediated lysis
(Waldor and Friedman 2005). In addition, Stx2 is detected together with other
virulence factors in outer membrane vesicles (OMVs) shed by EHEC (Kolling and
Matthews 1999; Kunsmann et al. 2015; Bielaszewska et al. 2017). EHEC OMVs
were shown to bind to, get internalized by and be cytotoxic to human intestinal
epithelial cells (EHEC O104:H4 and O157 OMVs) and brain and renal
microvascular endothelial cells (E. coli O157 OMVs; (Kunsmann et al. 2015;
Bielaszewska et al. 2017). Moreover, the Stx2 was found to be the main factor for
the observed OMV cytotoxicity in EHEC O104:H4 (Kunsmann et al. 2015). Thus,
OMVs provide an alternative means for bacterial Stx2 release. Even though this
mechanism would allow for a Gb3 independent cellular uptake of Stx2, it was
recently shown that similar to free Stx2, after liberation from OMVs interaction of
the OMV-delivered Stx2 with the Gb3 receptor is essential for its retrograde
transport and cytotoxicity (Bielaszewska et al. 2017).

Interestingly, the EHEC O104:H4 outbreak strain was shown to produce in
culture and in cell culture infection experiments significantly less Stx2 than the
prototypical EHEC O157:H7 strains EDL933 and Sakai. (Laing et al. 2012).
Moreover, the Stx translocation rates across an epithelial monolayer during
microaerobic human colonic infection were found significantly lower in O104:H4
than that of O157:H7 (Tran et al. 2014). Thus, one could argue that the enhanced
virulence of the EHEC O104:H4 in comparison to typical EHEC strains could not
be accredited to increased Stx2 expression and transcytosis. However, upon
induction with mitomycin C, the 2011 outbreak strain was shown to produce in
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culture significantly more Stx2 than both EHEC O157:H7 strains EDL933 and
Sakai (Laing et al. 2012). It remains to be further elucidated if the conditions in the
human gut could induce a similar response in EHEC O104:H4 to that obtained with
mitomycin C in vitro.

4.2 The Importance of the PAA Plasmid to EHEC O104:H4
Virulence

EHEC O104:H4 expresses pAA-encoded AAF/I and displays tight “stacked-brick”
adherence both to cultured Hep2 epithelial cell and cecal mucosa in germ-free mice
(Bielaszewska et al. 2011; Al Safadi et al. 2012). This adherence pattern is char-
acteristic for EAEC strains (Nataro et al. 1992; Tzipori et al. 1992) but unusual for
EHEC, which often colonize in single layers displaying LEE-mediated intimate
attachment to the epithelia (Donnenberg et al. 1993). Thus, the increased virulence
of the 2011 outbreak strain was hypothesized to be attributed to the AAF/
I-mediated intestinal adherence, which could facilitate the absorption of Stx from
the gut to the systemic circulation (Bielaszewska et al. 2011).

EHEC O104:H4 can sporadically lose the pAA plasmid during the course of the
disease. Interestingly, pAA loss was correlated with a significantly reduced HUS
progression in patients, which speaks for an attenuated virulence of the
pAA-negative isolates (Zhang et al. 2013). In contrast, the pAA plasmid was found
not to be essential for the colonization and intestinal pathology in a rabbit model
(Munera et al. 2014). Nevertheless, it was shown that the AAF/I indeed contribute
not only to the tight adherence of the outbreak strain but also to translocation of the
Stx2 across an epithelial cell monolayer, further suggesting that the pAA plasmid
has a crucial importance to EHEC O104:H4 virulence (Boisen et al. 2014). Mutant
analysis revealed that disruption of the actin cytoskeleton and the reduction of
trans-epithelial resistance, which accompany EHEC O104:H4 infection of polarized
T84 cells, depends on AggR and AggA (the major AAF/I subunit) but not on Stx2.
On the other hand, the prototype EHEC O157:H7 failed to disrupt the polarized
T84 cell monolayer and did not lead to significant levels of Stx2 transport from the
apical to the basolateral side of the cells. Moreover, the expression of AAF/I alone
in an E. coli K12 strain was found to enhance the translocation of exogenous Stx2
across the epithelial monolayer and thus demonstrated a direct effect of the fimbriae
on epithelial permeability. Interestingly, the inflammatory response to the outbreak
strain in the T84 system was dependent on both Stx production and the EAEC
virulence factors AggR, AggA, and SepA (Boisen et al. 2014).

A recent study sheds light on the EHEC O104:H4 pAA transcriptional organi-
zation and gene regulation (Berger et al. 2016) (Fig. 4). The pAA transcriptome
was analyzed using differential RNA-seq that allows for the high throughput
mapping of transcription start sites (TSS; 5′-PPP ends of primary transcripts) and
processing sites (PS, 5′-P ends of processed transcripts) (Sharma and Vogel 2014)
(Fig. 4, Track I and II). TSS were detected for the majority of pAA-encoded
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virulence genes, suggesting that they were expressed at least on the mRNA level in
EHEC O104:H4 (Berger et al. 2016). Interestingly, operon-internal TSS were
detected within the AAF/I gene cluster, which could allow for the transcriptional
uncoupling of the secreted AAF/I protein subunits AggA and AggB from the outer
membrane usher protein AggC and periplasmic chaperone AggD. Moreover,
numerous antisense RNA candidates mapped in this analysis were found to be
associated with virulence genes, suggesting that also post-transcriptional regulation
may be important for their appropriate expression. In addition, a
computational-based screen for AggR binding sites followed by experimental
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Fig. 4 The transcriptional organization and gene regulation in the pAA plasmid of EHEC
O104:H4. Track I: Differential RNA-seq data on the pAA plasmid. The graphs represent the
normalized number of pAA reads mapped per nucleotide in terminator exonuclease (TEX) + (red)
and TEX- (black) libraries (y-axis = abundance relative score, max. 100). Track II. TSS (red) and
PS (black) candidates annotated by dRNA-seq. Track III. Computationally predicted AggR
(red) binding sites. Track IV. Annotated ORFs in pAA. Virulence-associated genes are colored in
orange and a gene legend is given in the middle of the circle. Track V. AggR regulon. The AggR
regulon is based on Morin et al. 2013 (light orange) and Berger et al. 2016 (dark orange). The
figure was modified from Berger et al. 2016
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validation revealed that the EHEC O104:H4 pAA-encoded serine protease SepA is
a new member of the AggR regulon (Berger et al. 2016), which was previously
characterized in the EAEC strain 042 (Morin et al. 2013) (Fig. 4, Track III and IV).
The AggR-dependent regulation coordinates SepA expression with other important
EAEC virulence factors and may be a hint for a role of the serine protease in EHEC
O104:H4 pathogenicity (Berger et al. 2016).

4.3 Other Factors of Importance to EHEC O104:H4
Virulence

Along with Stx2 and pAA-encoded factors, several other determinants have been
suggested to play an important role in the virulence of the 2011 outbreak strain.
EHEC O104:H4 encodes the serine proteases Pic, SigA, and SepA—a number and
combination of SPATEs which has been rarely reported in EAEC strains (Boisen
et al. 2009). The chromosomally–encoded Pic and SigA, but not the pAA plasmid,
were found to be critical for the EHEC O104:H4 colonization and disease severity
in an infant rabbit model. Surprisingly, SigA release rather than its protease activity
contributed to EHEC O104:H4 pathogenicity (Munera et al. 2014).

Lpf1 and Lpf2 were shown to be important virulence factors in EHEC (Jordan
et al. 2004; Farfan et al. 2013). Therefore, it was also relevant to address their role in
the adhesion and colonization of EHEC O104:H4. An lpf2 deletion mutant was
characterized only by a significant reduction in its ability to colonize polarized cells.
The loss of functional Lpf1, however, resulted in a reduced ability of O104:H4 to
adhere to both polarized and non-polarized cells, as well as to form a stable biofilm.
In addition, the lpf1 mutant showed a reduced capacity to colonize the cecum and
large intestines in a murine model, thus suggesting that even in the presence of AAF/
I, Lpf1 is an important colonization factor of EHEC O104:H4 (Ross et al. 2015).

In contrast to EHEC O157:H7, the outbreak strain is a strong biofilm producer
in vitro and in vivo. Its extensive in vivo biofilm formation was found to correlate
with an enhanced stx2 and other virulence gene expression and increased kidney
damage in a germ-free mouse model (Al Safadi et al. 2012). The second messenger
c-di-GMP stimulates the production and secretion of the biofilm-associated
polysaccharide PGA, as well as activates the expression of the positive transcrip-
tional biofilm regulator CsgD, which in turn is regulating the expression of the
extracellular matrix component curli (Hengge 2009). Curli fibers are involved in
adhesion and biofilm formation, and their expression is more pronounced below
30 °C (Barnhart and Chapman 2006). Typical for EAEC genotypes, the 2011
outbreak strain was shown to produces high levels of c-di-GMP. Moreover, EHEC
O104:H4 and the EAEC strain 55989 displayed high CsgD expression levels and
strong curli production not only at 28 °C but also at 37 °C (Richter et al. 2014). In
contrast to EAEC 55989, however, the outbreak strain produced no cellulose
(Richter et al. 2014), which is known to counteract the adhesive and
pro-inflammatory properties of curli fibers (Wang et al. 2006). Interestingly, the
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closely related HUSEC041 strain (Mellmann et al. 2008b) was characterized by low
CsgD and curli synthesis at 37 °C and high cellulose production. Thus, the EHEC
O104:H4 unique biofilm-related properties have been proposed to additionally
contribute to its enhanced virulence (Richter et al. 2014).

5 Treatment

In general, one has to differentiate between treatment of EHEC infections and HUS,
even though both lack a causative therapy. Current guidelines recommend measures
preventing EHEC infected persons from developing HUS after the onset of diar-
rhea. During HUS conventional supportive treatment (see below) is state of the art
(Wurzner et al. 2014). Evaluation of treatment strategies in HUS patients infected
with O104:H4, however, revealed results contrary to the current guidelines in
particular by calling into question benefits from plasmapheresis and harmful effects
of antibiotic treatment (Menne et al. 2012).

5.1 Supportive and Symptomatic Therapy

Symptomatic treatment options during EHEC triggered HUS have diversely been
discussed. Trials evaluating fresh frozen plasma transfusion (Loirat et al. 1988;
Rizzoni et al. 1988), heparin (Vitacco et al. 1973) with or without urokinase (Loirat
et al. 1984) or dipyridamole (Van Damme-Lombaerts et al. 1988) and steroids as
anti-inflammatory substances (Perez et al. 1998) in young children with
post-diarrheal HUS did not show an outcome superior to classical supportive therapy.

Recent recommendations deal with supportive therapy as state of the art
including fluid management, treatment of hypertension, renal replacement and
ventilatory support (Bitzan et al. 2010; Wurzner et al. 2014). In this context, early
volume expansions can have positive effects on both, short- and long-term disease
outcomes (Ardissino et al. 2016). Early recognition of and parenteral volume
expansion during EHEC O157:H7 infections have been associated with attenuated
renal injury failure (Ake et al. 2005). In an observational cohort study, Hickey et al.
determined that intravenous fluid therapy during the pre-HUS phase prevents
oligoanuric HUS significantly (Hickey et al. 2011). Renal replacement therapy,
however, is recommended to be performed according to clinical manifestations of
HUS as oligo- or anuria. Peritoneal dialysis and hemodialysis are equivalent options
in these cases, preferring peritoneal dialysis in infants <4 years and hemodialysis in
older children and patients receiving higher amounts of blood products as platelets
or PRBC (Bitzan et al. 2010). Best clinical practices involve rapid and accurate
clinical and microbiological identification of infected patients, volume expansion,
and support of the intestinal and extraintestinal complications that can ensue during
acute enteric infection and associated HUS (Tarr 2009).

134 S. Kampmeier et al.



5.2 Antibiotics

The use of antibiotics during EHEC infections is currently not recommended in
most countries, as it is believed to increase the risk for HUS. However, the majority
of studies leading to that assumption are of retrospective nature and limited to a
surprisingly few antibiotics. In addition, none of them systematically excludes
antibiotics, that are known to induce Stx production in vitro, e.g.
trimethoprim-sulfamethoxazole (Karch et al. 1986; Proulx et al. 1992; Wong et al.
2000, 2012). Moreover, a meta-analysis of nine high-quality studies did not show a
higher probability of HUS development upon administration of antibiotics (Safdar
et al. 2002). A recent meta-analysis of seventeen reports also showed no signifi-
cantly increased risk of developing HUS associated with antibiotic administration.
However, including only the studies (n = 5) which were with low risk of bias and
meeting an acceptable definition of HUS, a significant association was reached
(Freedman et al. 2016). Notably, also these five studies did not omit antibiotics
which induce Stx production in vitro.

The experience with the hypervirulent strain EHEC O104:H4 outbreak strain
made it very clear that a rational approach on the question which antibiotics may be
beneficial in EHEC infections is of utmost importance, especially as the capacities
for symptomatic treatment may become rapidly limited, if a future outbreak is just
an order of magnitude larger. Therefore, in order to finally obtain an unbiased
picture of the usefulness of antibiotics in the therapy of EHEC infections (i) the
effects of inhibitory and sub-inhibitory concentrations of antimicrobial substances
on Stx production should be determined in vitro and (ii) only those antimicrobial
substances that do not stimulate Stx production in vitro should be afterward tested
in vivo, ideally in prospective, randomized, placebo-controlled studies.

In vitro data for the effects of antibiotics on Stx production is already available,
even though it would be desirable to systemically include more clinically relevant
bacterial genetic backgrounds in the future (Karch et al. 1986; Kimmitt et al. 2000;
McGannon et al. 2010; Bielaszewska et al. 2012; Corogeanu et al. 2012).
According to these studies, antibiotics that inhibit bacterial transcription and
translation appear to be very promising candidates for therapy. In addition, the
translational inhibitor azithromycin was shown to be effective in reducing the
elevated Stx levels detected in presence of phage sensitive E. coli, which may play
an underestimated role in overall toxin production and the individual course of
illness during EHEC infections (McGannon et al. 2010). Even though not routinely
recommended by the authorities, antibiotic therapy administered during the 2011
outbreak also proved to be beneficial. A retrospective case-controlled study on the
German EHEC O104:H4 outbreak showed that an aggressive antibiotic therapy
(meropenem + ciprofloxacin ± rifaximin) applied once the disease had progressed
to HUS was associated with significantly lower mortality rate, duration of shedding
and seizure frequency (Menne et al. 2012). Moreover, azithromycin treatment
resulted in a lower frequency of long-term carriage of the outbreak strain in patients
(Nitschke et al. 2012).
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5.3 Eculizumab

The use of a group of monoclonal antibodies, namely eculizumab, targeting the
complement component 5 (C5) was controversially discussed. Some studies found
eculizumab to have beneficial effects on the recovery from O104:H4-associated
HUS during the French and German outbreak (Greinacher et al. 2011; Delmas et al.
2014). Due to this treatment, neurological disorders and renal function but also
laboratory parameters as hemoglobin, platelets, lactate hydrogenase could be
rapidly improved in HUS patients infected with the O104:H4 outbreak strain or
O157:H7 (Greinacher et al. 2011; Lapeyraque et al. 2011; Delmas et al. 2014; Saini
et al. 2015). On the other hand, different studies could not prove any benefit of
eculizumab therapy compared to conventionally performed therapeutic regimens
like supportive care, therapeutic plasma exchange, hemodialysis or antibiotic
treatment (Kielstein et al. 2012; Menne et al. 2012; Ullrich et al. 2013), calling into
question this new therapeutic approach. Even though, short- and long-term outcome
in some critically ill patients with eculizumab could be improved, demonstrating no
obvious side effects after application, further randomized controlled trials are
needed before a beneficial effect can be assigned to this therapeutic agent.

5.4 Probiotics

Although probiotics do not provide therapeutic options in the acute phase of dis-
ease, they might have a relevant preventive function. Multiple studies have been
performed verifying the beneficial effect of probiotics in vitro and in experimental
animal models. Promising candidate as Lactobacillus and Bifidobacterium
spp. showed protecting effects and decreasing cytotoxic activity after co-incubation
with EHEC O157:H7 in vitro (Mogna et al. 2012; Kakisu et al. 2013) and in vivo
(Asahara et al. 2004; Eaton et al. 2011; Chen et al. 2013), most likely mediated by
lactic acid production, which directly correlates to bacteriostatic/bactericidal effects
(Ogawa et al. 2001) and level of stx2a expression in EHEC O157:H7 (Carey et al.
2008). Recent studies concentrate on different E. coli strains mediating protective
activity, namely E. coli 1307 (Reissbrodt et al. 2009) and E. coli strain Nissle 1917
(EcN). EcN, first used in 1917, is one of the most investigated probiotics, known to
significantly improve various dysfunctions within the intestinal tract as e.g. ulcer-
ative colitis and inflammatory bowel disease (Kruis 2004). Antagonistic effects of
EcN could be proved for the mouse intestine colonized by EHEC O157:H7
(Leatham et al. 2009). In addition, in an investigation including two EHEC O104:
H4 isolates derived from the German outbreak EcN showed a very efficient
antagonistic activity regarding adherence of these pathogenic strains to human gut
epithelial cells, their growth, and their Stx2 production in vitro (Rund et al. 2013),
which confirms that commensal E. coli strains can provide a barrier to infection by
intestinal pathogenic E. coli including the O104:H4 outbreak strain.
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5.5 Stx Receptor Analogs and Stx Neutralizing Molecules

Different agents, which imitate Stx receptor properties, can reduce the amount of
cellular bound Stx. Receptor analogs consisting of or harboring the Gb3 trisac-
charide were shown to bind Stx in the circulation, to exert neutralizing effects
in vitro and to significantly reduce brain damage in animal models after application
of a fatal dose of EHEC O157:H7 (Kitov et al. 2000; Nishikawa et al. 2002;
Mulvey et al. 2003; Watanabe et al. 2004; Nishikawa et al. 2005). Synthetic Stx
receptors were effective in vitro but could not prove this promising effect in a
multicentre randomized placebo-controlled clinical trial in children aged 6 months
to 18 years with diarrhea-associated HUS (Trachtman et al. 2003). Other strategies
concentrated on constructing a recombinant bacterium that displayed a Stx receptor
mimic on its surface. High efficiency in adsorption and neutralizing Stx were shown
in vitro and mice were completely protected from consequences of Stx producing
E. coli infections (Paton et al. 2000, 2001). There are several experimental
approaches concentrating on partially cell-permeable agents neutralizing Stx.
MMA-tet protected mice from fatal doses of EHEC O157:H7 after oral application
and did not affect vesicular transport mechanisms (Tsutsuki et al. 2013).
Intravenous administration of the cell-permeable peptide TVP in animals resulted in
the absence of acute kidney injury and reduction of thrombocytopenia, but did not
alter anemia (Stearns-Kurosawa et al. 2011). Two peptides TF-1 and WA-8, which
specifically block the binding of Stx2 to target cells, protected mice from toxicity by
significantly decreasing the concentration of Stx2 in the bloodstream (Li et al.
2016). Small molecules, inhibiting retrograde toxin trafficking from the early
endosomes to the trans-Golgi network, showed first promising protecting effects
in vitro (Stechmann et al. 2010; Noel et al. 2013).

5.6 Phages

Another therapeutic concept concentrates on controlling Stx producing E. coli via
lytic phages, specifically reducing their absolute number. Several phages have been
investigated up to now, showing promising results in reduction of EHEC O157:H7
and other pathogenic serogroups in vitro, on surfaces, fruits, vegetables, beef, and
in milk (Abuladze et al. 2008; Niu et al. 2009; Sharma et al. 2009; Alam et al. 2011;
Patel et al. 2011; Viazis et al. 2011; Carter et al. 2012; Ferguson et al. 2013;
Hudson et al. 2013; McLean et al. 2013; Liu et al. 2015). In vivo experiments in
animal models could mostly confirm these findings showing less disease compli-
cations and reduced shedding after phage therapy (Tanji et al. 2005; Raya et al.
2006; Sheng et al. 2006; Rozema et al. 2009; Rivas et al. 2010; Coffey et al. 2011).
These effects could be observed even in intestinal pathogenic E. coli showing a high
profile of antibiotic resistances (Viscardi et al. 2008). Candidate therapeutic phages
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efficiently lysing the EHEC O104:H4 outbreak strain could be identified by
Merabishvili et al. (Merabishvili et al. 2012). Nevertheless, in vivo studies are still
pending until these phages can be considered a therapeutic option in the future.

6 Conclusion

In 2011 EHEC O104:H4 caused the largest EHEC outbreak in German history and
the highest incidence rate of EHEC-related HUS ever recorded worldwide. The
highly aggressive strain carries virulence loci characteristic to both EHEC and
EAEC and showed therefore not only Stx production and but also an aggregative
adherence phenotype. The dimensions and severity of the 2011 outbreak demon-
strated the catastrophic potential of this rare combination of pathogenic traits. In
addition, not knowing the natural reservoir of the strain makes it harder to minimize
the risk of future exposure to EHEC O104:H4. The major challenges remain
improving diagnostic speed and treatment. The latter is of utmost importance, as
EHEC infections are one of the few bacterial infections for which still no causative,
but only a few symptomatic therapies exist. Moreover, there is the danger that new
strains of similar or even greater pathogenic potential may arise in the future, which
could cause even larger outbreaks or higher incidence rates of HUS. The handling
of an EHEC outbreak larger than the one in 2011 in Germany solely on the basis of
currently available therapies will become problematic even in developed countries
with state of the art health care system.
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Abstract Extraintestinal pathogenic E. coli (ExPEC) present a major clinical
problem that has emerged in the past years. Most of the infections are hospital or
community-acquired and involve patients with a compromised immune system.
The infective agents belong to a large number of strains of different serotypes that
do not cross react. The seriousness of the infection is due to the fact that most
of the infecting bacteria are highly antibiotic resistant. Here, we discuss the
bacterial factors responsible for pathogenesis and potential means to combat the
infections.
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1 Introduction

Although most strains of Escherichia coli are commensals and abundant, many
strains are virulent. In addition to the well-established role of E. coli as the causative
agent of intestinal infections, many virulent strains cause extraintestinal infections.

The importance of ExPEC is increasing rapidly because they are abundant and
are highly resistant to antibiotics. Many of the ExPEC infections are associated with
immunodeficiency due to very young age (neonatal), old age, chemotherapy, or
diseases that weaken the immune system, such as HIV. Thus, as a human pathogen,
ExPEC are the leading causative agents in hospital- and community-acquired
infections (healthcare-associated infections). According to the WHO (Healthcare-
associated infections FACT SHEET), “hundreds of millions of patients are affected
by health care-associated infections worldwide each year, leading to significant
mortality and financial losses for health systems. Of every 100 hospitalized patients
at any given time, 7 in developed and 10 in developing countries will acquire at
least one health care-associated infection.” The estimated cost of treating
healthcare-associated infections is about 20 billion US$ a year.

