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Abstract. Tensor contexts enlarge the performances and computational powers
of many neural models of language by generating a double filtering of incoming
data. Applied to the linguistic domain, its implementation enables a very effi-
cient disambiguation of polysemous and homonymous words. For the neuro-
computational modeling of language, the simultaneous tensor contextualization
of inputs and outputs inserts into the models strategic passwords that rout words
towards key natural targets, thus allowing for the creation of meaningful
phrases. In this work, we present the formal properties of these models and
describe possible ways to use contexts to represent plausible neural organiza-
tions of sequences of words. We include an illustration of how these contexts
generate topographic or thematic organization of data. Finally, we show that
double contextualization opens promising ways to explore the neural coding of
episodes, one of the most challenging problems of neural computation.
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Gradually, it saw itself (like us)
imprisoned in this sonorous web

of Before, After, Yesterday, While, Now,
Right, Left, Me, You, Those, Others.

From “The Golem” by J.L. Borges

1 Introduction

The procedures developed by the human brain to organize sequences of semantic ele-
ments that create meaningful phrases are yet an unsolved problem. Such a sequence can
be metaphorically congruent to the search for the exit of an intricate labyrinth, with
myriad galleries connecting thousands of semantic modules. In this labyrinth, the output
of a module is specifically guided toward its next module, a process that generates a
completely non-random sequence of words. This controlled guidance can be due to the
existence of specific “keys” that select and open the next appropriate semantic target.
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Taking into account the extremely large number of possibilities offered by the semantic
network, the possibility of building rapid meaningful phrases in natural language
strongly suggests that these output keys explore all their potential targets in parallel.

An interesting approach would be to consider the creation of a meaningful phrase
as analogous to the production of a sequence of motor acts oriented toward a goal [1–
5]. This analogy would assume that before the construction of a phrase there exists an
objective that induces a layout over which the words are organized. In this case the goal
is a communicational task, and a complete discourse can be structured by a set of sub-
targets that organize their parts.

In this work we shall try to model the emergence of different kinds of language
organization, by representing semantic modules with matrix associative memories. The
many remarkable properties of these matrix memories are described in [6–10]. As
“mesoscopic models” they connect algorithms operating on complex symbolic data to
the neuro-dynamic level [11]. In this formalism, to find a path in the labyrinth of
semantic modules would mean that outputs of matrix associative memories become
inputs of particular memories that produce the words in the general layout of the phrase
that is being created. Our contribution aims to fill this framework by showing that the
modulation of inputs and outputs of matrix memories by tensor contexts provides a
procedure to explain how coherent sequences of words can be created. In addition, this
formalism implies the possibility of building thematic clusters in semantic spaces.

2 Basic Models

In what follows we describe some properties of matrix associative memories and how
tensor contexts enlarge their computational abilities.

2.1 Matrix Associative Memories

A matrix memory associates an m-dimensional column input vector fi to an n-
dimensional output vector gi. Kohonen [10] shows that a memory can be characterized
by the set

Mem ¼ g1; f1ð Þ; g2; f2ð Þ; . . .; gQ; fQ
� �� �

: ð1Þ

This “learning set” represents the data to be stored in a matrix memory M. To find
the appropriate structure of this matrix, define two partitioned matrices

G ¼ g1 g2 � � � gQ
� �

; F ¼ f1 f2 � � � fQ½ �;

and represent the associations between the Q pairs of vector patterns by the matrix
equation G ¼ MF. Let In ¼ 1; 2; . . .;Qf g be the set of indexes of stored pairs. Under
this condition, the best solution in the sense of least squares, is in terms of the pseu-
doinverse Fþ :

M ¼ GFþ : ð2Þ
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In the extremely simple case of an orthonormal set of inputs fif g; i ¼ 1 to Q,
Eq. (2) admits the closed expression:

M ¼
XQ
i¼ 1

gif
T
i : ð3Þ

For this matrix memory the recall operates as follows:

Mfk ¼
XQ
i¼ 1

gi fi; fkh i; ð4Þ

with the scalar product being fi; fkh i ¼ dik (dik is the Kronecker’s delta); hence if the
index k 2 In, the recall is perfect, Mfk ¼ gk.

