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Abstract. The standard approach to factor a multivariate polynomial
in Z[x1, x2, . . . , xn] is to factor a univariate image in Z[x1] then recover
the multivariate factors from their images using a process known as mul-
tivariate Hensel lifting. For the case when the factors are expected to be
sparse, at CASC 2016, we introduced a new approach which uses sparse
polynomial interpolation to solve the multivariate polynomial diophan-
tine equations that arise inside Hensel lifting.

In this work we extend our previous work to the case when the number
of factors to be computed is more than 2. Secondly, for the case where
the integer coefficients of the factors are large we develop an efficient
p-adic method. We will argue that the probabilistic sparse interpolation
method introduced by us provides new options to speed up the factor-
ization for these two cases. Finally we present some experimental data
comparing our new methods with previous methods.
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1 Introduction

Suppose we seek to factor a multivariate polynomial a ∈ R = Z[x1, . . . , xn].
Today many modern computer algebra systems, such as Maple, Magma and
Singular, use Wang’s incremental design of multivariate Hensel lifting (MHL) to
factor multivariate polynomials over integers. MHL was developed by Yun [15]
and improved by Wang [13,14].

To factor a(x1, . . . , xn) the first step is to choose a main variable, say
x1, then compute the content of a in x1 and remove it from a. If a =∑d

i=0 ai(x2, . . . , xn)xi
1, the content of a is gcd(a0, a1, . . . , ad), a polynomial in

one fewer variables which is factored recursively. Let us assume this has been
done.

The second step identifies any repeated factors in a by doing a square-free
factorization. See Chap. 8 of [2]. In this step one obtains the factorization a =
b1b

2
2b

3
3 · · · bkk such that each factor bi has no repeated factors and gcd(bi, bj) = 1.
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Let us assume this has also been done. So let a = f1f2 . . . fr be the irreducible
factorization of a over Z. Also, let #f denote the number of terms of a polynomial
f and Supp(f) denote the support f , i.e., the set of monomials in f .

MHL chooses an evaluation point α = (α2, α3, . . . , αn) ∈ Z
n−1 where the

αi’s are preferably small and contain many zeros. Then a(x1, α) is factored over
Z. The evaluation point α must satisfy

(i) L(α) �= 0 where L is the leading coefficient of a in x1,
(ii) a(x1, α) must have no repeated factors in x1 and
(iii) fi(x1, α) must be irreducible over Q.

If any condition is not satisfied the algorithm must restart with a new evaluation
point. Conditions (i) and (ii) may be imposed in advance of the next step. One
way to ensure that condition (iii) is true with high probability is to pick a second
evaluation point β = (β2, . . . , βn) ∈ Z

n−1, factor a(x1, β) over Z and check that
the two factorizations have the same degree pattern before proceeding.

For simplicity let us assume a is monic and suppose we have obtained the
monic factors fi(x1, α) in Z[x1]. Next the algorithm picks a prime p which is big
enough to cover the coefficients of a and the factors fi of a.

The input to MHL is a, α, fi(x1, α) and p such that a(x1, α) =
∏r

i=1 fi(x1, α)
where gcd(fi(x1, α), fj(x1, α)) = 1 in Zp[x1] for i �= j. If the gcd condition is not
satisfied, the algorithm chooses a new prime p until it is.

There are two main subroutines in the design of MHL. For details see Chap. 6
of [2]. The first one is the leading coefficient correction algorithm (LCC). The
most well-known is the Wang’s heuristic LCC [14] which works well in practice
and is the one Maple currently uses. There are other approaches by Kaltofen [6]
and most recently by Lee [9]. In our implementation we use Wang’s LCC.

In a typical application of Wang’s LCC, one first factors the leading coefficient
of a, a polynomial in Z[x2, . . . , xn], by a recursive call and then one applies LCC
before the jth step of MHL. Then the total cost of the factorization is given by
the cost of LCC + the cost of factoring a(x1, α) over Z + the cost of MHL. One
can easily construct examples where LCC or factoring a(x1, α) dominates the
cost. However this is not typical. Usually MHL dominates the cost.

The second main subroutine solves a multivariate polynomial diophantine
problem (MDP). In MHL, for each j with 2 ≤ j ≤ n, Wang’s design of MHL
must solve many instances of the MDP in Zp[x1, . . . , xj−1]. Wang’s method for
solving an MDP (see Algorithm 2) is recursive. Although Wang’s method per-
forms significantly better than the previous algorithm that he developed with
Rothschild in [14], it does not explicitly take sparsity into account. During com-
putation, the ideal-adic representation of factors is dense when the evaluation
points α2, . . . , αn are non-zero. In practice, conditions (i) and (iii) of LCC may
force many non-zero αj ’s. This makes Wang’s approach exponential in n.

Zippel’s sparse interpolation [18] was the first probabilistic method aimed
at taking sparsity into account. Based on sparse interpolation and multivari-
ate Newton’s iteration, Zippel then introduced a sparse Hensel lifting (ZSHL)
algorithm in [17,19], which uses a MHL organization different from Wang’s.
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Another approach for sparse Hensel lifting for the sparse case was proposed by
Kaltofen (KSHL) in [6]. Kaltofen’s method is also based on Wang’s incremental
design of MHL but it uses a LCC different from Wang’s LCC and offers a distinct
solution to the multivariate diophantine problem (MDP) that appears in Wang’s
design of MHL.

