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Abstract. This paper presents usage of convolutional neural network
for classification of sign language numeral gestures. For requirements of
this research, we created a new dataset of these gestures. The dataset
was recorded via Kinect v2 device and it consists of recordings of 18
different people. Only depth data-stream was used in our research. For
a classification task, there was utilized classic VGG16 architecture and
its results were compared with chosen baseline method and other tested
architectures. Our experiment on classification showed the great poten-
tial of neural networks for this task. We reached recognition accuracy
86.45%, which is by more than 34% better result than chosen baseline
method.
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1 Introduction

The task of increasing the level of automation and robotization in all spheres
of human activity is one of the keys in the modern information society. In this
connection, scientists and leaders of developed countries, as well as developing
countries, in cooperation with world scientific centers and companies pay atten-
tion to technologies for an effective, natural and universal interaction of a person
with computers and robots.

Currently, interactive information systems are used in the areas of social ser-
vices, medicine, education, robotics, the military industry, community service
centers, to interact with people in various situations. In addition, robotic assis-
tants are finding more and more widespread which are simple and intuitive in
use. Compared to industrial robots that are only able to repeat predetermined
tasks, robot-assistants are aimed at interacting with people in the performance
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of tasks. In this case, many classical interfaces are not enough. Instead, more
intuitive and natural approaches for human interfaces are needed (speech [2], ges-
tural [3], multimodal [1,4–6], etc.). For example, gestures can transmit simple
commands to a robot that will carry unambiguous meaning and are effective at
some distance from the robot and in noisy conditions when speech is ineffective.

It is also known that deaf people have limited capabilities when communi-
cating with the hearing. Therefore, there is necessity to develop recognition of
sign language technologies for deaf people. In addition to large world compa-
nies, national research centers are also working in this direction. Scientists from
the American Institute of Robotics at Carnegie Mellon University are working
on a system that can analyze the language of the body and gestures up to the
point of the fingers [7]. A number of researchers rightly point out that serious
differences in the semantic-syntactic structure of written and sign languages do
not yet allow an unambiguous translation of the sign languages. Therefore, there
are currently no fully automatic sign language translation systems. To create a
complete model, it is necessary to make a semantic analysis of written phrases,
and this is still possible only at a superficial level because of imperfections in
text analysis algorithms and knowledge bases.

At present, Microsoft provides a tool in the form of a sensor-rangefinder
Kinect for the development of systems with the possibility of recognizing the
sign language [8,9], which allows us to obtain a three-dimensional video stream
of information in the form of a depth map or a three-dimensional cloud of points.
MS Kinect 2.0 provides simultaneous detection and automatic tracking of up to
6 people at the distance of 1.2–3.5 meters from the sensor. In the software, a
virtual model of human’s body is presented as a 3D skeleton of 25 points.

The paper is organized as follows: in Sect. 2 we introduce used dataset; in
Sect. 3 we presented used processing methods and discuss software implemen-
tation details; in Sect. 4 we describe the experiment and show obtained results;
and finally in Sect. 5 we draw a conclusion and outline our future research.

2 Dataset

In this paper, we use our own dataset of numeral hand gestures. We recorded 10
gestures of a hand performing numbers from American Sign Language. These
gestures are, to some extent, universal and many other sign languages use them.
We recorded 18 people performing the gestures with 5 repetitions using a com-
mercial depth sensor Kinect v2. For the purpose of this research, we use only
the depth data-stream. Each repetition of a gesture consists of a movement of
the hand into the performing space, where the hand stops and a static gesture
representing a number from zero to nine is shown. To obtain only the frames
with the gesturing static hand we implemented our own semi-automatic labeling
algorithm. Since Kinect provides us with a skeletal model of a human it is easy
to follow the movement of the hand by tracking a joint representing the palm
of the hand. Some time synchronization is needed but the position of the joints
changes linearly between consecutive frames and thus the proper position of the
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palm joint in the time of depth map acquisition is easily interpolated. The palm
joint location is considered as a center of a 3D box containing the hand. Since
Kinect uses orthographic projection in the depth axis the depth of the 3D box
is always constant and has been chosen to be 200 mm. However, the xy-axes use
projective transformation and thus the size of the 3D box in this image plane
has to be adapted according to the depth of the palm joint. We use the same
size of the box in both the x and y axis computed using the formula:

