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Abstract. In the paper, we present our very large vocabulary continuous
Russian speech recognition system based on various neural networks. We
employed neural networks on both acoustic and language modeling stages. For
training hybrid acoustic models, we experimented with several types of neural
networks: feedforward deep neural network, time-delay neural network, Long
Short-Term Memory, bidirectional Long Short-Term Memory. We created
neural networks with various numbers of hidden layers and units in hidden
layers. Language modeling was performed using recurrent neural network. At
first, experiments on Russian speech recognition were carried out using hybrid
acoustic models and 3-gram language model. Then 500-best list was rescored
with recurrent neural network language model. The lowest word error rate equal
to 15.13% was achieved using time-delay neural network for acoustic modeling
and recurrent neural network language model interpolated with 3-gram model
for 500-best list rescoring.
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1 Introduction

Deep neural networks (DNNs) are widely used in automatic speech recognition (ASR)
systems. For acoustic modeling, DNN is usually combined with Hidden Markov
Models (HMMs) in a hybrid DNN/HMM model. In such systems, HMMs model the
long-term dependencies and DNNs provide discriminative training. DNN is trained to
predict a-posteriori probabilities of each context-dependent state with given acoustic
observations. During decoding the output probabilities are divided by the prior prob-
ability of each state forming a “pseudo-likelihood” that is used in place of the state
emission probabilities in the HMM [1]. For language modeling, NNs are basically
used for lattice or N-best list rescoring.

In this paper, we made a research of Russian large vocabulary continuous speech
recognition (LVCSR) system developed using NNs for acoustic and language mod-
eling. The process of speech decoding using NN-based AM and LM is illustrated on
Fig. 1. We used hybrid DNN/HMMs with different topologies as acoustic
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models (AMs). Speech decoding with N-best list generation was performed using
baseline 3-gram model. Then RNN language model (LM) was applied for rescoring
obtained N-best list of hypotheses and for selection of the best recognition hypothesis
for pronounced phrases. In addition, we performed rescoring using linear interpolation
of RNN and n-gram LM.

The paper is organized as follows: in Sect. 2 we give a survey of application of
DNNs for both acoustic and language modeling, in Sect. 3 we give a description of our
DNN-based AMs, in Sect. 4 we present our a baseline 3-gram and RNN LMs,
experiments on speech recognition using NN-based AMs and LMs are presented in
Sect. 5.

2 Related Works

Different types of NNs can be used for acoustic modeling in ASR: feedforward deep
neural network (DNN), recurrent neural network (RNN), convolutional neural network
(CNN), deep belief network (DBN), time delay neural network (TDNN), long short-
term memory (LSTM), bidirectional LSTM [2, 3].

TDNN-based AMs were presented in [4], where they allowed obtaining a relative
word error rate (WER) reduction of 2.6%. TDNN for keyword spotting is described in
[5]. The usage of LSTM in a hybrid DNN/HMM system was presented in [6]; LSTM
allowed the authors to reduce WER comparing to the DNN-based system. BLSTM
recurrent neural network (RNN) was studied in [7]. Different variants of optimization
methods, batching, truncated backpropagation, and regularization techniques such as
dropout are researched in the paper. The best BLSTM model gave a relative
improvement in terms of WER of over 15% compared to the best feed-forward
baseline.

In [8], TDNN was combined with LSTM by interleaving TDNNs and LSTMs. It
was shown that this architecture efficiently models the further temporal context. Also a
TDNN-LSTM architecture was applied in [9] for graphemic ASR system where it
outperformed DNN-based system by 18.6% relatively. Comparing to TDNN and
LSTM systems, relative reduction was equal to 7.1% and 6.4% respectively.

For language modeling, generally RNNs are used. In RNN, the hidden layer rep-
resents all preceding context as opposite to feedforward NNs, which use preceding
context of a fixed length for word prediction. RNN for language modeling was
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Fig. 1. Decoding of speech signal with NN-based AM and LM.

292 I. Kipyatkova



introduced in [10]. A parallel RNN with part-of speech (POS) tags is presented in [11].
The proposed model consists of two RNNs: word RNN and POS RNN. The hidden
state of word RNN affected also by an output from the state of POS RNN. LSTM-based
LM was used for language modeling in [12]. There are RNN LMs, which contain
information about both preceding and succeeding words as well. Usually, bidirectional
RNNs are used for this purpose [13]. In [14], the authors proposed unidirectional RNN
structure that uses a feedforward unit to model a finite number of succeeding words.

Some researches explore the usage of NNs for both acoustic and language mod-
eling. For example, in [15], an improvement of Microsoft ASR system is described.
The system used CNN-BLSTM AM and 4-gram LM for decoding and lattice rescoring,
and LSTM-based LM was applied for 500-best list rescoring.

