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Abstract. An algorithm for splitting permutation representations of a
finite group over fields of characteristic zero into irreducible components
is described. The algorithm is based on the fact that the components
of the invariant inner product in invariant subspaces are operators of
projection into these subspaces. An important part of the algorithm is the
solution of systems of quadratic equations. A preliminary implementation
of the algorithm splits representations up to dimensions of hundreds of
thousands. Examples of computations are given in the appendix.

1 Introduction

One of the central problems of group theory and its applications in physics is
the decomposition of linear representations of groups into irreducible compo-
nents. In general, the problem of splitting a module over an associative algebra
into irreducible submodules is quite nontrivial. An overview of the algorithmic
aspects of this problem can be found in Chap. 7 of [1]. For vector spaces over
finite fields, the most efficient is the Las Vegas algorithm 1 called MeatAxe [2].
This algorithm played an important role in solving the problem of classifying
finite simple groups. However, the approach used in the MeatAxe is ineffective
in characteristic zero, whereas quantum-mechanical problems are formulated just
in Hilbert spaces over zero characteristic fields. Our algorithm deals with repre-
sentations over such fields, and its implementation copes with dimensions up to
hundreds of thousands, which is not less than the dimensions achievable for the
MeatAxe. The algorithm requires knowledge of the centralizer ring of the consid-
ered group representation. In the general case, the calculation of the centralizer
ring is a problem of linear algebra, namely, solving matrix equations of the form
AX = XA. For permutation representations, there is an efficient way to com-
pute the centralizer ring, which reduces to constructing the set of orbitals. In
addition, permutation representations are fundamental in the sense that any lin-
ear representation of a finite group is a subrepresentation of some permutation
1 A Las Vegas algorithm is a randomized algorithm, each iteration of which either
produces the correct result, or reports a failure. An algorithm of this type always
gives the correct answer, but the run time is indeterminate.
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representation, and we use this fact in some quantum mechanical considerations
[3,4]. Thus, we consider only permutation representations here.

2 Mathematical Preliminaries

Let G (or G(Ω)) be a transitive permutation group on a set Ω ∼= {1, . . . ,N}.
We will denote the action of g ∈ G on i ∈ Ω by ig. A representation of G in
an N-dimensional vector space over a field F by the matrices P(g) with the
entries P(g)ij = δigj , where δij is the Kronecker delta, is called a permutation
representation. We assume that the permutation representation space is a Hilbert
space HN. We will assume that the base field F is a constructive splitting field of
the group G. In particular, such a field can be a subfield of the mth cyclotomic
field, where m is a suitable divisor of the exponent of G. Such a constructive
field F , being an abelian extension of the field Q, is a dense subfield of R or C.

An orbit of G on the Cartesian square Ω × Ω is called an orbital [5]. The
number of orbitals, called the rank of G(Ω), will be denoted by R. An orbital Δ
is called self-paired, if (i, j) ∈ Δ ⇒ (j, i) ∈ Δ, i.e., Δ = ΔT. Among the orbitals
of a transitive group, there is one diagonal orbital, Δ1 = {(i, i) | i ∈ Ω}, which
will always be fixed as the first element in the list of orbitals: {Δ1, . . . ,ΔR}. For
transitive action of G, there is a natural one-to-one correspondence between the
orbitals of G and the orbits of a point stabilizer Gi:

Δ ←→ Σi = {j ∈ Ω | (i, j) ∈ Δ} .

The Gi-orbits are called suborbits and their cardinalities will be called the
suborbit lengths. Note that |Δ| = N |Σi|.

The invariance condition for a bilinear form A in the Hilbert space HN can be
written as the system of equations A = P(g) AP

(
g−1

)
, g ∈ G. It is easy to verify

that in terms of the entries these equations have the form (A)ij = (A)igjg .

Thus, the basis of all invariant bilinear forms is in one-to-one correspondence
with the set of orbitals: with each orbital Δr ∈ {Δ1, . . . ,ΔR} is associated a
basis matrix Ar of the size N × N with the entries

(Ar)ij =

{
1, if (i, j) ∈ Δr,

0, if (i, j) /∈ Δr.