ExPEC bacteria are involved in infections of humans and farm animals. They are
often classified as APEC (avian pathogenic E. coli), UPEC (E. coli causing urinary
tract infections = UTI), NMEC (neonatal meningitis-causing E. coli), or sep-
ticemic. However, although this classification is sometimes convenient, it is actu-
ally meaningless because there is much overlap between the groups (Ron 2006).
Several examples include APEC strains, such as E. coli serotype O2 which are a
frequent cause of UTI; E. coli serotype O18 that is involved in avian colisepticemia
and human newborn meningitis (Ewers et al. 2007; Krishnan et al. 2015; Nicholson
et al. 2016; Tivendale et al. 2010) and UPEC strains often become septicemic. The
similarities between the human and animal strains can also be characterized at the
genomic level (Bauchart et al. 2010; Maluta et al. 2014; Zhu Ge et al. 2014) and
multilocus sequence typing (MLST) of E. coli O78 strains indicate that several
isolates from newborn meningitis cluster with avian septicemic isolates (Adiri et al.
2003). The similarity between ExPEC strains involved in animal infections and
human infections raises the possibility of zoonosis. This possibility is difficult to
prove, but it should certainly be considered especially for the transfer of
antimicrobial-resistant ExPEC through contaminated food (Manges 2016).

In a few cases where host specificity was documented, it appears to involve
specificity of adherence. Such specificity can be shown in clinical isolates of E. coli
serogroup O78—human intestinal strains produce the human-specific adherence
fimbria CFA/I that bind specifically to intestinal epithelia (Buhler et al. 1991;
Cheney and Boedeker 1983), isolates from septicaemia of lambs produce the P, S,
and F1C adhesins (Dozois et al. 1997) or the K99 fimbriae (E. Z. Ron.
Unpublished), and some O78 isolates from avian colispeticemia code for
avian-specific fimbriae (AC/I pili, belonging to the group of S-fimbriae) (Babai
et al. 1997, 2000; Dobrindt et al. 2001; Yerushalmi et al. 1990).
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Here, we will discuss ExPEC strains and the genetic and physiological factors
that promote the virulence.

2 Infections Involving ExPEC

2.1 Avian Colisepticemia

This is an important disease in poultry leading to losses of millions each year to the
poultry industry. This disease is characteristic for birds under stress—high tem-
perature, high humidity, or mild viral infections, even due to vaccinations. The
disease starts from the upper respiratory tract and the bacteria enter the bloodstream,
are dispersed in the body and infect vital organs. This infection involves high
morbidity and mortality. The majority of infections (about 80%) are caused by
E. coli serotypes O1, O2, and O78 but many additional serotypes were shown to be
involved (Cordoni et al. 2016; Dho-Moulin and Fairbrother 1999; Dziva et al. 2013;
Huja et al. 2015; Mangiamele et al. 2013; Mellata et al. 2009; Nicholson et al. 2016;
Rodriguez-Siek et al. 2005; Sola-Gines et al. 2015).

2.2 Veterinary Infections

ExPEC are the cause of several diseases of calves and lambs. The bacteria infect the
newborns and cause a lethal septicemia (Ansari et al. 1978; Duff and Hunt, 1989;
Kjelstrup et al. 2013). Apparently, these diseases are not of major veterinary impact.

2.3 Neonatal Meningitis

NMEC (Neonatal meningitis-causing E. coli) are the major Gram-negative patho-
gens associated with meningitis in newborn infants (Czirok et al. 1977; Milch et al.
1977; Wijetunge et al. 2015a, b). This group includes several serotypes such as O1,
O18 (Wijetunge et al. 2015a, b), and O78 (Czirok et al. 1977; Milch et al. 1977).
Although quite rare (1 per 1000 births in developing countries and 1 per 10,000 in
developed countries) it is severe, as it involves a very high mortality rate.

2.4 Urinary Tract Infections (UTI)

UTI is the most common ExPEC infection (Ejrnaes 2011; Ena et al. 2006; Foxman
2010, 2014; Jacobsen et al. 2008; Marrs et al. 2005; Zhang and Foxman 2003). In
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2007, there were in the US about 10 million ambulatory visits and about 2 million
admissions to hospital emergency departments (Foxman 2010, 2014). It is very
common in young women, where the infection can become recurrent, and in older
patients following catheterization. UTIs can get complicated and cause kidney
failure and quite often, especially in the elderly, lead to bloodstream infections such
as sepsis.

2.5 Blood Stream Infections/Septicemia/Sepsis

This ExPEC infection is the most serious one in terms of severity as well as an
economic burden. Every year there are more than a million cases of sepsis in the US
and the estimate is that about 30% of them die. This number is higher than deaths in
the US due to prostate cancer, breast cancer, and HIV combined (Sepsis Fact Sheet,
CDC, 2016). In 2011, the US spent $20.3 on hospital care for sepsis patients—
about 55 million US$ a day and the cost per patient can be as high as 56,000 US$.
Sepsis is clearly an emerging disease as the number of cases per year increases
rapidly. There are several reasons for this escalation such as the increased longevity
of people, the broader use of invasive procedures, immunosuppressors, and
chemotherapy. But probably the most important reason for the current situation is
the fast spread of antibiotic-resistant E. coli, the major cause of sepsis.

3 Virulence Factors

A general feature of ExPEC is that production of exotoxins is not a major factor in
their virulence, in contrast to many intestinal strains. There is evidence for pro-
duction of cytotoxin by ExPEC, but it is not clear if they are important for
pathogenicity (De Rycke and Oswald 2001; Peres et al. 1997; Taieb et al. 2016).
The virulence of ExPEC strains appears to depend on their ability to survive in host
tissues, especially in serum. Many of the genes involved in virulence are present on
large plasmids, most frequently on a ColV plasmid (Huja et al. 2015; Milch et al.
1984; Waters and Crosa, 1991; Wijetunge et al. 2014). The ColV plasmids are a
family of related plasmids that encode a broad spectrum of iron uptake systems and
genes for increased serum survival.

In general, there is an extensive variability in virulence-associated genes of
ExPEC (Mokady et al. 2005a, b; Ron 2006, 2010). There appears to be a large
“pool” of such genes and much overlap between them. For example—there are
several genetic systems for iron acquisition and an ExPEC strain can carry one or
more of them, the same for genes coding for fimbriae or adherence factors, etc. It is
clear that many of the virulence factors were obtained by lateral gene transfer, such
as the gene coding for Yersiniabactin, the Yersinia iron uptake system (Gophna
et al. 2001; Huja et al. 2015). However, all the ExPEC strains carry at least one
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adherence system and septicemic strains carry at least one efficient iron-binding
system and genes for serum survival (ISS—increased serum survival).

3.1 Adherence

Adherence to host cells is the initial step of an E. coli infection and is essential for
invasion and infection. Adherence also influences host specificity and even tissue
specificity. Thus, intestinal pathogens adhere preferentially to gut epithelium while
bacteria involved in UTI adhere to bladder epithelium (Kalita et al. 2014).

Adherence depends mainly by specific organelles—pili, or fimbriae—that rec-
ognize specific ligands on the epithel. Infections of mammalian farm animals (cattle,
sheep, pigs, etc.) begin by intestinal colonization of newborn and often involve K99
and K88 pili and AC/I pili were found only in APEC and show specificity to chicken
tracheal epithelium (Babai et al. 2000; Yerushalmi et al. 1990). The most common
fimbriae in strains involved in UTI/sepsis are the P-fimbriae that bind glycolipids
containing a-D-Gal-1,4-b-D-Gal (Korhonen et al. 1982; Lane and Mobley 2007;
Lund et al. 1988; Stromberg et al. 1990), F1C fimbriae, which bind
b-GalNac-1,4-bGal (Khan et al. 2000; van Die et al. 1991) and fimbriae of the
S-family. The S-family includes the SfaI, SfaII, Foc, and AC/I fimbriae. The Sfa
fimbrial adhesins are produced by strains involved in sepsis and newborn meningitis
and interact with glycoproteins containing sialic acid (Babai et al. 2000; Bauchart
et al. 2010; Dobrindt et al. 2001; Hacker et al. 1985; Moch et al. 1987; Parkkinen
et al. 1986). The group of S-fimbriae is interesting as there is evidence for horizontal
gene transfer and combinatorial gene shuffling resulting in pili with different
adherence specificities that are related to the clinical symptoms or the host. Thus, the
sfaAII gens (from a NBM strain) is homologous to the facA gene of AC/I pili
(APEC) while the sfaIIS gene—coding for the adhesion—is homologous to this of
the sfaI cluster from a human sepsis strain (Babai et al. 2000). The combinatorial
shuffling of fimbrial genes is probably of ecological and functional importance as it
increases the fimrial diversity to improve adaptation to different hosts and resistance
to the immune system of the host. Moreover, many of the ExPEC strains express
more than one type of fimbriae and the expression of fimbrial genes appears to be
coordinated, also important for diversity and increase the probability of survival
under changing environmental conditions (Holden and Gally 2004).

3.2 Type Three Secretion Systems (TTSS)

Type three secretion systems are needle-like structures used to secrete effector pro-
teins into host cells. The TTSS of intestinal pathogenic E. coli, especially the LEE
system, have been well characterized. ExPEC strains do not have an LEE system but
do have a homologous gene cluster—ETT2 = E. coli Type Three secretion system 2,
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similar to the SPI1 pathogenicity island of Salmonella. It is present in the majority of
ExPEC strain from humans and animal farms (Cheng et al. 2012; Hartleib et al. 2003;
Ren et al. 2004; Wang et al. 2016b). However, the ETT2 gene clusters carry a large
number of mutations and deletions and it is not even clear how many of the strains
express the ETT2 genes (Ideses et al. 2005; Ren et al. 2004). So far, there is no
evidence that the ETT2 system is a secretion system, as no secreted proteins have
been detected (Hu et al. 2017). Yet, in E. coli O157:H7 it encodes regulators that
affect expression of genes in the LEE gene cluster (Zhang et al. 2004), and in avian
E. coli O78, the ETT2 system affects motility (Wang et al. 2016a). The ETT2 system
of E. coli O78-9 is degenerate, as it carries a large deletion and several point muta-
tions. Yet, it is critical for virulence and for serum resistance (Huja et al. 2015; Ideses
et al. 2005; Wang et al. 2016a). Recently it was shown that ETT2 has a global effect
on the cells surface and is involved in secretion offlagella and fimbriae, in production
of outer membrane vesicles and multicellular behaviour (Shulman et al. 2018).

4 Avoiding the Immune Response

ExPEC strains are characterized by high resistance to serum, which contains anti-
bodies and complement. The complement complex mediates direct killing by the
formation of pores in the cell membrane. Pathogens evolved outer surface features
that inhibit complement-dependent killing, such as lipopolysaccharides and cap-
sules, which are the important factors involved in serum resistance (Phan et al. 2013)

4.1 Lipopolysaccharides—LPS

Complete lipopolysaccharides are essential for serum survival and pathogenicity of
ExPEC (Hammond 1992; Kusecek et al. 1984). However, because a very large
number of LPS serotypes are involved in septicemia, there does not appear to be an
advantage for specific serotypes. An important factor is the length of the O-antigen
chain, which also influences the level of serum resistance (Grozdanov et al. 2002)

4.2 Capsules

The capsules produced by E. coli strains are divided into four groups according to
their composition and biosynthesis (Whitfield and Roberts 1999). Capsules of
group 1, 2, and 3 have been extensively studied, they are acidic polysaccharides
composed of oligosaccharide repeating units and their role in virulence is well
established. (Buckles et al. 2009; Goller and Seed 2010; Hafez et al. 2009; Kim
et al. 2003; Sarkar et al. 2014). Capsules belonging to group 4—also called
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“O-antigen capsules” have only recently been studied and shown to contribute to
enteropathogenic E. coli resistance to human alpha-defensin 5 (Thomassin et al.
2013) to shield intimin and the type three secretion system of intestinal pathogenic
E. coli (Shifrin et al. 2008) and to facilitate spreading of Shigella sonnei to
peripheral organs (Caboni et al. 2015). Its essential role for virulence was shown in
avian ExPEC strain serotype O78 when a transposition that abolished capsule
synthesis resulted in reduced virulence (Dziva et al. 2013). Moreover, a precise
deletion of the etp gene involved in the biosynthesis of the group 4 capsule resulted
in serum sensitivity (Biran and Ron 2017). Thus, it is clear that O-antigen/group 4
capsule is also a critical virulence factor for the spread of bacteria in the blood-
stream and for septicemia.

4.3 ISS—Increased Serum Survival

Studies in avian pathogenic E. coli indicated that a gene present in the ColV
plasmid confers serum resistance (Binns et al. 1979). This gene—called iss for
increased serum survival—encodes a small membrane protein (Binns et al. 1982;
Horne et al. 2000; Nolan et al. 2002, 2003). This gene is homologous to the bor
gene of E. coli K-12 that originated from bacteriophage k (Johnson et al. 2008;
Lynne et al. 2007). It is clear that the iss gene is a major factor in serum survival
(Binns et al. 1982; Huja et al. 2015; Nolan et al. 2002, 2003). Yet, the molecular
basis for its role in serum survival is not clear. Moreover, a deletion of the iss gene
from the ColV plasmid results in serum sensitivity and is not complemented by the
chromosomal iss (bor) gene (Huja et al. 2015). This finding is difficult to explain, as
the chromosomal gene codes for the homologous protein as the plasmid gene.

5 Avoiding Metabolic Immunity

As already noted, to survive in serum, bacteria must overcome the innate immunity
of the host, mainly the effect of the complement system. However, another obstacle
is the nutritional immunity of the serum caused by the fact that nutrients are bound
in storage molecules and are unavailable to the bacteria (Weinberg 2009). Most
significant is the limitation in iron, which is bound in the blood to human proteins
(such as ferritin, hemosiderin) Therefore, most of the ExPEC strains contain genes
involved in iron sequestering and it is clear that iron acquisition systems and
receptors play a pivotal role in the virulence of septicemic pathogens. Indeed,
systems-wide analyses of the response of septicemic bacteria to serum show an
induction of the genes involved in iron metabolism and controlled by the iron
homeostasis regulator Fur (Huja et al. 2014). It appears that the presence of multiple
iron acquisition systems is essential, but just as important is their precise regulation
upon exposure to serum. Thus, the nonpathogenic E. coli K-12 grows poorly even
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in serum in which the complement system has been heat inactivated, and its iron
metabolism is not induced upon exposure to serum (Otto et al. 2016). Furthermore,
these bacteria grow much better in the presence of serum (inactivate) upon intro-
duction of the fur gene from septicemic strains (Otto et al. 2016).

Functional genomic analyses indicate that exposure to serum changes the
expression of a large number of genes, most of which are induced even in the
absence of active complement (Huja et al. 2014). Therefore, it is clear that over-
coming the nutritional immunity is an essential step for surviving serum and
establishing a bloodstream infection.

6 Concluding remarks and future perspectives

ExPEC—Extraintestinal Pathogenic E. coli constitute a clinical problem of
increasing importance. Yet, our understanding of the pathogenesis of these bacteria
is quite limited. As they do not appear to produce potent secreted toxins, their
ability to cause infection depends on their ability to survive and multiply in the host.
In order to overcome hostile environments, such as the urinary tract or even blood
where they are exposed to innate immunity and nutritional immunity, a whole series
of functions and regulatory mechanisms were evolved. The role of most of these
functions and regulations in infection is not clear yet, but it is evident that the
majority of these is important for overcoming the nutritional immunity and not only
the innate immunity.

Why are ExPEC strains so difficult to combat? There are several major reasons,
which are as follows:

1. The extraintestinal infections involve a very large number of serotypes that do
not cross react. Therefore, simple vaccines comprising several strains are not
feasible. In addition, if there is a vaccine—who should be vaccinated? As in
most cases, the infection is opportunistic, often following a medical interven-
tion, it is difficult to define the population at risk.

2. ExPEC carry a variety of genes coding for drug resistance, which are often on
conjugative plasmids that easily spread in the whole bacterial population.
Moreover, ExPEC are present in large number in the intestine, where they
encounter bacteria, such as Klebsiella and Acinetobacter from which they can
get resistance genes by horizontal gene transfer.

3. The search for new anti-ExPEC targets is a real challenge, as many of the genes
involved in pathogenesis have overlapping activities, and inhibiting one of them
will probably be insufficient to prevent the infection. For example—in order to
overcome the deprivation of iron in serum, ExPEC strains code for several
efficient iron binding systems, most of which were obtained by horizontal gene
transfer. In order to prevent ExPEC from resisting serum, it should probably be
necessary to inhibit all of these iron acquisition systems.
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4. Once the bacteria enter the bloodstream the infections progress very quickly,
with the bacteria getting to the vital organs and reaching high numbers. As
E. coli contains the endotoxic cell envelope of lipopolysaccharides, the patients
are exposed to critical danger even only from the endotoxin of dead bacteria.

In conclusion—it is essential to identify new targets for developing drugs or vac-
cines and, in parallel, to develop means that can constitute early warning systems,
especially in hospital and community institutions.
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Abstract In recent years, there have been several pandemics of E. coli strains
which are highly virulent and antibiotics resistant. Here, we discuss one recent
pandemic strain, ST131. These E. coli strains are members of the
virulence-associated phylogenetic group B2 and exhibit extraintestinal virulence
factors, including various adhesins, toxins, siderophores, and protectins. This group
often also harbors a diverse range of antimicrobial resistance types and mechanisms
and may have particular metabolic capacities that enable it to colonize many
individuals asymptomatically, while out competing other E. coli strains. Here, we
discuss this clonal group in the context of other pathogenic E. coli and focus on its
specific characteristics in terms of resistance, virulence, and metabolism.
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1 Introduction: Pathogenic Escherichia Coli in Human
Health and Disease

Since its discovery in 1885, Escherichia coli has been one of the best studied
Gram-negative bacteria, and commonly used as a “workhorse” for molecular biology
and biochemistry. E. coli strains of biological significance to humans are generally
categorized as commensal strains, typically found in a healthy human gutmicrobiome
(Eckburg 2005) and pathogenic strains. In humans, pathogenic E. coli strains are
responsible for two types of infections: gastrointestinal infections and extraintestinal
infections that include urinary tract infections (UTIs), bloodstream infections, and
neonatal meningitis (Russo and Johnson 2000). The intestinal infections can be
complicated by extraintestinal syndromes, such as in the case of Shiga
toxin-producing intestinal strains that can cause hemolytic uremic syndrome (Rasko
et al. 2011). Among the strains causing intestinal infections, there are six defined
categories (also referred to as “pathotypes”) of pathogenic strains of E. coli: entero-
toxigenic (ETEC), Shiga toxin-producing/enterohemorrhagic (STEC/EHEC), enter-
opathogenic (EPEC), enteroinvasive (EIEC), enteroaggregative (EAEC), and
diffusely adherent (DAEC) (Russo and Johnson 2000). The most common extrain-
testinal E. coli (ExPEC) infections occur at multiple anatomical sites such as the
urinary tract (Kaper et al. 2004), the respiratory tract, the cerebral spinal fluid,
meningitis (mostly in neonatal), and peritoneum (spontaneous bacterial 58 peritonitis)
(Soriano et al. 1995; Russo 2003). The majority of UTIs in young healthy women are
caused byExPEC strains (85–95%), and alongwithGroupBStreptococcus, ExPEC is
considered to be a leading cause of neonatal meningitis worldwide (Russo 2003;
Poolman and Wacker 2015).

ExPEC strains can often be found in a normal healthy human gut, without
causing any clinical symptoms (Eckburg 2005). Thus, they can be asymptomati-
cally carried by many, and later be transmitted via contact, infecting the urinary
tract or blood, often of the same individual that has been hosting them for years.
When bacteria are present in the blood in large numbers, this can lead to other
infections and sometimes trigger a serious body-wide inflammatory response called
sepsis, which can be life-threatening, since it may progress to one or more organ
failure, that often leads to death (Nguyen et al. 2006). Once ExPEC strains enter the
bloodstream, for example, as a result of advanced UTI or transrectal
ultrasound-guided (TRUS) biopsy, they can cause bacteremia that can lead to sepsis
(coliseptisemia) (Johnson and Russo 2002). In fact, although TRUS prostate biopsy
is generally considered to be a relatively safe medical procedure, severe sepsis has
been described in 0.1–3.5% of cases after TRUS biopsy, with ExPEC being the
most common cause (Williamson 2012; Lange et al. 2009).

In the past decade, there has been a rapid increase in the rates of hospitalization
and mortality due to ExPEC infections, mainly because of the spread of antibiotic
resistance among clinical isolates (De Kraker et al. 2013). In 2010, the estimated
economic burden of UTI-associated hospitalization in the USA alone was estimated
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to be around 2.3 billion dollars and between 85 and 95% of the cases were E. coli
related (Poolman and Wacker 2016). E. coli is also one of the most common causes
of community-acquired bacteremia and sepsis (De Kraker et al. 2013). In seniors,
E. coli is the most common source of community-acquired bacteremia (Jackson
et al. 2005). In the USA, at 2001, it was estimated that about 40,000 deaths per year
are caused by E. coli-associated sepsis (Russo 2003), and it is the most common
bacterial species associated with septicemia (Elixhauser et al. 2006), with cost of
nearly $15.4 billion in aggregate hospital costs. In Europe, similar trends have been
observed with an increase of reported E. coli bacteremia cases from 20,151 reports
in 2002 to 32,194 reports in 2008. Thus, ExPEC strains have a great impact on
public health and represent an increasing economic burden on society.

2 E. coli Sequence Type 131: A Worldwide
Pandemic Clone

In 2008, reports of a previously unknown E. coli clonal group emerged from three
different continents, noticed by two research groups who were studying CTX
extended-spectrum-b-lactamase (ESBL)-producing E. coli (Nicolas-Chanoine et al.

Fig. 1 Reported cases of ST131 worldwide, as of 2017 (Nicolas-Chanoine et al. 2014; Vignoli
2016; Chattaway et al. 2016; Eibach et al. 2016; Begum and Shamsuzzaman 2016; Ouedraogo et al.
2016; Yahiaoui et al. 2015; Ebrahimi et al. 2016; Hristea et al. 2015; Markovska et al. 2017; Rogers
et al. 2011; Severin et al. 2010; Peirano et al. 2014). Africa: Algeria, Burkina Faso, Cameroon,
Central African Republic, Egypt, Guinea-Bissau, Ghana, Kenya, Madagascar, Morocco, Nigeria,
South Africa, Tanzania, and Tunisia. Europe: Belgium, Bulgaria, Croatia, Denmark, France,
Germany, Hungary, Italy, Netherland, Norway, Portugal, Romania, Spain, Sweden, Switzerland, the
Czech Republic, and the United Kingdom. Asia: Bangladesh, Cambodia, China, India, Israel,
Jordan, Japan, Kuwait, Lebanon, the Philippines, South Korea, People’s Democratic Republic of
Laos, Pakistan, Russia, Turkey, Thailand, and United Arab Emirates. North America: Canada, the
United States. South America: Argentina, Brazil, Colombia, Ecuador, Mexico, Panama, Puerto
Rico, and Uruguay. Oceania: Australia and New Zealand
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2008; Coque 2008). This clonal group, which later became known as sequence type
131 (ST131), caught the attention of the clinical research community due to several
unique characteristics: increased occurrence of resistance to antimicrobial agents,
enhanced virulence, and fast spread. The two initial studies showed that ST131 had
emerged predominantly in the community, and was simultaneously identified in
different parts of the world spanning three continents. Since then, ST131 has spread
globally (Fig. 1).

