
Sparse Polynomial Arithmetic
with the BPAS Library

Mohammadali Asadi, Alexander Brandt(B), Robert H. C. Moir,
and Marc Moreno Maza

Department of Computer Science, The University of Western Ontario,
London, Canada

{masadi4,abrandt5,rmoir3}@uwo.ca, moreno@csd.uwo.ca

Abstract. We discuss algorithms for pseudo-division and division with
remainder of multivariate polynomials with sparse representation. This
work is motivated by the computations of normal forms and pseudo-
remainders with respect to regular chains. We report on the implemen-
tation of those algorithms with the BPAS library.

1 Introduction

General-purpose polynomial system solvers, like Maple’s solve command, com-
bine different algorithms using various polynomial data-types. Consider, as input
for such a solver, a polynomial system coming from a real life application, typi-
cally consisting of sparse multivariate polynomials with rational number coeffi-
cients. A pre-processing phase, using sparse polynomial data-types, attempts to
reduce the number of equations, variables or the total degree, say by exploiting
properties like symmetries. Then a core engine, say based on Gröbner bases, a
homotopy method, or triangular decompositions, determines a representation of
the real or complex solutions of the input system; this step generally requires
a change of polynomial representation (e.g. dense data-types) together with a
change of coefficient type (e.g. to finite fields when modular methods are used).
Finally, the representation computed by the core engine is converted to one
which is more “explicit” or convenient to an end-user; in fact, a return to the
original sparse polynomial data-type is likely to take place.

Core engines of polynomial systems solvers have driven a large body of work
in the computer algebra community. In particular, algorithms and implemen-
tation techniques supporting the polynomial and matrix data-types used by
those core engines have received great attention. In contrast, until a decade ago,
the implementation of sparse polynomial arithmetic, which is the default data-
type for general-purpose computer algebra systems, like Maple, Mathematica,
Sage, and Singular, was often less optimized. Nevertheless, we should mention
pioneer works like the seminal article of Johnson [11] in 1974.

Research works conducted in the last decade on sparse polynomial arithmetic
operations1 and data-types can essentially be categorized into two streams. The
1 Polynomial arithmetic operations refers here to addition, multiplication, division and

pseudo-division.
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first one deals primarily with algebraic complexity, see the works of van der
Hoeven and Lecerf [10] and those of Arnold and Roch [1]. The latter focuses on
implementation techniques, see the works of Monagan and Pearce [15,19], and
those of Gastineau and Laskar [5,6]. The present work subscribes to this second
stream. We are motivated by obtaining efficient implementation of triangular
decomposition algorithms based on the theory of regular chains [4]. To be precise,
we aim at adapting the algorithms of the RegularChains library [13] to the Basic
Polynomial Algebra Subprograms (BPAS). This latter library is written mainly
in C language, for high performance, wrapped in a C++ interface to make use of
object-oriented programming and for end-user usability. The Cilk extension [12]
is used for multi-threading, targeting multi-core processors. BPAS is already
equipped with parallel dense polynomial arithmetic over finite fields [20] and the
integers [3]. BPAS is publicly available in source at www.bpaslib.org.

We report in this paper on the implementation with the BPAS library of
elementary arithmetic operations for multivariate polynomials represented with
sparse data-types. In Sect. 2, we start by discussing multiplication and division
with remainder, following the papers [11,15,19]. Then, we propose an algorithm
for pseudo-division using similar principles. Our presentation of both division
with remainder and pseudo-division has two levels: one abstract level indepen-
dent of the supporting data-structures (see Algorithms 1 and 3) and one level
taking advantage of heap data-structures (see Algorithms 2 and 4). This presen-
tation allows us to formally prove those algorithms.

In Sect. 3, we discuss the implementation of the algorithms presented in
Sect. 2 within the BPAS library; we highlight the differences between our imple-
mentation and that realized in Maple by Monagan and Pearce. Note that,
currently, all the BPAS code for sparse polynomial arithmetic is entirely serial C
code, that is, multi-threading is not used yet. We stress the fact that, while algo-
rithms for division with remainder (Algorithms 1 and 2) may look similar to their
counterparts for pseudo-division (Algorithms 3 and 4), implementation of the lat-
ter is by far more challenging than that of the former. Indeed, pseudo-division is
essentially a univariate operation. Thus, when used in the context of multivariate
polynomials, careful data-structure manipulations are needed to optimize both
memory usage and access time to terms of polynomials, see Sect. 3.5. Section 4
gathers our experimental results. For multivariate polynomials over the inte-
gers (for which both BPAS and Maple have optimized implementation), BPAS
is usually faster with a speedup factor typically between 2 to 3, see Figs. 5, 6
and 8. For multivariate polynomials over the rational numbers (for which only
BPAS has an optimized implementation), BPAS is faster than Maple by 2 to
3 orders of magnitude, see Figs. 3, 4 and 7. This is particularly true for the
computation of normal forms, see Fig. 9.

2 Sparse Polynomial Arithmetic

For the treatment of sparse polynomial arithmetic we require both a distributed
and recursive view of polynomials, depending on the operation. For a distributed
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polynomial a ∈ D[x1, . . . , xm], for an integral domain D and variable ordering
x1 < x2 < · · · < xm, we use the notation a =

∑na

i=1 Ai =
∑na

i=1 aiX
αi , where

na is the number of (non-zero) terms, 0 �= ai ∈ D, αi is an exponent vector
for the variables X = (x1, . . . , xm). A term of a is represented by Ai = aiX

αi .
We assume that the terms are ordered (decreasing) lexicographically, so that
lc(a) = a1 is the leading coefficient of a, lm(a) = Xα1 is the leading monomial
of a, and lt(a) = a1X

α1 is the leading term of a. If a is not constant, the greatest
variable appearing in a is the main variable of a (denoted mvar(a)). Given a term
Ai of a, coef(Ai) = ai is the coefficient, expn(Ai) = αi is the exponent vector,
and deg(Ai, xj) is the component of αi corresponding to xj . Then, deg(a, xj) is
the maximum value of deg(Ai, xj) among all terms Ai of a.

