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Chapter 2
Microbial-Assisted Phytoremediation: 
A Convenient Use of Plant and Microbes 
to Clean Up Soils

A. P. Pinto, A. de Varennes, C. M. B. Dias, and M. E. Lopes

2.1  �Introduction

Environmental pollution by metal(loid)s (e.g., heavy metals—HMs) is a severe 
problem worldwide, as soils and aquatic resources became increasingly contami-
nated, threatening land ecosystems, surface and groundwater, as well as food safety 
and human health [1]. The primary sources contributing to this extended pollution 
are anthropogenic inputs related to the burning of fossil fuels, mining and continued 
industrial activities, disposal of municipal solid wastes and wastewater discharges 
or use for irrigation, and excessive utilization of fertilizers and pesticides [1–9]. A 
consequence of these anthropogenic activities is an increase of contaminated areas, 
which should be remediated to prevent or mitigate transfer of contaminants into 
terrestrial, atmospheric, or aquatic environments. Point and diffuse contamination 
by organic and inorganic pollutants causes wide concerns, and intentional or acci-
dental introduction of these substances in the environment may represent serious 
impacts on public health.

Soil contamination is an important issue across the European Union (EU). 
About 3.5 million sites in the EU were estimated to be potentially contaminated 
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with 0.5 million sites being highly contaminated and in need of remediation. About 
400,000 polluted sites were already identified in Germany, England, Denmark, 
Spain, Italy, the Netherlands, and Finland. Sweden, France, Hungary, Slovakia, and 
Austria have at least 200,000 contaminated sites. Greece and Poland reported 
10,000 contaminated land areas, while Ireland and Portugal reported fewer than 
10,000 contaminated sites [10, 11]. Soils act as a final acceptor of toxic substances/
trace elements (e.g., HMs; nonessential metal(loid)s), and these inorganic pollut-
ants can limit development and growth of plants and pose a health hazard to humans 
and animals because some may be bioaccumulated and bio-magnified along the 
whole food chain [3, 12–15].

When the concentration of these pollutants is above a defined legal standard 
value, water, air, and soils are described as polluted, and environmental remediation 
becomes fundamental to decrease the potential risk of food chain contamination and 
other associated health risks [13, 16, 17]. Thus, it is necessary to use efficient soil 
cleanup techniques to restore heavy metal-polluted soils. Over the last decades, 
several physical, chemical, and biological approaches have been attempted to 
achieve this goal. Conventional treatments include excavation and transfer of soil to 
landfills, soil washing with water and solubilizing agents, building a physical cover, 
solidification through use of stabilizing agents, vitrification at high temperatures, 
electrochemical separation, etc. which may rapidly remediate soils, but irreversibly 
damage the ecological environment [18–21].

Between the different approaches for the reclamation of metal(loid)s contami-
nated soils, special attention is drawn to the technologies of phytoremediation 
(green and clean technologies) [10]. Phytoremediation is based on efficient, inex-
pensive, and eco-friendly rehabilitation strategies that use plants and associated 
soil microorganisms to absorb, accumulate, immobilize, or biodegrade organic 
and inorganic pollutants, present in different environmental matrices (air, soil, 
and water), through physical, chemical, and biological processes. Phytoremediation 
is proposed as a relatively recent technology with sustainable costs [13, 22, 23] 
that improves the native microflora and the physical, chemical, and biological 
properties, thus enhancing soil health and fertility [1, 20, 21, 23–27]. Moreover, 
phytoremediation appears to benefit plant growth and carbon sequestration, 
because harvested biomass can be used to produce renewable energies like biofuel 
production [13, 23, 28–30].

Phytoremediation is therefore a suitable option to clean metal(loid)s soil con-
tamination. However, metal(loid)s are immutable, and therefore several of the low-
cost phytoremediation options that are available for the remediation of organic 
contamination, such as phytodegradation and rhizodegradation, are not applicable 
to metal(loid)s-contaminated soils [31, 32]. Moreover, another phytoremediation 
technique, phytovolatilization, can only be used for some metals like mercury (Hg) 
and selenium (Se) which have volatile forms [24, 31]. Remediation options that 
remain are phytostabilization and phytoextraction [31, 32]. Based on economic 
implications, the aim of phytoremediation can be (1) plant-based extraction of met-
als with financial benefit (phytoextraction), (2) risk minimization (phytostabilization), 
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and (3) sustainable soil management in which phytoremediation steadily increases 
soil fertility allowing growth of crops with added economic value [10, 32].

It can be an effective strategy for in situ or ex situ stabilization, removal, or bio-
degradation of a great range of pollutants in the different environmental compart-
ments, including trace elements (HMs and nonessential metal(loid)s), radionuclides, 
excess nutrients, salts, and recalcitrant organic pollutants, like petroleum hydrocar-
bons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls 
(PCBs), chlorinated solvents, and explosives (e.g., 2,4,6-trinitrotoluene) [1, 33]. 
Phytoremediation includes a range of plant-based remediation processes, and the 
most usual are presented in Table 2.1.

Phytoremediation reduces the risks of pollutants dispersion, and it is applicable 
for the decontamination of soils or wastewaters with mixed pollutants [13, 34]. 
Mechanisms and efficiency of phytoremediation depend on several factors such as 
the pollutant class, its bioavailability especially in soils, physical and chemical char-
acteristics of the matrix (soil, water, and wastewaters), and plant species [13, 35].

The plants considered more efficient for phytoremediation are the metallophytes. 
These are able to survive and reproduce on metal-polluted soils [31, 36]. However, 
a great number of known metallophytes have small biomass and slow growth, char-
acteristics that are not advantageous for phytoremediation technologies [31, 37]. 
Some metallophytes can be further classified as metal hyperaccumulators [31, 36]. 
Content of specific metal(loid)s in these plants exceeds levels that are usually 
required for normal growth and development. Hyperaccumulators belong to dis-
tantly related families, but share the ability to grow on metalliferous soils and accu-
mulate metals in levels far in excess of those found in the majority of species, 
without suffering phytotoxic effects [1]. Three basic hallmarks distinguish hyperac-
cumulators from related non-hyperaccumulating plants: a strongly enhanced rate of 
metal(loid)s uptake, a faster root-to-shoot translocation, and a greater ability to 
detoxify and sequester metals in leaves [1].

These plants can be used in phytoextraction applications, but in most cases, 
hyperaccumulator plants are only able to accumulate one metal, while metal-
polluted soils often contain a mixture of metals [31, 32, 36, 38]. This mixed pollu-
tion is not only challenging for phytoremediation with hyperaccumulator plants but 
also for metal-tolerant plants in general as plant metal tolerance mechanisms are 

Table 2.1  Overview of most employed phytoremediation techniques (Adapted from [1])

Technique Description

Phytostabilization Immobilization of pollutants in the root zone while stabilizing the soil, thus 
reducing metal leaching and aerial dispersion of contaminated soil particles

Phytoextraction Uptake of pollutants by plant roots and their translocation and subsequent 
accumulation in aboveground tissues

Rhizodegradation Breakdown of organic pollutants through rhizospheric microbes
Phytodegradation Plant metabolism transforms, breaks down, stabilizes, or volatilizes organic 

compounds from the soil and groundwater into harmless by-products
Phytovolatilization Uptake of pollutants by plant roots and their transformation into volatile 

forms that transfer into the atmosphere
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usually metal-specific. Another group of metallophytes, the metal excluders, are 
also considered appropriate for phytoremediation. These plants accumulate metals 
from the soil into their roots, but restrict metal(loid)s transport inside the plant. Such 
plants cannot be used for phytoextraction, rather they can be effective in phytosta-
bilization techniques [31, 39]. Other plants used for phytoextraction of metals are 
high biomass-producing non-hyperaccumulator plants [32]. In comparison with 
hyperaccumulators, these plants accumulate a lower concentration of metal(loid)s 
but produce higher aboveground biomass, removing similar quantities of metals as 
hyperaccumulators [24, 31]. In conclusion, there are a large number of different 
plant species and ecotypes referred in the literature with the potential for phytore-
mediation purposes (phytoextraction or phytostabilization).

The success of phytoremediation is strongly determined by the amount of plant 
biomass present and the concentration of metal(loid)s in plant tissues. Therefore, 
high uptake and an efficient root-to-shoot transport system combined with enhanced 
metal tolerance provide hyperaccumulators with a high potential detoxification 
potential. However, high levels of metal(loid)s are toxic to most plants and can 
impair cell metabolism, reduce plant growth, and restrict metal phytoextraction. 
Physiological mechanisms that may be affected include enzymatic activity, protein 
structure, water balance, respiration and ATP content, photosynthesis, plant division, 
and morphogenesis [1, 5]. Phytoremediation has some disadvantages: naturally 
occurring hyperaccumulators grow slowly, the remediated area is only that close to 
the root, harvestable aboveground biomass is low, and numerous species cannot be 
planted in places strongly polluted. So genetic engineering approaches to develop 
transgenic plants with more favorable characteristics such as high biomass produc-
tion, more metal accumulation, tolerance against metal toxicity, and well adapted to 
a variety of climatic conditions might be more beneficial in this respect [40].

Further research is needed in the field of genetic engineering to improve the 
phytoremediation abilities of transgenic plants and to understand the mechanisms 
and effectiveness of phytoremediation techniques in order to make these technolo-
gies more effective, timesaving, and economically feasible [40].Accordingly, it is 
necessary to develop other phytoremediation strategies for metal(loid)s-contaminated 
soils. Strategies to improve phytoremediation efficiency are the use of soil amend-
ments (to increase or decrease metal availability) and the use of the plants’ associ-
ated microorganisms. The rhizospheric environment is an essential habitat for 
different microbes including protozoa, algae, fungi, and bacteria. Such microorgan-
isms exhibit a diversity of associations with plants [41, 42]. Microbes have the abil-
ity to synthesize and sense signaling molecules that trigger microbial populations to 
form a biofilm around the root surface and induce a related response. A number of 
plant-associated microorganisms are favorable because they can enhance the bio-
availability of nutrients and mitigate the negative effects of metal(loid)s on plants. 
Rhizospheric microorganisms possess potential to biodegrade organic pollutants, 
through rhizodegradation, biotransformation, and volatization [41].

Numerous studies have demonstrated the adverse effect of different metal(loid)
s on the soil microbial diversity and their disastrous interaction with plants in pol-
luted soils. Excessive concentrations of metal(loid)s in soils can affect the growth, 
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morphology, and metabolism of microorganisms mainly through destruction of 
cellular membranes and organelles, enzyme denaturation, and functional or confor-
mational disturbance [41, 43]. To optimize the results of the application of phytore-
mediation techniques, many researchers have analyzed the dynamics between 
plants, microorganisms, and metal(loid)s in rhizospheric environments [43–54]. 
Recently, inoculation of plants with selected and acclimatized microbes (bioaug-
mentation) has attained salience for phytoremediation of metal(loid)s polluted 
soils, and assisted phytoremediation techniques are starting to be used to decon-
taminate polluted soils on large scales [40, 48, 50, 52, 55].

The interface between microbes and plant roots in the rhizosphere is believed to 
vastly influence the growth and survival of plants. The biotechnological potential of 
microorganisms to resist and/or remove metals directly from polluted media and 
their beneficial effects on plant growth may lead to environmental-friendly and cost-
effective strategies toward reclamation of polluted soils. Rhizosphere microbes can 
determine metal availability and change speciation of HMs by producing biosurfac-
tants, organic ligands via microbial degradation of soil organic matter, and exudates 
(e.g., metabolites, microbial siderophores), which can modify HMs bioavailability 
and uptake by plants [25, 44, 56–58]. Thus, microbial activities strongly influence 
metal speciation and transport in the environment. Different organisms exhibit 
diverse responses to toxic ions, which confer upon them a certain range of metal 
tolerance.

In conclusion, microbe-assisted phytoremediation has emerged as a sustainable 
soil cleanup technology with reduced soil disturbance, low maintenance, and over-
all low costs [25]. Recent studies have demonstrated that microorganisms play an 
important role in phytoremediation technology. Some species of microorganisms, 
including biodegradative bacteria, plant growth-promoting bacteria (PGPB), and 
filamentous fungi, appear to be beneficial in phytoremediation by changing rhizo-
spheric environment, increasing biomass production and bioavailability or stabiliza-
tion of HMs, and reducing the respective toxicity [23, 59]. Therefore, they can be 
used in soil amelioration. Microorganisms can produce organic compounds that 
solubilize and/or stabilize HMs by changing pH and oxidation-reduction potential 
of their soil environment.

Some polysaccharides secreted by microorganisms can easily bind soil particles, 
thereby improving the formation of soil aggregates. For example, glomalin and 
other glycoproteins released by arbuscular mycorrhizal fungi (AMF) may improve 
soil structure by increasing particle aggregation and aggregating stabilization against 
wind and water erosion. In addition, some soil bacteria are able to biodegrade toxic 
organic compounds, including solvents, produced in mineral processing [23].

Microorganisms further play an important role in removing or detoxifying HMs 
during the phytoremediation process [23]. Although phytoremediation is a sustain-
able and inexpensive technology for the removal of pollutants from the environment 
by plants, it is nevertheless a slow process.

Thus, it is important to improve the efficiency and increase the level of the 
stabilization or removal of toxic metal(loid)s from soils by plants. For this rea-
son, greater attention has been paid to the role that fungi play in plants grown on 
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metal-contaminated soils that have poor nutrients, low water-holding capacity, 
and adverse physical conditions [60].

2.2  �Phytoremediation of Metals Assisted by Fungi

The microbiota can contribute to plant growth, productivity, carbon sequestration, 
and phytoremediation. Fungi are generally more tolerant to metals than bacteria 
[44, 61]. Fungi can efficiently explore soil microsites that are not accessible for 
plant roots due to the small diameter of the mycelia and can compete with other 
microorganisms for water and metal uptake, protect the roots from direct interaction 
with the metals, and hinder metal transport through increased soil hydrophobicity 
[44, 58]. Fungi have been defined as eukaryotic, heterotrophic, and absorptive 
organisms, which typically develop a branched, tubular body called a mycelium and 
reproduce by means of sporulation. Furthermore, the ability of fungi to form 
extended mycelial networks makes them well suitable for bioremediation processes. 
The application of filamentous fungi can be a promising alternative or a valuable 
complement in situations of bacterial malfunction [46, 47, 62]. Indeed, they play an 
important role in organic and inorganic transformation, element cycling, rock and 
mineral transformations, bio-weathering, mycogenic mineral formation, fungal-
clay interactions, and metal-fungal interactions. The extensive hyphal networks in 
the soil can also significantly contribute to stabilization of soil aggregates; they 
modify the chemical composition of root exudates and soil pH and control 
metal(loid)s bioavailability in the soil [60].