It is clear that the matrix of a self-paired orbital is symmetric. For the diag-
onal orbital, we have A1 = 1N. The matrices

A1,A2, . . . ,AR (1)

form a basis of the centralizer ring (or centralizer algebra) of the representation
P. The multiplication table for this basis has the form

ApAq =
R∑

r=1

Cr
pqAr, (2)

where Cr
pq are non-negative integers. The commutativity of the centralizer ring

indicates that the permutation representation P is multiplicity-free.
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3 Algorithm

Let T be a transformation (we can assume that T is a unitary matrix) that splits
the permutation representation P into M irreducible components:

T−1P(g) T = 1 ⊕ Ud2(g) ⊕ · · · ⊕ Udm
(g) ⊕ · · · ⊕ UdM

(g) ,

where Udm
is a dm-dimensional irreducible subrepresentation, ⊕ denotes the

direct sum of matrices, i.e., A ⊕ B = diag(A,B).
The identity matrix 1N is the standard inner product in any orthonormal

basis. In the splitting basis, we have the following decomposition of the standard
inner product

1N = 1d1=1 ⊕ · · · ⊕ 1dm
⊕ · · · ⊕ 1dM

.

The inverse image of this decomposition in the original permutation basis
has the form

1N = B1 + · · · + Bm + · · · + BM , (3)

where Bm is defined by the relation

T−1BmT = 01+d2+···+dm−1 ⊕1dm
⊕0dm+1+···+dM

≡ Dm. (4)

The set B1, . . . ,BM contains complete information about irreducible decom-
position of the representation P. In particular, the transformation matrix can
be obtained from the linear system B1T − TD1 = · · · = BMT − TDM = 0N .

The main idea of the algorithm is based on the fact that Bm’s form a complete
set of orthogonal projectors, i.e., in addition to the completeness (3), we have
the idempotency

B2
m = Bm (5)

and the mutual orthogonality

BmBm′ = 0N if m 	= m′. (6)

It follows from (4) that
tr Bm = dm. (7)

We see that all Bm’s can be obtained as solutions of the equation

X2 − X = 0N (8)

for the generic invariant form

X = x1A1 + · · · + xRAR.

Using the multiplication table (2), we can write the left-hand side of (8) as
a set of R polynomials (we will call them idempotency polynomials)

E(x1, . . . , xR) = {E1(x1, . . . , xR) , . . . , ER(x1, . . . , xR)} (9)
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and Eq. (8) can be written symbolically as

E(x1, . . . , xR) = 0. (10)

Each polynomial in (9) has the structure Er(x1, . . . , xR) = Qr(x1, . . . , xR)
− xr, where Qr(x1, . . . , xR) is a homogeneous quadratic polynomial in the inde-
terminates x1, . . . , xR.

In the basis (1), the projector Bm can be represented as

Bm = bm,1A1 + bm,2A2 + · · · + bm,RAR,

where the vector Bm = [bm,1, . . . , bm,R] is a solution of Eq. (10).
Since only A1 has nonzero diagonal elements, we have

tr Bm = bm,1N.

Combining this with (7) we can fix the coefficient bm,1:

bm,1 = dm/N.

Thus, the only relevant values of x1 in (10) are d/N for some d’s from the
interval [1, . . . ,N − 1]. Any relevant natural number d is either an irreducible
dimension or a sum of such dimensions. Using the orthogonality condition (6)
for the irreducible projectors, we can exclude the consideration of dimensions
that are sums of irreducible ones. The generic orthogonality condition can be
written as

BX = 0, (11)

where B = b1A1 + · · · + bRAR. Equation (11) is a system of linear equations for
the indeterminates x1, . . . , xR with the parameters b1, . . . , bR. Again, using the
multiplication table (2), we can write the left-hand side of (11) as a system of
R bilinear forms, which we denote by

O(b1, . . . , bR;x1, . . . , xR) (12)

and call orthogonality polynomials.
The core part of the algorithm is a loop on dimensions that starts with d = 1

and ends when the sum of irreducible dimensions becomes equal to N.
The current d is processed as follows.

– We solve 2 the system of equations E(d/N, x2, . . . , xR) = 0.
– If the system is incompatible, then go to the next d.
– If E(d/N, x2, . . . , xR) describes a zero-dimensional ideal, then we have k

(including k = 1) different d-dimensional irreducible subrepresentations.

