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Abstract. This paper presents a proof of concept for symbolic and
numeric methods dedicated to the parameter estimation problem for
models formulated by means of nonlinear integro-differential equations
(IDE). In particular, we address: the computation of the model input-
output equation and the numerical integration of IDE systems.

1 Introduction

This paper is concerned with the problem of modeling phenomena by systems of
nonlinear integro-differential equations (IDE). Motivations for IDE modeling are
presented in [14]. In turn, this scientific question raises the two following prob-
lems: how to determine the identifiability property of such IDE models? how to
estimate parameters from experimental data? We focus on a particular method,
called the “input-output (IO) ideal” method, which is available in the nonlin-
ear differential case. The idea of this method consists in computing an equation
(called the “IO equation”) which is a consequence of the model equations and
only depends on the model inputs, outputs and parameters. In the nonlinear
differential case, it is known since [27] that it can serve to decide the identifia-
bility property of the model. It is known since [17] that it can also be used to
determine a first guess of the parameters from the experimental data. This first
guess may then be refined by means of a nonlinear fitting algorithm (of type
Levenberg-Marquardt) which requires many different numerical integrations of
the model.

Designing analogue theories and algorithms in the IDE case is almost a com-
pletely open problem in spite of many recent progresses on the algebraic prop-
erties of integro-differential algebras and their operator rings [2–4,19,20,33,36].

This article provides two contributions:

1. a symbolic method for computing an IO equation from a given nonlinear IDE
model. This method is incomplete but it is likely to apply over an important
class of models that are interesting for modelers;
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2. an algorithm for the numerical integration of IDE systems, implemented
within a new open source C library, endowed with a new MAPLE package
called Blineide. The library does not seem to have any available equiva-
lent. Our algorithm is an explicit Runge-Kutta method which is restricted
to Butcher tableaux specifically designed in order to avoid solving integral
equations at each step. In this paper, we provide three such tableaux.

The structure of the paper is as follows. Section 2 provides examples of IDE
equations and the symbolic method for computing an IO equation from an IDE
model. Section 3 describes our algorithm for the numerical integration of IDE.
Section 4 describes its implementation.

2 An IDE Input-Output Equation

This section starts with a short presentation of the Volterra-Kostitzin model,
which gives some insight on the point of introducing kernels in models. The
second section presents an academic IDE model and explains, over an example,
how to compute an IO equation. The last section contains a discussion on how
algorithmic the process illustrated by the example is.

2.1 The Volterra-Kostitzin Model

As pointed out in [14], one of the simplest nonlinear integro-differential models
studied in the literature is the Volterra-Kostitzin model [26, pp. 66–69] (more
recently revisited in [32, Chap. 4]), which may be used for describing the evolu-
tion of a population, in a closed environment, intoxicated by its own metabolic
products (other applications of the same model are considered in Kostitzin’s
book). It is an integro-differential equation since the unknown function y(x)
appears both differentiated and under some integral sign.

ẏ(x) = ε y(x) − λ y(x)2 − μ y(x)
∫ x

x−T

K(x − ξ) y(ξ) dξ. (1)

The independent variable x is time. The dependent variable y(x) is the popula-
tion, varying with time. The symbols ε, λ, μ and T denote parameters. The kernel
(or nucleus) K(x, ξ) = K(x − ξ) is the residual action function. For instance,
it could be very similar to a “survival function” in population dynamics [23, p.
3]: a decreasing function, starting at K(0) = 1, equal to 0 outside the interval
[0, T ]. Then K(x−ξ) would represent the “toxicity factor” of metabolic products
which are the most toxic when produced, at x = ξ, become less toxic with time,
and have a negligible toxic effect at time x = ξ + T .