For a recursive view of a non-constant polynomial a ∈ D[x1, . . . , xm],
again with x1 < x2 < · · · < xm, we view a as a univariate polynomial in
R[xj ], with xj = mvar(a) is the largest variable occurring in a, and where
R = D[x1, . . . , xj−1]. Viewed in R[xj ], the leading coefficient of a is the initial
of a (denoted init(a)). Given a term Ai of a ∈ R[xj ], coef(Ai) ∈ D[x1, . . . , xj−1]
and expn(Ai) = deg(Ai, xj).

Addition (or subtraction) of two polynomials requires joining the terms of
the two summands, combining terms with identical exponents (with possible
cancellation) and then sorting the terms of the sum. A näıve approach is to
compute the sum a + b term-by-term, adding a term of the addend (b) to the
augend (a), sorting at each step, in a manner similar to insertion sort. An efficient
algorithm instead uses merge sort, taking advantage of the fact that the terms
of a and b are already ordered. For details of the algorithm see [11, p. 65].

Multiplication of two polynomials requires generating the terms of the prod-
uct, combining terms with equal exponents and sorting the product terms. A
näıve approach is to compute the product a · b (where a has na terms and b has
nb terms) by distributing each term of the multiplier (a) over the multiplicand
(b) and combining like terms: c = a · b = (a1X

α1 · b) + (a2X
α2 · b) + · · · . This is

inefficient because all nanb terms are generated, whether or not they have equal
exponents, and the nanb terms must be sorted. Again, following Johnson [11],
we can obtain more efficient algorithms by generating terms in sorted order.

We make good use of the sparse data structure for a =
∑na

i=1 aiX
αi , and b =∑nb

j=1 bjX
βj , by observing that for given αi and βj , we always have that

Xαi+1+βj and Xαi+βj+1 are less than Xαi+βj in the term order. Given that
Xαi+βj > Xαi+βj+1 we can generate terms of the product in order by merging na

“streams” of terms obtained by multiplying a single term of a distributed over b,

a · b =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a1 · b1) Xα1+β1 + (a1 · b2) Xα1+β2 + (a1 · b3) Xα1+β3 + . . .

(a2 · b1) Xα2+β1 + (a2 · b2) Xα2+β2 + (a2 · b3) Xα2+β3 + . . .

...
(ana · b1) Xαna+β1 + (ana · b2) Xαna+β2 + (ana · b3) Xαna+β3 + . . .

and then selecting the maximum term from the heads of the streams. The new
head of the stream where a term is removed is then the term to its right in that
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stream. We can efficiently handle this sub-problem of selecting the maximum
term by storing the heads of the streams in a priority queue, which we imple-
ment using a binary max-heap. We minimize the size of the heap by choosing
the order of multiplicative factors such that na ≤ nb, which we are free to do
since multiplication is commutative. Because the heap multiplication algorithm
was specified completely by Johnson, we refer the reader to [11], which discusses
the algorithm and provides pseudo-code.

2.1 Division

We now consider the problem of multivariate division, where the input polyno-
mials a, b ∈ D[x1, . . . , xm], with b �∈ D being the divisor and a the dividend. We
assume that D is a field. Hence {b} is a Gröbner basis of the ideal it generates.
Thus, we can specify the output as q, r ∈ D[x1, . . . , xm] satisfying a = qb + r,
such that r is reduced with respect to b treated as a Gröbner basis.

Division presents a more tricky problem in terms of heap-optimization. We
must compute terms of the quotient and remainder in order, and produce terms
of the product qb in order, as terms of q are generated in the execution of the
algorithm. To see how this can be done without a heap, consider Algorithm1,
which computes q and r term by term by computing r̃ = lt(a − qb − r) at each
step. This works for multivariate division because introducing a new quotient
term whenever lt(b) | r̃ ensures that any subsequent terms of a − qb − r that do
not satisfy this condition will be remainder terms. This allows terms of both q
and r to be computed in order.

Proposition 1. Algorithm1 terminates and is correct.

Proof. It is enough to show that for each iteration of the loop, the term r̃
decreases strictly. It follows from the axioms of a term order that r̃ becomes
zero after finitely many iterations. We denote the values of the variables of Algo-
rithm1 on the i-th iteration by superscripts. For each i, depending on whether
or not lt(b) | r̃(i) holds, we have two possibilities:

– Q� = r̃(i)/B1, where Q� is a new quotient term;
– or Rk = r̃(i), where Rk is a new remainder term.

We provide the proof for the first case. The second case is similar but essentially
trivial. Since r̃(i) = Q�B1 holds by assumption, we have

r̃(i+1) = lt(a − q(i+1)b − r(i+1)) = lt(a − ([q(i) + Q�]b + r(i)))

= lt(a − (q(i)b + r(i) + (r̃(i) − r̃(i)) + Q�b))

= lt([(a − q(i)b − r(i)) − r̃(i)] − [Q�(b − B1)])

< lt(r̃(i)) = r̃(i).