2 The solution is always algorithmically realizable, since the problem involves only
polynomial equations with abelian Galois groups.
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– If the polynomial ideal has dimension h > 0, then we encounter an irre-
ducible component with a multiplicity k > 1. The corresponding component
of the centralizer algebra has the form A ⊗ 1d, where A is an arbitrary k × k
matrix, and ⊗ denotes the Kronecker product. The idempotency condition
(A ⊗ 1d)

2 = A ⊗ 1d implies A2 − A = 0. The complete family of solutions
of this equation 3 is a manifold of dimension

⌊
k2/2

⌋
= h. In this case, we

select, by a somewhat arbitrary procedure, k convenient mutually orthogonal
representatives in the family of equivalent subrepresentations.

– In any case, if at the moment we have a solution Bm, we append Bm to the list
of irreducible projectors, and exclude from the further consideration the cor-
responding invariant subspace by adding the linear orthogonality polynomials
BmX to the polynomial system:

E(x1, x2, . . . , xR) ← E(x1, x2, . . . , xR) ∪ {BmX} .

– After processing all Bm’s of dimension d, go to the next d.

4 Implementation

Our approach involves some widely used methods of polynomial computer alge-
bra. Therefore, it is reasonable, at least for the preliminary experience, to take
advantage of computer algebra systems with developed tools for working with
polynomials.

The complete algorithm is implemented by two procedures, the pseudocodes
of which are given below.

1. The procedure PreparePolynomialData is a program written in C. The
input data for this program is a set of permutations of Ω that generates the
group G(Ω) . The program computes the basis of the centralizer ring and its
multiplication table, constructs the idempotency and orthogonality polyno-
mials, and generates the code of the procedure SplitRepresentation that
processes the polynomial data. The main parameter that determines the run
time for PreparePolynomialData is the dimension of the representation.
The example in Sect. A.3 shows that the PC implementation copes with a
dimension of about one hundred thousand in a time of about one hour.

2. The procedure SplitRepresentation implements the above described loop
on dimensions that splits the representation of the group into irreducible
components. It is generated by the C program PreparePolynomialData .
Currently, the code is generated in the Maple 2017.3 language, and the
polynomial equations are processed by the Maple implementation of the
Gröbner bases algorithms. The run time for SplitRepresentation depends
mainly on the rank of the representation. Problems of rank R = 17 take about
8 hours on a PC.

3 It is well known that any solution of the matrix equation A2 = A can
be represented as A = Q−1 (1r ⊕ 0k−r)Q, where Q is an arbitrary invertible
k × k matrix and r ∈ [0, k].
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Input: S = {s1, . . . , sK} // set of permutations of Ω that generates group G
Output: E(x1, . . . , xR) , O(b1, . . . , bR;x1, . . . , xR) , SplitRepresentation
1: compute basis of centralizer ring A1, . . . , AR

2: compute multiplication table ApAq =
R∑

r=1

Cr
pqAr

3: construct idempotency polynomials E(x1, . . . , xR)
4: construct orthogonality polynomials O(b1, . . . , bR;x1, . . . , xR)
5: construct code SplitRepresentation for processing polynomial data
6: return SplitRepresentation (E(x1, . . . , xR) , O(b1, . . . , bR;x1, . . . , xR))

Algorithm 1: PreparePolynomialData

Input: E(x1, . . . , xR), O(b1, . . . , bR;x1, . . . , xR)
Output: IrreducibleProjectors = [(1, B1) , . . . , (dm, Bm) . . . , (dM , BM )]
1: IrreducibleProjectors ← [(

1, 1
N
[1, . . . , 1]

