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Abstract. We conduct qualitative analysis for a completely integrable
system of differential equations with irrational first integrals. These equa-
tions originate from gas dynamics and describe adiabatical motions of
a compressible gas cloud with homogeneous deformation. We study the
mechanical analog of this gas dynamical system – the rotational motion
of a spheroidal rigid body around a fixed point in a potential force field
described by an irrational function. Within our study, equilibria, pen-
dulum oscillations and invariant manifolds, which these solutions belong
to, have been found. The sufficient conditions of their stability in Lya-
punov’s sense have been derived and compared with the necessary ones.
The analysis has been performed with the aid of computer algebra tools
which proved to be essential. The computer algebra system “Mathemat-
ica” was employed.

1 Introduction

Many different natural phenomena and processes can be described mathemati-
cally by the same equations. Such a mathematical analogy allows one to apply
the methods developed for studying and an interpretation of phenomena and
processes of one type to phenomena and processes of other type. Let us con-
sider, e.g., the equations of adiabatical motions of an ideal gas in the form [9]:

divv = − 1
(γ − 1)

d

dt
ln T

∂tv = v ∧ rotv + T∇S − ∇
(v2

2
+

γT

γ − 1

)
(1)

∂tS + v · ∇S = 0,

where v is the vector of velocity of the gas, T is the gas temperature, γ is the
adiabatical index, and S is the entropy.

As was shown [6,16], in a Lagrangian formalism, when S is a quadratic func-
tion of Lagragian coordinates, and v depends on these linearly, partial differential
equations (1) are reduced to ordinary ones and describe the motions of an ellip-
soidal cloud of a compressible gas expanding freely in vacuum. The mechanical
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interpretation of these equations was given [6]. They are identical with the equa-
tions of motion of a point mass in nine-dimensional Euclidean space. This gas
dynamical model was studied in a series of works, e.g., [1,15]. The present paper
is based on the results [7,9].

In [7], under some assumptions, such as the gas is monatomic with the adia-
batic index γ = 5/3, and there is neither rotation nor vorticity of the gas cloud,
the above gas dynamical model was reduced to three second order ordinary dif-
ferential equations. It was shown that they are equivalent to the equations of
motion of a point mass on the unit 2-sphere, and an additional integral of 3rd
degree in momenta has been derived for them. More general case was considered
in [9] when the gas ellipsoid rotates around one of its principal axes. Then the
equations of motion possess an additional first integral of 6th degree in momenta.

The study of the gas dynamical model proposed [16], [6] is ongoing to the
present time towards generalizations of the found integrable cases [8]. A topo-
logical analysis of the integrable cases with the additional first integrals of 3rd
and 6th degree has been done in [4]. In this work, the mechanical analog for
the gas cloud – the motion of a point mass on the 2-sphere – was investigated.
According to [3], the dynamics of a point mass on the 2-sphere is equivalent to
the motion of a spheroidal rigid body in a potential force field at zeroth level of
area integral. Thus, one can use this mechanical analog to study the gas dynam-
ical model and to apply the methods developed for the analysis of dynamical
systems of such type.

In the present work, the latter mechanical model is used for the qualitative
analysis of the gas dynamical system. We analyze the differential equations of the
spheroidal body in the above-mentioned integrable cases and obtain new results
for both the gas system and the mechanical one. As is well-known, the problem
of the qualitative analysis of differential equations is to find special solutions
(equilibria, periodic motions, etc.) of these equations and to study their stability
and bifurcations. Based on computer algebra methods, the computer analysis of
the above problems can be performed in analytical form. The latter enables us to
investigate the properties of the solutions under continuous (smooth) variation
of their parameters. The research technique based on computer algebra methods
as applied to the qualitative analysis of differential equations with first integrals
is presented in the paper. The symbolic analysis is performed using built-in pro-
cedures of the computer algebra system “Mathematica” (CAS) and the “Math-
ematica” software package [2]. The procedures are used to solve computational
problems arising in the study and to manipulate mathematical expressions. The
package is employed to investigate the stability of the special solutions.

For finding the special solutions, the Routh–Lyapunov method [13] and its
generalizations [12] are applied. By these methods, the qualitative analysis of
differential equations with polynomial first integrals is reduced to algebraic prob-
lems solved efficiently by CAS. The first integrals in the problem under consid-
eration are irrational; that is a special feature of the given problem. To avoid the
use of fractional exponents and fractions (that is usually difficult in CAS), we
transform irrational expressions to polynomial ones by introducing new variables.
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In addition to the above methods for finding the special solutions, the chains of
differential consequences [10] are applied. This technique mainly uses symbolic
differentiation of expressions and is well suited for both algebraic expressions
and irrational ones.

The paper is organized as follows. In Sect. 2, we analyze the equations of
motion of the body when these possess the additional cubic integral in momenta.
The special solutions of the equations are found and their stability is investigated.
In Sect. 3, the same problems are solved for the equations of motion of the body
when these have the additional integral of 6th degree in momenta. Finally, we
discuss the obtained results and give a conclusion in Sect. 4.

2 The Integrable Case with the Additional Cubic Integral

2.1 Formulation of the Problem

Euler–Poisson’s differential equations describing the motion of a spheroidal rigid
body around a fixed point in a force field with the potential 2V = 3a (γ2

1 + γ2
2 +

γ2
3)(γ1γ2γ3)−2/3 can be written as [5]

Ṁ1 = −[a (γ2
2 − γ2

3) (γ2
1 + γ2

2 + γ2
3)] (γ2γ3)−5/3 γ

−2/3
1 , γ̇1 = γ2M3 − γ3M2,

Ṁ2 = [a (γ2
1 − γ2

3) (γ2
1 + γ2

2 + γ2
3)] (γ1γ3)−5/3 γ

−2/3
2 , γ̇2 = γ3M1 − γ1M3, (2)

Ṁ3 = −[a (γ2
1 − γ2

2) (γ2
1 + γ2

2 + γ2
3)] (γ1γ2)−5/3 γ

−2/3
3 , γ̇3 = γ1M2 − γ2M1,

where Mi are the components of the kinetic momentum vector, γi are the direc-
tion cosines of “the vertical”, a is some constant.

The above equations under the corresponding interpretation of the variables
describe an expansion of the gas ellipsoid (without rotation) in vacuum. In this
case, Mi are the impulses, γi = Ai/

√∑
A2

i , where Ai are the lengths of principal
axes of the ellipsoid.

