
Software Engineering in a British Defence
Project in 1970

Ian Pyle(&)

York, UK

Abstract. This software development project took five years from 1968, and
engaged 50, rising to 130, people. They were programmers from a commercial
company, together with scientists from a government laboratory. In the infancy
of software engineering, completely new techniques were established to carry
out the task, based on system theory, which are described here. The project was
completed in 1973.

Keywords: Historical � Multi-computer � Radar � Linesman

1 Introduction

Linesman was the UK’s Air Defence System for the 1970s. After all the hardware had
been installed, including all the radars and about 10 specially-designed computers at
the building called L1 at West Drayton (near Heathrow airport), it was found in about
1967 that the contractor could not make the software for the computers, called the
Radar Data Processing System (RDPS). This is the story of how that software was
developed. It explains the software engineering approach and techniques used to design
and produce the software for the RDPS.

A team from Harwell was assigned to assist the contractor, and subsequently (after
a major review) to lead the software development. Stimulated by the dramatic publi-
cation of the report [1] of the NATO conference at Garmisch,“Software Engineering”,
we decided to apply the principles of systems engineering to the development of the
software for the RDPS.

1.1 Classification

Because it was essentially military, all work on the project was subject to the United
Kingdom’s Official Secrets Act, which meant that everything about it had to be treated
carefully to prevent disclosure. Some of the rules were ridiculous (for example, the
order code of the computers used was classified!) and the general limitation of infor-
mation made it extremely difficult at the beginning to find out what the project was
about and what the problems were. When there was a public crisis about it, we
discovered more from the daily newspapers that we had from the internal documents.

I. Pyle—Formerly of AERE Harwell.

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
D. Kreps et al. (Eds.): HCC13 2018, IFIP AICT 537, pp. 16–30, 2018.
https://doi.org/10.1007/978-3-319-99605-9_2

http://orcid.org/0000-0003-2156-4561
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99605-9_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99605-9_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99605-9_2&domain=pdf

Specifically, the Software Engineering approach and techniques had to be classified
(“Restricted”), and the present paper, over thirty years after the documents were
written, is probably the first public exposure of the details. (Earlier publications [2, 3]
about techniques used had to be guardedly disguised to avoid disclosure).

1.2 Contractual Relationships

In common with most British Defence Procurement projects at the time, Linesman was
carried out as a “cost-plus” contract, involving two principal parties: the Design
Authority (a private company, in this case The Plessey Company) who had to develop
and install the equipment, and the R&D Authority (a government laboratory, in the
case the Royal Radar Establishment: RRE, Malvern) who had to monitor the technical
work being done by the Design Authority, and confirm that it was appropriate for the
situation. In addition, the prospective end-user (a military body, in this case the Royal
Air Force) was involved in negotiations, particularly for training and eventual hand-
over.

Harwell only became involved at a late stage in the project, initially in support of
RRE, and with increasing despair as we discovered the inadequacy of the monitoring
and software engineering, in spite of increasing the numbers of people involved. After a
full review of the project, it was decided that Harwell should also take a leading part in
the work of the Design Authority, as well as continuing to support the R&D Authority.
The present paper is about the approach we took within the Design Authority to
achieve the required behaviour of the RDPS.

2 Background

Previous attempts to make the software for the RDPS had been overwhelmed by the
complexity of the requirements. In evidence to a parliamentary enquiry [4], a repre-
sentative of Plessey said “The software task involves the writing of more than a quarter
of a million 48-bit words and there existed nowhere any previous experience of the
programming of so large and complex an on-line real time system for air defence
purposes.” The company specialised in electronics and telephone exchanges, and they
recruited programmers who were only familiar with sequential programming. There
were no system programmers.

“An unsuccessful attempt was made by the Company in 1967 to obtain assistance
from software houses, but experience relevant to the Linesman task did not exist
anywhere. It was only from AERE that it was found possible to obtain a substantial
element of high grade programming effort.” Staff from A.E.R.E. Harwell (particularly
nuclear physicists, but initially from the computing group) were well experienced in
using computers for data gathering and control of experimental apparatus with
extensive electronics. A small team was allocated to the project in 1968, and we
proposed a novel approach, which was strongly influenced by the NATO Software
Engineering report; the style was essentially what was later described as the V-model.

