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Abstract. In 2010, Shpilka and Volkovich established a prominent
result on the equivalence of polynomial factorization and identity test-
ing. It follows from their result that a multilinear polynomial over the
finite field of order 2 can be factored in time cubic in the size of the
polynomial given as a string. Later, we have rediscovered this result and
provided a simple factorization algorithm based on computations over
derivatives of multilinear polynomials. The algorithm has been applied
to solve problems of compact representation of various combinatorial
structures, including Boolean functions and relational data tables. In
this paper, we describe an improvement of this factorization algorithm
and report on preliminary experimental analysis.

1 Introduction

Polynomial factorization is a classic algorithmic problem in algebra [14], whose
importance stems from numerous applications. The computer era has stimulated
interest to polynomial factorization over finite fields. For a long period of time,
Theorem 1.4 in [8] (see also [12, Theorem 1.6]) has been the main source of infor-
mation on the complexity of this problem: a (densely represented) polynomial
Fpr (x1, . . . , xm) of the total degree n > 1 over all its variables can be factored
in time that is polynomial in nm, r, and p. In addition, practical probabilistic
factorization algorithms have been known.

In 2010, Shpilka and Volkovich [13] established a connection between poly-
nomial factorization and polynomial identity testing. The result has been formu-
lated in terms of the arithmetic circuit representation of polynomials. It follows
from these results that a multilinear polynomial over F2 (the finite field of the
order 2) can be factored in the time that is cubic in the size of the polynomial
given as a symbol sequence.

Multilinear polynomials over F2 are well known in the scope of mathemati-
cal logic (as Zhegalkine polynomials [15] or Algebraic Normal Form) and in cir-
cuit synthesis (Canonical Reed-Muller Form [10]). Factorization of multilinear
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polynomials is a particular case of decomposition (so-called conjunctive or AND-
decomposition) of logic formulas and Boolean functions. By the idempotence law
in the algebra of logic, multilinearity (all variables occur in degree 1) is a natural
property of these polynomials, which makes the factors have disjoint sets of vari-
ables F (X,Y ) = F1(X)F2(Y ), X ∩ Y = ∅. In practice, this property allows for
obtaining a factorization algorithm by variable partitioning (see below).

Among other application domains, such as game and graph theory, the most
attention has been given to decomposition of Boolean functions in logic circuit
synthesis, which is related to the algorithmic complexity and practical issues of
electronic circuits implementation, their size, time delay, and power consumption
(see [9,11], for example). One may note the renewed interest in this topic, which
is due to the novel technological achievements in circuit design.

The logic interpretation of multilinear polynomials over F2 admits another
notion of factorization, which is commonly called Boolean factorization (find-
ing Boolean divisors). For example, there are Boolean polynomials, which
have decomposition components sharing some common variables. Their prod-
uct/conjunction does not produce original polynomials in the algebraic sense but
it gives the same functions/formulas in the logic sense. In general, logic-based
approaches to decomposition are more powerful than algebraic ones: a Boolean
function can be decomposable logically, but not algebraically [9, Chap. 4].

In 2013, the authors have rediscovered the result of Shpilka and Volkovich
under simpler settings and in a simpler way [5,7]. A straightforward treatment
of sparsely represented multilinear polynomials over F2 gave the same worst-case
cubic complexity of the factorization algorithm. Namely, the authors provided
two factorization algorithms based, respectively, on computing the greatest com-
mon divisor (GCD) and formal derivatives (FD) for polynomials obtained from
the input one.

The algorithms have been used to obtain a solution to the following problems
of compact representation of different combinatorial structures (below we provide
examples, which intuitively explain their relation to the factorization problem).

