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Abstract. The dynamics of the rotational motion of a satellite, sub-
jected to the action of gravitational, aerodynamic and damping torques
in a circular orbit is investigated. Our approach combines methods of
symbolic study of the nonlinear algebraic system that determines equi-
librium orientations of a satellite under the action of the external torques
and numerical integration of the system of linear ordinary differential
equations describing the dynamics of the satellite. An algorithm for the
construction of a Gröbner basis was implemented for determining the
equilibria of the satellite for specified values of the aerodynamic torque,
damping coefficients, and principal central moments of inertia. Both the
conditions of the satellite’s equilibria existence and the conditions of
asymptotic stability of these equilibria were obtained. The transition
decay processes of the spatial oscillations of the satellite for various sys-
tem parameters have also been studied.

1 Introduction

The study of the satellite dynamics under the influence of gravitational and aero-
dynamic torques is an important topic for practical implementation of attitude
control systems of the artificial satellites. The gravity orientation systems are
based on the result that a satellite with unequal moments of inertia in the cen-
tral Newtonian force field in a circular orbit has stable equilibrium orientations
[1–3]. An important property of the gravity orientation systems is that these
systems can operate for a long time without fuel consumption. However, at alti-
tudes from 250 up to 500 km, the rotational motion of a satellite is subjected to
aerodynamic torque too. Therefore, it is necessary to study the joint action of
gravitational and aerodynamic torques and, in particular, to analyze the possi-
ble satellite equilibria and conditions of stability of these equilibria in a circular
orbit. The dynamics of a satellite subjected to gravitational and aerodynamic
torques was considered in many papers indicated in [2]. The problem of deter-
mining the classes of equilibrium orientations for general values of aerodynamic
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torque was considered in [4–6]. In [7,8], some equilibrium orientations were found
in special cases, when the center of pressure is located on a satellite’s principal
central axis of inertia and on a satellite’s principal central plane of inertia. In
[9], all equilibrium orientations were found in the case of axisymmetric satellite.
In [10], all cases when the center of pressure is located in the satellite’s principal
central plane of inertia were considered using Computer Algebra methods. The
basic problems of the satellite dynamics with an aerodynamic attitude control
system have been presented in [2,6,11]. In [11], necessary and sufficient condi-
tions for the stability of the aligned equilibrium position of the satellite with the
aerodynamic orientation system using the damping moments of the gyroscopes
were obtained.

In this paper, we consider a new problem, when the satellite is subjected
to aerodynamic, gravitational, and active damping torques. The dynamics of
the gravitationally-oriented satellite under the action of the damping torque,
without taking into account the influence of the atmosphere on the motion of
the satellite, was studied in detail in [12]. The main extension here, in comparison
with [12], is the consideration of the additional influence of the atmosphere on
the dynamics of the satellite under the action of the damping torque. Adding the
action of the aerodynamic moment to the satellite leads to the appearance of new
parameters in the equations of motion, which complicates their solution, but at
the same time, it allows us to obtain new equilibrium solutions. In particular, the
appearance of an additional aerodynamic parameter in the algebraic equations
determining the stationary motions of the satellite seriously affects the runtime
and memory requirements of symbolic computations for solving these equations.

We assume that the center of pressure of aerodynamic forces is located on
one of the principal central axes of inertia of the satellite and the damping
torque depends on the projections of the angular velocity of the satellite. This
damping torque may be provided by using the angular velocity sensors. The
action of damping torques can ensure the asymptotic stability of the equilibria
of the satellite with aerodynamic attitude control system. The investigation of
satellite equilibria was performed by using the Computer Algebra Gröbner basis
methods. The regions with an equal number of equilibria were specified by using
the Meiman theorem [19] for the construction of discriminant hypersurfaces. The
conditions of equilibria stability are determined as a result of an analysis of the
linearized equations of motion using the Routh–Hurwitz criterion [20]. The types
of transition decay processes of spatial oscillations of the satellite at different
aerodynamic and damping parameters have been investigated numerically.

The question of finding regions of parameter space with certain equilibria
properties also occurred in relevance to a biology problem and was presented at
the CASC 2017 Workshop [21].

2 Equations of Motion

Consider the attitude motion of the satellite subjected to gravitational, aerody-
namic, and damping torques in a circular orbit. We assume that the satellite is
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a triaxial rigid body, and active damping torques depend on the projections of
the angular velocity of the satellite.

