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Gábor Pintér(B), Mira Schielke, and Rico Petrick

Linguwerk GmbH, 01069 Dresden, Germany
{gabor.pinter,mira.schielke,rico.petrick}@linguwerk.com

Abstract. Word segmentation plays an important role in speech recog-
nition as a text pre-processing step that helps decrease out-of-vocabulary
items and lowers language model perplexity. Segmentation is applied
mainly for agglutinative languages, but other morphologically rich lan-
guages, such as German, can also benefit from this technique. Using a
relatively small, manually collected broadcast corpus of 134k tokens, the
current study investigates how Finite-State Transducers (FSTs) can be
applied to perform word segmentation in German. It is shown that FSTs
incorporating word-formation rules can reach high segmentation perfor-
mance with 0.97 precision and 0.93 recall rate. It is also shown that FSTs
incorporating n-gram models of manually segmented data can reach even
higher performance with accuracy and recall rates of 0.97. This result is
remarkable considering the fact that the bottom-up approach performs
on par with the expert system without requiring explicit knowledge about
morphological categories or word formation rules.
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1 Introduction

Agglutinative languages, such as Turkish or Japanese, are commonly reported
to be challenging for automatic speech recognition (ASR), partly because the
vocabulary of these languages cannot be effectively accounted for by a simple
enumeration of words. Listing is impractical due to the highly productive deriva-
tional and inflectional morphology. This morphological characteristic may pose
problems for speech recognition as the large number of word types can lead to
high out-of-vocabulary rates in the pronunciation lexicon and high perplexities
in language models.

German is not an agglutinative language, but its relatively complex inflec-
tional system and its productive compounding characteristics raise problems
similar to that of agglutinative languages [4–6,13,16]. For example, German
adjective modifiers can have different endings according to the gender, num-
ber and case of the nouns they modify (e.g., das kalt-e Bier ‘cold beer[nom]’
dem kalt-en Bier ‘cold beer[dat]’ kalt-es Wasser ‘cold water[acc]’). Calculating
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only with eleven forms per adjective (null, -e -en -em -er -es -ste -sten -stem
-ster -stes) would require adding each adjective eleven times to the lexicon.
Compounding can also considerably increase the vocabulary size in German as
spelling conventions require most compounds to be written as single words, with-
out any hints of morpheme boundaries. This practice results in such super-long
word formations as the infamous Donaudampfschifffahrtsgesellschaft ‘Danube
Steamboat Shipping Company’. An apparent solution to these problems is to
split up word forms, that is, to introduce some kind of word segmentation step
that provides input for lexicon and language model related tasks.

There are several word segmentation techniques and tools available rang-
ing from morphological analyzers to completely data-driven, unsupervised seg-
mentation techniques. General purpose morphological analyzers, such as Tagh

[7] for German, or ChaSen [11] for Japanese provide full-fledged, linguistically
accurate morphological analysis, in which morpheme boundaries can be used as
splitting points. Although it is not uncommon for studies to implement custom,
morphology-based segmentation tools [2,14], the costs associated with the devel-
opment and maintenance of general morphological analyzers is prohibitive. Lan-
guages without appropriate morphological analyzers can be processed by self-
or semi-supervised, data-driven algorithms that identify sub-word units auto-
matically, without relying on morphological information. Besides some sporadic,
heuristically formulated attempts [10,17], Morfessor [3] has to be highlighted
as an established data-driven segmentation tool, frequently occurring in studies
concerned with sub-word models of speech recognition [18–20]. While data-driven
tools are extremely convenient and their performance tend to improve with more
data, they can produce unexpected errors, and their behavior is difficult to con-
trol.