Many fungi, such as Trichoderma, Aspergillus, and the arbuscular mycorrhizal 
fungi (AM), have shown the potential to improve phytoremediation processes in 
metal-contaminated soils [45, 63], because they have high ability to immobilize 
toxic metals by either the formation of insoluble oxalate, biosorption, or chelation 
onto melanin-like polymers. In fact, vascular plants host a great variety of fungi. In 
addition to being susceptible to soilborne pathogens, plant roots are also colonized 
by nonpathogenic or mutualistic fungi, such as AM fungi, ectomycorrhizae (EM), 
and dark septate endophytes (DSE). The AM fungi comprise about 150 species of 
zygomycetous fungi, and EM fungi include about 6000 species that are primarily 
basidiomycetes along with a few ascomycetes and zygomycetes [44].

The AM fungi are associated with most of herbaceous plants and with various 
woody plant families, while the EM fungi are mainly associated with a limited num-
ber of woody plant families [44, 64]. The mycorrhizal fungi facilitate the absorption 
of nutrients from the soil and help their translocation to host plants, sequester poten-
tially deleterious metal(loid)s, and can stimulate soil microbial activity contributing 
to the overall biodegradation of soil pollutants [3, 40, 44, 65, 66]. Some DSE have 
been found as fungal symbionts in members of the Cruciferae species, although 
these are known as non-mycorrhizal plants [44]. The DSE are broadly classified as 
conidial and sterile septate fungal endophytes, which form melanized structures, 
such as inter- and intracellular hyphae and microsclerotia, in plant roots. The DSE 
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fungi have been found worldwide and coexist often with different mycorrhizal fungi 
[44]. They have been reported from more than 600 plant species, including plants 
that are considered non-mycorrhizal [44, 64].

AM fungi of the Glomeromycota are the most common soil microorganisms in 
natural and agricultural soils [3, 67]. Approximately 160 AM fungal taxa of the 
order Glomales (Glomeromycota) have been described to date. Based on the mor-
phological and molecular identification methods, the AM fungi were divided into 12 
genera (Acaulospora, Ambispora, Archaeospora, Diversispora, Entrophospora, 
Kuklospora, Geosiphon, Gigaspora, Glomus, Intraspora, Paraglomus, 
Scutellospora) with the Glomus species as dominant [60, 68–70]. AM fungi are 
ubiquitous and form symbiotic associations with the majority of terrestrial plants 
[71, 72]. Consequently, they represent an important part of the soil microbiome and 
provide their hosts with benefits including increased access to nutrients through the 
enlargement of soil volume that can be assessed by roots/mycelia [3, 40], especially 
phosphorus; they also improve water acquisition and reinforce pathogen resistance 
[73, 74]. Therefore, mycorrhizal plants invest less energy into the extension of the 
root system than non-mycorrhizal plants and are more resistant to drought stress 
and pathogen attacks [31].

Mycorrhizal fungi keep the number of pathogens low through acidification of the 
rhizosphere and/or increased production of antibiotics [31, 75]. Mycorrhizal fungi 
can also increase plant’s resistance at a physiological level. It has been shown that 
AMF can lead to greater resistance to herbivores through the action of jasmonic acid 
[31, 75]. Moreover, mycorrhizal associations could promote a faster closure of the 
leaf stomata, preventing plant wilting [31, 75], and boost plant osmolyte levels such 
as proline [31, 76]. Studies carried out by Sarwat et al. [77] showed that AM fungi 
inoculation in mustard (Brassica juncea) raised osmolyte content as proline and 
mitigate overall symptoms of drought stress caused by sodium chloride.

Mycorrhiza can assist in phytoremediation either by making metal(loid)s more 
bioavailable for uptake by plants or by reducing metal toxicity in their host plants 
[12, 31, 37, 78]. However, the phytoremediation efficiency is extremely dependent 
on fungal species and ecotype [31, 37, 78–80]. The selection of the fungal isolate to 
use in phytoremediation determines which plant species can be chosen for the appli-
cation. Obviously, to be able to exert a beneficial effect on phytoremediation effec-
tiveness, mycorrhizal fungi must first establish a mycorrhizal symbiosis. Therefore, 
the ability of the fungus to survive in metal(loid)s contaminated areas is a prerequi-
site for its use in phytoremediation applications.

To ensure their survival in metal(loid)s-contaminated soils, mycorrhizal fungi can 
use different extracellular and intracellular defense mechanisms. Extracellular 
mechanisms, such as chelation and cell wall binding or biosorption, may be used to 
prevent metal uptake. Intracellular mechanisms, including binding to nonprotein thi-
ols and transport into intracellular compartments, can reduce the concentration in the 
cytosol [31, 37]. Intracellular mechanisms depend on transporter proteins and intra-
cellular chelation (e.g., by metallothioneins, glutathione, organic acids, amino acids, 
and compound-specific chaperones) [31, 81]. Metal transporter proteins can allevi-
ate metal stress by subcellular compartmentation via transporters into the vacuole or 
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other internal cell compartments and/or vacuolar compartmentation of a complex 
(e.g., the GSH-M complex). Once chelated, these metal complexes can be trans-
ported as well. Furthermore, uptake/efflux of metals via specific transporter systems 
located in the plasma membrane can be downregulated [31, 81].

Additionally, antioxidative defense processes to detoxify reactive oxygen spe-
cies (ROS) and mechanisms that focus on the repair of metal-damaged biomole-
cules can be present [31, 37]. Chelation is a first defense mechanism of mycorrhizal 
fungi against high metal(loid)s concentrations, which is both metal- and species-
dependent. In accordance with the literature, a large range of different chelating 
agents, excreted by fungi, can be able to chelate metals, but there are also a number 
of studies reporting the opposite, metal solubilization from metal-containing che-
lates due to the exudation of organic compounds by mycorrhizal fungi [31, 37, 39, 
82, 83]. Mutualistic fungi can also play a role in the protection of roots from 
metal(loid)s toxicity by mediating the interactions between the metals and the plant 
roots. The ability of mycorrhizal associations to attenuate metal toxicity for higher 
plants has been demonstrated [60, 71, 72, 78, 84, 85]. Several mechanisms explain 
why AM fungi can alleviate the stress of metal(loid)s. Mycorrhizal plants have 
larger biomass that can dilute the metal concentration [3, 86], and the metal(loid)s 
can be immobilized and compartmentalized in AM hyphal cells [3, 86, 87]. In par-
ticular, some native mycorrhizae surviving at contaminated sites may cause precipi-
tation of metal oxalates in the intracellular spaces of the fungi or the host plant and 
thus restrict apoplastic transport by the Casparian strip [60, 88]. Alternatively, 
mycorrhizal fungi can directly protect the plant from the buildup of phytotoxic con-
centrations of certain pollutants by secreting specific detoxifying compounds (e.g., 
organic acids) or by binding the pollutants into fungal tissues associated with the 
roots, thus creating a physical barrier against toxic metal translocation [60, 89].

In addition, AM fungi can produce fungal polyphosphates, metallothioneins, and 
glycoproteins as glomalin, which have high binding capacities for metal(loid)s [3, 
90]. Glomalin is a component of spore and hyphal cell wall of AM fungi and has the 
ability to sequester metal(loid)s. Driver et  al. [91] found that glomalin is tightly 
bound in AM fungi hyphal and spore walls, and small amounts (<20%) of glomalin 
are released by AM fungi into the soil environment. Glomalin, though still not bio-
chemically defined, is an N-linked glycoprotein composed of 3–5% N, 36–59% C, 
4–6% hydrogen, 33–49% oxygen, and 0.03–0.1% P, and it also contains 0.8–8.8% 
Fe, which may be responsible for the reddish color of glomalin [92]. Apart from the 
Glomeromycota, no other fungal group produces this glycoprotein in significant 
amounts [92].

A number of studies have reported the contributions of glomalin to phytoreme-
diation [92]. While examining the roles of glomalin in metal(loid)s sequestration of 
two polluted soils, González-Chávez et al. [93] stated the potential of glomalin to 
reduce availability and toxicity of “potentially toxic elements” such as Cu, Cd, and 
Pb. Furthermore, Cornejo et  al. [94] reported that glomalin-related soil proteins 
(GRSP) bound to about 28% of the Cu and 6% of the Zn present in a soil highly pol-
luted by these metals. From their study, it appears that the higher the concentration 
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of the pollutants, the higher the ability of GRSP to bind them and make the pollut-
ants unavailable.

Although the mechanisms by which metal(loid)s are sequestrated by glomalin 
are not clear at all, Malekzadeh et al. [92] proposed that mycelium of AM fungi play 
a major role in the sequestration of metals. As a result, glomalin may be involved in 
metal(loid)s sequestration due to its presence on the cell wall of the hyphae. 
González-Chávez et al. [95] showed that the hyphae of AM fungi sequester Cu as 
previously illustrated by using transmission electron microscopy and scanning elec-
tron microscopy linked to an energy dispersive X-ray spectrometer. This sequestra-
tion occurs not only in the mucilaginous outer hyphal wall zone and the cell wall but 
also inside the hyphal cytoplasm. In conclusion glomalin may reduce toxic elements 
bioavailability via their stabilization and may decrease their toxicity risk to micro-
organisms and plants in metal(loid)s-polluted sites [92].

AM fungi may often lower metal(loid) mobility and toxicity either by increasing 
soil pH [20, 21, 96, 97] or by sequestering inside extraradical mycelium [21, 98]. 
The phytotoxicity of metal(loid)s and level of plant tolerance are closely related to 
the stored forms of metal(loid)s and their mobility in plant tissues [20, 21, 99, 100]. 
Therefore, the distribution of chemical forms could be one of the most important 
metal(loid)s detoxification mechanisms in plants. It has been reported that AM 
fungi might enhance the tolerance to Cd of Medicago sativa L. by altering Cd chem-
ical forms in different plant tissues [20, 21, 96, 101]. AM fungi can also alter the 
gene expression that relates to metal tolerance of host plants [3]. AM fungi have also 
been frequently reported in hyperaccumulators growing in metal-polluted soils indi-
cating that these fungi have evolved a heavy metal tolerance and that they may play 
important roles in the phytoremediation of these sites [14, 80, 86, 102, 103].

Recently, it has been demonstrated that AM fungi can increase the metal(loid) 
translocation factor, biomass, and trace element concentration of hyperaccumu-
lators [104–106]. Hyperaccumulators combined with AMF have advantages 
over the independent use of hyperaccumulators and have been proposed as one 
of the most promising green remediation techniques [36, 104, 105]. However, it 
is important to note that reductions [104, 105, 107, 108], increases [104, 105, 
109, 110], or no changes of metal(loid)s concentrations in plants following 
mycorrhizal inoculation have all been observed, depending on the fungal-plant 
association [104, 105, 111–113].

Sheikh-Assadi et al. [114] reported a higher accumulation of Pb and Cd in the 
roots of inoculated Limonium sinuatum in a pot experiment. Plants inoculated with 
a mixture of G. mosseae and G. intraradices and exposed to different Cd and Pb 
concentrations accumulated Cd and Pb in the roots and translocated very little to the 
shoots. Total Cd and Pb accumulated in the roots was nearly two to three times 
higher in AM fungi-inoculated plants compared to non-mycorrhized plants. 
Furthermore, it was observed that mycorrhized plants had a higher metal tolerance. 
Therefore, it was concluded that mycorrhization alleviated metal toxicity in the 
plants and that inoculated L. sinuatum could be useful as a Cd or Pb controlling 
agent for phytoremediation. A good understanding of AM fungal communities under 
natural metal(loid)s stress can contribute greatly to the recognition of interactions 
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between fungi, hosts, and metal(loid)s and further their rational utilization in 
metal(loid)s-polluted sites. Compared with AM fungi, endophytic fungi are ubiqui-
tous and comprise a diverse group of fungi also showing potential to enhance phy-
toremediation [46, 47, 115].

Endophytic microorganisms (including bacteria and fungi) are likely to inter-
act closely with their hosts and are more protected from adverse changes in the 
environment. Exploiting endophytic microorganisms to reduce metal(loid) toxic-
ity to plants has been investigated to improve phytoremediation efficiencies. 
Therefore, endophyte symbiosis can counteract metal(loid) stress that exerts 
negative effects on plant growth.

The endophytic fungi could increase resistance of host plants to multimetal 
contamination. They possess suitable metal sequestration or chelation systems 
to increase their tolerance to metal(loid)s, and their higher biomass is also suit-
able for bioremediation [44, 116]. Furthermore, the presence of metal-resistant 
endophytic microorganisms may be valuable for host plants because they can 
enhance both nutrient assimilation and metal bioavailability, through the exuded 
metabolites in the plant rhizosphere, improving the phytoextraction processes 
[44, 54]. The metabolic processes operated by endophytes make them relevant 
resources for phyto(bio)remediation, helping on the phyto(bio)remediation of 
pollutants and biotransformation of recalcitrant organic compounds through 
their own degradative capabilities (phytostimulation or rhizodegradation) [44, 
48, 117, 118].

Endophytic yeasts Cryptococcus sp. CBSB78 and Rhodotorula sp. CBSB79 
have been isolated from canola roots (B. chinensis) in multimetal-contaminated 
soils and show resistance to Cd, Pb, Zn, and Cu [44, 119, 120]. Multiple HMs 
hyperaccumulating plants of the genus Portulaca contain endophytic fungi such 
as Trichoderma, Fusarium, Aspergillus, Paecilomyces, Penicillium, Paecilomyces, 
Cladosporium, and Lasiodiplodia [44, 46, 47]. Penicillium spp. and Trichoderma 
spp. were the most frequently isolated fungal taxa that can counteract HMs 
stress [44, 121–123]. Recent studies highlight the possible role of fungal endo-
phytes harbored inside S. nigrum, which are able to promote host plant growth 
and enhanced metal extraction, improving the efficiency of phytoremediation in 
the cleanup of Cd-contaminated soils [56, 57]. In fact, the inoculation of 
Cd-resistant endophytic fungi with S. nigrum increased the plant’s tolerance to 
the high concentrations of Cd, and the parameters related to the biosorption of 
Cd, including translocation factor, bioconcentration factor, and Cd tolerance 
index, were significantly enhanced.

