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Abstract. Mastermind is a famous game played by a codebreaker
against a codemaker. We investigate its static (also called non-adaptive)
black-peg variant. Given c colors and p pegs, the codemaker has to choose
a secret, a p-tuple of c colors, and the codebreaker asks a set of questions
all at once. Like the secret, a question is a p-tuple of c colors. The code-
maker then tells the codebreaker how many pegs in each question are
correct in position and color. Then the codebreaker has one final ques-
tion to find the secret. His aim is to use as few of questions as possible.
Our main result is an optimal strategy for the codebreaker for p = 3 pegs
and an arbitrary number c of colors using �3c/2� + 1 questions.

A reformulation of our result is that the metric dimension of Zn ×
Zn × Zn is equal to �3n/2�.

1 Introduction

Mastermind is a board game invented by Meirowitz in 1970 with applications
in cryptography [3] and bioinformatics [4]. In the original version of the game,
the so-called codemaker chooses a secret code consisting of 4 pegs and 6 possible
colors for each peg. The so-called codebreaker must discover this code by making
a sequence of guesses, called questions, until the secret has been found, using
as few questions as possible. Each answer of the codemaker consists of black
and white pegs, one black peg for each peg of the question which is correct in
both position and color, and one white peg for each peg which is correct only in
color. For Mastermind with p pegs and c colors the decision problem to decide
whether a secret exists which satisfies a given set of questions and answers is NP-
complete [14]. An analysis of optimal strategies has been presented for original
Mastermind [7,10], and for several of its variants, e.g., for the black-peg variant,
where no white pegs are given in the answers [8,11], and the AB Game, where
the secret and each question must not contain any color twice [12].

Static (or Non-Adaptive) Mastermind requires the codebreaker to ask all
questions at the beginning of the game. The codebreaker then receives all answers
and must be able to find the secret in a final question. Goddard [6] gave a
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�2c/3 + 1�-strategy for two pegs, a c-strategy for three pegs and a c-strategy
for four pegs1 all of which are optimal for sufficiently large c. Here, we consider
Static Black-Peg Mastermind, i.e., the codebreaker only receives black pegs as
answers, and thus only gets to know how many of the positions in each question
are correctly colored. We present an optimal �3c/2� + 1-strategy for the case of
p = 3 pegs and an arbitrary number c of colors. This continues the work in [9],
where a �(4c − 1)/3�-strategy for p = 2 was presented, and in [5], where the
static black-peg variant of the AB Game was studied and a (�4c/3�−1)-strategy
was given for the case p = 22 and additionally a O(n1.525)-strategy for the case
p = c, where the questions and secrets correspond to permutations.

Mastermind may be studied from the point of view of Game Theory, the
theory that investigates the (effect of) strategic choices made by interacting
opponents. While it is a one-player game, where only the codebreaker acts, it can
be viewed as a two-player game by allowing the codemaker to change the secret
before answering a question, in a way consistent with previous answers. To define
a winning situation for each player, one may limit the number k of questions.
The existence of winning strategies for either player would then depend on k.
For Static Black-Peg Mastermind with 3 pegs and c colors our main result shows
that the codebreaker has a winning strategy if and only if k > �3c/2�; otherwise,
the codemaker has a winning strategy.

The metric dimension of an arbitrary (undirected and unweighted) graph is
the minimal size of a set U such that every vertex v of the graph is uniquely
determined by the vector of distances between v and the vertices in U . This
concept occurred first in [1] and has since been studied in various papers. In [13]
it was shown that the metric dimension of (Z2)n is asymptotically O(n/ log n),
and in [2] that the metric dimension of Zn × Zn is �(4n − 1)/3 − 1�. It is easy
to see that the minimal number of questions needed to win Static Black-Peg
Mastermind on p pegs with c colors is equal to the metric dimension of (Zc)p

plus 1. Thus, our optimal �3c/2�+1-strategy gives that the metric dimension of
Zn × Zn × Zn is �3n/2�) for all n.

2 Preliminaries

We number the pegs by 1, 2 . . . , p, and the colors by 1, 2, . . . , c. For r ∈ N, an r-
strategy for Static Black-Peg Mastermind consists of r− 1 questions Q1, Q2, . . . ,
Qr−1 ∈ {1, 2, . . . , c}p. Such a strategy is feasible if every possible secret S is
uniquely determined by the r − 1 answers so that the codebreaker can ask the
final question S to win the game. The strategy is called optimal if r is minimal.
In the following consider only the case p = 3.