)]
// trivial subrepresentation

2: E(x1, . . . , xR) ← E(x1, . . . , xR) ∪ O(1, . . . , 1;x1, . . . , xR)
3: Sdim ← 1 // sum of dimensions, global variable
4: D ← 0 // current dimension, global variable
5: while Sdim < N do
6: D ← NextRelevantDimension(D)
7: all solutions ← SolveAlgebraicSystem(E(D/N, x2, . . . , xR))
8: if all solutions �= ∅ then
9: h ←NumberOfFreeParameters(all solutions)
10: if h = 0 then
11: for solution ∈ all solutions do
12: UseSingleSolution(solution)
13: else
14: repeat
15: solution ←PickBestSolution(all solutions)
16: UseSingleSolution(solution)
17: all solutions ←SolveAlgebraicSystem(E(D/N, x2, . . . , xR))
18: until all solutions = ∅

19: return IrreducibleProjectors

Algorithm 2: SplitRepresentation

Input: solution = [β1, . . . , βR]
1: E(x1, . . . , xR) ← E(x1, . . . , xR) ∪ O(β1, . . . , βR;x1, . . . , xR)
2: IrreducibleProjectors ← [IrreducibleProjectors, (D, solution)]
3: Sdim ← Sdim + D

Algorithm 3: UseSingleSolution
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Comments on the procedure SplitRepresentation :

– The procedure NextRelevantDimension can be implemented in different
ways, depending on the available information about the group and the rep-
resentation:

• The simplest implementation is “D ← D + 1”.
• The implementation “repeat D ← D + 1 until D | Ord(G)” is about

25% faster than the simplest one. In fact, the size of the group is always
known.

• Knowledge of the character decomposition provides the most efficient
loop on dimensions. Sometimes this information is available. Actually,
computing the character decomposition is much easier than computing
the decomposition of the representation.

– The procedures SolveAlgebraicSystem and NumberOfFreeParameters
involve the polynomial algebra functions available in the computer algebra
system used. At present, we use the Maple implementation of Gröbner basis
techniques.

– The PickBestSolution procedure is applied in the case of nontrivial mul-
tiplicity of the irreducible component. It selects a particular solution in the
parametric set of solutions. Currently, the choice of solutions with zero values
of parameters is used. Such an oversimplified approach sometimes leads to
“ugly roots” that go beyond the “natural” splitting field. This can be illus-
trated by the example of a 29155-dimensional representation of the Held group
whose decomposition into irreducible components is given in Sect.A.2. The
decomposition contains a 1275-dimensional irreducible component of multi-
plicity two. Representatives of this component obtained by the simple ver-
sion of PickBestSolution contain irrationality i

√
231 (see B(1)

1275 and B(2)
1275

expressions), which belongs to the quadratic field Q
(√−231

)
, while the repre-

sentation in question splits over the “much smaller” field Q
(√−7

)
. Therefore,

the PickBestSolution procedure requires improvement using strategies that
lead to minimal extensions of the field Q.

4.1 Comparison with the Magma Implementation of the MeatAxe

The Magma database contains a 3906-dimensional permutation representation
of the exceptional group of Lie type G2(5). The decomposition into irreducible
components of this representation over the field GF(2) is given in [6] as an
illustration of the possibilities of the MeatAxe.

The application of our algorithm to this problem shows that in the character-
istic zero, the considered representation is split over the field Q. The calculation
produces the following data:
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Rank: 4. Suborbit lengths: 1, 30, 750, 3125.

3906 ∼=1 ⊕ 930 ⊕ 1085 ⊕ 1890

B1 =
1

3906

4∑

k=1

Ak

B930 =
5
21

(
A1 +

3
10

A2 +
1
50

A3 − 1
125

A4

)

B1085 =
5
18

(
A1 − 1

5
A2 +

1
25

A3 − 1
125

A4

)

B1890 =
15
31

(
A1 − 1

30
A2 − 1

30
A3 +

1
125

A4

)

Time C: 0.5 s. Time Maple: 0.8 s.
Magma failed to split the 3906-dimensional representation over the field Q

due to memory exhaustion after long computation, but we can simulate to some
extent the case of characteristic zero, using a field of a characteristic that does
not divide Ord(G2(5)). The smallest such field is GF(11).

Below is the session of the corresponding Magma V2.21-1 computation on
a computer with two Intel Xeon E5410 2.33 GHz CPUs (time is given in seconds).