In addition, some filamentous fungi such as Aspergillus niger, Mucor rouxii, and 
Rhizopus arrhizus can be used as sorbents because of their capacity to sorb metal 
ions such as Cu2+, Co2+, Cd2+, Zn2+, and Pb2+ [23].

Table 2.2 summarizes the published studies on microbial effects on plants under 
metal stress.
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Table 2.2  Microbial-mediated metal(loid)s stress tolerance

Microorganisms M Test plant
Microbial effects on plants 
under metal stress References

Glomerales species
Rhizophagus (25.4%), 
Funneliformis (19.6%), 
Claroideoglomus 
(10.7%)

Sb Lactuca sativa
Daucus carota

Significant increase on its 
accumulation in carrots (all 
organs) with higher 
accumulation in roots
In lettuce, accumulation 
appeared to be dependent on 
the Sb chemical species
Moreover, it was observed for 
the first time that AM fungi 
changed the human 
bioaccessible fraction of Sb 
in edible organs

Pierart et al. 
[124]

Funneliformis mosseae, 
Rhizophagus 
irregularis, 
Claroideoglomus 
lamellosum

Cr(III), 
Cr(VI)

Ricinus 
communis

Decreased Cr(VI) 
concentration in soils

Gil-Cardeza 
et al. [125]

AM fungi Pb, As, 
Cd

S. melongena AM fungi application 
improved growth, biomass, 
and antioxidative defense 
response of plants against 
metal(loid)s stress
The biomass and metal(loid)s 
uptake increased with AM 
fungi inoculation

Chaturvedi 
et al. [73]

Funneliformis mosseae, 
Rhizophagus 
intraradices

Cd S. nigrum Significantly enhanced shoot 
biomass and Cd shoot 
concentration

Li et al. [65]

Rhizophagus 
intraradices

Cd Oryza sativa Significant effects on root 
biomass, straw, and root Cd 
concentration

Luo et al. 
[21]

G. intraradices 
BEG140, G. mosseae 
BEG95, G. etunicatum 
BEG92, G. claroideum 
BEG96, G. 
microaggregatum 
BEG56, G. geosporum 
BEG199

Hg Zea mays L. Played an important role in 
the biogeochemical cycle of 
Hg in terrestrial ecosystems, 
indicating that AM fungi can 
alter Hg ligand environment 
and Hg soil to root mobility

Kodre et al. 
[126]

Rhizophagus 
irregularis

Cd Phragmites 
australis

AM fungi improved Cd 
tolerance by promoting 
growth and changes in the 
distributions of elements in 
the treated plants
For the first time, this study 
determined that P. australis 
inoculated by AM fungi could 
be a Cd-tolerant species

Huang et al. 
[127]

(continued)
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Table 2.2  (continued)

Microorganisms M Test plant
Microbial effects on plants 
under metal stress References

Glomerella truncata 
PDL-1, Phomopsis 
fukushii PDL-10

Cd Solanum 
nigrum

Significantly improved shoot 
and root length, chlorophyll 
content, and dry weight. The 
results of this study highlight 
the possible role of fungal 
endophytes harbored inside S. 
nigrum, which have the 
potential to improve the 
efficiency of 
phytoremediation or 
phytostabilization in the 
cleanup of Cd-contaminated 
soils

Khan et al. 
[57]

Funneliformis mosseae Sb Cynodon 
dactylon

Plant biomass was 
significantly increased by the 
symbiosis. Compared to 
uninoculated controls, 
mycorrhizal colonization 
significantly increased shoot 
and root Sb concentrations 
under all Sb treatment levels. 
Bioconcentration and 
translocation factors were 
elevated by mycorrhizal 
colonization. The fungus 
served an important role in 
Sb transport and fate in 
soil-plant systems

Wei et al. 
[128]

Claroideoglomus 
claroideum, 
Funneliformis mosseae

Cd, Pb Calendula 
officinalis L.

Stimulated accumulation of 
important secondary 
metabolites (total phenols, 
flavonoids, carotenoids) in 
marigold flowers and, 
therefore, enhanced the 
antioxidant capacity. The 
highest b-carotene values and 
lycopene were found in the 
marigold-F. mosseae 
association

Hristozkova 
et al. [129]

Rhizophagus 
irregularis

Pb Trifolium 
repens L.

Significant increase in 
glomalin production at all 
levels of Pb. Fungal symbiont 
seems to change the 
distribution pattern of Pb in 
organs including extraradical 
hyphae and roots

Malekzadeh 
et al. [92]

(continued)
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Table 2.2  (continued)

Microorganisms M Test plant
Microbial effects on plants 
under metal stress References

Acaulospora, Glomus,
Rhizophagus

Pb Vetiveria 
zizanioides
Ricinus 
communis

Higher tendency for Pb 
absorbed by the roots to be 
transported to the shoots

Schneider 
et al. [63]

Glomus fasciculatum Cd, Zn Helianthus 
annuus L.

Increased the dry biomass of 
the plant and accumulation of 
Zn and Cd in roots and shoots

Mani et al. 
[130]

Claroideoglomus 
claroideum, 
Funneliformis mosseae

Cd, Pb Calendula 
officinalis L.

Accumulation of secondary 
metabolites (phenols, 
flavonoids, carotenoids) and 
enhanced antioxidant 
capacity

Hristozkova 
et al. [129]

Glomus viscosum, 
Glomus constrictum, 
Glomus intraradices, 
Rhizophagus 
intraradices

Mn Phytolacca 
americana

Accumulated much higher 
concentrations of Mn, but no 
obvious correlations with AM 
fungi

Wei et al. 
[105]

Glomus etunicatum Pb Calopogonium 
mucunoides

Promoting plant nutrient (P, 
S, and Fe) acquisition, 
attenuating the negative 
effects of Pb on membranes, 
and contributing to the 
reduction of ROS generation

De Souza 
et al. [131]

Glomus mosseae Cd, Pb Cajanus cajan 
(L.) Millsp.

Reduced metal translocation 
from root to shoot. Exposure 
to Cd and Pb significantly 
increased the levels of PCs 
and GSH. The metal contents 
were higher in roots and 
nodules when compared with 
that in shoots. The results 
indicated that PCs and GSH 
might function as potential 
biomarkers for metal toxicity, 
and microbial inoculation 
showed bioremediation 
potential by helping pigeon 
pea to grow in multimetal-
contaminated soils

Garg and 
Aggarwal 
[132]

(continued)

2  Microbial-Assisted Phytoremediation: A Convenient Use of Plant and Microbes…



34

2.3  �Phytoremediation of Metals Assisted by Bacteria

Between the microorganisms involved in soil metal(loid)s phytoremediation, the 
rhizosphere bacteria deserve special attention because they can directly improve the 
phytoremediation process by changing the metal bioavailability via soil pH adjust-
ment, release of chelators, induced redox changes, etc. [50, 54, 58, 61, 102, 138]. It 

Table 2.2  (continued)

Microorganisms M Test plant
Microbial effects on plants 
under metal stress References

Aspergillus niger, 
Penicillium bilaiae, 
Penicillium sp.

Ni, Cu, 
Zn, Pb

NA Main organic acids identified 
were oxalic acid (A. niger) 
and citric acid (P. bilaiae). 
Exudation rates of oxalate 
decreased in response to Pb 
exposure, while exudation 
rates of citrate were less 
affected
The release of metals was 
related to the production of 
chelating acids, but also to 
the pH decrease. This 
illustrates the potential to use 
fungi exudates in 
bioremediation of 
contaminated soil

Arwidsson 
et al. [133]

Scleroderma citrinum, 
Amanita muscaria, 
Lactarius rufus L.

Zn, Cd, 
Pb

Pinus 
sylvestris L.

Reduced translocation of Zn, 
Cd, or Pb from roots to 
shoots in pine seedlings

Krupa and 
Kozdrój 
[134]

Beauveria caledonica Pb NA Solubilized Pb from 
pyromorphite and 
accumulated the highest 
water-soluble fraction and 
total Pb concentration in the 
mycelium

Fomina et al. 
[135]

Glomus mosseae Cu, Pb, 
Cd

Sorghum Immobilized Cu, Pb, and Cd 
and accumulated metals in a 
nontoxic form leading to 
increased plant growth

González-
Chávez et al. 
[136]

Oidiodendron maius Zn NA Mobilized insoluble inorganic 
zinc compounds (ZnO and 
Zn3(PO)2). Induction of 
organic acids (malate and 
citrate) by the metal 
compounds was at least in 
part responsible for metal 
solubilization

Martino 
et al. [137]

M metal(loid)s, NA not applicable
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was further demonstrated that some kinds of microorganisms are able to take up 
metal(loid)s from contaminated soils by reducing them to a lower redox state [23]. 
For example, some bacteria, such as Bacillus arsenicoselenatis, Chrysiogenes arse-
natis, and Sulfurospirillum arsenophilum, have been found to have a large capacity 
for mobilizing As in mine tailings, wherein they can rapidly achieve microbial 
reduction of As(V) [23].

Combining increased rhizospheric plant bioavailability and reduced internal bio-
availability of metal(oid)s should allow plants to bioaccumulate higher amounts of 
metal(oid)s, without increases on phytotoxicity [46, 47, 139]. Further, since the 
bacterial cells (approximately 1.0–1.5 mm3) have an extremely high ratio of surface 
area to volume, they could sorb a greater quantity of metal(loid)s than inorganic soil 
components (e.g., kaolinite, vermiculite, mica) either by an independent passive 
metabolism or by a metabolism-dependent active process [50]. Several authors have 
pointed out that bacterial biosorption/bioaccumulation mechanisms, together with 
other plant growth-promoting features, accounted for improved plant growth in 
metal(loid)s-contaminated soils [50, 140, 141].

Plant growth-promoting (PGP) bacteria are so named due to their potential to 
enhance plant growth. These PGP bacteria may develop symbiotic/mutualistic asso-
ciations with plants and may be found as free living rhizospheric or endophytic 
bacteria. Genera including Gluconacetobacterium, Flavobacterium, Beijerinckia, 
Klebsiella, Erwinia, Enterobacter, Burkholderia, Pseudomonas, Serratia, and 
Bacillus are among the beneficial PGP bacteria able to control plant growth [41, 
142, 143]. Some studies have found that plant growth-promoting rhizobacteria 
(PGPR) have the capacity to alleviate metal-induced phytotoxicity and enhance bio-
mass production of plants when grown in metal(loid)s-contaminated soils. Although 
the role of PGPR on plant growth and metal(loid)s phytoremediation potential in 
polluted soils has been studied extensively, the dynamics of plant-endophytic bacte-
ria and their potential role in phytoremediation are only beginning to be described 
in the literature in recent years [25, 52, 144–147].

The metal-resistant bacteria on roots and in the rhizosphere can benefit from root 
exudates, but some bacteria enter the plant as endophytes that do not cause harm 
and can establish a mutualistic association [148, 149]. However, endophytic popula-
tions, as rhizospheric populations, can be restricted by biotic and abiotic factors 
[149–151]. The endophytic bacteria may be more protected from the effects caused 
by biotic and abiotic stresses than rhizospheric bacteria [149]. In accordance with 
their life strategies, endophytic bacteria can be classified as “obligate” or “faculta-
tive.” Obligate endophytes are strictly dependent on the host plant for their growth 
and survival, and their transmission to other plants occurs vertically or via vectors. 
Facultative endophytes have a stage in their life cycle in which they exist outside 
host plants. Endophytic bacteria enter plant tissues usually through the root zone; 
however, aerial parts of plants, such as flowers, stems, and cotyledons, may also be 
used for this entry [152]. The bacteria penetrate the plant tissues via germinating 
radicles [153], secondary roots [154], stomates [155], or as a result of foliar damage 
[156]. Endophytes, once inside the plant, may either become placed near the 
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entrance area or spread throughout plant tissues. These microorganisms can be pres-
ent within cells, in the intercellular spaces, or in the vascular system.

Although many reports attest the importance of PGPR in microbial-assisted phy-
toremediation, the bacterial endophytes offer several advantages over PGPR. For 
instance, colonization of the plant roots with PGPR is often problematic, because 
application of the inoculant should be at the exact time required for the plant. 
Moreover, being in natural biocenosis, they lose competitiveness over endemic bac-
teria [53]. The survival and colonization potential of PGPR depends also on various 
factors, such as intrinsic physiological characteristics of the organisms and abiotic 
and biotic soil factors [53]. The endophytic bacteria may derive significant competi-
tive advantage over PGPR from their close contact with plants. In addition, reinocu-
lation of endophytic bacteria does not affect the indigenous endophyte population in 
plants [53, 157]. Furthermore, localization within the plant may provide endophytic 
bacteria with the ability to recolonize the plant surface and tolerate some biotic and 
abiotic stress situations in the soil [53, 149].

Although this field of research is at an early stage, the available literature sug-
gests that metal-resistant endophytic bacteria cannot only protect plants from 
metal(loid)s toxicity but also enhance the metal bioaccumulation in plant tissues 
with concurrent stimulation of plant growth. These beneficial effects exhibited by 
endophytic bacteria, together with the suggested interrelationship between micro-
bial metal(loid)s tolerance and plant growth-promoting efficiency, indicate that 
inoculation with endophytic isolates might have significant potential to improve 
phytoremediation efficiency in polluted soils [53]. Endophytic bacteria reside in 
plant tissues beneath the epidermal cell layers, from where they can colonize the 
internal tissues and form a range of different lifestyles with their host including 
symbiotic, mutualistic, commensalistic, and trophobiotic [52, 158]. They are 
ubiquitous in a large diversity of plant species and can colonize a particular host 
with highest densities in root and less from stems to leaves [52, 159].

In general, most endophytes originate from the epiphytic bacterial communities 
in the rhizosphere or phyllosphere or other plant parts; however, some may be trans-
mitted through the seed or damaged foliar tissues ([160, 161]). The long-term 
coevolution of plants and endophytic bacteria resulted in an intimate ecosystem, 
which helps plants to adapt/survive in both biotic and abiotic stress conditions (e.g., 
pathogen infection, drought, salinity, and contaminants) and enhance the ecological 
balance of the natural system [52, 162]. Although bacterial endophytes exist in 
plants variably and transiently [50, 163], they are often capable of triggering physi-
ological changes that promote the growth and development of the plant [50, 164]. In 
general, the beneficial effects of endophytes are more extensive than those of many 
rhizobacteria [50].