2.2 Input Tensor Contexts

Imagine we need to model a neural network capable to disambiguate homonymic or
polysemic words. Networks with hidden layers trained with backpropagation, are the
classical devices to deal with this kind of problem [12]. However, in such approach we
generally lose the possibility of a transparent mathematical theory allowing to predict
what is happening during training as well as the final network structure. This opacity
was the main motivation to develop a “transparent connectionist” alternative [13]. This
alternative uses a kind of vector symbolic architecture based on tensor contextualiza-
tion [11, 14, 15].

Let fi be one homonymic word, associated with two vectors gi1 and gi2 for two
completely non-correlated concepts. For instance, the input can represent the word
“bank” and one output would be “money” and the other would be “sand”. To retain the
matrix format of the associative memory, we integrate the input with two vector
contexts pi1; pi2 2 R

h using the Kronecker product �, a tensor procedure adapted to the
operations of matrix algebra [16]. In our example, we could consider that the first
context concerns finances and the second geography. The segment of a memory in our
example can be expressed as:

Mi ¼ gi1 pi1 � fið ÞT þ gi2 pi2 � fið ÞT: ð5Þ

Consequently, when the memory receives an input and the corresponding context,
the selection of the output happens via two scalar products:

Mi p12 � fið Þ ¼ gi1 pi1; pi2h i fi; fih iþ gi2 pi2; pi2h i fi; fih i: ð6Þ

In a situation where both, the inputs and the contexts are orthonormal, we have a
resolution of ambiguity,

Mi p12 � fið Þ ¼ gi2: ð7Þ
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This format can be generalized [14, 17, 18] to a global memory module composed
of a variety of specialized sub-modules, each having the required complexity for the
contextualization of its inputs:

M ¼
X
i

Mi: ð8Þ

2.3 Input-Output Contexts

We can extend the previous approach by modulating both, inputs and outputs with
vector contexts. This approach leads to memory matrices with the following general
structure:

H ¼
X
i;j;k

p0ik � gij
� 	

pik � fij
� 	T

: ð9Þ

From the properties of Kronecker products, the H matrix admits some interesting
alternative representations. We illustrate two of them:

H ¼
X
i;j;k

p0ik p
T
ik

� �� gijf
T
ij

� 	
; ð10Þ

H ¼
X
i;j;k

p0ik � IdimðgijÞ
� 	

gijf
T
ij pik � IdimðfijÞ
� 	T

: ð11Þ

Note that inputs puv � fab with stored patterns, display outputs given by

H puv � fabð Þ ¼ p0uv � gab: ð12Þ

These outputs are prepared to enter as inputs to a similar memory H’ with this
particular pair [context - pattern] stored in its database.

Memories with this structure accept many representational and computational
potentialities to process the operations displayed by natural languages [19, 20]. In the
next Sections we shall describe some of these operations.

3 Deterministic Semantic Strings

In his “Principles of Psychology” (Vol. II, Chap. XXVI) James [21] writes that vol-
untary acts are based on consolidated memory traces created by previous involuntary
acts. Similarly, the voluntary creation of phrases has as prerequisite the existence of
word associations in previously fixed memories–developed after experiential contact
with word usage.

As we mentioned before language production could be seen as the generation of
meaningful phrases, and may be similar to the assembly of a sequence of motor actions
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aimed at reaching a goal [3, 4, 22]. The purpose of spoken or written phrases is to
transmit information by means of expressions that can be understood. Neural modeling
challenges us to reach this goal by triggering an appropriate chain of meaningful words.

Let us suppose that a phrase could be represented by a string:

F a; nð Þ ¼ aa1; aa2; . . .; aanh i; aai 2 Sem a1; a2; . . .; axf g; ð13Þ

with Sem being the very large set of words in a normal lexicon. The phrase can repeat
words, and consequently it is possible to have aai ¼ aaj. Now, how do we insure that
aa1 precedes aa2? Moreover, how does the meaning of the phrase guide the correct
order of successive words while information is transmitted? A possible answer to the
first question would be to assume that the transition probabilities between words are
responsible for the correct sequence, with a given word followed by its most probable
successor. Within this framework, language production is mainly represented by a
stochastic process with transition probabilities dependent on segments of previously
used words. [23–26]. The second question seems to imply the existence of an antici-
patory layout for the phrase.