There are a few researches on application of DNNs in Russian speech recognition
systems. Samples of Russian ASR systems with DNN-based acoustic models are
presented in [16, 17]. RNN LM for Russian is proposed in [18, 19].

3 Acoustic Modeling with NNs

We have tried three types of NNs for acoustic modeling: feedforward DNN, TDNN,
and LSTM. AMs were trained using the open-source Kaldi toolkit [20]. Mel-frequency
cepstral coefficients (MFCCs) were used as input to the NNs. For speaker adaptation,
100-dimensional i-Vector [21] was appended to the 40-dimensional MFCC input.

We used Dan’s implementation [22] of DNN training realized in Kaldi and
experimented with feed-forward DNNs having p-norm activation function [23]. The
output was a softmax layer with the dimension equal to the number of context-
dependent states (1609 in our case). We created DNNs with different numbers of
hidden layers and values of input/output dimensions. The system was trained for 15
epochs with the learning rate varying from 0.02 to 0.004 and then for 5 epochs with a
constant final learning rate (0.004). Our hybrid DNN/HMM system is described in
[24] in more detail.

TDNN is a feed-forward DNN with nodes modified by time delays. TDNNs are
efficient for modeling temporal dynamics in speech allowing capturing long term
dependencies between acoustic events. In [4], a sub-sampling technique was proposed
for TDNN which allows to speed up training and make training time comparable to
standard feed-forward DNN training. According to this technique, hidden activations
are computed only on a few time steps instead of all time steps. In this approach,
instead of splicing together contiguous temporal windows of frames at each layer, it is
proposed to splice together no more than two frames.

We created TDNNs with different numbers of hidden layers, various temporal
contexts and splice indexes. p-norm nonlinearity was also used for hidden layers. An
example of TDNN architecture with time context [−7, +4] using sub-sampling is
presented in Fig. 2. The input layer splices together frames at a context [−1, 1]. For the
hidden layer sub-sampling {−2, 1} is performed which means that the input at the
current frame minus 2 and the current frame plus 1 are spliced together. Then at 2nd
hidden layer sub-sampling {−4, 2} is applied. Our TDNN system is described in [25] in
detail.
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LSTM contains special units called memory blocks. Each memory block is com-
posed of a memory cell, which stores the temporal state of the network, and multi-
plicative units named gates controlling the information flow. There are an input gate, an
output gate, and a forget gate [26]. An example of the memory block is presented in
Fig. 3 [27], where xt is an input vector at time t; ht is an output vector.

We created LSTMs and BLSTMs with 3 layers. We tried different cell dimensions
equal to 512, 1024, and 2048. The output state label was delayed by 5 frames.
The LSTM delays were equal to −1, −2, and −3 at layer 1, layer 2, and layer 3
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Fig. 2. An example of TDNN architecture with sub-sampling for network context [−7, 4].
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respectively. BLSTM used recurrent connections with delays −1 for the forward and 1
for the backward at the layer 1; −2 for the forward and 2 for the backward at the layer
2; −3 for the forward and 3 for the backward at the layer 3. LSTMs and BLSTMs were
trained for 3 epochs.

4 Language Modeling Using NN

The text corpus for LMs training and evaluation was taken from on-line newspapers.
The size of the training corpus after text normalization is over 350 M words. The size
of the corpus for perplexity estimation was 33 M words. The vocabulary size was
150 K word-forms. Transcriptions were generated automatically by application of
transcribing rules to the list of word-forms with denoted stress vowel [28]. The
baseline 3-gram model with the Kneser-Ney discounting was created using SRI Lan-
guage Modeling Toolkit (SRILM) [29].

The topology of RNN LM is presented in Fig. 4. We used the same architecture as
in [10]. RNN consists of an input layer, hidden (or context) layer, and an output layer.
The input layer is a concatenation of the vector, which represents the current word, and
the vector, which is the output of the hidden layer. The hidden layer contains all
preceding context. The output layer represents a probability distribution of the next
word given the previous word and the preceding context. Size of the hidden layer is
chosen empirically and usually it consists of 30–500 units [10].

For creation of RNN LM we used Recurrent Neural Network Language Modeling
Toolkit (RNNLM toolkit) [30]. In order to speed up training the factorization of the
output layer was performed [31]. We created RNNs with different number of units in
the hidden layer and number of classes. Description and evaluation of the models was
described in detail in [32]. For the current experiments, we used RNN with 500 hidden
units and 100 classes. Also we made linear interpolation of the RNN and 3-gram LM.
Perplexities of the models are presented in Table 1. The interpolation coefficient of 0
means that only 3-gram model was used; the interpolation coefficient of 1.0 means only
RNN LM was used.