> load "g25";
Loading "/opt/magma.21-1/libs/pergps/g25"
The Lie group G( 2, 5 ) represented as a permutation
group of degree 3906.
Order: 5 859 000 000 = 2^6 * 3^3 * 5^6 * 7 * 31.
Group: G
> time Constituents(PermutationModule(G,GF(11)));
[

GModule of dimension 1 over GF(11),
GModule of dimension 930 over GF(11),
GModule of dimension 1085 over GF(11),
GModule of dimension 1890 over GF(11)

]
Time: 282.060

5 Conclusion

The algorithm described here is based on the use of methods of polynomial
algebra, which are considered algorithmically difficult. However, our approach
leads to a small number (in typical cases) of low-degree polynomials. Recall that
the idempotency system (9) is a set of R square polynomials. Calculations of
Gröbner bases in Maple on PC are limited in practice to R = 17. Among the
886 permutation representations available in the Atlas [7], 761 (i.e., 86%) have
ranks R ≤ 17. As can be seen in Appendix A, even a straightforward implemen-
tation of the approach can cope with rather large tasks. The data presented in



312 V. V. Kornyak

the appendix shows that the most restrictive parameter for the Maple part of
the implementation is the rank of representations, i.e., the number of polyno-
mial indeterminates. A possible way to improve performance is to try to develop
specialized algorithms that take into account the very special type of polyno-
mial equations that arise in the problem instead of the universal Gröbner basis
methods.

Acknowledgments. I am grateful to Yu.A. Blinkov, V.P. Gerdt and R.A. Wilson for
fruitful discussions and valuable advice.

A Examples of Computations

– Generators of representations are taken from the section “Sporadic groups”
of the Atlas [7].

– For a group G
• M(G) denotes the Schur multiplier, the 2nd homology group H2(G,Z),
• Out(G) denotes the outer automorphism group of G,
• n.G denotes a covering group of G, a central extension of G by Cn.

– The results presented below assume the following ordering for the centralizer
ring basis matrices

A1 = 1N, A2, . . . ,Ak,
︸ ︷︷ ︸

symmetric matrices

Ak+1,Ak+2 = AT
k+1, . . . ,AR−1,AR = AT

R−1︸ ︷︷ ︸
asymmetric matrices

.

The matrices within the first sublist are ordered by the rule: A < B if iA < iB ,
where iX = min (i | (X)i1 = 1). The same rule is applied to the first elements
of the pairs of asymmetric matrices.

– Representations are denoted by their dimensions in bold (possibly with some
signs added to distinguish different representations of the same dimension).
Permutation representations are underlined. Multiple subrepresentations are
underbraced in the decompositions.

– We omit the irreducible projectors related to the trivial subrepresentation:
these projectors have the standard form B1 = 1

N

∑R
k=1 Ak.

– All timing data refer to a PC with 3.30 GHz Intel Core i3 2120 CPU.

A.1 Higman–Sims Group HS

Main properties: Ord(HS) = 44352000 = 29 · 32 · 53 · 7 · 11.
M(HS) = C2. Out(HS) = C2.

11200-dimensional Representation of 2.HS
Rank: 16. Suborbit lengths: 12, 110, 1322, 1652, 6602, 7922, 990, 13202, 19802.

11200 ∼= 1 ⊕ 22 ⊕ 56 ⊕ 77 ⊕ 154 ⊕ 175 ⊕ 176 ⊕ 176 ⊕ 616 ⊕ 616

⊕ 770 ⊕ 825 ⊕ 1056 ⊕ 1980 ⊕ 1980 ⊕ 2520
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B22 =
11

5600

(
A1 +

13
33

A2 − 7
33

A3 +
1
11

A4 +
1
11

A5 +
13
33

A6 +
1
11

A7 − 7
33

A8

+
13
33

A9 + A10 − 7
33

A11 − 7
33

A12 +
1
11

A13 +
1
11

A14 − 17
33

A15

−17
33

A16

)

B56 =
1

200

(
A1 +

1
4
A3 +

1
4
A4 − 1

4
A5 +

1
4
A6 − 1

4
A8 − 1

4
A9 − A10

)

B77 =
11

1600

(
A1 +

1
11

A2 +
17
132

A3 − 23
132

A4 − 23
132

A5 +
37
132

A6 − 4
11

A7

+
17
132

A8 +
37
132

A9 + A10 − 2
33

A11 − 2
33

A12 +
1
66

A13 +
1
66

A14

+
8
33

A15 +
8
33

A16

)