The remainder r is reduced with respect to {b} because all terms Rk of r satisfy
lt(b) � Rk by construction. ��
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Heap-optimization can then be applied to Algorithm1 by using a heap to
keep track of the computation of the product qb. This is a special case of heap
multiplication. The major difference from multiplication, where all terms of both
factors are known at the outset, is that q is computed as the algorithm proceeds,
which forces q to be the multiplier and b the multiplicand. Thus, each stream
consists of a term Q� of q distributed over b. Another difference from multipli-
cation is that each stream is initiated with the term Q�B2, because Q�B1 need
not be computed because it is canceled out by construction.

The management of the heap to compute a product ab requires a num-
ber of specialized functions. We provide here a simplified interface consisting
of three functions. heapInsert(Ai, Bj) adds the product of Ai and Bj to the
heap2. heapPeek() gets the exponent vector ε of the top element in the heap.
heapExtract() removes the top element of the heap and inserts the next ele-
ment of the stream from which the top element came from. That is, if there are
any elements remaining in that stream. The key modification of Algorithm1 to
reach Algorithm 2 is to use terms of qb from the heap to compute r̃ = lt(a−qb−r).
This requires tracking three cases: (1) r̃ is an uncanceled term of a; (2) r̃ is a
term of the difference (a − r) − (qb); and (3) r̃ is a term of −qb such that all
remaining terms of a − r are smaller in the term order.

Let ε be the exponent vector of the top term of the heap computation of
qb. If the heap is empty, we let ε = (−1, 0, . . . , 0), which will be less than any
exponent of any polynomial term on account of the first element being −1. We
therefore abuse notation and write ε = −1 for an empty heap. Let Ak be the
greatest uncanceled term of a. Then, the three cases correspond to conditions on
the ordering of ε and expn(Ak). The term r̃ is an uncanceled term of a (case 1)
either if the heap is empty (indicating that no terms of q have yet been computed
or all terms of qb have been extracted) or if ε > −1 but ε < expn(Ak). In either
of these two situations ε < expn(Ak) holds. The term r̃ is a term of the difference
(a− r)− (qb) (case 2) if both Ak and ε have the same exponent (ε = expn(Ak)).
And r̃ is a term of −qb (case 3) whenever ε > expn(Ak) holds.

Algorithm 2 uses this observation to compute r̃ by adding a conditional to
compare the ranks of ε and expn(Ak). Terms are only extracted from the heap
when ε ≥ deg(Ak) holds; and when a term is extracted the next term from
the given stream, if there is one, is added to the heap (defined behaviour of
heapExtract()). The adding of new terms to q and r is almost identical to
Algorithm 1, except that for quotient terms we initiate a new stream starting
with Q�B2 (because Q�B1 is canceled by construction). Together with Proposi-
tion 1, then, we have established the following proposition.

Proposition 2. Algorithm2 terminates and is correct. ��

2 Note that the heap need not actually store product terms but can simply store the
indices of the two factors, with the product only computed when elements of the heap
are removed. This strategy is needed for pseudodivision, discussed below, where the
quotient terms are updated in the course of the algorithm.
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Algorithm 1. divide(a,b)
a, b ∈ D[x1, . . . , xm], mdeg(b) > 0, return q, r ∈
D[x1, . . . , xm] such that a = qb + r where r is
reduced with respect to the Gröbner basis {b}.
1: q := 0; r := 0
2: while r̃ := lt(a − qb − r) �= 0 do
3: if lt(b) | r̃ then
4: q := q + r̃/lt(b)
5: else
6: r := r + r̃
7: end if
8: end while
9: return (q, r)

Algorithm 3. pseudoDivide(a,b,x)
a, b ∈ D[x], deg(b, x) > 0, returns q, r ∈ D[x] and

� ∈ N such that h�a = qb + r, with deg(r, x) <
deg(b, x).

1: q := 0; r := 0; h := lc(b); � := 0; γ = deg(b.x)

2: while r̃ := lt(h�a − qb − r) �= 0 do
3: if xγ | r̃ then
4: q := hq + r̃/xγ ; � := � + 1
5: else
6: r := r + r̃
7: end if
8: end while
9: return (q, r, �)

Algorithm 2. divide(a,b)

a, b ∈ D[x1, . . . , xm], mdeg(b) > 0, return q, r ∈
D[x1, . . . , xm] such that a = qb + r where r is

reduced with respect to the Gröbner basis {b}.
1: q := 0; r := 0

2: k := 1; � := 0

3: while ε := heapPeek() > −1 or k ≤ na do

4: if ε < expn(Ak) then

5: r̃ := Ak

6: η := expn(Ak); k := k + 1

7: else if ε = expn(Ak) then

8: r̃ := Ak − heapExtract()

9: η := ε; k := k + 1

10: else

11: r̃ := −heapExtract()

12: η := ε

13: end if

14: if expn(B1) | η then

15: � := � + 1; Q� := r̃/B1; q := q + Q�

16: heapInsert(Q�, B2)

17: else

18: r := r + r̃

19: end if

20: end while

21: return (q, r)

Algorithm 4. pseudoDivide(a,b,x)

a, b ∈ D[x], deg(b) > 0, returns q, r ∈ D[x] and � ∈ N

such that h�a = qb + r, with deg(r, x) < deg(b, x).