To write the equations of motion we introduce two right-handed Cartesian
coordinate systems with origin at the satellite’s center of mass O. The orbital
coordinate system is OXY Z, where the OZ axis is directed along the radius
vector from the Earth center of mass to the satellite center of mass; the OX axis
is in the direction of the satellite orbital motion. Then, the OY axis is directed
along the normal to the orbital plane. The satellite body coordinate system is
Oxyz, where Ox, Oy, and Oz are the principal central axes of inertia of the
satellite. The orientation of the satellite body coordinate system Oxyz with
respect to the orbital coordinate system is determined by means of the aircraft
angles of pitch (α), yaw (β), and roll (γ) (Fig. 1), and the direction cosines in
the transformation matrix between the orbital coordinate system OXY Z and
Oxyz are expressed in terms of aircraft angles using the relations [2]:

a11 = cos(x,X) = cos α cos β,

a12 = cos(y,X) = sinα sin γ − cos α sinβ cos γ,

a13 = cos(z,X) = sin α cos γ + cos α sinβ sin γ,

a21 = cos(x, Y ) = sinβ,

a22 = cos(y, Y ) = cos β cos γ, (1)
a23 = cos(z, Y ) = − cos β sin γ,

a31 = cos(x,Z) = − sin α cos β,

a32 = cos(y, Z) = cos α sin γ + sin α sinβ cos γ,

a33 = cos(z, Z) = cos α cos γ − sin α sinβ sin γ.

For small oscillations of the satellite, the angles of pitch, yaw, and roll correspond
to the rotations around the OY , OZ, and OX axes, respectively.

In the derivation of the equations of motion, we will make the following
assumptions [2]:

(1) the atmospheric effect on the satellite is reduced to the drag force applied
at the center of pressure and directed against the velocity of the satellite
center of mass relative to the air; the pressure center is located on the axis
Ox of the satellite. This assumption is fulfilled accurately enough for the
shape of the satellite close to the spherical;

(2) the atmospheric effect on the translational motion of the satellite is negligi-
ble;

(1) the atmospheric drag by the rotating Earth is neglected.

These assumptions make it possible to simplify the mathematical model of
the effect of the atmosphere on the rotational motion of the satellite and neglect
its influence on the parameters of the circular orbit.

Let the damping torque, in addition to the aerodynamic torque, act on the
satellite. Their integral vector projections on the axis Ox, Oy, and Oz are equal
to the following values: Mx = k̄1p1, My = k̄2q1, and Mz = k̄3r1. Here k̄1, k̄2, and
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k̄3 are the damping coefficients; p1, q1, and r1 are the projections of the satellite
angular velocity vector onto the axes Ox, Oy, and Oz; ω0 is the angular velocity
of the orbital motion of the satellite’s center of mass. Then the equations of
satellite attitude motion can be written in the Euler form:

Ap′
1 + (C − B)q1r1 − 3ω2

0(C − B)a32a33 + k̄1p1 = 0,

Bq′
1 + (A − C)r1p1 − 3ω2

0(A − C)a31a33 + ω2
0H1a13 + k̄2q1 = 0,

Cr′
1 + (B − A)p1q1 − 3ω2

0(B − A)a31a32 − ω2
0H1a12 + k̄3r1 = 0, (2)

where

p1 = (α′ + ω0)a21 + γ′,
q1 = (α′ + ω0)a22 + β′ sin γ, (3)
r1 = (α′ + ω0)a23 + β′ cos γ.

Moreover, here A, B, and C are the principal central moments of inertia of the
satellite. And H1 = −Qa/ω2

0 , Q is the drag force acting on the satellite, and
(a, 0, 0) are the coordinates of the satellite center of pressure in the reference
frame Oxyz. For the aerodynamically stable construction of the satellite, the
center of pressure lies behind its center of gravity and, therefore, a < 0. The
prime denotes the differentiation with respect to time t.