B154 =
11
800

(
A1 +

3
55

A2 +
7
55

A3 +
1
11

A4 +
1
11

A5 − 1
11

A6 − 19
55

A7 +
7
55

A8

− 1
11

A9 + A10 − 1
55

A11 − 1
55

A12 − 3
55

A13 − 3
55

A14 − 7
55

A15

− 7
55

A16

)

B175 =
1
64

(
A1 +

7
55

A2 − 1
15

A3 +
1
33

A4 +
1
33

A5 +
1
33

A6 +
7
55

A7 − 1
15

A8

+
1
33

A9 + A10 +
1
33

A11 +
1
33

A12 − 1
15

A13 − 1
15

A14 +
37
165

A15

+
37
165

A16

)

B176 =
11
700

(
A1 +

2
33

A3 − 1
11

A4 +
1
11

A5 +
7
33

A6 − 2
33

A8 − 7
33

A9 − A10

+i
1
33

A11 − i
1
33

A12 + i
2
33

A13 − i
2
33

A14 + i
7
33

A15 − i
7
33

A16

)

B616 =
11
200

(
A1 − 7

132
A3 +

1
44

A4 − 1
44

A5 +
13
132

A6 +
7

132
A8 − 13

132
A9

−A10 − i
1
66

A11 + i
1
66

A12 − i
1
33

A13 + i
1
33

A14 + i
4
33

A15

−i
4
33

A16

)



314 V. V. Kornyak

B770 =
11
160

(
A1 − 1

165
A2 − 1

60
A3 − 1

44
A4 − 1

44
A5 +

13
132

A6 − 4
55

A7

− 1
60

A8 +
13
132

A9 + A10 +
7

165
A11 +

7
165

A12 − 1
110

A13

− 1
110

A14 − 16
165

A15 − 16
165

A16

)

B825 =
33
448

(
A1 +

13
495

A2 +
7

220
A3 − 13

396
A4 − 13

396
A5 − 1

12
A6 +

12
55

A7

+
7

220
A8 − 1

12
A9 + A10 − 1

990
A13 − 1

990
A14 − 8

165
A15

− 8
165

A16

)

B1056 =
33
350

(
A1 − 23

495
A2 +

3
220

A3 +
1
36

A4 +
1
36

A5 +
13
132

A6 +
6
55

A7

+
3

220
A8 +

13
132

A9 + A10 − 1
55

A11 − 1
55

A12 − 2
495

A13

− 2
495

A14 +
4

165
A15 +

4
165

A16

)

B1980 =
99
560

(
A1 +

1
132

A3 − 1
396

A4 +
1

396
A5 − 7

132
A6 − 1

132
A8 +

7
132

A9

−A10 − i
1
33

A11 + i
1
33

A12 + i
1
99

A13 − i
1
99

A14

)

B2520 =
9
40

(
A1 − 1

165
A2 − 1

60
A3 +

1
396

A4 +
1

396
A5 − 7

132
A6 − 4

55
A7

− 1
60

A8 − 7
132

A9 + A10 − 1
330

A11 − 1
330

A12 +
1
90

A13

+
1
90

A14 +
4

165
A15 +

4
165

A16

)

Time C: 8 s. Time Maple: 1 h 39 min 6 s.

A.2 Held Group He

Main properties: Ord(He) = 4030387200 = 210 · 33 · 52 · 73 · 17.
M(He) = 1. Out(He) = C2.

29155-dimensional Representation of He
Rank: 12. Suborbit lengths: 1, 90, 120, 384, 9602, 1440, 2160, 28802, 5760,

11520.