1: q := 0; r := 0; h := lc(b)

2: ε := −1; s := 0

3: k := 1; � := 0; γ := deg(b, x)

4: while ε := heapPeek() > −1 or k ≤ na do

5: if ε < deg(Ak, x) then

6: r̃ := h�Ak

7: η := deg(Ak, x); k := k + 1

8: else if ε = deg(Ak, x) then

9: r̃ := h�Ak − heapExtract()

10: η := ε; k := k + 1

11: else

12: r̃ := −heapExtract()

13: η := ε

14: end if

15: if deg(b, x) ≤ η then

16: q := hq; � := � + 1; Q� := r̃/xγ

17: heapInsert(Q�, B2); q := q + Q�

18: else

19: r := r + r̃

20: end if

21: end while

22: return (q, r, �)

2.2 Pseudo-Division

The pseudo-division algorithm is essentially univariate, and terms here are ele-
ments of D[x] for an arbitrary integral domain D. Pseudo-division is essentially
a fraction-free division: rather than dividing a by h = lc(b) for each term of the
quotient q, it multiplies a by h. If the quotient ends up with � terms, then the
result must satisfy h�a = qb + r.

An important consequence of pseudo-division being univariate is that all
of the quotient terms are computed first and then all of the remainder terms
are computed. This is because we can always carry out a pseudo-division step
provided that deg(b, x) ≤ deg(lt(h�a−qb), x), where lt(h�a−qb) is the equivalent
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of r̃ from Algorithm 1 when r = 0. Thus, we adopt the same symbol for it
in Algorithm 3, which is the extension of Algorithm1 to pseudo-division. The
only difference in these algorithms is that each time we compute a new pseudo-
quotient term we do so as r̃/xγ , where γ = deg(b, x) (fraction free division),
rather than r̃/B1 = r̃/(hxγ) as before, and because we add a factor of h to a,
we must also multiply the previous value of the quotient by h.

Proposition 3. Algorithm3 terminates and is correct.

Proof. Similar to Proposition 1. The two cases here are Q� = r̃(i)/xγ and Rk =
r̃(i). We consider the first case (the second case is similar and essentially trivial).
In the first case r(i) = 0, since quotient terms are still being computed, so that
r̃(i) = lt(h�a − q(i)b). Since r̃(i) = Q�x

γ by assumption, hr̃(i) = Q�B1, and we
have

r̃(i+1) = lt(h�+1a − q(i+1)b − r(i+1)) = lt(h�+1a − ([hq(i) + Q�]b))

= lt(h�+1a − (hq(i)b + (hr̃(i) − hr̃(i)) + Q�b))

= lt(h[(h�a − q(i)b) − r̃(i)] − [Q�(b − B1)])

< lt(r̃(i)) = r̃(i).

The condition deg(r, x) < deg(b, x) is ensured because quotient terms are com-
puted until xγ

� r̃ holds, that is, until deg(h�a − qb, x) < deg(b, x) holds. ��
Heap-optimization of Algorithm 3 proceeds in much the same way as for divi-

sion. The only additional consideration required for Algorithm4 is the accounting
for factors of h in the computation of lt(h�a−qb−r). This only requires adding as
many factors of h to Ak that have been added to the quotient up to the current
iteration. Since � terms have been added to q, we multiply Ak by h� each time
we use one of the terms. Additional factors of h are added when the previous
quotient is multiplied by h prior to the computation of the next quotient term.
Other than this, the shift from Algorithm3 to Algorithm 4 follows the analogous
shift between Algorithms 1 and 2 exactly. We therefore have the following.

Proposition 4. Algorithm4 terminates and is correct.

Proof. The proof is a straightforward adaptation of the preceding observations
and the proofs for Propositions 2 and 3. The key observation is the first main
conditional statement in the while loop computes r̃ = lt(h�a − qb − r), where
r = 0 until q has been computed, and the second main conditional computes a
term of q or r from r̃ accordingly, following the structure of Algorithm3. ��

2.3 Multi-Divisor (Pseudo-)Division

One natural application of division with remainder of multivariate polynomials
is the computation of normal forms with respect to Gröbner bases. Moreover,
the computation of pseudo-quotient and pseudo-remainder of a polynomial with
respect to multiple polynomials (or a triangular set) is also natural. Normal forms
can be computed by Algorithms 5 and 7 in AppendixA while pseudo-division
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by a triangular set can be computed by Algorithms 6 and 8. Section 4 includes
benchmarks of those four algorithms implemented with the BPAS library.

3 Implementation and Optimizations

With the ever-increasing gap between processor speeds and memory-access time,
our implementation techniques focus on memory usage and management. Our
implementations effectively traverse memory while making use of memory-effi-
cient data structures with good data locality. In this section we consider polyno-
mial representations and corresponding data structures (Sect. 3.1), addition and
multiplication (Sect. 3.2), heap-optimizations (Sect. 3.3), division (Sect. 3.4), and
lastly, pseudo-division (Sect. 3.5).

3.1 Polynomial Representations

The simplest scheme to represent a polynomial sparsely would be a linked list
where each node in the list is a single term of that polynomial. This represen-
tation makes handling and manipulating terms very easy with simple pointer
manipulation. However, the indirection created by pointers and (possibly) poor
locality of successive nodes in the list makes this scheme inefficient for memory
usage. Rather, packing the polynomial terms into an array removes the overhead
of linked list pointers and improves locality. We call this array-based representa-
tion of a polynomial an alternating array following the terminology introduced
in 1997 in the BasicMath library, part of the European Project FRISCO https://
cordis.europa.eu/project/rcn/31471 en.html; see also [2].