In the case of models presented by chemical reaction systems, similar ker-
nels could arise from stochastic considerations. Indeed, if the molecularity (the
number of reactants) of each reaction is one, then the statistical moments of the
random variables which count molecules can be described by ODE [31]. However,
if the molecularity of some reactions is greater than one, then the ODE system
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for the statistical moments becomes infinite and is in general very difficult to
approximate by a finite system. A natural idea would then consist in tabulat-
ing the density probability of the event under consideration and incorporate the
tabulated curve as an integral kernel in some IDE model. See [24, Sect. 3.6].

2.2 A Compartmental IDE Model

The academic two-compartment model depicted in Fig. 1 is a close variant of
[40, (1), p. 517] endowed with an input u(x) and an IDE variant of the model
studied in [14]. Compartment 1 represents the blood system and compartment 2
represents some organ. Both compartments are supposed to have unit volumes.
The function u(x), which has the dimension of a flow, represents a medical drug,
injected in compartment 1. The drug diffuses between the two compartments,
following linear laws: the proportionality constants are named k12 and k21. In
this paper, we assume that the drug exits compartment 1, following a law given
by an integral term (this model is thus new), depending on a parameter μ (see the
Volterra-Kostitzin model for a possible modeling argument). The state variables
in this system are z1(x) and z2(x). They represent the concentrations of drug in
each compartment. This information is sufficient to write the two first equations
of the mathematical model (2). The last equation of (2) states that the output,
denoted y(x), is equal to z1(x). This means that only z1(x) is observed: some
numerical data are available for z1(x) but not for z2(x). The problem addressed
here then consists in estimating the three parameters k12, k21 and μ from these
data and the knowledge of u(x).

Fig. 1. A two-compartment model featuring three parameters.

In order to estimate the model parameters over such a model, the strat-
egy of the “input-output ideal” method consists in computing from the model
equations, an “input-output (IO) equation” featuring only the input u(x), the
output y(x) and the unknown parameters. If the model were differential only,
the computation of the IO equation, which is an elimination problem, could be
handled by means of the elimination theory of differential algebra. See [17,27]
and references therein. The IO equation itself could be algebraically described as
the single differential polynomial of the regular differential chain are associated



Integro-Differential Modeling 85

to some differential polynomial ideal of some differential polynomial ring. In the
IDE case, there does not exist (yet) any integro-differential algebra theory, rich
enough to enunciate such a precisely defined statement.

ż1(x) = −k12 z1(x) + k21 z2(x) − μ z1(x)
∫ x

0

K(x − ξ) z1(ξ) dξ

︸ ︷︷ ︸
integral term

+u(x),

ż2(x) = k12 z1(x) − k21 z2(x), (2)

y(x) = z1(x).

2.3 A Work-Around Strategy

It turns out that a work-around strategy is available for a wide class of IDE
models. We present it over Model (2).

Renaming Integrals. The idea consists in renaming the integral term using a
new unknown function F (x), yielding a polynomial differential model (3), and
process this differential model by the classical IO ideal method.

ż1(x) = −k12 z1(x) + k21 z2(x) − μ z1(x)F (x) + u(x),
ż2(x) = k12 z1(x) − k21 z2(x), (3)
y(x) = z1(x).

Model (3) can be viewed as a polynomial system of the differential polynomial
ring R = F{z1, z2, y, u, F}, where F = Q(k12, k21, μ). As such, it generates a
perfect (even a prime) differential ideal A. It is even a regular differential chain
for A, with respect to some orderly ranking.