The current study aims to briefly overview how Finite-State Transducers
(FSTs) can be used for word segmentation, and provide a simple performance
measure for the techniques introduced—using German data. FSTs can function
as a convenient mechanism to segment words, and are often used in morpho-
logical analyzers. But FSTs can also operate using bottom-up information, for
example in the form of n-gram models. This study introduces and compares
two top-down and a range of bottom-up FST models for word segmentation. As
preliminary experiments show, more morphological knowledge leads to better
segmentation performance, but self-supervised approaches—with no morpholog-
ical knowledge—can perform on par with expert systems.

2 Word Segmentation with Transducers

2.1 Morphological Analysis as Segmentation

The simplest word segmentation transducer can be constructed similarly to a
two-level morphological parser [8], except that instead of underlying morphemes
and features the output contains only the split input. Input and output labels
share the same set of characters with extra segment boundary symbols (e.g. ‘+’)
on the output side. The segmentation transducer is defined as a closure over all
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acceptable segments. Figure 1 demonstrates a sample transducer that splits up
the input compound zeitraum ‘time period’ into its components: zeit+raum.1

Fig. 1. A sample word segmenter FST.

A transducer with a simple closure over all lexical items, however, is not an
effective segmenter, because it accepts any sequence of segments in any order. For
example, the transducer above also accepts nonsense words like zeitzeit or raum-
raumraum. This problem of over-generation can be addressed by incorporating
word-formation constraints into the transducer. A widely utilized technique is
to formulate constraints over morphological categories, such as prefixes and suf-
fixes. Figure 2 displays a transducer that accepts prefixes only at the beginning
of words and suffixes only at the end. For example, prefix ab- attaches only to
left side of verbs, suffix -ung only to their right side (e.g. ab+schaff+ung).

Fig. 2. Segmenter FST with morphological knowledge about prefixes and suffixes.

This naive prefix/suffix only approach also leaves plenty of room for over-
generation. The system can be greatly improved by incorporating more fine-
grained word formation rules through taking affix types, part of speech cate-
gories and other subcategorization features into consideration. Figure 3 repre-
sents a more sophisticated attempt for a morphological approach using various
derivational and inflectional suffix types. Although discovering and implement-
ing word formation rules is a tedious task, it can lead to remarkable segmentation
performance as demonstrated by the German morphological analyzers such as
Tagh [7].
1 Words are lowercased for clarity. In German nouns start with capital letters, so the

segmentation would be more correctly: Zeitraum → Zeit+Raum.
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Fig. 3. Excerpt of a segmenter FST with expert morphological knowledge.

2.2 Supervised Word Segmentation with N-Grams

While morphological analyzers are obvious choices for segmenting words, the
analysis they provide is not necessarily optimal for further processing. For
instance, word stems combined with morphological features, instead of the writ-
ten forms, do not provide optimal input for grapheme-to-phoneme algorithms
(e.g. wirfst → werfen < V >< 2 >< Sg >). Also, too short morphemes can be
sub-optimal for speech recognition tasks. These along with similar constraints
can easily result in disagreements with the morphological analysis. Data-driven
segmentation techniques can remedy this problem by providing means to learn-
ing arbitrary segmentation patterns. One way of doing this is by training n-gram
models on segmented data. The idea of using n-gram-based segmentation as a
text pre-processing step is an established method for Asian languages [9] but it
has also been applied to German. Incorporation of n-gram models into segmenta-
tion FSTs is not a complicated task: FST-based language models are commonly
used in various speech and language processing tasks [12,15]. A notable problem
concerning the combination of segmentation and n-gram FSTs is that FST-based
segmenters typically operate on characters, while n-gram models are defined over
words or morphemes. This mismatch can be easily remedied by rewriting char-
acter sequences to morpheme labels in segmenters as demonstrated in Fig. 4.

As a first approximation, n-gram information can be integrated into the
segmentation process in two steps. First a lattice of possible segmentations is
created; second, this lattice is re-scored with an n-gram FST. The two-step
approach, however, is slow and cumbersome. A more elegant approach is to
merge the segmenter and the n-gram transducers into one FST. The merged—
or composed—FST preserves the overall structure and weights of the n-gram
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Fig. 4. Word segmenter from Fig. 1 with morpheme-level output labels.