The alternating array representation packs terms side-by-side in an array,
effectively alternating between coefficients and monomials. A coefficient and its
corresponding monomial are thus optimally local in memory with respect to each
other. Similar schemes have been used in Maple [18,19]. In the case of Maple,
their scheme uses pointers into a parallel array to store the multi-precision inte-
ger coefficient, whereas we store the multi-precision coefficients directly in the
array. Moreover, for this efficient data structure Maple is limited to integer
polynomials while all other polynomials use an old sum-of-products form [18].
In contrast, our alternating array representation in the BPAS library supports
both integer and rational number coefficients.

Coefficients are represented easily using GMP multi-precision numbers [7].
As for monomials, we use exponent packing. Using bit-masks and shifts, multiple
integers, each of small absolute value, can effectively be stored in a single 64-bit
machine word. The idea of exponent packing has been employed at least since
ALTRAN in the late 60s [8] and more recently in [10,16]. Some systems, such
as Maple, also encode the total degree of the monomial in the single 64-bit
word. This scheme wastes bits which could be used for additional variables or
higher degrees. In particular, monomials are limited to 21 variables each with
a maximum degree of 3 [18]. Our representation does not encode total degree,
therefore we can encode up to 32 variables, each of maximum degree 3. Moreover,

https://cordis.europa.eu/project/rcn/31471_en.html
https://cordis.europa.eu/project/rcn/31471_en.html
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in polynomial system solving, degrees of lower ordered variables often increase
much quicker than those of high ordered variables. Thus, in our implementation,
we pack exponents disproportionately within the machine word, giving more bits
to lower ordered variables, ensuring all 64 bits are made useful.

It is worth noting that our sparse representations are used for all of our algo-
rithms, including division and pseudo-division, where (pseudo-)quotients and
(pseudo-)remainders are often much more dense than the divisor and dividend.
However, since we are working with multivariate polynomials, a dense represen-
tation would grow exponentially with the number of variables and, therefore,
our sparse representation is still worthwhile and efficient.

3.2 Addition and Multiplication

For these two simple operations, we just point out a few implementation tricks.
An “in-place” addition (subtraction) can be implemented with our alternating
array representation. This is not strictly in-place, as that would involve far too
much memory movement and swapping of elements, resulting in poor locality and
poor performance. Instead, we can pre-allocate a destination array as with an
“out-of-place” addition algorithm, but, rather than copying coefficients, we reuse
the underlying GMP data. With modestly-sized coefficients, less than 192 bits
each, the savings can reach 20% compared to the out of place implementation.

As for multiplication, we pre-allocate the maximum possible space for the
product (na ·nb). Assuming that a has fewer terms than b, we pre-allocate space
in the heap for exactly na elements as that will be the exact number of streams to
consider. This minimizes memory movement and reallocation required through-
out the computation of appending product terms to the product polynomial. If
the product terms were to out-grow some initial conservative pre-allocation the
reallocation and memory movement could result in a large overhead.

3.3 Heap-Optimizations

The performance of our code is very dependent on the implementation of its
data-structures, and in particular, heaps. Aside from coefficient arithmetic, all
of the work for multiplying terms comes from obtaining the ordering of product
terms. Hence, the heap, whose purpose is to produce terms in the required order,
takes the majority of the effort of our algorithm. Our implementation of heaps
includes all the techniques reported in [16], including the technique of chaining.
We mention an additional trick used in our code. With chaining, the coefficients
of the product terms are already not stored directly in the heap, but they still
play a role in overall auxiliary memory needed for the algorithm. With our alter-
nating array representation of polynomials it is very easy to directly index the
operand polynomials to access the appropriate coefficient. Thus, our heap only
stores the indices of the operand coefficients which together form the coefficient
of the particular product term (Fig. 1). This reduces the memory required for
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each coefficient from 32 bytes, in the case of rational number coefficients, down
to 8 bytes. Similar schemes using pointers to coefficients have been examined in
[16,19] but indices are even more succinct than pointers.

Fig. 1. A heap of product terms, showing element chaining and index-based storing of
coefficients. In this case, terms Ai+1 · Bj and Ai−1 · Bj+2 have equal monomials and
are chained together.

3.4 Division

Division is essentially a direct application of multiplication. We again use heaps,
with all of its optimizations, using the production of product terms in-order
to produce the terms of the quotient and remainder in-order. Division varies
from multiplication as instead of producing the product terms of the two input
operands, we must produce product terms between the divisor and the continu-
ally updating quotient. This poses problems for memory management as we do
not know ahead of time the sizes of the quotient or remainder. In multiplication
we are able to pre-allocate na · nb space for the product as that is the known
maximum number of product terms. The indeterminate number of quotient and
remainder terms does not allow for such one-time allocation and we must con-
tinually check for producing more terms than the number for which we have
allocated space. We begin by allocating na space for the quotient and remain-
der, as generally the dividend is larger than the divisor. Then, if more terms are
produced than we have currently allocated for, we double the current allocation.

Whenever we reallocate space for the quotient we also reallocate space for
the same number of terms in the heap. Recall the maximum number of terms
in the heap is equal to the number of quotient terms (as we distribute terms of
the quotient over the divisor in the multiplication). So, we are safe in doing this
memory allocation for the heap even if it does not make use of it all. This has
benefits for performance as we do not need to check for overflow on each insert
into the heap; it is guaranteed to have enough space.