Eliminating State Variables. By an elimination procedure (eliminating z1
and z2) one can compute a regular differential chain Cio such that Cio∩F{y, F}
is a regular differential chain for the differential ideal A ∩ F{y, F}. The regu-
lar differential chain Cio ∩ F{y, F} is made of the following single differential
polynomial

Dio = ÿ(x) + μ ẏ(x)F (x) + k12 ẏ(x) + k21 ẏ(x) − u̇(x) + μ y(x) Ḟ (x)

+ μk21 y(x)F (x) − k21 u(x).
(4)

Integrating the IO Equation. Applying an integration algorithm for differ-
ential fractions, one gets the following reformulation of (4)

Dio = μk21 y(x)F (x) − k21 u(x)

+
d
dx

((k12 + k21) y(x) + μ y(x)F (x) − u(x)) +
d2

dx2
y(x),

(5)
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which can now easily be transformed into an integral equation (integrate twice
between 0 and x and use the kernel x − ξ (not to be confused with the kernel
K(x, ξ) present in model (3)) to encode double integrals by single ones—see [23,
Sect. 1.3.1]):

Iio = μk21

∫ x

0

(x − ξ) y(ξ)F (ξ) dξ − k21

∫ x

0

(x − ξ)u(ξ) dξ

+ (k12 + k21)
(∫ x

0

y(ξ) dξ − x y(0)
)

+ μ

(∫ x

0

y(ξ)F (ξ) dξ − x y(0)F (0)
)

−
(∫ x

0

u(ξ) dξ − xu(0)
)

+ y(x) − y(0) − x ẏ(0).

(6)

Normalizing Integral Terms. It is now time to replace F (x) by its value
(and F (0) by 0). However, the expression under the integral sign involves an
indeterminate (z1) which is supposed to be eliminated. Since this expression is a
differential polynomial, differential algebra tools can again be applied and we can
replace z1 by its normal form with respect to the regular differential chain Cio.
Since this chain involves the equation z1 = y, the normal form of z1 is y and we
actually replace F (x) by

∫ x

0

K(x − ξ) NF(z1, Cio)(ξ) dξ =
∫ x

0

K(x − ξ) y(ξ) dξ.

The Resulting Equation. After replacement, one eventually gets Eq. 7, given
in Fig. 2. In order to establish the global identifiability of model (3), the argument
would be the following: Eq. 7 is a linear combination c1m1 + · · ·+ c4m4 = m0. In

Fig. 2. An IO equation for model 3.
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principle, the “monomials” mi can be evaluated at different values of x over the
experimental data, yielding a linear system whose unknowns are the blocks of
parameters ci. If the matrix of this linear system has full rank, the system can
be solved, providing estimates for the blocks of parameters. Over this system, it
is—in principle—easy to recover estimates of the model parameters k12, k21, μ
from the estimates of the ci. These questions are not addressed in this paper.

2.4 Discussion

By many aspects, the computation of Eq. 7 from model (3) suggests algorithms
for processing models presented by systems of IDE.

Renaming Integrals. Indeed, it is always possible to rename many different
integral terms by new unknown functions Fi(x). The resulting model is a system
of differential polynomials (more generally, of differential fractions) in the sense
of differential algebra. If the initial IDE model is a dynamical system (i.e. is
solved w.r.t. differentiated state variables zi) then the resulting model defines
a prime differential ideal and is a regular differential chain for this ideal, w.r.t.
some orderly ranking.

Reference books for differential algebra are [25,35]. Regular differential chains
are generalizations of Ritt’s characteristic sets. In the non differential context,
regular chains provide an alternative to Gröbner bases for describing polynomial
ideals and performing some ideal-theoretic constructs. In the differential context,
the Gröbner bases theory does not generalize satisfactorily: regular differential
chains and other close concepts are the only tools available for investigating
properties of differential ideals. See [13] for a recent study of this concept.

Orderly rankings are defined in [25, I, 8, p. 75]. The fact that the differential
ideal defined by a dynamical system is prime follows from the fact that each
equation of the regular differential chain is linear in its leading derivative, hence
cannot be represented as the product of two differential polynomials with positive
degree in this leading derivative.

