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Abstract. The paper describes development of an open-source library (www.
github.com/nikola-m/freeCappuccino) for computational fluid dynamics and in
general computational continuum mechanics. The code is based on finite vol-
ume method on arbitrary unstructured polyhedral meshes. The interfaces to
highly abstract data types such as arbitrary order tensor fields on discretized
finite volume domains, and scalar and vector sparse linear systems resulting
from finite volume discretization of partial differential equations are provided.
Explicit manipulation of tensor fields through high level, highly abstract pro-
gramming syntax is explained. Also, implicit operation over tensor fields per-
tinent to discretization of partial differential operators is provided and explained.
The library is developed in modern version of Fortran. Code parallelization is
achieved through domain decomposition and implemented using MPI and
OpenMP. While avoiding the usual class syntax of object-oriented program-
ming, the code has essentially object oriented design. Comparison is made with
the well-known OpenFOAM library. The purpose of the ongoing development
is providing researchers with a tool for easy transfer of mathematical operations
of their physical models into functional and efficient simulation software based
on finite volume method. The guiding principle of development is exchange of
ideas and reproducibility in computational science in general.
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1 Introduction

We are in the age when engineering and science rely to a large extent on computational
tools. Many of these tools are developed within a single commercially oriented com-
pany and source code stays out of the reach of engineers and scientists. In efforts to
simulate more complex physics researchers are often able to add additional function-
ality trough appropriate interface, while in most such cases, the core simulation code is
inaccessible to the user. Influential voices are being heard recently [1] in scientific
community, where the important question of reproducibility in science is related, when
it comes to computational science, to accessibility of the source code of the program
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which was used to generate the simulation data. It is stressed there that the open-source
software libraries constitute the backbone of reproducible scientific computing, and that
not releasing original source code raises needless roadblocks to reproducibility.

Our effort in creating a platform for collaborative development of computational
algorithms and testing of mathematical models results in freeCappuccino library. The
name is derived to assert two sources that influenced its development, and also to
suggest that we are dealing with CAFFA (Computationally Aided Fluid Flow Analysis)
[2] with FOAM (Field Operation and Manipulation) [3, 4].

While the mature commercial software tools enable efficient treatment of multi-
disciplinary design optimisation (e.g. [5]) due to its monolithic character, open-source
tools tend to use distributed effort on modular components written by field experts on a
common platform. The challenges faced when developing open-source software tools
are widely discussed [6].

Solution of complex problems of continuum mechanics (fluid flow, heat transfer,
elasticity, aeroacoustics) and electromagnetics relies on approximate solution of gov-
erning Partial Differential Equations. A successful library in this field should be based
on a flexible numerical approach, to be able to handle complex geometric domains
found in practical situations, to have data structures capable of representing basic
objects of study in the studied discipline (in our case tensor fields), and to be able to
scale efficiently on HPC hardware. Also it is important to easily interface other tools in
the chain, whether pre-, post-processing software or other computational libraries.

In the case of freeCappuccino we have decided to base our approach on Finite
Volume Method for approximation of governing equations and to use essentially object
oriented approach. Other design decisions followed from these basic ones. We have
also decided to write code in modern Fortran, since it enabled implementation of all the
ideas that emerged along the way and has good performance record.

2 Handling Complex Geometry and Computational Meshes

The requirement of ability to treat complex geometries which abound in engineering
applications led to various numerical approaches - immersed material boundaries,
castellated, and body fitted meshes. Body fitted meshes evolved to the concept of
generally unstructured polyhedral meshes as the culmination of its development. In this
approach, continuous domains are subdivided into discrete volume elements of poly-
hedral shape with arbitrary number of faces. In such case it is useful to have so-called
‘face-based’ data structure (not the only option for body-fitted meshes cf. edge-based
data structure in mean-median, and Voronoi dual meshes). The face-based data
structure is useful also in other approaches where, for example, we have hexahedral
cells and adaptive mesh refinement based on oct-tree cell division, or in cases where
block-wise structured meshes are interfaced in non-conformal way (cell faces at block
interface don’t match).