– Conjunctive disjoint decomposition of monotone Boolean functions given in
positive DNF [5,7]. For example, the following DNF

ϕ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v) ∨ (x ∧ u ∧ v) (1)

is equivalent to

ψ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v), (2)

since the last term in ϕ is redundant, and we have

ψ ≡ (x ∨ y) ∧ (u ∨ v) (3)

and the decomposition components x∨y and u∨v can be recovered from the
factors of the polynomial

Fψ = xu + xv + yu + yv = (x + y) · (u + v) (4)

constructed for ψ.
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– Conjunctive disjoint decomposition of Boolean functions given in full DNF
[5,7]. For example, the following full DNF

ϕ = (x ∧ ¬y ∧ u ∧ ¬v) ∨(x ∧ ¬y ∧ ¬u ∧ v)∨
∨(¬x ∧ y ∧ u ∧ ¬v) ∨ (¬x ∧ y ∧ ¬u ∧ v)

is equivalent to

(x ∧ ¬y) ∨ (¬x ∧ y)
∧

(u ∧ ¬v) ∨ (¬u ∧ v), (5)

and the decomposition components of ϕ can be recovered from the factors of
the polynomial

Fϕ = xȳuv̄ + xȳūv + x̄yuv̄ + x̄yūv = (xȳ + x̄y) · (uv̄ + ūv) (6)

constructed for ϕ.
– Non-disjoint conjunctive decomposition of multilinear polynomials over F2,

in which components can have common variables from a given set. In [3],
a fixed-parameter polytime decomposition algorithm has been proposed, for
the parameter being the number of the shared variables between components.

– Cartesian decomposition of data tables (i.e., finding tables such that their
unordered Cartesian product gives the source table) [4,6] and generalizations
thereof for the case of a non-empty subset of shared attributes between the
tables. For example, the following table has a decomposition of the form:

B E D A C

z q u x y

y q u x y

y r v x z

z r v x z

y p u x x

z p u x x

=

A B

x y

x z

×
C D E

x u p

y u q

z v r

which can be obtained from the factors of the polynomial

zB · q · u · xA · yC+ yB · q · u · xA · yC+
yB · r · v · xA · zC+ zB · r · v · xA · zC +
yB · p · u · xA · xC+ zB · p · u · xA · xC

= (xA · yB + xA · zB) · (q · u · yC + r · v · zC + p · u · xC)

constructed for the table’s content.
In terms of SQL, Cartesian decomposition means reversing the first opera-
tor and the second operator represents some feasible generalization of the
problem:
T1 CROSS JOIN T2 SELECT T1.*, T2.* EXCEPT(Attr2)

FROM T1 INNER JOIN T2
ON T1.Attr1 = T2.Attr2

where EXCEPT(list) is an informal extension of SQL used to exclude list
from the resulting attributes. This approach can be applied to other table-
based structures (for example, decision tables or datasets appearing in the
K&DM domain, as well as the truth tables of Boolean functions).
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Shpilka and Volkovich did not address the problems of practical implemen-
tations of the factorization algorithm. However, the applications above require a
factorization algorithm to be efficient enough on large polynomials. In this paper,
we propose an improvement of the factorization algorithm from [4,6], which
potentially allows for working with larger inputs. An implementation of this ver-
sion of the algorithm in Maple 17 outperforms the native Maple’s Factor(poly)
mod 2 factorization, which in our experiments failed to terminate on input poly-
nomials having 103 variables and 105 monomials.

2 Definitions and Notations

A polynomial F ∈ F2[x1, . . . , xn] is called factorable if F = F1 ·. . .·Fk, where k ≥
2 and F1, . . . , Fk are non-constant polynomials. The polynomials F1, . . . , Fk are
called factors of F . It is important to realize that since we consider multilinear
polynomials (every variable can occur only in the power of ≤1), the factors are
polynomials over disjoint sets of variables. In the following sections, we assume
that the polynomial F does not have trivial divisors, i.e., neither x, nor x + 1
divides F . Clearly, trivial divisors can easily be recognized.