The fully structured software system design applied System Theory to this problem,
by insisting on well defined components and interactions between them, at each

Software Engineering in a British Defence Project in 1970 17

element in a hierarchy. This brought out the importance of documentation for the
project, and led to the specification of a documentation structure to describe the soft-
ware, from design through implementation and testing to handover. A document called
the Software Standard [5], was written to define the rules of operation for the software
development, including comprehensive authorisation and change control. There were
no software tools to support the development, so all the documentation was produced
in a form that could be properly checked by human readers. Essentially, all the
information needed to ensure consistency on each item was included in a single doc-
ument. Between one document and another, relevant sections of text were identical.

3 Systems

From the totality of the RDPS, down to individual software modules, everything was
treated as a “system” having two aspects: (a) the whole, with specific behaviour and
specific allocated resources; and (b) a set of components, each of which could be a
smaller system, which interacted to provide the behaviour of the whole.

The Software Standard introduced nomenclature for the significant kinds of soft-
ware items in this project: “suites” for software involving several computers, concerned
with a particular function; “packages” for software within a single computer dealing
with a particular function; and “modules” as software components that are actually
compiled. Completed working software (as it became produced, and on which other
software would be built), was called a “presystem”.

The review of the system requirements identified three major areas: primary (re-
lating to the maintenance of a recognised air picture of the UK air space), secondary
(relating to maintaining the computer system and intercommunication between its
physical components in the presence of all possible failures), and tertiary (providing
facilities for program production and maintenance). The software staff were accord-
ingly divided into three departments to cover these areas.

The standard recognised that the requirements could not be stated in full before the
design of the system began; the design had to be undertaken with the assumption that
the requirements (particularly the primary requirements) would change in detail,
although the secondary and tertiary requirements would be more stable.

4 Structure and Content of the Software Standard

Because the intended users of the software standard were experienced programmers
with little knowledge of higher level software design or software engineering, the
standard was written with great detail specific to the Linesman Radar Data Processing
System. There were seven parts, covering different aspects of the process of software
development (see Appendix A for the list of contents, showing the sizes of each
section, and the date when the version was issued). The introduction explained the
purpose of the standard, specifically identifying the particular objectives, as

18 I. Pyle

(a) to assist individual programmers to produce programs which properly interface
with others to make a coherent working whole;

(b) to provide tangible output for other designers and management before
implementation;

(c) to become the reference basis for the final implementation;
(d) to provide the information needed for debugging and testing, and for training the

eventual users about the total design of the system; and
(e) to accumulate information about effort for future estimation.

For the three main parts (Requirements, Design, Implementation) there are a
number of sections, in each of which the standard explains the scope of the section, the
activities to be done, the products that would result, the criteria for completion, and the
possible need for repetition.

4.1 Requirements

Originally, the requirements for the RDPS had been expressed from the point of view
of the operators, with detailed descriptions of their consoles, the messages they might
receive, and the responses they might give to them.

Following the appointment of Harwell staff to oversee the project, the point of view
was shifted to the computer system, and the requirements were re-cast in terms of the
data that had to be held, and the processes that were to be applied to these data.
Specifically, the standard called for detailed specification of the observed objects
(which we called the “World Model”), historical background to be taken into account,
the monitoring, assessment and control procedures, outline specification of the com-
puting system, specification of operational events, and specification of transactions. For
each of these, the standard explained the scope of the particular requirement, the
activities to be carried out to write the relevant text, the document to be produced (and
by whom it was to be checked), the criterion for completion of the work, and conditions
under which some repetition of the work may have been necessary.

4.2 Design

The design of the RDPS software was explained in a sequence of sections, descending
top-down in detail from the overall software system design, through presystems, suites
and packages, to individual modules. For each level, the standard gave the issues to be
taken into account, the decisions to be made, and the outputs to be produced. A co-
ordinator had to be appointed to take continuing responsibility for the design through
all the development. For example, for suite design, the design team had to decide how
to distribute the suite’s functionality between packages in different computers, and
what communication was needed between these. They had to decide how the resources
allocated for the suite were to be distributed among its constituent packages. At the
bottom level, the module designer had to give identifiers for the module parameters,
define the data structures needed, prepare a module algorithm including debug points,
and prepare an outline test plan.

Software Engineering in a British Defence Project in 1970 19

When each design document had been written to part 3 (see “Planning and Progress
measurement” below), and approved by the appropriate authority, the design team had
completed that stage of the work, and was assigned another item of work.