3.5 Pseudo-Division

As seen in Sect. 2 the algorithm for division can easily be adapted for pseudo-
division. With only the modification of multiplying the dividend and quotient by
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the divisor’s initial, we obtained an algorithm for pseudo-division that efficiently
produces terms in order. However, the implementation between these two algo-
rithms is very different. In essence, pseudo-division is a univariate operation,
viewing the input multivariate polynomials recursively. That is, the dividend
and divisor are seen as univariate polynomials over some arbitrary (polynomial)
integral domain. Therefore, coefficients can be, and indeed are, entire polyno-
mials themselves. Coefficient arithmetic becomes non-trivial. Our distributed
multivariate polynomial representation, as seen in Sect. 3.1 would be inefficient
to traverse and manipulate in this recursive way. We introduce a new polyno-
mial representation to easily view polynomials in this univariate, recursive way
in order to efficiently operate on them within the semantics of pseudo-division.

This recursive polynomial representation uses an in-place, very fast conver-
sion between the normal distributed representation and the recursive one. This
amounts to minimal overhead and allows the same polynomials to be easily used
as operands to pseudo-division or any other arithmetic operation. Of course,
an in-place conversion is beneficial to avoid memory movement and reduce the
working memory required for the algorithm.

To view the polynomial recursively, we begin by blocking the alternating
array representation of the distributed polynomial based on degrees of the main
variable. Each block groups together terms which have equal degree with respect
to the main variable. As our polynomials are ordered lexicographically, then all
terms are already in order with respect to the degree of the main variable, and,
moreover, within a block, all terms are also sorted lexicographically with respect
to all of the remaining variables. Because of this, we can create these blocks
in-place, without any memory movement, simply by maintaining the offset into
the array for the beginning of each block.

Next, we create a secondary alternating array to store these offsets. This array
alternates between an exponent of the main variable and a pointer to the original
array which is offset to point to the beginning of the block that corresponds to the
preceding main variable exponent. Note that we also store the size of each block.
This is convenient when we need to do coefficient arithmetic as those coefficients
are themselves polynomials that must know their size to perform arithmetic.
In addition, as we traverse the array to determine the blocks, we zero out the
degree of the main variable for every monomial. This ensures that the degree of
the main variable does not pollute the polynomial coefficient arithmetic. Figure 2
shows this secondary array structure along with the original array, highlighting
the conversion process.

These two alternating arrays together exactly and efficiently represent the
recursive view of a polynomial, having coefficients from an arbitrary polynomial
ring and univariate monomials. The secondary alternating array requires little
additional memory. It will have size equal to the number of unique values of
degree of the main variable in the distributed polynomial. In practice, with sparse
polynomials, this number is quite small. In the absolute worst case, for integer
polynomials that are fully dense with respect to the main variable, this secondary
array requires O(23n) additional space. With multi-precision coefficients and/or
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rational number coefficients, this fraction becomes much smaller. This additional
space becomes increasingly insignificant as the integers (rational numbers) grow
in size, as they always do in pseudo-division calculations.

Fig. 2. A distributed polynomial representation converted to the recursive polynomial
representation, showing the additional secondary array. The secondary array alternates
between: (1) exponent of the main variable, (2) size of the coefficient polynomial, and
(3) a pointer to the coefficient polynomial which is simply an offset into the original
distributed polynomial.

With the recursive view of a polynomial efficiently implemented, it is then
important to consider efficiency of coefficient arithmetic. As coefficients are now
full polynomials there is more overhead in manipulating them and performing
arithmetic. One important implementation detail is to perform the addition (and
subtraction) of like-terms in-place. Such combinations occur when computing the
leading term of h�a − qb and when combining like-terms in the quotient-divisor
product. In-place addition, as described in the previous sub-section, allows for
the re-use of underlying GMP data. Therefore, performance of in-place addi-
tion compared to out-of-place becomes increasingly better as coefficients grow
throughout the pseudo-division algorithm.

Similarly, the update of the quotient by multiplying by the initial of the divi-
sor, requires a multiplication of full polynomials. If we wish to save on memory
movement we should perform this multiplication in place. However, notice that,
in our recursive representation, coefficient polynomials are tightly packed in a
continuous array. To modify them in place would require shifting all following
coefficients down the array to make room for the strictly large product poly-
nomial. To avoid this unnecessary memory movement, we modify the recursive
data structure exclusively for the quotient polynomial. We break the continu-
ous array of coefficients into many arrays, one for each coefficient. This allows
them to grow without displacing the following coefficients. At the end of the
algorithm, once the quotient has finished being produced, we collect and com-
pact all of these disjoint polynomials into a single, packed array. In contrast, the
remainder is never updated once its terms are produced. Moreover, we do not
require any recursively viewed operations on the remainder. Hence, as terms of
the remainder are produced, we store them directly in the normal, distributed
representation, avoiding conversion out of the recursive representation and any
memory overhead of the additional recursive array.
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Lastly, our final optimization is common among other sparse pseudo-division
algorithms. We perform a divisibility test between a newly produced quotient
term and the initial of the divisor. If division is exact, we avoid one multiplication
of the quotient with the divisor’s initial, and the newly produced quotient term
is replaced by its quotient calculated by the exact division. This divisibility
test is little overhead as the test usually fails very early. Often, this divisibility
test is instead performed by a GCD calculation in order to always multiply the
quotient by the smallest possible polynomial instead of the full initial of the
divisor. However, efficient GCD calculation for multivariate polynomials is not
trivial. A simple divisibility is often sufficient in practice.