PGP bacteria can also enhance plant development by acting as biofertilizers 
(increasing the availability of essential nutrients through, e.g., N2 fixation and phos-
phate and iron solubilization), as organic contaminant biodegraders, as phytostimu-
lants (producing plant growth regulators and hormones, such as indoleacetic 
acid—IAA; cytokinins; and other auxins), as stress controllers (by decreasing eth-
ylene production through the synthesis of 1-aminocyclopropane-1-carboxylic acid 
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deaminase—ACCD), and as plant defense inducers against phytopathogens (by 
producing siderophores, antibiotics, or fungicidal compounds) [25, 148, 165–170].

Moreover, a number of other beneficial effects on plant growth have been attrib-
uted to endophytes which include osmotic adjustment, stomatal regulation, modifi-
cation of root morphology, enhanced uptake of minerals, and change on nitrogen 
accumulation and metabolism [148]. In recent years, phytoremediation assisted by 
bacterial endophytes has been highly recommended for cleaning up of metal(loid)
s-polluted soils since endophytic bacteria may help host plants adapt to unfavorable 
soil conditions and enhance the efficiency of phytoremediation by promoting plant 
growth, alleviating metal stress, reducing metal phytotoxicity, and altering metal 
bioavailability in soil and metal translocation in plants [50, 52].

Endophytic bacteria improve plant growth in metal-polluted soils in two different 
ways: (1) directly by producing plant growth beneficial substances including solubili-
zation and bioconversion of mineral nutrients (phosphorus, nitrogen, and potassium) 
and production of phytohormones, siderophores, and specific enzymes and (2) indi-
rectly by controlling plant pathogens or by inducing a systemic resistance of plants 
against pathogens. Besides, they also change metal bioaccumulation ability in plants 
by excreting metal immobilizing extracellular polymeric substances (EPS), as well as 
metal mobilizing organic acids and biosurfactants [52]. Further, the extracellular 
polymeric substances secreted by endophytic bacteria, consisting mainly of polysac-
charides, proteins, nucleic acids, and lipids, also play a significant role in metal com-
plexation, thereby reducing their bioaccessibility and bioavailability [43, 52].

Joshi and Juwarkar [171] assessed the ability of Azotobacter spp. to produce EPS 
able to form complexes with Cd and Cr decreasing metal uptake by Triticum aestivum. 
Further, the biosurfactants produced by endophytic bacteria seemed to increase the 
bioavailability of poorly soluble metals and to improve phytoremediation rates [52, 
160]. Biosurfactants are low-molecular-weight amphiphilic molecules consisting of a 
hydrophilic and a hydrophobic moiety, comprising a wide range of chemical structures, 
such as mycolic acid, glycolipids, lipopeptides, polysaccharide-protein complexes, 
phospholipids, fatty acids, etc. [52, 172]. These molecules are able to decrease the sur-
face tension, critical micelle concentration, and interfacial tension, thus affecting the 
distribution of the metals among the phases (Ma 2016). Endophytic bacteria produce 
the biosurfactants and release to the host as root exudates.

The secreted biosurfactants initially interact with complex insoluble metals on 
the interface of rhizosphere soil particles and then desorb metals from soil matrix, 
leading to the change of metal mobility and bioavailability in the soil solution [52, 
53]. The interactions between endophytic bacteria, metals, and biosurfactants can 
be explained from a functional perspective, considering that the key role attributed 
to biosurfactants is their involvement in facilitating metal uptake [52, 160]. With 
regard to indirect effects on plant growth promotion, several plant growth-promoting 
endophytic (PGPE) bacteria are known to diminish the stress effects in plants by 
suppressing phytopathogen damage [52] either via biological control of pathogens 
or induced systemic resistance (ISR) of plants against pathogens.

The endophytic bacteria as natural biocontrol agents may have numerous com-
petitive advantages over plant growth-promoting rhizobacteria [52, 53]. Some 
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endophytic bacteria can produce substances that may effectively limit phytopatho-
gens, such as antibiotics, siderophores, a variety of hydrolytic enzymes (such as 
chitinases, proteases, and glucanases), and antimicrobial volatile organic com-
pounds [52, 173]. In many biocontrol systems, one or more antibiotics have been 
shown to play a role in disease suppression. For instance, the endophytic bacterial 
strains Bacillus megaterium BP 17 and Curtobacterium luteum TC 10 effectively 
suppressed the burrowing nematode (Radopholus similis Thorne) by the synthesis 
of antibiotics [52, 174]. Recently, Bacon et al. [175] also reported that a patented 
strain of Bacillus mojavensis produced the biosurfactant C-15 surfactin, which was 
able to control the maize mycotoxic fungus Fusarium verticillioides. Additionally, 
endophytic bacteria can also be effective as competitors of pathogens for coloniza-
tion niches and bioavailable nutrients, indirectly promoting plant productivity 
([176]; Ma 2016).

Induced systemic resistance (ISR) refers to the state of systemically enhanced 
resistance to a broad spectrum of pathogens [52]. The ISR to various diseases 
caused by chemicals and plant growth-promoting bacteria is highly beneficial in 
agroecosystem protection. ISR induced by endophytic bacteria has been demon-
strated against various fungal, bacterial, and viral pathogens in many plant taxa 
([176]; Ma 2016). Priming plants with bacterial endophytes induced a plant defense 
system, which pathogens must overcome to colonize the host [52]. Once the defense 
genes are expressed, ISR activates multiple potential defense mechanisms that 
include the increased activity of chitinases, β-1,3-glucanases, superoxide dismutase, 
guaiacol, catalase (CAT), and peroxidases (POS) [52, 177]. The activity of these 
enzymes is responsible for reactive oxygen species production, and protection of 
cell organelles against oxidative stress may change as a result of the activity of 
endophytic bacteria ([178]; Ma 2016).

In addition, Wan et al. [178] and Zhang et al. [179] found that endophytic bacte-
ria could modulate the activity of plant antioxidant enzymes (such as POS, CAT, 
SOD, glutathione peroxidase, ascorbate peroxidase) and lipid peroxidation (malo-
ndialdehyde formation).

Recent experiments with hyperaccumulator plants revealed that the inoculation 
of soils/seeds/seedlings with metal-resistant endophytic bacteria improved plant 
growth and accelerated the phytoremediation process in naturally and/or artificially 
metal(loid)s-contaminated soils by enhancing nutrient acquisition, cell elongation, 
metal bioaccumulation or stabilization, and alleviation of metal stress in plants [52, 
104, 105, 108, 145, 147, 180–183]. Similarly, the colonization and propagation of 
plant growth-promoting endophytic bacteria are also well known for their role in the 
enhancement of soil fertility and stimulation of host plant development by provid-
ing a plethora of growth regulators [52, 184] and essential nutrients [52] or by syn-
thesizing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase [52, 185], as 
well as by reducing disease severity by suppressing pathogens [52, 174]. Further, 
bioaugmentation with such endophytic bacteria possessing multiple plant growth-
promoting traits, including metal resistance/detoxification/accumulation/biotrans-
formation/sequestration, can reduce phytotoxicity and change the bioavailability of 
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metal(loid)s in contaminated soils, making them a perfect choice for microbial-
assisted phytoremediation studies [50, 52, 53, 168, 169].

Although metal(loid)s negatively influence endophytic bacterial diversity in 
plants [52, 181], numerous studies have demonstrated that endophytic bacteria iso-
lated from hyperaccumulator plants exhibit greater metal tolerance than those from 
non-hyperaccumulator plants [186]. This may be due to the adaptation strategy of 
endophytic bacteria to metal(loid)-containing environments [52, 187]. Numerous 
studies have demonstrated the effect of different metal(loid)s on endophyte diver-
sity, biomass, and activity. However, it is well known that the bacteria isolated from 
polluted environments are tolerant to higher concentrations of metals than those 
isolated from unpolluted areas. Further, after the addition of metals, metal tolerance 
is increased in bacterial communities by the death of sensitive species and subse-
quent competition and adaptation of surviving bacteria [188]. Experimental results 
suggest that bacterial metal(loid) resistance can be a result of horizontal gene trans-
fer (HGT) mediated by plasmids encoding metal resistance genes [52, 189]. For 
instance, some mercury-resistant endophytic bacteria express the MerB gene encod-
ing organomercurial lyase that cleaves organomercurials into mercuric ion (Hg2+) 
[52, 190] and MerA gene encoding mercuric reductase that converts the highly toxic 
ionic Hg2+ into the less toxic and volatile Hg0 [52, 191], thus alleviating metal toxic-
ity and improving the efficiency of phytovolatilization. The genes specifying the 
various functions needed for biodegradation of organomercurials and reduction of 
Hg2+ are organized in the mercury resistance (Me) operon, which is mostly found in 
gram-negative bacteria [52, 190].

Idris et al. [186] investigated the endophytic bacteria and rhizobacteria associ-
ated with the Ni hyperaccumulator plant Thlaspi goesingense using both 
cultivation-dependent and cultivation-independent techniques. The results showed 
that most of the endophytes were cultivation-independent and tolerated higher Ni 
concentrations than rhizobacteria. Furthermore, endophytic bacteria are thought to 
exhibit different multiple metal resistance through similar mechanisms described 
for rhizobacteria [50, 144]. Therefore, the beneficial endophytes have been pro-
posed as potential natural resources to enhance phytoremediation of metal(loid)-
contaminated soils, due to their biotechnological applications in metal 
bioremediation. The study of the diversity and structure of bacterial communities 
living in niches under metal stress is of paramount importance.

Like rhizobacteria, there are several mechanisms by which PGPE directly facil-
itate growth of their host plants. The mechanisms include nitrogen fixation, solu-
bilization of minerals, and production of phytohormones, specific enzymes, and 
siderophores [52, 53, 192]. Bacteria that can fix nitrogen, i.e., convert stable atmo-
spheric nitrogen gas into a biologically useful form, are known as diazotrophs. 
These organisms reduce dinitrogen to ammonia with the help of the enzyme nitro-
genase [193]. Endophytic bacteria with strong associative nitrogen-fixing ability 
allow plants to survive in nitrogen-poor soil environments and play a major role in 
promoting plant health and growth, compared to other rhizospheric microbes [52, 
194, 195]. Phosphorus (P) is one of the major essential plant nutrients as it plays a 
crucial role in the overall growth of plants by influencing various key metabolic 
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processes such as cell division and development, energy transport, signal transduc-
tion, macromolecular biosynthesis, photosynthesis, root development, and respira-
tion of plants [52, 196, 197]. Phosphorus in soil is immobilized or becomes less 
soluble by absorption and chemical precipitation, so that the amount of readily 
bioavailable phosphorus is very low, compared with the total amount of phospho-
rus present. Therefore, P is often regarded as a limiting nutrient in agricultural 
soils [197, 198]. Under metal(loid)s stress conditions, some metal-resistant endo-
phytic bacteria were found to solubilize precipitated phosphates in soil by acidifi-
cation, ion exchange, and release of chelating agents [52, 199] or to mineralize 
organic phosphorus in soil by exuding extracellular acid phosphatase [52], thereby 
enhancing P availability to plants. It is well known that endophytic bacteria assimi-
late soluble P and prevent its subsequent sorption [52, 200]. Hence, these endo-
phytic bacteria may serve as a sink for phosphorus by rapid microbial phosphorus 
mobilization even under phosphate-limiting conditions. Subsequently, these endo-
phytes become a source of phosphorus to the plant hosts upon its release from 
bacterial cells.

Phosphate solubilizing bacteria are common in the rhizosphere, and secretion of 
organic acids and phosphatases facilitates the conversion of insoluble forms of P to 
bioavailable forms. Endophytes such as Pseudomonas citronellolis, Pseudomonas 
oryzihabitans, Enterobacter agglomerans, Pantoea sp., Enterobacteriaceae, 
Burkholderia, Ralstonia pickettii, Erwinia sp., Klebsiella pneumoniae, Klebsiella 
oxytoca, Acinetobacter sp., Acinetobacter calcoaceticus, Enterobacter sakazakii, 
Agrobacterium sp., and Caulobacter/Asticcacaulis have been defined as efficient P 
solubilizers [53]. Iron (Fe) is one of the important elements for life, and almost all 
organisms, with the exception of certain lactobacilli, need iron-containing proteins 
involved in physiological activities and a series of enzymatic reactions [52]. 
However, in the aerobic environment of soils, iron exists mainly as Fe(III) and tends 
to form insoluble hydroxides and oxyhydroxides, making it largely unavailable to 
microorganisms. To acquire sufficient iron, bacteria had to develop strategies to 
solubilize this metal before uptake. In addition to rhizosphere bacteria, metal-
resistant endophytic bacteria that also produce siderophores have been isolated 
from many different plant species.

Siderophores are produced by a diverse group of microbes ranging from animal 
and plant pathogens to free-living and symbiotic nitrogen-fixing microorganisms. 
However, siderophore production is most common among plant growth-promoting 
rhizosphere bacteria, which exhibit their optimum growth and siderophore produc-
tion activity at extreme environmental conditions, including scarcity of nutrients or 
the presence of elevated concentrations of metal(loid)s and thus may be particularly 
useful for phytoremediation purposes. Iron deficiencies induced by excess of 
metal(loid)s have been reported in various plant species as interveinal chlorosis in 
younger leaves [54]. Their low iron content generally inhibits both chloroplast 
development and chlorophyll biosynthesis, thus affecting plant growth [54]. Under 
such conditions, siderophore-producing bacteria (e.g., rhizosperic, endophytic) 
might offer a biological rescue system that is capable of scavenging Fe3+ and mak-
ing it available to iron-deficient plants.

A. P. Pinto et al.



41

In short, iron bioavailability to plant roots may be modified by the microbial 
production of chelating agents (e.g., siderophores), which can solubilize Fe under 
iron deficiency conditions. Siderophores are low-molecular-weight organic com-
pounds (500–1500 Da) with an affinity for Fe3+ ions, which can also bind other 
metal ions that can be uptaken by plants [52, 53]. Iron acquisition takes place by two 
basic strategies. The first is by the uptake of Fe in Fe-siderophore complexes after 
root-mediated biodegradation of the chelate [52, 53]. The second strategy involves 
the solubilization of unavailable forms of iron by the release of phytosiderophores. 
Since microbial siderophores typically have higher affinity for iron than phytosid-
erophores, plants growing in metal-contaminated soils are able to accumulate high 
amounts of iron with the help of siderophore-producing bacteria. Hence, bacterial 
siderophores are assumed to serve as major sources of phytoavailable Fe for plants 
under metal stress conditions [50, 52].