At CASC 2016 the authors proposed a new practical sparse Hensel Lifting
algorithm (MTSHL) [11]. It is also based on Wang’s incremental design of MHL
and LCC but offers a solution to the MDP different from those of Zippel and
Kaltofen. To solve the MDP problem appearing in MHL, MTSHL exploits the
fact that at each step of MHL, the solutions to MDP’s, which are just Taylor
polynomial coefficients, are structurally related. At the jth step of MHL we are
recovering xj in the factors. Let f be one such factor in Zp[x1, x2, . . . , xj ] and let
f =

∑l
k=0 fk(xj −αj)k be its Taylor representation. At this point we know only

f0. But Supp(fk) ⊆ Supp(fk−1) with high probability if αj is chosen randomly
from [0, p−1] and p is sufficiently large. MTSHL is built on this key observation.

In this paper we consider the case where a has r > 2 factors and secondly
the case where the factors have large integer coefficients. When r > 2, the MDP
problem is called a multiterm MDP problem and an approach to the solution to
this problem is described in [2]. It reduces the multiterm MDP problem to r − 1
two term MDP problems. Our previous implementation of MTSHL described
in [11] also used this approach.

In Sect. 2 we define the MDP problem in the context of MHL. See Algo-
rithms 1 and 2. In Sect. 3 we discuss main ideas for the solution to the MDP
used by MTSHL and present it as Algorithm3 to make our explanation precise.
We call Algorithm 3 MTSHL-d (d stands for direct), since it differs from our pre-
vious version of MTSHL (Algorithm 4 in [11]) in how it solves MDP problems
when r > 2. For r = 2 it is the same as Algorithm 4 in [11].

In Sect. 4 we discuss the case r > 2. We argue that the probabilistic sparse
interpolation method used in the design of MTSHL allows us to reduce the time
spent solving multiterm MDP’s by up to a factor of r − 1. Because our proposal
also reduces the multiplication cost in the previous approach described in [2],
the observed speedup is sometimes greater than r − 1.

In Sect. 5, we study the case where the integer coefficients of the factors
are large. The current approach (see [2]) chooses a prime p and l > 0 such
that pl bounds any coefficients in the factors fi of a. We show that the sparse
MDP solver developed in [11] renders an improved option. Suppose one factor
f ∈ Z[x1, . . . , xn] has a p-adic representation f =

∑l
k=0 fkp

k. We show that
in this case also Supp(fk) ⊆ Supp(fk−1) with high probability if p is chosen
randomly. Therefore we propose first to factor a in Zp[x1, . . . , xn] by doing all
arithmetic mod p where p is a machine prime (e.g. 63 bits on a 64 bit computer),
i.e. run the entire Hensel lifting modulo a machine prime. Then lift the solution
to Zpl [x1, . . . , xn] by computing fk, again by solving each MDP appearing in the
lifting process using the sparse interpolation developed in the design of MTSHL.
Using this approach most of the computation is modulo p a machine prime.
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In Sect. 6 we present some timing data to compare our new approaches with
previous approaches and end with some concluding remarks.

In the paper we assume the input polynomial a is monic in x1 so as not to
complicate the presentation with LCC. We note that what we explain remains
true for the non-monic case with slight modifications. Our implementation uses
Wang’s LCC for the non-monic case.

2 The Multivariate Diophantine Problem (MDP)

The Multivariate Diophantine Problem (MDP) arises naturally as a subproblem
of the incremental design of MHL developed by Wang. For completeness we
provide the jth step of MHL as Algorithm 1 for the monic case and Wang’s
solution to the MDP as Algorithm2.

Algorithm 1. jth step of Multivariate Hensel Lifting for j > 1.
Input : αj ∈ Zp, aj ∈ Zp[x1, . . . , xj ], fj−1,1, . . . , fj−1,r ∈ Zp[x1, . . . , xj−1] where
aj , fj−1,i are monic in x1 and aj(xj = αj) =

∏r
i=1 fj−1,i.

Output : fj,1, . . . , fj,r ∈ Zp[x1, . . . , xj ] such that fj,i(xj = αj) = fj−1,i and aj =∏r
i=1 fj,i or FAIL.

1: for i from 1 to r do
2: σ0,i ← fj−1,i; fj,i ← σ0,i; bj,i ← ∏r

k=1,k �=i fj−1,k.
3: end for
4: error ← aj − ∏r

i=1 fj,i.
5: for k from 1 while error �= 0 and

∑r
i=1 degxj

fj,i < degxj
aj do

6: ck ← Taylor coefficient of (xj − αj)
k of error at xj = αj

7: if ck �= 0 then
8: Solve MDPj,k: σk,1bj,1 + · · · + σk,rbj,r = ck for σk,i ∈ Zp[x1, . . . , xj−1].
9: for i from 1 to r do

10: fj,i ← fj,i + σk,i × (xj − αj)
k

11: end for
12: error ← aj − ∏r

i=1 fj,i.
13: end if
14: end for
15: if error = 0 then return fj,1, . . . , fj,r else return FAIL end if

The MDP appears at line 8 of Algorithm1. Consider the case where the
number of factors r to be computed is 2, i.e., r = 2. We discuss the case r > 2
in Sect. 4.