4.3 Implementation and Testing

Implementation was bottom-up, with section dealing with ascending levels of com-
plexity, from modules to packages, suites, presystems and the whole system. For each,
the standard identified the focus of the work, as the element was assembled from its
constituents and tested to show that it conformed to its specification. For example, for a
package, the activities included deciding the sequence of modules to be assembled,
describing the test environment for off-line and on-line testing, labelling of all test
points with in the package, preparation of test data and expected trace points; the results
included corresponding output values, package execution times and module use counts,
together with the overall package size. A log was produced recording all significant
activities.

Presystem implementation and testing formed a significant part of the overall
demonstration of progress of the development project.

4.4 Resources

The standard recognised that the utilisation of resources and maintenance of records
was vital for successful engineering, and defined the duties of a specific group that had
responsibility for this work; they were called the System Keepers. Their work involved
both clerical and analytical activities. Records were kept of the system, the presystems,
and the various computer roles, including lists and software logs. The system keepers
were also responsible for the preservation and maintenance of paper tapes and magnetic
tapes for the system.

They also monitored, analysed and assessed the utilisation of resources within the
system; specifically, for the use of core stores, CPUs, and the inter-computer com-
munication highways. The system keepers had to liaise with coordinators for each
element of the design.

4.5 Approval of Documents

Every document had to be approved in some way before it was considered to be
satisfactory. There were several levels of approval, depending on the kind of document.
Every document began as “Draft,” when its author could modify it arbitrarily. Other
levels were “Edition,” “Issue,” and “Certified,” following checking and approval by
appropriate bodies, including an Internal Approval Authority and an External Approval
Authority. The standard laid down the criteria (depending on the type of the document)
and corresponding approval authorities.

20 I. Pyle

4.6 Appraisal and Preparation for Handover

In preparation for handover of the developed system to the intended users, particular
documents had to be prepared and checked, covering manuals and software details for
subsequent use and maintenance of the system. The standard specified what these must
contain, and how they were to be checked. For example, the final part (part 7) of each
document defining a software item had to be prepared by the System Keepers based on
material from periodic appraisals, including a summary of the usage of the item, the
faults attributed to it, details of amendments to it, together with an appraisal of the
item’s effectiveness and notes on any foreseen modifications or extensions.

5 Results

The application of the software standard resulted in the production of a very large
number of documents, of which only a few can be mentioned here.

5.1 Requirements

The first and most significant challenge was to find a form of words which everyone
would agree was the purpose of the RDPS. What was agreed was very different from
anything written previously (although the words had been spoken). This was Part 1 of
the top-level design document [6]. The text is given in Appendix B. Notice that the
overall purpose was developed there into layers of facilities, called primary (Appli-
cation Software), secondary (System Foundation) and tertiary (Program Preparation).
By analysing the dependencies between these layers, it became clear that, in contrast
with earlier priorities, the development of the RDPS software had to focus first on
Program Preparation, then on the System Foundation, and, only after those had been
designed, on the Application Software. Until then, effort had been concentrated on the
sequence of primary facilities needed, and got nowhere.

5.2 Planning and Progress Measurement

The documentation structure identified in the Software Standard provided the basis for
planning the development, and for measuring progress, by the stages of parts of the
various documents.

For each item, whatever its size, the documentation was produced as a sequence of
parts, with time-gaps between the writing of specific stages. In general, Part 1 specified
the behaviour of the item and the resources allocated for it. Part 2 specified the con-
stituents of the item, defining the behaviour and resources for each constituent. Part 3
described the interactions between the constituents, explaining how they jointly pro-
duced the behaviour given in Part 1. On completion of Part 3, the document was
checked and then distributed for use as a basis for the design of the constituent systems.
In parallel, Part 4 was written to specify the order of assembly of the constituents, with
the rationale. Part 5 specified the tests to be carried out (after the constituents had been
produced) which confirm that the interactions of Part 3, and the behaviour of Part 1,

Software Engineering in a British Defence Project in 1970 21

were achieved. When the constituents had been produced, Part 6 was written to record
the results of the tests identified in Part 4. Part 7 recorded the handover of this item as a
constituent of the next higher system.

A different principle was used for large-scale progress measurement, in terms of
demonstrated facilities on the computers; these were called “Presystems” (see below).

