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Abstract. In this work we present simple grapheme-based system for
low-resource speech recognition using Babel data for Turkish spon-
taneous speech (80 h). We have investigated different neural network
architectures performance, including fully-convolutional, recurrent and
ResNet with GRU. Different features and normalization techniques are
compared as well. We also proposed CTC-loss modification using seg-
mentation during training, which leads to improvement while decoding
with small beam size.

Our best model achieved word error rate of 45.8%, which is the best
reported result for end-to-end systems using in-domain data for this task,
according to our knowledge.
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1 Introduction

Although development of the first speech recognition systems began half a cen-
tury ago, there has been a significant increase of the accuracy of ASR systems
and number of their applications for the recent ten years, even for low-resource
languages [17,20].

This is mainly due to widespread applying of deep learning and very effec-
tive performance of neural networks in hybrid recognition systems (DNN-HMM).
However, for last few years there has been a trend to change traditional ASR
training paradigm. End-to-end training systems gradually displace complex mul-
tistage learning process (including training of GMMs [9], clustering of allophones
states, aligning of speech to clustered senones, training neural networks with
cross-entropy loss, followed by retraining with sequence-discriminative criterion).
The new approach implies training the system in one global step, working only
with acoustic data and reference texts, and significantly simplifies or even com-
pletely excludes in some cases the decoding process. It also avoids the problem
of out-of-vocabulary words (OOV), because end-to-end system, trained with
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parts of the words as targets, can construct new words itself using graphemes or
subword units, while traditional DNN-HMM systems are limited with language
model vocabulary.

The whole variety of end-to-end systems can be divided into 3 main cate-
gories: Connectionist Temporal Classification (CTC) [14]; Sequence-to-sequence
models with attention mechanism [8]; RNN-Transducers [13].

Connectionist Temporal Classification (CTC) approach uses loss func-
tions that utilize all possible alignments between reference text and audio data.
Targets for CTC-based system can be phonemes, graphemes, syllables and other
subword units and even whole words. However, a lot more data is usually required
to train such systems well, compared to traditional hybrid systems.

Sequence-to-Sequence Models are used to map entire input sequences to
output sequences without any assumptions about their alignment. The most pop-
ular architecture for sequence-to-sequence models is encoder-decoder model with
attention. Encoder and decoder are usually constructed using recurrent neural
networks, basic attention mechanism calculates energy weights that emphasize
importance of encoder vectors for decoding on this step, and then sums all these
vectors with energy weights. Encoder-decoder models with attention mechanism
show results close to traditional DNN-HMM systems and in some cases surpass
them, but for a number of reasons their usage is still rather limited. First of
all, this is related to the fact, that such systems show best results when the
duration of real utterances is close to the duration of utterances from training
data. However, when the duration difference increases, the performance degrades
significantly [8, Fig. 4 “Utterance Length vs. Error”].

Moreover, the entire utterance must be preprocessed by encoder before start
of decoder’s work. This is the reason, why it is hard to apply the approach to
recognize long recordings or streaming audio. Segmenting long recordings into
shorter utterances solves the duration issue, but leads to a context break, and
eventually negatively affects recognition accuracy. Secondly, the computational
complexity of encoder-decoder models is high because of recurrent networks
usage, so these models are rather slow and hard to parallelize.

The idea of RNN-Transducer is an extension of CTC and provides the
ability to model inner dependencies separately and jointly between elements
of both input (audio frames) and output (phonemes and other subword units)
sequences. Despite of mathematical elegance, such systems are very complicated
and hard to implement, so they are still rarely used, although several impressive
results were obtained using this technique.

CTC-based approach is easier to implement, better scaled and has many
“degrees of freedom”, which allows to significantly improve baseline systems and
achieve results close to state-of-the-art. Moreover, CTC-based systems are well
compatible with traditional WFST-decoders and can be easily integrated with
conventional ASR systems.

Besides, as already mentioned, CTC-systems are rather sensitive to the
amount of training data, so it is very relevant to study how to build effec-
tive CTC-based recognition system using a small amount of training samples.
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It is especially actual for low-resource languages, where we have only a few
dozen hours of speech. Building ASR system for low-resource languages is one of
the aims of international Babel program, funded by the Intelligence Advanced
Research Projects Activity (IARPA). Within the program extensive research
was carried out, resulting in creation of a number of modern ASR systems for
low-resource languages. Recently, end-to-end approaches were applied to this
task, showing expectedly worse results than traditional systems, although the
difference is rather small.