Over the systems (2) and (3) applying the change of variables (p, q, r) =
(p1/ω0, q1/ω0, r1/ω0) and after this introducing dimensionless parameters θA =
A/B, θC = C/B, k̃1 = k̄1/Bω0, k̃2 = k̄2/Bω0, k̃3 = k̄3/Bω0, h1 = H1/B, and
τ = ω0t, we can rewrite (2) and (3), and finally put respectively (because it is
transforming (2) and (3))

θAṗ + (θC − 1)qr − 3(θC − 1)a32a33 + k̃1p = 0,

q̇ + (θA − θC)rp − 3(θA − θC)a31a33 + h1a13 + k̃2q = 0, (4)
θC ṙ + (1 − θA)pq − 3(1 − θA)a31a32 − h1a12 + k̃3r = 0,

where

p = (α̇ + 1)a21 + γ̇,

q = (α̇ + 1)a22 + β̇ sin γ, (5)
r = (α̇ + 1)a23 + β̇ cos γ.

The dot denotes the differentiation with respect to τ .

3 Equilibrium Orientations of Satellite

Assuming the initial condition (α, β, γ) = (α0 = const, β0 = const, γ0 = const)
and also A �= B �= C (θA �= θC �= 1), we obtain from (4) and (5) the equations
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a22a23 − 3a32a33 + ka21 = 0,

(1 − ν)(a21a23 − 3a31a33) + h(a21a32 − a22a31) + ka22 = 0, (6)
ν(a21a22 − 3a31a32) − h(a23a31 − a21a33) + ka23 = 0,

which allow us to determine the satellite equilibria in the orbital coordinate
system. Here we consider the special case when k̃1/(θC − 1) = k̃2/(1 − θC) =
k̃3/(1 − θC) = k. This reduction in the number of parameters makes it possible
to simplify the system of equations and solve the problem. In (6), h = h1/(1−θC)
and ν = (1 − θA)/(1 − θC).

Substituting the expressions for the direction cosines from (1) in terms of the
aircraft angles into Eq. (6), we obtain three equations with three unknowns α,
β, and γ. Another way of closing Eq. (6) is to add the following three conditions
for the orthogonality of direction cosines:

a2
21 + a2

22 + a2
23 − 1 = 0,

a2
31 + a2

32 + a2
33 − 1 = 0, (7)

a21a31 + a22a32 + a23a33 = 0.

Equations (6) and (7) form a closed system of equations with respect to the
six direction cosines identifying the satellite equilibrium orientations. For this
system of equations, we formulate the following problem: for given values of
h, k, and ν, it is required to determine all the nine directional cosines, i.e., all
satellite equilibrium orientations in the orbital coordinate system. After a21, a22,
a23, a31, a32, and a33 are found, the direction cosines a11, a12, and a13 can be
determined from the conditions of orthogonality.

To find solutions of the algebraic system (6), (7) we used the algorithm
for constructing the Gröbner bases [13]. The method for constructing a Gröbner
basis is an algorithmic procedure for complete reduction of the problem involving
systems of polynomials in many variables to consideration of a polynomial in one
variable.

In our study, for Gröbner bases construction, we applied the command
Groebner[Basis] from the package Groebner implemented in the computer
algebra system Maple 15 [14]. We constructed the Gröbner basis of the system of
six second-order polynomials (6), (7) with six variables aij (i = 2, 3; j = 1, 2, 3),
with respect to the lexicographic ordering of variables by using option plex. In
the list of polynomials F:=[fi, i = 1, 2, 3, 4, 5, 6], fi are the left–hand sides of the
algebraic equations (6), (7). Thus, the Maple command used was as follows:

G:=map(factor,Groebner[Basis](F,plex(a31,a32,a33,a21,a22,a23)));

Here, calculating the Gröbner basis over the field of rational functions in h,
k, and ν we compute the generic solutions of our problem only. In our task from
the area of the satellite dynamics with aerodynamic attitude control system, the
main goal of the study is to estimate a range of system parameters for which the
satellite’s equilibria exist.

It should be taking into account that in practice, it is difficult to ensure a
constant value of the aerodynamic moment on the orbit and there are errors
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of the angular velocity sensors and the errors of the signals, which generate
damping torques, the exact bifurcation values of the coefficients are very difficult
to obtain. We are interested in estimating the size of regions in the space of
system parameters where equilibria exist. In the case of parametric dynamical
system solving, when the parameters reach non-generic solutions, the symbolic
application based on comprehensive Gröbner bases [15], discriminant varieties
[16], and comprehensive triangular decomposition [17,18] methods are used. In
our task, we did not use these methods because we did not consider the cases
of bifurcation values of the parameters, and for our problem, these methods are
rather complicated.