4 Experimentation

For univariate polynomials sparsity is easily defined as the maximum degree
difference between successive polynomial terms. Though sparsity is not so easily
defined for multivariate polynomials, we propose the following adaptation of the
univariate case to the multivariate one, inspired by Kronecker substitution. Let
f ∈ D[x1, . . . , xm] be non-zero and define r = max(deg(f, xi), 1 ≤ i ≤ m) + 1.
Then, every exponent vector e = (e1, . . . , em) of a term of f can be identified
with the radix r representation of the integer z(e) = e1+e2r+ · · ·+emrm−1. We
call sparsity of f the smallest integer s which is greater or equal to z(e) − z(e′),
where e, e′ are any two consecutive exponent vectors of f . If f has n terms
then we have rm ≤ n s. For our experiments, sparse polynomials were randomly
generated using the following parameters: number of variables m, number of
terms n, sparsity s, and maximum number of bits in any coefficient. Then,
exponent vectors are generated as radix r representations with m digits and
r computed as � n

√
s · m
.

We compare our implementation against Maple for both integer polynomi-
als and rational number polynomials. Over the past 10 years or so, Maple has
become the leader in integer polynomial arithmetic thanks to the extensive work
of Monagan and Pearce [15–17,19]. Benchmarks there provide clear indication
that their implementation outperforms many other computer algebra systems
including: Trip, Magma, Singular, and Pari. Moreover, other common sys-
tems like FLINT [9] and NTL [21] provide only univariate polynomial imple-
mentations, meaning the comparison against our multivariate implementation
would be unfair. Therefore, we compare our implementations against the lead-
ing high-performance implementation that is provided by Maple in particular,
Maple 2017.

We consider multiplication and division over Q (Figs. 3 and 4), multiplica-
tion and division over Z (Figs. 5 and 6), pseudo-division over Q and Z (Figs. 7
and 8), and multi-divisor normal form and pseudo-division computation over Q

(Fig. 9 and 10). In all cases (except dense integer multiplication) BPAS performs
favourably over Maple. We note that random instances of division do not pro-
vide smooth results due to varying sizes of resulting quotients and remainders.
Our benchmarks were collected using an Intel Xeon X560 processor at 2.67 GHz,
32 KB L1 data cache, 256 KB L2 cache, 12288 KB L3 cache, and 48 GB of RAM.
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Fig. 3. Q multiplication. Sparsity
varies as noted in the legend, #
coefficient bits is 128.

Fig. 4. Q division. Sparsity varies as
noted in the legend, # of divisor terms
is n/2, # coefficient bits is 128.

Fig. 5. Z multiplication. Sparsity
varies as noted in the legend, #
coefficient bits is 128.

Fig. 6. Z division. Sparsity varies as
noted in the legend, # divisor terms
is n/2, # coefficient bits is 128.

It is clear from these benchmarks that having optimized data structures and
fundamental algorithms is important. For polynomials over the rational numbers,
where Maple lacks an optimized implementation, our code performs orders of
magnitude better. Even for Maple’s optimized implementation of polynomials
over the integers, our code still performs at a fraction of the time. This perfor-
mance savings is substantial and is very apparent when comparing normal forms
(see Fig. 9). With the repeated division required for normal forms, an optimized
division algorithm results in extensive performance gains.
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Fig. 7. Q Pseudo-division. # dividend
terms is 175, # divisor terms is 50.

Fig. 8. Z Pseudo-division. # dividend
terms is 175, # divisor terms is 50.

Fig. 9. The divisor set is a random nor-
malized triangular set of Q[x1, x2, x3]
and deg(a, x1) − deg(t3, x1) = δ3,
deg(a, x2) − deg(t2, x2) = lg(δ)3,
deg(a, x3) − deg(t1, x3) = lg(δ)3 and
sparsity 2. BPAS implements Algo-
rithms 5 and 7, see Appendix A.

Fig. 10. The divisor set is a ran-
dom triangular set of Q[x1, x2, x3]
with non-constant initials, sparsity
2 and deg(a, x1) − deg(t3, x1) = δ3,

deg(a, x2)−deg(t2, x2) = lg(δ)3, deg(a, x3)−
deg(t1, x3) = lg(δ)3. BPAS uses Algo-
rithms 6 and 8.

5 Conclusion

The open-source library Basic Polynomial Algebra Subprograms (BPAS) pro-
vides high performance implementations of sparse multivariate polynomial arith-
metic, over Z and Q, including addition, multiplication, division, and pseudo-
division, using highly efficient data structures and algorithms. These fundamen-
tal operations were extended to the mid-level algorithms of multi-divisor division
(normal form) and multi-divisor pseudo-division. Their performance against the
leader in polynomial arithmetic, Maple, was shown to be a 2–3 times (or order
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of magnitude for Q) better. The optimization of these fundamental operations
will become the basis for efficient computations with regular chains.

Acknowledgments. The authors would like to thank IBM Canada Ltd (CAS project
880) and NSERC of Canada (CRD grant CRDPJ500717-16).

A Appendix

Let K be a field. If B is a Gröbner basis of K[x1, . . . , xm] Algorithm 5 com-
putes the normal form of a polynomial a ∈ K[x1, . . . , xm] (together with the
quotients) w.r.t. B; the principle is direct (or näıve). Alternatively, when B is a
zero-dimensional normalized (thus so-called Lazard) triangular set, one can use
Algorithm 7, the recursive principle of which is taken from [14]. Some details are
given here. For computing the normal form of polynomial a ∈ K[x1, . . . , xm] with
respect to a Lazard triangular set T = {t1, . . . , tm} ⊂ K[x1, . . . , xm], Algorithm 7
uses the recursive representation of polynomials. If m = 1, the result is obtained
by applying Algorithm2. Otherwise, the coefficients of a with respect to xm are
reduced w.r.t. to {t1, . . . , tm−1} by means of a recursive call (Lines 4–11 of the
pseudo-code), yielding a polynomial r. Then, r is divided by tm by applying
Algorithm 2, see Line 12, yielding a new polynomial r. Finally, the coefficients
w.r.t. xm of this new polynomial r are reduced w.r.t. to {t1, . . . , tm−1}, by means
of a second recursive call, see Lines 13–16.

