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Abstract. This paper presents a study on mutual speech variation influ-
ences in a human-computer setting. The study highlights behavioral pat-
terns in data collected as part of a shadowing experiment, and is per-
formed using a novel end-to-end platform for studying phonetic variation
in dialogue. It includes a spoken dialogue system capable of detecting and
tracking the state of phonetic features in the user’s speech and adapt-
ing accordingly. It provides visual and numeric representations of the
changes in real time, offering a high degree of customization, and can
be used for simulating or reproducing speech variation scenarios. The
replicated experiment presented in this paper along with the analysis of
the relationship between the human and non-human interlocutors lays
the groundwork for a spoken dialogue system with personalized speak-
ing style, which we expect will improve the naturalness and efficiency of
human-computer interaction.
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1 Introduction

With expanding research on, and growing use of, spoken dialogue systems
(SDSs), a main challenge in the development of human-computer interaction
(HCI) systems of this kind is making them as close as possible to human-human
interaction (HHI) in terms of naturalness, fluency, and efficiency. One aspect
of such HHIs is the relationship of mutual influences between the interlocu-
tors. Influence here means changes in one interlocutor’s conversational behavior
triggered by the behavior of the other interlocutor. We refer to changes that
make the interlocutors’ behaviors more similar as convergence. Convergence can
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occur in different modalities and with respect to various aspects of the conver-
sation, like eye gaze, gestures, lexical choices, body language, and more. In this
paper, we concentrate on phonetic-level influences, i.e., phonetic convergence.
More specifically, we examine pronunciation variations over the course of HCIs.
As speech is the principal modality used for interacting with SDSs, we believe it
is an especially important modality to study in the field of HCI. Simulating and
triggering convergence on the phonetic level, as found in HHI, may contribute a
lot to the naturalness of dialogues of humans with computers. SDSs with such
personalized speech style are expected to offer more natural and efficient inter-
actions, and move one more step away from the interface metaphor [5] toward
the human metaphor [3].

The novel system introduced in Sect. 3 tracks the states of segment-level pho-
netic features during the dialogue. All of the analyses are automated and run in
real time. This not only saves time and manual work typically needed in conver-
gence studies, but also makes the system more suitable for integration into other
applications. In Sect. 4, we use this newly introduced system with recordings col-
lected as part of a shadowing experiment to examine the relationship of mutual
influences between a (simulated) user and the system. Using these signals, the
system provides both visual and numerical evidence of the mutual influences
between the interlocutors over the course of the interaction. The system itself
will be made freely available under an open-source license.

2 Background and Related Work

Integrating support for changes in the speech signal into computer systems may
enhance HCI and provide improved tools for studying convergence in HCI. [18]
discusses the advantages of systems that dynamically adapt their speech output
to that of the user, and the challenges involved in developing and using these
systems.

2.1 Phonetic Convergence

According to [19], phonetic convergence is defined as an increase in segmental
and suprasegmental similarity between two interlocutors (e.g., [27]). In contrast
to entrainment, we use the term convergence to describe dynamic, mutual, and
non-imposing changes. Phonetic convergence has been found to various extent in
conversational settings [13]. There is evidence for phonetic convergence being both
an internal mechanism [21] and socially motivated [9]. Previous studies of phonetic
convergence in spontaneous dyadic conversations have focused on speech rate [26],
timing-related phenomena [23], pitch [8], intensity [12], and perceived attractive-
ness [16]. Phonetic convergence is often examined in the scope of shadowing exper-
iments, in which the participants are asked to produce certain utterances after
hearing them produced in some stimuli (e.g., [7]). This is typically done with sin-
gle target words embedded in a carrier sentence. The experiment showcasing our
system in Sect. 4 uses whole sentences as stimuli, in which the target features are
embedded, making it a semi-conversational HCI setting.
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2.2 Adaptive Spoken Dialogue Systems

Various studies have investigated entrainment and priming in SDSs, aiming to
better understand HCI dynamics and improve task-completion performance.
[15], for example, focused on dynamic entrainment and adaptation on the lex-
ical level. Others, like [17], concentrated on word frequency. [20] examined
changes in both lexical choice and word frequency. While these studies addressed
the changes in experimental, scripted scenarios, the theoretical foundations for
studying these changes in spontaneous dialogue exist as well [2]. [6] provide
examples of online adaptation for dialogue policies and belief tracking.