The serotype most associated with ST131, O25:H4, was also identified among
both intestinal and extraintestinal adherent-invasive E. coli (AIEC) strains
(Martinez-Medina et al. 2009).

3 ST131—Characterization of a Novel Pandemic Lineage

The first step in identifying the mysterious clonal group was to examine basic
characteristics—phylogenetic group, serotype, O antigen, and virulence genes, as
well as multilocus sequence typing (MLST), and pulsed-field gel electrophoresis
(PFGE). Most ExPEC strains belong to group B2, while a small fraction belongs to
group D and most commensal strains have been shown to belong to group A
(Clermont et al. 2000). Phylogenetic analysis of the ST131 clone revealed that like
other ExPEC strains it belonged to phylogenetic group B2 (Nicolas-Chanoine et al.
2008; Coque 2008; Clermont et al. 2008). The lineage was identified as belonging
to ST131 (Nicolas-Chanoine et al. 2008; Coque 2008; Wirth et al. 2006) based on
MLST, perhaps the most widely accepted bacterial typing method today. As for the
three surface antigens O, H, and K (the specific part of the LPS, the flagella, and the
capsule, respectively) (Ørskov and Ørskov 1984), most ST131 isolates exhibit
serotype O25b:H4, except for a small subset of strains that exhibit serotype O16:H5
(Nicolas-Chanoine et al. 2008; Johnson et al. 2014), and some isolates that cannot
yet be typed for either O (Dahbi et al. 2013) or H antigens (Suzuki et al. 2009).

Although all ST131 are coherent and homogenous when examined according to
their MLST-determining genes, there is significant within-lineage genetic variations
as shown by the PFGE method which is based on the specific digestion (using
rare-cutting restriction enzymes) of DNA into fragments of varying sizes, followed
by the separation of these DNA fragments by gel electrophoresis using a periodi-
cally changing electric field. In contrast to its otherwise clonal character ST131
presents highly variable PFGE profiles, and different pulsotypes can be observed
depending on geographic location, time periods, and ecological niches (Johnson
et al. 2012). Pulsotype comparison of 579 ST131 isolates resolved 170 distinct
pulsotypes (Johnson et al. 2012), with a small number of dominant pulsotypes,
including one pulsotype (968) that accounts for 24% of the general ST131 popu-
lation. In summary, the ST131 lineage, while monolithic in terms of the sequence of
housekeeping genes, is highly variable in terms of its genome content, and often
contains different “flexible genome” elements, such as plasmids and prophages.
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4 What Are the Reasons for the Worldwide Rapid
Dissemination of ST131?

The initial consensus hypothesis for explaining the rapid worldwide dissemination
of ST131 was that these bacteria are more virulent, combining the B2 group
background with additional novel virulence traits (Banerjee and Johnson 2014;
Johnson et al. 2010). Typical virulence-associated genes in ExPEC are
adhesin-encoding genes (such as papAH, papC, papEF, papG, sfa/focDE),
toxin-encoding genes (such as hlyA, hlyF, cnf1), siderophore-related genes (iroN,
fyuA, ireA and iutA), protectin/invasin-encoding genes (kpsM II, kpsMT III, iss,
etc.), pathogenicity island markers, and miscellaneous genes (cvaC, usp, ompT,
clbB, etc.). These genes contribute to the pathogenic potential and are seldom found
in non-pathogenic strains (Johnson and Stell 2000).

Indeed, 12 virulence genes were found to be significantly more prevalent among
ST131 than among non-ST131 isolates: iha and fimH (adhesin–siderophore
receptor and type I fimbriae, respectively), sat (a secreted toxin), astA (an
enteroaggregative E. coli-associated toxin), fyuA and iutA (yersiniabactin and aer-
obactin receptors, respectively), kpsM II-K2 and kpsM II-K5 (group II capsular
polysaccharide synthesis), usp (uropathogenic-specific protein), traT (surface
exclusion, serum resistance-associated), ompT (outer membrane protease), and
malX (a pathogenicity island marker). The overall virulence scores were signifi-
cantly higher for ST131 isolates compared to most of the non-ST131 isolates
(Johnson et al. 2010). Similarly, in ESBL-producing isolates, 11 virulence genes
(papG III, afaFM955459, cnf1, sat, hlyA, kpsM II-K2, kpsM II-K5, traT, ibeA,
malX, and usp) were significantly associated with ST131, whereas only papG II and
tsh were significantly associated with non-ST131 strains (Coelho et al. 2011).
Analysis of 130 clinical ST131 isolates revealed four distinct virotypes of ST131
(labeled arbitrarily as A, B, C, and D) (Blanco et al. 2013), with an additional
virotype added later on (virotype E (Dahbi et al. 2013)), based on the presence or
absence of four distinctive virulence genes, including afa FM955459 (specific for
an ST131 clone encoding an Afa/Dr adhesin), iroN, ibeA (invasion of brain
endothelium), and sat. The patterns were as follows (Table.1):

Table 1 Distribution of afa
FM955459, iroN, ibeA, and
sat genes among the different
main virotypes of ST131

Virotype/
gene

Afa
FM955459

IroN IbeA Sat

A + – – �
B – + – �
C – – – +

D – � + �
E – – –
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Virotype D isolates exhibited significantly higher virulence scores than did those
of other virotypes and was significantly associated with younger patients and
community acquisition (Blanco et al. 2013). In contrast, virotype B was associated
with older patients and a lower likelihood of symptomatic UTI, but a higher like-
lihood of respiratory tract infection, while virotype C was significantly associated
with a generally higher likelihood of symptomatic infections. Overall, ST131 iso-
lates of the major serotype O25b:H4 exhibited higher virulence scores than ST131
isolates of the rarer serotype O16:H5 (Dahbi et al. 2013).

In contrast to molecular epidemiology, experimental studies in animal models do
not clearly support the hypothesis that ST131 is more virulent than other E. coli
strains. When ST131 isolates were compared to non-ST131 ExPEC isolates in a
mouse subcutaneous sepsis model, no significant advantage for the ST131 was
observed in terms of lethality and clinical illness (Johnson et al. 2012). These
findings were also supported by studies in Caenorhabditis elegans and zebrafish
embryos (Lavigne et al. 2012). Some evidence that ST131 is not necessarily
hyper-virulent comes from a recent case–control study from 2017 that showed that
the non-ESBL-producing ST131 strains did not cause a worse clinical outcome in
human bacteremia (in terms of mortality, severe sepsis, hospitalization time, etc.)
than non-ST131 isolates (Morales-Barroso 2017). Taken together, the studies
contradict the assumption that the rapid emergence and global dominance of ST131
are due to enhanced virulence.

The findings concerning the virulence of ST131 in comparison to non-ST131
strains are summarized in Table 2.

From these experiments, it appears that ST131 strains are not significantly more
virulent in vivo than the non-ST131 strains. Yet, it is highly likely that there are
other factors, such as enhanced metabolic capacities, and capacity for asymptomatic
carriage (discussed below), that have contributed to the success of ST131 as a
global pathogen. Indeed, there is evidence that ST131 isolates have higher meta-
bolic potential compared to non-ST131 isolates (Vimont et al. 2012; Gibreel 2012),
in terms of catabolic enzyme repertoire but further study is required, such as in vivo
colonization studies that involve competition between ST131 isolates and other
strains, or ST131 mutant that lack these enzymatic functions.

5 Carriage of ST131 in the Community

A key factor that probably contributes to the global dissemination of ST131 is its
carriage among healthy individuals. ST131 lineage is strongly associated with
community-onset infections, and carriage rates in healthy subjects can range from
7% in independent healthy Parisians (Leflon-Guibout et al. 2008) up to over 35% in
long-term care facilities (LTCF) for the elderly in Italy (Giufrè 2017). ST131 is
associated with older age, intensive antibiotic treatment, and high prevalence
among residents in nursing homes and LTCF (Banerjee et al. 2013), which may
represent the largest human reservoir for ST131. Taken together with the potential
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of ST131 for increased virulence, these findings indicate the opportunistic nature of
this lineage. Indeed, several case reports of transmission of ST131 within house-
hold, resulting in severe or fatal extraintestinal infections (Morales-Barroso 2017;
Mora et al. 2014), demonstrate its potential for causing deadly opportunistic dis-
ease. Since, like other ExPEC lineages, ST131 has the ability to colonize healthy
individuals without causing any symptoms, health authorities should consider
future measures in order to prevent its dissemination, or in the very least take steps
to prevent infections in high-carriage communities.

6 ST131 in Companion and Non-companion
Animals—Additional Natural Reservoirs

One of the intriguing aspects of the ST131 clonal group is its natural reservoirs.
ST131 is found among drug-resistant E. coli isolates in companion and
non-companion animals (Rogers et al. 2011)—dogs, cats (Ewers et al. 2010; Pomba
et al. 2009; Johnson et al. 2009), poultry (Mora et al. 2010; Cortes et al. 2010),
horses (Ewers et al. 2010), and pigs. In non-companion animals, ST131 was found in
glaucous-winged gulls (Hernandez et al. 2010), seagulls (Simoes et al. 2010), and
rats (Guenther et al. 2010). A European collection of 177 ESBL-producing E. coli
isolates collected from eight countries, mainly obtained from companion animals
with various clinical manifestations, revealed that 5.6% of the isolates were ST131
O25b (Ewers et al. 2010). Many clinical ST131 isolates from companion animals
were found to have high resemblance to human clinical ST131 isolates based on
their virulence genotype, resistance characteristics, and PFGE profiles. These find-
ings suggest either recent or ongoing zoonotic transmission between humans and
animals (Rogers et al. 2011), and have been corroborated by more recent genomic
analysis showing that most, though not all, ST131 strains frequently cross-host
species boundaries (McNally et al. 2016). A possible reason for the relative lack of
ST131 case reports in animals might be the veterinary sector’s relatively limited
microbiological diagnosis and reporting systems, probably resulting in many unre-
ported cases. Reports of ST131 carriage among non-companion animals are even
more rare, since such animals are little studied. Although according to most data, the
ST131 pandemic appears mostly a human-based phenomenon, the risk of
inter-species transmission of these multi-resistant strains between humans and ani-
mals should be seriously considered (Table 3).
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7 Drug Resistance Among the ST131 Clonal Group

Extended-spectrum b-lactamase (ESBL)-producing bacteria are resistant to most
beta-lactam antibiotics, including penicillins, cephalosporins, and monobactams.
These enzymes cleave the amide bond in the b-lactam ring, and thus inactivate those
antibiotics. The rapid dissemination of antibiotic resistance among bacteria is an
alarming trend and considered to be one of the world’s main health threats (Bonnet
2003). In recent years, CTX-M enzymes have become the predominant ESBLs
encountered in the clinic. These enzymes have originated from Kluyvera spp. (Pitout
et al. 2005) and are generally plasmid-associated. Klebsiella pneumoniae and E. coli
are the major ESBL-producing organisms isolated worldwide. The ST131 clonal
group initially caught the attention of researches because of its CTX-M-15 ESBL
(Nicolas-Chanoine et al. 2008). Since then, ST131 isolates carrying CTX-M
enzymes were reported in many countries worldwide (Rogers et al. 2011). In
Canada, a multi-center study that included 209 clinical isolates revealed that 46% of
ESBL isolates belonged to the ST131 clonal group, with the vast majority (91%) of
these strains producing CTX-M-15 (Peirano et al. 2010).

It was previously reported that CTX-M-producing E. coli isolates often carry
resistance to additional antibiotic classes, which can include co-trimoxazole,
aminoglycosides, and fluoroquinolones (Pitout and Laupland 2008). Indeed,
fluoroquinolone resistance is one of the most frequently reported resistances among
ST131 strains, including ESBL-producing ones. There are several mechanisms that
can lead to fluoroquinolone resistance in ST131, and they provide varying levels of
resistance. High-level fluoroquinolone resistance in E. coliwas reported to be caused
by chromosomal mutations of genes coding the fluoroquinolone targets, which are
gyrA, gyrB, parC, and parE (Rogers et al. 2011). The aminoglycoside-modifying
enzyme AAC(6′)-Ib-cr also contributes to quinolone resistance via acetylation of
selected fluoroquinolones. Low-level resistance can also be conferred by the pres-
ence of plasmid-mediated quinolone resistance genes, including qnrA, qnrS, and
qnrB. Population analysis performed on historical and recent ST131 isolates found
that fluoroquinolone resistance in the ST131 fimH30 sub-lineage is mostly due to
gyrA1AB and parC1aAB mutations in genes encoding gyrase and topoisomerase IV,
respectively (98% of FQ-R isolates) (Johnson et al. 2013).

Resistance to the carbapenemases among E. coli is yet another alarming trend
worldwide (Nordmann and Poirel 2014). Three major carbapenemases have been
reported: KPC (Klebsiella pneumoniae carbapenemases), NDM (New Delhi
metallo-b-lactamase), and OXA-48 (for “oxacillinases”). An extended analysis of
116 carbapenemase-producing E. coli isolates found that 35% of the isolates
belonged to ST131. 58% of ST 131 isolates were positive to the blaKPC, 32% for
blaOXA-48-like, 7% for blaNDM-1, and 2% for blaIMP-14 (Peirano et al. 2014).

It is obvious that antimicrobial resistance is widespread among the ST131 clonal
group, and it is safe to assume that this feature has a strong impact on the spread of
ST131 in the community, helping this lineage to replace other, antibiotic-sensitive
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strains in a world where antibiotic exposure is common. Thus, their antibiotic
resistance is making ST131 more abundant as well as harder to eliminate (Banerjee
and Johnson 2014).

8 “A Shark Among Sharks”—The H30 and H30-Rx
Sub-clones of ST131

In order to better understand the genetic structure of the ST131 clone, an analysis of
350 historical and more recent ST131 isolates and over 700 non-ST131 E. coli
isolates was performed in 2010, which utilized a variety of typing strategies, such as
sequencing of selected genes (fimH, gyrA, and parC), MLST, and PFGE. This
analysis identified 185 unique PFGE types and 7 distinct fimH-based putative clonal
lineages of ST131: H15, H22, H27, H30, H35, H41 and H94, with H30 being the
dominant allele (Johnson et al. 2013). The high genetic similarity of most H30
isolates to one another suggested that they originate from a single fimH30-carrying
ancestor. Moreover, this H30 ST131 sub-clone was closely associated with
fluoroquinolone resistance (FQ-R) and with ESBL production mediated by
CTX-M-15. Since this lineage was rare among fluoroquinolone-susceptible ST131
isolates (<1%), it was suggested that FQ-R is associated almost exclusively with the
ST131 H30 sub-clone, which originated from a single strain about 14 years ago
(Johnson et al. 2013; Banerjee et al. 2013). The H30 ST131 clone was found to be
associated with persistent infections, subsequent hospital admissions, and subse-
quent new infections (Johnson et al. 2016). A recent study from 2017 suggests that
H30 isolates tend to be less frequently nosocomially acquired, and more frequently
affect patients aged >65 years. Moreover, H30 isolates were also found to be more
frequently resistant to ciprofloxacin and less frequently resistant to trimethoprim/
sulfamethoxazole (Morales-Barroso 2017). In addition, the H30 lineage was found
to be associated with virotype C (see above) and CTX-M-14 (Peirano et al. 2014).

An important sub-lineage within H30 is the single, highly virulent sub-clone,
H30-Rx. This clone was identified by whole-genome single-nucleotide polymor-
phism (SNP) analysis performed on 105 ST131 isolates cultured from humans and
animals between 1967 and 2011 (Price 2013). High-resolution phylogenetic anal-
ysis enabled the identification of a single-ancestral sub-clone within H30-R, the
fluoroquinolone-resistant H30 sub-clone. Because of its more extensive resistance
characteristics, this CTX-M-15-associated sub-clone was designated H30-Rx.
Assessment of the demographic, geographic, and clinical prevalence of H30-Rx
revealed that the relative prevalence of H30-Rx was highest among German
Hospital isolates (where it even exceeded the prevalence of other H30-R isolates),
intermediate among US-based hospital isolates, and lowest among the US outpa-
tient isolates (Price 2013). In addition, a more recent study that analyzed a global
collection of ESBL-producing E. coli isolates found that the majority of ST131
(92%) isolates belonged to the H30 lineage, and 82% H30 isolates belonged to the
H30-Rx sub-lineage. The H30-Rx lineage was recovered from all 9 countries
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examined in that study (spanning all five continents) and also showed strong
association with drug resistance (having the blaCTX-M-15, and aac(6′)-lb-cr genes)
and virotype A (Peirano et al. 2014). Moreover, H30-Rx isolates were found to
have higher resistance scores compared to non-H30-Rx ST131 isolates and were
associated specifically with CTX-M-15. Three virulence genes (iha, sat, and iutA)
were more prevalent among H30 than non-H30 ST131 isolates. Thus, the H30 and
H30-Rx sub-clones are considered to be more drug-resistant and have virulence
profiles that are distinct from those of non-H30 ST131 (Banerjee et al. 2013).
Several studies were performed in order to determine the prevalence and distri-
bution of ST131 sub-lineages worldwide. For instance, a population-based study
performed in Minnesota, USA, revealed that 88% of all ST131 infections were due
to the H30 sub-lineage. The H30 sub-lineage was most common among adults over
50 years old and its prevalence was positively correlated with age. However,
among children under the age of 10, both H30 and non-H30 ST131 isolates were
highly prevalent, suggesting that both the old and the young are more vulnerable to
ST131 and its sub-lineage (Banerjee et al. 2013). Another population-based study
from Canada revealed that 46% of FQ-R E. coli isolates were ST131, and 96% of
these belonged to the H30 sub-lineage, with 32% belonging to the H30-Rx
sub-lineage. The study identified the association of H30-Rx sub-lineage with the
clinical features of primary sepsis, upper UTIs, and complication of prostate
biopsies. Predictably, the H30-Rx sub-lineage was also associated with multidrug
resistance, and with the presence of blaCTX-M-15 and aac(6′)-lb-cr resistance genes
(Peirano and Pitout 2014) (Fig. 2).

Fig. 2 General structure of the population of E. coli ST131. Presented are the two main serotypes
(O25b:H4 and O16:H5) with lineages and sub-lineages producing or not producing ESBL
enzymes and being resistant or sensitive against fluoroquinolones (FQ). Adapted from Schaufler
(2017), Mathers et al. (2015)
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Taken together, its high prevalence in the young and old, its pathogenicity, and
drug resistance make the H30 sub-lineage potentially the most important E. coli
from a public health perspective.

9 Conclusions

The global spread of ST131 is probably a combination of different factors. Unlike
epidemic strains that cause outbreaks that are eventually contained by the medical
community, pandemic lineages such as ST131 require a constant reservoir to
maintain their extended footprint. The high asymptomatic carriage rates of ST131
provide this reservoir within the human population, but how did they replace other
E. coli lineages and have become so commonly carried remains unclear. While
ST131 is not more infective than other E. coli strains, they appear to be stable for
longer periods within their hosts (Giufrè 2017), implying that they are fitter either
due to resistance to antibiotics, to which carriers are often exposed, especially in
LTCF, to increased metabolic potential, or both. A key question is how these strains
interact in the colon with many other intestinal bacteria, and also additional E. coli
strains. Residents of LTCF have been shown to have a microbiota that is less
diverse than community-dwelling elderly subjects (Claesson et al. 2012), and one
may speculate that such microbiota may be more conductive to colonization with
ST131. Furthermore, this less diverse microbiota was associated with higher levels
of inflammatory markers raising the question of whether ST131 strains contribute
more to chronic inflammation than other E. coli lineages.

It remains to be determined whether more responsible antibiotics usage world-
wide will lead to a decrease in ST131 carriage or whether specific anti-ST131
measures such as vaccination or phage therapy (Pouillot et al. 2012; Green 2017)
will have to be undertaken in order to reduce the burden of this lineage to healthcare
systems and to human health.
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Abstract Escherichia coli is the most common Gram-negative bacterial pathogen,
presenting both a clinical and an epidemiological challenge. In the last decade,
several successful multidrug-resistant high-risk strains, such as strain E. coli ST131
have evolved, mainly due to the growing selective pressure of antimicrobial use.
These strains present enhanced fitness and pathogenicity, effective transmission
and colonization abilities, global distribution due to efficient dissemination,
and resistance to various antimicrobial resistances. Here, we describe the emerging
trends and epidemiology of resistant E. coli, including carbapenemase-producing
E. coli, E. coli ST131 and colistin resistant E. coli.
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1 Introduction

The introduction of penicillin and other antibiotics to the clinical world, about
75 years ago, has led to a significant reduction of death from bacterial infections
saving millions of lives. Consequently, it was assumed that the high mortality due
to infectious diseases would be a thing of the past. Unfortunately, emergences of
resistance have been published shortly after by Abraham and Chain (1940),
describing penicillinase, which degrades benzylpenicillin, conferring resistance to
penicillin. Since then, development of resistance has become an important factor in
the fight against infectious diseases. De novo or transmitted antibiotic resistance
mechanisms are extensively studied, involving detoxification of the antibiotic
molecule or mutations in the designated target. Antibiotic molecules can be (i) re-
moved by efflux pumps (ii) modified to be less efficient or (iii) destroyed. Antibiotic
targets can be (i) enzymatically modified (ii) rendered insensitive by mutations,
(iii) protected by a barrier and (iv) replaced.

The selective pressure of antimicrobial use, overuse and misuse in humans, animals
and agriculture comprises the engine driving this process leading to a gradual increase
in antibiotic resistance. Subsequently, once treatable bacteria are now either untreat-
able or require the last line of antibiotics (Ventola 2015). Multidrug-resistant (MDR),
extensively drug-resistant (XDR) and pan-drug-resistant (PDR) strains of Escherichia
coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa
are now reported worldwide, becoming a critical global issue (Boucher et al. 2009;
Shlaes et al. 2013). Interspecies and intra-species horizontal gene transfer is considered
to be the dominant process for achieving multiresistant bacteria, both in the com-
munity and hospital settings (Tzouvelekis et al. 2012). Emerging antibiotic resistance
is currently acknowledged as one of the most significant public health problems and
mortality rates since MDR bacterial infections are high. It was estimated that in 2002,
1.7 million healthcare-associated infections occur each year in American hospitals and
were associated with about 99,000 deaths (Klevens et al. 2007). The ECDC estimated
that in the EU, Iceland and Norway about 37,000 patients die each year as a direct
outcome of a hospital-acquired infection (HAI), an additional 111,000 die as an
indirect outcome of the HAI (ECDC 2008), and about 25,000 patients die from
infections with multidrug-resistant bacteria; two-thirds being due to Gram-negative
bacteria (ECDC/EMEA Joint Working Group 2009).