Equation (2) admit the following first integrals:

2H = M2
1 + M2

2 + M2
3 + 3a (γ2

1 + γ2
2 + γ2

3) (γ1γ2γ3)−2/3 = 2h,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, V2 = M1γ1 + M2γ2 + M3γ3 = 0, (3)

V3 = M1M2M3 − 3a (γ1γ2γ3)1/3(M1γ
−1
1 + M2γ

−1
2 + M3γ

−1
3 ) = c1.

Here V3 is the additional integral derived in [7]. It is cubic with respect to
M1,M2,M3. This integral exists when the constant of the integral V2 is equal to
zero.

We can use the integrals having fixed constants for eliminating a part of the
variables from differential equations (2) and the rest of the integrals to reduce
the dimension of the problem. Let us eliminate the variable M1 from Eq. (2)
with the aid of V2 = 0. They become:

Ṁ2 = a (γ2
1 − γ2

3) (γ2
1 + γ2

2 + γ2
3) (γ1γ3)−5/3 γ

−2/3
2 ,

Ṁ3 = −a (γ2
1 − γ2

2) (γ2
1 + γ2

2 + γ2
3) (γ1γ2)−5/3 γ

−2/3
3 , (4)

γ̇1 = γ2M3 − γ3M2, γ̇2 = −[M2γ2 + M3(γ2
1 + γ3)] γ3γ−1

1 ,

γ̇3 = [M2(γ2
1 + γ2) + M3γ3] γ2γ−1

1 .
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The first integrals of the above equations are:

2H̃ = (M2γ2 + M3γ3)2 γ−2
1 + M2

2 + M2
3 + 3a (γ2

1 + γ2
2 + γ2

3) (γ1γ2γ3)−2/3= 2h̃,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, Ṽ3 = −M2M3 (M2γ2 + M3γ3) γ−1

1

−3a (γ1γ2γ3)1/3[M2γ
−1
2 + M3γ

−1
3 − (M2γ2 + M3γ3) γ−2

1 ] = c̃1. (5)

Further, we conduct the qualitative analysis of Eq. (4). In the general case,
this problem is to find special solutions (equilibria, periodic motions) and to
investigate their qualitative properties. In the case of conservative systems, the
variety of the special solutions is expanded through stationary sets. By these
sets, we mean sets of any finite dimension on which the problem’s first integrals
(or their combinations) assume a stationary value. Zero-dimensional sets having
this property are known as stationary solutions, while we shall call positive
dimensional sets the stationary invariant manifolds (IMs).

Our goal is to find the stationary solutions and the IMs of Eq. (4) and to
investigate their stability.

2.2 Finding Invariant Manifolds

According to the Routh–Lyapunov method, the stationary solutions and the
IMs of the differential equations under consideration can be obtained by solving
the conditional extremum problem for the first integrals of these equations. For
this purpose, a linear or nonlinear combination of the first integrals (a family
of the first integrals) is constructed and the necessary extremum conditions for
this family with respect to the phase variables are written. Thus, in the case of
algebraic first integrals, the problem of finding stationary solutions and IMs is
reduced to solving a system of algebraic equations.

Following the technique chosen, we take the complete linear combination of
the first integrals of the problem:

2K = 2λ0H̃ − λ1V1 − 2λ3Ṽ3, (6)

where λ0, λ1, λ3 are the parameters of the family of the integrals K, and write
the necessary conditions for the integral K to have an extremum with respect to
the phase variables:

∂K/∂M2 = 0, ∂K/∂M3 = 0, ∂K/∂γi = 0 (i = 1, 2, 3). (7)

The solutions of system (7), when it is degenerate (its Jacobian is identically
equal to zero), allow one to define the IMs (or their families) for differential
equations (4) which correspond to the family of the first integrals K.

System (7) is that of five irrational equations with the parameters a, λ0, λ1,
λ3. We should transform these equations to polynomial ones to use computer
algebra methods, e.g., Gröbner basis method, for finding their solutions. For this
purpose, we introduce the new variables:

M2 = M2, M3 = M3, x1 = γ1, x2 = γ
1/3
2 γ

−1/3
1 , x3 = γ

1/3
3 γ

−1/3
1 . (8)
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In the above variables, the equations of motion (4) and first integrals (5) take
the form

Ṁ2 = −a(x6
3 − 1)(x6

2 + x6
3 + 1) x−2

2 x−5
3 , 3ẋ2 = −M3 (x6

2 + x6
3 + 1) x−2

2 ,

Ṁ3 = a(x6
2 − 1)(x6

2 + x6
3 + 1) x−5

2 x−2
3 , 3ẋ3 = M2 (x6

2 + x6
3 + 1) x−2

3 ,
ẋ1 = x1 (M3x

3
2 − M2x

3
3),

(9)

2Ĥ = M2
2 + M2

3 + (M2x
3
2 + M3x

3
3)

2 + 3a (x6
2 + x6

3 + 1) x−2
2 x−2

3 = 2ĥ,

V̂1 = x2
1 (x6

2 + x6
3 + 1) = 1,

V̂3=−M2M3 (M2x
3
2+ M3x

3
3) − 3ax2x3 [M2 (x−3

2 − x3
2) + M3 (x−3

3 − x3
3)] = ĉ1,

and the conditions for stationarity of the integral K can be written as:

[λ0x
2
2 (M2 + x3

2 (M2x
3
2 + M3x

3
3)) + λ3 (M3x

2
2 (2M2x

3
2 + M3x

3
3)

−3ax3 (x6
2 − 1)) ]x−2

2 = 0,

[λ0x
2
3 (M3 + x3

3 (M2x
3
2 + M3x

3
3)) + λ3 (M2x

2
3 (M2x

3
2 + 2M3x

3
3)

−3ax2 (x6
3 − 1)) ]x−2

3 = 0, λ1x1 (x6
2 + x6

3 + 1) = 0, (10)
[λ0 (M2 x5

2x
2
3 (M2x

3
2 + M3x

3
3) + a (2x6

2 − x6
3 − 1)) − λ2x

2
1x

8
2x

2
3

+λ3 [M2
2M3x

5
2x

2
3 − a (2M2x

3
3 (2x6

2 + 1) + M3x
3
2 (x6

3 − 1)) ]]x−3
2 x−2

3 = 0,

[λ0 (a (x6
2 − 2x6

3 + 1) − M3x
2
2x

5
3 (M2x

3
2 + M3x

3
3)) + λ2x

2
1x

2
2x

8
3

−λ3 [M2M
2
3x2

2x
5
3 − a (M2x

3
3 (x6

2 − 1) + 2M3x
3
2 (2x6

3 + 1)) ]]x−2
2 x−3

3 = 0.