Eliminating State Variables. Eliminating the state variables can be achieved
by means of a differential elimination algorithm [1,10,11,28,34], using some
specific ranking, leading to some regular differential chain Cio. These elimi-
nation algorithms can be applied over any system of differential polynomials.
They can also be applied over any system of differential fractions, by handling
the numerators of the differential fractions as differential polynomial equations
and the denominators as differential polynomial inequations (polynomials that
are required to be nonzero). See the implementation of [7, RosenfeldGroebner].
Moreover, if the input model already is a regular differential chain w.r.t. some
(orderly) ranking, it is possible to apply an improved elimination method [12,30]
which avoids splitting cases. Let us conclude this section by a few remarks:
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– the state-of-the-art elimination algorithms do not try to minimize the number
of times these unknown functions get differentiated, which might be problem-
atic if the integral terms depend on (say) kernels which are not indefinitely
differentiable. A similar issue arises in the case of PDE [42];

– if the integral terms satisfy some known differential algebraic relation, it is
possible to enlarge the model equations with this relation before the elimina-
tion process.

Integrating the IO Equation. For simplicity, let us assume that, among
the many different differential polynomials occurring in the regular differential
chain Cio, a single one (called the IO equation) is free of the state variables.

The integration algorithm [9] may be applied over the IO equation or over
any equivalent differential fraction, obtained by dividing the equation by some
other differential polynomial, such as the leading coefficient (the initial) of the
IO polynomial. The result can then be converted into an IDE (such as (6)) by
means of classical techniques. See [8] and [23, Formula (1.45)].

From a theoretical point of view, this integration step is not mandatory.
In practice, it leads to formulas which are much more suitable for parameter
estimation, as established in [29,39].

Normalizing Integral Terms. Substituting back the unknown functions Fi(x)
by the integral terms they represent does not raise any problem. The normal-
ization of the expressions lying under the integral terms leads to a more subtle
issue.

In general, an integral term involves, as sub-expressions, many different (e.g.
in the case of nested integrals) differential fractions [f1, f2, . . . , fr]. The normal
form algorithm presented in [6] can be applied over all these fractions, w.r.t. the
whole regular differential chain Cio. These normal forms are themselves differ-
ential fractions [NF1,NF2, . . . ,NFr]. Replacing each f by its normal form, one
gets another formulation of the integral term, which is equivalent to the original
one.

In full generality, the normal forms may themselves depend on unknown
functions Fi(x) and one may consider to iterate this substitution process. If
the ranking w.r.t. which Cio is defined is not carefully chosen, the substitution
process may transform an IO equation into a non-IO equation or (worse) may
not terminate at all. A careful study of this issue is left for investigation in
another paper.

The Resulting Equation. If the resulting equation does not depend on the
state variables at all, it is a candidate for an IO equation. However, in the
absence of any sound integro-differential elimination theory, it is not clear that
it is minimal. For similar reasons, if the resulting equation depends on state
variables so that it is not an IO equation, it is not clear that no IO equation
exists at all.
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3 Numerical Integration of IDE Systems

According to [41], IDE are a particular case of delay differential equations (DDE)
(continuous delay differential equations). However, though there exist numeri-
cal solvers for DDE with constant delays [37], there does not seem to be any
widely available software for IDE. Within a whole section dedicated to DDE
[21, Sect. II.17], a single page is dedicated to the numerical integration problem
of IDE in [21, p. 351], which refers to [15] and sketches solutions in particu-
lar cases only. In this article, we focus on explicit Runge-Kutta methods. See
[18] to a theoretical study of their application to the numerical integration of
IDE. The relationship between these early works and our paper still needs some
investigation.

3.1 The Method

We are concerned with the numerical integration of IDE of the form

ẏ(x) = f(x, y(x)), (8)

over some integration interval [x0, xend]. The independent variable x is real. The
dependent variable y may actually be a vector of n functions of x. The function f
may depend on inputs u(x) and on integral terms of the form

∫ β(x)

α(x)

K(x, ξ)G(y(ξ)) dξ. (9)

The inputs u(x) and the kernels K(x, ξ) present within the integral terms (9)
are supposed to be Cρ for some ρ ≥ 0. For instance, we want to allow inputs to
be piecewise defined and kernels to be given by, say, cubic splines. It is required
that the integral upper bounds β(x) ≤ x (typically, β(x) = x) in order to obtain
“causal” systems; various lower bounds are allowed (typically α(x) = x0 or
α(x) = x−T for some T > 0). Some initial values need also be given. Depending
on integral lower bounds α(x), the value of y(x) may need to be prescribed on
some sufficiently large interval.