We implemented a computer program available at [15], to check for p = 3,
small c ∈ N and r ∈ N all possible strategies, i.e., all combinations of questions,
for being feasible. This program serves both as a corroboration of the feasibility
of the main strategy for small c, and as a part of the optimality proof for all c.
1 Note that in [6] the final question was not taken into account.
2 The case p = 1 is trivial for both games: exactly c questions are needed.
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3 The Main Result: A (�3c/2� + 1)-Strategy for p = 3

We introduce a (�3c/2� + 1)-strategy for each c, where we distinguish between
the cases c ≡ 0, 1, 2, 3 mod 4. Note that for the number k := �3c/2� of questions
(without the final question) it holds that k = 3 · c

2 if c is even, and that k =
3 · c−1

2 + 1 if c is odd. Table 1 shows examples of the four cases. Below, we use
the superscript “×2” to denote a color that is repeated twice.

Strategy 1 ((�3c/2� + 1)-strategy for p = 3 and c > 4, c ≡ 0 mod 4)3

Divide the k questions into three blocks B1, B2, B3 of k/3 (= c/2) questions
each.

1. Peg 1 contains the colors 1, 2, . . . , k/3 in B1, the colors (k/3 + 1)×2, (k/3 +
2)×2, . . . , (k/2)×2 in B2, and the colors (k/2+1)×2, (k/2+2)×2, . . . , c×2 in
B3.

2. Peg 2 contains the colors (k/2 + 1)×2, (k/2 + 2)×2, . . . , (2k/3)×2 (i.e., B3 of
peg 1) in B1, the colors 1, 2, . . . , k/3 (i.e., B1 of peg 1) in B2, and the colors
k/2, (k/3 + 1)×2, (k/3 + 2)×2, . . . , (k/2 − 1)×2, k/2 (i.e., again B2 of peg 1,
but here shifted down by one question) in B3.

3. Peg 3 contains the colors k/2, (k/3+1)×2, (k/3+2)×2, . . . , (k/2−1)×2, k/2
(i.e., B2 of peg 1, but shifted by one question) in B1, the colors 2k/3, (k/2 +
1)×2, (k/2 + 2)×2, . . . , (2k/3 − 1)×2, 2k/3 (i.e., B3 of peg 1, but shifted by
one question) in B2, and the colors 1, 2, . . . , k/3 (i.e., B1 of peg 1) in B3.

The shifting of questions is essential for this strategy and the following
ones. E.g., if on peg 3 of Strategy 1 in Table 1a, the first eight colors were
9, 9, 10, 10, 11, 11, 12, 12 instead of 12, 9, 9, 10, 10, 11, 11, 12, the possible secrets
(1, 13, 10) and (1, 14, 9) would get the same combination of answers: 2B, 1B, 1B,
1B, 14× 0B, i.e., the strategy would not be feasible. Without this shifting there
would be colors which would occur in exactly the same set of questions, e.g.,
color 13 on peg 2 and color 9 on peg 3 would occur in the questions 1 and 2, and
color 14 on peg 2 and color 10 on peg 3 would occur in the questions 3 and 4.

Strategy 2 ((�3c/2� + 1)-strategy for p = 3 and c > 4, c ≡ 1 mod 4)4

Divide the k questions into three blocks B1, B2, B3 of (k + 2)/3(= (c + 1)/2),
(k + 2)/3 and (k + 2)/3 − 2 questions, respectively.

1. Peg 1 contains the colors 1, 2, . . . , (k+2)/3 in B1, and the colors ((k+2)/3+
1)×2, ((k + 2)/3 + 2)×2, . . . , c×2 in B2 and continuing throughout B3.

2. Peg 2 contains the colors ((k + 1)/2 + 1)×2, ((k + 1)/2 + 2)×2, . . . , (2(k +
2)/3− 1)×2, (k+1)/2 in B1, the colors 1, 2, . . . , (k+2)/3 (i.e., B1 of peg 1)
in B2, and the colors ((k + 2)/3 + 1)×2, ((k + 2)/3 + 2)×2, . . . , ((k + 1)/2 −
1)×2, (k + 1)/2 in B3.

3 For c = 4, this strategy with 6 questions is not feasible, as the shifting step does not
work. However, changing peg 3 of the third question from color 4 to color 3 leads to
a feasible strategy with 6 questions.