First, we find the IMs of maximal codimension for Eq. (9). As the first inte-
grals of the problem define IMs and families of IMs of codimension 1, we start
with the IMs of codimension 2. As said before, the IMs can be derived as the
solutions of system (10) when it is degenerate. To this end, we compute a lexi-
cographical basis for the polynomials in square brackets (10) with respect to a
part of the phase variables and the parameters, e.g., λ0, λ1,M2,M3 (the polyno-
mials have least degrees with respect to these variables). Here the number of the
phase variables determines the codimension of the desired IM. This technique
enables us to obtain both the IMs and the conditions under which the stationary
equations become degenerate (see., e.g., [11]).

The “Mathematica” program GroebnerBasis is applied to compute the basis:

GroebnerBasis[ polys, {lambda0, lambda2, M2, M3},
CoefficientDomain -> RationalFunctions]

Here polys is the list of the polynomials in square brackets (10). All computations
are performed on a computer with processor Intel Core 7i (3.6 GHz) and 32 GB
RAM. The program has returned the basis in 21 s. So, we have the following
system:

σ0M
8
3 + σ2M

6
3 + σ4M

4
3 + σ6M

2
3 + σ8 = 0,

σM2 + σ1M
7
3 + σ3M

5
3 + σ5M

3
3 + σ7M3 = 0, (11)

λ1 = 0, f(M3, x2, x3, λ0, λ3, a) = 0, (12)
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where σj (j = 0, . . . , 8), σ are the polynomials of a, x2, x3 (their full form is given
in the Appendix), f is a linear function of λ0.

It is easy to verify by IM definition that Eq. (11) determine the IM of codi-
mension 2 of differential equations (9): the derivative of (11) calculated by virtue
of Eq. (9) vanishes on the given expressions.

The first of expressions (11) (λ1 = 0) is the condition of degeneration of
system (10). The latter expression (f = 0) allows one to derive the first integral
for the equations of vector field on IM (11).

By this technique, one can also find an IM of codimension 3. First, under
the condition λ1 = 0, we compute a Gröbner basis with respect to elimination
monomial order for the polynomials in square brackets (10):

gb = GroebnerBasis[ polys, {x3}, {M2, M3}, CoefficientDomain ->
RationalFunctions, MonomialOrder -> EliminationOrder]

Then, we construct a lexicographical basis:

GroebnerBasis[ gb, { M2, M3, x3},
CoefficientDomain -> RationalFunctions]

As a result, we have:

λ8
0x

12
3 − 2λ2

0ρ1ux6
3 − 12a1λ

2
3ρ2x

4
2x

4
3 + λ2

0 (16a3
1λ

6
3x

6
2 + λ6

0v
2) = 0,

2λ3
0λ3x2[(λ12

0 + 64a6
1λ

12
3 )x6

2+ 8a3
1λ

6
0λ

6
3 (x12

2 + 1)]M3 + λ4
0 (16a3

1λ
6
3 ρ2 + λ12

0 )ux4
2

−4a2
1λ

4
3 [16a3

1λ
6
3 (λ6

0v
2 + 12a3

1λ
6
3x

6
2) − λ12

0 (v2 − x6
2)]x

2
3 − 2a1λ

2
0λ

2
3 [λ12

0 − 32a3
1

×λ6
3 ρ2]ux2

2x
4
3 − λ10

0 ρ1 x4
2x

6
3 − 2a1λ

8
0λ

2
3x

8
3 [2a1λ

4
0λ

2
3u − ρ1 x2

2x
4
3] = 0,

[2λ0λ3v (λ12
0 v2+ 8a3

1λ
6
3x

6
2 (16a6

1λ
6
3x

6
2 + λ6

0 (x12
2 − 2v + 1)))]M2 − 2a1λ

2
3 [8a3

1λ
6
3v

−λ6
0(v − 2)] ρ3x4

2x3 − λ2
0 [λ12

0 (u + 2)v2 − 64a6
1λ

12
3 (2v + 3v2)x6

2

+8a3
1λ

6
0λ

6
3(5v2x6

2 − 2u)]x3
3 + 4a2

1λ
4
0λ

4
3x

2
2 [16a3

1λ
6
3((u + 1)v2 − 3) (13)

+λ6
0(4 − 3u2 − v3 + 16x6

2)]x
5
3 − λ6

0x
7
3 [2a1λ

2
3x

4
2ρ3 − λ2

0ρ3x
2
3

−4a2
1λ

4
0λ

4
3(v

2 − 2)x2
2x

4
3] = 0,

where u = x6
2 + 1, v = x6

2 − 1, a1 = a/3, ρ1 = λ6
0 − 8a3

1λ
6
3, ρ2 = λ6

0 − 4a3
1λ

6
3,

ρ3 = λ6
0v

2 + 16a3
1λ

6
3x

6
2. The total time to compute the basis is 8 s.

Likewise as above, it is easy to verify by IM definition that Eq. (13) define
the family of IMs of codimension 3 for differential equations (9). Here λ0, λ3

are the parameters of the family. In the terms of the paper, it is the family of
stationary IMs, since the integral K̂ = λ0Ĥ − λ3V̂3 assumes a stationary value
on the elements of this family.

One can show that the elements of IMs family (13) are the submanifolds of
IM (11). Let us find their intersection. To this end, we compute a lexicographical
basis with respect to the variables M2,M3, x3 for the polynomials of the system
composed of Eqs. (11), (13). The resulting equations are the family of IMs (13).
So, the original assumption is true.
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With (8), we can return to the initial variables M2,M3, γ1, γ2, γ3 in Eqs. (11),
(13). In the initial variables, these equations define, respectively, the IM of codi-
mension 2 and the family of IMs of codimension 3 for differential equations (4)
that can be verified by IM definition.

Other IMs of codimension 2 for the equations of motion (4) have been
obtained by the chains of differential consequences of the kind [10]:

W ′
0 = ϕ1(x)W1(x), W ′

1 = ϕ2(x)W2(x), . . . , W ′
k−1 = ϕk(x)Wk(x), . . . (14)

Here x = (M2,M3, γ1, γ2, γ3), and Wj(x) (j = 0, . . .), ϕm(x) (m = 1, . . .) are
some smooth functions of x, W ′

j (j = 1, . . .) are their derivatives by virtue of
differential equations (4).