It is important to note that while all of the studies mentioned above exam-
ine various aspects of dialogues, none of those are related to speech – the pri-
mary modality used to interact with SDSs. Studying convergence of speech in
an HCI context is made possible with more natural synthesis technology, which
gives fine-grained control over parameters of the system’s spoken output. Many
systems that deal with adaptation of speech-related features focus on prosodic
characteristics like intonation or speech rate. [10] sheds light on acoustic-prosodic
entrainment in both HHI and HCI via the use of interactive avatars. [1] found
that users’ speech rate can be manipulated using a simulated SDS. Similar results
were found when intensity changes in children’s interaction with synthesized
text-to-speech (TTS) output were examined [4].

All of the above provide solid ground for further investigation of phonetic
convergence in HCI using SDSs.

3 System

The system introduced here is an end-to-end, web-based SDS with a focus on
phonetic convergence and its analysis over the course of the interaction. Besides
placing convergence in the spotlight, it is designed to be flexible and to meet the
researcher’s needs by offering a wide range of customizations (see Sect. 3.2). Its
online access via a web browser makes it scalable and simple for the end-user to
operate. The system’s architecture and functionality are described in Sect. 3.1,
its graphical user interface (GUI) and operation in Sect. 3.3, and an example of
its utilization is demonstrated in Sect. 4.

Ultimately, it offers an experimentation platform for studying phonetic con-
vergence, with emphasis on the following:

Temporal analysis offering real-time visualization of the interlocutors’ rela-
tions with respect to selected phonetic features over the course of the inter-
action.

Customizability allowing the user to experiment with different scenarios by
configuring parameters and definitions in many of the system’s components.

Online scalability connecting multiple web clients to a server, allowing users
to use it anywhere without preceding installation and configurations, and
helping experimenters to collect and replay acquired data.
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3.1 Architecture

As the system aims to offer a customizable playground for experimenting and
studying phonetic convergence in HCI, a key aspect of its architecture is the
separation between client-side, server-side, and external resources (see Fig. 1).
All of the resources and configuration files needed for designing the interaction
are located on the server. Running the client and server on different machines
allows users to interact with the system using a web browser alone.

Fig. 1. An overview of the system architecture. The background colors distinguish
client components, server components, and external resources that can be customized.
(Color figure online)
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Fig. 2. The architecture of the dialogue system component. The ASP module (dashed
line) between the ASR and TTS modules is responsible for performing additional
speech processing required for analyzing the phonetic changes. Though additional links
between the ASP module and other modules (like NLG for example) could be made,
those are beyond the scope of this work.

As shown in Fig. 2, the dialogue system component consists of typical SDS
modules such as natural language understanding (NLU) and a dialogue manager
(DM), but also contains an additional speech processing (ASP) module [24].
This module is responsible for processing the audio and extracts the features
required by the convergence model. While the NLU component uses merely the
transcription provided by the ASR, the ASP module analyzes the speech signal
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itself. More specifically, it tracks occurrences of the defined features and passes
their measured values to the convergence model, which, in turn, forwards the
tracked feature parameters to the TTS synthesis component.

3.2 Models and Customizations

The computational model for phonetic convergence used in the system is
described in [25]. Different phonetic convergence behavioral patterns that were
observed in HHI and HCI experiments can be simulated by combinations of the
model’s parameters presented in Table 1. All of the parameters can be modified
in the system’s configuration file.

Table 1. Summary of the computational model’s parameters in their order of appli-
cation in the convergence pipeline. Parameters marked with an asterisk ‘*’ are defined
for each feature independently.

allowed range* allowed value range for new instances

history size maximum number of exemplars in pool

update frequency frequency to recalculate feature’s value

calculation method* method to calculate pool value

convergence rate weight given to pool value when recalculating

convergence limit* the maximum degree of convergence allowed

The entire convergence process is based on the tracked phonetic features
that are considered “convergeable”, i.e., prone to variation, and is triggered
whenever the ASR component detects a segment containing a phoneme associ-
ated with one or more of these features. Each feature is defined by a key-value
map, in which the parameters from Table 1 are configured. A classifier can be
associated with each feature to provide real-time predictions for both the user’s
and the system’s realizations of that feature, as demonstrated in Fig. 3. With this
information available, more meaningful insights can be gained into the dynamics
of phonetic changes in the dialogue.