Here we write down the polynomial in the Gröbner basis that depends only
on one variable x = a23. This polynomial has the form

P (x) = P1(x)P2(x) = 0, (8)

where

P1(x) = x(x2 − 1),
P2(x) = p0x

4 + p1x
2 + p2 = 0,

p0 =
(
16(k2 + (1 − ν)2)(k2 + ν2)h4

− 24(k2 + ν(1 − ν))
(
k2 − 2ν(1 − ν)

)2
h2

+ 9(k2 − 2ν(1 − ν))4
)2

,

p1 = −h2
(
64(k2 + 4ν2)(k2 + (1 − ν)2)2h8

+ 16
(
(2 + 8ν)k8 + (72ν3 − 50ν2 + 8ν + 7)k6

− 4(1 − ν)(48ν4 − 58ν3 + 20ν2 − 8ν + 1)k4

+ 4ν(1 − ν)2(32ν4 − 104ν3 + 100ν2 − 25ν + 6)k2

+ 192ν3((1 − ν)5
)
h6 + 12(k2 − 2ν(1 − ν))2

(
(40ν − 21)k6

+ 4(32ν3 − 28ν2 + 5ν + 6)k4

+ 4(1 − ν)(56ν4 − 78ν3 + 24ν2 + 13ν + 3)k2

+ 288ν2(1 − ν)4
)
h4

− 36(k2 − 2ν(1 − ν)4
(
2(8ν − 5)k4 + (16ν3 − 24ν + 17)

+ 48ν(1 − ν)3
)
h2 + 27

(
k2 − 2ν(1 − ν)

)6((8ν − 5)k2

+ 12(1 − ν)2)
)
,

p2 = p21p22,

p21 = −h4k2(k2 + 4ν2 − 6ν)2

p22 = 4(k2 + 4ν2)h6 − 4(4k4 + (14ν2 − 2ν + 1)k2

+ 4ν2(1 + 4ν − 5ν2)h4

+ 3
(
k2 − 2ν(1 − ν)

)2(7k2 + 8ν + 4ν2)h2 − 9
(
k2 − 2ν(1 − ν)

)4
.

The left-hand side of (8) becomes zero under the conditions P1(x) = 0, P2(x) = 0.
Whence follows that in order to determine the equilibria it is required to consider
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separately the three cases: the first a2
23 = 1, the second a23 = 0, and the third

P2(a23) = 0. It should also be taken into account that equilibrium solutions are
determined only by such real roots (8) whose absolute values should be less than
or equal to 1.

In the first case, when a23 = ±1, (a21 = a22 = 0), system (6), (7) takes the
form

− 3νa31a32 − ha31a23 + ka23 = 0,

a2
31 + a2

32 = 1,

a2
23 = 1, (9)

a33 = a21 = a22 = 0.

The first two equations of system (9) can be written in a simpler form

P3(a32) = 9ν2a4
32 ± 6νha3

32 + (h2 − 9ν2)a2
32 ∓ 6νha32 + k2 − h2 = 0, (10)

a31 = ± k

(3νa32 ± h)
.

Having solved system (10), one can determine all six direction cosines of system
(9). The number of real roots of equations (10) does not exceed 8. It is possible
to show that each real root a32 of equations (10) corresponds to one equilibrium
solution of the original system (6), (7).

In studying the satellite equilibrium orientations in the first case, we deter-
mine the conditions for the existence of real roots of equations (10). To identify
these conditions, we use the Meiman theorem [19], which yields that the decom-
position of the space of parameters into domains with equal number of real roots
is determined by the discriminant hypersurface.