We call the chain of differential consequences (14) cyclical one if for some k:

W ′
k =

k∑
i=0

ϕ̄i(x)Wi(x), (15)

where ϕ̄i(x) are the smooth functions.

Statement 1. If system (4) admits cyclical chain (15) then it has the IM defined
by the equations W0(x) = W1(x) = . . . = Wk(x) = 0. The proof is obvious.

In the given approach, computer algebra tools play an auxiliary role. They
give us a possibility to make computational experiments, e.g., for finding the
functions Wi that would be most “suitable” to generate the chain. The “Math-
ematica” program PolynomialReduce is used to test criterion (15).

Let be W0 = M2 +M3. On differentiating this expression by virtue of Eq. (4)
we obtain W1 = γ2 − γ3. The subsequent differentiation of W1 shows that dif-
ferential equations (4) admit the following cyclical chain:

W ′
0 = [a (γ2

1 + γ2γ3) (γ2
1 + γ2

2 + γ2
3) (γ1γ2γ3)−5/3]W1,

W ′
1 = −[(γ2

1 + γ2
2 + γ2γ3) γ−1

1 ]W0 + [M3 (γ2 + γ3) γ−1
1 ]W1.

According to Statement 1, the expressions

M2 + M3 = 0, γ2 − γ3 = 0 (16)

determine the IM of codimension 2 of differential equations (4).
The vector field on IM (16) is given by

Ṁ3 = −a (γ2
1 − γ2

3) (γ2
1 + 2γ2

3) γ
−5/3
1 γ

−7/3
2 , γ̇1 = 2M3γ3, γ̇3 = −M3γ1. (17)

In the same way, the IM defined by the equations

M2 − M3 = 0, γ2 + γ3 = 0 (18)

has been derived.
The vector field on this IM is described by

Ṁ3 = a (−γ3)1/3(γ2
3 − γ2

1) (γ2
1 + 2γ2

3) γ
−5/3
1 γ

−8/3
3 ,

γ̇1 = −2M3γ3, γ̇3 = M3γ1. (19)
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Note that IMs (16), (18) are stationary. The integral Ω = Ṽ 2
3 takes a stationary

value on them.
All found IMs for differential equations (4) can be “lifted up” into the phase

space of system (2). For this purpose, it is sufficient to add expression V2 = 0
(3) to the equations of these IMs. In particular, equations IMs (16), (18) take
the form

M2 + M3 = 0, γ2 − γ3 = 0, M1γ1 = 0 (20)

and M2 − M3 = 0, γ2 + γ3 = 0, M1γ1 = 0, respectively,
From the physical viewpoint, in the case of the spheroidal body, the above

equations together with (17), (19) define pendulum-like oscillations of the body.
From the formulation of the problem it follows that IM (20) is related to the prob-
lem of the expanding gas cloud only. Equation (20) together with (17) describe
the periodical changes of the cloud sizes.

2.3 Finding Stationary Solutions

As mentioned before, stationary solutions are usually found by the Routh–
Lyapunov method from the conditions for stationarity of a family of problem’s
first integrals. In the case of polynomial first integrals, this approach leads to
solving a system of polynomial equations. When the first integrals are not poly-
nomial or the polynomials have high degrees, the technique applied in [11] is
more suitable. The given technique is used in the present work.

Equate the right-hand sides of differential equations (4) to zero and add
relation V1 = 1 (5) to them:

a (γ2
1 − γ2

3) (γ2
1 + γ2

2 + γ2
3) (γ1γ3)−5/3 γ

−2/3
2 = 0, γ2M3 − γ3M2 = 0,

−a (γ2
1 − γ2

2) (γ2
1 + γ2

2 + γ2
3) (γ1γ2)−5/3 γ

−2/3
3 = 0, γ2

1 + γ2
2 + γ2

3 − 1 = 0,
−γ3γ

−1
1 [M2γ2 + M3(γ2

1 + γ3)] = 0,
γ2γ

−1
1 [M2(γ2

1 + γ2) + M3γ3] = 0.

(21)

Next, construct a lexicographical Gröbner basis with respect to M2,M3, γ1,
γ2, γ3 for the polynomials of the subsystem

γ2
1 − γ2

3 = 0, M2γ2 + M3(γ2
1 + γ3) = 0, M2(γ2

1 + γ2) + M3γ3 = 0,
γ2
1 − γ2

2 = 0, γ2M3 − γ3M2 = 0, γ2
1 + γ2

2 + γ2
3 − 1 = 0

of system (21). As a result, we have:

3γ2
3 − 1 = 0, 1 − 3γ2

2 = 0, 1 − 3γ2
1 = 0,M2 = 0, M3 = 0.

The latter system has the following solutions:

M2 = 0, M3 = 0, γ1 = ±3−1/2, γ2 = γ3 = 3−1/2,

M2 = 0, M3 = 0, γ1 = ±3−1/2, γ2 = γ3 = −3−1/2. (22)
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M2 = 0, M3 = 0, γ1 = ±3−1/2, γ2 = −3−1/2, γ3 = 3−1/2,

M2 = 0, M3 = 0, γ1 = ±3−1/2, γ2 = 3−1/2, γ3 = −3−1/2. (23)

On substituting these solutions into Eq. (4) they are satisfied.
Now, let us derive the family of the integrals which takes a stationary value

on solutions (22), (23). When these solutions are substituted into Eq. (7), we
find that the equations are satisfied under λ1 = 0.

On substituting λ1 = 0 into (6), we have:

K̃ = λ0H̃ − λ3Ṽ3. (24)

Thus, the family of the integrals K̃ assumes a stationary value on solutions (22),
(23). Each integral belonging to this family also takes a stationary value on the
above solutions. It is verified by direct calculation. In particular, the integral Ṽ3

is identically equal to zero on all solutions (22), (23).
In the same way as the IMs in Subsect. 2.2, the stationary solutions can be

“lifted up” into the phase space of system (2). From the physical viewpoint,
in the original phase space, these solutions correspond to the equilibria of the
spheroidal body, and only one of these solutions is related to the problem of
the expanding gas cloud: M1 = M2 = M3 = 0, γ1 = γ2 = γ3 = 3−1/2. It was
also found in [4]. This solution corresponds to the cloud of the spherical shape
without changing sizes.

One can show that stationary solutions (22), (23) belong to IM (11). To
this end, we substitute these solutions into the equations of the IM (they must
be written in the initial variables M2,M3, γ1, γ2, γ3). The equations turn into
identities. Thus, solutions (22), (23) belong to IM (11).