For a polynomial F , a variable x from the set of variables V ar(F ) of F ,
and a value a ∈ {0, 1}, we denote by Fx=a the polynomial obtained from F by
substituting x with a. For multilinear polynomials over F2, we define a formal
derivative as ∂F

∂x = Fx=0 + Fx=1, but for non-linear ones, we use the definition
of a “standard” formal derivative for polynomials. Given a variable z, we write
z|F if z divides F , i.e., z is present in every monomial of F (note that this is
equivalent to the condition ∂F

∂z = Fz=1).
Given a set of variables Σ and a monomial m, the projection of m onto Σ

is 1 if m does not contain any variable from Σ, or is equal to the monomial
obtained from m by removing all the variables not contained in Σ, otherwise.
The projection of a polynomial F onto Σ, denoted as F |Σ , is the polynomial
obtained as sum of monomials from the set S, where S is the set of the monomials
of F projected onto Σ.

|F | is the length of the polynomial F given as a symbol sequence, i.e., if
the polynomial over n variables has M monomials of lengths m1, . . . , mM then
|F | =

∑M
i=1 mi = O(nM).

We note that the correctness proofs for the algorithms presented below can
be found in [5,7].

3 GCD-Algorithm

Conceptually, this algorithm is the simplest one. It outputs factors of an input
polynomial whenever they exist.

1. Take an arbitrary variable x from V ar(F )
2. G := gcd(Fx=0,

∂F
∂x )

3. If G = 1 then stop
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4. Output factor F
G

5. F := G
6. Go to 1

Here the complexity of factorization is hidden in the algorithm for finding the
greatest common divisor of polynomials.

Computing GCD is known as a classic algorithmic problem in algebra [14],
which involves computational difficulties. For example, if the field is not too rich
(F2 is an example) then intermediate values vanish quite often, which essen-
tially affects the computation performance. In [2], Wittkopf et al. developed
the LINZIP algorithm for the GCD-problem. Its complexity is O(|F |3), i.e., the
complexity of the GCD-algorithm is asymptotically the same as for Shpilka and
Volkovich’s result for the case of multilinear polynomials (given as strings).

4 FD-Algorithm

In the following, we assume that the input polynomial F contains at least two
variables. The basic idea of FD-Algorithm is to partition a variable set into two
sets with respect to a selected variable:

– the first set Σsame contains the selected variable and corresponds to an irre-
ducible polynomial;

– the second set Σother corresponds to the second polynomial that can admit
further factorization.

As soon as Σsame and Σother are computed (and Σother 	= ∅), the corresponding
factors can be easily obtained as projections of the input polynomial onto these
sets.

1. Take an arbitrary variable x occurring in F
2. Let Σsame := {x}, Σother := ∅, Fsame := 0, Fother := 0
3. Compute G := Fx=0 · ∂F

∂x
4. For each variable y ∈ V ar(F ) \ {x}:

If ∂G
∂y = 0 then Σother := Σother ∪ {y}

else Σsame := Σsame ∪ {y}
5. If Σother =∅ then report ′′F is non-factorable ′′ and stop
6. Return polynomials Fsame and Fother obtained as projections

onto Σsame and Σother, respectively

The factors Fsame and Fother have the property mentioned above and hence, the
algorithm can be applied to obtain factors for Fother.

Note that FD-algorithm takes O(|F |2) steps to compute the polynomial G =
Fx=0 · ∂F

∂x and O(|G|) time to test whether the derivative ∂G
∂y equals zero. As we

have to verify this for every variable y 	= x, we have a procedure that computes
a variable partition in O(|F |3) steps. The algorithm allows for a straightforward
parallelization on the selected variable y: the loop over the variable y (selected
in line 4) can be performed in parallel for all the variables.
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One can readily see that the complexity of factorization is hidden in the com-
putation of the product G of two polynomials and testing whether a derivative
of this product is equal to zero. In the worst case, the length of G = Fx=0 · ∂F

∂x
equals Ω(|F |2), which makes computing this product expensive for large input
polynomials. In the next section, we describe a modification of the FD-algorithm,
which implements the test above in a more efficient recursive fashion, without
the need to compute the product of polynomials explicitly.

5 Modification of FD-Algorithm

Assume the polynomials A = ∂F
∂x and B = Fx=0 are computed. By taking a

derivative of A · B on y (a variable different from x) we have D = ∂Fx=0
∂y and

C = ∂2F
∂x∂y . We need to test whether AD + BC = 0, or equivalently, AD = BC.

