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Abstract. As technical systems around us aim at a more natural inter-
action, the task of automatic emotion recognition from speech receives
an ever growing attention. One important question still remains unre-
solved: The definition of the most suitable features across different data
types. In the present paper, we employed a random-forest based feature
selection known from other research fields in order to select the most
important features for three benchmark datasets. Investigating feature
selection on the same corpus as well as across corpora, we achieved an
increase in performance using only 40 to 60% of the features of the well-
known emobase feature set.
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1 Introduction

Speech is a carrier of different kinds of information – besides the pure semantic
content of an utterance, there are several layers underneath [14]. In human-
human interaction (HHI), the interlocutors try to extract this additional infor-
mation, often using multiple channels – simply speaking, by listening not only
to what is said but also how it is said. One such layer of information is the
emotional layer – the same sentence can have different meanings depending on
its emotional toning. This can be transferred to the domain of human-computer
interaction (HCI) to enable computer systems to understand the emotional level
in order to make HCI more natural and pleasant for the user.

Unfortunately, the recent performance boost in speech recognition provided
by deep learning did not improve the performance of emotion recognition alike:
Although there are first attempts to implement end-to-end approaches [24], they
are still in their infancy and rely on multimodal data. As long as the required
massive data amounts are not yet available for audio-based emotion recognition,
it is necessary to explore the existing possibilities and to look for other ways to
improve the performance of current systems. One such way is the extraction and
selection of the most suitable features.
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Since the Interspeech 2009 Emotion challenge [21], the emobase feature set
(as described in detail in [10]) is often used as a go-to feature set for various
acoustic recognition systems: e.g. dialogue performance [19], user state detec-
tion [8], physical pain detection [17], etc. It contains 988 features based on 19
functionals of 26 Low-Level-Descriptor (LLDs) and their deltas: Mel-Frequency
Cepstral Coefficient (MFCC), Line Spectral Pairs (LSPs), intensity, fundamen-
tal frequency, and other – there are also larger versions of this set such as the
2010 emobase version and the emo large version containing 1582 and 6552 fea-
tures, respectively. Besides these large feature sets, there are also relatively small
ones, such as the GeMaps set [9], containing 18 LLDs (based on frequency and
spectrum) and their derivatives, resulting in a total of only 62 features for the
minimalistic and 88 features for the extended set.

Although widely used, these sets are not perfect. So, the 988 features of
emobase are often used to classify relatively small amounts of samples. The
GeMaps set on the other hand, while having not as many features, does not
achieve the same performance as emobase [9].

In the present study, we want to examine two questions. Our first research
question is whether the emotion recognition performance achieved using the
emobase feature set is the best possible, or whether the same or even better per-
formance can be achieved with less features using a data-driven feature selection
process. Our second question is whether the same features are important for
different data types. To investigate these questions, we employ a Random Forest
(RF)-based feature ranking procedure on three different corpora and conduct
classification experiments using same-corpus as well as cross-corpus features.

1.1 Literature Review

As early as 2003, Kwon et al. have deducted that the extraction of good fea-
tures is more important to the emotion recognition task than the choice of the
optimal classifier [13]. The most frequently used features comprise prosodic and
spectral information. One problem concerning such features is that their values
depend on the individual speaker’s voice characteristics. Possible solutions are
the calculation of speaker-independent features, such as the changes instead of
the absolute values [15], or different normalisation methods [3]. Some research
questions have already been answered: For example, it was shown that supraseg-
mental features perform better than segmental ones [22] or that features are not
language-independent [26]. The choice of the best suitable features was also
addressed in different investigations. So, Bitouk et al. used spectral features to
classify emotions on two corpora and investigate the influence of different feature
selection techniques, but none of the employed methods lead to clear gains [2].
Gharavian et al. presented a sophisticated feature selection approach based on
fast correlation-based filters and genetic-algorithm-based optimisation to achieve
5% absolute improvement in terms of accuracy [11]. Unfortunately, the authors
opted for a training and test set evaluation procedure instead of a true Leave-
One-Speaker-Out (LOSO) setting and therefore did not report on differences
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between the speakers. Besides the usually employed prosodic and spectral fea-
tures, there are also approaches investigating novel feature sets – for instance
based on the Fourier parameters [25] and wavelets [18].