In the same way, we reveal that solutions (22) and (23) belong to IM (16) and
IM (18), respectively. Hence, IM (11) and IM (16) have the common points (i.e.,
the points of intersection of these IMs) defined by relations (22). Analogously,
relations (23) define the points of intersection of IM (11) and IM (18).

2.4 On Stability of Stationary Solutions

The integrals and their families, which take a stationary value on solutions
(22), (23), are used to investigate the stability of these solutions by the Routh–
Lyapunov method. The problem is to verify the sign-definiteness conditions for
the 2nd variation of the family of integrals which is obtained in the neighbor-
hood of the solution under study. These conditions are analyzed on the linear
manifold defined by the variations of the “conditional” integrals.

Let us investigate the stability of one of solutions (22), e.g.,

M2 = M3 = 0, γ1 = γ2 = γ3 = 3−1/2, (25)

which is related to the problem of the expanding gas cloud.
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We use the family of integrals K̃ (24). In the deviations y1 = γ1 − 3−1/2,
y2 = γ2 − 3−1/2, y3 = γ3 − 3−1/2, y4 = M2, y5 = M3 on the linear manifold
δV1 = 2(y1 + y2 + y3)/

√
3 = 0, the 2nd variation of K̃ in the neighborhood of

solution (25) can be written as:

δ2K̃ = λ0 [18a (y2
1 + y1y2 + y2

2) + y2
4 + y4y5 + y2

5 ] + 6
√

3aλ3 [y1 (y4 + 2y5)
+y2 (y5 − y4)]. (26)

The conditions for the quadratic form δ2K̃ to be positive definite in the form
of Sylvester’s inequalities are given by aλ0 > 0, a2λ2

0 > 0, a2λ0 (λ2
0−6aλ2

3) > 0,
a2(λ2

0 − 6aλ2
3)

2 > 0.
These inequalities are consistent under the following constraints on a, λ0, λ3:

a > 0, λ3 > 0, λ0 >
√

6
√

aλ3. (27)

Inequalities (27) are split up into 2 groups. The first (a > 0) is the sufficient
condition for the stability of solution (25), and the rest of the inequalities sepa-
rates some subfamily from the family of integrals K̃ (24), the elements of which
give us a possibility to derive this condition.

Let us show that the sufficient condition of stability is also necessary. To this
end, we use Lyapunov’s linear stability theorem [14].

In the case studied, the equations of first approximation, in the deviations
yi (i = 1, . . . , 5), are:

√
3 ẏ1 = y5 − y4,

√
3 ẏ2 = −(y4 + 2y5),

√
3 ẏ3 = 2y4 + y5,

ẏ4 = 6
√

3a (y1 − y3), ẏ5 = 6
√

3a (y2 − y1).

The characteristic equation λ (λ2 + 18a)2 = 0 of the above system has only
zero and pure imaginary roots when a > 0. On comparing the latter inequality
with (27), we conclude that the condition a > 0 is necessary and sufficient for
the stability of solution (25). For the rest of the stationary solutions, we have
obtained similar results.

Now, we investigate the stability of IM (16), which solution (25) belongs to.
For the equations of perturbed motion, in the deviations y1 = M2 + M3,

y2 = γ2 − γ3, on the linear manifold δV1 = 2γ3 y2 = 0, the 2nd variation of the
integral Ω = Ṽ 2

3 is:

δ2Ω = [3a (γ2
3 − γ2

1) + γ
2/3
1 γ

4/3
3 M2

3 ]2 γ
−10/3
1 γ

−2/3
3 y2

1 . (28)

On IM (16), the integral H̃ assumes the form:

H̄ = [M2
3 + 3a (γ2

1 + 2γ2
3)] (2γ−2/3

1 γ
−4/3
3 ) = h1. (29)

Eliminate M3 from (28) with (29):

4δ2Ω = (9aγ
4/3
1 − 2h1γ

4/3
3 )2 γ−2

1 γ
−2/3
3 y2

1 .
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Equate the numerator of the latter expression to zero and eliminate γ1 from the
resulting equation with the integral V1 = 1. As a result, we obtain the following
boundary value for γ2:

γ2 =
(2h1

9a
+ 1

)3/4

,

under which there exist the stable oscillations of the spheroidal body. As to the
gas ellipsoid, the latter relation allows one to determine the limit values for the
lengths of its principal axes under which the periodical changes of the cloud sizes
are stable.

When the stability of stationary solutions and IMs is studied on the base of
Lyapunov’s linear stability theorems and the 2nd Lyapunov method, we need
often to derive the sign-definiteness conditions for a quadratic form as well as the
characteristic equation for a system of linear differential equations with constant
coefficients. The computer program codes of these procedures are included in
the “Mathematica” software package [2]. This package has been developed to
do the qualitative analysis of conservative systems on the base of the approach
described in the this paper. It is applied as an auxiliary tool at different stages of
analysis of the systems. In the above calculations, for the given solution and the
given combination of the first integrals, the package has constructed the sign-
definiteness conditions for the quadratic form δ2K̃ (26) in the form of Sylvester’s
inequalities. The subsequent analysis of these inequalities was made by computer
algebra tools. In a similar manner, the package is used to investigate the stability
on the base of Lyapunov’s linear stability theorems.

3 The Integrable Case with the Additional 6th Degree
Integral

3.1 Formulation of the Problem

The equations of motion of the spheroidal body in a force field with the potential

2V = G [3a (γ1γ2γ3)−2/3 + 4c2 (γ2
1 + γ2

2) (γ2
1 − γ2

2)−2]

can be written as:

Ṁ1 = −G [a (γ2
2 − γ2

3) (γ2γ3)−5/3 γ
−2/3
1 + 4c2γ2γ3 (3γ2

1 + γ2
2) (γ2

1 − γ2
2)−3],

Ṁ2 = G [a (γ2
1 − γ2

3) (γ1γ3)−5/3 γ
−2/3
2 − 4c2γ1γ3 (γ2

1 + 3γ2
2) (γ2

1 − γ2
2)−3],

Ṁ3 = −G [a (γ2
1 − γ2

2) (γ1γ2)−5/3 γ
−2/3
3 − 16c2γ1γ2 (γ2

1 + γ2
2) (γ2

1 − γ2
2)−3],

γ̇1 = γ2M3 − γ3M2, γ̇2 = γ3M1 − γ1M3, γ̇3 = γ1M2 − γ2M1.