In this article, we are concerned with the integration problem by means of
a numerical integrator derived from explicit Runge-Kutta methods. Moreover,
we focus on the study of “fixed step size” integrators. On the one hand, once
such an integrator is designed, it is not difficult to design an adaptive step size
integrator following the approach which is classical for ODE—since embedded
formulas are available. See [21, Sect. II.4]. On the other hand, adaptive step
size controllers use the knowledge of the orders of both the principal and the
embedded formulas in order to estimate the local error. It is thus important
to make sure that the theoretical orders of these formulas correspond to their
practical orders—an investigation to be carried out using a “fixed step size”
integrator.

The quotes surrounding the qualifier “fixed step size” are due to the fact that
step sizes will actually vary during the integration process. Indeed, assuming
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some number of steps N is prescribed, one can define a reference step size hr =
(xend − x0)/N . Assuming moreover that an order p Runge-Kutta method is
prescribed, one expects the local error produced by the explicit Runge-Kutta
algorithm to be of the order of hp+1

r by [21, Theorem 3.4]. Now, if we had to
integrate an ODE, it would be sufficient to perform N steps of size hr. This
strategy does not apply here because we also want to avoid solving integral
equations or, more generally, implicit equations involving integrals.

Avoiding Solving Integral Equations. Assume that the current point
(x0, y0) is known. Consider some integral (9) to be evaluated at x = x0. Assume
thus that an approximation of y(ξ) is known over the interval [α(x0), x0]. Since
β(x) ≤ x, we have [α(x0), β(x0)] ⊂ [α(x0), x0] and the integral (9) can be
approximated by a mere quadrature. Thus f(x0, y0) also can be approximated
by quadratures and, given any step size h, the order 1 Euler method (10) permits
to compute an approximation of the next point (x1, y1)

y1(h) = y0 + h f(x0, y0). (10)

This is however not true anymore for order p > 1 classical Runge-Kutta meth-
ods. Consider Runge midpoint formula, summarized by the following Butcher
tableau1 with s = 2 stages [21, Chap. II.1, Table 1.1]

0
c2 a21

b1 b2

=
0
1
2

1
2

0 1

The Runge-Kutta formula [21, II.1, (1.8)] requires s evaluation of the function f
of formula (8). These evaluations have the form

ki = f(x0 + ci h, y0 + h (ai,1 k1 + · · · ai,i−1 ki−1)) (1 ≤ i ≤ s)

Assuming (x0, y0) is the current, known, position and the stepsize h > 0, we see
that negative ci correspond to an evaluation of f for x < x0 i.e. in the past.
A contrario, if any ci is positive (which is the case for all classical tableaux),
the evaluation of the formula implies an evaluation in the future which, in the
context of IDE, implies solving an integral equation—or worse. To overcome
this issue, we have designed the Butcher tableaux of Fig. 3 with negative ci only.
They were obtained, using the MAPLE computer algebra system, by brute force
identification of the coefficients of the Taylor series of the exact solution y(x0+h)
and the ones of the result of the Runge-Kutta formula, denoted y1(h) in [21, II.1,
1 Butcher tableaux were introduced by Butcher in [16] to provide a compact descrip-

tion of “Runge-Kutta methods”. To each tableau is associated a number of stages
(customarily denoted s) and an order (customarily denoted p). The computational
cost of a Runge-Kutta method increases with the number of stages. The efficiency
increases with the order. The coefficients of the tableaux are denoted ci (the leftmost
column), bj (the bottom row) and ai,j (the matrix).
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(1.8)]. The rightmost tableau has 5 stages since a Gröbner basis computation
proved that all 4 stages tableaux of order 4 must have c4 = 1 (a result which is
known, at least under some simplifying assumptions—see [21, Theorem 1.6]).