4 For c = 1, this strategy with 1 question is not defined, and the strategy with 0
questions (i.e., only the final question) is optimal.
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3. Peg 3 contains the colors (k+ 1)/2 − 2, ((k+ 2)/3 − 1)×2, ((k+ 2)/3)×2, . . . ,
((k+1)/2−3)×2, (k+1)/2−2, (k+1)/2−1 in B1, the colors 2(k+2)/3−1, ((k+
1)/2+1)×2, ((k+1)/2+2)×2, . . . , (2(k+2)/3−2)×2, 2(k+2)/3−1, (k+1)/2−1
in B2, and the colors 1, 2, . . . , (k + 2)/3 − 2 in B3.

Strategy 3 ((�3c/2�) + 1-strategy for p = 3 and c ≡ 2 mod 4)
Divide the k questions into three blocks B1, B2, B3 of k/3 (= c/2) questions
each.

1. Peg 1 contains the colors 1, 2, . . . , k/3 in B1 and the colors (k/3 +
1)×2, (k/3 + 2)×2, . . . , c×2 in B2 and continuing throughout B3.

2. Peg 2 contains the colors 1, 2, . . . , k/3 (i.e., B1 of peg 1) in B2 and the colors
(k/3 + 1)×2, (k/3 + 2)×2, . . . , (2k/3)×2 in B3 and continuing throughout B1.

3. Peg 3 contains the colors 1, 2, . . . , k/3 (i.e., B1 of peg 1) in B3 and the colors
(k/3+1)×2, (k/3+2)×2, . . . , (2k/3)×2 in B1 and continuing throughout B2.

Strategy 4 ((�3c/2�) + 1-strategy for p = 3 and c ≡ 3 mod 4)
Divide the k questions into three blocks B1, B2, B3 of (k + 2)/3 (= (c + 1)/2),
(k + 2)/3 and (k + 2)/3 − 2 questions, respectively.

1. Peg 1 contains the colors 1, 2, . . . , (k+2)/3 in B1 and the colors ((k+2)/3+
1)×2, ((k + 2)/3 + 2)×2, . . . , c×2 in B2 and continuing throughout B3.

2. Peg 2 contains the colors ((k+2)/2)×2, ((k+2)/2+1)×2, . . . , (2(k+2)/3−1)×2

in B1, the colors 1, 2, . . . , (k + 2)/3 (i.e., B1 of peg 1) in B2, and the colors
(k+2)/2−1, ((k+2)/3+1)×2, ((k+2)/3+2)×2, . . . , ((k+2)/2−2)×2, (k+
2)/2 − 1 in B3.

3. Peg 3 contains the colors (k+ 2)/2 − 2, ((k+ 2)/3 − 1)×2, ((k+ 2)/3)×2, . . . ,
((k + 2)/2 − 3)×2, (k + 2)/2 − 2 in B1, the colors 2(k + 2)/3 − 1, ((k +
2)/2)×2, ((k+2)/2+1)×2, . . . , (2(k+2)/3− 2)×2, 2(k+2)/3− 1 in B2, and
the colors 1, 2, . . . , (k + 2)/3 − 2 in B3.

Theorem 1. Strategies 1, 2, 3 and 4 are feasible and optimal (�3c/2�) + 1-
strategies for p = 3 and for the corresponding c with c �= 1, 4.

Recall that the AB Game corresponds to Mastermind, but with the additional
condition that both in the secret and questions the colors on different pegs must
be pairwise distinct. By observing that the strategies in Theorem1 only use
questions containing three different colors each, we thus obtain the following.

Corollary 1. For c = 6 and for all c ≥ 8, the Strategies 1, 2, 3 and 4 are also
feasible strategies for the AB Game with p = 3 and the considered c.

4 Idea of Proof of Theorem1

Feasiblity: For a given strategy, two questions are called neighbors, and double
neighbors, if they have one color in common on exactly one peg and two pegs,
respectively. A question Q is called a (a1, a2, a3)-question for a1, a2, a3 ∈ N, if
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Table 1. Examples for Strategies 1, 2, 3 and 4 with p = 3.