(30)

Here the variables Mi, γi (i = 1, 2, 3) are interpreted as in Sect. 2, G = γ2
1 + γ2

2 +
γ2
3 .

The first integrals of Eq. (30) are given by

2H = M2
1 + M2

2 + M2
3 + G [3a (γ1γ2γ3)−2/3 + 4c2(γ2

1 + γ2
2) (γ2

1 − γ2
2)−2] = 2h,

V1 = γ2
1 + γ2

2 + γ2
3 = 1, V2 = M1γ1 + M2γ2 + M3γ3 = 0,

V3 = (F3 + Fc)2 + 4Φ [Φ̄ γ2
1 γ−2

3 + 3a] [Φ̄ γ2
2 γ−2

3 + 3a
]

= c1,
(31)
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where

F3 = M1M2M3 − 3a (γ1γ2γ3)1/3 (M1γ
−1
1 + M2γ

−1
2 + M3γ

−1
3 ),

Fc = 4c2M3γ1γ2γ
2
3 (γ2

1 − γ2
2)−2,

Φ = 4c2γ2
3(γ1γ2γ3)2/3 (γ2

1 − γ2
2)−2, Φ̄ = M1M2 (γ1γ2γ3)2/3 γ−1

1 γ−1
2 + Φ − 3a.

Here V3 is the additional 6th degree integral with respect to M1,M2,M3. It has
been derived in [9]. This integral exists when the constant of the integral V2 is
equal to zero. Note that the potential energy V in this problem has a singularity
when γ1 = γ2.

Likewise as in Sect. 2, we shall consider the equations of motion of the body
on the manifold V2 = 0. On this manifold, differential equations (30) and first
integrals (31) take the form:

Ṁ1 = −G [a (γ2
2 − γ2

3) (γ2γ3)−5/3 γ
−2/3
1 + 4c2γ2γ3 (3γ2

1 + γ2
2) (γ2

1 − γ2
2)−3],

Ṁ2 = G [a (γ2
1 − γ2

3) (γ1γ3)−5/3 γ
−2/3
2 − 4c2γ1γ3 (γ2

1 + 3γ2
2) (γ2

1 − γ2
2)−3],

γ̇1 = −[M1γ1γ2 + M2 (γ2
2 + γ2

3)] γ−1
3 , γ̇2 = [M1 (γ2

1 + γ2
3) + M2γ1γ2] γ−1

3 ,
γ̇3 = γ1M2 − γ2M1.

(32)

2H̃ = M2
1 + M2

2 + (M1γ1 + M2γ2)2 γ−2
3 + G [3a (γ1γ2γ3)−2/3

+4c2(γ2
1 + γ2

2) (γ2
1 − γ2

2)−2] = 2h̃, V1 = γ2
1 + γ2

2 + γ2
3 = 1,

Ṽ3 = (F̃3 + F̃c)2 + 4Φ
[
Φ̄ γ2

1 γ−2
3 + 3a] [Φ̄ γ2

2 γ−2
3 + 3a] = c̃1, where

F̃3 = −M1M2 (M1γ1 + M2γ2) γ−1
3 − 3a (γ1γ2γ3)1/3 (M1γ

−1
1 + M2γ

−1
2

−(M1γ1 + M2γ2) γ−2
3 ), F̃c = −4c2(M1γ1 + M2γ2)γ1γ2 (γ2

1 − γ2
2)−2.

(33)

They have been derived from (30), (31) by eliminating the variable M3 from
them with the aid of V2 = 0.

In the present work, we restrict our consideration to the problem of finding
the stationary solutions for Eq. (32) and the investigation of their stability.

3.2 Finding Stationary Solutions

We apply the same technique as in Subsect. 2.3 to obtain the stationary solutions
of differential equations (32). For this purpose, these equations are written in
the variables M1 = M1, M2 = M2, x1 = γ1, x2 = γ

1/3
2 γ

−1/3
1 ,

x3 = γ
1/3
3 γ

−1/3
1 :

Ṁ1 = −Ḡ [a(x6
2 − 1)3(x6

2 − x6
3) − 4c2x8

2x
8
3 (x6

2 + 3)]x−5
2 x−5

3 (x6
2 − 1)−3,

Ṁ2 = Ḡ [(4c2x2
2x

8
3 (3x6

2 + 1) − a(x6
2 − 1)3(x6

3 − 1)]x−2
2 x−5

3 (x6
2 − 1)−3,

ẋ1 = −[M1x
3
2 + M2(x6

2 + x6
3)]x1x

−3
3 , 3ẋ2 = Ḡ [M1 + M2x

3
2]x

−2
2 x−3

3 ,
3ẋ3 = (x6

2 + x6
3 + 1) M2x

−2
3 ,

(34)

where Ḡ = x6
2 + x6

3 + 1.
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Next, we equate the right-hand sides of Eq. (34) to zero and consider the
following subsystem

a(x6
2 − 1)3(x6

2 − x6
3) − 4c2x8

2x
8
3 (x6

2 + 3) = 0,
(4c2x2

2x
8
3 (3x6

2 + 1) − a(x6
2 − 1)3(x6

3 − 1) = 0,
M1x

3
2 + M2(x6

2 + x6
3) = 0, M1 + M2x

3
2 = 0, M2 = 0 (35)

of the resulting system.
From the latter three equations (35), it follows that M1 = M2 = 0. For the

polynomials of the rest of the equations, we compute a Gröbner basis with respect
to the ordering x3 > x2. Taking into account the above values for M1,M2, we
have:

a3(x6
2 − 1)12 (x12

2 + 6x6
2 + 1) − 16384 c6x30

2 (x6
2 + 1)4 = 0,

16384a2c2x2
3 − 16384c6x22

2 (x6
2 + 1)3(31x6

2 + 32)(33x6
2 + 32) + a3x4

2(x
6
2 − 1)4

×(1023x54
2 − 1021x48

2 − 21488x42
2 + 86920x36

2 − 136858x30
2 + 71014x24

2

+72584x18
2 − 138224x12

2 + 88067x6
2 − 22529) = 0,

M1 = 0, M2 = 0. (36)

It is easy to verify by IM definition that Eq. (36) define the one-dimensional IM
of differential equations (34). The vector field on this IM is described by the
equation ẋ1 = 0. It has the following solution:

x1 = x0
1 = const. (37)

Equation (36) together with (37) and the condition

x2
1 (x6

2 + x6
3 + 1) = 1, (38)

which is the integral V1 in the variables x1, x2, x3, determine the set of fixed
points for system (34).