Fig. 3. The leftmost tableau has s = 2 stages, order p = 2 and an embedded formula
of order p̂ = 1 (Euler). The tableau in the middle has s = 3 stages, order p = 3 and an
embedded formula of order p̂ = 2. The rightmost tableau has s = 5 stages, order p = 4
and an embedded formula of order p̂ = 3. The coefficients ci of all tableaux (see the
leftmost columns) satisfy −1 ≤ ci ≤ 0 for 1 ≤ i ≤ s.

Stability Analysis. From a theoretical point of view, the stability of Butcher
tableaux can be determined by computing the stability function R(z) of each
tableau and establishing that its stability domain—which is the subset of the
complex plane such that |R(z)| < 1—is not empty. Some existing computer
algebra software are dedicated to this study [38] but we could not take advantage
of them by lack of access to Mathematica. Instead, we directly computed R(z)
using [22, IV, (2.8)]. We observed that our two first tableaux, for which p = s,
exhibit the stability function given in [22, IV, (2.12)]. The leftmost tableau has
the following stability function, which admits a non empty stability domain:

R(z) = 1 + z +
z2

2
+

z3

6
+

z4

24
− z5

24
·

Experimental evidence of the existence of non empty stability regions for the
tableaux of Fig. 3 is provided in Sect. 4.

Step Size Control. Runge-Kutta methods with ci < 0 have however a draw-
back when x0 is the initial value or is on the border of a piecewise defined
domain, since the integrator will try to estimate the current derivative of the
integral curve on the right hand piece of the domain from derivatives evaluated
on the left hand piece. This drawback is certainly a feature for integral terms
(by design of the equations). But the terms which lie outside integrals should be
evaluated on the right hand piece of the integration domain.

To achieve this goal, our strategy consists in starting with a single Euler step,
using a very small step size h0, then switch to some prescribed more efficient
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Runge-Kutta method of Fig. 3 and double the step size at each iteration until
the reference step size hr is reached. Precisely, assume we want to apply some
Runge-Kutta method of order p > 1. We expect a local error of order hp+1

r .
This local error can also be obtained by an Euler step with step size h0 such
that h2

0 = hp+1
r i.e. such that h0 = h

(p+1)/2
r . Let now k be an integer such that

h0 � hr/2k. Solving, one gets

k =
⌈
− log2

(
h

p−1
2

r

)⌉
, h0 =

hr

2k
·

Let us assume we are starting the integration with x0 precisely on the border
between two pieces of the integration interval or at its beginning. The first Euler
step with step size h0 does not involve any negative ci: the terms depending
on y and lying outside integrals are evaluated over the border, which may be
considered as part of the right hand piece. The second iteration starts at x0+h0.
Since the coefficients ci of Fig. 3 satisfy 0 ≥ ci ≥ −1, this step can be performed
using the order p Runge-Kutta method, with step size h0: all terms depending
on y and lying outside integrals are thus evaluated within the right hand piece.
The third iteration starts at x0 + 2h0. This step can be performed using the
order p Runge-Kutta method, with step size h = 2h0. Continue likewise, doubling
the step size at each iteration. At the iteration k + 2, the reference step h = hr

is reached (see below) and the integrator may continue with this fixed step size.

Step number Step size Method
1 h0 = hr/2k Euler
2 h0 Order p RK
3 2h0 Order p RK

...
k + 2 2k h0 = hr Order p RK

Evaluating Quadratures. In order to evaluate quadratures at any x, it is
necessary to be able to evaluate the dependent variable y at any ξ ∈ [x0, x].