In this paper we explore a number of ways to improve end-to-end CTC-based
systems in low-resource scenarios using the Turkish language dataset from the
IARPA Babel collection. In the next section we describe in more details different
versions of CTC-systems and their application for low-resource speech recogni-
tion. Section 3 describes the experiments and their results. Section 4 summarizes
the results and discusses possible ways for further work.

2 Related Work

Development of CTC-based systems originates from the paper [14] where CTC
loss was introduced. This loss is a total probability of labels sequence given
observation sequence, which takes into account all possible alignments induced
by a given words sequence.

Although a number of possible alignments increases exponentially with
sequences lengths, there is an efficient algorithm to compute CTC loss based on
dynamic programming principle (known as Forward-Backward algorithm). This
algorithm operates with posterior probabilities of any output sequence element
observation given the time frame and CTC loss is differentiable with respect to
these probabilities.

Therefore, if an acoustic model is based on the neural network which esti-
mates these posteriors, its training may be performed with a conventional error
back-propagation gradient descent [24]. Training of ASR system based on such
a model does not require an explicit alignment of input utterance to the ele-
ments of output sequence and thus may be performed in end-to-end fashion. It
is also important that CTC loss accumulates the information about the whole
output sequence, and hence its optimization is in some sense an alternative to the
traditional fine-tuning of neural network acoustic models by means of sequence-
discriminative criteria such as sMBR [18] etc. The implementation of CTC is
conventionally based on RNN/LSTM networks, including bidirectional ones as
acoustic models, since they are known to model long context effectively.

The important component of CTC is a special “blank” symbol which fills in
gaps between meaningful elements of output sequence to equalize its length to
the number of frames in the input sequence. It corresponds to a separate output
neuron, and blank symbols are deleted from the recognized sequence to obtain
the final result. In [10] a modification of CTC loss was proposed, referred as
Auto SeGmentation criterion (ASG loss), which does not use blank symbols.
Instead of using “blank”, a simple transition probability model for an output
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symbols is introduced. This leads to a significant simplification and speedup
of computations. Moreover, the improved recognition results compared to basic
CTC loss were obtained.

DeepSpeech [15] developed by Baidu Inc. was one of the first systems that
demonstrated an effectiveness of CTC-based speech recognition in LVCSR tasks.
Being trained on 2300 h of English Conversational Telephone Speech data, it
demonstrated state-of-the-art results on Hub5’00 evaluation set. Research in
this direction continued and resulted in DeepSpeech2 architecture [7], composed
of both convolutional and recurrent layers. This system demonstrates improved
accuracy of recognition of both English and Mandarin speech. Another successful
example of applying CTC to LVCSR tasks is EESEN system [22]. It integrates
an RNN-based model trained with CTC criterion to the conventional WFST-
based decoder from the Kaldi toolkit [23]. The paper [21] shows that end-to-
end systems may be successfully built from convolutional layers only instead
of recurrent ones. It was demonstrated that using Gated Convolutional Units
(GLU-CNNs) and training with ASG-loss leads to the state-of-the-art results on
the LibriSpeech database (960 h of training data).

Recently, a new modification of DeepSpeech2 architecture was proposed in
[25]. Several lower convolutional layers were replaced with a deep residual net-
work with depth-wise separable convolutions. This modification along with using
strong regularization and data augmentation techniques leads to the results close
to DeepSpeech2 in spite of significantly lower amount of data used for training.
Indeed, one of the models was trained with only 80 h of speech data (which were
augmented with noisy and speed-perturbed versions of original data).

These results suggest that CTC can be successfully applied for the training
of ASR systems for low-resource languages, in particular, for those included in
Babel research program (the amount of training data for them is normally 40 to
80 h of speech).

Currently, Babel corpus contains data for more than 20 languages, and for
most of them quite good traditional ASR system were built [6,12,16]. In order
to improve speech recognition accuracy for a given language, data from other
languages is widely used as well. It can be used to train multilingual system via
multitask learning or to obtain high-level multilingual representations, usually
bottleneck features, extracted from a pre-trained multilingual network.

One of the first attempts to build ASR system for low-resource BABEL lan-
guages using CTC-based end-to-end training was made recently [11]. Despite the
obtained results are somewhat worse compared to the state-of-the-art traditional
systems, they still demonstrate that CTC-based approach is viable for building
low-resource ASR systems. The aim of our work is to investigate some ways to
improve the obtained results.
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3 Experiments

3.1 Basic Setup

For all experiments we used conversational speech from IARPA Babel Turkish
Language Pack (LDC2016S10). This corpus contains about 80 h of transcribed
speech for training and 10 h for development. The dataset is rather small com-
pared to widely used benchmarks for conversational speech: English Switch-
board corpus (300 h, LDC97S62) and Fisher dataset (2000 h, LDC2004S13 and
LDC2005S13).