In the initial variables M1,M2, γ1, γ2, γ3, Eqs. (36) and (36)–(38) determine
the one-dimensional IM and the set of fixed points for system (32), respectively.
In the same way as in Sect. 2, these solutions can be “lifted up” into the phase
space of system (30).

From the physical viewpoint, in the original phase space, the solutions defined
by (36)–(38) correspond to the equilibria of the spheroidal body (the gas ellip-
soid). From equations (36)–(38) it follows that the number of the equilibria is no
more than 336 ∀ a �= 0, c �= 0. One can also see from these equations that they
can have one real positive solution only. Thus, in the problem of the expanding
gas cloud, there exists no more than one equilibrium position for each fixed pair
of values of the parameters a �= 0, c �= 0. The latter agrees with the result [4].
Further, we find the equilibria under some conditions imposed on the parameters
a and c.

System (34) is defined in the domain: x2
1 (x6

2 + x6
3 + 1) = 1, xi �= 0 (i =

1, 2, 3), x2 �= 1. We choose a value of x2 from this domain, e.g. x2 = 1/21/6,
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and then substitute it into the 1st equation of system (36). Whence, one can
obtain a = 192 (6/17)1/3c2. Under the above values of x2, a, from the rest of
Eqs. (36)–(38), we find x1, x3. So, for the given values of x2, a, system (36)–(38)
has the following solutions:

M1 = M2 = 0, x1 = (34/3)1/2 5−1, x2 = 2−1/6, x3 = ±21/3 (3/17)1/6,
M1 = M2 = 0, x1 = −(34/3)1/2 5−1, x2 = 2−1/6, x3 = ±21/3 (3/17)1/6.

In the initial variables, the above solutions are:

M1 = M2 = 0, γ1 = (34/3)1/2 5−1, γ2 = (17/3)1/2 5−1, γ3 = ±2
√

2 5−1,

M1 = M2 = 0, γ1 = −(34/3)1/2 5−1, γ2 = −(17/3)1/2 5−1,

γ3 = ±2
√

2 5−1. (39)

On substituting these solutions into differential equations (32) they are satisfied.
From the physical viewpoint, in the original phase space, solutions (39) cor-

respond to the equilibria of the spheroidal body. Only one of these solutions is
related to the problem of the expanding gas cloud:

M1 = M2 = M3 = 0, γ1 = (34/3)1/2 5−1, γ2 = (17/3)1/2 5−1, γ3 = 2
√

2 5−1.

It corresponds to the gas cloud of ellipsoidal shape. This ellipsoid is prolate along
its principal axis Ox.

As in Sect. 2, one can show that the family of integrals

K̃ = λ0H̃ − λ3Ṽ3 (40)

(and each integral of this family) assumes a stationary value on solutions (39).
The family of integrals K̃ (40) is used for the investigation of stability of the
given solutions.

3.3 On Stability of Stationary Solutions

In order to study the stability of stationary solutions (39), we apply the same
approach, methods and computing tools as in Sect. 2.

First, let us investigate the stability of one of solutions (39) which is related
to the problem of the expanding gas cloud:

M1 = M2 = 0, γ1 = (34/3)1/2 5−1, γ2 = (17/3)1/2 5−1, γ3 = 2
√

2 5−1. (41)

In the deviations y1 = M1, y2 = M2, y3 = γ1 − (34/3)1/2 5−1, y4 = γ2 −
(17/3)1/2 5−1, y5 = γ3 − 2

√
2 5−1, on the linear manifold δV1 = 2 [

√
51 (

√
2y3 +

y4) + 6
√

2y5]/15 = 0, the 2nd variation of the family of integrals K̃ in the
neighborhood of the solution under study is written as: δ2K̃ = Q1 + Q2, where

83521Q1 = 15000 c2 [204 (221λ0 − 161792 c4λ3) y2
4 +

√
102 (3961λ0

+7651328 c4λ3) y4y5 + (19822λ0 − 795295744 c4λ3) y2
5 ],

816Q2 = (986λ0 − 14450688 c4λ3) y2
1 + 2

√
2 (289λ0 + 10764288 c4λ3) y1y2

+(697λ0 − 17842176 c4λ3) y2
2 .
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The conditions for the family of the quadratic forms Q1, Q2 to be positive
definite are sufficient for the stability of solution (41). In the form of Sylvester’s
inequalities, they are:

221λ0 − 161792 c4λ3 > 0, 289λ2
0 − 22282240 c4λ0λ3 + 14495514624 c8λ2

3 > 0,

986λ0 − 14450688 c4λ3 > 0. (42)

Inequalities (42) are compatible under the following constraints on the parame-
ters λ0, λ3, c: 17λ0 > 16384 (40+

√
1546) c4λ3. The latter condition separates the

subfamily from the family of integrals K̃ (40), the elements of which enable us
to derive the sufficient conditions for the stability of solution (41). Comparison
of the above sufficient condition with the relation a = 192 (6/17)1/3c2 gives us
the following sufficient condition for the stability of solution (41): a > 0.

For solution (41), we have also derived the conditions of its stability on the
base of Lyapunov’s linear stability theorem. The resulting necessary stability
conditions coincide with the sufficient ones.

Similar results have been obtained for the rest of solutions (39).

4 Conclusion

In the given work, ordinary differential equations with irrational first integrals
were studied. These equations describe a series of dynamical systems, such as an
expansion of the gas ellipsoidal cloud in vacuum, the rotation of the spheroidal
body in a potential force field, the motion of a point mass on the spherical surface.
We analyzed the equations in the cases when they possess the additional first
integrals of 3rd and 6th degree in momenta. The purpose of the study was to find
the stationary solutions and IMs of the equations and to investigate their stabil-
ity. To solve these problems, computer algebra methods and tools were applied.
The first integrals in the problem are rather complicated irrational functions.
Computer algebra methods were used for transforming irrational equations to
polynomial ones and for finding their solutions.

In the problem of the expanding gas cloud, in addition to previously known
solutions, new IMs of codimension 2, 3 as well one-dimensional IM have been
obtained, and the physical interpretation for some of them has been done. It
was established that the previously known solutions belong to these IMs. It was
also shown that these solutions are stationary. For the stationary solutions and
IMs, the sufficient conditions of their stability on the base of the 2nd Lyapunov
method have been derived. The “Mathematica” software package developed by
the authors together with their colleagues was used to investigate the stability
of the found solutions. It should be noted that in the problem of the rotational
motion of the spheroidal body, there exists a greater number of stationary solu-
tions and IMs than in the above problem. Some of them have been found and
represented in the paper. The analysis of their stability has also been done.