In our case, the discriminant hypersurface is given by the discriminant of
polynomial P3(a32). This hypersurface contains a component of codimension 1,
which is the boundary of domains with equal number of real roots. The set of
singular points of the discriminant hypersurface in the space of parameters k, h,
and ν is given by the following system of algebraic equations:

P3(y) = 0, P ′
3(y) = 0. (11)

Here y = a32, and the prime denotes the differentiation with respect to y.
We eliminate the variable y from system (11) by calculating the determi-

nant of the resultant matrix of Eq. (11) and obtain an algebraic equation of the
discriminant hypersurface as

P4(k, h, ν) = h6−(k2+27ν2)h4+9ν2(20k2+27ν2)h2−9ν2(4k2−9ν2)2 = 0. (12)

Now we should check the change in the number of equilibria when the surface
(12) is intersected. This can be done numerically by determining the number of
equilibria at a point of each domain P4(k, h, ν) = 0 in the space of parameters
k, h, and ν.
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Figure 2 presents an example of the properties and form of the discriminant
hypersurface P4(k, h, ν) = 0, which are two-dimensional cross sections of the
surface in the plane (k, h) at the fixed value of parameter ν = 0.5. Figure 2
shows the distributions of domains with equal number of real roots of Eq. (10)
and indicates the domains where four and two real solutions exist as well as the
domains where no real solutions exist (marked by 0).

In the second case, when a23 = 0, system (6), (7) takes the form

ka21 − 3a32a33 = 0,

ka22 − 3(1 − ν)a31a33 + h(a21a32 − a22a31) = 0,
ν(a21a22 − 3a31a32) + ha21a33 = 0, (13)

a2
21 + a2

22 = 1, a21a31 + a22a32 = 0,

a2
31 + a2

32 + a2
33 − 1 = 0.

From (13) we can obtain the following solutions:

a21 = a23 = a32 = 0, a2
22 = 1,

P5(a33) = 9(1 − ν)2a4
33 ± 6(1 − ν)ha3

33

+(h2 − 9(1 − ν)2)a2
33 ∓ 6(1 − ν)ha33 + k2 − h2 = 0, (14)

a31 = ± k

3(1 − ν)a33 ± h
.

Note that if in the expressions for the coefficients P5 from (14) the term (1 − ν)
is replaced by ν, we obtain the form of the coefficients of the polynomial P3 from
(10). Therefore, the conditions for the existence of real roots of Eq. (14) will be
determined by the discriminant (12), in which the term ν is replaced by (1− ν).
For example, for the value ν = 0.5, the conditions for the existence of real roots
of Eqs. (10) and (14) will be the same (see Fig. 2).

Now let us consider the third case for which the satellite equilibria are deter-
mined by the real roots of the biquadratic equation P2(a23) = 0 from (8). The
number of real roots of the biquadratic equation P2(a23) = 0 is even and not
greater than 4. For each solution, one can find from the second polynomial from
the constructed Gröbner basis two values of a22 and, then, their respective val-
ues a21. For each set of values a21, a22, and a23, one can unambiguously define
from original system (6), (7) the respective values of the direction cosines a31,
a32, and a33. Thus, each real root of the biquadratic Eq. (6) is matched with two
sets of values aij (two equilibrium orientations). Since the number of real roots
of biquadratic Eq. (6) does not exceed 4, the satellite at the third case can have
no more than 8 equilibrium orientations.

Real solutions of the biquadratic equation from (8) exist in the case when
the discriminant

D(k, h, ν) = p21 − 4p0p2 (15)

is non-negative. Using symbolic computations, it is possible to factorize the
discriminant (15) in rather simple form

D(k, h, ν) = h4D1(k, h, ν)
(
D2(k, h, ν)

)2
, (16)
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where

D1(k, h, ν) = 4h4 + 4
(
k4 − (1 + 4ν(1 − ν))k2 − 6ν(1 − ν)]h2

− (4k2 − 9)[k2 − 2ν(1 − ν)
)2

,

D2(k, h, ν) = 27
(
k2 − 4(1 − ν)2

)(
k2 − 2ν(1 − ν)

)5

− 32
(
(k2 + (1 − ν)2

)2(k2 + 4ν2)h6

+ 24
(
4k8 + (22ν2 − 12ν − 1)k6

+ 2(1 − ν)2(1 + 4ν + ν2)k4

− 4ν(1 − ν)2(6ν − 21ν2 + 19ν3 − 1)k2

+ 48ν3(1 − ν)5
)
h4

− 18
(
k2 − 2ν(1 − ν)

)3(5k4 + 2(ν2 + 7ν − 5)k2

− 24ν(1 − ν)3
)
h2.