Let u,w, c ∈ Zp[x1, . . . , xj ] with u and w monic with respect to the variable
x1 and let Ij = 〈x2 − α2, . . . , xj − αj〉 be an ideal of Zp[x1, . . . , xj ] with αi ∈ Z.
The MDP is to find multivariate polynomials σ, τ ∈ Zp[x1, . . . , xj ] that satisfy

σu + τw = c mod I
dj+1
j (1)
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with degx1
(σ) < degx1

(w) where dj is the maximal degree of σ and τ with
respect to the variables x2, . . . , xj and it is given that

GCD (u mod Ij , w mod Ij) = 1 in Zp[x1].

It can be shown that the solution (σ, τ) exists and is unique and independent
of the choice of the ideal Ij . For j = 1 the MDP is in Zp[x1] and can be solved
with the extended Euclidean algorithm (see Chap. 2 of [2]).

To solve the MDP for j > 1, Wang uses the same approach as for Hensel
Lifting, that is, an ideal-adic lifting approach. See Algorithm2.

Algorithm 2. WMDS (Wang’s multivariate diophantine solver)
Input A point αj ∈ Zp, polynomials c, fj,k ∈ Zp[x1, . . . , xj ] for k = 1, . . . , r and an
ideal I = 〈x2 − α2, . . . , xn − αn〉 with n ≥ j where gcd(fj,k mod I, fj,l mod I) = 1 in
Zp[x1] for k �= l and a degree bound dj satisfying dj ≥ max(degxj

σk) for 2 ≤ i ≤ n.

(One may use dj = degxj
a)

Output (σ1, . . . , σr) ∈ Zp[x1, . . . , xj ] satisfying
∑r

k=1 σkbk = c ∈ Zp[x1, . . . , xj ] where
bk =

∏r
i�=k fj,i and degx1

σk < degx1
fj,k or FAIL if no such solution exists.

1: bk ← ∏r
i�=k fj,i for k = 1, . . . , r

2: if j = 1 then use extended Euclidean algorithm (see Ch 2 of [2] for r = 2 and
Section 4 for r > 2) end if

3: (σ1,0, . . . , σr,0) ← WMDS(fj,k(xj = αj), c(xj = αj), I)
4: if WMDS output FAIL then return FAIL end if
5: σk ← σk,0 for k = 1, . . . , r; error ← c − ∑r

k=1 σkbk
6: for i = 1, 2, . . . , dj while error �= 0 do
7: ci ← Taylor coeff(error, (xj − αj)

i)
8: if ci �= 0 then
9: (s1, . . . , sr) ← WMDS(σk, ci, I)

10: if WMDS output FAIL then return FAIL end if
11: σk ← σk + sk × (xj − αj)

i for k = 1, . . . , r.
12: error ← error − ∑r

k=1 σkbk
13: end if
14: end for
15: if error = 0 then return (σ1, . . . , σr) else return FAIL end if

In general, if αj �= 0 the Taylor series expansion of σ and τ about xj = αj is
dense in xj so the ci �= 0. Then the number of calls to the Euclidean algorithm
of Wang’s solution to MDP is exponential in n. It is this exponential behaviour
that the design of MTSHL eliminates. On the other hand, if MHL can choose
some αj to be 0, for example, if the input polynomial a(x1, . . . , xn) is monic in
x1 then this exponential behaviour may not occur for sparse f and g.
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3 MTSHL’s Solution to the MDP via Sparse
Interpolation

We consider whether we can interpolate x2, . . . , xj in σ and τ in (1) using sparse
interpolation methods. If β ∈ Zp with β �= αj , then

σ(xj = β)u(xj = β) + τ(xj = β)w(xj = β) = c(xj = β) mod I
dj−1+1
j−1 .

For Kj = 〈x2−α2, . . . , xj−1−αj−1, xj−β〉 and Gj =GCD(u mod Kj , w mod Kj),
we obtain a unique solution σ(xj = β) iff Gj = 1. However Gj �= 1 is possible.
Let R = resx1(u,w) be the Sylvester resultant of u and w taken in x1. Since u,w
are monic in x1 one has1

Gj �= 1 ⇐⇒ resx1(u mod Kj , w mod Kj) = 0 ⇐⇒ R(α2, . . . , αj−1, β) = 0.

Let r = R(α2, . . . , αj−1, xj) ∈ Zp[xj ] so that R(α2, . . . , αj−1, β) = r(β). Also
deg(R) ≤ deg(u) deg(w) [1]. Now if β is chosen at random from Zp and β �= αj

then

Pr[Gj �= 1] = Pr[r(β) = 0] ≤ deg(r, xj)
p − 1

≤ deg(u) deg(w)
p − 1

.

This bound for Pr[Gj �= 1] is a worst case bound. In [10] we show that the
average probability for Pr[Gj �= 1] = 1/(p−1). Thus if p is large, the probability
that Gj = 1 is high. Interpolation is thus an option to solve the MDP.

As can be seen from line 10 of Algorithm 1, the solutions to the MDP are the
Taylor coefficients of the factors to be computed at the jth step. As such, if σ0,i

is sparse then the σk,i are also sparse. In line 5 of Algorithm 1, as k increases,
on average, the number of terms of the σk,i decrease even for dense cases. That
is, on average #σk,i < #σk−1,i. A natural idea then is to use sparse interpola-
tion techniques to solve the MDP. However, the sparse technique proposed by
Zippel [16] is also iterative; it recovers x2 then x3 etc. To make one more step in
this direction consider the following Lemma whose proof can be found in [11].