While it is relatively straightforward to compute geometric properties when com-
putational cells are well defined objects like tetrahedra, prisms, pyramids and hexahedra,
it is not a trivial task in the case of face-based data structure, where optional cases
include general polyhedral meshes or meshes obtained through adaptive mesh
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refinement. In the present code the basic geometric data required by the Finite Volume
Method, i.e. cell volumes, coordinates of cell centres and cell face centres, components
of cell face normals scaled by the magnitude of the face area projection in the same
coordinate direction, are all computed based on face data, with no reference to specific
cell shape. For cell volume and cell centroid computation, the approach presented in [7],
where, only face properties such as areas, unit normals, and face centres are employed, is
adopted in present library.

Specifically important for Finite Volume Method is the way interpolation factors 2,
i = 1, numFaces, are calculated. In the present case they represent the distance from the
point where line joining cell centres intersects plane of the cell face (point j'), divided
by the distance of cell centres, Fig. 1. The point of intersection is found first using the
analytic expressions for the intersection of a line, and a plane, rewritten in terms of
points defining the plane and the straight line. This point is not necessarily within the
cell face, based on the level of cell nonorthogonality.

Fig. 1. A nonorthogonal grid arrangement, here represented in 2D, where the basic geometric
parameters are displayed

The polyMesh format used by OpenFOAM is mesh format of choice for the library,
because of its intelligent design approach which eliminates the need for cell connec-
tivity data. The only point in simulation where cell connectivity is important is for
transferring present face-based geometry data to cell-based one while writing Paraview
native unstructured mesh (.vtu) files which is cell based. For that purpose cell con-
nectivity data is generated by built in cellConectivity software utility. Other choices for
input file format include Gmsh, which can be read by built-in Gmsh reader. The
difference is that this format doesn’t contain cell-face owner-neighbour pair data,
crucial for finite volume method, and is generated before the simulation run.

It is clear that face-based approach in definition of mesh geometry gives great
flexibility and requires no assumption on the type of the mesh elements, therefore such
an approach is highly favourable if one insists in general application.
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3 Tensor Fields Manipulation

Most important objects in the library are scalar, vector and tensor discrete fields, i.e.
fields with prescribed values on discrete polyhedral cell mesh elements. There are two
types of tensor fields considered, volume fields - those pertinent to cell centers, which
usually denote cell averaged values in Finite Volume Method, and surface fields -
where given values are defined at face centroid, or are otherwise enumerated by cell
face index. In Fortran syntax they are defined using derived data types with allocatable
elements. Here is the definition of three basic volume tensor field types, the third one is
the symmetric tensor field type often in use in continuum mechanics (e.g. strain-rate
tensor).

type volScalarField

character (len=30) :: field_name

real (dp), dimension(:), allocatable :: mag
end type
type volVectorField

character (len=30) :: field_name

real (dp), dimension(:), allocatable :: x, y, z
end type

type volSymmetricTensorField
character (len=30) :: field_name
real (dp), dimension(:), allocatable :: xx, Xy, Xz

real (dp), dimension(:), allocatable :: VY, YZ
real (dp), dimension(:), allocatable :: zz
end type

A number of the basic arithmetical operators are overloaded so one can add,
subtract and multiply given fields. Besides overloading, operators are polymorphic in
character, so multiplication sign ‘*’ can mean scalar field - vector field multiplication,
or scalar - rank two tensor multiplication, depending on type of the fields on two sides
of the “*’ sign. Also a number of basic vector and tensor field algebra operations are
defined. These are defined as binary and unary operators, see Table 1. Polymorphism is
used with these operators to seamlessly treat distinct cases when different ranks of
tensors are given, or different tensor type (volume, surface, symmetric, etc.) are
provided.

As an example we present what a call to unary operator for computation of a
deviatoric part of a rank 2 tensor field -.dev. incorporates.
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Table 1. Basic tensor field operators in freeCappuccino library.