Mechanisms of iron acquisition in higher plants can be grouped into strategy I 
and strategy II [54]. Although strategy II plants (Poaceae), similar to microorgan-
isms, release (phyto)siderophores (e.g., mugineic acid in barley and avenic acid in 
oat) to enhance their Fe uptake, in metal-contaminated soils, these plants are unable 
to accumulate sufficient amounts of iron, unless bacterial siderophores are also 
present due to their higher affinity for iron [54]. Unlike strategy II plants, strategy I 
plants (dicots and monocots, except Poaceae) do not produce phytosiderophores 
themselves. Rather, their iron acquisition is achieved by other means, such as an 
enhanced Fe(III)-reductase activity, the release of reducing agents such as pheno-
lics, and acidification of the rhizosphere [54]. However, this strategy is considered 
to be less efficient than that of strategy II plants [54]. Therefore, inoculation of 
plants with bacteria that are able to produce siderophores could help to prevent them 
from becoming chlorotic when they are grown in metal-polluted soils.

Thus, siderophores act as solubilizing agents for iron from minerals or organic 
compounds under conditions of iron limitation. In addition to iron, siderophores can 
also form stable complexes with other metals that are of environmental concern, 
such as Al, Cd, Cu, Ga, In, Pb, and Zn, as well as with radionuclides including U 
and Np [54, 201]. Currently, almost 500 different siderophores have been identified 
[54, 202]. Although they differ widely in their overall structure, the functional 
groups that coordinate the iron atom are not as diverse. In their metal-binding sites, 
siderophores have either α-hydroxycarboxylic acid, catechol, or hydroxamic acid 
moieties and thus can be classified as hydroxycarboxylate-, catecholate-, or 
hydroxamate-type siderophores [54]. The biosynthetic pathways of siderophores 
are tightly connected to aerobic metabolism involving molecular oxygen activated 
by mono-, di-, and N-oxygenases and acids originating from the final oxidation of 
the citric acid cycle, such as citrate, succinate, and acetate. Moreover, many sidero-
phores are polypeptides that are synthesized by members of the non-ribosomal pep-
tide synthetase multienzyme family, which is also responsible for the synthesis of 
the majority of microbial peptide antibiotics [54]. However, many of the hydroxa-
mate- and α-hydroxy acid-containing siderophores are not polypeptides but are 
assembled instead from alternating dicarboxylic acid and either diamine or amino 
alcohol building blocks (which are nevertheless derived from amino acids) that are 
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linked by amide or ester bonds. Such siderophores are assembled by the non-
ribosomal peptide synthetase-independent siderophore pathway, which is widely 
utilized in bacteria. Several recent reviews describe siderophore structure and bio-
synthesis mechanisms in more detail [54, 203].

Siderophores generally form 1:1 complexes with Fe3+, which are then taken up 
by the cell membrane of bacteria, where the Fe3+ is reduced to Fe2+ and released 
from the siderophore into the cell. In some cases, the siderophore is destroyed dur-
ing this reduction, but in other cases, it is recycled [54]. This mechanism of iron 
uptake from siderophores has already been identified in both gram-negative and 
gram-positive bacteria [54, 204]. Although siderophores are elicited primarily in 
response to iron deficiency, external pH is also important for the biosynthesis of 
microbial siderophores, as well as in their chemical stability in the environment 
[54]. Production of siderophores by different microorganisms appears to contradict 
the commonly acknowledged pH-dependence of Fe deficiency. Hydroxamate sid-
erophores in general are prevalent in acidic soils and reflect the preference of low 
pH values for the synthesis of hydroxamate siderophores by microorganisms. In 
contrast, neutral to alkaline soils support the production of catecholate siderophores. 
In addition to pH, heavy metal concentrations in the surrounding environment could 
also influence microbial growth and siderophore biosynthesis.

Bacterial strains isolated from polluted environments were shown to be tolerant 
to higher concentrations of metals than those isolated from unpolluted areas [53, 
54]. These metal-tolerant bacteria have evolved several mechanisms for survival 
under metal stress. Interestingly, several studies have found a stimulating effect of 
heavy metals on siderophore biosynthesis in various bacteria. Two different 
possible explanations have been suggested for the stimulating effect of heavy met-
als on siderophore production. Firstly, the heavy metal might be directly involved 
in the siderophore biosynthesis pathways or their regulation [54, 205]. Alternatively, 
the free siderophore concentration in the medium might be reduced by complex 
formation with metal ions. This process interferes with the complexation of sidero-
phores with iron and thus decreases the soluble iron concentration. As iron defi-
ciency stimulates siderophore production, more siderophores would then be 
produced [54, 206, 207].

Plants inoculated with siderophore-producing bacteria could then take up iron 
from siderophores via various mechanisms, such as chelate degradation and release 
of iron, the direct uptake of siderophore-Fe complexes, or by a ligand exchange 
reaction [54, 208, 209]. A variety of plant species were shown to acquire iron from 
Fe-siderophore complexes, including Cucurbita pepo, B. juncea, Helianthus ann-
uus, Medicago sativa, and Vigna unguiculata, and, moreover, it was shown that this 
acquisition was the reason for their stimulated growth in metal-contaminated soils. 
Experiments with Phaseolus vulgaris revealed that the inoculation with the Pb- and 
Cd-resistant siderophore-producing bacteria strain Pseudomonas putida KNP9 sig-
nificantly increased plant growth without showing any symptoms of lead and cad-
mium toxicity compared with the controls [54, 210]. This effect was attributed to 
the increased level of siderophores produced by the KNP9 strain that were able to 
provide iron to the plant in the presence of high levels of Pb and Cd.
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Inoculation with other rhizobacteria, such as Pseudomonas sp. Ps29C and 
Bacillus megaterium Bm4C, which had been isolated from Ni-rich serpentine soils, 
has also been studied in detail [205, 211, 212]. These bacteria significantly reduced 
the toxicity of Ni in B. juncea and promoted plant growth. Although bacterial sid-
erophores have the potential to sparingly mobilize soluble metals, the efficiency of 
siderophore-producing bacteria (SPB) to either mobilize or immobilize heavy met-
als from soils is dependent on several factors, such as the form of the heavy metals 
present, the charge of the siderophores, as well as the pH of the soil and its mineral 
composition and organic content [54, 205, 211, 212]. Endophytic bacteria are also 
able to supply essential vitamins and growth regulators (phytohormones) to plants, 
which can increase plant nutrient uptake through their effects on root growth 
dynamics [52, 213].

The phytohormone production by endophytes is believed to play an important 
role in plant-bacterial interactions and plant growth in metal-contaminated soils 
[214]. Recent studies investigating the role of phytohormones in protecting plants 
against metal(loid)s have demonstrated that the endophytic colonization often 
causes increases in nutrient uptake and plant biomass [52, 184, 213, 215]. These 
may suggest that metal(loid)s stress alleviation by endophytic bacteria results from 
a combination of nutritional and biochemical benefits. In general, the phytohor-
mones comprise indole-3-acetic acid (IAA), cytokinins, gibberellins, abscisic acid, 
and ethylene, which may be either growth inhibitors or promoters depending upon 
the substance concentration [52, 213]. As a major auxin, IAA is involved in differ-
ent physiological processes in plants, such as adjustment of plant development [52, 
215], induction of plant defense systems [52], and as a cell-cell signaling molecule 
[52, 216]. IAA is transported downward causing a concentration gradient in different 
plant parts. Depending on its concentration, inhibition, or stimulation of growth, 
tissue differentiation may result [52, 217]. More recently, the amount of IAA 
released by endophytes is thought to play a vital role in modulating the plant-
endophyte association and plant development in metal(loid)-contaminated soils 
[183].

Auxins and cytokinins were found to be produced by strains of Pseudomonas, 
Enterobacter, Staphylococcus, Azotobacter, and Azospirillum. These substances, 
together with gibberellins, may alter plant growth and development [53, 218]. For 
instance, Azospirillum-inoculated roots showed a stimulation of root cell membrane 
activity, as well as an increase in the levels of free IAA, indole-3-butyric acid, and 
the specific activities of both the tricarboxylic cycle and the glycolysis pathway [53, 
219]. According to the IAA level, root elongation may change qualitatively. A low 
level of the phytohormone produced by bacteria promotes primary root elongation, 
whereas a high level of IAA stimulates lateral and adventitious root formation but 
inhibits primary root growth [220]. Thus, endophytes can facilitate plant growth by 
altering the plant hormonal balance. P. fluorescens, for instance, is generally 
regarded as being a rhizosphere bacterium that colonizes mainly the elongation and 
root hair zones of roots. Some P. fluorescens can also be endophytic, being found 
within the roots and stems of some hyperaccumulators [53, 221, 222]. The observed 
plant growth promotion, under Pb stress after inoculation of plant with P. fluores-
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cens, is thought to be the consequence of bacterial IAA production and excretion 
[53, 222]. Therefore, any direct influence on phytohormone production by bacteria 
may in turn affect their phytostimulating efficiency.

Another way in which the endophytic bacteria might influence the host plant 
growth is the utilization of ACC as a sole N source. Endophytic bacteria that are 
generally beneficial to plants in situ, such as Azotobacter, Azospirillum, 
Pseudomonas, Enterobacter, Staphylococcus, etc., are known to be involved with 
production of phytohormones [52, 160]. Luo et al. [20] reported that the enhanced 
growth of the Cd hyperaccumulator S. nigrum L. induced by bacterial endophytes 
under cadmium stress might be the consequence of both bacterial IAA and ACC 
deaminase. Ethylene, as a ubiquitous plant hormone, plays a vital role in plant 
response (growth and survival) to abiotic and biotic stresses including root initiation 
and nodulation, cell elongation, leaf senescence, abscission and fruit ripening, as 
well as auxin transport [52, 223]. Ethylene is synthesized in higher plants via the 
following pathway [49, 52]: (1) the enzyme S-adenosyl-L-methionine (SAM) syn-
thetase catalyzes the conversion of methionine and adenosine triphosphate (ATP) to 
SAM; (2) ACC synthase mediates the hydrolysis of SAM to ACC and 5′-methyl-
thioadenosine (MTA); and (3) ACC is finally oxidized by ACC oxidase to form 
ethylene, carbon dioxide, and hydrogen cyanide. It has been reported that metal(loid) 
stress in plants induces ethylene production, which causes the inhibition of root 
elongation, lateral root growth, and root hair formation. Under such conditions, 
certain endophytic bacteria might alleviate the stress-mediated impact in plants by 
enzymatic hydrolysis of ACC.

Ethylene is implicated in virtually all aspects of plant growth and development, 
ranging from seed germination to shoot growth and leaf abscission [53, 224]. 
Therefore, production of ACC deaminase is likely an important and efficient way 
for endophytes to manipulate their plant hosts. The enzyme ACC deaminase may 
hydrolyze ACC into α-ketobutyrate and ammonia, which can readily metabolized 
by the bacteria as a source of nitrogen. Endophytic bacteria containing ACC deami-
nase are usually located inside plant roots in the apoplast. In this way, these bacteria 
act as a sink for ACC. By lowering ethylene levels, the bacteria increase the growth 
of plant roots and shoots and reduce the inhibitory effects of ethylene synthesis ([53, 
225]; Ma 2016). A higher percentage of endophytes than of rhizosphere bacteria 
were able to utilize ACC as the sole N source. Experiments with Methylobacterium 
oryzae and Burkholderia sp. (isolated from rice tissue) showed the ability of these 
bacteria to reduce the level of ethylene, protecting tomato (Lycopersicon esculen-
tum) from the toxicity of high concentrations of Ni and Cd [53].

The success of phytoremediation is widely dependent on the ability to overcome 
metal phytotoxicity. Therefore, different bacterial-mediated mechanisms are impli-
cated on the endophyte-host coevolution process either by relieving metal toxicity 
or by enhancing plant metal tolerance [52, 53, 147]. Shin et al. [183] found that the 
endophytic bacterial strain Bacillus sp. MN3-4 evolved a better defined metal-
resistant mechanism, e.g., active export via a P-type ATPase efflux pump, which can 
transport metal ions across biological membranes against the concentration gradient 
using energy released by ATP hydrolysis. Endophytic bacteria possessing specific 
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and remarkable metal bioaccumulation abilities can be used in plant-endophyte 
mutualistic systems to facilitate detoxification of metal(loid)s and improve the effi-
ciency of phytoremediation [52, 183, 226]. It is well known that the transfer of 
metal(loid)s from soils to plants depends primarily on metal bioavailability which 
can be affected by several factors, such as soil particle size, nutrients, soil pH, redox 
potential, organic matter content, and the presence of other ions [48, 52, 55]. 
Numerous studies have suggested that endophytic bacteria possessing a metal resis-
tance/sequestration pathway (e.g., ncc-nre) can alleviate the phytotoxicity and 
enhance the bioavailability of metal(loid)s through the release of metal chelating 
agents (e.g., siderophores, biosurfactants, and organic acids), acidification of soils, 
redox activity, and phosphate solubilization [50, 52].

Currently, the interactions between endophytes and hyperaccumulator plants 
have attracted the attention of several investigators due to the biotechnological 
applications for bioremediation and to study the composition of bacterial communi-
ties living on naturally contaminated environments. In general, hyperaccumulating 
plants accumulate huge amounts of metal(loid)s and can therefore provide a specific 
environment for bacterial endophytes adapted to survive in high metal concentra-
tions. For instance, metal-resistant endophytic bacteria have been isolated from 
various hyperaccumulating plants such as Alyssum bertolonii, Thlaspi caerules-
cens, Thlaspi goesingense, and Nicotiana tabacum [186, 227–230]. Attempts have 
been made to characterize the endophytic bacterial communities in plant tissues, but 
comparisons between studies are difficult to make. An interesting finding was that 
isolates from shoot and root displayed different tolerances, suggesting that different 
microbial communities exist in different compartments of the plant [53].

The beneficial effects of endophytes on their hyperaccumulators appear to occur 
through similar mechanisms described for PGPR. This makes sense because most 
of the bacterial endophytes isolated from various plants can be considered to be 
facultatively endophytic and are capable of living outside plant tissues as rhizo-
spheric bacteria. Additionally, many endophytic bacterial taxa from hyperaccumu-
lators were reported to be common soil bacteria [186, 222, 231, 232]. Metal 
biosorption by bacteria comprises two steps:

	1.	 Passive biosorption of metals by living and dead/inactive cells that essentially 
take place in the cell wall due to a number of metabolism-independent processes 
[52, 233]. In this process, metal ions are sorbed rapidly to the cell surface by 
reactions between metals and functional groups on the cell surface, such as 
hydroxyl, carbonyl, carboxyl, sulfhydryl, thioether, sulfonate, amine, amide, and 
phosphonate [50, 52]. Various metal-binding mechanisms such as ion exchange, 
complexation, coordination, sorption, chelation, electrostatic interaction, or 
microprecipitation may be synergistically or independently involved.