The main idea is to reduce this test to four tests involving polynomials of smaller
sizes. Proceeding recursively in this way, we obtain smaller, or even constant,
polynomials for which identity testing is simpler. Yet again, the polynomial
identity testing demonstrates its importance, as Shpilka and Volkovich have
readily established.
Steps 3–4 of FD-algorithm are modified as follows:

Let A = ∂F
∂x , B = Fx=0

For each variable y ∈ V ar(F ) \ {x}:
Let D = ∂B

∂y , C = ∂A
∂y

If IsEqual(A,D,B,C) then Σother := Σother ∪ {y},
else Σsame := Σsame ∪ {y}

where (all the above mentioned variables are chosen from the set of variables of
the corresponding polynomials).

Define IsEqual(A,D,B,C) returning Boolean

1. If A = 0 or D = 0 then return (B = 0 or C = 0)
2. If B = 0 or C = 0 then return FALSE
3. For all variables z occurring in at least one of A,B,C,D :
4. If (z|A or z|D) xor (z|B or z|C) then return FALSE
5. Replace every X ∈ {A,B,C,D} with X := ∂X

∂z , provided z|X
6. If A = 1 and D = 1 then return (B = 1 and C = 1)
7. If B = 1 and C = 1 then return FALSE
8. If A = 1 and B = 1 then return (D = C)
9. If D = 1 and C = 1 then return (A = B)

10. Pick a variable z
11. If not IsEqual(Az=0,Dz=0,Bz=0,Cz=0) then return FALSE
12. If not IsEqual( ∂A

∂z ,
∂D
∂z ,

∂B
∂z ,

∂C
∂z ) then return FALSE

13. If IsEqual( ∂A
∂z ,Bz=0,Az=0,

∂B
∂z ) then return TRUE

14 Return IsEqual( ∂A
∂z ,Cz=0,Az=0,

∂C
∂z )

End Definition
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Several comments on IsEqual are in order:

– Lines 1–9 implement processing of trivial cases, when the condition AD = BC
can easily be verified without recursion. For example, when line 2 is executed,
it is already known that neither A nor D equals zero and hence, AD can not
be equal to BC. Similar tests are implemented in lines 6–9.

– At line 5 it is known that z divides both, AD and BC and thus, the problem
AD = BC can be reduced to the polynomials obtained by eliminating z.

– Finally, lines 11–14 implement recursive calls to IsEqual. Observe that the
parameter polynomials are obtained from the original ones by evaluating a
variable z to zero or by computing a derivative. Both of the operations yield
polynomials of a smaller size than the original ones and can give constant
polynomials in the limit. To determine the parameters of IsEqual we resort to
a trick that transforms one identity into two smaller ones. This transformation
uses a multiplier, which is not unique. Namely, we can select 16 variants
among 28 possible ones (see comments in Sect. 5.1 below) and this gives 16
variants of lines 13–14.

5.1 Complete List of Possible Parameters

If A, D, B, C are the parameters of IsEqual, we denote for a Q ∈ {A,D,B,C}
the derivative on a variable z and evaluation z = 0 as Q1 and Q2, respectively.

AD = BC iff (A1z + A2)(D1z + D2) = (B1z + B2)(C1z + C2),

A1D1z
2 + (A1D2 + A2D1)z + A2D2 = B1C1z

2 + (B1C2 + B2C1)z + B2C2.

The equality holds iff the corresponding coefficients are equal:
⎧
⎨

⎩

A1D1 = B1C1 (1)
A2D2 = B2C2 (2)

A1D2 + A2D1 = B1C2 + B2C1 (3)

If at least one of the identities (1), (2) does not hold then AD 	= BC. Otherwise,
we can use these identities to verify (3) in the following way.

By the rule of choosing z, we can assume A1, A2 	= 0. Multiplying both sides
of (3) by A1A2 gives

A2
1A2D2 + A1A

2
2D1 = A1A2B1C2 + A1A2B2C1.

Next, by using the identities (1) and (2),

A2
1B2C2 + A1A2B2C1 = A2

2B1C1 + A1A2B1C2,

A1B2(A1C2 + A2C1) = A2B1(A2C1 + A1C2).