6 Presystems

Seven presystems were defined, mostly chronological, but for the infrastructure dis-
tinguishing between “basic” facilities need to progress, and “advanced” facilities to
give additional functionality.

6.1 Programming Support

Presystem 1 provided the Basic Programming Support, i.e. compilation and assembly
of modules, preparation of magnetic tapes for loading into on-line computers, on-line
debugging aids, and simple reporting from post mortem dumps. This used an XL4
computer with an operating system called OS090.

Presystem 2 provided additional power for the workload of developing the RDPS
software, as a computer bureau, using an additional computer, an ICL 1902A, with disk
files and fast input/output. The operating system was called XANOS.

6.2 Foundation

Presystem 3 was the Basic System Foundation, providing scheduling of tasks on the
on-line computers, communication between them, loading of software from magnetic
tapes, control of the allocation of computers to specific rôles, on-line debugging
facilities, peripheral handling and regular checking for faults.

Presystem 4 was for Advanced System Foundation, for responding to detected
faults and making appropriate changes to allocations, for reconstituting data after a
reconfiguration, for diagnosing reported faults, and for driving special equipment to
investigate faulty electronic units. Subsequently, Presystem 4 was split, because a
major hardware upgrade to the computers affected testing. The revised Presystem 4
contained the facilities independent of the upgrade, and a further presystem, called 4T,
was defined to contain the additional facilities dependent on the upgrade.

6.3 Applications

Presystem 5 handled the various kinds of buttons and lamps at operators’ consoles,
including a command language interpreter for recognising operators’ key sequences
and taking appropriate actions.

Presystem 6 dealt with autonomous processes (detecting relevant changes) and
maintaining the world model (both live and simulated).

Presystem 7 handled height finder equipment and secondary radar interactions.

22 I. Pyle

7 Management

During the early period, before the design had made much progress, the management
were extremely uncomfortable, because there was no way of estimating the amount of
effort or time that would be required. However, once the structure in terms of
presystems and suites had been identified, an overall plan could be prepared, and
priorities identified for the allocation of staff and computer resources. Then as work on
implementation progressed, confidence increased, although there were still problems of
interaction between the hardware changes found necessary and the availability of the
computers for debugging.

8 Quality

Surprisingly, the Software Standard did not mention quality: there was nothing about
Quality Control or Quality Assurance, and I been unable to find any occurrence of the
word “quality” in the document.

In retrospect, I think that the reason was that we considered quality to be intrinsic to
the structure and procedures in the standard, not an “add-on”: by having text copied
verbatim from one document to another, and by insisting that each document had a
clearly-defined focus, with well-structured contents and checking by all relevant par-
ties, we presumed that the quality would automatically be there.

In practice, we did set up a quality control unit (a good management decision!), but
its responsibilities were administrative rather than technical: they had to confirm that
each document had been written and checked in accordance with the rules set down in
the Software Standard, according to the type of the document.

9 Education

No-one in the project was a software engineer as we now understand the term. We were
working from first principles, and disseminating our experience and insights as the
project progressed. Some of the ideas of software structure were unfamiliar to the
programmers, who were experienced mainly in a dialect of Coral 66 [7]: supposedly for
real-time programming, but with no features (such as multi-programming, or interrupt
handling) that are now known to be required for that field (see Jackson [8]). The ideas
of the software standard were spread by example and mentoring. (I ordered fifty copies
of the NATO Software Engineering report for distribution to staff and management).

9.1 Tasks

A particular problem was that most programmers did not understand the concept of a
task, or process, in a multiprogramming environment. (The seminal description by
Wirth [9] was still years ahead). Only after the successful implementation of the OLOS
suite (On-Line Operating System) were most staff convinced that this was a viable and
essential feature of the software.

Software Engineering in a British Defence Project in 1970 23

10 Handover

The RDPS was handed over to the Royal Air Force in July 1973, at a formal meeting
which reviewed all the software according to the structure and terminology of the
Software Standard. The R.A.F. gave a demonstration of the completed system to
invited guests on 18th December 1973.

11 Origin of Software Standard

The ideas behind the document were largely derived from experience in the design of
software at Harwell (e.g. the Fortran compiler for the Atlas computer, and the HUW
system [10]) and “systems” thinking, helped by the NATO report on Software Engi-
neering. However, for the context of the Linesman RDPS, it was recognized that
principles were not enough, and great care was needed to express the ideas in concrete
form for this project.