Here, we explore the following proposal. Imagine a small string of three words
aa1; aa2; aa3h i representing a miniature phrase. Let us immerse these elements in
contexts, generating a new string

ptarg aa1 p1
� 	

; p1 aa2 p2
� 	

; p2 aa3 pend
� 	D E

; ð14Þ

The neural vector ptarg is both, the context that triggers the sequence and concur-
rently, the target code. Contexts p1 and p2 are keys indicating the correct next element
of the string, and context pend marks the end of the phrase. In this way, a good sequence
of words is selected by the contextual string

ptarg; p1; p2; pend
D E

: ð15Þ

A recursive tensor input-output memory with the structure

S ¼ pend � aa3ð Þ p2 � aa2ð ÞT þ p2 � aa2ð Þ p1 � aa1ð ÞT þ p1 � aa1ð ÞpTtarg ð16Þ

can accomplish the procedure just described. In the general case, the final output can be
a “pure” string of words, aa1 ; aa2; . . .; aanh i. The contexts used in an internal, hidden
computation, are channeled by a filter Way Out Matrix (WOM) having the structure

WOM ¼
X
k

pTk

 !
� IdimðaÞ: ð17Þ
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The sum includes all the relevant contexts, and IdimðaÞ is an identity matrix with the
same dimension as word vectors. Note that

WOM pc � ah
� � ¼ ah: ð18Þ

In Fig. 1 we illustrate this recursive model for a string of arbitrary length.
The neurobiology of lexical strings production is far from being understood. We

can consider the voluntary construction of utterances by our model in light of William
James’ thought. Our model requires the previous existence of permanent memories of
words and contextual markers, and a transitory working memory to install the
appropriate string format. Finally, we mention that the target ‘feeds and builds’ con-
texts to generate meaningful strings in the same way that the target of a mechanical
movement of our arm guides the intermediate steps needed to reach it.

4 Clustering by Contexts

The memory H given in Eq. (10), with sets of different input-output associations
sharing the same pair of input-output contexts can be factorized into clusters of
associations induced by the contexts,

H ¼
X
i

p0i p
T
i �

X
j

gij f
T
ij

" #
: ð19Þ

This partition suggests how scattered data may be organized in large neural net-
works. Contexts may create a topical coherence in a recall. Let us mention that an
interesting formal parallelism between matrix memories and the Latent Semantic
Analysis (LSA) has been described in [19]. In this direction, the structure of matrices
(10) and (19) suggests the possibility of looking for the thematic clustering of text-
document matrices using, instead of a classical LSA based on SVD, a procedure that
labels topics via the search of Kronecker factors.

Fig. 1. This diagram illustrates how a context target enters a recursive semantic network S
triggering a sequence of contextualized outputs. These outputs are filtered by a WOM matrix that
extracts the contexts and produces a pure word string.
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If we use as contexts unit vectors es (vectors with a 1 in position s and 0’s
otherwise), the matrix H can be expressed as:

H ¼
X
i

e0i e
T
i �Mij

� �
; ð20Þ

with

Mij ¼
X

gijf
T
ij ð21Þ

being a classical Anderson-Kohonen associative memory matrix. By an adequate
selection of dimensions for the context unit vectors, it is possible to generate a topo-
graphic pattern with different associative memories M placed as tiles into the “host”
matrix H (Pomi, Mizraji and Lin, paper submitted). We illustrate this point with a
simple example. Given the two unit column vectors

e1 ¼ 1 0½ �T; e2 ¼ 0 1½ �T

and four associative memory matrices, MðmÞ 2 R
p�q; m ¼ 1; . . .; 4

H takes the form

H ¼ e1eT1 �Mð1Þ þ e1eT2 �Mð2Þ þ e2eT1 �Mð3Þ þ e2eT2 �Mð4Þ: ð22Þ

After computing the Kronecker products we find

H ¼ Mð1Þ Mð2Þ

Mð3Þ Mð4Þ


 �
; H 2 R

2p�2q: ð23Þ

Thus, the contexts create a computational layer composed by various memory
modules located in specific topographies, each one able to receive and redirect infor-
mation selectively channeled by the contexts.

Kohonen [27] developed one of the most important and deep procedures to model
the generation of topographic neural patterns. The approach we are describing here
assumes cognitive supervised learning. One could imagine associative memories to be
the result of active interactions between a trainable brain and an external instructor–an
active human teacher or environmental experiences. Hence, emergent clusters of
associative memories may explain how, after extensive vocabulary learning, complex
semantic webs can be established. We want to mention that the results of Huth et al.
[28] experimentally illustrate the existence of a remarkable topographic organization in
the semantic web of the human brain.
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5 Episodes

Since the foundational characterization of episodic memories by Tulving (updated in
[29]), the search for their neural bases became an important research objective [30–34].
Adapting ideas of these investigators, we shall assume that episodic memories result
from the interaction of different classes of memories, fundamentally, a semantic
memory and a context memory that stores episode markers. We illustrate the inter-
action between these memory modules in Fig. 2.