Fig. 5. Fragment of a transducer n-gram model with arcs for an, ab and abend. Epsilon
output labels are omitted for clarity.

Fig. 6. Determinized and weight-pushed version of transducer in Fig. 5.

transducer. Figure 5 displays a fragment of an n-gram FST whose input mor-
pheme arcs were replaced by characters.

Making the resulting transducer deterministic and sorting it by input label
are useful optimization steps as they help reduce model size and enable faster
search of arcs. Figure 6 represents an optimized version of the FST of Fig. 5. A
disadvantage of these models is that they require custom search and composi-
tion algorithms, as their treatment of back-off and epsilon arcs is different from
standard FST-based n-gram models.

3 Experiment

A series of experiments was conducted to compare the performance of top-down
with bottom-up approaches to FST-based segmentation. The top-down approach
was represented by two FST models that implemented different amounts—Naive



516 G. Pintér et al.

and Expert levels—of morphological knowledge. The bottom-up approach was
associated with transducers that were based on n-gram models. A relatively
small (134k) broadcast news corpus was used in a 10-fold cross-validation setup
to evaluate segmentation performance. The folds were analyzed for perplexity
and OOV rates as well as precision, recall and f-measure. In preparation of those
calculations n-gram models with Katz smoothing were trained using 9 folds out
of 10. The quality measures were calculated against the retained folds.

3.1 Corpus Data and Segmentation

As there is no standardized way to segment German text, there is also no stan-
dardized segmented corpus available. For development and testing purposes,
German news broadcast text was collected from the Deutsche Welle news portal
www.dw.de between early 2017 and early 2018. The texts collected, extracted
from 207 news reports, was manually normalized and segmented. After normal-
ization each file contained on average 646.7 tokens. Segmentation involved only
the splitting up of words, no morphological categories or features were added.
Some examples from the corpus are: Woche-n-arbeit-s-zeit ‘hours worked per
week’, Zahl-reich-e Häuser sind zer-stör-t ‘several houses are destroyed’. Admit-
tedly, this manual segmentation diverged from traditional morphological anal-
yses. For example, in order to keep the lexical model simple, words were kept
together if segmentation would have produced alternative pronunciation, such
as with Häuser*→Haus+er.

3.2 Perplexity and OOV Rates

The corpus had a relatively small size of circa 134k tokens after text normaliza-
tion. The segmentation has increased the token count to 198k, while it almost
halved the type count. As expected, the segmented corpus had a lower perplex-
ity of 14.1 compared to 21.4 of the original text (Table 1). Perplexity values
were calculated using 3-gram language models with Katz smoothing. As shown
in Fig. 7, word segmentation has achieved a considerable decrease in perplexity
in unseen data: from 219.98 to 79.69 on average.

OOV type and token ratios were also calculated for the unseen folds. The
weighted average of OOV tokens was 7.47%, which dropped to 1.89% after seg-
mentation. A similar decrease was observed with types: from 20.88% to 9.30%
on average. Values for each fold are seen in Fig. 8.

Table 1. Text-normalized and segmented news broadcast data.

Unit Token counts Type counts Perplexity

word 133,664 (100.00%) 18,131 (100.00%) 21.377

morpheme 197,536 (147.79%) 9,934 (54.79%) 14.057
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Fig. 7. Perplexity values in unseen folds with segmented and unsegmented text.
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Fig. 8. Out-of-vocabulary ratios for tokens (left) and for types (right) in unseen folds.