	2.	 Active biosorption (bioaccumulation) referring to the uptake of metals (transport 
into cells). This only occurs in living cells through a slower active metabolism-
dependent transport of metals into bacterial cells [52, 234]. Once the metals are 
inside living cells, they may be bound, precipitated, accumulated, sequestered 
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within specific intracellular organelles, or translocated to specific structures, 
depending upon the organism and element concerned [50, 52].

Particularly, in order to circumvent metal stress, endophytic bacteria have 
evolved several types of mechanisms, through which they alleviate the toxicity of 
metal ions, including the efflux of metal ions from cells and subsequent extracel-
lular precipitation [52, 144], intracellular accumulation [52, 183], biotransforma-
tion of toxic metal ions into less or nontoxic forms [52, 108], sequestration of 
metals on the cell surface or in intracellular polymers, and precipitation, adsorp-
tion/desorption, or biomethylation [43, 52]. Binding of metals to extracellular 
material can immobilize the metal and prevent its entry into the cell. For example, 
different metal(loid)s can bind to anionic functional groups (e.g., sulfhydryl, car-
boxyl, hydroxyl, sulfonate, amine, and amide groups) present on cell surfaces. 
Similarly, microbial extracellular polymers, such as polysaccharides, proteins, and 
humic compounds, can effectively bind heavy metals. These substances thus 
detoxify metals simply by complex formation or by forming an effective barrier 
surrounding the cell [54, 235].

In addition, many bacteria mediate reactions or produce metabolites that result in 
crystallization and precipitation of metals [54, 206, 207, 236]. Furthermore, a great 
number of bacteria are known to possess transporters to promote metal(loid)s efflux 
from cells, in case of toxicity or excessive concentration, via ATPase pumps or 
chemiosmotic ion/proton pumps [54, 237]. These types of transporters are charac-
terized by a high substrate affinity, and they are therefore able to reduce the metal 
load in the cytosol. Several bacteria have developed a cytosolic sequestration mech-
anism for protection from metal(loid)s. Once inside the cell, metal ions might also 
become compartmentalized or being converted into more innocuous forms. This 
process can constitute an effective detoxification mechanism, and the respective 
microbes might be able to accumulate higher intracellular concentrations [54, 237].

Examples include the synthesis of metal-binding proteins such as metallo-
thioneins. These are low-molecular mass cysteine-rich proteins with high affini-
ties for cadmium, copper, silver, lead, mercury, etc. Their production is induced 
by presence of metals, and their primary function is metal detoxification. In 
addition, certain bacteria use methylation as a metal resistance or detoxification 
mechanism. However, this process is considered to be metal-dependent as only 
some metals are methylated. It involves the transfer of methyl groups to metals 
and metalloids. Selenium is an example of metalloids that has reduced toxicity 
when methylated [54, 238]. In the last 15 years, several studies focused on the 
use of actinobacteria for cleaning up the environment [239]. Strategies such as 
bioaugmentation, biostimulation, cell immobilization, production of biosurfac-
tants, design of defined mixed cultures, and the use of plant-microbe systems 
were developed to enhance the capabilities of actinobacteria in 
bioremediation.

Actinobacteria exhibit diverse physiological and metabolic properties, such as 
the production of extracellular enzymes and the formation of a wide variety of sec-
ondary metabolites [239, 240]. This versatility in secondary metabolite production 
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makes them important tools for pharmaceutical, medical, and biotechnological 
applications such as bioremediation. The quantitative analysis of soil microbial 
populations through total culturable numbers showed a marked decrease of the dif-
ferent microbial groups for contaminated soil samples, in comparison with uncon-
taminated samples. However, actinobacteria showed less sensitivity than other 
culturable heterotrophic bacteria and asymbiotic nitrogen fixers. Culture-dependent 
methods have allowed the isolation and characterization of over 35 genera of acti-
nobacteria tolerant to heavy metals [239].

Finally, actinobacteria have demonstrated their potential as tools for biore-
mediation of several contaminants including oil, rubber, plastics, pesticides, 
and heavy metals, among others, based on their physiological and metabolic 
versatility. The real worldwide problem is co-contamination. Environments 
contaminated with inorganic and organic compounds are considered difficult to 
bioremediate since metal(loid)s would inhibit biodegradation. Nevertheless, 
recent works highlighted that actinobacteria strains are able to remove HMs and 
pesticides simultaneously [239]. Streptomyces, Rhodococcus, and Amycolatopsis 
are among the most studied genera, although their bioremediation skills were 
never supported by integrated omic approaches. The relevance of the use of 
omic tools relies on the fact that this information may be used to enhance bio-
remediation processes of actinobacteria through pathway engineering tech-
niques. On the basis of the existence of co-contaminated environments, 
engineering bio-tools resistant to organic and inorganic toxic compounds could 
be necessary.

Plant-bacteria associations in several metal(loid)s phytoremediation studies are 
presented on Table 2.3.

2.4  �Phytoextraction

Phytoextraction, also known as phytoaccumulation, phytoabsorption, or phytose-
questration, is the uptake of contaminants from soil, water, wastewater, or sedi-
ments by plant roots and their translocation and accumulation in aboveground 
biomass, i.e., shoots or any other harvestable plant parts [1, 5]. Plants able to 
accumulate metal(loid)s are grown on contaminated sites, and the metal-rich 
aboveground biomass is harvested, resulting in the removal of a fraction of the 
contaminant. Phytoextraction is the main and most useful phytoremediation tech-
nique for removal of heavy metals and metalloids from polluted soils [1, 24]. It is 
also the most widespread and promising alternative of soil reclamation for com-
mercial applications. Metal translocation to shoots is a crucial biochemical pro-
cess desirable for an effective phytoextraction because the harvest of root biomass 
is generally not feasible.

Phytoextraction has important advantages:

•	 It does not damage/change the landscape.
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•	 It preserves the ecosystem.
•	 It is the main technique of phytoremediation for the removal of heavy metals 

from soil, sediments, and water.
•	 It is also considered as the most commercially promising technique because it is 

inexpensive.

However, although it presents several advantages, there are some factors that 
limit metal phytoextraction [13, 282]:

•	 A low bioavailability of metals in the rhizosphere
•	 A low uptake rate
•	 A low translocation rate confining the metals in the roots

The amount of metal removed depends on concentration in aboveground plant 
materials and the plant biomass produced [283, 284]. However, the small biomass 
and slow growth of many (hyper)accumulators, as well as a low soil metal bioavail-
ability, can limit the effectiveness of phytoextraction [53, 284]. A large number of 
plant species have the ability to hyperaccumulate metal(oid)s in their tissues. 
Throughout the years a general increase in pollution and the necessity to find reli-
able methods for the restoration of contaminated sites have led to an increased inter-
est on hyperaccumulation, phytostabilization, or phytoextraction. Pertinent 
problems arise when trying to define plants as either hyperaccumulators or as suit-
able for phytostabilization or phytoextraction events. Plant(part)/soil and plant part/
plant part ratios have been described, and new terms have been created, i.e., a par-
ticular ratio has been defined by several different names and acronyms. So, in the 
bibliography different terms have been attributed to the same ratio, and this often 
represents an overlap in terminology. On the other hand, the same term corresponds 
to several different ratios, and this could create confusion and misinterpretation in 
data comparison. Recently, Buscaroli [285] reviewed the various factors, coeffi-
cients, and indexes developed so far to evaluate terrestrial plant performance in 
respect to phytoremediation.

Some important hyperaccumulator families are Brassicaceae, Fabaceae, 
Caryophyllaceae, Flacourtiaceae, Euphorbiaceae, Asteraceae, Lamiaceae, Poaceae, 
Violaceae, and Scrophulariaceae [1, 5, 193]. The hyperaccumulator species (e.g., 
Thlaspi caerulescens, Alyssum bertolonii, Arabidopsis halleri) are able to accumu-
late contaminants but produce little biomass, and therefore it is possible to use spe-
cies that accumulate less but which produce more biomass like Brassica spp., 
Arundo donax, and Typhas spp. [1, 13, 286–289]. An ideal plant for trace element 
phytoextraction should possess the following characteristics: (a) tolerance to the 
trace element accumulated, (b) fast growth and highly effective trace element accu-
mulating biomass, (c) accumulation of trace elements in the aboveground parts, and 
(d) easy to harvest [230].

A typical trace element phytoextraction protocol consists of the following steps: 
(a) cultivation of the appropriate plant/crop species on the contaminated soil, (b) 
removal of harvestable trace element-enriched biomass from the site, and (c) post-
harvest treatments (i.e., composting, compacting, thermal treatments) to reduce vol-
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ume and/or weight of biomass for disposal as a hazardous waste or for its recycling 
to reclaim the elements that may have an economic value. The storage, treatment, 
and placement of the contaminated plant biomass are of great concern. Compaction 
and composting of the plant biomass decrease its volume and transport costs, but 
increase leaching of dissolved metal organic compounds [10, 290]. One of the most 
economical approaches to deal with the contaminated biomass is its commercial use 
as a source of energy [10]. Gasification and combustion are important trends in the 
production of thermal and electric energies. Direct combustion should be 
accomplished under control with a reduction in the biomass to 3–6% and the correct 
placement of the ash [10]. Thermal processing or thermos chemical gasification of 
the plant biomass into biogas (gaseous fuel) is a complex and high-tech process 
proceeding at 800–1300 °C. The ash obtained can be used as biore, and this process 
is termed as phytomining [10, 291]. Another effective method is thermochemical 
processing of the plant biomass (pyrolysis), which is a process of thermal decompo-
sition of organic compounds in an oxic condition at relatively low temperatures 
(500–800 °C). This process allows the collection of fluid oils (biofuel, pyrofuel, 
resins), gases, and coke. The coke retains the heavy metals and is useful as a fuel in 
industry [10, 292]. To apply phytoextraction techniques, metal(loid)s must be bio-
available and ready to be absorbed by roots. The speciation of metal(loid)s in soils 
can include [13, 293]:

	1.	 Free metal ions
	2.	 Oxides, hydroxides, and carbonates
	3.	 Integration into the structure of silicate/aluminum minerals
	4.	 Soluble metal complexes
	5.	 Associations with soil organic matter

Metal speciation regulates metal uptake by plant roots and consequently phyto-
extraction efficiency. Indeed, it is known that low bioavailability of soil metal(loid)
s may be a rate-limiting factor for metal uptake by plants. The major limitations of 
most metal phytoextraction processes are (1) the bioavailability of the target 
metal(loid)s and (2) the ability of various plants to bioaccumulate metals within 
their aboveground biomass [48, 294]. Metal bioavailability can be defined as the 
fraction of metal in the soil that can interact with a biological target. In the soil 
solution, elements are present as free uncomplexed ions, ion pairs, ions complexed 
with organic anions, and ions complexed with organic macromolecules and inor-
ganic colloids. The most important metal pools in the solid phase include the met-
als complexed by organic matter, sorbed onto or occluded within oxides, and clay 
minerals coprecipitated with secondary pedogenic minerals (e.g., Al, Fe, Mn 
oxides, carbonates and phosphates, sulfides) or as part of the crystal lattices of 
primary minerals [44, 61].

Current phytoextraction practices employ either hyperaccumulators or fast-
growing high biomass plants, and the phytoextraction process may be enhanced by 
addition of soil amendments that can increase trace element bioavailability in the 
soil [230]. When bioavailability of metal(loid)s in the soils is insufficient for active 
root sorption, transport in solution and mobilization can be promoted using chelating 
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agents [295], such as organic and mineral acids, elemental sulfur, and ammonium 
fertilizers. This chelant-assisted accumulation of heavy metals by plants that do not 
concentrate them under normal conditions was termed as chelant-induced hyperac-
cumulation. The application of chelating agents, for instance, synthetic aminopoly-
carboxylic acids, is efficient. Hydroxyethylene diamine triacetic acids (HEDTA), 
ethylenediamine dihydroxyphenylacetic acid, and ethylenediaminetetraacetic acid 
(EDTA) are potential acidifying chelants [295]. These agents can enhance the phy-
toextraction of Cu, Cd, Pb, Zn, and Ni [296].

There are a few disadvantages when using chelating agents, i.e., adverse effects 
on soil microorganisms, possible contamination of groundwater, and slow (several 
weeks or months) decomposition of the synthetic organic acids [296–298]. 
Following the application of chelate-forming agents, the removal of metals may 
continue for a long time. There are some rapid decomposing natural organic acids 
which are considered alternatives to synthetic chelating agents, i.e., ethylenediamine-
N,N′-disuccinic (EDDS) acids and nitrilotriacetic acid (NTA) [296, 297]. In addi-
tion, products of plant metabolism and low-molecular organic compounds, i.e., 
tartaric [299], acetic [297], and malic acids, putrescine (polyamine), and citric and 
oxalic acids [300], can also be used for the same purpose. In recent years, different 
biotechnological approaches have also been used to increase biomass and growth 
rate of hyperaccumulator plants through genetic engineering tools, i.e., synthesis of 
various metal-binding peptides [10, 301]. Along with engineering, metal(loid)s 
accumulation by plants can be enhanced using conventional agronomic practices, 
i.e., fertilization, irrigation, seed control, shorter growth cycle, and liming [12].

2.4.1  �Assisted by Fungi

There is increasing evidence that plant-microbe interactions/dynamics can define 
the efficiency of metal phytoextraction. Inoculation of the plant rhizosphere with 
microorganisms is an established route to improve phytoextraction efficiency. In 
general, microorganisms can improve phytoextraction by increasing the bioavail-
ability of metal(loid)s to the plant and by increasing plant biomass [302].