For the existence of real roots of biquadratic equation from (8), it is nec-
essary to satisfy the inequality D(k, h, ν) ≥ 0 (D1(k, h, ν) ≥ 0). In case of
the D1(k, h, ν) > 0 (D2(k, h, ν) �= 0) and 0 ≤ a2

23 ≤ 1 inequalities fulfill-
ment, biquadratic Eq. (8) has four real roots a23. The boundary of the regions
of the necessary conditions for the existence of these solutions is the curve
D1(k, h, ν) = 0.

The regions of the necessary conditions for the existence of the real solutions
of biquadratic Eq. (8) on the plane (k, h) are presented in Figs. 3 and 4 for ν = 0.2
and ν = 0.5. For the values ν and (1 − ν) these regions coincide.

Thus, from Eq. (8), we can obtain all possible values of the direction cosine
a23 and corresponding values a21, a22, a31, a32, and a33 satisfying the initial
system (6), (7). Once the set of six values a21, a22, a23, a31, a32, and a33 is
found, the remaining three values a11, a12, and a13 can be uniquely determined
from the conditions of the orthogonality of the directional cosines. So we can
determine all the equilibrium orientations of the satellite under the influence of
aerodynamic, gravitational, and damping torques.

4 Necessary and Sufficient Conditions of Asymptotic
Stability Of the Equilibrium Orientations of Satellite

In order to study the necessary and sufficient conditions of asymptotic stability
of the equilibrium orientations of System (6) and (7), let us linearize the system
of differential Eqs. (4) and (5) in the vicinity of the specific equilibrium solution,
from the case 2 (a2

22 = 1, a21 = a23 = 0):

α = α0, β0 = γ0 = 0. (17)
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Fig. 1. Orientation of body–fixed axes with respect to the orbital coordinate system

Fig. 2. The regions with the fixed number of equilibria for ν = 0.5 for the cases 1, 2



224 S. A. Gutnik and V. A. Sarychev

Fig. 3. The regions where the necessary conditions for the existence of equilibria are
satisfied for ν = 0.2 in case 3

Fig. 4. The regions where the necessary conditions for the existence of equilibria are
satisfied for ν = 0.5 in case 3
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Fig. 5. The transitional process of damping oscillations for k = 1.0; h = 5.0

Here α0 = arccos(a33), where a33 is a real root of algebraic Eq. (14). We
represent α, β, and γ in the form α = α0 + ᾱ, β = β0 + β̄, γ = γ0 + γ̄, where ᾱ, β̄
and γ̄ are small deviations from the equilibrium orientation (17) of the satellite.
The linearized system of equations of motion takes the following form:

¨̄α + (1 − θC)k ˙̄α +
(
(1 − θC)h cos α0 + 3(θA − θC) cos 2α0

)
ᾱ = 0,

θC
¨̄β + (1 − θC)k ˙̄β − (θA + θC − 1) ˙̄γ +

(
(1 − θC)h cos α0

+ (1 − θA)(1 + 3sin2α0)
)
β̄ +

(
1.5(1 − θA) sin 2α0

− (1 − θC)((1 − θA)k + h sin α0)
)
γ̄ = 0, (18)

θA ¨̄γ − (1 − θC)k ˙̄γ + (θA + θC − 1) ˙̄β + (1 − θC)(1 + 3cos2α0)γ̄
+ (1 − θC)(1.5 sin 2α0 − k)β̄ = 0.
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Fig. 6. The transitional process of damping oscillations for k = 1.0; h = 25.0

The characteristic equation of system (18)

(λ2 + A01λ + A02)(A0λ
4 + A1λ

3 + A2λ
2 + A3λ + A4) = 0 (19)

decomposes into quadratic and 4th degree equations. Here the following nota-
tions are introduced:

A01 = (1 − θC)k, A02 = (1 − θC)h cos α0 + 3(θA − θC) cos 2α0,

A0 = θAθC , A1 = (1 − θC)(θA − θC)k,

A2 = (θA + θC − 1)2 − (1 − θC)2k2 + (1 − θC)(θAh + θC(1 + 3cos2α0))
+ θA(1 − θA(1 + 3sin2α0),

A3 = k(1 − θC)
(
(1 − θC)(1 + 3cos2α0 − hcosα0) − (1 − θA)(1 + 3sin2α0)

)
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+ (θA + θC − 1)
(
(1 − θC)(hsinα0 + 1.5sin2α0) − 1.5(1 − θA)sin2α0],

A4 = (1 − θC)(1 + 3cos2α0)
(
(1 − θC)hcosα0 + (1 − θA)(1 + 3sin2α0)

)

+ (θA + θC − 1)
(
(1 − θC)(k + hsinα0 − 1.5(1 − θA)sin2α0

)
.