The dialogue domain is specified in an XML-based file. More details on
the domain file can be found in [14]. The format of the domain file makes it
easy to define new scenarios for the system, such as a task-specific dialogue,
general-purpose chat, or an experimental setup.

Speech processing is a central aspect of the system. Different models can
be used, e.g., for improving performance or changing the language or the ASR
module or the output voice of the TTS module.
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3.3 Graphical User Interface

The system’s GUI consists of three main areas:

Fig. 3. A screenshot of the plot area showing the states of the feature [E:] vs. [e:] (in
2-dimensional formant space) during an interaction. The system’s internal convergence
model (orange, bottom right) gradually adapts to the user’s (blue, upper left) detected
realizations. A prediction of the feature’s current realization is given for both interlocu-
tors. The annotation box marks the turn in which the system has aggregated enough
evidence from the user’s utterances and changes its pronunciation from [E:] (its initial
state) to [e:] (the user’s preferred variation). (Color figure online)

In the chat area, the interaction between the user and the system is shown
in a chat-like representation. Each turn’s utterance appears inside a chat bubble
with different colors and orientations for the user and the system. The turns are
also numbered, to better track the dialogue progress and analysis shown by the
plots in the graph area. It is also possible to replay the utterance of a turn by
clicking the “Play” button in its corresponding bubble.

In the interaction area, the user can interact with the system with written
or spoken input. Text-based interactions progress through the dialogue (if appli-
cable) and trigger any subsequent domain model, but will not affect convergence-
related models, since there is no audio input to process. Spoken input can be
provided either by speaking into the microphone or via audio files with pre-
recorded speech. The latter option is especially useful for simulating specific
user input, or for reproducing a previous experiment, as done in Sect. 4.

In the graph area, each of the tracked features is visualized in a separate
plot, and new data points are added whenever a new instance of the feature is
detected. Hovering over a data point in a graph reveals additional information,
such as the turn in which it was added, or the realized variant of the feature
produced in that turn as predicted by its classifier. These dynamic, interactive
plots make it possible to shed light on how the interlocutors influence each other,
whether or not they are aware of it, throughout their exchanges. Figure 3 shows
such a graph with several accumulated data points.
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4 Showcase: Examining Convergence Behaviors

For demonstrating a possible use of the system, we simulated the shadowing
experiment detailed in [7] using the system and its analyses to look into types
of participant convergence behavior with respect to the features examined in
the experiment (see Table 2). This experiment is designed to trigger phonetic
convergence by confronting the participants with stimuli in which certain pho-
netic features are realized in a manner different from their own realizations. The
simulation was carried out by building a domain file with the experimental pro-
cedure, including the transition between the experiment’s phases, as well as the
flow within each phase. This automates the procedure and adapts it to the par-
ticipant’s pace. Participants were simulated by using their recorded speech from
the original experiment in the same order. The use of the system for this pur-
pose results in an automated, reproducible execution, with additional insights
like classification of feature realizations and dynamic visualizations in the GUI.
The classifiers were trained offline on the data points acquired from analyzing
the stimuli. However, the system also supports incremental, online re-training
whenever requested by the user, for example after every time the convergence
model is updated. For the demonstration presented here, a sequential minimiza-
tion optimization (SMO) [22] implementation of the support vector machine
(SVM) classifier was used for training. Each turn’s number and prediction are
added as an interactive annotation to the dynamic graph of the relevant features,
as shown in Fig. 3. Finally, using the system, the experiment is transformed into
an automated dialogue scenario, which enhances its HCI nature.

Table 2. Examples of stimuli sentences, each containing one target feature.

Sentence Feature

War das Gerät sehr teuer? [E:] vs. [e:] in word-medial 〈ä〉
Was the device very expensive?

Ich bin süchtig nach Schokolade [Iç] vs. [Ik] in word-final 〈-ig〉
I am addicted to chocolate

Wir besuchen euch bald wieder [n
"
] vs. [@n] in word-final 〈-en〉

We will visit you soon again

4.1 Finding Behavioral Patterns

In this section, we focus on the validation for the feature [E:] vs. [e:] as a represen-
tative example for the phonetic adaptation capability of the system. Although
the classified realization is binary ([E:] or [e:]), the underlying representation
used by the model is gradual. Both of these views on the feature can be seen in
the graph area, as shown in Fig. 3.