A frequently utilized strategy to improve phytoextraction is the inoculation of 
beneficial microorganisms into the plant rhizosphere. Microorganisms may increase 
plant trace element uptake by three specific mechanisms: (1) they may increase root 
surface area and hair density, (2) increase element bioavailability, and/or (3) increase 
soluble element transfer from the rhizosphere to the plant [168]. Furthermore, 
enhanced plant biomass production can boost an increase on the efficiency of trace 
element phytoextraction [230]. Increased trace element uptake can be attributed to 
a microbial modification of the absorptive properties of the roots such as increased 
root length and surface area and numbers of root hairs or by increasing the bioavail-
ability of trace elements in the rhizosphere and the subsequent translocation to 
shoots via beneficial effects on plant growth, trace element complexation, and alle-
viation of phytotoxicity [230].
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Regardless of whether trace elements are mainly accumulated in roots or in 
shoots, internal tolerance mechanisms are the basis for efficient detoxification of the 
trace elements. These internal detoxification mechanisms are extensively described 
in the previous sections. Among various microbe-assisted strategies that have been 
proposed to date, AM fungi are known to benefit their host plants by affecting bio-
logical regulation of their phytoextraction efficiency [127, 303, 304]. AM fungi are 
thought to be one of the most important soil microbial groups that affect metal 
uptake by plants and metal immobilization in soils [74, 305] and are commonly 
introduced into soil for land reclamation [74, 127, 306]. Previous studies reported 
that both host plant biomass and metal concentrations could be increased via AM 
fungi inoculation [127, 307], thus resulting in increased uptake of metal(loid)s [127, 
308]. Different host plants and fungal species as well as environmental conditions 
could potentially affect response strategies of plants ([88, 127]). The functional 
diversity is significantly reflected on plant growth, element uptake, and enzymatic 
activity [127, 309, 310]. In some cases, AM fungi contributed to a significant stor-
age of metal(loid)s at the root level, instead of the aboveground tissues of the host 
plants (phytostabilization). However, in other cases AM fungi contributed to 
enhanced uptake and translocation to shoots promoting phytoextraction success 
[86, 127].

An important point about treating polluted soil with mycorrhizal plants is the 
selection of appropriate AM species [12]. The species selected from areas polluted 
with metal(loid)s are the most efficient species which have the ability to survive 
under metal stress conditions and hence may act more efficiently relative to other 
AM species [12, 14]. These communities are metabolically and taxonomically 
diverse, containing microorganisms that are preadapted to conditions in situ and are 
capable of performing metabolic activities that can alter metal(loid)s bioavailability 
and promote plant growth [252, 302, 311–314]. Generally, species of the genus 
Glomus are predominant in the rhizosphere of plants growing in metal(loid)
s-contaminated soils [12, 315, 316]. AM fungi can colonize hyperaccumulator roots 
extensively in metal(loid)-contaminated soils forming symbiotic/mutualistic rela-
tionships with plants. In general, mycorrhizal hyperaccumulators produce consider-
ably more biomass and grow faster than non-mycorrhizal plants, and because of the 
ability of AM fungi to survive in severely contaminated soils, they are able to play 
a role on phytoremediation processes enhancing the capacity of plants to withstand 
soil phytotoxicity [60, 71, 72]. AM fungi promote plant establishment in metal(loid)
s-contaminated soils, strengthening plant defense systems, and promoting its growth 
[73, 127].

Several biological and physical mechanisms have been proposed to explain 
metal tolerance of AM fungi and their contribution to metal tolerance of host plants. 
These tolerance mechanisms are numerous, e.g., extracellular metal sequestration 
and precipitation, metal binding to the fungal cell walls, intracellular sequestration 
and complexation, compartmentation, and volatilization, and are broadly described 
in previous sections. Many fungi can survive and grow with high concentrations of 
toxic metals [44, 317]. The ability of mycorrhizal associations to decrease metal 
toxicity to higher plants has been shown for ericoid mycorrhizas, ectomycorrhizas, 
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and arbuscular mycorrhizas, while some ectomycorrhizal fungi accelerate mineral 
weathering. The mycorrhizal mycelia provide an efficient system for the uptake and 
direct transport of mobilized essential nutrients to their host plants, which are large 
sinks [44, 318]. Mineral weathering can also increase the concentrations of phyto-
toxic aluminum in the soil solution. Some ectomycorrhizal fungi increase Al toler-
ance through an enhanced exudation of oxalate [44, 319]. Furthermore, AM fungi 
inoculation can improve plant performance under metal(oid)s stress due to a num-
ber of mechanisms involving antioxidant enzymes, lipid peroxidation, and soluble 
amino acid profile changes caused by the intimate relationship between fungi and 
the host plant [73, 320, 321]. In fact, when exposed to metal(loid)s such as Cu, Fe, 
Pb, Cd, Cr, As, Hg, Cr, and Zn, plants enhance their level of reactive oxygen species 
(ROS) [73, 322, 323].

The contribution of AM fungi, such as Funneliformis mosseae, to enhanced Cd 
and Zn uptake and translocation by S. nigrum in heavy metal-contaminated sites has 
been noted without deleterious effects on plant growth [65, 324–326]. Fiorentino 
et al. [287] observed increases on Cd phytoextraction by Arundo donax assisted by 
the fungal microorganism Trichoderma harzianum in both, leaves (+20%) and rhi-
zomes (+30%), while Chen et  al. [327], observed an increase on Pb uptake and 
consequent accumulation in Kummerowia striata, lxeris denticulate and Echinochloa 
crusgalli.

It has been discovered recently that adding indigenous AM fungi can boost the 
uptake and accumulation of As and the biomass of P. vittata [60]. It was also shown 
that plants from an As mine site, colonized by AM fungi, accumulated more As than 
the non-colonized plants. An increase on growth, promoted by the activation of the 
phosphate transport system in colonized plants, may justify these results.

The process of translocation may be assumed to vary with metal(loid)s concen-
trations in the substrate, even if they grow with the same AM inoculation. 
Consequently, whether AM fungi enhance the transport to shoots (phytoextraction) 
or immobilize in the roots (phytostabilization) depends on metal(loid)s stress in the 
substrate [127]. AM fungi play different roles to cope with Cd toxicity in P. austra-
lis. With a low Cd stress, AM enhanced plant growth, and this acted as an accumula-
tor due to the growth dilution effect. However, with high Cd stress, the AM symbiosis 
leads the plant to act as an excluder [127]. Consequently, in the presence of AM 
fungi, phytoextraction played the predominant role at low Cd stress, while phytosta-
bilization occurred with high Cd stress [127]. The AM Glomus intraradices was 
shown to enhance growth of Helianthus annuus, and as a result, the total Ni is 
extracted. It also increased the activity of glutamine synthetase, indicating an 
enhanced Ni tolerance [230, 328].

A stimulation on the biomass of B. coddii in mycorrhizal plants led to a higher 
total Ni content (and hence phytoextraction) [80]. The diverse endophytic fungi 
isolated from S. nigrum showed the symbiotic association of these microbes with 
the host plant and improved our understanding regarding plant fitness under extreme 
conditions [56, 57]. The inoculation of S. nigrum with both Glomerella truncata 
PDL-1 and Phomopsis fukushii PDL-10 increased its tolerance to high concentra-
tions of Cd. As a result, the parameters related to the biosorption of Cd, including 

A. P. Pinto et al.



61

translocation, bioconcentration factors, and tolerance index, were significantly 
enhanced. The strongest evidence for the presence of endophytes was the apparent 
promotion of plant growth and enhanced biochemical content of chlorophyll as 
compared to those of non-inoculated control plants [56, 57]. Endophytic fungi may 
increase host fitness and competitive abilities by increasing successful germination 
and growth rate or enhancing the uptake nutritional elements by the host [44, 116]. 
Furthermore, due to possessing suitable degradation pathways, metal sequestration, 
or chelation systems, fungal endophytes are able to increase host plant tolerance to 
metal(loid)s and assist the host survival in contaminated soils [44, 116].

2.4.2  �Assisted by Bacteria

Plant-associated bacteria can potentially improve phytoremediation by altering the 
solubility, bioavailability, and transport of metal(loid)s and nutrients by altering soil 
pH, release of chelators (e.g., siderophores, organic acids, biosurfactants, glycopro-
teins), methylation, P solubilization, or redox changes [50, 54, 61, 138, 193, 284, 
329]. Therefore, plant-associated bacteria can be exploited to improve the efficiency 
of the phytoextraction processes [48, 168, 169, 222, 230, 232, 257, 330–332]. 
Bacterial populations associated with plants growing in metalliferous soils have a 
high diversity. These communities might also have important functions in relation 
to plant growth under these adverse conditions as well as in improving uptake of 
trace elements [230]. Plant growth promotion plays a major role in the extraction 
and removal of trace elements since a simple improvement in biomass results in an 
increase in the overall trace element yield (phytoextracted trace elements) [230]. 
The Ni-resistant PGPB strain Psychrobacter sp. SRS8 originally isolated from the 
rhizosphere of the Ni hyperaccumulator A. serpyllifolium was found to effectively 
promote the growth and phytoextraction potential of the energy crops Ricinus com-
munis and Helianthus annuus in artificially Ni-contaminated soils [50, 230].

The Ni hyperaccumulator A. serpyllifolium subsp. lusitanicum grown in an ultra-
mafic soil showed a significantly higher translocation and shoot Ni concentration 
after inoculation with a Ni-resistant rhizosphere bacteria Arthrobacter nitroguaja-
colicus [333]. In both hydroponically and soil-grown plants, inoculating the Cd/Zn 
hyperaccumulator S. alfredii with the metal(loid)-tolerant rhizobacterial strains 
belonging to the genera Burkholderia improved plant tolerance, biomass produc-
tion, and Cd (and Zn) uptake and extraction [334, 335]. Bacteria can acidify their 
environment by pumping protons to maintain the electrochemical gradient of mem-
branes. These replace trace element cations at sorption sites and dissolve minerals 
such as phosphates. Acid-producing rhizosphere bacteria have been intensely stud-
ied due to their capacity to release phosphorus from insoluble phosphates. For the 
purpose, bacteria can produce and secrete an array of organic acids, such as glu-
conic, 2-ketogluconic, lactic, and acetic acids [302]. The associated decrease in soil 
pH can also increase the solubility of some metal(loid)s [336].

2  Microbial-Assisted Phytoremediation: A Convenient Use of Plant and Microbes…



62

Recent studies investigating the role of endophytes in metal(loid)s uptake by 
plants have demonstrated that the production of specific bacterial organic acids (e.g., 
citric, oxalic, acetic acids, etc.) may result in increased nutrient and metal(loid)s 
uptake, probably as a result of the decrease in soil pH and their solubilizing power, 
improving the efficiency of phytoextraction processes [52, 145]. The different metab-
olites released by PGPB (e.g., siderophores, osmolytes, nitric oxide, antibiotics, bio-
surfactants, organic acids, and plant growth regulators) can change metal(loid)s 
uptake either directly through their effects on plant growth or indirectly through 
acidification, chelation, precipitation, immobilization, and oxidation-reduction reac-
tions in the rhizosphere [50]. Organic chelators scavenge trace element ions from 
sorption sites and mineral lattices and protect them from resorption [138, 230]. To 
date two groups of bacterially produced natural chelators are known. These are car-
boxylic acid anions and siderophores. Among a large variety of carbon compounds, 
oxalic, malic, and citric acids are some of the most important organic acids identified 
in roots and in microbial exudates [230, 337].

As the first pKa values of most carboxylates are below 3.5 and the cytosolic pH 
of root cells typically ranges from 7.1 to 7.5, carboxylic acids are typically present 
in soil solution as fully or partially dissociated forms [162, 230]. In plant cells, 
complexation with carboxylic acids, particularly malate, citrate, but also with the 
basic amino acid histidine, is a powerful mechanism for trace element detoxifica-
tion [230, 338]. In addition to plant growth promotion, bacteria were reported to 
have a beneficial effect on plant stress tolerance. This may be achieved by the 
enzyme ACC deaminase leading to a reduction of stress-induced ethylene levels in 
the plant [230, 280, 339].

For instance, experiments assessed by Sheng et al. [232] have shown the solu-
bilizing potential of the Pb-resistant endophytic bacteria Pseudomonas fluores-
cens G10 and Microbacterium sp. G16 on Pb uptake by Brassica napus. The 
results showed that both endophytes enhanced Pb bioavailability, thus increasing 
Pb accumulation in plant shoots from 76% to 131% (P. fluorescens) and from 59% 
to 80% (Microbacterium sp.), compared to the respective control. A possible 
explanation might be the production of siderophores or organic acids that induce 
solubilization of Pb.

These effects of inoculation were reported also by Mastretta et al. [229], who 
reported that the inoculation of N. tabacum with the Cd-resistant endophyte 
Sanguibacter sp. increased the concentration of Cd in shoot tissues and conse-
quently the phytoextraction capacity of N. tabacum, by approximately threefold 
compared with the respective uninoculated control. These studies suggest that it 
should be possible to improve the metal phytoextraction potential of accumulating 
or hyperaccumulating plants, through the inoculation of seeds or rhizosphere soil 
with beneficial metal-resistant endophytic bacteria. Although several conditions, 
such as soil properties, environmental conditions, and microbial activity, must be 
optimized for any phytoextraction event to become effective, the bioavailability of 
metals in the rhizosphere is considered to be a critical requirement for metal uptake 
to take place [54]. Braud et al. [340] reported that inoculating soils with P. aerugi-
nosa significantly increased the concentrations of bioavailable Cr and Pb com-
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pared with uninoculated controls. Furthermore, they also observed that P. 
aeruginosa significantly enhanced Cr and Pb accumulation in maize shoots by a 
factor of 4.3 and 3.4, respectively. In this case, metal(loid)s uptake could be cor-
related with the increased production of siderophores, in particular of pyoverdin 
and pyochelin [54]. These studies highlighted the potential of inoculating soils or 
plants with metal(loid)s-resistant siderophore-producing bacteria to further 
improve their phytoextraction potential.

Siderophores play a significant role in metal mobilization and accumulation, and 
siderophore-producing microbes are believed to play an important role in the phy-
toextraction of metal(loid)s [54, 209], as these compounds produced by PGPB may 
solubilize unavailable forms of metals but also form complexes with bivalent 
metal(loid)s ions that can be assimilated by root-mediated processes [50, 274, 340]. 
Siderophores are secreted, and Fe(III)-siderophore complexes are recognized and 
scavenged from the environment by membrane receptor proteins. They are too large 
to pass membrane porins [230]. All siderophores possess higher affinity for Fe(III) 
than for Fe(II) or any other trace element. However, complexes of lower stability are 
also formed with other trace elements [230, 341]. Divalent cations (e.g., Fe2+, Zn2+, 
Cu2+, Cd2+) form less stable complexes due to their reduced charge density (charge/
size ratio). Addition of trace elements to bacterial cultures induces siderophore syn-
thesis and leads to the formation of siderophore-metal complexes [206–208, 230]. 
Extracellular complexation by siderophores is considered to be a mechanism of 
bacterial trace element resistance [230, 332]. Siderophore synthesis was shown to 
simultaneously increase iron uptake and to reduce cadmium uptake in Streptomycetes 
[208, 209, 230]. In contrast, siderophore-mediated uptake of trivalent trace element 
cations (Al3+) has been demonstrated in iron-depleted cultures [230]. Synthesis of 
several siderophores varying in trace element affinity, preferences, and inductivity 
may convey competitive advantage in trace element contaminated environments 
[208, 209, 230].