Algorithm 5. NormalForm (a,B)
Given a, b1, . . . , bN ∈ K[x1, . . . , xm],
B = {b1, . . . , bN } a Gröbner basis, returns
q1, . . . , qN , r ∈ K[x1, . . . , xm] such that
a = q1b1 + · · ·+ qN bN + r where r is reduced
with respect to B.

1: h := a; r := 0
2: while h �= 0 do
3: i = 1;
4: while i ≤ N do
5: if lm(bi) | lm(h) then

6: qi := qi +
lt(h)
lt(bi)

7: h := h − lt(h)
lt(bi)

bi

8: i := 1
9: else
10: i := i + 1
11: end if
12: end while
13: r := r + lt(h)
14: h := h − lt(h)
15: end while
16: return (q1, . . . , qN , r)

Algorithm 6. näıveTSPD (a,T )
Given a, t1, . . . , tN ∈ K[x1, . . . , xm], T =
{t1, . . . , tN }, with mvar(t1) < · · · < mvar(tN ),
returns q1, . . . , qN , r, h ∈ K[x1, . . . , xm] such that
ha = q1t1+ · · ·+qN tN +r where r is reduced with
respect to the triangular set T (in the sense that
r = 0 or deg(r,mvar(tj)) < deg(tj ,mvar(tj)), 1 ≤
j ≤ N) and h is a product of powers of the initials
of the polynomials of T .

1: r := a; h := 1
2: for i = 1, . . . , N do
3: v := mvar(TN−i+1)
4: (Q, r, e) := pseudoDivide(r, TN−i+1, v)
5: H := init(TN−i+1)

e

6: h := H h
7: for j = 1, . . . , N do
8: qj := qjH
9: end for
10: qi := qi + Q;
11: end for
12: return (q1, . . . , qN , r, h)



48 M. Asadi et al.

Algorithm 7. TSNF (a, T )
Given a ∈ K[x1, . . . , xm], T = {t1, . . . , tm} ⊂ K[x1, . . . , xm], with mvar(t1) = x1 < · · · <
mvar(tm) = xm and init(t1), . . . , init(tm) ∈ K, returns q1, . . . , qm, r ∈ K[x1, . . . , xm] such that
a = q1t1 + · · · + qmtm + r where r is reduced (in the sense of Gröbner bases) with respect to the
Lazard triangular set T .

1: if m = 1 then
2: (q1, r) := divide(a, t1)
3: else
4: for i = 0, . . . , deg(a, xm) do

5: ({Qj [i]}m−1
j=1 , R[i]) := TSNF(coef(a, xm, i), {tj}m−1

j=1 )

6: end for
7: q1 := 0; . . .; qm := 0
8: r :=

∑

i
R[i]xm

i

9: for j = 1, . . . , m − 1 do
10: qj := qj +

∑

i

Qj [i](xm)i

11: end for
12: (q̃, r) := divide(r, tm); qm := qm + q̃
13: for i = 0, . . . , deg(r, xm) do

14: ({Qj [i]}m−1
j=1 , R[i]) := TSNF(coef(r, xm, i), {tj}m−1

j=1 )

15: end for
16: execute Lines 8-11
17: end if
18: return (q1, . . . , qm, r)

Algorithm 8. recTSPD (a,T )
Same input and output specifications as Algorithm6.

1: if N = 1 then
2: (q1, r, e) := pseudodivide(a, t1,mvar(t1)); h = init(t1)

e

3: else
4: v := mvar(tN )
5: for i = 0, . . . , deg(a, v) do

6: ({Qj [i]}N−1
j=1 , R[i], H[i]) := recTSPD(coef(a, v, i), {tj}N−1

j=1 )

7: end for
8: q1 := 0; . . .; qN := 0
9: H1 := lcm(H[i], 0 ≤ i ≤ deg(a, v))

10: r :=
∑

i

H1
H[i]R[i]vi

11: for j = 1, . . . , N − 1 do

12: qj := qj +
∑

i

H1
H[i]Qj [i]v

i

13: end for
14: (q̃, r, ẽ) := pseudodivide(r, tN , v); h̃ = init(tN )ẽ

15: for j = 1, . . . , N − 1 do
16: qj := qj h̃
17: end for
18: qN := qN + q̃
19: for i = 0, . . . , deg(r, v) do

20: ({Qj [i]}N−1
j=1 , R[i], H[i]) := recTSPD(coef(r, v, i), {tj}N−1

j=1 )

21: end for
22: H2 := lcm(H[i], 0 ≤ i ≤ deg(r, v))
23: for j = 1, . . . , N do
24: qj := qjH2
25: end for
26: execute Lines 10-13 with H2 replacing H1
27: h := H1h̃H2
28: end if
29: return (q1, . . . , qN , r, h)

Algorithm 6 is a direct (or näıve) procedure for computing the pseudo-
remainder and the pseudo-quotients of a polynomial a ∈ K[x1, . . . , xm] by a
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triangular set T = {t1, . . . , tN}. Note that T may not be zero-dimensional, that
is, N < m may hold. Moreover, T may not be normalized; in particular its
initials may not be constant. Algorithm8 is a recursive version of Algorithm 6
following the same principles as Algorithm 7 and calling Algorithm 4 at Line 14.
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