Among the resistant bacteria, E. coli is the most common Gram-negative bacterial
pathogen, causing a diverse range of clinical diseases that affect all age groups. E. coli
primarily inhabits the lower intestinal tract of humans and other warm-blooded
animals and is discharged to the environment through faeces and wastewater treat-
ment plants (Berthe et al. 2013). It represents a diverse collection of bacteria which
are usually commensals but also includes pathogens that cause a variety of human
diseases, resulting in more than 2 million deaths each year (Kaper et al. 2004).
Currently, six types of intestinal pathogenic E. coli strains are well studied and
characterized. These are classified by different pathogenicity mechanisms and
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virulence properties, causing gastrointestinal diseases such as diarrhoea (Kaper et al.
2004; Nataro and Kaper 1998). The intestinal strains include: enteropathogenic
E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC),
enteroinvasive E. coli (EIEC) and Shiga toxin-producing E. coli (STEC) and
enterohemorrhagic E. coli (EHEC). E. coli O157:H7, the most well-known serotype
of EHEC, has caused many outbreaks of water- and food-borne diseases worldwide.
In addition to the intestinal strains, several E. coli strains are involved in extrain-
testinal diseases. They are called extraintestinal pathogenic E. coli (ExPEC). ExPEC
comprise a common cause of bacteremia and septicemia, a frequent cause of
meningitis in neonates and the majority of urinary tract infections (UTIs) in young
healthy women (Russo and Johnson 2003; Dale and Woodford 2015). Therefore, the
worldwide emergence of the ExPEC MDR E. coli strains, such as sequence type
(ST) O25b:ST131 clone, represents a major challenge for the prevention and man-
agement of E. coli infections (Mathers et al. 2015).

Recent surveillance data from the 2000s indicate that antibiotic resistance to all
major antibiotic classes exists among E. coli strains. These include the production of
extended-spectrum-beta-lactamases (ESBLs) (including TEM, SHV, CMY, and
CTX-M types), production of carbapenemases (including KPC, NDM, VIM,
OXA-48 and IMP types), resistance to fluoroquinolones, aminoglycosides and
trimethoprim-sulfamethoxazole (Pitout 2012a), and recently also plasmid-mediated
colistin resistance (Liu et al. 2016). Rapid dissemination of newly resistant ExPEC
clones is known to lead to localized outbreaks of extraintestinal disease. Currently,
CTX-M-15 is the most prevalent ESBL among ExPEC (Mathers et al. 2015).
Moreover, the rise of E. coli ST131, which is frequently resistant to extended-
spectrum cephalosporins and fluoroquinolones (FQs), has severely complicated the
treatment of blood-borne and urinary tract infections in the United States (Johnson
et al. 2010) and globally. A clinical antibiotic resistance survey reported that E. coli
ST131 lineage is accountable for about 70% of clinical E. coli infections resistant to
FQs, and 55% resistant to both FQs and trimethoprim-sulfamethoxazole (Johnson
et al. 2010). Antibiotic-resistant E. coli strains are increasingly prevalent, in the US,
31.3% of E. coli isolates were FQ resistance (FQ-R) among hospitalized patients,
during 2007–2010 (Edelsberg et al. 2014). In India, the prevalence of MDR E. coli
isolates, among inpatients with UTIs, was 76% (Niranjan and Malini 2014).

The emerging resistant trends of E. coli and their origin and epidemiology are
the scope of this chapter.

2 Antibiotics Used for Treating E. coli Infections

The resistance of E. coli and other Gram-negative bacteria to various antimicrobials
is due to the development of many different mechanisms. These include antibiotic
inactivation and modifying enzymes, b-lactamases, altered permeability and porin
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mutations, efflux pumps, binding site and target mutations and ‘bypass’ of meta-
bolic pathway. The study of resistance mechanisms and patterns is highly important
to achieve good clinical outcome, an adequate administration of antimicrobials, and
for the development of new antimicrobial compounds. Similar to the variety of
infections caused by E. coli, there are also plentiful of treatment options against
susceptible E. coli infections, including penicillins, cephalosporins, monobactams,
b-lactam/b-lactamase inhibitor combinations (BLBLI), fluoroquinolones, amino-
glycosides and trimethoprim-sulfamethoxazole (TMP-SMX), among others.
However, the antibiotic treatment of MDR E. coli infections is significantly more
limited. The emergence of fluoroquinolone resistance, the production of ESBLs or
plasmid-mediated AmpC (pAmpC), carbapenem resistance and recently also col-
istin resistance have dramatically complicated the treatment options.

2.1 Treatment Against ESBL and PAmpC Producing E. coli

ESBLs are a rapidly evolving group of b-lactamases which share the ability to
hydrolyse penicillins, first, second and third generation cephalosporins, aztreonam,
cefamandole and cefoperazone. They do not confer resistance to cephamycins and
carbapenems and are inhibited by inhibitors of b-lactamases, such as clavulanic
acid, sulbactam or tazobactam. The ESBL enzymes constitute more than 300
enzymes and include three major groups, the TEM family comprises more than 160
members, the SHV family comprises more than 110 members and the CTX-M
family comprises more than 80 members. Other ESBLs include the OXA-type
b-lactamase group and a variety of other b-lactamases such as PER, VEB, GES,
BES, TLA, SFO and IBC groups. Different from ESBLs, the pAmpC b-lactamases
convey resistance to penicillins, first, second and third generation cephalosporins,
cephamycins and aztreonam. They do not confer resistance to fourth generation
cephalosporins or carbapenems and are not inhibited by clavulanic acid.

ESBL and pAmpC E. coli isolates are often resistant to penicillins, fluoro-
quinolones, some aminoglycosides and TMP-SMX. Carbapenems are often used as
the drug of choice for the treatment of severe infections caused by pAmpC and
ESBL-producing isolates, as their activity is unaffected by these enzymes and they
are associated with better outcomes than cephalosporins or fluoroquinolones.
However, the presence of ESBL and pAmpC in community isolates has led to the
increase in the use of carbapenems and to the emergence of carbapenemase pro-
ducers (Laxminarayan et al. 2013), leading to the search for alternatives to car-
bapenems for pAmpC and ESBL producers. ESBLs (but not AmpC) are inhibited
by b-lactamase inhibitors, and thus BLBLI such as amoxicillin–clavulanic acid or
piperacillin-tazobactam are active against some ESBL producers. However, their
effectiveness in comparison to carbapenems is still questionable and a randomized
trial is currently ongoing in Australia and New Zealand addressing this question
(Harris et al. 2015). Temocillin is a revived b-lactam that is stable against both
ESBL and pAmpC enzymes, displayed good results in several uncontrolled studies
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(Balakrishnan et al. 2011), but it is commercialized only in few countries and
should be farther investigated in a randomized trial. Additional possible medica-
tions include non-b-lactamase antibiotics if the specific isolate is susceptible.
Finally, fosfomycin and nitrofuraintoin are frequently active against ESBL pro-
ducers and are therefore another option. In addition, colistin can be used and is
prescribed in rare cases when other medications have failed to stop the ESBL
infection, as it is usually reserved for extensively drug-resistant isolates.

2.2 Treatment Against CPE or Colistin Resistant E. Coli

Treatment of carbapenemase-producing E. coli is dramatically limited and the
potential therapeutic options depend on the specific type of carbapenemase pro-
duced. Aztreonam is usually active against metallo-b-lactamases (MBLs) such as
New Delhi metallo-beta-lactamase (NDM), Verona integron-encoded
metallo-beta-lactamase (VIM) and Imipenemase metallo-beta-lactamase (IMP),
while cephalosporins are usually active against Oxacillinase-48 (OXA-48) pro-
ducers. However, if an ESBL or AmpC are co-produced with one of these car-
bapenemases (which unfortunately occurs frequently), the use of aztreonam against
MBLs and cephalosporins against OXA-48 is eliminated. In comparison to the
MBLs and OXA-48 carbapenemases, the K. pneumoniae carbapenemase
(KPC) producers are resistant to all b-lactams. In such cases of KPC producers or
co-production of NDM, VIM, IMP or OXA-48 and ESBL or AmpC, the most
frequent active options are colistin, polymyxin B, tigecycline, and in some cases
fosfomycin or aminoglycosides (Tzouvelekis et al. 2012). In addition, the use of
different combination therapies has been reported, in some cases even as being
superior to monotherapy (Tumbarello et al. 2012), moreover, dual-carbapenem
treatment course was reported, in some cases, as being a successful combination
therapy against CPE (Zavascki et al. 2013). However, combination therapy is still
controversial as reported by a meta-analysis of studies on carbapenem-resistant
Gram-negative bacteria (Paul et al. 2014).

Different from carbapenemase producer E. coli strains, which are often con-
sidered to be MDR or XDR, currently most colistin resistant E. coli isolates are still
susceptible to several specific antibiotics, which are case-dependent and cannot be
generalized for correct treatment. In the rare cases of co-expression of carbapene-
mase and plasmid-mediated colistin resistance (MCR), often the therapeutic options
are limited to fosfomycin and tigecycline (Karaiskos and Giamarellou 2014) or to a
double-carbapenem regimen in the case of PDR isolates (Giamarellou et al. 2013).
As the use of combination therapy controversial has several problems, clinical
therapy should be on a specific individual basis considering available options, and
infection source and severity.

Colistin, tigecycline, carbapenem and different combination therapy are the
last-resort antibiotic therapies against infections caused by MDR, XDR and PDR
Gram-negative pathogens. Recently, a new generation of b-lactamase inhibitors and
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inhibitor combinations is being developed (Bush 2015; Wright et al. 2017). These
include avibactam, relebactam, nacubactam, AAI101 and the novel boronic acid
inhibitor vabrobactam, which are able to inhibit most class A and class C
beta-lactamases, with selected inhibition of class D enzymes by avibactam. All
these inhibitors are being developed in combinations, targeting primarily
carbapenemase-producing Gram-negative pathogens. b-lactamase inhibitors com-
binations such as ceftolozane/tazobactam and ceftazidime/avibactam were recently
approved by the US Food and Drug Administration (FDA), others, including cef-
taroline fosamil/avibactam, aztreonam/avibactam, imipenem/cilastatin/relebactam,
meropenem/vabrobactam and cefepime/AAI101, are in different stages of clinical
trials (Bush 2015; Wright et al. 2017). Other antimicrobial agents, in different
stages of development or clinical trials, against gram-negative bacteria include
cefidercol, a novel siderophore cephalosporin active against class A, B, C and D
b-lactamase producers, carbapenem-resistant P. aeruginosa, A. baumannii and
Stenotrophomonas maltophilia, plazmoicin, a new aminoglycoside inhibiting pro-
tein synthesis by binding to the ribosomal 30S subunit of bacteria and eravacycline,
a novel fluorocycline tetracycline, which binds the bacterial ribosome and inhibits
bacterial protein synthesis.

Clinical management of MDR infections is becoming more and more chal-
lenging. Therapeutic decisions are important for the individual patient clinical
outcome, eliminating recurrence of infections and for avoiding further selection
pressure and resistant development. High-quality randomized clinical trials and
observational studies are very important for clinical infection management, that due
to the resistant nature of specific isolates should be taken on an individual basis.

3 Carbapenemase–Producing E. coli

3.1 Introduction to Carbapenemases

Carbapenem resistance in Enterobacteriaceae (CRE) is an increasing worldwide
concern and is a clinical challenge with implications for both clinical practice and
for public health (Tzouvelekis et al. 2012). Accordingly, in 2013, the US CDC
reported that carbapenem-resistant Enterobacteriaceae (CRE) are one of the three
most urgent antimicrobial resistant threats, and in 2017, the WHO included CRE in
the critical group of WHO Priority Pathogen List for Research and Discovery of
New Antibiotics (WHO 2017). Carbapenem resistance can result from several
mechanisms including, porins coupled with ESBL production, membrane perme-
ability changes via mutations in efflux pumps or by hydrolysis of the beta-lactam
ring by dedicated carbapenemase enzymes. Carbapenemases are specific
beta-lactamases, which hydrolyses carbapenems, ertapenem, meropenem, imipe-
nem, and doripenem, the four most clinically used carbapenems. It is highly
alarming that carbapenemases, once rare, are now being reported extensively across
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the globe (Nordmann and Poirel 2014). Often, the genes encoding these car-
bapenemases are associated with other genes encoding resistance to
non-beta-lactam antibiotics on highly mobile plasmids, resulting often in MDR
bacteria and in a possible rapid transmission of broad-spectrum resistance
(Nordmann et al. 2011a). Carbapenemases belong to Ambler class A or D serine
beta-lactamases and ambler class B MBLs. The most common variants of car-
bapenemases, in carbapenemase-producing Enterobacteriaceae (CPE), include KPC
(Class A), NDM (Class B), OXA-48 (Class D), VIM (Class B), and IMP (Class B)
but several other enzymes are also present.

Risk factors for CPE infections include prior hospitalization, exposure to
broad-spectrum antibiotics, indwelling catheters, mechanical ventilation, trans-
plantation and previous colonization with CPE (Tumbarello et al. 2012; Zarkotou
et al. 2011). Severe CPE infections include pneumonia and urinary tract, blood-
stream, intra-abdominal, central venous catheter-related and surgical site infections,
which were associated with high mortality rates of approximately 40% (Tumbarello
et al. 2012; Zarkotou et al. 2011). Carbapenems resistance among E. coli is highly
concerning as these agents are often the last line of effective therapy available for
the treatment of patients with serious infections (Pitout 2012a). NDM and OXA-48
are the most common carbapenemases among E. coli worldwide (Nordmann and
Poirel 2014).

3.2 The CPE Global Epidemic

The global spread of CPE is presently one of the main public health threats
(Sherchan et al. 2015) as carbapenems comprise one of the last treatment options
for infections caused by ESBLs. Carbapenemases were originally described as a
rare phenomenon in P. aeruginosa and A. baumannii from Greece or South-East
Asia and are now widely disseminated in E. coli and K. pneumoniae (Tzouvelekis
et al. 2012). KPC, the most clinically significant carbapenemase, was initially
reported from K. pneumoniae strains isolated in the US in the early 2000s (Yigit
et al. 2001), but soon dispersed to other regions of the world (Tzouvelekis et al.
2012). These were the first steps of the global CPE epidemic, which started in K.
pneumoniae, first observed in Greece and in the USA in the early 2000s. The Greek
epidemic was related to VIM (Giakkoupi et al. 2003) whereas the US epidemic was
related to KPC. Few years after, KPC replaced VIM in Greece and also dissemi-
nated to Israel and later to Asia, Italy and South America (Tzouvelekis et al. 2012).
Several years later, the first report of NDM in India was reported (Yong et al. 2009;
Kumarasamy et al. 2010), since then, it disseminated globally to a large number of
species, including community-related pathogens such as E. coli (Nordmann et al.
2011b; Nordmann and Poirel 2014). Finally, the OXA-48-like carbapenemas
emerged, with a comparable pattern of dissemination like NDM, although its spread
in Europe was mostly associated with healthcare institutions (Nordmann and Poirel
2014). Although KPC is the most common carbapenemase, NDMs have been
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shown to be more promiscuous (Kim et al. 2013). As of June 2017, 50 states in the
USA reported the isolation of CRE arising from KPC, 30 NDM, 25 OXA-48, 12
IMP and 10 VIM (US CDC 2016a)

3.2.1 KPC-Beta-Lactamases

KPC-1 was discovered in a carbapenem-resistant K. pneumoniae isolated in NC,
USA (Yigit et al. 2001). As of August 2017, 18 different KPC variants have been
described, KPC-1/2 to KPC-19 (KPC-2 was shown to be identical to KPC-1).
Unlike previously described Class A carbapenemases (SFC, NMC/IMI and SME),
KPC is plasmid borne, which may facilitate its rapid spread among
Enterobacteriaceae (Hossain et al. 2004). KPC soon disseminated globally,
resulting in several nosocomial outbreaks reported in the USA, and several other
South American, European, Asian and Middle Eastern countries. Consequently,
KPC has become endemic in several parts of the world, such as North-Eastern
USA, Israel, Greece, China, Colombia and Puerto Rico (Nordmann et al. 2009).

KPC confers resistance to the carbapenems, cephamycins, cephalosporins and
monobactams. They are weakly inhibited by ‘classical’ beta-lactamase inhibitors
such as clavulanic acid and tazobactam. KPCs have been described in several
enterobacterial species, predominantly K. pneumoniae but also E. coli,
P. aeruginosa and Enterobacter cloacae (Tzouvelekis et al. 2012). The genes
encoding the production of KPC enzymes are located on a transferable plasmid
associated with the mobile genetic element Tn4401, which is responsible for the
effective spread among different Enterobacteriaceae (Naas et al. 2008). The plas-
mids encoding KPC enzymes are often carrying additional genes to other antibiotic
resistance agents, such as aminoglycosides, quinolone, sulfonamides, trimethoprim
and tetracyclines. Several studies reported the identification of KPC in E. coli
ST131 strains. These include reports from the United States, Italy, France, Ireland
and China, where they recently caused outbreaks (Kim et al. 2012; Johnson et al.
2015; Accogli et al. 2014; Naas et al. 2011a; Morris et al. 2011; Cai et al. 2014).
These strains emphasize the alarming scenario of pan resistance in an E. coli clone
that has already demonstrated its capacity to disseminate globally.

3.2.2 NDM-Beta-Lactamases

NDM-producing E. coli and K. pneumoniae were initially isolated from a Swedish
patient, hospitalized in New Delhi, India. The NDM gene was carried on plasmids,
which readily transferred between bacterial strains in vitro (Yong et al. 2009). As of
August 2017, 16 different NDM variants have been described, on a variety of
plasmid types, consistent with the diversity of Enterobacteriaceae species reported
to express NDM. Following this isolation, it was reported that NDM-producing
E. coli were prevalent in medical centres across all India and Pakistan
(Kumarasamy et al. 2010). NDM-producing bacteria were also reported in some
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UK patients that recently travelled to India for some medical procedures. NDM
quickly disseminated among different Enterobacteriaceae in the Indian subconti-
nent, UK and Americas (Castanheira et al. 2011a, b; Lascols et al. 2011). In some
Indian hospitals, the prevalence of E. coli NDM-1 was as high as 6% among E. coli
isolated from hospitalized and outpatients between February 2010 and July 2010 in
a hospital in Varanasi (Seema et al. 2011), 7% in a hospital in Mumbai (Deshpande
et al. 2010) and 15% in Rawalpindi, Pakistan (Perry et al. 2011). Since then,
NDM-1 positive bacteria disseminated globally, initially isolated from patients with
an epidemiological link to the Indian subcontinent and then found in other patients
in the Balkan states and the Middle East, which were considered also as secondary
reservoirs for the spread of NDMs (Nordmann et al. 2011b). NDM positive E. coli
and other Enterobacteriaceae have been isolated from a variety of clinical condi-
tions including septicemia, peritonitis, pulmonary infections, soft tissue infections,
device-associated infections and hospital and community-onset UTIs. This diver-
sification of clinical settings reflects on the wide disease spectra of these bacteria
(Nordmann et al. 2011b), which also include recovery from gut flora of patients and
travellers returning from endemic countries (Leverstein-Van Hall et al. 2010) and
from a variety of environmental samples (Walsh et al. 2011).

The NDM-1 gene has been detected on different plasmids, often on
broad-host-range plasmids such as IncA/C plasmids (Walsh et al. 2011) but also on
a IncFII plasmid (pGUE-NDM) in an E. coli ST131 isolate, isolated in France from
a patient who was living in Darjeeling (India) (Poirel et al. 2010). It was also
isolated from a patient admitted to a hospital in Chicago after hospitalization in
New Delhi, India (Peirano et al. 2011). It should be noted that in the New Delhi
E. coli ST131 strain, NDM-1 was carried by an IncF plasmid carrying the FIA
replicon (Peirano et al. 2011). Sequence analysis of pGUE-NDM indicated that the
NDM-1 gene was acquired by a plasmid resembling plasmids containing
CTX-M-15. However, there is no evidence that NDM-producing E. coli are prone
to be more virulent than other E. coli isolates. The reports that NDM genes are
present in E. coli ST131 are of high concern as E. coli ST131 is described as a very
successful strain responsible to the global dissemination of CTX-M-15. Moreover,
several reports (Zong 2013; Accogli et al. 2014) indicated that E. coli ST131 might
contain several plasmids, carrying different resistant genes and VF, at the same
time, even of the same incompatibility group (IncF). A comprehensive study, of
38,266 Enterobacteriaceae isolates from 40 different countries, reported that the
global incidence of MBL enzymes, between 2012 and 2014, was generally low
(0.5%, 163/38,266), but having high dissemination rates (85%, 34/40 countries).
However, among these MBLs, NDM-1 was the most prevalent gene in
Enterobacteriaceae (Kazmierczak et al. 2015). In the Study for Monitoring
Antimicrobial Resistance Trends (SMART), from 2008 to 2012, NDM-1 was
identified as the most prevalent variant in NDM associated infections (96.3%, 130/
135). In addition, the presence of ESBLs and NDM in the same isolate was high
(78.5%, 106/135). However, the prevalence of dual carbapenemase, in the same
isolate, was low (1/135 with VIM-1+NDM, 2/135 with OXA-181+NDM)
(Biedenbach et al. 2015).
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These findings of NDM positive E. coli, high prevalence of ESBLs+NDM and
the co-expression of two carbapenemases in the same isolate highlight the wors-
ening global threat of such bacteria.