Lemma 1. Let f ∈ Zp[x1, . . . , xn] and let α be a randomly chosen element in
Zp and f =

∑dn

i=0 bi(x1, . . . , xn−1)(xn − α)i where dn = degxn
f. Then

Pr[Supp(bj+1) � Supp(bj)] ≤ |Supp(bj+1)| dn − j

p − dn + j + 1
for 0 ≤ j < dn.

Lemma 1 says that for the sparse case, if p is big enough then the probability
of Supp(bj+1) ⊆ Supp(bj) is high. This observation suggests, during MHL we
use σk−1,i as a form of the solution of σk,i. That is, the solutions to the MDP’s
are related. During MHL, these problems shouldn’t be treated independently
as previous approaches do. In light of the key role this assumption plays at

1 This argument also works for the non-monic case if the leading coefficients of u and
w w.r.t. x1 do not vanish at (α2, . . . , αn) modulo p, conditions which we note are
imposed by Wang’s LCC.
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each MHL step j > 1, for each factor fi, we call this assumption Supp(σk,i) ⊆
Supp(σk−1,i) for all k > 0 the strong SHL assumption.

Algorithms 3 and 4 below show how this assumption can be combined with
the sparse interpolation idea of Zippel [16] to reduce the solution to the MDP
problem to solving linear systems over Zp. To see how MTSHL works on a
concrete example for r = 2 and how MTSHL decreases the evaluation cost that
sparse interpolation brings see [11].

We present the jth step of the new version of MTSHL in Algorithm 4 below
and call it as MTSHL-d, as a shortcut for MTSHL direct. For r = 2 MTSHL-d
is equivalent to MTSHL described in [11]. In the following section we discuss the
case r > 2 and make it clear why we call it MTSHL direct.

4 The Multiterm Diophantine Problem

Let the input polynomial a(x1, . . . , xn) be square-free with total degree d and
irreducible factorization of a be

a = f1 · · · fr ∈ Z[x1, . . . , xn].

We consider the case r > 2. We start with the unique factorization of a1(x1) =
a(x1, α) = u1(x1) · · · ur(x1) ∈ Z[x1]. By Hilbert’s irreducibility theorem [7] most
probably ui(x1) = fi(x1, α). Next we choose a prime p which is big enough to
cover the coefficients occurring in each fi and then pass to mod p

a(x1, α) = u1(x1) · · · ur(x1) ∈ Zp[x1].

We need gcd(ui, uj) = 1 ∈ Zp[x1] for all 1 ≤ i < j ≤ r. Otherwise we choose a
different prime and repeat the process.

Suppose fi =
∑

k=0 σi,k(xj −αj)k. So σi,k is the kth Taylor coefficient of the
ith factor to be computed in the jth step of MHL. (See line 10 of Algorithm1.)
During the jth step of MHL, for each iteration k > 0, the algorithm computes
σk,i, by solving the multiterm Diophantine problem (multi-MDP), which is a
natural generalization of the MDP defined in Sect. 2 and denoted as MDPj,k in
line 8 of Algorithm 1. It has the form

MDPj,k : σk,1b1 + · · · + σk,rbr = ck,

where bk =
∏r

i=1,i �=k fj−1,i(x1, . . . , xj−1). So, given bk and ck in Zp[x1, . . . , xj−1],
the goal is to find σk,i for each i.

The current approach to solve a multiterm MDP is to reduce it into r − 1
two term MDP’s. We describe the idea with an example. Let r = 4 and to save
some space let ui = fj−1,i. Then

ck = σk,1b1 + σk,2b2 + σk,3b3 + σk,4b4

= σk,1u2u3u4 + σk,2u1u3u4 + σk,3u1u2u4 + σk,4u1u2u3

= σk,1u2u3u4 + u1(σk,2u3u4 + u2(σk,3u4 + σk,4u3)).
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Algorithm 3. SparseInt: solve an MDP using a sparse interpolation
Input: Polynomials fi, σi, c ∈ Zp[x1, x2, . . . , xj−1] for i = 1, . . . , r. fi are monic in x1

and p a prime.
Output: Update σi so that they form a solution to the multi-MDP σ1b1+· · ·+σrbr = c
in Zp[x1, x2, . . . , xj−1] where bi =

∏r
k=1,k �=i fi or FAIL.

1: for i from 1 to r do
2: σi ← ∑

l,k cilk(x3, ..., xj−1)x
l
1x

k
2 where cilk =

∑silk
w=1 cilkwMilkw with cilkw

are unknown coefficients to be solved for and xl
1x

k
2Milkw are the monomials in

Supp(σi).
3: end for
4: Let t = maxr

i=1{max silk = max #cilkw}
5: Pick (β3, . . . βj−1) ∈ (Zp\{0})j−3 at random.
6: for s from 1 to t do (Precomputation.(see [11]))
7: Let Ys = (x3 = βs

3 , . . . , xj−1 = βs
j−1).

8: Evaluate c(x1, x2, Ys) and fi(x1, x2, Ys) for 1 ≤ i ≤ r.
9: end for

10: for i from 1 to r do
11: Compute bi(x1, x2, Yi) =

∏r
k=1,k �=i fi(x1, x2, Yi) in Zp[x1, x2].b

12: end for
13: for i from 1 to r do
14: Compute monomial evaluation sets for σi

{Silk = {milkw = Milkw(β3, . . . , βj−1) : 1 ≤ w ≤ silk} for each l, k} .