M =
α · depthmax

depth
, (1)

where M is the size of the box in pixels, depthmax is the maximal depth of the
capturing device (in our case 8000), depth is the measured depth in the palm
joint location, and α is a scale coefficient, which we experimentally chose equal
15. All the 3D boxes are resized to 96 × 96 pixels and the depth in the box is
normalized from 0 to 1. These resulting hand depth images are manually labeled
as either one of the numeral gestures or as a non-informative gesture simply
named background. Furthermore, if the performer used his/her left hand for
gesturing the resulting hand depth image was flipped.

Next, the hand depth images were augmented to help with the training of the
neural network. We used random translation and planar rotation to obtain the
final dataset. Each hand image was translated four times by a randomly selected
2D vector representing the planar translation. The numbers were drawn from
a uniform distribution in an interval [−12; 12] px. The rotation was performed
three times by a randomly selected angle from the interval ±20◦. In total, the
dataset consists of 130843 depth images of hands. Some examples of the dataset
are shown in Fig. 1.

Fig. 1. Example of the dataset. From top left to the bottom right: gesture for no. 5,
background, no. 4, no. 0, no. 2, and background again.
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3 Methods

Due to the neural networks improvements since 2012 [10], most hand-crafted fea-
ture descriptors in image classification, if enough data available, become inferior
in comparison with machine-learned ones. In this paper we tested two approaches
on the task of numeral gesture classification.

First, we calculated Histogram of Gradients (HoGs) [11] for all the data.
Each HoG’s cell had 16× 16 pixels and each block had 3× 3 cells. With this
settings we obtained feature vector with dimension of 1152 for each image.

These HoGs were used to train standard Support Vector Machine (SVM)
[12] classifier with RBF kernel. This setup is used as our baseline method.

Second, we trained convolutional neural network with modified VGG16 archi-
tecture [13]. This architecture belongs to the golden standard among neural net-
work architectures used for image classification, especially for tasks with a lower
amount of training data. The exact network configuration we used is shown in
Table 1.

Table 1. Modified VGG16 architecture.

Layer Properties Activation fcn

Conv1a 3× 3, stride 1, filters 64 ReLU

Conv1b 3× 3, stride 1, filters 64 ReLU

Max pool 2× 2, stride 2

Conv2a 3× 3, stride 1, filters 128 ReLU

Conv2b 3× 3, stride 1, filters 128 ReLU

Max pool 2× 2, stride 2

Conv3a 3× 3, stride 1, filters 256 ReLU

Conv3b 3× 3, stride 1, filters 256 ReLU

Max pool 2× 2, stride 2

Conv4a 3× 3, stride 1, filters 512 ReLU

Conv4b 3× 3, stride 1, filters 512 ReLU

Max pool 2× 2, stride 2

Conv5a 3× 3, stride 1, filters 512 ReLU

Conv5b 3× 3, stride 1, filters 512 ReLU

Max pool 2× 2, stride 2

Fully-connected1 1024D ReLU

Dropout dropout rate 0.5

Fully-connected2 11D SoftMax
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4 Experiments and Results

In our experiment, we evaluate the performance of methods on the classification
task of numeral gestures, i.e. we want to classify the input image into one of 11
classes (10 numerals and background).

Due to the amount of data, we use cross-validation with 10 different cross-
validation settings. For each of them, our dataset was split into two subsets -
train set, and test set, where each test set contained data from 4 speakers and
train set rest of them.