The biosurfactants produced by PGPB also enhance metal(loid)s mobilization 
and improve phytoextraction on contaminated soils [50, 342]. Biosurfactants can 
desorb metal(loid)s from the soil matrix and hence increase metal solubility and 
bioavailability [193, 231, 343]. Certain nitrogen-fixing bacteria produce molybdate-
binding tetradentate catecholates, which also function as siderophores [230, 341]. 
The pigment melanin, which is produced by many fungi and Streptomycetes, can 
bind trace elements to its carboxylic groups and was shown to be involved in trace 
element sorption and trace element tolerance of S. scabies [230, 344]. In addition to 
beneficial effects on growth by improved plant nutrition, microorganisms can also 
enhance plant growth directly via the production of phytohormones, including IAA, 
cytokinins, and gibberellins. These compounds can stimulate germination, growth, 
and reproduction and protect plants against both biotic and abiotic stress [50, 345]. 
Indeed, the mechanism most often cited to explain the various direct effects of PGP 
on plants is the production of phytohormones, and most of the attention has focused 
on the role of the phytohormone auxin [48, 346, 347]. In addition to the well-
characterized effects of microbial auxin and ethylene on plant growth, a number of 
plant growth-promoting bacteria synthesize cytokinins, which can stimulate the 
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growth of different crops under both stressed and non-stressed conditions helping 
the phytoextraction processes [48, 348].

In the last years, it has been found that a number of PGPB contain the enzyme 
ACC deaminase, which can cleave the plant ethylene precursor ACC and thereby 
lower the level of the phytohormone ethylene in a developing or stressed plant 
[302].

After working on microbe-assisted Cd phytoextraction, Wei et  al. [104, 105] 
reported that the endophytic bacterial strain Rahnella sp. JN27, isolated from roots 
of Zea mays, enhanced Cd bioavailability in the soil and solubilized phosphate, 
producing indole-3-acetic acid, siderophores, and ACC deaminase. Multiple reports 
showed that foliar application of IAA or other phytohormones can improve the 
phytoextraction of metals, including Ni, Pb, and Cd [302, 349, 350]. The prolifera-
tion of specific microorganism strains, able to aggressively colonize the root sur-
face, can promote growth and healthier plants, improving root development, and/or 
enhance plant tolerance to different environmental stresses, strengthening the phy-
toextraction processes [48, 351]. Accordingly, metal phytoextraction (as well as 
plant growth) can be helped by soil microorganisms associated with plant roots [48, 
351]. Finally, a few studies reported that plant growth and/or trace element accumu-
lation has been improved using combinations of plant-associated microorganisms. 
In a hydroponic study, a combination of seven As-resistant rhizobacteria (identified 
as Pseudomonas sp., Comamonas sp., and Stenotrophomonas sp.) enhanced As 
uptake by the As hyperaccumulator Pteris vittata. Microbial exudation of pyochelin-
type siderophores, together with root exudates, solubilized As from the growth 
media spiked with insoluble FeAsO4 and AlAsO4 minerals [352].

In soil-grown plants, inoculation of Salix caprea with Streptomyces sp. in com-
bination with the fungus Cadophora finlandica led to an increase in phytoextraction 
of Cd and Zn (Table 2.4) [230, 365].

2.5  �Conclusions and Future Prospects

Phytoremediation techniques, based on interactions between plants and microor-
ganisms, have been proposed as eco-friendly methods to clean polluted soils. Soil 
microorganisms can improve pollutant mobilization and respective uptake by plants. 
The success of phytoextraction depends on several factors, including the concentra-
tion of soil pollutants, metal bioavailability for root uptake, and the capability of 
plants to intercept, sorb, and accumulate metal(loid)s in their tissues. Ultimately, the 
success of phytoextraction depends on interactions among soil, metals, and plants. 
However, low bioavailability of metals, low biomass of most hyperaccumulators, 
and restricted metal translocation to the shoots limit the efficiency of phytoextrac-
tion. In order to solve these restrictive factors, some strategies such as advanced 
agricultural practices, genetic engineering, and chelate treatments need to be 
adopted to improve phytoextraction performance. The use of natural chelators to 
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Table 2.4  Results of phytoextraction studies assisted by plant-associated microbes

Microorganisms M Test plant

Microbial effects on plants 
under metal stress, 
phytoextraction References

Microbacterium, 
Variovorax, 
Micrococcus, 
Pseudomonas

Zn Noccaea 
caerulescens, 
Rumex acetosa

Increase in the growth of both 
plants, as well as higher 
values of Zn phytoextraction

Burges et al. 
[284]

Bacillus pumilus E2S2, 
Bacillus sp. E1S2

Cd, 
Zn, 
Pb

Sedum 
plumbizincicola

B. pumilus E2S2 significantly 
increased root and shoot 
length, biomass, and plant Cd 
uptake, whereas Bacillus sp. 
E1S2 significantly enhanced 
the accumulation of Zn. 
Results demonstrated the 
potential to improve 
phytoextraction of soils 
contaminated with multiple 
heavy metals by inoculating 
metal hyperaccumulating 
plants with their own selected 
functional endophytic 
bacterial strains

Ma et al. 
[147]

Streptomyces sp., 
Cadophora finlandica

Cd, 
Zn

Salix caprea Increased phytoextraction of 
Cd and Zn

Sessitsch 
et al. [230]

Firmicutes sp., 
Actinobacteria sp., 
Proteobacteria sp.

Cu Brassica napus Increased root and 
aboveground tissues weight 
and shoot Cu concentration

Sun et al. 
[353]

Bacillus subtilis, B. 
cereus, Flavobacterium 
sp., Pseudomonas 
aeruginosa

Zn Orychophragmus 
violaceus

Increased root length, 
biomass of root, stems, and 
leaves, and Zn uptake

He et al. 
[354]

Burkholderia cepacia Zn, 
Cd

Sedum alfredii Higher ability to mobilize Cd 
and Zn and tolerate high 
concentrations of soluble Zn. 
Increased the soluble Zn 
concentration in the medium 
from insoluble zinc oxide and 
zinc carbonate. Oxalic, 
tartaric, formic, and acetic 
acids had a significant 
correlation with the 
concentrations of Cd and Zn 
being mobilized

Li et al. 
[355]

Pseudomonas sp. RJ10, 
Bacillus sp. RJ16

Cd, 
Pb

Lycopersicon 
esculentum

Increased root length, 
aboveground biomass and 
aboveground metal content, 
siderophores, IAA, ACC 
deaminase production

He et al. 
[356]

(continued)
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Table 2.4  (continued)

Microorganisms M Test plant

Microbial effects on plants 
under metal stress, 
phytoextraction References

Psychrobacter sp. 
SRA1 and SRA2, 
Bacillus cereus SRA10

Ni Brassica juncea, 
Brassica oxyrrhina

Significantly increased the 
accumulation of Ni in the root 
and shoot tissues reinforcing 
the efficiency of 
phytoextraction

Ma et al. 
[313]

Pseudomonas 
aeruginosa, 
Pseudomonas 
fluorescens, Ralstonia 
metallidurans

Cr, 
Pb

Zea mays Enhanced Cr and Pb uptake 
by plants through their 
mobilization

Braud et al. 
[340]

Pseudomonas 
fluorescens G10, 
Microbacterium sp. 
G16

Pb Brassica napus Increased plant weight, 
ACCD activity, IAA 
production, P accumulation, 
and Pb translocation to shoots

Sheng et al. 
[232]

Bacillus edaphicus 
NBT

Pb Brassica juncea 
L. Czern

Promoted plant growth (root 
and shoot biomass) and Pb 
uptake

Sheng et al. 
[222]

Pseudomonas tolaasii 
ACC23, P. fluorescens 
ACC9, Mycobacterium 
sp. ACC14

Cd Brassica napus The strains did not influence 
Cd concentration in the root 
or shoot, but they increased 
plant biomass and 
consequently the total Cd 
extracted

Dell’Amico 
et al. [312]

Enterobacter sp. NBRI 
K28

Ni, 
Zn, 
Cr

Brassica juncea Stimulated plant biomass and 
enhanced phytoextraction of 
Ni, Zn, and Cr
Production of siderophores, 
IAA, and phosphate 
solubilization. The strain also 
exhibited ACC deaminase 
activity

Kumar et al. 
[357]

Bacillus subtilis, 
Bacillus pumilus, 
Pseudomonas 
pseudoalcaligene, 
Brevibacterium 
halotolerans

Cu, 
Cr, 
Pb, 
Zn

Zea mays, 
Sorghum bicolor

Increased metal availability in 
soil, thus enhancing Cr, Pb, 
Zn, and Cu accumulation by 
Z. mays and S. bicolor

Abou-
Shanab 
et al. [358]

Burkholderia sp. J62 Pb, 
Cd

Brassica juncea, 
Zea mays, 
Lycopersicon 
esculentum

Increased biomass and metal 
uptake

Jiang et al. 
[359]

B. weihenstephanensis 
SM3

Cu, 
Zn

Helianthus annuus Increased the plant biomass 
and the accumulation of Cu 
and Zn in the root and shoot 
systems

Rajkumar 
et al. [205]

(continued)

A. P. Pinto et al.



67

enhance metal bioavailability and inoculation of microorganisms, including bacte-
ria and fungi, may facilitate the phytoextraction appliance at a commercial scale.

A number of bacteria and fungi have been studied by researchers which are able 
to enhance metal accumulation by plants and the metal(loid)s phytoextraction rate. 
Fungi are generally more tolerant to metal(loid)s than bacteria. Furthermore, AM 
fungi can efficiently explore the soil microsites that are not accessible for plant 

Table 2.4  (continued)

Microorganisms M Test plant

Microbial effects on plants 
under metal stress, 
phytoextraction References

P. putida ARB86 Ni Arabidopsis 
thaliana

Increased biomass and 
chlorophyll content. Nickel 
influx into plants was 
decreased by bacterial 
sorption in the rhizosphere

Someya 
et al. [261]

Burkholderia cepacia Cd, 
Zn

Sedum alfredii Enhanced plant growth, metal 
uptake, and translocation of 
metals from root to shoot

Li et al. 
[335]

P. marginalis Dp1, 
Rhodococcus sp. Fp2

Cd Pisum sativum Increased Cd concentration in 
shoots

Safronova 
et al. [360]

Pseudomonas monteilii Cd Sorghum bicolor Enhanced plant biomass, Cd 
uptake, and translocation to 
shoots

Duponnois 
et al. [361]

Azotobacter 
chroococcum HKN-5, 
Bacillus megaterium 
HKP-1, Bacillus 
mucilaginosus HKK-1

Cd, 
Cu, 
Pb, 
Zn

Brassica juncea Stimulated plant growth and 
protected the plant from metal 
toxicity
It did not influence metal 
concentrations in plant 
tissues, but led to greater 
aboveground biomass, thus 
resulting in much higher 
metal removal. It also 
influenced speciation of 
metals in the soil and 
consequently altered the 
bioavailability of metals

Wu et al. 
[362]

Sinorhizobium sp. 
Pb002

Pb Brassica juncea Stimulated biomass 
production and, hence, 
phytoextraction of Pb

Di Gregorio 
et al. [363]

B. subtilis SJ-101 Ni Brassica juncea Exhibited the capability to 
produce IAA and to solubilize 
inorganic phosphate. 
Promoted plant growth  and 
decreased soluble soil Ni by 
biosorption and 
bioaccumulation

Zaidi et al. 
[364]

Brevibacillus sp. B-I Zn Trifolium repens Decreased the concentration 
of Zn in shoot tissues

Vivas et al. 
[268]
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roots. In this context, a combination of plant-associated microorganisms could be 
more effective in enhancing reclamation of polluted soils than a single microorgan-
ism. It has been shown that endophytes (bacteria and fungi) can be a more reliable 
source of natural biocenosis because of their intimate association with plants. 
However, an understanding of the mechanisms enabling endophytic microbes to 
interact with host plants growing in metal-contaminated soils is essential to fully 
accomplish the biotechnological applications of efficient plant-microbe partnerships. 
Furthermore, there is ample experimental evidence that metal-resistant SPB are able 
to survive in adverse environmental conditions, where they carry out a variety of 
beneficial interactions that increase plant growth and metal(loid)s uptake. The ben-
eficial effects exhibited by SPB indicate that the inoculation with metal-resistant 
strains may contribute to increase phytoextraction potential in metal-contaminated 
soils.

However, a detailed and accurate characterization of target metal(loid)-contami-
nated soils is needed before the inoculation of microbes, as well as adequate strate-
gies to enhance inoculant performance by using efficient carrier materials. In 
addition, inoculation of mixtures of ecologically diverse microbes instead of single 
strains might represent a highly successful strategy. In this way, beneficial functions 
might be expressed more continually in a soil or rhizosphere system, even under 
ecologically distinct conditions. Furthermore, application of genetic engineering 
may enhance phytoextraction efficiency. After the identification of novel genes, 
transgenic plants may be produced with superior extracting capacity involving 
metal(loid)s hypertolerance, raised uptake and translocation to shoots, and highly 
efficient detoxification mechanisms. Genes for metal chelators production, metal 
homeostasis, transporters, biodegradative enzymes, metal uptake regulators, and 
biotic and abiotic stresses relievers are important candidates for making recombinant 
microbes.

The complexity and heterogeneity of soils contaminated with multiple metals 
and organic compounds requires the design of integrated phytoremediation systems 
that combine different processes and approaches. It is obvious that the complexity 
of interactions in the plant-microbe-soil-pollutant systems requires substantial fur-
ther research efforts to improve our understanding of the rhizosphere processes 
involved.

Fortunately, modern biotechnology has opened up new possibilities concerning 
the application of beneficial microbes to improve plant growth, biological control, 
as well as metal(loid)s phytoremediation.
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