Fig. 1. Architectures

As targets we use 32 symbols: 29 lowercase characters of Turkish alphabet
[5], apostrophe, space and special 〈blank〉 character that means “no output”.
Thus we do not use any prior linguistic knowledge and also avoid OOV problem
as the system can construct new words directly.

All models are trained with CTC-loss. Input features are 40 mel-scaled log
filterbank energies (FBanks) computed every 10 ms with 25 ms window, con-
catenated with deltas and delta-deltas (120 features in vector). We also tried to
use spectrogram and experimented with different normalization techniques.
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For decoding we used character-based beam search [1] with 3-g language
model build with SRILM package [4] finding sequence of characters c that max-
imizes the following objective [15]:

Q(c) = log P (c|x) + α log Plm(c) + βwordcount(c),

where α is language model weight and β is word insertion penalty.
For all experiments we used α = 0.8, β = 1, and performed decoding with

beam width equal to 100 and 2000, which is not very large compared to 7000
and more active hypotheses used in traditional WFST decoders (e.g. many Kaldi
recipes do decoding with max active = 7000).

To compare with other published results [2,11] we used Sclite [3] scoring
package to measure results of decoding with beam width 2000, that takes into
account incomplete words and spoken noise in reference texts and doesn’t penal-
ize model if it incorrectly recognize these pieces.

Also we report WER (word error rate) for simple argmax decoder (taking
labels with maximum output on each time step and than applying CTC decoding
rule collapse repeated labels and remove “blanks”).

3.2 Experiments with Architecture

We tried to explore the behavior of different neural network architectures in
case when rather small data is available. We used multi-layer bidirectional
LSTM networks, tried fully-convolutional architecture similar to Wav2Letter
[10] and explored DeepSpeech-like architecture developed by Salesforce (DS-SF)
[25] (Fig. 1).

The convolutional model consists of 11 convolutional layers with batch nor-
malization after each layer. The DeepSpeech-like architecture consists of 5-layers
residual network with depth-wise separable convolutions followed by 4-layer bidi-
rectional Gated Recurrent Unit (GRU) as described in [25].

Our baseline bidirectional LSTM is 6-layers network with 320 hidden units
per direction as in [11]. Also we tried to use bLSTM to label every second frame
(20 ms) concatenating every first output from first layer with second and taking
this as input for second model layer.

The performance of our baseline models is shown in Table 1.

3.3 Loss Modification: Segmenting During Training

It is known that CTC-loss is very unstable for long utterances [14], and smaller
utterances are more useful for this task. Some techniques were developed to help
model converge faster, e.g. sortagrad [7] (using shorter segments at the beginning
of training).

To compute CTC-loss we use all possible alignments between audio features
and reference text, but only some of the alignments make sense. Traditional
DNN-HMM systems also use iterative training with finding best alignment and
then training neural network to approximate this alignment. Therefore, we pro-
pose the following algorithm to use segmentation during training:
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Table 1. Baseline models trained with CTC-loss

Model Step Dropout Argmax LM decoding Sclite

beam 100 beam 2000

Wav2Letter 20ms – 88.4 78.3 71.5 67.5

6-layer bLSTM 10ms – 69.9 61.1 56.3 51.7

6-layer bLSTM 20ms – 69.0 59.6 55.7 51.1

DS-SF 20ms No 72.7 64.1 57.7 53.3

DS-SF 20ms Between each layer 71.8 59.41 55.7 50.8

DS-SF 20ms Between modules 68.6 58.9 54.5 49.7

– compute CTC-alignment (find the sequence of targets with minimal loss that
can be mapped to real targets by collapsing repeated characters and removing
blanks)

– perform greedy decoding (argmax on each step)
– find “well-recognized” words with length ≥ T (T is a hyperparameter): seg-

ment should start and end with space; word is “well-recognized” when argmax
decoding is equal to computed alignment

– if the word is “well-recognized”, divide the utterance into 5 segments: left
segment before space, left space, the word, right space and right segment

– compute CTC-loss for all this segments separately and do back-propagation
as usual

The results of training with this criterion are shown in Table 2. The proposed
criterion doesn’t lead to consistent improvement while decoding with large beam
width (2000), but shows significant improvement when decoding with smaller
beam (100). We plan to further explore utilizing alignment information during
training.