In the present study, we investigate the performance of RF-based feature
selection on three benchmark emotional datasets in a LOSO setting and compare
the features selected for different data types.

2 Datasets

In order to be able to answer our research questions in the most possible gen-
eralised way, we employed three famous benchmark corpora with different lan-
guages, emotion types and recording conditions.

The Audiovisual Interest Corpus (AVIC) [20] is a dataset built around a
product presenter in an English commercial presentation. The recordings were
made in an office environment and contain three levels of interest (loi1 - loi3) as
classes.

The Berlin Emotional Speech Database (emoDB) [5] is a studio-recorded Ger-
man dataset containing recordings of ten emotionally neutral sentences with
seven emotions: anger, boredom, disgust, fear, joy, neutral, and sadness.

The Speech Under Simulated and Actual Stress (SUSAS) dataset [12] con-
tains acted and spontaneous emotional utterances of English speakers in four
different conditions: neutral, medium stress, high stress and screaming. Some of
the utterances also contain field noise.

An overview over the details of the corpora is given in Table 1.

Table 1. Characteristics of the selected corpora.

Property AVIC emoDB SUSAS

Quality Office Studio Noisy

Language English German English

Emotion type Spont Acted Mixed

# Speakers 21 (10f) 10 (5f) 7 (3f)

# Emotions 3 7 4

# Samples 3002 535 3593

3 Feature Selection with Random Forests

In order to find the optimal amount of features, we first ranked the features
according to their importance for the classification task using RF. We then
analysed the obtained feature rankings and compared them for different speakers
of the same corpus as well as between the different corpora. In the last step, we
compared the classification performance using an increasing number of features
to find an optimum.
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3.1 Feature Extraction

For feature extraction, we used the emobase feature set of the openSMILE toolkit
mentioned above, providing 988 spectral and prosodic features extracted on
utterance level (cf. [10] for details). In order to establish comparability of the
features among different speakers, we standardised the data to zero mean and
unit variance.

3.2 Feature Ranking

In order to select the most important features, it is necessary to rank the features
according to their importance. One possibility for this is a feature ranking routine
based on RF – an ensemble learning method combining a typically high number
of binary decision trees [4]. In each decision tree, each node samples a random
subset of features and chooses the feature that is suited best to split the data
into classes based on the impurity measure (e.g. the Gini index or information
gain). By iterating this process, the features can be ranked according to their
ability to decrease the impurity. A detailed explanation can be found in [7,
23]. The method was tested for several applications, for example in the field of
spectroscopy analysis [16].

To realise this feature ranking procedure, we used the random forest imple-
mentation provided by KNIME [1]. The procedure consists of three steps as
illustrated in Fig. 1. In the first step, a random forest containing a high number
of trees with k levels each (k can be a low number since the most relevant fea-
tures are close to the root) is built on the training portion of the data in order to
obtain two statistical values for each feature f : the number of models Mi which
use f as split on a tree level i, and the number of times Ti f was in the feature
sample for the level i. Their quotient summed up over all levels is the score Sf

for each f :

Sf =
k∑

i=0

Mi

Ti

In a second step, a random score Srandf
is generated by calculating the score

in the same way, but now with randomly shuffled labels – this is done in order
to eliminate a bias that might be contained in the data.

In order to balance the influence of randomness, both Sf and Srandf
are

calculated ten times and then averaged. The new score Snewf
is then obtained

in a final third step by subtracting Srandf
from Sf : Snewf

= Sf − Srandf
. The

features are then sorted according to their final scores, the ranking indicating
their importance.

In order to avoid overfitting to the data, this procedure is executed in a
LOSO manner: For each speaker, the feature ranking is performed only on the
data of all the other speakers, excluding the data of the current speaker, which
is reserved for later testing.
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Fig. 1. An overview over the RF-based feature ranking procedure.

3.3 Comparison of Feature Rankings

One of our research questions was to investigate whether there are generally
important features carrying emotional information or whether the most impor-
tant features differ depending on the data. In order to answer this question we
compared the feature rankings obtained on the three employed datasets and
conduct several Pearson’s correlation tests – between the feature selection rank-
ings of different speakers of the same corpus for intra-corpus comparison as well
as between the feature selection rankings of different corpora for inter-corpus
comparison.

Intra-corpus Comparison. In order to test whether the feature rankings are
consistent for all speakers within a corpus, we compared the LOSO rankings by
conducting Pearson’s correlation tests.