3.2.3 OXA-48-like Beta-Lactamases

The OXA family of enzymes comprises more than 400 enzymes; OXA-48-like
enzymes (including OXA-48, OXA-162, OXA-163, OXA-181, OXA-204, and
OXA-232) represent one of the key families responsible for carbapenem resistance
in E. coli and other Enterobacteriaceae. OXA-48 confers resistance to penicillins,
weakly hydrolyses carbapenems and has nearly no activity against oxyimino–
cephalosporins (e.g. cefotaxime, ceftriaxone and ceftazidime) and the monobactams
(e.g. aztreonam) (Nordmann et al. 2011a). In some cases, the carbapenem MICs
may be only slightly elevated (Nordmann et al. 2012), therefore, detection of
OXA-48 can be challenging. This was demonstrated by the late detection of a large
outbreak in Rotterdam, the Netherlands (Dautzenberg et al. 2014). As OXA-48 is
frequently present in ESBLs producing strains, such strains are rarely susceptible to
extended-spectrum cephalosporins (Nordmann et al. 2012). Of all the carbapene-
mases, the OXA-48-like carbapenemase is spreading rapidly in many European
Countries, and is endemic in the Middle East and in Northern Africa. Considerable
dissemination has been observed in Belgium, France, the UK, Germany and the
Netherlands (Glasner et al. 2013). OXA-48 was initially reported in K. pneumoniae
isolates in Turkey in 2001 (Poirel et al. 2004), and since then in many other
Mediterranean countries (including Spain, France, Italy, Israel, Egypt, Morocco,
Lebanon and Turkey) North Africa, Europe, and in the USA. OXA-48 is often
detected in K. pneumoniae, but also in E. coli and other members of the
Enterobacteriaceae family (Poriel et al. 2012a). The OXA-48 gene is typically
located on conjugative plasmids belonging to the IncL/M incompatibility group
(recently re-classified into IncL and IncM; Carattoli et al. 2015), principally
accountable for its spreading among Enterobacteriaceae (Poirel et al. 2012b;
Carattoli et al. 2015).

OXA-48-like enzymes have been detected in several E. coli clonal groups,
including ST131 (Peirano et al. 2014; Morris et al. 2012; Dimou et al. 2012).
OXA-48-like positive E. coli ST131was reported in many countries, including
Turkey, Iran, Denmark, UK, US and many other countries indicating a possible
global dissemination. Sporadically, OXA-48 has also been found in the E. coli
chromosome (Beyrouthy et al. 2013, 2014). In both cases (plasmids and chromo-
somes), the gene is carried by Tn1999-like transposons, designated Tn1999.1–
Tn1999.4 (Beyrouthy et al. 2014; Poirel et al. 2012b; Giani et al. 2012). Of the
OXA-48 group, OXA-163 differs in its enzymatic abilities. OXA-163 has a superior
capacity to hydrolyse extended-spectrum cephalosporins and inferior capacity to
hydrolyse carbapenems compared to the other enzymes in the OXA-48 group
(Poirel et al. 2011), and consequently, it may not be recognized in phenotypic
detection. OXA-163 is often located on an IncN plasmid harbouring also multiple
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other resistance mechanisms, this is alarming, as IncN plasmids have played a
significant role in the dissemination of other problematic extended-spectrum
beta-lactamases/carbapenemases in E. coli ST131 (Adler et al. 2015). OXA-163
was reported in Cairo, Egypt and is endemic in several hospitals in Buenos Aires,
Argentina (Poirel et al. 2012a). It is possible that OXA-163 is more prevalent than
previously estimated, as its phenotypic identification is more difficult.

3.2.4 VIM-Beta-Lactamases

The VIM-beta-lactamase is the most commonly found class B carbapenemases,
which has been identified in all continents (Nordmann et al. 2011a; Vatopoulos
2008). It hydrolyses a wide variety of beta-lactams, such as penicillins, cephalos-
porins and carbapenems, but not the monobactams (i.e. aztreonam) and it is
inhibited by metal chelators. VIM is often associated with class 1 integrons that
contain various gene cassettes, often conferring resistant to various groups of other
antimicrobial agents (Poirel et al. 2007).

VIM-enzymes (there are now more than 30 derivatives) were first described in
P. aeruginosa from Verona, Italy (Lauretti et al. 1999) and then emerged in
Enterobacteriaceae as well. Since then, several hospital outbreaks caused by VIM-1
like enzymes were described from various regions in Italy (Aschbacher et al. 2008,
2011), followed by reports of endemic situation in K. pneumoniae from Greece
(which was eventually replace by KPC in Greece) (Tzouvelekis et al. 2012). VIM is
still largely found in Italy and Greece (Pitout et al. 2015). It is common in the
Balkans, in the Indian subcontinent in the late 2000s and early 2010s, and in some
areas of the Middle East (Tzouvelekis et al. 2012), including France (Lartigue et al.
2004), Spain (Oteo et al. 2015), Morocco (Barguigua et al. 2013), Egypt (Poirel et al.
2013), Algeria (Robin et al. 2010), and Tunisia (Ktari et al. 2006). VIM-1 was
reported in various species of Enterobacteriaceae, isolated from a hospital in Province
of Bolzano (Aschbacher et al. 2011, 2013). In these isolates, the VIM-1 gene was
located on various plasmids belonging to the incompatibility group IncN (Carattoli
et al. 2010) and was found to be associated with E. coli ST131 (Aschbacher et al.
2011; March et al. 2014), subtyping of 2 VIM-1 E. coli ST131 isolates identified
them as the subclone H30 (Accogli et al. 2014). VIM containing E. coli isolates were
also reported in other parts of the world including the USA (Yaffee et al. 2016).

3.2.5 IMP-Beta-Lactamases

The IMP-beta-lactamase gene was initially isolated in Japan, from a Serratia
marcescens isolate resistant to imipenem, which had a chromosomally encoded
MBL gene. This MBL was subsequently designated Imipenemase-1 (IMP-1)
metallo-beta-lactamase (Osano et al. 1994). The IMP-1 was consequently isolated
also from P. aeruginosa, K. pneumoniae, and Acinetobacter in Japan and Singapore
(Osano et al. 1994; Senda et al. 1996a, b; Koh et al. 1999). The first
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plasmid-mediated dissemination of IMP was also found in a S. marcescens isolate
in Japan in 1991 (Ito et al. 1995). A second IMP variant was isolated from
Acinetobacter in Italy, and designated IMP-2 (Cornaglia et al. 1999). IMP-2 has
84.9% amino acid homology with IMP-1 (Riccio et al. 2000), followed by
description of the isolation of IMP-3 from Shigella flexneri in Japan (Iyobe et al.
2000), IMP-4 from Hong Kong (Chu et al. 2001) and other IMP variants. IMP
enzymes are prevalent in Japan, China, and Australia (Nordmann et al. 2011a). In
Australia, IMP-4 was the most common carbapenemase (82.7%, 48/58) found in
July 2009 to March 2014, most frequent (60.4%, 29/48) in E. cloacae on a
broad-host-range conjugative plasmid, and in E. coli isolates. These findings pos-
sibly explain its spread in Sydney, Australia (Sidjabat et al. 2015a), and the cause of
a simultaneous outbreak in Melbourne, Australia (Peleg et al. 2005). In addition, an
interspecies transfer IMP-4 plasmid from E. cloacae into E. coli was reported in
Australia (Sidjabat et al. 2014). IMP-4 outbreak-like situations were also reported
due to contaminated equipment or environment (Kotsanas et al. 2013). In China, a
paediatric patient had 7 isolates of Raoultella ornithinolytica, each with a closely
related IMP-4, one of which produced both IMP-4 and KPC-2 (Zheng et al. 2015a).

Several reports described the presence of IMP in different E. coli isolates. E. coli
containing IMP were isolated in Turkey, Taiwan (Wang et al. 2015), Hong Kong
(Ho et al. 2016), Italy (Ortega et al. 2016) and several other countries. In Japan,
recently, two different IMP positive E. coli strains were isolated, belonging to
E. coli ST95 and ST4508 (Ohno et al. 2017). The emergence of IMP-4 in E. coli
ST131 constitutes another worrisome step in the spread of carbapenemases in the
world, as E. coli ST131 has already demonstrated its capacity to disseminate
globally. IMP-8 containing E. coli ST131 was initially isolated in Taiwan (Yan
et al. 2012). In this report, six IMP-8 producing isolates of E. coli were isolated, two
belonging to B1 and D phylogroups and were typed as ST359 and ST457,
respectively. The remaining four, belonged to the B2 phylogenetic group and were
farther classified as E. coli ST131. It should be noted, that these four strains were
isolated from four different non-hospitalized patients, which were admitted to the
same hospital 1–4 months before, but with no evidence for any epidemiological
link between them (Yan et al. 2012). In Australia, two IMP-4 E. coli ST131 isolates
were obtained from patients from two hospitals (Sidjabat et al. 2015b), and an IMP
E. coli ST131 subclone H30 in Shanghai, China (Zhang et al. 2015b). The emer-
gence of IMP in E. coli ST131 and its isolation also from the community is of high
concern, as antibacterial therapy of such bacteria is very limited and often restricted
only to tigecycline or polymyxins.

3.2.6 Co-expression of Carbapenemases

Carbapenems resistance among Enterobacteriaceae in general, and in E. coli in
particular, constitutes one of the major concerns among healthcare systems, mainly
due to increasing morbidity and mortality among hospitalized patients carrying
such bacteria. The increase in CPE is mostly linked to the extensive dissemination
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of acquired carbapenemases. Carbapenemase-encoding genes are often located in
mobile genetic elements, harbouring also other resistance determinants and
resulting in MDR and XDR strains. The dissemination of such genes by horizontal
gene transfer poses an alarming public health threat and a difficult challenge for
treatment. Carbapenems are considered one of the last-line treatments of enter-
obacterial infections. Co-expression of different carbapenemase genes in one isolate
possesses even a higher threat, possibly enabling faster dissemination and a greater
clinical challenge. Reports regarding co-expression of such genes have started
appearing few years after the initial description of these genes. Currently, there are
reports describing almost all possible combination of two genes of the five main
carbapenemase genes (KPC, NDM, OXA-48, VIM and IMP) in different bacteria,
including E. coli. Moreover, reports regarding co-expression of three carbapene-
mase genes have also been published. A Klebsiella oxytoca isolate co-expressing
NDM-1, IMP-4 and KPC-2 was isolated in 2013 from a urine specimen, obtained
from a 74-year-old patient, in China (Wang et al. 2017a). These reports regarding
co-expression of different carbapenemases emphasize the important role played by
mobile genetic elements in their dissemination and as a present threat to the suc-
cessful treatment of such infections. These reports highlight the critical need for
early detection and active surveillance of these resistance elements, particularly
given the opportunity of different carbapenemase genes to cross onto the same
plasmid.

The emergence of CPE including in E. coli ST131, and the co-expression of two
or three carbapenemases in a single isolate, often with other antibacterial resistant
agents, poses a worldwide concern, consequently polymyxins and tigecycline are
frequently the only effective treatment for such MDR/XDR isolates.

4 Extraintestinal Pathogenic E. coli ST131

4.1 Phylogenetic Groups

Extraintestinal pathogenic E. coli is a global human pathogen involved and fre-
quently the cause of many systemic infections including UTI, nosocomial pneu-
monia, cholecystitis, peritonitis, cellulitis, osteomyelitis, neonates meningitis, and it
is also the most common Gram-negative causative of bacteremia worldwide (Pitout
2012b). A variety of virulence factors (VFs) including invasins, toxins, adhesions,
proteases, lipopolysaccharides and capsules enables ExPEC the means to become a
successful human pathogen. However, the precise role of these VFs in ExPEC
physiology and pathogenesis has not been well defined. It appears that these
putative VFs contribute to fitness (e.g. iron uptake systems, bacteriocins, proteases
and adhesins) of ExPEC and increase the competitiveness, adaptability and the
ability to colonize the human body (Mokady et al. 2005). ExPEC include several
variants: avian pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal

Current Trends in Antimicrobial Resistance of Escherichia coli 193



meningitis-causing E. coli (NMEC) and septicemic E. coli (Kaper et al. 2004).
However, there is a considerable overlap between the groups (Ron 2006).
Phylogenetic studies indicated that intestinal E. coli and ExPEC fall into four main
phylogenetic groups, namely, A, B1, B2 and D (Herzer et al. 1990). ExPEC
belongs mainly to group B2 and, to a lesser extent to group D, while intestinal
commensal isolates tend to belong to groups A and B1.

Most of the ESBL-related E. coli infections are due to a globally disseminated,
recently emerged ExPEC clone ST131 (Banerjee and Johnson 2014), mostly cor-
responds to serogroup O25b (Rogers et al. 2011) or O16 (Johnson et al. 2014) and
to the phylogenetic group B2 (Nicolas-Chanoine et al. 2008). Among ESBL
enzymes, CTX-M-15 is the most prevalent type of CTX-M enzyme, isolated from
human clinical E. coli isolates (Pitout and Laupland 2008). ExPEC producing this
enzyme frequently belong to ST131, and to a lesser extent to ST38, ST405, ST648
or other STs (Peirano and Pitout 2010), contributing to the global emergence of
CTX-M-15 producing bacteria. There is increasing evidence that certain clonal
lineages of these species, such as E. coli ST131 have more epidemic potential than
other lineages within their species group.

E. coli ST131 was first described in 2008 (Nicolas-Chanoine et al. 2008) and
since it was isolated and reported worldwide, both in healthcare settings and in the
community. ST131 is the predominant E. coli lineage among ExPEC isolates, and is
mostly associated with ESBL production and FQ-R (Nicolas-Chanoine et al. 2014;
Rogers et al. 2011) therefore associated with limited treatment options, recurrence
and frequent clinical failure. CTX-M-15 beta-lactamase is the dominant ESBL in
ST131 but other CTX-Ms also occur in ST131, particularly CTX-M-14/14-like
variants (Nicolas-Chanoine et al. 2014). The parallel identification of CTX-M in
ST131 isolates from different countries and continents suggests repetitive acquisi-
tion vie multiple horizontal gene transfer events (Cantón et al. 2012). Accordingly,
both CTX-M-15 and CTX-M-14/14-like variants occur on conjugative plasmids,
manly IncFII type (Naseer and Sundsfjord 2011), but also can be inherited stably or
integrated into the chromosome (Rodríguez et al. 2014).

E. coli ST131 belongs mostly to subgroup 1 of phylogenetic group B2. ST131
strains are mostly of serotype O25:H4, with a specific O25 type, O25b
(Nicolas-Chanoine et al. 2008). However, E. coli ST131 isolates of O16:H5 have
been identified in several different countries (Blanc et al. 2014). Phylogenetic
studies demonstrated that the ST131 strains EC958, NA114 and JJ1886 cluster
together in a clade discrete from ST131 strain SE15 and separate from any other
E. coli phylogroups (Schembri et al. 2015). Population genetics and
next-generation-sequencing (NGS) studies of ST131 global epidemiology demon-
strated that ST131 consists of different clades: clade A, associated with fimH41,
clade B, with fimH22, and clade C, with fimH30. The diversity of fimH alleles may
represent different colonization abilities of different clades. Moreover, two different
subclasses were identified within clade C, a FQ-R strain, defined as C1/H30R
possessing the FQ-R alleles gyrA1AB and parC1aAB, and an ESBL CTX-M-15
producer strain defined as C2/H30-Rx (Petty et al. 2014; Price et al. 2013).
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4.2 Evolution of E. Coli ST131

Historically, before the 1990s, most ExPEC strains were susceptible to FQ and
cephalosporins (Pitout 2012a). Recently, the World Health Organization
(WHO) reported that FQ-R is highly prevalent globally and that in more than half of
the clinical cases FQs are ineffective (WHO 2014). Moreover, FQ-R is frequently
associated also with resistance to the cephalosporins, primarily due to production of
the ESBL enzyme CTX-M-15 (Nicolas-Chanoine et al. 2014). Consecutive
acquisition of various VFs, antimicrobial resistance genes and certain genomic
islands (GIs), starting during the 1960–1980s, played a central role in the emer-
gence of clade C, and primed the successful dissemination of both subclades C1 and
C2 in the 1990–2000s. Clade B is mostly FQ susceptible and rarely harbours
CTX-M-15 ESBL plasmids, while clade C is mostly FQ-R and the C2 subclade is
frequently associated with the presence of CTX-M-15 ESBL plasmids
(Nicolas-Chanoine et al. 2014). Several recent NGS-based studies (Stoesser et al.
2016; Ben Zakour et al. 2016) and plasmid analysis studies (Johnson et al. 2016;
Andersson and Hughes 2010) explored the origin and evolution of ST131 clade C,
characterizing more than 500 global ST131 clinical, environmental and veterinary
isolates. These studies describe a sequential evolution process, wherein, clade C
evolved from clade B, most likely during the late 1980s in North American context,
which is consistent with the widespread use and introduction of FQs and
extended-spectrum cephalosporins (Stoesser et al. 2016; Ben Zakour et al. 2016).
They identified several ST131 isolates that share both clade B and clade C char-
acteristics, which were referred to as intermediate strains named B0 (closer to clade
B) and C0 (closer to clade C). The transition of clade B to clade B0 (intermediate
clade) started with the insertion of the Flag-2 locus at the 1950s, and by acquisition
of prophages Phi 2, 3 and 4 in the 1960s to 1970s (Stoesser et al. 2016). The next
step, occurred around 1980, was the insertion of GI-pheV, GI-leuV and Phi 1 and
recombination of parC1a and of fimH30 resulting in the intermediate clade C0
(parC1a does not confer FQ resistance). It should be noted that GI-pheV carries
several VFs, including sat, the ferric aerobactin biosynthesis gene cluster
(iucABCD), its cognate ferric siderophore receptor gene iutA, and the autotrans-
porter genes agn-43. At the same time, occurred the introduction of an F2:A1
plasmid type (without CTX-M-15) into clade B0 or clade C0, resulting in clade C
(Johnson et al. 2016; Andersson and Hughes 2010), which separated into subclades
C1 and C2. The evolution of clade C to C1 and C2 occurred, at the late 1980s, in
parallel to the introduction of FQs to clinical practice and the wide use of
extended-spectrum cephalosporins following the acquisition of high-level FQ-R
mutations in parC (prC1aAB) and gyrA (GyrA1AB) (Stoesser et al. 2016; Ben
Zakour et al. 2016). An additional final step of subclades C1 and C2 evolution was
acquiring different plasmids. Subclade C1 acquired the F1:A2:B2 plasmid, while
the F2:A1:B plasmid in subclade C2 acquired antibiotic resistance cassettes con-
taining CTX-M-15, catB4, OXA-1, aac(6′)Ib-cr and tetAR through IS26-mediated
events (Johnson et al. 2016; Andersson and Hughes 2010). It should be noted that,
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in some C2 isolates, the antibiotic resistance cassettes on plasmid F2:A1:B were
lost, and in other cases, the CTX-M-15 gene integrated into the chromosome.

Despite the predominance of these two ST131 subclades C1 and C2 globally,
there are several different ST131 strains that emerged in different countries. In
Japan, CTX-M-15 is rare, ST131 subclade C1 containing a CTX-M-14 was pre-
dominant before 2005, and has been replaced by a CTX-M-27 containing subclade
C1 (Matsumura et al. 2015) and is considered to be responsible for a substantial
increase of ESBL-producing ExPEC in Japan, since 2010. An NGS-based study
(Matsumura et al. 2016) of 10 global ST131 and 43 Japanese ST131 isolates
containing CTX-M-27, CTX-M-14 or CTX-M-15 examined the emergence of this
ST131 with CTX-M-27 strain (Matsumura et al. 2016). The study demonstrated
that a diverse ST131:O75:H30 strain formed a different cluster in the C1 subclade
and was named C1-M27. C1-M27 has a unique Phi-like region (M27PP1), and was
since isolated also in Thailand, Australia, Canada and the USA.

The widespread use of antibiotics in humans, animals and agriculture, in the last
50 years, has led to a growing selective pressure on bacteria, driving them to adapt
accordingly and to develop resistance. E. coli ST131 is one of those bacteria that
has developed resistance to both FQ (due to mutations in parC and gyrA and
extended-spectrum cephalosporins (due to the production of the ESBL CTX-M-15).
The global spreading of ST131 has led to a worldwide increase in ESBL-producing
E. coli in both hospital and community settings. The success of ST131 clade C,
partly driven by its sequential acquisition of VFs, FQ-R and ESBL production,
probably resulted in a fitter ExPEC clone which better survives in its competitive
environment. The accumulative studies regarding E. coli ST131 isolates and in
particular the clade C indicate that they have all the important characteristics that
define a high-risk clone. These include global distribution, effective transmission
among hosts, ability to colonize and persist in its host, enhanced fitness and
pathogenicity, various antimicrobial resistance including FQs and
extended-spectrum cephalosporins and the ability to cause severe and recurrent
infections. The likelihood of ST131 clade C to acquire additional antibiotic resis-
tance genes including carbapenemases is, clearly, a global concern.

5 Colistin-Resistant E. coli

5.1 Introduction to Polymyxins

The polymyxins are a group of cyclic non-ribosomal cationic polypeptide antibiotics
discovered in the 1960s, which soon after their discovery most of the agents dis-
played high toxicity to mammalian kidney and could not be used safely in humans.
Exceptions were polymyxin E (colistin), and polymyxin B (PMB), which were
considered to be safer and consequently brought to the market to fight against
Pseudomonas spp. and other Gram-negative infections. However, following their
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initial use in clinical practice, reports regarding their nephrotoxicity were published
and they were ultimately shelved in favour of new and safer agents as systemic
agents. For the treatment of human infections, they were restricted to ophthalmic and
topical use; however, they have been used extensively for decades in veterinary
medicine. The recent worldwide increase in Gram-negative MDR, XDR and PDR
bacteria, has forced clinicians to reintroduce the systemic use of polymyxins, mostly
colistin in its inactive prodrug form, colistin methane sulfonate (CMS), as a last-resort
drug for infections with such bacteria (Levin et al. 1999). In Gram-negative bacteria,
until 2015, resistance to polymyxin was attributed to chromosomal modification of
the outer membrane lipopolysaccharide (LPS) biosynthesis pathway, or in some
cases, to complete removal of the LPS part of the outer membrane (Trent 2004;
Pelletier et al. 2013; Moffatt et al. 2010). These types of polymyxin resistance rate are
still low in most countries but are increasing in some others such as Italy and Greece
(ECDC 2015). However, few years after the reintroduction of polymyxins into
systemic clinical practice, the emergence of colistin resistant (Col-R) strains was
reported, predominantly in CRE isolates (Antoniadou et al. 2007; Kontopidou et al.
2011) and based on the known resistance mechanisms, was considered as chromo-
somally mediated and therefore not transmissible (Ah et al. 2004).