A group of three people: myself, J.R. Taylor (Harwell), and D.M. England (Ples-
sey), spent about three months in the spring of 1970 carefully writing the document, in
preparation for the eventual decision to change the direction of the software devel-
opment to the method explained here. The edition of the document that I preserved is
dated July–November 1970.

12 Conclusion

This was an innovative software engineering project, on a larger scale than had previously
been encountered in the U.K. Over a hundred people were employed on the development
of software for a major defence requirement. The software engineering principles used
were simple (and, some said, boring!), without any particular “method” or silver bullet:
just carefully-focussed well-structured writing, with extensive appropriate checking. The
constraints were severe, yet a system was produced which was handed over and accepted
by the military. Because of its military nature, little has been published about it hitherto.

‘This changed everything’ because the work reported here established basic prin-
ciples for Software Engineering: in System Theory. The idea of a system as a set of
interacting components, whose properties exceeded those of the individual compo-
nents, was reified here to provide an effective method of developing software. The
success of the project was attributable to the many people involved in the development
of the ideas as well as in the actual software development. The pressure on us all was
immense, conscious of the political and military implications of the project. This was a
major team effort, and the experiences of those involved enabled them to carry out
subsequent (classified) projects with great success. The major failure was the conse-
quence of the Official Secrets Act: details about the method could not be widely
disseminated. The learning was passed on to other developments only by the people
who had been involved (from Harwell and Plessey, and, to a lesser extent, the Royal
Air Force). I recognised that that the resulting system would be unlikely to be fully
satisfactory, and (as a result of experience with implementing this approach to software

24 I. Pyle

engineering) in an Infotech State of the Art lecture [11], I proposed the acronym
“DITHER” to express the overall process: Design, Implement, Test, Evaluate, Replace.
Thus hoped that this work would enable the commissioning authority (i.e. the British
Ministry of Defence) to do a better job next time. Unfortunately it did not. After
Linesman, the United Kingdom Air Defence Ground Environment (UKADGE) was
out-sourced to a different company which encountered problems that were different but
with no significant improvement in outcome. But Harwell continued to develop soft-
ware systems for sensitive projects, with great success.

What had previously been a failing project, severely criticised in the press and the
subject of parliamentary questioning [12], dropped out of the news. It was working.

13 About This Document

Although the work described here was carried out in the years around 1970, it could not
be published then. The present document was started in 2010, as a “memoir” recording
my recollections about the project. Because it referred to classified information, it was
submitted for security clearance in May 2017, and was cleared for publication. Further
details are available from the author at <ian.pyle@cantab.net>.

Appendix A – Contents of the Software Standard

Date Pages

1 INTRODUCTION 24.7.70 4 pp
1 Function of Document 1/1
2 Design Environment 1/1

3 Objectives of Documentation 1/1
4 Structure of the Standard 1/1

5 Designation and Approval of Documents 1/4
6 Status of Standard and Revision Procedures 1/4

2 SPECIFICATION OF OPERATIONAL REQUIREMENTS 26.10.70 10 pp

1 Introduction 2/1
2 Outline Requirements 2/1

3 Detailed Specification of Observed Objects 2/2
4 Historical Assessment 2/3
5 Specification of Monitoring, Assessment and Control Procedures 2/3

6 Outline Specification of Computing System 2/5
7 Specification of Operational Events 2/7

8 Specification of Transactions 2/8
3 DESIGN 24.7.70 14 pp

1 Introduction 3/1

2 Overall Software System Design 3/2
3 Presystem Design 3/5

4 Suite Design 3/6
5 Package Design 3/8
6 Module Design 3/13

(continued)

Software Engineering in a British Defence Project in 1970 25

(continued)