Operator Type | Operates on

.dot. Binary | Vol/surface rank 1/rank 2 tensor fields
.CIOSS. Binary | Rank 1 tensor fields
.tensor. Binary | Vol/surface rank 1/rank 2 tensor fields
.colon. Binary | Vol/surface rank 2 tensor fields
.transposed. | Unary | Rank 2 tensor fields
.trace. Unary | Rank 2 tensor fields
.det. Unary | Rank 2 tensor fields
.diagonal. | Unary | Rank 2 tensor fields
.hodge. Unary | Rank 2 tensor fields
.curl. Unary | Rank 2 tensor fields
.symm. Unary | Rank 2 tensor fields
.skew. Unary | Rank 2 tensor fields
.magSq. Unary | Rank 2 tensor fields
.mag. Unary | Rank 2 tensor fields
.dev. Unary | Rank 2 tensor fields
.devTwo. |Unary | Rank 2 tensor fields
.hyd. Unary | Rank 2 tensor fields
function deviatoric_part_rank2_tensor(T) result (devT)
implicit none
type (volTensorField), intent(in) :: T
type (volTensorField) :: devT
type (volTensorField) HEE

devT = new_volTensorField (numCells)
I = eye(numCells)
! overloaded operator - here ’-’ substracts two tensor fields
! | "+’ multiplies tensor field by a constant scalar
! | | "+’ multiplies tensor fields by a scalar array
]

devT = T (1./3.0_dp * ( .trace.T % I) )

end function deviatoric_part_rank2_tensor

In the calling routine there are other examples of calls to unary and binary operators
and polymorphism.

The main appeal for operator overloading and of shorthand operator definitions is
to make it easy for users to remember how to call tensor algebra operations and to make
the written code easier to read and interpret [8]. In this way the overloaded and
shorthand operators have their conventional meaning and expressions of manipulations
on tensor fields get their compact, comprehensive form.
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4 Finite Volume Discretisation

The finite volume method for approximation of PDEs has established itself as a method
of choice for engineering applications of computational fluid mechanics due to its
flexibility, and most of the general purpose CFD codes employ this method for
equation approximation.

To systematize the approximation of the governing equations of continuum
mechanics, we cast them into integral form of the general conservation law, which is
one of the central general objects of approximation,

d
—/p¢dV+/p¢u-ndS:/F¢V¢~ndS+/quV—i—/qi-ndS (1)
dar Jy s s 1% s

where ¢ is either a scalar, or a vector or tensor component to which conservation law is
applied. The two terms on the left are the transient and convection term, on the right are
diffusion term, and volume and surface source terms. Variables figuring in this equation
are: fluid density p, t is time, u fluid velocity vector, I' is diffusion coefficient, and
finally volume and surface source terms q' and q°, where surface term is a vector
quantity.

The development of the numerical algorithm for freeCappuccino library has been
described in detail in [9], where most of the algorithmic improvements are covered and
code verification and validation details are presented. Code was specifically targeted for
application on highly complex nonorthogonal meshes, therefore proving the second
order accuracy, even in highly distorted mesh situations, was specially considered in
the paper. The verification tests ranged from manufactured solutions to analytical
solutions.

5 Linear Algebra

The process of discretisation of governing PDEs leads to linear systems of equations
with sparse matrices. To represent such a mathematical object, an appropriate storage
format should be chosen, leading to efficient storage (memory) requirements, in cor-
respondence to numerical method and an easy interface with external libraries. The
Compressed Sparse Row (CSR) format [10] as probably most popular among general
sparse matrix storage formats is chosen for freeCappuccino library. Such choice is
based, in the first place, on considerations of underlying finite volume algorithm.
Additional advantage is based on the fact that CSR format is used by many numerical
linear algebra libraries.

The finite volume discretisation involves calculating fluxes between neighbouring
cells trough a sharing cell face. Pairs of indices in both permutations define nonzero
matrix entries and matrix sparsity pattern. This format enables fast identifications of
neighbouring cells for each cell from matrix sparsity pattern, namely, it is the list of
indices of all non-zero matrix entries in a specific row, defined by cell number, except, of
course, the diagonal cell, since it represents the specific cell in question. This often comes
in handy when making local calculations pertinent only to cells’ immediate surrounding.
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In freeCappuccino, the csrMatrix object is defined from mesh data, to store sparsity
pattern information and discretisation coefficients, using Fortran derived types:

type csrMatrix

integer, dimension(:), allocatable :: ioffset

integer, dimension(:), allocatable :: ja

real (dp), dimension(:), allocatable :: coef
end type

By extending the csrMatrix type, we derive fvEquation derived data type. Finite
volume equation is a datatype that besides sparse matrix, holds RHS vector, defined
below as source vector and past values from two consecutive time-steps, o, and 0o0.
This is done so the implicit Backward Differentiation of second order (BDF2 algo-
rithm) can seamlessly shift time values during the simulation, and this information is
pertinent to each field that is implicitly solved.