5.2 Plasmid-Mediated Colistin Resistance

At the end of 2015, the first report of plasmid-mediated colistin resistance
(MCR) strains of Enterobacteriaceae was published; the resistance was attributed to
a newly discovered MCR-1 gene (Liu et al. 2016). The MCR-1 enzyme belongs to
the phosphoethanolamine transferase enzyme family and was initially described in
China during a routine surveillance of food animals in 21% of healthy swine at
slaughter, 15% of marketed pork and chicken meat, and in one case of a hospi-
talized patient (Liu et al. 2016). It is believed that this alarming report may have
worsened the resistance situation at the global scale and indeed, consequently,
reports from all continents have described the isolation of MCR-1-positive strains
(Skov and Monnet 2016). Since the first report, MCR-1 has been detected in
Enterobacteriaceae isolates from colonized and infected humans, from farm and
wild animals, from food (meat and vegetables), from environmental samples and
from aquatic environments. It should be noted that the emergence of the MCR
enzymes is not considered to be recent, as MCR was recovered from chickens and
veal calves samples traced back to the 1980s in China and in 2005 in France,
respectively (Shen et al. 2016; Haenni et al. 2016). Like many other
plasmid-mediated resistance mechanisms, MCR-1 positive strains can disseminate
globally with their host, as shown in the identification of MCR-1 positive E. coli
and K. pneumoniae in pilgrims attending the annual Hajj (the Muslim pilgrimage to
Mecca) (Leangapichart et al. 2016), and in the case of an MCR-1 E. coli positive
traveller returning home from India (Bernasconi et al. 2016). The resistance con-
ferred by the MCR enzymes is generally low to moderate (from 4 to 16 mg/L).
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Additionally, some cases of MCR-1 positive E. coli isolates were classified as
susceptible according to the EUCAST breakpoint of 2 mg/L, as their resistance
levels to polymyxins range from 0.25 to 2 mg/L, which also makes it difficult to
diagnose (Kuo et al. 2016; Lentz et al. 2016). To date, five variants of MCR gene
(MCR-1 to MCR-5) have been reported from various bacteria. A most important
concern with MCR genes is their location on transferable plasmids such as
pHNSHP45 (MCR-1 gene, IncI2; 64,105 bp) and pKP37-BE (MCR-2 gene, IncX4;
35,104 bp), which are able to propagate by conjugation among E. coli strains (Liu
et al. 2016; Xavier et al. 2016). The majority of plasmids carrying MCR-1 gene
belong to the IncI2, IncHI2 and IncX4 incompatibility groups, while others belong
to the IncF, IncN, IncP, IncQ and IncX groups. Presently, there are several dozen
studies describing the isolation of MCR positive E. coli strains from human and
non-human samples; however, the rates have been considerably higher in livestock
than in humans. In some cases, such as in Tunisian chicken, the rates were as high
as 76% in E. coli isolates (Skov and Monnet 2016). This may point that currently,
animals are the main reservoir with spillover to humans.

Since the first description of MCR-1 gene at the end of 2015, MCR strains were
isolated from infected patients and asymptomatic human carriers including global
travellers, from various types of meat and vegetables, from various food animals, and
from environment and river water (Skov and Monnet 2016). This gene had spread to
more than 35 countries, covering all continents (Giamarellou 2016) and was isolated
primarily from E. coli and to a lesser extent from Salmonella, K. pneumoniae and
Shigella sonnei. It is carried on several different plasmids (Skov and Monnet 2016)
and it is transferable at a very high frequency of 10−1 to 10−3 cells per recipient (Liu
et al. 2016). Until today (beginning of 2018), many of the E. coli strains carrying the
MCR gene are still susceptible to cephalosporins and carbapenems (Nordmann and
Poirel 2016). Dissemination of plasmids harbouring the MCR gene by horizontal
gene transfer possesses a major worldwide concern, considering that polymyxins are
often the last-resort antibiotics for treating infections due to CPE and other
Gram-negative MDR infections. Moreover, the spread of such plasmids into a highly
epidemical E. coli strain, such as E. coli ST131 or to CPE, and in particular to a
carbapenemase-producing E. coli ST131, resulting in an XDR isolate which
approaches true pan-drug resistance is truly worrying. A greater threat would be the
co-location of the MCR gene along with an ESBL and carbapenemase genes on a
single plasmid in an epidemic E. coli or K. pneumoniae strains. Reports regarding the
co-occurrence of MCR and ESBL or carbapenemases in the same isolate are still
limited but given the limited number of years since the discovery of the MCR gene, it
is most likely that the number of such reports will only increase over time.

5.3 Co-occurrence of MCR, ESBL and CPE

Recently, several reports regarding the co-occurrence of MCR and ESBL in E. coli
were published. Four E. coli strains harbouring both MCR-1 and different CTX-M
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genes were isolated from hospitals sewage water in Beijing, China (Jin et al. 2018).
These isolates belonged to different STs; including ST10 harbouring CTX-M-14,
ST349 harbouring CTX-M-14, ST2016 harbouring CTX-M-15 and one untyped ST
harbouring CTX-M-3-like genes. Similarly, six colistin resistant ESBL-producing
E. coli isolates were isolated from cattle in Spain (Hernandez et al. 2017), five
carried MCR-1 and one isolate carried both MCR-1 and MCR-3. Whole genome
sequencing (WGS) of this isolate, designated ZTA15/01169-1EB1, indicated pro-
file of serotype O9:H10, ST533 and that it contains a CTX-M-55 ESBL resistance
gene among other resistance genes. The presence of plasmids was evaluated,
revealing IncHI2 and IncI1 replicons. Both MCR-1 and MCR-3 genes were plas-
midic, but colistin resistance was not conjugatable in standard conditions. The
analysis indicated the possible co-location of both MCR-1 and MCR-3 on the same
plasmid in this isolate (Hernandez et al. 2017). In the USA, an ESBL E. coli isolate,
designated E. coliMRSN 388634, which harboured the MCR-1 gene and the ESBL
CTX-M-55 gene on the same plasmid was isolated (McGann et al. 2016). In
addition, co-location of the MCR-1 gene and the CTX-M-1 ESBL gene on a single
IncHI2 type plasmid was described recently (Haenni et al. 2016). Many other
reports, regarding the co-occurrence of the MCR gene with different CTX-M genes,
in different E. coli ST isolates, are available in the database, indicating that the
MCR gene has disseminated globally in different ESBL-producing E. coli strains.

Reports describing the occurrence of MCR genes in E. coli ST131 are still
limited. The first report appeared few months after the first description of the
MCR-1 gene. In this study, the MCR-1 gene was detected in five E. coli isolates
obtained from chicken meat and in one E. coli isolate from a human bloodstream
infection (Hasman et al. 2015). One of the chicken meat MCR-1 positive E. coli
isolates belonged to ST131. Following this report, several other reports described
the isolation of MCR positive E. coli ST131 in different countries. These strains
were isolated from poultry in the United Arab Emirates and Germany (Sonnevend
et al. 2016; Ewers et al. 2016) and from human clinical isolates in Taiwan, Spain,
Denmark and China (Kuo et al. 2016; de la Tabla et al. 2017; Roer et al. 2017;
Wang et al. 2017b). The reports regarding isolation of ST131 MCR-producing
E. coli are of special concern since ST131 isolates have spread epidemically during
the last decade and may consequently speed up the dissemination of MCR in
hospital and community settings, as previously demonstrated for ESBLs and
carbapenemases.

Few months after the first description of the MCR gene in China, reports
regarding the co-occurrence of the MCR gene in different CPE isolates, predomi-
nantly E. coli, were published. The coexistence of MCR and one of the following
carbapenemase genes, OXA-48, VIM-1, KPC-2, NDM-1 or NDM-5 has been
detected in various clinical human samples, from different countries, mostly
resulting in limited therapeutic options. In addition, the coexistence of MCR and
NDM-5 or OXA-181 was detected in animal samples. It should be noted that in all
the analysed cases, the MCR gene and the carbapenemase gene were expressed
from two different plasmids within the isolate. Furthermore, the isolation of E. coli
strains, co-expressing the MCR gene, an ESBL gene and NDM-1, NDM-5 or
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NDM-9 gene were reported, and are highly concerning. In one report, an E. coli
ST167 isolate recovered from a chicken wing sample purchased at a supermarket in
Guangzhou, China, was resistant to all antimicrobial drugs tested except tigecycline
and doxycycline (Yao et al. 2016). The recovery of this strain, designated THSJ02,
coproducing MCR-1, NDM-9, CTX-M-65 and many other resistant determinants,
from retail meat was suppressing and worrying, as such strains might colonize the
human intestinal tract and transfer resistance plasmids to other Gram-negative
pathogens, resulting in untreatable infections. A similar case was described in the
isolation of two E. coli XDR isolates (STs: ST648 and ST156) from a single
Muscovy duck, in a duck farm in Guangdong Province, China (Yang et al. 2016).
Both isolates co-produced MCR-1, NDM-5 and CTX-M-55 among other resistant
determinants; one was susceptible to tigecycline, aztreonam and amikacin and the
second only to tigecycline (Yang et al. 2016). These reports describing the isolation
of such multiresistant E. coli strains in fowls might raise a potential threat to human
health via food chain transmission.

Although presently still rare, few reports have described the detection of such
isolates from clinical human samples. The first report describes the isolation of an
XDR K. pneumoniae isolate, from peritoneal fluid of a patient hospitalized in a
tertiary hospital in Suzho, China, that co-expressed MCR-1, NDM-5 and CTX-M-1
on two different plasmids (Du et al. 2016). Following this report, an XDR E. coli
ST19 belonging to serotype O100:H25 (which is related to human enteropathogenic
E. coli (EPEC) strains) was isolated from a human faecal sample in Cumana,
Venezuela (Delgado-Blas et al. 2016). This isolate, designated BB1290,
co-expressed MCR-1, NDM-1 and CTX-M-15 among an array of other resistant
genes conferring resistance to colistin, carbapenems, ESBL and beta-lactams,
fluoroquinolones, sulphonamides, aminoglycosides, macrolides, phenicols, tetra-
cycline and trimethoprim, in line with its XDR profile. Plasmid analysis detected
the presence of the Incompatibility replicons IncHI2, IncHI2A, ColBS512, IncI2,
and IncFII (Delgado-Blas et al. 2016). Two additional reports described the iso-
lation of three E. coli strains, co-expressing MCR-1, NDM and ESBL genes
resulting in an XDR E. coli isolates (Wang et al. 2017b; Zheng et al. 2017). The
first report describes two E. coli strains isolated in China, co-expressing MCR-1,
NDM-1 and different CTX-M genes. One strain, belonging to ST90, was isolated
from an intra-abdominal fluid sample of an inpatient from Zhejiang, harbours the
CTX-M-55 gene. The second strain, belonging to ST744, was isolated from a faecal
sample of a healthy volunteer from Guangdong, and harbours both CTX-M-14 and
CTX-M15 genes (Wang et al. 2017b). The second report describes an XDR E. coli
ST206 strain susceptible only to tigecycline, which was isolated from a faecal
sample of a hospitalized patient in Hangzhou, China, co-expressing MCR-1,
NDM-5, and CTX-M-14 among many other resistant determinants (Zheng et al.
2017). However, in all the reported cases, analysing the co-expression of MCR and
carbapenemases, these resistant genes were localized on two different plasmids and
none of them in an E. coli ST131 strain. Analysis of the ability of the
MCR-1-containing plasmid, pHNSHP45 (the first described plasmid harbouring
MCR-1; Liu et al. 2016) to conjugate to an E. coli C600 strain indicated that it has
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high in vitro transfer rate (10−1 to 10−3) (Liu et al. 2016). Moreover, pHNSHP45
was successfully transformed into different epidemic Enterobacteriaceae strains,
such as E. coli ST131 and K. pneumoniae ST11, as well as into P. aeruginosa,
suggesting the possible spreads of MCR-1 into key epidemic human pathogens.
Furthermore, it was also demonstrated that pHNSHP45 could be successfully
transformed and was stable, in a KPC-2 positive E. coli ST131 (Liu et al. 2016).
The co-expression of MCR, ESBL and NDM in one isolate, resulting in an XDR
E. coli strain approaching a pan-drug-resistant phenotype, is alarming and worrying
as it could represent a successful step towards true pan-resistance in
Enterobacteriaceae. Recently, two studies have described two different isolates of
truly pan-drug-resistant K. pneumoniae. Both were isolated from human samples,
one in the United Arab Emirates (Zowawi et al. 2015) and in Reno, Nevada, USA
(Chen et al. 2017) and were resistant to all available antimicrobial drugs, both
carried carbapenemase (OXA-181 and NDM, respectively) but were negative to
MCR-1. In the United Arab Emirates isolate, the colistin resistance was mediated
by insertional inactivation of the chromosomal mgrB gene by an ISEcp1 transposon
carrying OXA-181, conferring carbapenem resistance. This insertion disrupted and
inactivated the mgrB gene (a phoPQ negative regulator) resulting in over expres-
sion of the phoPQ signalling system and of the pmrHFIJKLM operon which
controls LPS modification, the target of polymyxin antibiotics (Groisman 2001).
Fortunately, in both cases, no other such isolates were identified through appro-
priate infection control contact precautions and surveillances.

6 Concluding Remarks and Future Perspectives

Over the past 20 years, increasing antibiotic resistance among isolates of
Enterobacteriaceae has become a main and global public health concern. In recent
estimates of global antibiotic resistance, E. coli was named as one of the biggest
concerns associated with human and animal health, farming and food industry and
environment. The spread and emergence of antibiotic resistance in E. coli and
specifically the recent resistant trends, their origin and epidemiology were discussed
in this chapter. As described, intestinal pathogenic E. coli and ExPEC emergence
and disseminated globally also as MDR clones. Among the ExPEC strains, E. coli
ST131, first described in 2008, has evolved and became one of the most epi-
demiologically prominent strains which have successfully acquired VFs, an array of
resistant determinants including ESBL, colonization and in host persistent abilities,
enhanced fitness and pathogenicity, environmental adaptation skills and dissemi-
nation capabilities. Not long after the emergence of KPC, NDM, OXA-48, VIM,
and IMP carbapenemases, and the discovery of the MCR gene, they have all been
isolated from E. coli ST131 strains, resulting in more resistant strains, often as XDR
isolates. Recently, non-ST131 isolates co-expressing different ESBLs, carbapene-
mases and the MCR gene have evolved. Unfortunately, it seems that the emergence
of an E. coli ST131 strain co-expressing ESBL, MCR and a carbapenemase gene on
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different plasmid, or in an even worse scenario on the same plasmid, is probably
only a matter of time and opportunity. It is now the time to coordinate global
programs for surveillance of such resistant markers producing bacteria, including
proper infection control guidelines which are needed to be implemented worldwide.
In addition, special attention should be pointed towards development and discovery
of new antimicrobial drugs which could fight with MDR, XDR and PDR bacteria.
One such effort was the launched of the ‘bad bugs need drugs’ campaign, by the
Infectious Disease Society of America to promote the development of new
antibiotics by 2020 (Boucher et al. 2009).

The persistent evolution of resistant determinants and their successful spread
among bacteria, resulting in the loss of antibiotic effectiveness, is challenging both
for clinical practice and public and animal health and therefore requires a global
action. Consequently, the ‘One Health’ concept published by the US CDC (2016b)
recognizes that the health of humans is connected to the health of animals and the
environment. It is now recognized that understanding the significant role of the
involvement and contribution of each of these three components is important in
confronting global antimicrobial resistance.
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Abstract Escherichia coli has a complex and versatile nature and continuously
evolves from non-virulent isolates to highly pathogenic strains causing severe
diseases and outbreaks. Broadly protective vaccines against pathogenic E. coli are
not available and the rising in both, multi-drug resistant and hypervirulent isolates,
raise concern for healthcare and require continuous efforts in epidemiologic
surveillance and disease monitoring. The evolving knowledge on E. coli patho-
genesis mechanisms and on the mediated immune response following infection or
vaccination, together with advances in the “omics” technologies, is opening new
perspectives toward the design and development of effective and innovative E. coli
vaccines.
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1 Introduction

E. coli strains are classified into “pathotypes” (Kaper et al. 2004) and can be
subtyped using a variety of criteria, including serotype, pulsotype, phage type, or
biotype (Robins-Browne et al. 2016; Micenkova et al. 2016). E. coli can also be
classified serologically on the basis of the O somatic antigen (Fratamico et al.
2016), K capsular polysaccharide surface antigen (Whitfield 2006; Kaczmarek et al.
2014), and H flagellar antigen (Geue et al. 2014; Chui et al. 2015). At the popu-
lation level, E. coli can be phylogenetically assigned to five main groups: A, B1,
B2, D, and E. Even if commensals mostly belong to the phylogroup A and B1, not
all pathotypes group together, suggesting a disparate nature of pathogenic species
(Leimbach et al. 2013).

The pathotypes of E. coli that are associated with intestinal disease are known
collectively as intestinal pathogenic E. coli (IPEC) or diarrheagenic E. coli (DEC),
while E. coli causing disease in tissues other than the intestinal tract are known
collectively as extraintestinal pathogenic E. coli (ExPEC). ExPEC resides asymp-
tomatically in the human intestinal tract of *20% of healthy individuals, sharing
large genomic regions with nonpathogenic strains. In contrast to the facultative
ExPEC pathogens which belong to the normal gut flora where they live as com-
mensals, intestinal pathogenic E. coli (InPEC) are obligate pathogens epidemio-
logically and phylogenetically distinct from ExPEC and commensals.

Although all the classification schemes developed so far provide important
information on the nature of the epidemiologically relevant strains, the whole
genome analysis more accurately defines the differences in gene content and allelic
variations among the different isolates allowing a more in-depth understanding of
strain evolution and spreading.

The E. coli species undergo rapid genetic changes, referred to as microevolution,
providing new traits, favoring the fitness and the adaptation to environmental
changes (Brzuszkiewicz et al. 2009). Microevolutionary divergence is a common
phenomenon in E. coli, as demonstrated by genomic studies on E. coli diversity
(Moriel et al. 2012; Lo et al. 2015). Moreover, novel virulent isolates possessing
hybrid features of different pathotypes are continuously causing emergent outbreaks
worldwide. The 2011 outbreak in Germany was determined by an EAEC strain,
which has acquired several mobile genetic elements including the phage-mediated
Shiga Toxin Stx2a (Frank et al. 2011), opening new views on the designation of
pathotypes (Brzuszkiewicz et al. 2011; Rasko et al. 2011). In addition, a growing
number of studies are linking foodborne E. coliwith uropathogenic strains. Thus, the
term foodborne urinary tract infections (FUTIs) has been adopted to describe urinary
tract infections (UTIs) with probable foodborne origins (Nordstrom et al. 2013).

E. coli is also rapidly evolving as multidrug-resistant bacterium, exacerbating
the public health problems in the era of decline in antimicrobial drug discovery. The
dangerousness of the prevalence of UPEC isolates resides in their resistance to the
first-line oral antibiotic agents such as trimethoprim–sulfamethoxazole, ampicillin,
and fluoroquinolones. In addition, the most common sources of infections consist of
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fluoroquinolone-resistant strains colonizing the rectum and the urinary tract. In the
recent years, the ST clonal group known as ST131, a virulent and epidemic
antibiotic-resistant E. coli, caused severe hospital outbreaks with a strong potential
for wide dissemination (Nicolas-Chanoine et al. 2014; Mathers et al. 2015). The
increased extended-spectrum b-lactamase (ESBL)-producing E. coli by 300% is
responsible for the growing burden and healthcare-related costs due to ExPEC and
further highlights the urgent need for effective interventions (Blaak et al. 2014;
Franz et al. 2015).

Today, the identification and tracking of multidrug-resistant microorganisms in
hospitals and communities can be performed very rapidly by whole genome
sequencing (Punina et al. 2015). The emerging and re-emerging infections and the
spread of antibiotic resistance strains render the need for an effective vaccine able to
prevent E. coli infection and disease a public health priority. Vaccination could
represent a measure against antibiotic resistance spread by reducing the infection
rate and as consequence, antimicrobial use (Lipsitch and Siber 2016).

1.1 ExPEC: Urinary Tract Infection, Neonatal Meningitis,
and Sepsis

Extraintestinal pathogenic E. coli strains (ExPEC) include uropathogenic E. coli
(UPEC), neonatal meningitis-associated E. coli (NMEC), septicemia-associated
E. coli (SePEC), and avian pathogenic E. coli (APEC). UPEC infections account for
>85% of cases of acute cystitis and pyelonephritis, >60% of recurrent cystitis.
Infections that are not resolved with antibiotic prophylaxis could evolve in
pyelonephritis, sepsis, or death. In the healthcare setting, catheter-associated UTIs
(CAUTIs) represent the second most common cause of all nosocomial infections
(1 million catheter-associated UTIs/year in the U.S.). UTIs are also a source of
substantial morbidity in children under neonatal intensive care, where the risk of
breakthrough UTIs (BUTIs) could occur during antibiotic treatments (Hidas et al.
2015; Lloyd et al. 2016).

E. coli is a leading cause of bacteremia worldwide (Laupland and Church 2014).
The overall annual incidence of E. coli bacteremia in adults markedly increases
with age, reaching 452 cases/100,000 person-years in individuals aged � 85 years.
Case fatality rates for bacteremia are between 13 and 19% but may be up to 60% in
elderly persons with nosocomial infections (Roubaud Baudron et al. 2014) and
neurological sequelae occur in 30–50% of cases (Logue et al. 2012). In addition,
spread of E. coli bacteremia both in USA and in Europe is accompanied by a 30%
annual increase in third-generation cephalosporin-resistant isolates (Carl et al. 2014;
Basu 2015). Thus, E. coli bacteremia is a costly, potentially lethal, and increasingly
frequent problem exacerbated by societal aging and increasing prevalence of
antibiotic-resistant strains.
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1.2 Intestinal E. coli Infections

The major intestinal pathotypes include enterotoxigenic E. coli (ETEC), enter-
opathogenic E. coli (EPEC), Shiga toxin-producing E. coli (STEC), enterohemor-
rhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli
(EAEC), diffusely adherent E. coli (DAEC), and adherent-invasive E. coli (AIEC).

ETEC produces both heat-labile (LT) and heat-stable (ST) enterotoxins and is the
most important cause of watery diarrhea, with abdominal pains and vomiting, both in
developing countries and in travelers endemic regions. ETEC is responsible for 280
million diarrheal episodes and more than 400 thousand death annually. In 2013, the
World Health Organization (WHO) Child Health Epidemiology Reference Group
estimated 42,000 (95% CI, 20,000–76,000) ETEC-associated deaths of children
under five years of age (Lanata et al. 2013). Overall, ETEC causes approximately 10
million episodes of travelers’ diarrhea each year, through Africa, Asia, and Latin
America, including military personnel deployed to these areas. In addition,
ETEC-associated travelers’ diarrhea may go on to develop reactive arthritis, irritable
bowel, and Guillain–Barré syndromes (Giddings et al. 2016).

Other intestinal E. coli pathotypes also contribute to diarrheal disease but can
differ in terms of detection, diagnosis, epidemiology, public health, pathogenesis,
and human disease. EPEC mainly affects small intestine of infant, causing diarrhea
associated with fever, nausea, and vomiting, spreading an increased antibiotic-
resistant strains in both developing and developed countries. EHEC affects large
intestine causing severe abdominal pain, watery diarrhea followed by bloody diar-
rhea leading to hemolytic uremic syndrome. EIEC produces shigella-like diarrhea in
large intestine and determines epithelial cells injury and tissue invasion. STEC is
associated with a disease spectrum ranging from diarrhea and hemorrhagic colitis
(HC) to the potentially fatal hemolytic uremic syndrome (HUS) and thrombotic
thrombocytopenic purpura (TTP). EAEC, which affects small intestine, is respon-
sible for endemic diarrhea of infants in both industrialized and developing countries.