The obtained results, their consistency with those known before, show that
the approach used as well the computing tools are rather efficient for the study
of the dynamical systems of the considered type.
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A Appendix

The coefficients of equation (11):

σ0 = x8
2x

8
3 (4x6

3 − (x6
2 − x6

3 − 1)2), σ2 = −2ax6
2

[
5 (x6

2 + 1)x18
3 − 2 (8x6

2

+5 (x6
2 + 1)2)x12

3 + (5 (x18
2 + 1) − 9x6

2 (x6
2 + 1))x6

3 + 2x6
2 (x6

2 − 1)2
]
,

σ4 = −36 a2x4
2 x4

3

[
((x6

2 + 1)2 + x6
2)x12

3 − 2(x18
2 + 6x6

2 (x6
2 + 1) + 1)x6

3

+(x24
2 − 2x6

2 (x12
2 + x6

2 + 1) + 1)
]
, σ6 = −54 a3x2

2 x2
3

[
(x18

2 + 7x6
2 (x6

2 + 1)

+1)x12
3 − 2 ((x12

2 + 1)2 + 14x12
2 + 7x6

2 (x12
2 + 1))x6

3 + (x6
2 − 1)2 (x6

2 + 1)3
]
,

σ8 = −27a4
[
((x6

2 + 1)2 + 4x6
2)x6

3 − (x6
2 + 1)3

]2
,

σ = −18a3x3
2x3

[
(x6

2 − 1) [(x6
2 + 1)2 + 4x6

2]
2 x30

3 − [3(x36
2 − 1) − 8x6

2(x
24
2 − 1)

−153x12
2 (x12

2 − 1)]x24
3 + 2 [x42

2 − 15x6
2(x

30
2 − 1) − 3x12

2 (x18
2 − 1)

+269x18
2 (x6

2 − 1) − 1]x18
3 + 2 [x48

2 − 2x6
2(x

36
2 − 1) − 82x12

2 (x24
2 − 1)

+102x18
2 (x12

2 − 1) − 1]x12
3 − (x6

2 + 1)4 [3(x30
2 − 1) − 23x6

2(x
18
2 − 1)

+86x12
2 (x6

2 − 1)]x6
3 + (x6

2 − 1)3 (x6
2 + 1)7

]
,

σ1 = x6
2x

10
3

[
[5 (x12

2 + 1) + 6x6
2]x

30
3 − 8 [2(x18

2 + 1) + x6
2(x

6
2 + 1)]x34

3

+2 [7(x24
2 + 1) − 16x6

2(x
12
2 + 1) − 30x12

2 ]x18
3 + 4 [(x30

2 + 1) + 12x6
2(x

18
2 + 1)

+3x12
2 (x6

2 + 1)]x12
3 − (x6

2 − 1)2 [11(x24
2 + 1) + 20x6

2(x
12
2 + 1) + 2x12

2 ]x6
3

+4(x6
2 − 1)4 (x18

2 + 1)
]
,

σ3 = ax4
2x

2
3

[
4 [17x6

2 (x6
2 + 1) + 11(x18

2 + 1)]x36
3 − [322x12

2 + 292x6
2 (x12

2 + 1)

+139(x24
2 + 1)]x30

3 − 4 [(277x12
2 (x6

2 + 1) + 16x6
2 (x18

2 + 1)− 29(x30
2 + 1))x24

3

+2 [72x18
2 + 281x12

2 (x12
2 + 1) + 300x6

2(x
24
2 + 1) + 23(x36

2 + 1)]x18
3

−4 [60x18
2 (x6

2 + 1) − 191x12
2 (x18

2 + 1) + 41x6
2 (x30

2 + 1) + 26 (x42
2 + 1)]x12

3

+(x6
2 − 1)2 [84x18

2 − 117x12
2 (x12

2 + 1) − 90x6
2 (x24

2 + 1) + 37 (x36
2 + 1)]x6

3

+6x6
2 (x6

2 − 1)4(x18
2 + 1)

]
,

σ5 = 3a2x2
2

[
(x6

2 + 1)2 [43(x12
2 + 1) + 42x6

2]x
36
3 − 2 [188x12

2 (x6
2 + 1)

+257x6
2 (x18

2 + 1) + 67(x30
2 + 1)]x30

3 − 2 [632x18
2 + 701x12

2 (x12
2 + 1)
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−4x6
2 (x24

2 + 1) − 53(x36
2 + 1)]x24

3 + 4 [272x18
2 (x6

2 + 1) + 119x12
2 (x18

2 + 1)
+203x6

2 (x30
2 + 1) + 14(x42

2 + 1)]x18
3 − [510x24

2 + 20x18
2 (x12

2 + 1)
−876x12

2 (x24
2 + 1) + 236x6

2(x
36
2 + 1) + 109(x48

2 + 1)]x12
3 + 2 (x6

2 − 1)2

×[81x18
2 (x6

2 + 1) − 9x12
2 (x18

2 + 1) − 59x6
2 (x30

2 + 1) + 19(x42
2 + 1)]x6

3

−4x6
2 (x12

2 − 1)4
]
,

σ7 = 9a3x4
3

[
2 ((x6

2 + 1)2 + 4x6
2) [7 (x12

2 + 1) + 6x6
2(x

12
2 + 2)]x30

3 − [37 (x36
2 + 1)

+x24
2 (208x6

2 + 161) + x12
2 (16x6

2 − 145) + 6(32x6
2 + 1)]x24

3 + 4 [7 (x42
2 + 1)

+x6
2(x

30
2 − 14) − 2x24

2 (22x6
2 + 141) − x12

2 (13x6
2 + 47) +1]x18

3 + 2 [9(x48
2 + 1)

+2x36
2 (62x6

2 + 83)+ 4x24
2 (128x6

2 − 95) + 2x12
2 (358x6

2 + 1)+ 2(60x6
2 + 1)]x12

3

−2 (x62 + 1) [16 (x482 + 1) + 9x362 (4x62 + 1) + x242 (x182 + 11) − 499x242 (x62 − 2)

−x62(8x
12
2 − 23) − 35x122 (11x62 − 1) + 3]x63 + (x62 − 1)2 (x62 + 1)4 [11 (x242 + 1)

−2x62 (23x122 + 21) + 2 (40x122 + 1)]
]
.
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