Date Pages

4 IMPLEMENTATION AND TESTING 24.7.70 14 pp
1 Introduction 4/1

2 Module Implementation and Testing 4/1
3 Package Assembly and Testing 4/3
4 Suite Assembly and Testing 4/7

5 Presystem Assembly and Testing 4/9
6 System Assembly and Testing 4/12

5 UTILISATION OF SYSTEM RESOURCES AND MAINTENANCE
OF RECORDS

26.10.70 10pp

1 Introduction 5/1
2 Maintenance of Records 5/2
3 Monitoring, Analysis, and Assessment of Resource Utilisation 5/6

6 APPROVAL of DOCUMENTS 26.10.70 4 pp
1 Introduction 6/1

2 Levels of Approval 6/1
3 The Internal Approval Authority 6/3
4 Technical Editing 6/4

7 APPRAISAL AND PREPARATION FOR HANDOVER 27.11.70 5pp
1 Introduction 7/1

2 User Manuals and User Guides 7/1
3 Maintenance 7/3
4 Appraisal 7/4

Appendices Date Pages

A DOCUMENT DESIGNATION, STATUS AND HANDLING 24.7.70 17 pp
A1 Document Designation 11

A2 Document Status and Handling 5
A3 Integration of Existing Documents into the Document Structure 1

B DOCUMENT PREPARATION 24.7.70 40 pp
B1 Document Style and Layout 11
B2 Design Document Formats 29

C DIAGRAMMATIC AIDS 31.8.70 40 pp
C1 Flowcharts 19

C2 Decision Tables 2
C3 Hierarchy Diagrams and Matrices 6
C4 Communication Diagrams and Matrices 5

C5 Data Structure Diagrams 3
C6 Timing and Sequence Charts 2

C7 Core Maps
D RECORD PREPARATION

D1 Lists, Indexes, and Glossaries

D2 Load Lists
D3 Data Lists

D4 Software Logs

(continued)

26 I. Pyle

Appendix B – The RDPS Software System: Overall Requirements

The following is the text of Part 1, Sect. 1, of SDA 000000/3, edition 5, which was
distributed for review, with the intent of raising its status to Issue 2 on 6th September
1971.

1. FUNCTION

The Radar Data Processing System (RDPS) provides the information for the central
co-ordination and controlling element of the Linesman U.K. Air Defence System. Its
function is to maintain and display representations of the airspace activity of defence
interest in the U.K. Air Defence Region and approaches (both live and simulated) as a
‘Recognised Air Picture’, on the basis of information received from radar, data links,
operator injections, and an environment simulator. The information is to be displayed
on equipment in the L1 building, and transmitted over data links for use elsewhere,
especially to Continental Early Warning Stations.

1:1 PRIMARY FACILITIES

The facilities to be provided by the RDPS (Hardware and Software) are defined in
document SRA 000099. The following list summarises the primary facilities that are
required to fulfil the function defined above.

Automatic input/output of information over data links from and to equipments
external to the RDPS, in locations outside the L1 building, with some checking of
content.

• Input of information from operators by means of keys and rolling balls at their
consoles, using displays to assist the construction of data fields and assist in
checking prior to injection.

• Output of information to operators by means of various displays: Electronic Data
Display (EDD), Marked Radar Display (MRD), Label Plan Display (LPD), Higher
Formation Display (HFD), General Situation Display (GSD) and Totes,

The information processing needed to provide these facilities calls for:

(continued)

Appendices Date Pages

E TECHNIQUES

E1 Programming in Minicoral
E2 Programming in XAL

E3 Off-line Testing
E4 On-line Testing and Field Trials

F REFERENCE MATERIAL

F1 Glossary
F2 Bibliography

Software Engineering in a British Defence Project in 1970 27

• construction, maintenance and updating of a world model, including transformation
and vetting of inputs;

• periodic checks to determine whether significant or critical conditions have
developed in the world model;

• messages played out by the system indicating condition known to be of interest;
• routine playout of data from the world model for display or transmission to another

system;
• playout of specific data from the world model to console operators on demand;
• computations performed on the world model on request from console operators.

The software which provides these primary facilities is called Applications Soft-
ware (or functional suites).

1:2 SECONDARY FACILITIES

In order that the primary facilities of the RDPS may be fulfilled, there is a sec-
ondary function, namely to enable the RDPS to operate continuously; giving service in
the face of the inevitable faults (or other anomalous occurrences) to hardware and
software, informing the system controller when any malfunction is suspected, and
taking such automatic recovery procedures as are possible.

A discussion of the availability to be expected is given in Part 3. The secondary
facilities therefore are:

(a) detecting and reporting suspected faults,
(b) degrading gracefully and recovering rapidly in the event of a fault occurring,
(c) assisting engineers in the investigation and cure of faults,
(d) reacting to instructions from the system controller concerning the hardware of the

RDPS.