Hence, it suffices to check (A1B2+A2B1)(A1C2+A2C1) = 0, i.e., at least one of
these factors equals zero. It turns out that we need to test at most 4 polynomial
identities, and each of them is smaller than the original identity AD = BC.
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Notice that the multiplier A1A2 is used to construct the version of IsEqual
given above.

By the rule of choosing z, we can take different multiplier’s combinations of
the pairs of 8 elements. Only 16 out of 28 pairs are appropriate:

A1A2 → A1C2 = A2C1, A1B2 = A2B1

A1B2 → A1D2 = B2C1, A1B2 = A2B1

A1C2 → A1D2 = B1C2, A1C2 = A2C1

A1D2 → A1D2 = B2C1, A1D2 = B1C2

A2B1 → A2D1 = B1C2, A1B2 = A2B1

A2C1 → A2D1 = B2C1, A1C2 = A2C1

A2D1 → A2D1 = B2C1, A2D1 = B1C2

B1B2 → B1D2 = B2D1, A1B2 = A2B1

B1C2 → A2D1 = B1C2, A1D2 = B1C2

B1D2 → B1D2 = B2D1, A1D2 = B1C2

B2C1 → A2D1 = B2C1, A1D2 = B2C1

B2D1 → B1D2 = B2D1, A2D1 = B2C1

C1C2 → C1D2 = C2D1, A1C2 = A2C1

C1D2 → C1D2 = C2D1, A1D2 = B2C1

C2D1 → C1D2 = C2D1, A2D1 = B1C2

D1D2 → C1D2 = C2D1, B1D2 = B2D1

5.2 Analysis of ModFD-Algorithm for Random Polynomials

We now provide a theoretical analysis of ModFD-algorithm. The complexity
estimations we describe here are conservative and, therefore, they give an upper
bound greater than O(|F |3) of the original FD-algorithm. However, the approach
presented here could serve as a basis to obtain a more precise upper bound, which
would explain the gain in performance in practice; we report on a preliminary
experimental evaluation in Sect. 6.

Our estimation is based on

Theorem 1 (Akra and Bazzi, [1]). Let the recurrence

T (x) = g(x) +
k∑

i=1

λiT (ωix + hi(x)) for x ≥ C

satisfy the following conditions:

1. T (x) is appropriately defined for x < C;
2. λi > 0 and 0 < ωi < 1 are constants for all i;
3. |g(x)| = O (xc); and
4. |hi(x)| = O

(
x

(log x)2

)
for all i.

Then

T (x) = Θ

(
xp

(
1 +

∫ x

1

g(t)
tp+1

dt

))
,

where p is determined by the characteristic equation
∑k

i=1 λiω
p
i = 1.
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For the complexity estimations, we assume that polynomials are represented
by alphabetically sorted lists of bitscales corresponding to indicator vectors for
the variables of monomials. Hence, to represent a polynomial F over n variables
with M monomials |F | = nM +cM bits are required, where c is a constant over-
head to maintain the list structure. This guarantees the linear time complexity
for the following operations:

– computing a derivative with respect to a variable (the derived polynomial
also remains sorted);

– evaluating to zero for a variable with removing the empty bitscale representing
the constant 1 if it occurs (the derived polynomial also remains sorted);

– identity testing for polynomials derived from the original sorted polynomial
by the two previous operations.

For IsEqual we have

1. x = |A|+ |B|+ |C|+ |D|. By taking into account the employed representation
of monomials (the bitscale is not shortened when a variable is removed), we
may also assume that |Q| = |Q1| + |Q2|.

2. ∀i, λi = 1.
3. ∀i, hi(x) = 0.
4. g(x) = O(nx). Therefore, the total time for lines 1–10 consists of the constant

numbers of linear (with respect to the input of IsEqual) operations executed
at most n times. Apparently, n is quite a conservative assumption, because
at a single recursion step, at least one variable is removed from the input set
of variables.