For this, the whole sequence of points (xk, yk) computed by the numerical
integrator is recorded as well as the value fk = f(xk, yk) (the derivative of y)
whenever it is available. Two methods are implemented for estimating y(ξ):

1. by evaluating the interpolation polynomial defined by a set of points sur-
rounding ξ (the optimal number of points depends on the order of the Butcher
tableau), using Newton’s divided differences;

2. by evaluating the interpolation polynomial defined by Hermite interpolation
i.e. over a dense output of the integrator. See [21, Chap. II.6].

For quadratures, since the orders of our tableaux do not exceed 4, we use
basic integration schemes i.e. Newton and Simpson order 4 formulas, with step
size equal to the reference step size hr.
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4 Implementation

Our numerical integrator is implemented within an open source C library (about
4000 lines plus 3200 lines for the test suite of version 2.1) available at [5]. It
compiles over Linux platforms. It is endowed with a MAPLE library which con-
siderably simplifies the C code generation from mathematical systems.

The C code can be compiled using floating point numbers of various sizes
(simple, double, long double and quadruple precision). Its main functionalities
are a fixed step size numerical integrator for IDE systems and a function which
seeks the best fitting parameters of an IDE system w.r.t. experimental data. This
function is mostly a call to the GSL implementation of the Levenberg-Marquardt
algorithm, which relies on our numerical integrator in order to compute errors.

4.1 Data Types

Here is a quick review of the main data types. For a better flexibility, most of
them are parametrized by functions.

The library has been designed to apply over a piecewise defined integration
interval. Pieces may arise from many different sources: inputs may be piecewise
defined, delayed evaluations such as y(x − T ) may occur from differentiated
integral terms . . . The boundaries between the pieces of the integration interval
are called critical points.

A specific data type permits to describe the possibly many different inputs
u(x) of the IDE system to be integrated. An input is defined by a name, an
evaluation function and a function which permits to enlarge the set of the model
critical points with the ones which are due to the input.

A specific data type is dedicated to the model parameters. A parameter is
defined by a name, a floating point value, a function which permits to enlarge the
set of the model critical points with the ones which are related to the param-
eter, and two functions providing a transformation and its reciprocal before
performing nonlinear fitting methods (an example of such a useful pair of trans-
formations is the pair log / exp to keep positive small parameters which must
remain positive).

A specific data type describes the problem i.e. the IDE system to be inte-
grated. A problem is defined by a dimension n, an integration interval [x0, xend],
an array of n initial value functions (in the general case, the numerical inte-
gration of an IDE requires the knowledge of the dependent variable y over an
interval, not only a single value at x0), an array of inputs, an array of parameters
and a function fcn for evaluating the right hand sides of the IDE equations. A
field of the problem data structure contains a description of the problem critical
points.

The integral terms (9) occurring in the right hand sides of the IDE equations
are described in a separate array of the problem data structure. This permits to
evaluate them before calling fcn in order to speed up the integrator as follows.
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Recall that, at each integration step, the m (say) integral terms have to be
evaluated s (the number of stages) times. Thus: (1) by grouping the m × s
quadrature evaluations in the code, it is much easier to compute them in parallel
using OpenMP facilities; (2) in some cases, the s evaluations of a given integral
term can be computed almost at the cost of a single evaluation, by updating the
current result from one stage to the following one.

A last data type contains the whole data needed by the integration process
(it is called the “history”). It contains the sequence of all points computed so
far (which is the actual history), the problem, the Butcher tableau to be used
and a few other fields of minor importance.

4.2 Usefulness of the Computer Algebra Package

A MAPLE package, called Blineide and shipped with the C library, permits
to handle IDE problems given by mathematical formulas. It permits either to
directly perform computations from MAPLE or to generate C code to help pro-
grammers who want to work at C level.