2 Vaccines

Over the last two centuries, vaccination has been the most effective measure to save
lives and improve public health. Conventional vaccinology, mainly based on the
Pasteur’s principles of inactivation of the disease agents and generation of killed or
live attenuated vaccines, has experienced a deep renaissance, thanks to the
understanding of virulence and immunity mechanisms and to the advent of new
technologies of genetic engineering and of genomic sequencing and bioinformatics.
E. coli vaccines proposed today are based on live attenuated strains rationally
designed to be safe, with deletions in genes important for virulence and with
improved immunogenicity, overexpressing selected antigens, or on whole inacti-
vated strains and/or on new promising vaccine antigens discovered by proteomic
and genomic approaches (Fig. 1).
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2.1 Vaccines Against Extraintestinal Pathotypes

2.1.1 Conventional Vaccinology Against ExPEC

Conventional strategies applied to the development of an effective vaccine against
ExPEC infections have been unsuccessful so far (Uehling and Wolf 1969; Kaijser
et al. 1983a, b). In the 1990s, traditional vaccine strategies were based on
single-purified virulence factors such as Hemolysin (O’Hanley et al. 1991) or on the
O-specific polysaccharide (OPS) chain of the lipopolysaccharide (named
O-antigen), conjugated to either Pseudomonas aeruginosa endotoxin A (TA) or
cholera toxin (CT) as carrier proteins (Cryz et al. 1991; Cross 1994). Although the
prevalence of capsular polysaccharide (K-antigen) and O-antigen is different among
the different pathotypes, there is an association between K (K1, K5, 30 and 92) and
O (O1, 2, 4, 6, 7, 8, 16, 16/72, 18, 25, 50 and 75) antigenic groups and uro-
pathogenic strains (Brumbaugh and Mobley 2012). However, because of the high
antigenic heterogeneity of the surface polysaccharides, the design of a

Fig. 1 Different strategies to vaccine discovery and development
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polysaccharide vaccine able to prevent ExPEC infections has been extremely
challenging (Russo and Johnson 2006).

An O18-polysaccharide conjugated to either cholera toxin or to P. aeruginosa
exoprotein A (EPA) was shown to be safe and able to induce antibodies with
opsonophagocytic killing activity (OPK) in human volunteers. IgG purified from
immunized individuals were protective in mice in an E. coli 018 challenge sepsis
model (Cryz et al. 1991). When a 12-valent vaccine, based on O-antigen based on
12 serogroups of E. coli (O1, O2, O4, O6–O8, O12, O15, O16, O18, O25, O75)
conjugated to EPA, was tested in a clinical trial, the functional immunoresponse
induced by each O-antigen was different, underlying the difficulties of development
of a cross-protective vaccine (Cross et al. 1994).

Vaccines based on whole or lysed fractions of inactivated E. coli have been
evaluated in human clinical trials (Fig. 2) and have been so far the most effective in
inducing some degree of protection in subjects undergoing recurrent urinary tract
infections. The sublingual vaccine Uromune, an inactivated whole preparation of
E. coli, Klebsiella pneumoniae, Proteus vulgaris, and Enterococcus faecalis,
evaluated as prophylactic treatment in a multicenter retrospective observational
study, demonstrated a certain degree of clinical benefit in terms of reduced recur-
rence rate in women with a history of recurrent UTI (Lorenzo-Gomez et al. 2013).
The Solco Urovac vaccine, a vaginal suppository polymicrobial vaccine consisting
of 10 inactivated uropathogenic bacteria, including 6 E. coli serotypes, Proteus
mirabilis, Morganella morganii, K. pneumoniae, and E. faecalis strains, showed a
minimal efficacy in Phase 1 and two Phase 2 trials in women suffering of recurrent
UTIs (Uehling et al. 2001, 2003; Bauer et al. 2005). However, in two additional
clinical studies, the vaginal mucosal vaccine given for a 14-week period increased
the time to re-infection in UTI susceptible women, representing a valuable
alternative to the antibiotic-based prophylactic regimens (Uehling et al. 2003;
Hopkins et al. 2007). A post-marketing assessment further demonstrated the
significant reduction of Solco-Urovac on recurrent UTIs when administered as
standalone or in conjunction with standard antibacterial medications (Kochiashvili
et al. 2014).

Human trials with a vaccine based on E. coli Extract (ECE) started in the 1980s
(Frey et al. 1986; Tammen 1990; Magasi et al. 1994), and efficacy and safety of
E. coli extract (ECE; Uro-Vaxom) were assessed in larger clinical trials a few years
later (Bauer et al. 2005; Kim et al. 2010) leading to the recommendation of
Uro-Vaxom for prophylactic treatment of patients with recurrent urinary tract
infections. Additional studies, based on oral tablet, OM-89/Uro-Vaxom vaccine,
demonstrated modest protection in women (Bauer et al. 2002). However, in a more
recent trial on 451 female subjects, the lyophilized lysate of 18 E. coli strains,
OM-89/Uro-Vaxom, manufactured using a modified lytic process, based on alka-
line chemical lysis and autolysis, failed to show a preventive effect on recurrent
uncomplicated UTIs (Wagenlehner et al. 2015).

Among the variety of strategies to develop a vaccine targeting ExPEC, those
based on wild-type or genetically engineered inactivated uropathogens combination
also resulted in weak success (Schmidhammer et al. 2002). Unfortunately, although
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promising in preclinical studies, most of the vaccines based on these approaches
failed to provide protection in clinical trials.

Regarding the use of single antigens, the most relevant that has been explored
for its vaccine potential over the past 17 years is the Type 1 fimbrial adhesin FimH,
which mediates UPEC adherence to bladder epithelial cells. The parenteral FimCH
vaccine, composed of the FimH adhesin, the minor component of the Type 1 pili, in
complex with its chaperone FimC, reduced bladder colonization in a mouse model,
and induced protection from bladder infection and from inflammatory response in a
monkey’s model when used in combination with MF59 as systemic adjuvant
(Langermann et al. 2000; Langermann and Ballou 2001). The data from the FimCH
Phase II clinical trials have not been published yet and the level of efficacy of the
FimCH vaccine is still unknown.

2.1.2 Emerging Approaches for Vaccines Against ExPEC

Chemically conjugated E. coli O-antigen vaccines are safe and immunogenic in
humans; however, as discussed previously, production of multiple O-conjugates has
been technically difficult. Very recently, an innovative technology, based on bio-
conjugation, a process of in vivo synthesis, and conjugation of polysaccharide
structures to carrier proteins in engineered bacterial cells, has been developed and
shown to be a valuable approach for the production of multivalent conjugated
vaccines. In the case of the ExPEC vaccine, the protein glycosylation machinery of

Fig. 2 Vaccines against Extraintestinal E.coli in clinical and preclinical studies
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E. coli has been used to produce a conjugate vaccine based on a genetically
detoxified form of P. aeruginosa exotoxin A (EPA) linked to the O1, O2, O6, and
O25 E. coli serotype surface polysaccharide antigens. The immunogenicity and
safety of the 4-valent “O” antigen bioconjugate E. coli vaccine (ExPEC-4V) have
been evaluated in a phase 1b trial on healthy adult women with a history of
recurrent UTIs. The vaccine was well tolerated and able to elicit functional antibody
responses against all vaccine serotypes (Huttner et al. 2017). Phase II clinical trials
are ongoing.

With the advent of the “omics” era, including genomic, proteomic, and tran-
scriptomic, many new potential antigens have been identified and their protective
properties tested in a variety of animal models (Fig. 2). UPEC strains survive in
iron-limited conditions by upregulating the expression of iron acquisition systems.
In 2010, putative UPEC-specific vaccine targets antigens involved in iron acqui-
sition were identified: FyuA, IutA, ChuA, Hma, IhaA, IreA, and IroN (Durant et al.
2007; Alteri et al. 2009; Wieser et al. 2010; He et al. 2010). The newly identified
antigens elicited a protective systemic and mucosal immune response in mice
immunized intranasally being able to significantly reduce bladder and/or kidneys
colonization (Alteri et al. 2009). These antigens have an important role in patho-
genesis acting as siderophore receptors and meet all criteria for an antigen to be a
potential vaccine candidate, including surface accessibility, recognition by the host
immune system, in vitro expression in bacteria grown in human urine or in
experimental conditions mimicking the urinary tract or the bladder environment,
and in vivo expression in challenged mice and in women with UTI infections
(Sivick and Mobley 2009; Vigil et al. 2011). Vaxign, a web-based vaccine design
program, which contains prediction of vaccine targets for >70 genomes, has been
used to predict new UPEC vaccine candidates based on the reverse vaccinology
approach, successfully applied to the discovery of a new MenB vaccine (Pizza et al.
2000; Rappuoli 2001a, b). Vaxign predicts antigens on the basis of their subcellular
localization, the presence of transmembrane helices, adhesin probability, low
conservation to human and/or mouse proteins, the absence in genome(s) of non-
pathogenic strain(s), and epitope binding to MHC class I and class II molecules (He
et al. 2010). The selection criteria applied by H. Mobley’s group in identifying the
most promising candidates have been pivotal to reduce the number of potential
vaccine antigens to be tested and allowed the selection of only six vaccine candi-
dates for a single uropathogenic strain (Mobley and Alteri 2015). This approach
highlights the importance of the basic knowledge in the virulence mechanisms as
antibodies raised by the selected antigens are expected to interfere with the most
critical steps of E. coli virulence and pathogenesis.

In 2010, a number of potential vaccine candidates against ExPEC were identified
using the so-called “subtractive reverse vaccinology” approach, based on the
genome comparison of three ExPEC strains (CFT073, 536, and IHE3034 to
MG1655, DH10B, and W3110 nonpathogenic E. coli strains). By this approach,
230 potential antigens were identified and tested in a mouse model of sepsis, and
nine of them were found to be protective (Moriel et al. 2010). Two of the newly
identified antigens, ECOK1_0290 (FdeC, the Factor Adherence E. coli) and
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ECOK1_3385 (SslE, Secreted and surface-associated lipoprotein from E. coli),
were further analyzed for their protective ability in different animal models, func-
tional and structural properties, in vivo expression during infection, and molecular
epidemiological features. Mucosal immunization with the recombinant FdeC,
deriving from an NMEC strain, using the cholera toxin (CT) as adjuvant, provided
considerable protection in the ascending UTIs mouse model by challenge with two
different UPEC disease isolates, supporting also its cross-protective ability. Of
interest, FdeC conferred site-specific protection, as immunized mice were signifi-
cantly protected from uropathogenic strains ascending toward the kidney, with a
1.5–2.5 log in median CFU/g range of reduction in kidney colonization. The high
conservation of FdeC among strains belonging to different E. coli pathotypes,
consisting of 99% gene presence in extraintestinal and 93–100% in intestinal
pathotypes, and amino acid sequence identity >91% among all pathotypes, high-
lights the potential use of FdeC as a component of a broadly protective vaccine
against extraintestinal and intestinal E. coli infections (Nesta et al. 2012).

Secondary structure prediction on FdeC, confirmed by the X-ray structure of the
central domain, revealed an interesting structural similarity with the Yersinia
pseudotuberculosis invasin and EPEC intimin. In agreement with the prediction, the
recombinant FdeC protein demonstrated a strong affinity in binding to several
epithelial cell lines in vitro and to specifically target different collagen types,
including type V and VI, both widely expressed in the interstitial space of kidney
and bladder. However, an intriguing FdeC peculiarity is that its expression on the
bacterial surface is triggered upon interaction of an NMEC K1 strain with host cells
in vitro. Interestingly, FdeC expression was detected in vivo, on UPEC strains
closely associated with bladder tissues of mice following intraurethral challenge. In
vivo competition experiments between UPEC wild-type and its derivative fdeC
mutant revealed that the loss of FdeC caused a significant reduction in bacterial
fitness (Nesta et al. 2012). In agreement, the ETEC eaeH gene, the homolog of
ExPEC fdeC, was found significantly upregulated upon host cell contact (Kansal
et al. 2013) and the expression of EaeH in ETEC was also demonstrated during
pathogen–epithelial cell interaction in vitro (Sheikh et al. 2014). These findings are
consistent with the hypothesis that this protein is activated by and participates in
intimate interactions of both ETEC and ExPEC with the target epithelium. The
indications on the structural and functional role of FdeC in bacterial pathogenesis
and tissue adhesion may suggest that antibodies against FdeC could reduce
colonization.

Ability of SslE to act as protective antigen against ExPEC infections has been
confirmed in different animal models, using different clinical isolates as challenge
strains (Moriel et al. 2010). In the UTI mouse model, intranasal immunization with
SslE, using cholera toxin as mucosal adjuvant, led to a significant reduction of
bacterial load in the kidneys and a more pronounced in the spleen with a 2.0 log
reduction in median CFU/g following intraurethral challenge with the UPEC strain.
In the sepsis model, SslE determined a significant protection from mortality (60%
survival, P < 0.0001) against a SEPEC challenge strain, expressing a distant SslE
variant. In addition, SslE was able to induce protection in terms of 1 log reduction
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in bacterial load in the intestine of mice challenged orally with an ETEC strain,
reinforcing the potential of this antigen as universal E. coli vaccine candidate
(Moriel et al. 2010; Nesta et al. 2014).

By the functional point of view, SslE is the substrate of a T2SS (Type 2
Secretion System) and an outer membrane lipoprotein also known as YghJ in the
case of ETEC (Yang et al. 2007; Iguchi et al. 2009). It has been associated with the
M60-like extracellular zinc-metalloprotease subfamily, implicated in glycan
recognition and processing. Functional activity of SslE has been controversial since
it was originally shown to be involved in biofilm formation of an EPEC strain
(Baldi et al. 2012), but this function was not confirmed in subsequent studies
(Hernandes et al. 2013). More recently, the functional activity of SslE as a mucinase
enzyme has been elucidated using a variety of in vitro methods (Nesta et al. 2014;
Valeri et al. 2015). Of interest, an in vitro assay specifically set up to quantify the
bacterial mucinase activity by counting the number of bacteria able to traverse an
agar-based mucin matrix was used both to demonstrate SslE activity and, most
importantly, to evaluate the ability of antibodies raised by immunization with SslE
to inhibit mucinase activity. Interestingly, antibodies raised against an ExPEC SslE
variant were able to specifically inhibit the mucinase activity of different E. coli
pathotypes expressing distant SslE variants, including EPEC, SEPEC, ETEC, and
the EAHEC strain responsible for the 2011 German outbreak, highlighting the
potential role of this antigen as cross-protective against different pathotypes. On the
basis of the functional role, it can be hypothesized that SslE may facilitate bacterial
penetration of the mucosal surface and of the inner mucus layer, to allow E. coli to
reach the underlying host epithelium.

Additional antigens have recently been shown to elicit protection in mouse
model. Among them, the common pilus antigens EcpA and EcpD (E. coli common
pilus, ECP) and iron uptake proteins IutA and IroN have been described as able to
induce high levels of total IgG antibody of IgG1/IgG2a isotypes and to be pro-
tective in active and passive immunizations in a mouse model of sepsis (Mellata
et al. 2016). Moreover, antibodies raised against a synthetic form of a conserved
surface polysaccharide, b-(1-6)-linked poly-N-acetylglucosamine (dPNAG) con-
taining nine monomers of (non-acetylated) glucosamine (9GlcNH2) conjugated to
tetanus toxoid TT (9GlcNH2-TT) were shown to increase the efficacy of the passive
immunization. These promising data represents an additional step toward the
development of a broadly protective intervention against sepsis caused by E. coli
(Mellata et al. 2016).

A recently proposed vaccine against UTIs is based on the immunogenic and
protective MrpH-FimH fusion protein, made by MrpH from P. mirabilis and type 1
fimbrial FimH adhesin from a uropathogenic E. coli strain. Transurethral immu-
nization of mice with the MrpH-FimH fusion induced a significant decrease in the
number of bacteria recovered from bladder and kidney following challenge with
UPEC or P. mirabilis strains, demonstrating the potential of MrpH-FimH as a
promising vaccine candidate against UTIs caused by both UPEC and P. mirabilis
(Habibi et al. 2016).
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2.2 Vaccines Against Intestinal Pathotypes

2.2.1 Vaccines Against ETEC

Currently, there are no licensed vaccines against ETEC. Human challenge studies
indicate that protective immunity against ETEC is induced after natural or exper-
imental infection, suggesting that the development of an effective vaccine is fea-
sible. Main efforts in developing vaccines against ETEC have been based on the
induction of antitoxin and/or anti-colonization immunity (Fig. 3). Inhibition of
ETEC adhesion to intestinal epithelial cells and neutralization of the toxic activity
of the toxins should allow prevention of infection and disease. The only ETEC
vaccine shown to provide some protection against diarrhea is the whole-cell vaccine
containing the protective B subunit of the cholera toxin (CT-B), antigenically
similar to the ETEC heat labile toxin (LT). The Dukoral vaccine, designed and
licensed to prevent cholera, is in fact recommended to people visiting endemic
regions, to prevent travelers’ diarrhea.

ETEC bacteria use plasmid-encoded fimbrial colonization factors (CFs) or
E. coli surface antigens (CS) to bind to enterocytes in the upper small intestine.
Following preliminary colonization, the bacteria produce heat-stable (ST) and/or
heat-labile (LT) enterotoxins that stimulate the release of fluid and electrolytes from
the intestinal epithelium, resulting in the watery diarrheal illness. These
plasmid-encoded antigens are known to be key virulence factors and have been
proposed as vaccine components over the last three decades.

The LT enterotoxin is an ADP-ribosylating toxin, consisting of an enzymatically
active A subunit non-covalently linked to a pentameric B subunit mediating the
binding to host receptors, with strong immunogenic and adjuvant properties.
Genetically detoxified derivatives of LT, devoid of toxicity but retaining the
immunologic and adjuvant properties of the wild-type toxin, have been generated
and extensively characterized in many animal models (Giuliani et al. 1998; Pizza
et al. 2001; Norton et al. 2011). The majority of ETEC vaccine studies conducted so
far only include LT-B as immunogen, but in more recent studies the A subunit is
also included, based on the important contribution of LTA on the quality of the
immune response in terms of IgG1/IgG2 balance and mucosal IgA and IL-17
secretion (Norton et al. 2012; Norton et al. 2015) and of the full toxin in inducing
protective immunity (Giuliani et al. 1998). Genetically detoxified LT mutants are
included in the newly proposed ETEC vaccine formulations (Zhang and Sack
2015).

Efficacy and safety of a skin patch vaccine containing the heat-labile toxin
(LT) in travelers to Mexico and Guatemala have been assessed in phase 3 clinical
trial. The transcutaneous LT-based ETEC vaccine failed in inducing protection
against diarrhea in travelers, although the LT antigen was delivered effectively by
skin immunization (Behrens et al. 2014). Because of these data, the use of the LT
patches has no longer been considered a suitable approach for vaccination against
ETEC (Riddle and Savarino 2014).
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In contrast to LT, the reduced immunogenicity and the potent toxicity of STa has
been an obstacle for many years to the development of toxoid-based vaccines
against ETEC. ST consists of 18 (STp) or 19 (STh) amino acids and includes six
cysteines that form three intramolecular disulfide linkages. Due to its small size, ST
is nonimmunogenic in its natural form but becomes immunogenic when coupled to
large-molecular-weight carrier, either by chemical conjugation or recombinant

Fig. 3 New approaches to antigen-based vaccines against Enterotoxigenic E.coli

224 B. Nesta and M. Pizza



fusion. Many genetic approaches have been explored to attenuate ST toxicity while
enhancing its immunogenicity, considering that an ST toxoid-containing vaccine
may cover potentially a broad range of ETEC infections (Taxt et al. 2010; Ruan
et al. 2014).

ETEC colonization factors (CFs), categorized as colonization factor antigens
(CFA) or E. coli surface antigens (CS), have been proposed as vaccine components,
even if their distribution among ETEC is variable. CFA/I, CS3, CS5, and CS6
account for 50–80% of all CF-positive clinical ETEC isolates and some CF/CS
antigens are immunologically related to the more prevalent CFs (i.e., CFA/I and
CS14). In order to specifically abrogate the initial step of ETEC colonization,
alternative approaches that target the CFA/I fimbriae or its CfaE tip-localized
adhesin have been evaluated in preclinical animal models (Luiz et al. 2015). In
addition, the ETEC fimbrial adhesin-based vaccine approach has been supported by
further studies conducted both in mice and in nonhuman primates (Sincock et al.
2016). A novel multiepitope fusion antigen (MEFA) strategy has been recently used
to construct ETEC fusion antigens starting from CFA adhesins, combined with or
fused to an LT-STa toxoid fusion (Ruan et al. 2015).

In ETEC, there are more than 20 CFAs expressed in different combinations and
in different geographic regions. However, a candidate vaccine formulated to cover
CFA/I, CS3, and CS6 would only provide coverage for approximately 50–60% of
the ETEC strains. To this end, inclusion of an LT toxoid in a CF-based vaccine may
help to provide the potential vaccine strain coverage for LT-only strains that lack
CF/CS selected antigens. Overall, optimal combination of toxin and CFAs for a
specific target population may not always be easy. Consequently, additional anti-
gens would need to be included to meet optimal vaccine coverage thresholds.

The rCTB-CF ETEC vaccine, composed of five formalin-killed E. coli strains
expressing CFA/1, CS1, CS2/CS3, CS4, and CS5 adhesins, together with the
recombinant B subunit of the cholera toxin, was tested in safety and immuno-
genicity in different trials, including adult volunteers from endemic areas such as
Egypt and Israeli (Cohen et al. 2000), but did not reduce the overall rates of
travelers’ diarrhea (Sack et al. 2007). A phase 2b study of an oral, live attenuated,
three-strain recombinant vaccine, ACE527, which expresses the colonization fac-
tors (CFs) CFA/I, CSI, CS2, CS3, CS5, and CS6 and heat-labile toxin B subunit
(LT-B) induced clinically significant attenuation of diarrheal illness and reduced
ETEC intestinal colonization in a stringent ETEC H10407 human challenge model
(Darsley et al. 2012). A vaccine designed to specifically target ETEC, consisting of
both killed whole cells and the recombinant CT-B, did not demonstrate clinically
important benefits in two trials of 799 people traveling from the USA to Mexico or
Guatemala, and from Austria to Latin America, Africa, or Asia, but was associated
with increased vomiting (Ahmed et al. 2013c). A novel multicomponent oral
inactivated whole-cell ETVAX vaccine, adjuvanted with an attenuated
double-mutant form of LT (dmLT), was developed for both pediatric and traveler’s
indication. A phase I/II trial indicated that the addition of dmLT further enhanced
mucosal immune responses to CF antigens present in low amounts in the vaccine as
well as toxin-neutralizing antibody response to LT toxin (Lundgren et al. 2014).
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In a recent study in which human volunteers were challenged or re-challenged
with virulent ETEC strain H10407 serotype O78:H11, novel immunological
benchmarks for the evaluation of ETEC vaccines were established as IgA responses
to lipopolysaccharide (LPS), heat-labile toxin B subunit (LTB), and colonization
factor antigen I (CFA/I) in lymphocyte supernatant (ALS), feces, lavage fluid, and
saliva samples (Chakraborty et al. 2015). Overall, a limited number of ETEC
vaccine trials conducted among younger age groups in endemic areas indicated that
many questions still remain to be addressed to determine the vaccines impact
against more severe or life-threatening ETEC disease (Das et al. 2013). Despite the
significant effort in ETEC vaccine trials, these formulations have not been partic-
ularly effective in mediating cross-protective immunity.