5. We need to estimate ω1, ω2, ω3, ω4.
Among all the possible choices of the multipliers mentioned in Sect. 5.1, let
us consider those of the form Q1Q2. They induce two equations that do not
contain one of the input parameters of IsEqual: A, B, C, D result in the
absence of the parts of D, C, B, A, respectively, among the parameters of
IsEqual in lines 13 and 14. Hence, the largest parameter can be excluded by
taking an appropriate Q; lines 13–14 of ModFD-algorithm are to be rewritten
with the help of this observation.
Without loss of generality, we may assume that the largest parameter is D
and thus, we can take Q equal to A. In this case, ω1, ω2, ω3, ω4 represent
the relative lengths of the parameters |A1| + |B1| + |C1| + |D1|, |A2| + |B2| +
|C2|+ |D2|, |A|+ |B|, |A|+ |C| for the recursive calls to IsEqual with respect
to |A| + |B| + |C| + |D|.
Since |A|, |B|, |C| ≤ |D|, we obtain |A| + |B|, |A| + |C|, |B| + |C| ≤ 2|D|.
Then the lengths |A| + |B| and |A| + |C|, respectively, can be estimated in
the following way:

|A| + |B| = x − |C| − |D| ≤ x − 0 − |A| + |B|
2

,

hence, |A| + |B|, |A| + |C| ≤ 2
3 .
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Let F be a multilinear polynomial over n variables with M monomials such
that no variable divides F . A random polynomial consists of monomials ran-
domly chosen from the set of all monomials over n variables. Variables appear
in monomials independently. For each variable x from var(F ), we can con-
sider the following quantity μx = ∂F

∂x (i.e. the part of monomials containing
this variable). We want to estimate the probability that among μx there exist
at least one, which is (approximately) equal to M

2 . Hence

P [there exists x such that μx is a median] = 1 − P [
∧

x μx is not median]
= 1 − P [μ1 is not median]n

= 1 − (1 − P [μ1 is a median])n

= 1 − (
1 − 1

2

)n

= 1 − 1
2n

Thus, with a high probability one can pick from a large polynomial (in our
case, from D) a variable such that |D1| ≈ |D2|.
Let us consider the following multicriteria linear program:

maximize

⎧
⎪⎪⎨

⎪⎪⎩

a1 + b1 + c1 + d1
a2 + b2 + c2 + d2

a + b
a + c

⎫
⎪⎪⎬

⎪⎪⎭
subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a + b + c + d = 1
d1 = d2

a ≤ d, b ≤ d, c ≤ d
a + b ≤ 2

3
a + c ≤ 2

3
all nonnegative

.

Since the objective functions and constraints are linear and the optimization
domain is bounded, we can enumerate all the extreme points of the problem
and select those points that give the maximum solution of the characteristic
equation of Theorem 1. By taking into account the symmetries between the
first and the second objective functions and between the third and fourth
ones, we obtain that

ω1 =
3
4
, ω2 =

1
4
, ω3 =

1
2
, ω4 =

1
2
. (∗)

Hence, the characteristic equation is
(

3
4

)p

+
(

1
4

)p

+
(

1
2

)p

+
(

1
2

)p

= 1.

Its unique real solution is p ≈ 2.226552. Finally, the total time for the ModFD-
algorithm obtained this way is

T = O(n2|F |2.226552).

6 Preliminary Experiments and Discussion

For a computational evaluation of the developed factorization algorithms, we
used Maple 17 for Windows run on 3.0 GHz PC with 8 GB RAM. The factor-
ization algorithm implemented in Maple Factor(poly) mod 2 can process mul-
tilinear polynomials over F2 with hundreds of variables and several thousands
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of monomials in several hours. But many attempts of factorization of polynomi-
als with 103 variables and 105 monomials were terminated by the time limit of
roughly one week of execution. In general, a disadvantage of all Maple imple-
mentations is that they are memory consuming. For example, the algorithm that
requires computing products of polynomials fails to work even for rather small
examples (about 102 variables and 103 monomials). Although GCD-algorithm is
conceptually simple, it involves computing the greatest common divisor for poly-
nomials over the “poor” finite field F2. A practical implementation of LINZIP
is not that simple. An older version of Maple reports on some inputs that
“LINZIP/not implemented yet”. We did not observe this issue in Maple 17. It
would be important to conduct an extensive comparison of the performance of
GCD- and FD-algorithm implemented under similar conditions. The factoriza-
tion algorithm (FD-based) for sparsely represented multilinear polynomials over
F2 demonstrates reasonable performance. BDD/ZDD can be considered as some
kind of the black box representation. We are going to implement factorization
based on this representation and to compare these approaches.