Input Context Output

Fig. 4. Recurrent neural network topology.
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5 Experiments

5.1 Speech Corpora

For training and testing the Russian ASR system, we used our own speech corpora
recorded at SPIIRAS. The recording of speech data was carried out with the help of two
professional condenser microphones Oktava MK-012. The speech data were collected
in clean acoustic conditions, with 44.1 kHz sampling rate, 16 bits per sample. The
signal-to-noise ratio was about 35 dB. For the recognition experiments, all the audio
data were down-sampled to 16 kHz.

The training speech corpus consists of three parts. The first part is recordings of
phonetically rich and meaningful phrases and texts. This database was developed
within the framework of the EuroNounce project [33]. The second part consists of
recordings of a phonetically representative text, presented in [34] and contains phrases
taken from the Appendix G to the Russian State Standard P 50840-95 [35]. The third
part is audio data of the audio-visual speech corpus HAVRUS [36]. The total duration
of the entire speech data is more than 30 h. To test the system we used another speech
dataset consisting of 500 phrases pronounced by 5 speakers [37]. The phrases were
taken from the materials of one Russian on-line newspaper (Fontanka.ru) that was not
presented in the training speech and text data. A detailed description of the corpora is
presented in [25].

5.2 Speech Recognition Results with 3-Gram LM

Firstly, we have made experiments on Russian speech recognition using DNN/HMM
AMs. Obtained results are presented in Table 2. The best result (WER = 20.71%) was
obtained when the DNN had 6 hidden layers and the input/output dimension was
900/90. Increasing the number of the hidden layers and units led to increasing the
WER, it can be caused by the limited amount of the training data and model overfitting.

Table 1. Perplexities of interpolated RNN and 3-gram LMs.

Interpolation coefficients 0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Perplexity 553 394 392 396 408 429 471 766

Table 2. WER with feed-forward DNN models (%).

Number of hidden layers Input/output dimension
500/50 800/80 900/90 1000/100 2000/200

3 21.35 21.03 23.63 23.48 25.09
4 21.25 21.16 21.91 21.63 23.86
5 22.23 20.73 20.84 20.82 22.58
6 22.27 21.09 20.71 21.52 25.07
7 22.13 22.36 21.44 21.72 21.76
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Then, we have made experiments with TDNN/HMM AMs. Table 3 presents the
obtained results. The lowest WER was 17.62% and it was achieved by application of
the TDNN with 5 hidden layers and time context [−8, 8] (TDNN2). The usage of the
models with a larger temporal context led to increasing of WER that also can be caused
by overtraining.

Results obtained with LSTMs and BLSTMs (Table 4) are approximately the same
as feed-forward DNNs. This can be connected with the fact that LSTMs are easily
overfitted, so parameters of the model should be tuned more carefully.

5.3 Speech Recognition Results with RNN LM

The best results obtained during previous experiments were used for the experiments
with N-best list rescoring. So, we made rescoring of four 500-best lists obtained with
the following AMs: (1) DNN with 6 hidden layers and input/output dimension equal to
900/90; (2) TDNN2 with input/output dimension equal to 600/60; (3) LSTM with 1024
units in one hidden layer; (4) BLSTM with 1024 units in the hidden layer. For
rescoring we used solely RNN-based LM as well as RNN interpolated with 3-gram
model with different interpolation coefficients. Obtained results are summarized in
Table 5. The lowest WER = 15.13% was achieved using TDNN-based AM and
RNN LM interpolated with 3-gram model using the interpolation coefficient of 0.5.

Table 3. WER with TDNN models (%).

Model Input/output dimension
500/50 600/60 700/70

TDNN1 18.86 18.28 18.11
TDNN2 18.01 17.62 17.73
TDNN3 20.26 20.32 21.20
TDNN4 19.83 19.25 19.49
TDNN5 19.85 19.01 19.98
TDNN6 20.26 20.32 21.20
TDNN7 18.95 18.46 19.12

Table 4. WER with LSTM models (%).

Model Number of units in
each hidden layer
512 1024 2048

LSTM 22.27 21.48 22.00
BLSTM 21.99 21.24 22.62
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6 Conclusions and Future Work

In the paper, we described our NN-based very large vocabulary continuous Russian
speech recognition system. For acoustic modeling, we trained hybrid DNN/HMM
models with different topologies of DNNs. For language modeling, we used RNN on
the N-best list rescoring stage. Training and testing the system was performed on our
own speech and text corpora. The lowest WER was achieved with TDNN/HMMs as
AM and rescoring 500-best list with the help of RNN LM interpolated with 3-gram
model. We achieved the relative WER reduction of 27% comparing to our best result
obtained with the baseline feedforward DNN/HMM AM and 3-gram LM. In further
work, we plan to investigate other topologies of DNNs for acoustic and language
modeling.
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