Together with traditional approaches based on CFA and toxins, putative con-
served pan-ETEC antigens have been also considered as promising vaccine can-
didates (Fig. 3).

Functional studies on the two-partner secretion system demonstrated that the
secreted glycoprotein EtpA acted as a molecular bridge between ETEC flagellin and
host cell receptors (Roy et al. 2009). Antibodies directed against either EtpA or the
conserved regions of flagellin inhibited toxin delivery in vitro and prevented ETEC
intestinal colonization in preclinical experiments. Of interest, mice intestinal col-
onization was significantly impaired using LT together with EtpA, suggesting the
potential of EtpA as vaccine component (Roy et al. 2012).

The EaeH adhesin, the product of the eaeH gene first identified by subtractive
hybridization of ETEC (Chen et al. 2006), is a conserved outer membrane protein
that promotes bacterial engagement with host epithelial cell surfaces and ETEC
colonization of the host’s small intestine (Sheikh et al. 2014). The data on the EaeH
adhesin, also known as FdeC in ExPEC, further support previous evidences on the
crucial role of this antigen during bacterial colonization and highlight its potential
as a component of a broadly protective vaccine against pathogenic E. coli (Nesta
et al. 2012).

A chimeric vaccine containing the B subunit of heat labile toxin (LT-B) and the
major subunit of CS3 was able to elicit high antibody titers in mice and to reduce
ETEC adhesion to intestinal cells in vitro (Alerasol et al. 2014).

Proteins involved in mucin degradation were also proven as vaccine against
ETEC in preclinical studies. EatA is a member of the serine protease autotransporter
family of virulence proteins degrading MUC2, a major component of intestinal
mucin. Of interest, antibodies against a secreted passenger domain of EatA were
shown to impair the ETEC colonization of small intestine in mice (Luo et al. 2014).
In agreement with evidences on SslE mucinase activity (Nesta et al. 2014), func-
tional studies demonstrated that ETEC YghJ was specifically involved in degra-
dation of mucin substrates, including Muc2 and Muc3 and required for efficient
delivery of heat-labile toxin (Luo et al. 2014). In addition, SslE is present and
conserved also among intestinal pathotypes, with an overall amino acid sequence
identity ranged from 86 to 100%. The SslE heterologous and intrinsic protection
against ETEC was assessed in a mouse model of intestinal colonization, resulting in
a statistically significant 2.5 log reduction in the mean value of bacterial counts in
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the caecum of immunized mice. In addition, protected mice developed anti-SslE
antibodies belonging to both IgG and IgA isotypes, supporting the mucosal
immunization as efficacious delivery, and reinforcing the potential of this antigen to
broadly target pathogenic E. coli (Nesta et al. 2014).

Recently, antisera against a number of ETEC proteins that differed in their
abundance in membrane protein preparations from wild-type versus a type II
secretion mutant of ETEC, were tested in the ability to prevent ETEC adherence to
cultured intestinal epithelial cells. Three of these antigens, ETEC_2479, Skp and
MipA, were also able to provide a protective immunity in an intranasal mouse
challenge model (Kumar et al. 2015).

2.2.2 Multivalent ETEC Vaccines

In the future, research will also be directed toward combining monovalent vaccines
in a single complex vaccine to offer broad-spectrum coverage against different
pathogens for the same target populations. The Global Enteric Multicenter Study
(GEMS) revealed that Shigella and ETEC are among the top five major causes of
moderate to severe diarrhea in children under 5 years of age in Africa and Asia
(Kotloff et al. 2013). Among the many causes of diarrheal disease among travelers,
military personnel visiting endemic areas, infants in developing countries, ETEC
and Shigella are the two most important bacterial pathogens for which there are no
currently licensed vaccines. Then, many attempts have been dedicated to achieve
the goal of an immunogenic bivalent ETEC/Shigella vaccine. A potential attractive
strategy is based on the use of attenuated strains of Shigella as live vectors for the
expression of ETEC antigens, including CFs and mutant forms of LT (Ranallo et al.
2005; Barry et al. 2006). Even if an ETEC/Shigella is an evident option, other
combinations may be considered. Since rotavirus and ETEC are of greatest threat to
younger children, a combination vaccine against these may be an attractive
approach. On the other hand, Vibrio cholerae and ETEC remain a massive burden
in developing countries with increasing morbidity and mortality rates. Approaches
aimed to target these two diarrhea-causing agents have been analyzed in preclinical
studies. Immunization with a mixture of detoxified and enterotoxin-negative outer
membrane vesicles (OMVs) derived from V. cholerae and ETEC induced a pro-
tective immune response against both pathogens (Leitner et al. 2015).

2.2.3 Vaccines Against Shiga Toxin-Producing E. coli

Shigatoxigenic E. coli (STEC), also referred to as verocytotoxin-producing E. coli
(VTEC), are strains which produce Stx1 and Stx2 Shiga toxins, also known as
verotoxins. Specific to their toxin-producing capabilities, VTEC and STEC E. coli
nomenclature commonly refers to strains within the enterohaemorrhagic (EHEC)
pathotype. The E. coli carrying both the Shiga toxin and intimin, the adhesive
protein encoded by the eae gene and responsible for bacterial attaching to the
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intestinal wall, commonly known as EHEC, elaborate potent Shiga toxins (Stx1
and/or Stx2) and are implicated in the development of hemorrhagic colitis (HC) or
hemolytic uremic syndrome (HUS).

A fusion protein composed of the B subunits of the two types of Stx (named 2S
protein) generated antibodies able to neutralize the cytotoxic activity of both Shiga
toxins in vitro and to increase the survival of mice challenged with a lysate of
E. coli O157:H7 (Gao et al. 2009). Salmonella enterica strains expressing the
Stx2DAB toxoid colonized the mice gut and induced anti-Stx2B IgG. The
anti-toxoid antibodies neutralized Stx2 toxic activity in vitro, but conferred only
limited protection against the Stx2 challenge in vivo (Rojas et al. 2010). An S2
derivative fusion containing an enzymatically inactive Stx2A subunit instead of the
Stx2B (Stx2Am-Stx1B) displayed enhanced immunogenicity compared to the S2
fusion. Stx2Am-Stx1B generated higher levels of Stx2 neutralizing antibodies and
significantly higher level of protection against a lethal dose of an O157:H7 lysate
(Cai et al. 2011). A vaccine containing a synthetic monomer of PNAG (9GlcNH2)
conjugated to Shiga toxin 1b subunit was recently proposed to prevent intestinal
infections caused by Shiga toxin (Stx)-producing E. coli (STEC) (Gould et al.
2013).

A number of EHEC vaccine approaches have been employed with different
outcomes in animal models, including the use of recombinant proteins and viru-
lence factors such as Stx1/2, intimin, EspA, fusion proteins of A and B Stx sub-
units, avirulent ghost cells of EHEC O157:H7, live attenuated bacteria expressing
recombinant proteins, and recombinant fimbrial proteins (Rabinovitz et al. 2012;
McNeilly et al. 2015). In order to prevent EHEC, vaccination of infected mice with
a Stx2 toxoid resulted in decreased CFU detected in their feces, suggesting that
active immunization leads to the generation of Stx2-neutralizing antibodies in the
intestine (Mohawk et al. 2010). An EHEC multi-antigen vaccine consisted of the
multivalent Stx2B-Tir-Stx1B-Zot protein, where Zot is used as an antigen delivery
tool that binds a receptor in the intestinal epithelium affecting mucosal permeability.
Mice immunized intranasally with this multivalent protein had reduced colonization
and reduced amounts of EHEC detected in the stool (Zhang et al. 2011).

It is known that naturally occurring human EHEC O157:H7 infections induce
antibodies against T3SS-related proteins, such as Tir, intimin, EspB, NleA. and
EspA (Asper et al. 2011). This has led to the proposal of bacterial T3SS proteins
(TTSPs) as vaccine candidates. Intestinal mucosa immune responses have also been
targeted by intimin-, EspB-, and EspA-derived vaccines using different carrier
strains. Lactobacillus lactis expressing EspA or EspB induced antigen-specific
humoral IgG responses. Polyclonal anti-EspA antibodies were able to inhibit
EHEC-induced actin rearrangements in vitro (Luan et al. 2010). Orally inoculated
S. enterica serovar Typhimurium expressing intimin was able to colonize the mice
Peyer’s patches and spleen, producing specific serum IgG and fecal IgA antibodies
and reducing EHEC shedding after challenge (Oliveira et al. 2012). In mice
inoculated with EspB-expressing L. lactis, the antibody response consisted of not
only IgG but also fecal IgA (Ahmed et al. 2013a). Recently, the immunogenicity of
intranasal mice administration of a novel bivalent EHEC O157:H7 subunit vaccine,
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made by antigen EspA-Tir-M, resulted in protection against EHEC O157:H7 col-
onization and infection at a rate of 90%. In contrast, subcutaneous immunization
elicited a weak immune response and exhibited a low protection rate (Lin et al.
2017).

2.2.4 Vaccines Against Other Intestinal Pathotypes

Intestinal pathotypes differ in virulence factors and in their ability to cause a broad
spectrum of diseases by different mechanisms. The enteropathogenic EPEC is
defined as E. coli that produce a characteristic histopathology known as attaching
and effacing (A/E) lesions on intestinal cells and that do not produce Shiga,
Shiga-like, verocytotoxins. Typical EPEC (tEPEC) of human origin possess a
virulence plasmid known as the EAF (EPEC adherence factor) plasmid that encodes
localized adherence on cultured epithelial cells mediated by the bundle forming
pilus (BFP), while atypical EPEC (aEPEC) does not possess this plasmid
(Donnenberg and Finlay 2013). Animal pathogens and their corresponding native
hosts, such as Citrobacter rodentium in mice and rabbit enteropathogenic E. coli
(REPEC) in rabbits, have been widely used as model systems for EPEC infection
studies. EPEC intimin has shown protection in the animal model, as immunized
rabbits exhibited reduced fecal bacterial shedding, milder diarrheal symptoms,
lower weight loss, and reduced colonization of REPEC in the cecum (Keller et al.
2010). In addition, an immunodominant domain of EPEC beta-intimin was pro-
tective in the REPEC challenge model (Ahmed et al. 2013b). Very recently, the
immunogenic Dispersin virulence factor of EAEC, responsible for antiaggregation
and bacterial penetration across the intestinal epithelium, has been proposed as
vaccine antigen against EAEC infection (Asadi Karam et al. 2017).

A killed whole-cell vaccine based on a mixture of ETEC, EHEC, EIEC, EAEC,
and EPEC diarrheagenic pathotypes combined with the cholera toxin B subunit
(CT-B) has been proposed as vaccine inducing humoral immune response and
providing protection in a mouse model following systemic or oral bacterial chal-
lenges (Gohar et al. 2016).

3 Vaccines Against E. coli Infections in Animals

The increasing incidence of E. coli foodborne-disease outbreak (FBDO) worldwide
raises the urgent need for additional intervention strategies to reduce the rate of
E. coli spreading. Identifying the major sources of risk is key to designing effective
control strategies. On the other hand, a valid alternative strategy to control E. coli
dissemination, often resulting in serious sequelae that include fatality, may consist
in targeting the main animal reservoir and the primary means of human contami-
nation. Usually, the E. coli transmission pathway for virulent clones to disseminate
globally often has a relationship with animals and agriculture. Animal pathogenic
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E. coli mainly belong to the ETEC and EPEC diarrhoeagenic, Shigatoxin-
producing, uropathogenic, septicemic E. coli (SePEC) pathotypes as well as the
avian pathogenic E. coli (APEC) and the mammary pathogenic E. coli (MPEC).
Since cattle are the most important reservoir of foodborne EHEC pathogen and the
root of contamination, reducing E. coli O157:H7 at the farm level should decrease
the risk of human infection. Prevention of the E. coli O157:H7 global pathogen in
cattle could help tackle the main reservoir of virulence, predicting a 60% decrease
in human cases associated with O157:H7 assuming a bovine vaccination effec-
tiveness of 80% and an adoption rate of 100% (Matthews et al. 2013). The ST131
pandemic in humans and other multidrug-resistant and urovirulent E. coli strains
were found also in companion animals, ruminants, in wastewater treatment plant
effluent (Johnson et al. 2009; Amos et al. 2014). Overall, E. coli outbreaks in
humans often occurred worldwide as a result of consuming contaminated food and
water, mishandling, and/or undercooking of meats or contaminated vegetables
(Sharapov et al. 2016; Honish et al. 2017). Commercial vaccines against E. coli
O157:H7 have targeted TTSS-secreted proteins (Econiche®, designed to reduce
cattle contamination by EHEC), a siderophore receptor and porin proteins (SRPs)
(Epitopix®, licensed for use in beef cattle in the USA). Recombinant type III
secretion system (T3SS)-associated proteins EspA, intimin, and Tir from EHEC
O157:H7 were proposed for calves vaccination, resulting in a reduction in EHEC
shedding and in the generation of antibodies potentially cross-protective against
different EHEC serotypes (McNeilly et al. 2015). Reverse vaccinology also
exploited available animal-source ETEC genomes as an effective approach toward
the development of subunit vaccines for animals (Dubreuil et al. 2016).
Commercial vaccines for cows contain killed E. coli F5 isolates and/or the F5
adhesin, while commercial vaccines for female pigs contain F4 (also designated
K88), F5 (K99), F6 (987P), and/or F41 fimbriae, either purified or as inactivated
bacteria expressing these fimbriae with or without the LT toxoid. ETEC porcine
post-weaning diarrhea (PWD) is still causing significant economic losses to swine
producers worldwide. In this respect, several maternal vaccines are available.
However, at weaning, lactogenic protection disappears and vaccines to protect
weaned pigs from diarrhea caused by ETEC are still needed (Takeyama et al. 2015;
Srivastava et al. 2016). The commercially available modified-live E. coli Poulvac®

vaccine help protect against both the colibacillosis and productivity loss in poultry.
The E. coli mastitis vaccine, Enviracor J-5, provides a safe and effective way to
control clinical mastitis.

The major goals of veterinary vaccines are to improve the health and welfare of
companion animals, increase production of livestock in a cost-effective manner, and
prevent animal-to-human transmission from both domestic animals and wildlife.
Interventions that would prevent zoonotic pathogens in animals will reduce E. coli
transmission reducing the risk of contamination and bacterial spreading.
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4 Adjuvants, Delivery, and Route of Immunization

Mucosal pathogens would probably require intestinal immunity, and therefore the
oral route would be the preferred one for vaccine administration. Oral delivery is
expected to mimic the course of natural infection that is known to confer immunity
against many diarrheal E. coli strains. However, only a few mucosal vaccines for
oral administration have been licensed for human use (Czerkinsky and Holmgren
2010). Since E. coli have a mucosal portal of entry and infections are confined to
the mucosal surfaces, an E. coli vaccine should be able to induce a specific
secretory IgA antibody response at the intestinal mucosa level. However, the
immune response is complex and may require combinations of several immune
effectors, as protection against E. coli does not directly correlate with mucosal sIgA
content in stool or intestinal washes. On the other side, prevention against bac-
teremia is likely to rely on circulating antibodies capable of binding to O-antigen
and promoting opsonophagocytosis. Mechanisms of protection against UTI are less
well understood and may differ, such as for simple uncomplicated UTI versus
persistent or recurrent UTI or for UTI in individuals with indwelling catheters. It is
not known whether protection of the urinary tract would be conveyed through
vaccine-induced IgA or IgG or whether urinary tract antibody levels are crucial.
Thus, it is conceivable that high serum antibody levels that transudate into the
mucosal tissues may be needed to achieve protection against recurrent or compli-
cated UTI (Poolman and Wacker 2016).

Many alternative routes of vaccine delivery are being explored. In this respect,
non-oral routes of immunization, such as intranasal, intradermal, sublingual, and
intramuscular, are becoming very attractive because of their potential to induce a
systemic and mucosal immune response. Sublingual as well as transdermal routes
of administration have been shown to induce a broadly disseminated mucosal and
systemic immune responses.

However, a parenteral vaccine can also elicit a mucosal immune response in
individuals who have been already primed through natural mucosal exposure to the
pathogen. Although IgA is the main isotype in the mucosal secretions, IgGs are also
present and may contribute to the adaptive immune defenses in the gut. IgG reaches
luminal secretions mainly by transudation of systemic antibodies, although small
amounts are also synthesized locally. Parenteral vaccination may in itself be useful
for immunization against those mucosal infections in which the pathogen is taken
up or penetrates across the epithelium. In addition, parenteral administration might
be used in tandem with mucosal vaccines, whether the latter are given by oral,
nasal, or sublingual route. Traditional oral immunization is able to induce a sub-
stantial antibody response in the small intestine and in the ascending colon after oral
immunization. On the other hand, when an E. coli infection occurs in the uroep-
ithelial mucosae, which is more permeable than the intestines to transudation by
plasma antibodies, a parenteral route of vaccination may also be very effective
(Czerkinsky and Holmgren 2010).
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Understanding cross-talk between mucosal and systemic immunity should
expedite the development of vaccines against diseases caused E. coli. However, the
gut immune system can change depending on the dietary conditions, environmental
antigens, exposure to pathogens, and microbiome composition.

Cholera toxin (CT) and heat-labile enterotoxin (LT) are known to be powerful
adjuvants. CT has been shown to induce increased permeability of the intestinal
epithelium leading to enhanced uptake of coadministered antigens and enhanced
antigen presentation by various APCs. CT markedly promoted isotype differenti-
ation in B cells leading to increased IgA formation and exert complex stimulatory
and inhibitory effects on T-cell proliferation and cytokine production. Cholera toxin
and heat-labile enterotoxin (LT) also evoked both systemic and intestinal antibody
responses when coadministered with protein antigens by transcutaneous immu-
nization. Genetically detoxified derivatives of LT and CT, nontoxic but retaining
the immunological and adjuvant properties of the wild-type toxins are considered
the most promising adjuvants to augment local and systemic immune responses to
coadministered antigens.

Vaccines against E. coli should be safe, immunogenic, and provide high level of
protection against diarrhea in the primary target populations of infants and young
children in developing countries (0–5-year-age range), and travelers to endemic
areas. Moreover, an E. coli vaccine should be immunogenic and protective also in
elderly, who are at highest risk of ExPEC bacteremia.

5 Impact of Vaccines on Microbioma

The gut microbial community (microbiota) undergoes to evolution and mutual
adaptation to the host. In the postnatal period, the germ-free neonate moves from
the sterile environment of its mother’s uterus into a gradual colonization of mucosal
and skin surfaces. During the early postnatal period, the intestinal microbiota plays
a crucial role in the development of both local and systemic immunity. Then, in the
intestinal tract, cholic acid, radial oxygen gradient, and dietary components become
the driving forces of microbiota assembly, composition, modulation, and activities.
Alterations of the normal colonization process, such as the presence of pathogenic
microorganisms and toxins, can affect the important symbiotic relationship that is
necessary for immune homeostasis (Walker 2013; Wu and Wu 2012). Bacteria
utilize cooperative pathways to help maintaining their niches and consequently the
microbial group behavior is essential to host homeostasis. These microbial rela-
tionships can be antagonistic or mutualistic, depending on the nature of the species.
Bacteria express highly potent bacteriocins, microcins, and colicins to fend off other
species or pathogens invading their niche without causing collateral damage to
eukaryotic cells (Ohland and Macnaughton 2010). Even if the majority of genes
(99.1%) examined by metagenomic sequencing of the intestinal tract consists of
bacterial origin (Qin et al. 2010), also viruses, fungi, and archaea are present and
may influence both specific host response and intestinal homeostasis (Norman et al.
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2014). Analysis of the human microbiome indicates that proteobacteria, including
E. coli, represent less than 0.1% of the human flora overall (Eckburg et al. 2005).
Thus, vaccination against a low number of serotypes (of >180) would be unlikely to
have any substantial impact on gastrointestinal and/or urogenital flora or result in
serotype replacement. Emerging studies deciphering the relationship between
microbiome changes and immune responses will provide more insights into the
impact of the gut microbiota on vaccine efficacy (Nguyen et al. 2016). On the other
hand, the interest in maintaining a healthy microbiota in commensal bacterial
species with remarkable protective effects is increasing. Probiotics represent the
great promise for rebuilding microbiotas and restoring health (Gensollen et al.
2016). Recent studies have addressed the issue of the potential impact of using
subunit vaccines consisting of antigens that are also encoded by commensal
organisms. These studies investigated the effect of vaccination with E. coli antigens
(MipA, Skp, and ETEC_2479) conserved also in the commensals, on the intestinal
mouse microbiome. Interestingly, immunization did not cause any changes to
mouse health, to mouse weight gain as a function of time, or to the diversity or
richness of mouse intestinal microbiomes (Hays et al. 2016).

6 Conclusions

The vaccinology field is evolving very rapidly, and new technologies are today
available to make the development of effective vaccines against E. coli feasible in
the near future. A multitude of colonization factors, toxins, and virulence deter-
minants are necessary to allow adaptation of E. coli to the different niches. The
enormous amount of genomic, proteomic, and transcriptomic data and their analysis
could guide the search for the ideal vaccine antigens, not shared with commensal
strains and with limited antigenic diversity. One approach could be to target anti-
gens encoded by the core genome that, being shared by different pathotypes, could
be potentially more cross-protective. On the other hand, including accessory anti-
gens may be important to prevent the emergence of new pathogenic lineages. In this
perspective, the subtractive reverse vaccinology approach applied to E. coli has
allowed the identification of very promising protective antigens conserved in
phylogenetically and epidemiologically distinct E. coli pathotypes, and has opened
the way toward a universal E. coli vaccine.

There are still many scientific questions that need to be addressed and that could
effectively guide vaccine development, such as the identification of reliable and
predictive animal models, the definition of correlates of protection, the definition of
relative contribution of mucosal and systemic immune response in protection, and
the influence of impact of vaccination on the host microbiome. Finally,
science-based studies aimed to discover the role played by any new potential
vaccine antigen in virulence and pathogenesis might have a huge impact on the
evaluation of the ability of the antibodies induced by such antigens in neutralizing
important bacterial functional activities.
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