The information processing needed to provide these secondary facilities calls for:

• construction, maintenance and updating of system records of the hardware state and
the roles occupied;

• reloading of programs into computers when needed;
• reconstitution of data for programs between loading and use;
• using a healthy computer to obtain information for diagnosis of hardware faults;
• checking hardware for presence and correct functioning;
• communication with system controller about suspicious events;
• providing an on-line debugging environment.

The software which provides these secondary facilities is called Foundation Soft-
ware (or system foundation).

1:3 TERTIARY FUNCTION AND FACILITIES

The tertiary function needed is to prepare information to be transferred into the
main system, and post process information transferred out of it. During the develop-
ment stages, the tertiary function is very important, as it calls for program preparation
facilities. The same facilities are also needed during the operational use of the RDPS, in
order to repair software errors and make enhancements, although the level of activity

28 I. Pyle

will be lower. This function calls for a general sequential job execution facility, which
is defined in Appendix D.

1:4 OTHER FUNCTIONS AND FACILITIES

Finally there are number of administrative and documentation tasks which will be
processed by computer in the interests of accuracy and efficiency. These include
planning and maintaining: resource utilisation records, document numbering schemes,
and indexes.

References

1. Naur, P., Randell, B. (eds.): 1968 NATO Conference, “Software Engineering”, Report on a
Conference Sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7–11
October 1968. Scientific Affairs Division NATO, Brussels, Belgium (1968). http://
homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

2. Pyle, I.C.: Some techniques in multi-computer system software design. Softw. Pract.
Experience 2, 43–54 (1972)

3. Stenson, J.: Reconfiguration of computers in critical systems. In: Computing with Real Time
Systems: Proceedings of First European Seminar on Real-Time Programming, A.E.R.E.
Harwell, 5–7 April 1971. Transcripta Books (1972)

4. Fourth report from the Select Committee on Science and Technology, Session 1970–71: The
prospects for the United Kingdom Computer Industry in the 1970’s, vol. 3: Appendix 42:
The Linesman and Mediator Projects (Plessey). HMSO 621-III (1971)

5. Plessey document (“Restricted”): “Software Standard”, reference number SSJ 000001 of
27.11.70, later changed to MSJ 000001 (1970)

6. Plessey document (“Restricted”): “The RDPS Software System” reference number SDA
000000 (1971)

7. Woodward, P.M.: Official Definition of CORAL 66. HMSO, November 1970.
(ISBN 0114702217)

8. Jackson, K.: Adding real-time features to CORAL 66 via the operating system. In:
Computing with Real Time Systems: Proceedings of First European Seminar on Real-Time
Programming, A.E.R.E. Harwell, 5–7 April 1971. Transcripta Books (1972)

9. Wirth, N.: Toward a discipline of real-time programming. Commun. ACM 20(8), 577–583
(1977). (ISSN: 0001-0782)

Software Engineering in a British Defence Project in 1970 29

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

10. McLatchie, R.C.F.: HUW, an interactive computer system on IBM System 360/65. In:
SEAS XIV, Conference, Grenoble (1969)

11. Pyle, I.C.: Hierarchies: an ordered approach to software design. Infotech State of the Art
lecture 15 June 1971, in Infotech State of the Art report, Software Engineering, pp. 255–268
(1972)

12. Select committee on Science and Technology (Subcommittee A) Minutes of evidence:
Wednesday 31st March 1971; Annex E: Question 5. Military/Civilian systems for Air
Defence and Air Traffic Control (Linesman/Mediator)

30 I. Pyle

	Software Engineering in a British Defence Project in 1970
	Abstract
	1 Introduction
	1.1 Classification
	1.2 Contractual Relationships

	2 Background
	3 Systems
	4 Structure and Content of the Software Standard
	4.1 Requirements
	4.2 Design
	4.3 Implementation and Testing
	4.4 Resources
	4.5 Approval of Documents
	4.6 Appraisal and Preparation for Handover

	5 Results
	5.1 Requirements
	5.2 Planning and Progress Measurement

	6 Presystems
	6.1 Programming Support
	6.2 Foundation
	6.3 Applications

	7 Management
	8 Quality
	9 Education
	9.1 Tasks

	10 Handover
	11 Origin of Software Standard
	12 Conclusion
	13 About This Document
	Appendix A – Contents of the Software Standard
	Appendix B – The RDPS Software System: Overall Requirements
	References