We are going to assume that the encoding happens mainly in a region capable of
sustaining a semantic memory (e.g.: the left prefrontal cortex) and the recall involves a
region that stores contextual markers (e.g.: the right prefrontal cortex). The model we
want to comment is formally similar to the model that generates semantic strings.
However, there is a crucial difference: in episodes we do not necessarily have a target.
A contingent series of events is stored in the memory due to a variety of causes, among
others, emotional impact, autobiographical importance, bizarre consequences, etc. In
these episodic sequences, contexts provide a kind of positional information–an
expression of the embryologist Lewis Wolpert–that places words in the precise posi-
tions needed to recreate the episode.

Let us define an episode by a time sequence of contexts that intermingle with words
selected from the semantic memory. The sequence of contexts can be generated by a
cyclic memory structured as:

C ¼ pout p
T
n þ pn p

T
n�1 þ � � � þ p1 p

T
in: ð24Þ

Context vector pin marks the beginning of the sequence, and context pout marks the
end. Within a recursive network, the reinjection of successive outputs of memory C
creates the time pattern

pout; pn; . . .; pi; pinh i: ð25Þ

Fig. 2. This scheme adapts to our model one of the conceptions about episode storage and
retrieval. LH: Left hemisphere, RH: Right hemisphere, SM: Semantic Memory, CM: Contexts
Memory.
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Intermingling these contexts with words ai extracted from the semantic memory,
builds the episodic sequence

pout an pnð Þ; pn an�1 pn�1ð Þ; . . .; p3 a2 p2ð Þ ; p2 a1 pinð Þh i: ð26Þ

We are going to model this situation by assuming that intermingling occurs because
the semantic memory is structured with associative memories that can be approximated
by matrices like

E ¼
X
i;j;k

p0ik � aij
� �

pik � aij
� �T

; ð27Þ

with the particularity that context markers are very sparse vectors (e.g.: unit vectors).
The total set of stored episodes can be based on a semantic basis of N words, N being
very large. A given memory cannot store all this variety due to dimensional limitations.
But memories like (25) can surpass the dimensional limitations imposed by neu-
roanatomy and enlarge the variety of episodes via a multi-modular semantic organi-
zation. The final step of the episodic recall can be a pure verbal string emerging from a
WOM filter.

We end this Section by mentioning that there is a close relationship between
remembered episodes, and episodes created by the imagination. A fictional story does
not travel to the autobiographical past, but creates episodes that we can recall even if
such episodes are placed in the far past or future. This shows an interesting point
concerning the possible coincidence between the neural systems responsible for the
recall of personal biographical episodes and the imaginary generation of fictional
facts (see [35, 36] for extensive references about this point), including the conception
of innovative literary, philosophical, scientific, or technological scenarios.

6 Perspectives

In this work we have assumed that a semantic unit, integrated with many contexts,
could participate in a large variety of different linguistic tasks. The described models
are written in terms of matrix algebra and Kronecker tensor products, which makes
them operationally transparent and easily amenable to computer implementation, even
though the dimensions involved in these linguistic tasks can be extremely large. In any
case, the highly flexible production of organized, non-random sequences of words in a
natural language is a marvelous and yet obscure process. The topical organization of a
biological semantic web, with patches including elaborate pieces of language could
plausibly be a basis for the hierarchical elaboration of complex thoughts. These
thoughts are translated into linguistic codes and communicated. In a way, “deep
learning” technological procedures involving a system of hierarchical computing
levels, are already implemented by the human brain. We need to understand these
codes, which in many cases, can be accompanied by linguistic productions. A simpli-
fied example of this kind of hierarchical processing is given in [20]. Finally, the
recreation, or invention of episodes represents one of the most significant signatures of
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the human mind and is placed, by researchers like Tulving [29], at the highest levels of
cognition. With tensor input-output contexts we have been able to formulate an ele-
mentary approach to the modeling of these open and crucial problems.
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CSIC-UdelaR.
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