Table 2. Models trained with CTC and proposed CTC modification

Model Segmentation Argmax LM decoding Sclite

beam 100 beam 2000

DS-SF – 68.6 58.9 54.5 49.7

DS-SF + 66.7 54.9 53.9 48.7

bLSTM - 69.0 59.6 55.7 51.1

bLSTM + 70.3 58.3 56.4 51.4

3.4 Using Different Features

We explored different normalization techniques. FBanks with cepstral mean nor-
malization (CMN) perform better than raw FBanks. We found using variance
with mean normalization (CMVN) unnecessary for the task. Using deltas and
delta-deltas improves model, so we used them in other experiments. Models
trained with spectrogram features converge slower and to worse minimum, but
the difference when using CMN is not very big compared to FBanks (Table 3).
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Table 3. 6-layers bLSTM trained using different features and normalization

Features Argmax LM decoding Sclite

beam 100 beam 2000

FBanks 76.3 66.3 60.6 56.3

FBanks + CNM 73.6 65.4 59.0 54.6

FBanks + CMVN 74.1 64.5 59.4 55.0

FBanks + CMN + deltas 69.0 59.6 55.7 51.1

FBanks + CMVN + deltas 73.8 64.3 59.0 54.5

spectrogram 84.0 74.8 68.1 64.0

spectrogram + CMN 74.2 63.9 59.1 54.4

3.5 Varying Model Size and Number of Layers

Experiments with varying number of hidden units of 6-layer bLSTM models are
presented in Table 4. Models with 512 and 768 hidden units are worse than with
320, but model with 1024 hidden units is significantly better than others. We
also observed that model with 6 layers performs better than others.

Table 4. Comparison of bLSTM models with different number of hidden units.

Units Layers Argmax LM decoding Sclite

beam 100 beam 2000

320 6 69.0 59.6 55.7 51.1

512 6 71.4 62.2 57.1 52.5

768 6 69.9 62.3 56.2 51.7

1024 6 67.3 57.0 53.3 48.4

1024 5 70.7 61.9 56.0 51.3

1024 7 69.3 60.6 55.9 51.4

3.6 Training the Best Model

To train our best model we chose the best network from our experiments (6-
layer bLSTM with 1024 hidden units), trained it with Adam optimizer and fine-
tuned with SGD with momentum using exponential learning rate decay. The
best model trained with speed and volume perturbation [19] achieved 45.8%
WER (Table 5), which is the best published end-to-end result on Babel Turkish
dataset using in-domain data. For comparison, WER of model trained using in-
domain data in [11] is 53.1%, using 4 additional languages (including English
Switchboard dataset) 48.7%. It is also not far from Kaldi DNN-HMM system [2]
with 43.8% WER.
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Table 5. Using data augmentation and finetuning with SGD

Augmentation Argmax LM decoding Sclite

beam 100 beam 2000

speed 63.8 54.0 51.0 46.2

speed + volume 63.5 53.6 50.7 45.8

4 Conclusions and Future Work

In this paper we explored different end-to-end architectures in low-resource ASR
task using Babel Turkish dataset. We considered different ways to improve per-
formance and proposed promising CTC-loss modification that uses segmentation
during training. Our final system achieved 45.8% WER using in-domain data
only, which is the best published result for Turkish end-to-end systems. Our work
also shows than well-tuned end-to-end system can achieve results very close to
traditional DNN-HMM systems even for low-resource languages. In future work
we plan to further investigate different loss modifications (Gram-CTC, ASG)
and try to use RNN-Transducers and multi-task learning.

Acknowledgements. This work was financially supported by the Ministry of Edu-
cation and Science of the Russian Federation, Contract 14.575.21.0132 (IDRFMEFI
57517X0132).

References

1. CTC Decoder for PyTorch. https://github.com/parlance/ctcdecode
2. Kaldi Recipe Results for Turkish Language. https://github.com/kaldi-asr/kaldi/

blob/master/egs/babel/s5d/results/results.105-turkish-fullLP.official.conf.jtrmal1
%40jhu.edu.2015-11-28T144317-0500

3. Sclite Scoring Package. http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/
sclite.htm

4. The SRI Language Modeling Toolkit. http://www.speech.sri.com/projects/srilm/
5. Turkish Alphabet. https://en.wikipedia.org/wiki/Turkish alphabet
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