The necessary and sufficient conditions for asymptotic stability (Routh–
Hurwitz criterion) of the equilibrium solution (17) take the following form:

(1 − θC)k > 0, (1 − θC)h cos α0 + 3(θA − θC) cos 2α0 > 0,

Δ1 = A1 > 0,

Δ2 = A1A2 − A0A3 > 0, (20)
Δ3 = A1A2A3 − A0A

2
3 − A2

1A4 > 0,

Δ4 = Δ3A4 > 0.

The detailed analysis of the fulfillment of inequalities (20), under which necessary
and sufficient conditions for stability are satisfied was performed numerically for
fixed values of the parameters θA, θC , k, and h. One should take into account
also the following triangle inequalities for the real bodies, which parameters (θA
and θC) should fulfill: θA + θC > 1, θC + 1 > θA, θA + 1 > θC . The triangle
conditions isolate the infinite half-band in the (θA, θC) plane.

The numerical integration of system (4) and (5) was carried out for the fixed
values of the parameters θA, θC , k, and h where the conditions of asymptotic
stability (20) and the triangle inequalities hold. The different types of transition
decay processes of spatial oscillations of the satellite at different inertial, aero-
dynamic, and damping parameters are presented in Figs. 5 and 6. The initial
values of variables in the calculations were taken to be equal to 0.001.

Figure 5 shows that for rather small values of the damping coefficient and
for small values of the aerodynamic torque (k = 1, h = 5; θA = 0.7, θC = 0.4),
the system reaches the equilibrium solution (18) for α angle, when the τ value
exceeds 15, and for β and γ angles, when the τ values are equal to about 10.
Here equilibrium value α0 = arccos(a33) = −0.155 and a33 = 0.988 is the real
root of algebraic Eq. (14).

When the value of the aerodynamic torque h increases the satellite oscillation
frequency increases in angles α and β and the time of the transient process for
h = 25, k = 1.0, (θA = 0.7, θC = 0.4) (Fig. 6) is close to 15 for α angle and less
than 10 for β and γ angles. In Fig. 6, α0 = −0.0377. The value of the α angle
approaches zero when the aerodynamic moment significantly increases.

In the case of the satellite with an aerogyroscopic stabilization system, when
studying the dynamics of this system in [11] it was also shown that the satel-
lite oscillation frequency increased in angles α and β when the magnitude of
aerodynamic moment increased.

When the value of the damping coefficient increases, the time of the transient
process of the system to the equilibrium solution decreases, for example when
k = 1.5, h = 25 (θA = 0.7, θC = 0.4), the time of the transient process is less
than 10 for all three angles. For k = 2.0, h = 25 (θA = 0.7, θC = 0.4), the
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transition time becomes less than 7 also for all three angles, which corresponds
to one satellite turnover in the orbit.

5 Conclusion

In this paper, we present the study of the dynamics of the rotational motion
of the satellite subject to the gravitational, aerodynamic, and active damping
torques, which depend on the projections of satellite angular velocity.

The computer algebra method (based on the construction of Gröbner basis)
of determining all equilibrium orientations of the satellite in the orbital coordi-
nate system with given values of aerodynamic torque, damping coefficients and
principal central moments of inertia was presented. The conditions for existence
of these equilibria were obtained. We have made a detailed analysis of the evo-
lution of domains of existence of equilibrium orientations in the plane of system
parameters h and k for the fixed values of parameter ν.

For the special equilibrium orientation, when two axes of the satellite-center-
ed coordinate system coincide with two axes of the orbital coordinate system,
the necessary and sufficient conditions for asymptotic stability are obtained.

The numerical study of the character of transient processes of system, enter-
ing the special equilibrium orientation, has been carried out for various values of
aerodynamic and damping parameters. It has been shown that there is a wide
range of values of aerodynamic and damping parameters from which, choosing
the required values of parameters, one can provide the asymptotic stability of the
equilibrium orientation. The obtained results can be used to design aerodynamic
attitude control systems for the artificial Earth satellites.
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