As a benchmark method SVM classifier trained on HoGs with dimension of
1152 was used. The average recognition accuracy among all the cross-validation
settings was 52.31% ± 3.51% on the test data.

Table 2. Comparison of the recognition accuracy results from individual cross-
validations (CVs).

CV split Accuracy, %

No. 1 83.37

No. 2 83.72

No. 3 92.04

No. 4 87.01

No. 5 88.11

No. 6 83.74

No. 7 88.85

No. 8 84.80

No. 9 84.16

No. 10 88.73

For neural network architecture, we come out from VGG16 architecture,
however, we cut one of the fully-connected layers entirely and the second one
was resized from 4096 to 1024, i.e. this layer provides feature vector with size
1024, which is comparable with the dimension of used HoG descriptor.

The neural network was trained with 20 epochs with mini-batch size 64 and
with initial learning rate = 10−3. The learning rate was decreased after 10 epoch
to 10−4. For updating network parameters standard SGD optimization with
momentum = 0.9 and weight decay = 5 × 10−4 was used. As a loss function,
standard Softmax loss was used. Neural network was implemented in Python
using Keras deep learning library [14]. The average recognition accuracy among
all the cross-validation setting was 86.45% ± 2.93%, which is by more than
34% better than used baseline method. The results from the individual cross-
validations can be found in Table 2.
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The results show us, that not each cross-validation is equally difficult. This
phenomenon is probably caused by the different ability of each speaker to per-
form numeral gestures properly. Further, it can be caused by inconsistency during
labeling among our annotators. You can see some examples of misclassification
in Fig. 2.

Fig. 2. Examples of misclassification. From the top row left to right: classified as 3
instead 2, classified as 7 instead 2, classified as background instead 3. Bottom row:
classified as background instead 5, classified as background instead 6, classified as
background instead 7. Last two are examples of wrong labels in our dataset.

We also tested some other neural network architectures during our initial
experiments. All of them were tested only on cross-validation split number 1
with the same training settings as our modified VGG16. For comprehensive
comparison see Table 3. CNN3× 32 is a simple architecture with three convo-
lutional layers, whereas each of them has 32 filters with kernel size 3× 3, and
two fully-connected layers (one with size 1024 and the last one with size 11 as
a classification layer). CNN3× 32b is almost the same architecture, however,
the number of filters of the second convolution is doubled and the third one is
quadrupled. CNN3 + 5 + 7 has three convolutions and 2 fully-connected layers
again, however, each convolution has different size of the kernel (3, 5, and 7
respectively). All of the convolutional layers have 32 kernels again. Last tested
architecture CNN3 + 5 + 7b utilizes the same approach as CNN3× 32b, e.g. the
number of kernels in convolutions is appropriately increased.

Overall, the experiment shows the superiority of the approach utilizing a neu-
ral network and machine-learned features over the classic HoG+SVM approach.
Moreover, we reached very promising results, which show us a great potential of
neural networks for gesture and sign language recognition.
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Table 3. Comparison of baseline method, modified VGG16 and other tested architec-
tures in terms of recognition accuracy.

Method Accuracy, %

HoG+SVM 50.12

VGG16 1024 83.72

CNN3× 32 71.23

CNN3× 32b 73.18

CNN3 + 5 + 7 74.42

CNN3 + 5 + 7b 75.11

5 Conclusion and Future Work

Sign language recognition and gesture recognition is very demanded task in the
modern world. We believe it is essential for next generation of robotic assis-
tants, as well as an assistive tool for deaf people. In this paper, we show the
great potential of the usage of neural networks for this task. Moreover, we reach
very promising recognition results on our own dataset of sign language numeral
gestures. We believe that with some minor modification of our neural network
architecture, with more augmentations, and with bigger training set, we can
reach flawless results.

In our future research, we would like to extend our dataset with recordings
from more speakers. Additionally, we would like to add some other important
sign language gestures.
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