15: If |Sikl| �= sikl for some ikl try a different choice for (β3, . . . , βj−1).
16: If this fails, return FAIL. (p is not big enough)
17: Let ti = maxl,k silk
18: for s from 1 to ti do (Compute the bivariate images of σi)
19: Solve σ̃1(x1, x2)f1(x1, x2, Yi) + · · · + σ̃r(x1, x2)fr(x1, x2, Yi) = c(x1, x2, Yi)

in Zp[x1, x2] for σ̃i(x1, x2) using multi-BDP (see section 4).
20: if multi-BDP returns FAIL then return FAIL end if

(multi-BDP fails if it choses γ ∈ Zp with gcd(fi(x1, γ, Yi), fj(x1, γ, Yi)) �= 1
for some i �= j ).

21: end for
22: for each l, k do
23: Construct and solve the silk × silk linear system

{
silk∑

w=1

cilkw mn
ilkw = coefficient of xl

1x
k
2 in σ̃i(x1, x2) for 1 ≤ n ≤ silk

}

for the coefficients cilkw of cilk(x3, . . . , xj−1). Because it is a Vandermonde
system in miklw which are distinct by Step 15 it has a unique solution.

24: end for
25: Substitute the solutions for cilkw into σi

26: end for
27: Verify probabilistically whether

∑r
i=1 σibi = c :

Pick β = (β1, . . . βj−1) ∈ Z
j−1
p at random.

if
∑r

i=1 σi(β)bi(β) �= c(β) then return FAIL end if
28: return σ1, . . . , σr
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Algorithm 4. jth step of MTSHL-d for j > 1.
Input : αj ∈ Zp, aj ∈ Zp[x1, . . . , xj ], fj−1,1, . . . , fj−1,r ∈ Zp[x1, . . . , xj−1] where
aj , fj−1,i are monic in x1 and aj(xj = αj) =

∏r
i=1 fj−1,i.

Output : fj,1, . . . , fj,r ∈ Zp[x1, . . . , xj ] such that fj,i(xj = αj) = fj−1,i and aj =∏r
i=1 fj,i or FAIL.

1: for i from 1 to r do fj,i ← fj−1,i, σ0,i ← fj−1,i end do
2: error ← aj − ∏r

i=1 fj,i
3: for k = 1, 2, 3, . . . while error �= 0 and

∑r
i=1 deg(fj,i, xj) < deg(aj , xj) do

4: ck ← Taylor coefficient of (xj − αj)
k of error at xj = αj

5: if ck �= 0 then
6: Solve the MDPj,k (see line 8 of Alg. 1) without computing bj,i as follows:
7: for i from 1 to r do σk,i ← σk−1,i end do (Strong SHL assumption.)
8: (σk,1, . . . , σk,r) ← SparseInt( fj−1,i, ck, σk,i, i = 1, . . . , r) (see Alg. 3 )
9: if (σk,1, . . . , σk,r)=FAIL then restart MTSHL-d with a new α end if

10: for i from 1 to r do fj,i ← fj,i + σk,i × (xj − αj)
k end do

11: error ← aj − ∏r
i=1 fj,i

12: end if
13: end for
14: if error = 0 then return fj,1, . . . , fj,r else return FAIL end if

We first solve the MDP σk,1u2u3u4 + u1w1 = ck for σk,1 and w1. Then we solve
σk,2u3u4 + u2w2 = w1 for σk,2 and w2. Finally we solve σk,3u4 + σk,4u3 = w2

to compute σk,3 and σk,4. Let us call this approach as the iterative approach to
solve the multiterm MDP.

Note that Wang’s approach to solve the MDP is recursive. So when r > 2,
the iterative approach to solve multiterm MDP makes Wang’s design highly
recursive. Also, if the polynomials ui have many terms then the bi’s will be large
and expensive to compute. If we use the probabilistic sparse MDP solver of
MTSHL as described in [11] for each of these MDP’s, then we will first compute
the bi’s and then evaluate bi’s at random points. But evaluation is one of the
most costly operations in sparse interpolation and this cost increases as the size
of the polynomial to be evaluated increases.

However, the probabilistic non-recursive sparse interpolation idea used to
solve the MDP’s in MHL renders another simple and efficient option. One can
invoke the sparse MDP solver to compute the σk,i’s simultaneously without
reducing MDPj,k to r − 1 two term MDP’s in the following way.

According to Lemma 1, if αj is random and p is big, then for each factor fj,i,
with probability ≥1 − |Supp(σk,i)| di−i

p−di+j+1 one has Supp(σk,i) ⊆ Supp(σk−1,i)
for k = 1, .., di where σ0,i is defined as σ0,i := fj−1,i and di = degxj

(fj,i).
Therefore to solve MDPj,k we use Supp(σk−1,i) as a skeleton of the solution
of σk,i. That is, if σk−1,i =

∑
l,k milkMilk for milk ∈ Zp − {0} with distinct

monomials in Milk ∈ Zp[x1, . . . , xj−1], then we construct σ̄k,i =
∑

l,k cilkMilk as
a solution form (skeleton) of σk,i, where cilk are to be computed.
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At the kth iteration suppose that we need ti evaluations to recover the coeffi-
cients cilk (see line 17 of Algorithm 3). Let β = (β2, . . . βj−1) where βi ∈ Zp−{0}
be a random evaluation point. Consider the ti consecutive univariate multiterm
MDP’s