29155 ∼= 1 ⊕ 51 ⊕ 51 ⊕ 680 ⊕ (1275 ⊕ 1275)
︸ ︷︷ ︸

⊕1920 ⊕ 4352 ⊕ 7650

⊕ 11900
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B51 =
3

1715

{
A1 +

5
12

A2 − 1
48

A3 +
1
8
A4 +

1
8
A5 +

13
48

A6 − 1
6
A7 − 1

6
A8

− 1
32

(

3 − i
7
√

7
3

)

A9 − 1
32

(

3 + i
7
√

7
3

)

A10

+
1
96

(
5 + 7i

√
7
)

A11 +
1
96

(
5 − 7i

√
7
)

A12

}

B680 =
8

343

(
A1 +

3
10

A2 − 1
48

A3 − 23
1440

A4 − 1
20

A5 +
1
8
A6 +

1
120

A7

+
13
90

A8 +
1
36

A9 +
1
36

A10 +
1
15

A11 +
1
15

A12

)

B(1)
1275 =

15
343

{

A1 +
1

4280

(
331
3

− 7i
√

231
)

A2 − 1
25680

(

13 − i
7
√

231
3

)

A3

− 1
25680

(
1381

3
+ 7i

√
231

)
A4 +

1
25680

(
2101 + 7i

√
231

)
A5

− 1
1712

(

13 − i
7
√

231
3

)

A6 +
1

2568

(
109
3

− i
7
√

231
5

)

A7

+
1

4815

(

1571 − i
7
√

231
2

)

A8 − 1
38520

(
467 − 7i

√
231

)
A9

− 1
38520

(
467 − 7i

√
231

)
A10

}

B(2)
1275 =

15
343

{

A1 +
1

4280

(
1381

3
+ 7i

√
231

)
A2 +

1
25680

(

227 − i
7
√

231
3

)

A3

− 1
25680

(
331
3

− 7i
√

231
)

A4 − 1
25680

(
389 + 7i

√
231

)
A5

+
1

1712

(

227 − i
7
√

231
3

)

A6 +
1

2568

(
319
3

+ i
7
√

231
5

)

A7

− 1
4815

(

394 − i
7
√

231
2

)

A8 − 7
38520

(
157
2

+ i
√

231
)

A9

− 7
38520

(
157
2

+ i
√

231
)

A10 − 1
16

A11 − 1
16

A12

}

B1920 =
384
5831

(
A1 +

1
120

A2 − 7
384

A3 +
1

120
A4 +

7
160

A5 − 7
384

A6 +
1

120
A7

− 2
15

A8 +
5

192
A9 +

5
192

A10 − 13
480

A11 − 13
480

A12

)
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B4352 =
256
1715

(
A1 +

1
8
A2 +

7
768

A3 − 5
576

A4 − 7
128

A6 − 1
48

A7

− 1
18

A8 +
1

576
A9 +

1
576

A10 − 1
192

A11 − 1
192

A12

)

B7650 =
90
343

(
A1 − 1

20
A2 +

1
120

A4 − 7
360

A5 − 1
90

A7 +
1
10

A8 +
1

240
A9

+
1

240
A10 − 1

80
A11 − 1

80
A12

)

B11900 =
20
49

(
A1 − 1

20
A2 − 1

720
A4 +

1
120

A7 − 1
18

A8 − 1
180

A9 − 1
180

A10

+
1
60

A11 +
1
60

A12

)

Time C: 47 s. Time Maple: 15 s.

A.3 Suzuki Group Suz

Main properties: Ord(Suz) = 448345497600 = 213 · 37 · 52 · 7 · 11 · 13.
M(Suz) = C6. Out(Suz) = C2.

65520-dimensional Representation of 2.Suz
Rank: 10. Suborbit lengths: 12, 8912, 28162, 3960, 12672, 207362.

65520 ∼= 1 ⊕ 143 ⊕ 364α ⊕ 364β ⊕ 364β ⊕ 5940 ⊕ 12012 ⊕ 14300

⊕ 16016 ⊕ 16016

B143 =
11

5040

(
A1 + A2 +

2
11

A3 − 1
11

A4 +
2
11

A5 − 1
11

A6 +
3
11

A9 +
3
11

A10

)

B364α
=

1
180

(
A1 + A2 +

1
16

A3 +
1
6
A4 +

1
16

A5 − 1
24

A6 − 1
144

A7 − 1
144

A8

−1
9
A9 − 1

9
A10

)

B364β
=

1
180

(

A1 − A2 − 1
8
A3 +

1
8
A5 + i

√
3

72
A7 − i

√
3

72
A8

+i

√
3

9
A9 − i

√
3

9
A10

)