A careful study of the solution (*) given at the end of Sect. 5.2 shows that
it describes the case when |A| ≈ |D| ≈ x

2 and |B| ≈ |C| ≈ 0. This means that
at the next steps the maximal parameter is A: |A| ≈ x

2 , while the remaining
parameters are smaller. Thus, one can see that the lengths of the inputs to the
recursive calls of IsEqual are reduced at least twice in at most two levels of the
recursion. This allows for obtaining a more precise complexity bound, which will
be further studied.

Yet another property is quite important for the performance of the algo-
rithm. Evaluating the predicate IsEqual for the variables from the same factor
requires significantly less time compared with evaluation for other variables.
For polynomials with 50 variables and 100 monomials in the both components,
the speed-up achieves 10–15 times. The reason is evident and it again confirms
the importance of (Zero) Polynomial Identity Testing, as shown by Shplika and
Volkovich. Testing that the polynomial AD+BC is not zero requires less reduc-
tion steps in contrast with the case when it does equal zero. The latter requires
reduction to the constant polynomials. Therefore, we used the following app-
roach: if the polynomials A, D, B, C are “small” enough then the polynomial
AD + BC was checked to be zero directly via multiplication. For the polyno-
mials with the above mentioned properties, this allows to save about 3–5% of
the execution time. The first practical conclusion is that in general, the algo-
rithm works faster for non-factorable polynomials than for factorable ones. The
second is that we need to investigate new methods to detect variables from the
“opposite” component (factor). Below we give an idea of a possible approach.

It is useful to detect cases of irreducibility before launching the factorization
procedure. Using simple necessary conditions for irreducibility, as well as test-
ing simple cases of variable classification for variable partition algorithms, can
substantially improve performance. Let F be a multilinear polynomial over n
variables with M monomials such that no variable divides F . For each variable
x, recall that the value μx corresponds to the number of monomials containing
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x, i.e. the number of monomials in ∂F
∂x . Then a necessary condition for F to be

factorable is
∀x gcd (μx, M) > 1.

In addition, we have deduced several properties, which are based on analyzing
occurrences of pairs of variables in the given polynomial (for example, if there is
no monomial in which two variables occur simultaneously then these variables
can not belong to different factors). Of course, the practical usability of these
properties depends on how easily they can be tested.

Finally, we note an important generalization of the factorization problem,
which calls for efficient implementations of the factorization algorithm. To
achieve a deeper optimization of logic circuits we asked in [5,7] how to find
a representation of a polynomial in the form F (X,Y ) = G(X)H(Y ) + D(X,Y ),
where a “relatively small” defect” D(X,Y ) extends or shrinks the pure disjoint
factors. Yet another problem is to find a representation of the polynomial in the
form

F (X,Y ) =
∑

k

Gk(X)Hk(Y ), X ∩ Y = ∅,

i.e., a complete decomposition without any “defect”, which (along with the pre-
vious one) has quite interesting applications in the knowledge and data mining
domain. Clearly, such decompositions (for example, the trivial one, where each
monomial is treated separately) always exist, but not all of them are meaningful
from the K&DM point of view. For example, one might want to put a restriction
on the size of the “factorable part” of the input polynomial (e.g., by requiring
the size to be maximal), which opens a perspective into a variety of optimiza-
tion problems. Formulating additional constraints targeting factorization is an
interesting research topic. One immediately finds a variety of the known com-
putationally hard problems in this direction and it is yet to be realized how the
computer algebra and theory of algorithms can mutually benefit from each other
along this way.
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