3.3 Segmentation Models

A series of FST-based word segmenters was created following the concepts out-
lined in Sect. 2. A Naive model was created with an FST structure relying only
on three morpheme categories: prefixes, suffixes and stems (cf. Fig. 2). Weights
were set to a constant value for all segments to prefer longer chunks. The Expert
model implemented a thorough, but non-exhaustive set of morphological rules
(see Fig. 3). The weights were defined manually, based on experimentation. Both
Naive and Expert models used around 80% of the corpus as a development set.
Other sources, such as affix dictionaries and word lists were also used to define
morpheme classes, transducer structure and weights.
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In addition to the two top-down approaches, five data-driven models were
created using 1- to 5-gram language models with Katz smoothing. In prepara-
tion of these models, first transducer-based n-gram models were trained using
normalized and segmented text of the training folds. Next, word and morpheme
labels in the n-gram transducer were replaced by character sequences on the
input side (cf. Fig. 4). Finally, the transducers were determinized, minimized,
and the weights were pushed forward for faster performance (cf. Fig. 6). A spe-
cial, non-epsilon symbol was used as back-off arc label. All transducers and
necessary tools were developed using OpenFst [1] and OpenGrm [15].

3.4 Results

Recall, precision and f -measure values were calculated to evaluate segmentation
performance. The unseen data folds from the cross-validation setup were used as
test sets for the n-gram models. For Naive and the Expert models, the separation
of seen and unseen data was not consistent, as parts of the corpus were used—
besides other sources—to manually discover morphological generalizations. For
easier comparison the same “unseen” folds were used for all segmentation models.
Table 2 summarizes the means of performance metrics over the test sets. A visual
presentation of precision and recall values with medians are presented in Fig. 9.

3.5 Discussion

In terms of f -measures the best segmentation performance was achieved by
the 2-gram model. This result, however, is not significantly different from other

Table 2. Segmentation performance: mean values over “unseen” folds.

Naive Expert 1-gram 2-gram 3-gram 4-gram 5-gram

Recall 0.9140 0.9324 0.9410 0.9684 0.9686 0.9686 0.9686

Precision 0.8739 0.9656 0.9468 0.9673 0.9661 0.9657 0.9657

f-Measure 0.8935 0.9487 0.9438 0.9678 0.9673 0.9671 0.9671
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higher order n-gram models. Unquestionably the Naive approach had the worst
performance among the compared models. This result is not surprising given
its over-simplified morphological model. Incorporating more sophisticated mor-
phological knowledge proved to be useful as demonstrated by the performance
improvements of the Expert model. Of course the question is if such expert sys-
tems are worth developing as n-gram models without morphological knowledge
can deliver similar performance.

A closer look at the errors may influence the interpretation of the seemingly
outstanding results. Almost half of OOV words in the unseen folds were named
entities in non-affixed forms. These unsplit OOV items did not contribute to
the evaluation as non-parsable input words were treated as single units.2 Thus
neither the reference nor the hypotheses had morpheme boundaries. Provided
that words used for training are segmented correctly, the seen data together with
non-splittable OOV items can account for the seemingly impressive results. The
low error rates are attributable to the low number of multi-segment OOV items.

4 Conclusion

The goal of this article was to present a brief overview and a few examples of how
FSTs can be used for word segmentation. The introduced top-down and bottom-
up approaches, while performing well in the experiments, provided only a limited
insight of what FSTs are capable of. For example, top-down models can easily be
augmented with stochastic elements; or inversely, the n-gram approach can inte-
grate morphological classes. It is also possible to detect word-embedded OOV
tokens with fall-back arcs in combination with confidence measures. Orthogo-
nal to the direction of these technical improvements, another straightforward
extension of this research would involve evaluation of segmentation models in
context. The presented low perplexity and OOV rates may imply better ASR
performance, but the actual effect on recognition accuracy needs to be verified
through experimentation. Although the current literature does not provide a
conclusive answer, it seems that segmentation may lead to better ASR perfor-
mance, but this gain may decrease with the increase of vocabulary size [19].
While we cannot answer questions related to speech recognition performance
at present, we believe that our work provides a useful base for further studies
concerning word segmentation using finite-state techniques.

2 However, a few OOV words were falsely segmented into—typically short—
morphemes, leading to errors (e.g. Tories → Tor+ie+s).
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