σ̃k,1b1(x1, β
s) + · · · + σ̃k,rbr(x1, β

s) = ci(x1, β
s) for 1 ≤ s ≤ ti, (2)

where the σ̃k,i are to be computed. By uniqueness of the solutions to the multi-
term MDP, with average probability

(
r
2

)
1
p one has σ̃k,i = σk,i(x1, β

s).
Equation 2 can be solved efficiently for σ̃k,i using the iterative approach in the

univariate domain Zp[x1]. Next the univariate images σ̄k,i(x1, β
s) of σ̄k,i are used

to compute the coefficient cilk of σ̄k,i by solving Vandermonde systems which
are constructed by equating the coefficients of σk,i(x1, β

j) and σ̃k,i (see line 23
of Algorithm 3). Again, if the strong SHL assumption is true, then by following
Zippel’s analysis in [16], one can show that with probability ≥1 − (#fi)

2

2(p−1) , we
have a unique solution to Vandermonde systems.

At this stage we have candidate solutions σ̄k,i for the actual solutions σk,i of
MDPj,k. Because our assumption Supp(σk,i) ⊆ Supp(σk−1,i) may be false, we
need to verify if σ̄k,i = σk,i. We do this using a random evaluation in line 27 of
Algorithm 3.

What does this approach bring us? First, MTSHL-d essentially follows
MTSHL but eliminates an iteration at the cost of an increase in the proba-
bility of failure. However this probability is negligible if p is big enough. In our
implementation we used a 31 bit prime and MTSHL-d never failed. Since it is an
iteration on r, we expect MTSHL-d to solve multi-MDP’s faster than MTSHL
by a factor of O(r). This is verified by the experimental data in Table 1 of Sect. 6.

Second, bk(x1, β
s) =

∏r
i=1,i �=k fi(x1, β

s), so we don’t need to compute bk ∈
Zp[x1, . . . , xj−1]. All we need to do is to compute and multiply their univariate
images fi(x1, β

s) of fi to obtain bk(x1, β
j).

Finally in MTSHL-d, like MTSHL, we may evaluate down to Z[x1, x2] instead
of Z[x1] to decrease the number of evaluations ti needed and the size of the
Vandermonde systems (Line 17 in Algorithm3). To do this MTSHL-d uses multi-
Bivariate Diophant Solver (multi-BDP). We implemented Multi-BDP in C. It
solves the bivariate multi-MDP by the iterative approach and uses evaluation
and interpolation on x2 to reduce to the univariate case.

5 The Case Modulo pl with l > 1

When the integer coefficients of a or the factors of a to be computed are huge
the current strategy implemented by most of the computer algebra platforms,
including Maple, Singular [9] and Magma [12], is the following. For details see [2].
First we pick a prime p and a natural number l > 0 such that the ring Zpl can
be identified with the ring Z. That is, we find a bound B such that the integer
coefficients of the polynomial a to be factored and its irreducible factors are
bounded by B. One way to choose such an upper bound B is given by [4]. Then
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Algorithm 5. LiftTheFactors for r = 2 (optimized)
Input : a ∈ Z[x1, . . . , xn], f0, g0 ∈ Zp[x1, . . . , xn] where a, f0, g0 are monic in x1

and a = f0g0 in Zp[x1, . . . , xn]. Also an integer bound l > 0 (For example, [Lemma 14,
[4]]).
Output : f, g ∈ Z[x1, . . . , xj ] such that a = fg ∈ Z[x1, . . . , xn] or FAIL

1: (f, g) ← (mods(u0, p), mods(w0, p)). (# use symmetric range)
2: modulus ← 1.
3: error ← (a − fg)/p, (σf , σg) ← (f, g)
4: for i from 1 to l while error �= 0 do
5: modulus ← modulus × p, c ← error mod p
6: # Solve the MDP σ u0 + τ w0 = c for σ and τ in Zp[x1, . . . , xn]:
7: (σ, τ) ← SparseInt(f, g, σf , σg, c) (Algorithm 3)
8: if SparseInt output FAIL then return FAIL end if
9: (σ, τ) ← (mods(σ, p), mods(τ, p)). (# use symmetric range)

10: (σf , σg) ← (σ, τ), error ← (error − (fτ + gσ) + στ × modulus)/p
11: (f, g) ← (f + σ × modulus, g + τ × modulus).
12: end for
13: if error �= 0 then return FAIL else return (f, g) end if

we choose l such that pl > 2B. Next the MDP solution in Zp[x1] is lifted to
the solution in Zpl [x1]. The second step is to lift the solution from Zpl [x1] to
Zpl [x1, . . . , xn]. Note that in the second step all arithmetic is in Zpl with pl > 2B.
In this section we question whether this strategy is the best approach for the
case l > 1.

Suppose for example that the coefficients of the factors are bounded by p10.
Before the factorization we don’t have this information. Since most likely the
coefficient bound B > p20, this means that throughout MHL all integer arith-
metic is modulo p20 which is expensive.

MTSHL’s sparse multivariate diophantine solver allows us to propose an
approach that eliminates most of the multi-precision arithmetic and allows us
to lift up to the size of the actual coefficients in the factors, thus avoiding B.