type, extends(csrMatrix) :: fvEquation
real (dp), dimension(:), allocatable :: source
real (dp), dimension(:), allocatable :: o
real(dp), dimension(:), allocatable :: oo

end type fvEquation

Further extension by inheritance is done defining fvVectorEquation, where same
data as above is hold for each vector component.

The fvEquation and fvVectorEquation have overloaded three basic arithmetic
operations. The plus ‘+’ sign is overloaded so one can add fvEquation and volS-
calarField, and do artihmetics with implicitly discretised tensor fields and volume field
that define source terms in approximated governing equations. Overloading summation
also applies when two objects of type e.g. fvEquation need to be added together. The
same applies for minus sign, which is overloaded in the same way. What is interesting
is the == sign, where basic idea is based on the one in Open-FOAM, i.e. this sign
defines the same as the plus sign but is important for emulating the mathematical form
of equations. The == sign is used to add volume source to linear equation systems’
source if we have fvEquation and volScalarField objects respectively, on two sides of
the sign, and it means adding two objects of type fvEquation if these are on different
sides of the sign. That is principle of polymorphism in action. The solve function call
accepts fvEquation object, solves linear system by an iterative algorithm and returns
unknown volScalarField.

In freeCappuccino there are several built-in iterative solvers for sparse linear sys-
tems. The built-in solvers belong to two categories, stationary iterative methods such as
Jacobi, and Gauss-Seidel, and preconditioned methods from Krylov family of algo-
rithms - Diagonally Preconditioned Conjugate Gradient, Incomplete Cholesky Con-
jugate Gradient, ILU(0) preconditioned Bi-CGStab, and ILU(O) preconditioned
GMRES [10]. All of these have also their parallel versions. Finally for wider choice of
algorithms including Smooth Agglomeration-Algebraic Multigrid, freeCappuccino
interfaces external library for sparse numerical linear algebra LIS [11].
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6 Parallelisation

Modern problems in computational science and engineering often require resolution of
many spatial and temporal scales which require highly advanced parallel application
specific algorithms and high-performance computational (HPC) resources. State of the
art HPC architectures available to researchers over the world offer combined power of
multicore CPUs and GPUs with inherent parallelization approaches. Many core CPU
architectures are arranged in multi node clusters offering greater computational power
to the user. Fast growth in computational power available necessitates development of
novel simulation approaches and tools which could use advantages of these resources
in their full potential and still are able to maintain qualities such as portability and easy
maintenance. State of the art codes should demonstrate capability of scaling with
increasing the number of distributed computational nodes and computational cores.
The problem they face and performance bottlenecks are result of the algorithmic and
implementation choices. One typical example is that of numerical simulation of tur-
bulent single/multiphase fluid flows. Common technical applications involve such
flows in complex geometries where vortices at different scales are present. These
vortices need high spatial numerical resolution in certain regions. Additionally to high
spatial resolution, complex turbulent flows present multiscale features in time domain
which lead to high demand in computational resources for long time integration over
small discrete time-steps. Additional effects such as heat transfer, particulate transport
and chemical reactions, or need for interphase interfaces capturing or resolving lead to
stiff problems which further burden the simulation algorithm. Such problems require
novel computational approaches which can follow the raise of physical complexity.

The approach adopted in freeCappuccino is based on domain decomposition and
Single Program Multiple Data (SPMD) parallelisation paradigm implemented using
Message Passing Interface (MPI). The required exchange of the data at certain points is
achieved by a high level call to exchange routine in which data is moved to/from
buffers and a call to MPI MPI_SENDRECV_REPLACE function as the main routine
driving exchange of data is done. Other MPI function calls include MPI_ALLRE-
DUCE global communication often employed in linear solvers to perform e.g. global
residual norm calculation. At some places threading is used trough calls to OpenMP
library.