B5940 =
33
364

(
A1 + A2 +

1
352

A3 +
1
66

A4 +
1

352
A5 +

1
66

A6 − 7
864

A7

− 7
864

A8 +
1
27

A9 +
1
27

A10

)
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B12012 =
11
60

(
A1 + A2 +

1
88

A3 − 1
66

A4 +
1
88

A5 +
1

264
A6 − 1

33
A9 − 1

33
A10

)

B14300 =
55
252

(
A1 + A2 − 5

352
A3 +

1
330

A4 − 5
352

A5 − 1
132

A6 +
1

288
A7

+
1

288
A8 +

1
99

A9 +
1
99

A10

)

B16016 =
11
45

(

A1 − A2 +
1

352
A3 − 1

352
A5 − i

√
3

288
A7 + i

√
3

288
A8

+i

√
3

99
A9 − i

√
3

99
A10

)

Time C: 6 min 3 s. Time Maple: 10 s.

98280-dimensional Representation of 3.Suz
Rank: 14. Suborbit lengths: 13, 8913, 28163, 5940, 19008, 207363.

98280 ∼= 1 ⊕ 78 ⊕ 78 ⊕ 143 ⊕ 364 ⊕ 1365 ⊕ 1365 ⊕ 4290 ⊕ 4290

⊕ 5940 ⊕ 12012 ⊕ 14300 ⊕ 27027 ⊕ 27027

B78 =
1

1260

(
A1 − 1

12
A2 − 1

3
A4 +

1
4
A6 − r

12
A7 − r2

12
A8

+
r

4
A9 +

r2

4
A10 − r2

3
A11 − r

3
A12 + rA13 + r2A14

)

B143 =
11

7560

(
A1 − 1

11
A3 +

3
11

A4 − 1
11

A5 +
2
11

A6 +
2
11

A9

+
2
11

A10 +
3
11

A11 +
3
11

A12 + A13 + A14

)

B364 =
1

270

(
A1 − 1

144
A2 +

1
6
A3 − 1

9
A4 − 1

24
A5 +

1
16

A6 − 1
144

A7

− 1
144

A8 +
1
16

A9 +
1
16

A10 − 1
9
A11 − 1

9
A12 + A13 + A14

)

B1365 =
1
72

(
A1 +

1
144

A2 +
1
9
A4 +

1
16

A6 +
r

144
A7 +

r2

144
A8

+
r

16
A9 +

r2

16
A10 +

r2

9
A11 +

r

9
A12 + rA13 + r2A14

)

B4290 =
11
252

(
A1 +

1
72

A2 − 5
99

A4 +
1
88

A6 +
r

72
A7 +

r2

72
A8

+
r

88
A9 +

r2

88
A10 − 5r2

99
A11 − 5r

99
A12 + rA13 + r2A14

)
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B5940 =
11
182

(
A1 − 7

864
A2 +

1
66

A3 +
1
27

A4 +
1
66

A5 +
1

352
A6 − 7

864
A7

− 7
864

A8 +
1

352
A9 +

1
352

A10 +
1
27

A11 +
1
27

A12 + A13 + A14

)

B12012 =
11
90

(
A1 − 1

66
A3 − 1

33
A4 +

1
264

A5 +
1
88

A6 +
1
88

A9

+
1
88

A10 − 1
33

A11 − 1
33

A12 + A13 + A14

)

B14300 =
55
378

(
A1 +

1
288

A2 +
1

330
A3 +

1
99

A4 − 1
132

A5 − 5
352

A6 +
1

288
A7

+
1

288
A8 − 5

352
A9 − 5

352
A10 +

1
99

A11 +
1
99

A12 + A13 + A14

)

B27027 =
11
40

(
A1 − 1

432
A2 +

1
297

A4 − 1
176

A6 − r

432
A7 − r2

432
A8

− r

176
A9 − r2

176
A10 +

r2

297
A11 +

r

297
A12 + rA13 + r2A14

)

r = exp(2πi/3) = − 1
2 + i

√
3
2 is the basic primitive 3rd root of unity.

Time C: 57 min 58 s. Time Maple: 7 min 41 s.
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