– First choose a random (m+1)-bit machine prime p, i.e. p ∈ [2m < p < 2m+1]
and compute the factorization of a by lifting the factorization in Zp[x1] to in
Zp[x1, . . . , xn] with MTSHL-d. Most of this work is mod p.

– Next compute a lifting bound B. One may use Lemma 14 of [4] for this
purpose. Now pick the smallest l such that pl > 2B.

– Then as a second stage do a p-adic lift of the factorization from Zp[x1, . . . , xn]
stopping when f and g are recovered or we exceed pl. The p-adic lift is pre-
sented as Algorithm 5. It reduces to solving MDPs in Zp[x1, . . . , xn].

To make the following explanation easier we assume r = 2 and suppose that
a = uw where a, u, w ∈ Z[x1, . . . , xn] and u,w are unknown to us. As a first
step we choose an evaluation ideal I = 〈x2 − α2, . . . , xn − αn〉 with randomly
chosen αi from [0, p − 1] such that conditions (i) and (ii) for MHL are satisfied
with l = 1. Then there is a factorization a = u(n)w(n) ∈ Zp[x1, . . . , xn]. This
factorization is computed using MTSHL-d.
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Now suppose that u (similarly w) has the form

u =
t∑

j=1

cjMj(x1, . . . , xn) =
t∑

j=1

l−1∑

i=0

sjip
iMj(x1, . . . , xn),

where the Mj are distinct monomials and 0 �= cj ∈ Z with cj =
∑l−1

i=0 sjip
j

where −pl/2 < sji < pl/2. Then we have

u =
l−1∑

i=0

⎛

⎝
t∑

j=1

sjiMj(x1, . . . , xn)

⎞

⎠ pi =
l−1∑

i=0

uip
i.

It follows that

u − ∑k−1
i=0 uip

i

pk
=

t∑

j=1

(
l−1∑

i=k

sjip
i−k

)

Mj(x1, . . . , xn).

Also, we have u0 = u mod p �= 0 since in the first stage u is lifted from u0. Now
we make a key observation: If p is chosen at random such that 2m < p < 2m+1,
the probability that p | ci is Pr[p | ci] = #distinct (m+1)bit prime divisors of ci

#mbit primes . Let
π(s) be the number of primes ≤ s. Since there are at most �log2m(ci)� many
(m + 1)-bit primes dividing ci we have

Pr[p | ci] ≤ �log2m(ci)�
π(2m+1) − π(2m)

≤ l

π(2m+1) − π(2m)

This probability is very small because according to the prime number theorem
π(s) ∼ s/ log(s) and hence π(2m+1) − π(2m) ∼ 2m

m log(2) .
It has been shown in [8] that the exact number of 31-bit primes (m = 30)

is 50697537. Therefore in our implementation the support of u0 will contain all
monomials Mi and Supp{uj} ⊆ Supp{u0} with probability >1 − t l

5·107 .
We make one more key observation and claim that Supp{uj} ⊆ Supp{uj−1}

for 1 ≤ j ≤ l with high probability: We have

uj = s0jM0 + s1jM1 + · · · + skjMt,

uj+1 = s0,j+1M0 + s1,j+1M1 + · · · + sk,j+1Mt.

For a given j > 0, if si,j+1 �= 0, but sij = 0 then Mi ∈ Supp(uj+1) but Mi /∈
Supp(uj). We consider Pr[sij = 0 | si,j+1 �= 0]. If A is the event that sij = 0 and
B is the event that si,j+1 = 0 then

Pr[A |Bc] =
Pr[A] − Pr[B] Pr[A |B]

Pr[Bc]
≤ Pr[A]

Pr[Bc]
.

It follows that

Pr[A]
Pr[Bc]

≤ l/(π(2m+1) − π(2m))
1 − l/(π(2m+1) − π(2m))

=
l

(π(2m+1) − π(2m)) − l
.
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Hence,

Pr[Supp{uj} ⊆ Supp{uj−1} | 1 ≤ j ≤ l] > 1 − t l

((π(2m+1) − π(2m)) − l
.

As an example for m = 30, l = 5, t = 500, this probability is >0.99993.
Hardy and Ramanujan [5] proved that for almost all integers, the number of

distinct primes dividing a number s is ω(s) ≈ log log(s). This theorem was gener-
alized by Erdős-Kac which shows that ω(s) is essentially normally distributed [3].
By this approximation note that

Pr[A]
Pr[Bc]

≤ log log(sij)/(π(2m+1) − π(2m))
1−loglog(si,j+1)/(π(2m+1)−π(2m))

=
log(l log p)

(π(2m+1)−π(2m))−log(l log p)
.

Hence the probability that Supp{uj} ⊆ Supp{uj−1} is �1 − t m log(lm)
2m−m log(lm) . As

an example for m = 30, l = 5, t = 500, this probability is >0.99995.
What does this mean in the context of multivariate factorization over mod

Zpl for l > 1? It means that the solutions to the multivariate diophantine prob-
lems occurring in the lifting process will, with high probability, be a subset of
the monomials of the solutions of the previous step and these solutions can be
computed simply by solving Vandermonde systems by using a machine prime p
and hence by an efficient arithmetic using a sparse MDP solver as described in
Algorithm 3.

We sum up the observations made in this section in Theorem1 below.