Beyond the obvious simplification provided to the user, the idea of generating
C code from a computer algebra software provides two important enhancements
which are not yet implemented: (1) it should permit to detect linear (algebraic?)
dependencies between the integral terms occurring in the IDE model and use
this information to reduce the computation cost; (2) it might permit a symbolic
study of the location of critical points for a better reliability of the integrator.

4.3 Tests

Checking Convergence Towards Exact Solution. Some tests are designed
to check that the numerical integrator converges toward the true solution of a
given IDE system, with the expected experimental order. An example of such
an IDE is the following one, which admits y(x) = cos(x) as a solution:

ẏ(x) = sin(x) − y2(x) + 4
∫ x

0

(x − ξ)2 sin(ξ) y(ξ) dξ − x2 + 1,

y(0) = 1.

In order to test the experimental order of the numerical integrator over a given
example, the test function computes the relative error produced with 2k inte-
gration steps, for many different values of k. The experimental order is then
estimated, by linear least squares, as the slope a of the following equation:

k a + b = − log2(relerr). (11)

Other tests check the behaviour of the numerical integrator using various
inputs and kernels, including kernels defined by cubic splines.
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Checking Experimental Orders. We checked our integrator over Volterra-
Kostitzin model (1) and the compartmental IDE model (3). In the case of the
Volterra-Kostitzin model, we estimated the practical order of the integrator when
used with the Butcher tableaux of Fig. 3. In particular, we addressed the case of
non smooth kernels in integrals (see the curves of Fig. 4) and non smooth inputs
(curves not shown).

On the left hand picture of Fig. 4, the kernel is a cubic spline (i.e. a C2 curve).
On the right hand picture, the kernel is a smooth curve (on the two pictures, the
mathematical problem to be solved is thus not the same). In each picture, there
is one curve per Butcher tableau of Fig. 3. Each curve was obtained as follows:
a first integration was performed with 215 steps. Its result was then considered
as a reference value and compared with the result of other integrations with
28, 29, . . . , 214 steps, giving 7 points hence a curve, which should be a straight
line (see formula (11)). Its slope is a numerical estimate of the order of the
numerical integrator. In the case of a C2 kernel, the integrator has order 2 when
used with an order 2 tableau; and a non reliable order close to 2 when used with
order 3 and 4 tableaux. In the case of a smooth kernel, the integrator has the
same order as the tableau with which it is used (the curve for order 4 is slightly
irregular because the order of the quadrature formula does not match the one
of the Butcher tableau).

Fig. 4. Experimental evaluation of the order of the IDE numerical integrator over
Volterra-Kostitzin model (1), with an integral lower bound equal to zero.

Nonlinear Fit. A test solves the fitting problem addressed by Kostitzin over
data obtained on a population of staphylococcus, obtaining a much better result
than [26, p. 72] which is to be expected since Kostitzin estimated parameters
using his mathematical skills, without any computer! See Fig. 5.
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Fig. 5. Best fitting curve for (1) with the trivial kernel K(x, ξ) = 1 and an integral
lower bound equal to zero, against the staphylococcus population reported in [26, p.
72]. Optimal parameters are ε = 3.97 × 10−1, λ = 6.56 × 10−5 and μ = 1.02 × 10−6.

Conclusion

We have presented and discussed a symbolic method for computing the IO equa-
tion of a given IDE system which is likely to apply over an important class of IDE
models, together with an open source library dedicated to the numerical integra-
tion of such systems, endowed with a new MAPLE package. This library does
not only integrate IDE systems but provides also parameter estimation facilities.
It seems to have no available equivalent. Its existence is of major importance for
promoting IDE modeling.

However, these very promising results raise in turn many fascinating chal-
lenges, both theoretical and practical. Indeed, what about: a complete algo-
rithm for computing IO equations? an IDE analogue of the “input-output ideal”
method? a sound theory for critical points? implicit numerical integrators? These
issues will be addressed in future papers.
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