7 Example Simulation Results

Here we illustrate use of freeCappuccino in most important context, as a fully capable
computational fluid dynamics solver.

The first example is well known lid driven cavity case. The side of the cavity is
d = 0.1, lid velocity is Uyq = 1 m/s, density is set to unit value and dynamic viscosity
to p = 0.01 Pas, which give Reynolds number Re = 10. The mesh is uniform and quite
coarse, consisting of only 400 cells. The case setup details and computational mesh is
provided as a basic tutorial example in OpenFOAM library, therefore this example also
serves to test the ability of freeCappuccino to use meshes written in polyMesh format.
Simulation is steady state, run in laminar mode, and SIMPLE algorithm is used to solve
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Fig. 2. Lid-driven cavity case. (a) Convergence of the SIMPLE algorithm, and (b) Velocity
magnitude and flow velocity vectors at steady state.

coupling of velocity and pressure fields. Figure 2 shows simulation convergence and
simulation result for velocity magnitude.

Next example is transient turbulent flow over backward facing step, also taken from
OpenFOAM example set, known there as pitzDaily case. It can be used to validate
several solver capabilities and as such is used as an example case for a few different
OpenFOAM solvers. Here we are interested to show results of using SIMPLE in non-
stationary mode. The mesh consists of 12225 cells. Turbulence is modelled using
standard k-¢ turbulence model. Convection scheme is second order upwind and
Venkatakrishnan gradient limiter is employed. Time-step is set to At = 0.001 s, and
number of SIMPLE iterations per time-step is limited to 30.

The flow develops to steady state after showing initial transients, which are shown
in Fig. 3 and Fig. 4 for time t = 0.02 s. Other options also exist for non-stationary run
besides running SIMPLE in transient mode, but this ability is useful because of the
stability when larger time-steps are used. Time-stepping is based on backward differ-
entiation formula of second order.

The code is extensively tested for turbulent flows in the atmospheric boundary layer
of complex terrains. Most of the algorithmic developments were done to enable effi-
cient treatment of highly distorted nonorthogonal meshes, which are often present

U Magnitude

0.000e+00 2,71 5421 8,131 1.084e+01

WLIIIIIIIIIIIIIIIII I‘Ii

Fig. 3. Snapshot of initial transient flow development in backward facing step case of Pitz and
Daily - Velocity magnitude
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Fig. 4. Snapshot of initial transient flow development in backward facing step case of Pitz and
Daily - Effective viscosity, after 0.02 s.

when real terrains are modelled. Major results are reported elsewhere e.g. [9, 12], and
readers are encouraged to consult these references for more detail.

Here we show a comparison of vertical wind-velocity profiles over complex terrain,
in wind-farm sitting study, Fig. 5. The differences between results of two codes with
the same model are greater than between two different models in the same code. We
believe that numerous algorithmic improvements aimed at flow over complex terrain
cases had led to improved predictions in this case.

150 T T T I T T T I T T
B Measurements

O=0O Cappuccino, k- Atmospheric modification

L | A=A\ Cappuccino, k-8 model

X <X WindSim, k-¢ model

+ —+ WindSim, k-¢ Atmospheric modification

*—* WindSim, k-¢ RNG model

100 =1 11 WindSim, k-® model

gl

5 6
Velocity magnitude [m/s]

Fig. 5. Vertical wind velocity profiles predictions, see [12].
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8 Conclusion

In this paper we have described a design approach for a computational science and
engineering software library aimed at computational fluid dynamics and in general to
computational continuum mechanics. Design decisions were such that any new solver
should easily be implemented with provided tools for general unstructured mesh
manipulation, operation over tensor fields and approximation of differential operators
needed to write governing equations of the problem in continuum mechanics. Code
parallelisation enables higher numerical efficiency for demanding problems. The code
is provided in public repository with Git version control (www.github.com/nikola-m/
freeCappuccino) with the hope to promote scientific collaboration and to serve as a
basis for reproducibility of scientific results.
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