The degree of convergence was examined per utterance in the shadowing
phase of the experiment. Three main groups emerged, each with a different
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behavior: one group of participants showing little to no tendency to converge
(changes in ≤10% of their utterances), the second, with varying degrees of con-
vergence (10% to 90%), and a third group of participants who were very sensitive
to the stimuli’s variation (≥90%). We refer to these groups as Low, Mid, and
High, respectively. The feature’s classifier was determined on the fly, so that the
prediction for each utterance was made based on the type of the stimulus to
which the participant was listening. As Table 3 shows, the Low and High groups
are both of significant size, indicating that these two distinct behaviors exist in
the data and can be spotted by the system.

In addition, we validated the separation between these behaviors. To this end,
we regarded the shadowing phase as an annotation task, where the annotators are
the predictors of the user and the system. Note that 100% similarity would mean
complete convergence to every stimulus, which cannot be reasonably expected
(cf. [7]). The Cohen’s kappa (κ) values1 of the Low group are expected to be the
lowest, as a lesser degree of convergence was found among these participants. By
the same logic, the High group is expected to have the highest agreement, and
the Mid to have values between the two other groups. Indeed, this hypothesis
holds: weak agreement was found in the Low group, strong agreement in the
High group, and a value close to 0 (indicating no consistent behavior) for the
Mid group.

5 Conclusion and Future Work

We have introduced a system with an integrated spoken dialogue system (SDS),
which can track and analyze mutual influence on the phonetic level during the
interaction based on an internal convergence model. This combines work done
in the fields of phonetic convergence and adaptive SDSs, and contributes to the
understanding of power relations between a human and a computer interlocutors.
Many aspects of the system are customizable, which makes it flexible in terms
of possible supported scenarios. The system can also run on a separate server,
which makes it easier to scale its online use.

To showcase its capabilities, we simulated a replication of a shadowing exper-
iment, which examined phonetic convergence regarding certain segment-level
phonetic features. Three main user behaviors were found with respect to their
tendency to change their pronunciation based on the system’s stimulus input.
This sheds light on possible relations and dynamics between a user and a system
in HCI. Running the experiment in this way not only saved time by automating
the annotation and phonetic analysis, but also offered additional insight such
as visualization and on-the-fly classification. We believe that this shows that
phonetic convergence can be studied using our SDS, and that this is one step
forward toward personalized, phonetically aware SDSs, which will enable more
natural and efficient interaction.

1 As calculated by the kappa2 command of the irr R package (v0.84), https://cran.r-
project.org/package=irr.

https://cran.r-project.org/package=irr
https://cran.r-project.org/package=irr
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Table 3. A summary of the measures for similarity and agreement between the pre-
dictor annotations of user and model productions in the shadowing phase.

Similarity (%) Agreement (κ) Size (%)

Low <1 −0.57*** 23

Mid 22 −0.15* 50

High 26 0.81*** 27

All 48 −0.11* 100

Future work will pursue two independent directions. Regarding phonetic con-
vergence, supporting more features will make the system more comprehensive
and useful for studying a wider range of phenomena. Specifically, adding sup-
port for supra-segmental features will enable replication of experiments similar
to e.g., [11] in the same manner as in Sect. 4. As for user acceptance, it would
be interesting to examine whether users show any preference toward an SDS
that converges to their speech on the phonetic level, and whether they would
change their speaking style based on the system’s output, forming an interac-
tion with mutual and dynamic convergence similar to HHI. The first research
question can be tested by comparing user interaction with a baseline system and
one with convergence capabilities, and evaluating the users’ performance and
satisfaction. The second research question can be investigated by comparing the
users’ speech when interacting with either system configuration. Additionally, to
test the system’s influence on users’ speech, the users can train with an intelligent
computer-assisted language learning (CALL), such as a computer-assisted pro-
nunciation training (CAPT) system, which will change its learner model based
on their input. Metrics such as task completion rate, performance accuracy, and
completion time can be used to evaluate how helpful the system is.
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