Theorem 1. Let p be a randomly chosen m-bit prime, i.e. p ∈ [2m < p < 2m+1].
With the notation introduced in this section

Pr(Supp{uj} ⊆ Supp{uj−1} for all 1 ≤ j ≤ l) > 1 − t l

((π(2m+1) − π(2m)) − l
.

This probability can be approximated by

Pr[Supp{uj} ⊆ Supp{uj−1} for all 1 ≤ j ≤ l] � 1 − tm log(lm)
2m − m log(lm)

.

6 Timing Data

In this section we give some experimental data to verify the effectiveness of
the methods described in Sects. 4 and 5. In the tables that follow all tim-
ings are in CPU seconds and were obtained on an Intel Core i5–4670 CPU
running at 3.40 GHz with 16 GB of RAM. For all Maple timings, we set
kernelopts(numcpus=1); to restrict Maple to use only one core as otherwise it
will do polynomial multiplications and divisions in parallel.
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6.1 Iterative vs Direct

In this section, we give some data in Table 1 to compare MTSHL-d with the
current approach, i.e. implementing MTSHL so that it solves multi-MDP’s using
iterative approach as explained in Sect. 4. We include also timings for Wang’s
algorithm which also uses the iterative approach.

We generated r random polynomials in n variables of total degree d with
T terms and coefficients from [1, 99] using Maple’s randpoly command thus
x1^(d+1)+randpoly([x1,\ldots,xn],degree=d,terms=T,coeffs=rand(1..99)) and
multiplied them. Then we factored these polynomials using (i) Wang’s algo-
rithm, (ii) MTSHL and (iii) MTSHL-d (our new method explained in Sect. 4).
All implementations are in Maple. tX(tY ) means that the algorithm factored the
polynomial in tX CPU seconds and spent tY CPU seconds solving multiterm
MDPs. OOM stands for out of memory. As can be seen from the data, MTSHL
is significantly faster than Wang’s algorithm and the MDP time in MTSHL-d is
less than the MDP time in MTSHL by a factor of r − 1 or more.

Table 1. Timings for Wang, MTSHL vs MTSHL-d with r > 2.

r/n/d/T Wang (MDP) MTSHL (MDP) MTSHL-d (MDP)

3/9/10/30 18.94 (16.00) 2.26 (0.60) 1.36 (0.30)

4/9/15/30 OOM 104.72 (23.23) 90.04 (6.55)

3/9/10/50 251.20 (240.77) 8.87 (2.28) 4.99 (0.71)

3/9/15/100 2302.69 (2235.2) 122.36 (28.58) 99.28 (8.17)

3/11/15/100 OOM 272.78 (42.74) 208.35 (11.51)

3/11/10/100 515.98 (424.76) 189.07 (23.90) 146.80 (6.25)

3/11/20/100 OOM 316.12 (66.7) 256.79 (19.22)

6.2 The pL Case

In this section, we give some data in Table 2 to compare the current approach,
i.e. implementing MTSHL so that it computes a bound lB and factors staying
in modulo ZplB arithmetic, with the p-adic lifting at the last step approach, i.e.
the -staying in Zp arithmetic approach-, as explained in this Sect. 5.

We generated 2 random polynomials in n variables of total degree d with T
with coefficients in [0, pl) for p = 231−1. Then we multiplied the two factors over
Z and then factored the product with MTSHL. Since MTSHL does not know
what the actual value of l is, it needs to compute the coefficient bound lB (using
Lemma 14 of [4]) and stays in the ZplB arithmetic. It factored the polynomial
in tX(tY ) seconds where tY denotes the time spent on solving MDP’s. Then
we factored the polynomial with MTSHL-d which uses p-adic lifting to recover
the integer coefficients as explained in Sect. 5. The timings in column MTSHL-d
(MDP) (Lift) are the total time, the time spent in MDP and the time spent
doing l lifts. The data in Table 2 shows that doing a p-adic lift is much faster
than the previous approach.
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Table 2. Timings for MTSHL vs MTSHL-d for large integer coefficients.

n/d/Tfi tfi l lB MTSHL (MDP) MTSHL-d (MDP) (Lift)

5/10/300 0.07 2 5 5.866 (5.101) 0.438 (0.132) (0.241)

5/10/500 0.11 2 5 9.265 (7.937) 1.194 (0.186) (0.480)

5/10/1000 0.23 2 5 14.448 (12.826) 2.202 (0.264) (1.332)

5/10/300 0.07 4 9 6.923 (6.104) 1.067 (0.156) (0.553)

5/10/500 0.11 4 9 10.971 (9.737) 1.854 (0.219) (1.231)

5/10/1000 0.23 4 9 16.943 (15.183) 3.552 (0.350) (2.632)

5/10/300 0.07 8 17 8.638 (7.596) 2.553 (0.201) (2.076)

5/10/500 0.11 8 17 13.118 (11.686) 3.101 (0.280) (2.396)

5/10/1000 0.23 8 17 19.031 (17.225) 4.905 (0.459) (4.032)

7 Conclusion

We have shown that when the number of factors to be computed ≥2 and for
the case where the coefficients of the factors are huge, sparse interpolation tech-
niques can be used to speed up multivariate polynomial factorization. The second
author has integrated our code into Maple under a MITACS internship with Dr.
Jürgen Gerhard of Maplesoft. The new code will become the default factoriza-
tion algorithm used by Maple’s factor command for multivariate polynomials
with integer coefficients. The old code will still be accessible as an option.
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