1 2 3
Q1 1 13 12
Q2 2 13 9
Q3 3 14 9
Q4 4 14 10
Q5 5 15 10
Q6 6 15 11
Q7 7 16 11
Q8 8 16 12
Q9 9 1 16
Q10 9 2 13
Q11 10 3 13
Q12 10 4 14
Q13 11 5 14
Q14 11 6 15
Q15 12 7 15
Q16 12 8 16
Q17 13 12 1
Q18 13 9 2
Q19 14 9 3
Q20 14 10 4
Q21 15 10 5
Q22 15 11 6
Q23 16 11 7
Q24 16 12 8

c = 16 k = 24

1 2 3
Q1 1 14 11
Q2 2 14 8
Q3 3 15 8
Q4 4 15 9
Q5 5 16 9
Q6 6 16 10
Q7 7 17 10
Q8 8 17 11
Q9 9 13 12
Q10 10 1 17
Q11 10 2 14
Q12 11 3 14
Q13 11 4 15
Q14 12 5 15
Q15 12 6 16
Q16 13 7 16
Q17 13 8 17
Q18 14 9 12
Q19 14 10 1
Q20 15 10 2
Q21 15 11 3
Q22 16 11 4
Q23 16 12 5
Q24 17 12 6
Q25 17 13 7

c = 17 k = 25

1 2 3
Q1 1 14 10
Q2 2 15 10
Q3 3 15 11
Q4 4 16 11
Q5 5 16 12
Q6 6 17 12
Q7 7 17 13
Q8 8 18 13
Q9 9 18 14
Q10 10 1 14
Q11 10 2 15
Q12 11 3 15
Q13 11 4 16
Q14 12 5 16
Q15 12 6 17
Q16 13 7 17
Q17 13 8 18
Q18 14 9 18
Q19 14 10 1
Q20 15 10 2
Q21 15 11 3
Q22 16 11 4
Q23 16 12 5
Q24 17 12 6
Q25 17 13 7
Q26 18 13 8
Q27 18 14 9

c = 18 k = 27

1 2 3
Q1 1 15 13
Q2 2 15 9
Q3 3 16 9
Q4 4 16 10
Q5 5 17 10
Q6 6 17 11
Q7 7 18 11
Q8 8 18 12
Q9 9 19 12
Q10 10 19 13
Q11 11 1 19
Q12 11 2 15
Q13 12 3 15
Q14 12 4 16
Q15 13 5 16
Q16 13 6 17
Q17 14 7 17
Q18 14 8 18
Q19 15 9 18
Q20 15 10 19
Q21 16 14 1
Q22 16 11 2
Q23 17 11 3
Q24 17 12 4
Q25 18 12 5
Q26 18 13 6
Q27 19 13 7
Q28 19 14 8

c = 19 k = 28

for i = 1, 2, 3, the i-th color of Q occurs ai times on the i-th peg (throughout the
strategy). In Table 1a, Q3 = (3, 14, 9) and Q4 = (4, 14, 10) are neighbors (but
not double neighbors), and both are (1, 2, 2)-questions,

As can be seen in Table 1, the four strategies consist only of (1, 2, 2)-questions,
(2, 1, 2)-questions and (2, 2, 1)-questions, and no double neighbors exist.

In Table 1a, if the neighbors Q3 = (3, 14, 9) and Q4 = (4, 14, 10) both receive
an answer ≥ 1B, then the secret has the form (?, 14, ?), unless one of the neigh-
bors Q2 = (2, 13, 9) and Q5 = (5, 15, 10) also receives an answer ≥ 1B, and in
this case the secret has the form (4, ?, 9) or (3, ?, 10). The detailed proof needs
an extensive case distinction and the introduction of the so-called strategy graph,
where the questions correspond to vertices and two questions are connected by
an edge, if they are neighbors.
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Optimality: This proof relies on observations regarding the feasibility of the
strategy, e.g., on each peg all but one color must occur, and there can be at
most one (1, 1, 1)-question. We consider the cases of odd and even c and four
subcases each, depending on how many of the three pegs contain c colors. Note
that in the strategies of Table 1 all colors occur at least once on each peg, except
for peg 3 of Strategies 2 and 4, where the colors (k + 1)/2 and k/2, respectively,
do not occur. This case must be excluded for Strategies 1 and 3 for even c as
well, which makes the proof much more difficult for even c than for odd c. The
detailed proof needs again several cases and the introduction of a new term, the
so-called proof questions.

Due to the space limitation, we refer to the forthcoming full version of the
paper for the feasibility and optimality proofs.

References

1. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Clarendon
Press, Oxford (1953)
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10. Jäger, G., Peczarski, M.: The number of pessimistic guesses in Generalized Mas-
termind. Inf. Process. Lett. 109(12), 635–641 (2009)
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