For AVIC, the Pearson’s correlation coefficient r between the feature rankings
of the individual speakers lies between 0.95 and 0.98 (r = 0.97± 0.008), leading
to the conclusion that the feature rankings of the speakers are very similar. Our
idea was now to construct an average feature ranking for the whole corpus by
averaging the feature rankings over all speakers, FAV IC . Naturally, the Pearson’s
correlation between FAV IC and the feature rankings of the individual speakers
is just as high as between the speakers, with values between 0.96 and 0.99 (r =
0.98±0.008). The LLDs occurring most frequently in the top 100 are illustrated
in Fig. 2a.

For EmoDB, we implemented the same procedure. Here the correlations
between the speakers are about as high as for AVIC, with r values between 0.95
and 0.98 (r = 0.98 ± 0.01) indicating that the feature rankings are consistent.
Also, in the same way as for AVIC, we constructed a new average feature ranking
FEmoDB. Again, r between FEmoDB and the feature rankings of the individual
speakers is between 0.97 and 0.99 (r = 0.99± 0.006). The LLDs occurring most
frequently in the top 100 are illustrated in Fig. 2b.



Improving Emotion Recognition Performance 139

(a) AVIC (b) EmoDB (c) SUSAS

Fig. 2. Word clouds of the LLDs most frequently occurring in the top 100 of the feature
rankings for AVIC, EmoDB and SUSAS. The LLDs occurring for all three corpora are
written in red. (Color figure online)

Finally, we repeated this procedure for SUSAS. The correlations between the
feature rankings of the individual speakers are slightly lower than for EmoDB,
with r values between 0.87 and 0.96 (r = 0.92 ± 0.03) but still sufficiently high
to conclude that the feature rankings are consistent. The correlations between
the average feature ranking FSUSAS and the individual rankings are between
0.92 and 0.98 (r = 0.96± 0.02). The LLDs occurring most frequently in the top
100 are illustrated in Fig. 2c.

Inter-corpus Comparison. In the second step of our analysis, we compared
the inter-corpus results in order to find whether the feature rankings are similar
between the different types of data used. For this, we calculated the Pearson’s
correlation coefficients between the previously constructed average feature rank-
ings FemoDB, FSUSAS and FAV IC . In contrast to the intra-corpus comparison
presented above, the results lead to the conclusion that there are no correlations
between the feature rankings of the different corpora.

For the correlation between FEmoDB and FAV IC , the r value is 0.18. For the
correlation between FEmoDB and FSUSAS , r is even lower, 0.14. For FSUSAS and
FAV IC , r is negative, −0.07. These results are shown in Fig. 2: There are only
two LLDs shared by all three datasets (MFCC[5]and its derivative as well as the
derivative of MFCC[10]). This means that, unfortunately, the feature rankings
are not universally transferable for different types of data. However, there are
similarities – different MFCCs seem to be the most important features, since
they occur relatively often in the top 100 features for all three datasets.

3.4 Selecting the Optimal Number of Features

In the next part, we searched for an optimal number of features for each of the
corpora. For this, we classified the data using an increasing number of features,
starting with 50 features with the highest RF-scores and then consecutively
adding 50 more features with decreasing scores in each step, until we reached
the full 988 emobase feature set. In order to avoid overfitting, we again used a
LOSO validation setting. For each feature subset, we calculated the Unweighted
Average Recall (UAR) over all classes and speakers. The UARs achieved during
this optimisation procedure are shown in Fig. 3. Here, AVIC and EmoDB show
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Fig. 3. The UAR of the classification performance on the three datasets depending on
the number of selected features. The results achieved using the full number of features
are indicated by the dashed line

similar results: after starting with a rather low UAR value for low numbers of
features, the UAR rises rapidly and stays at a stable value. However, for SUSAS
the number of features seems to have less influence, since the UAR does not
change as much as for the other two corpora.

4 Classification Using Previously Selected Features

After selecting the optimal number of features, we conducted classification exper-
iments in order to evaluate and compare the performance of the selected features
to the full emobase feature set.

4.1 Classification Setup

For the classification, we again implemented the LOSO procedure as described
above. Since we obtained between 7 and 21 models for each corpus, we decided
against parameter fine-tuning and employed default employed default Support
Vector Machine (SVM) parameters as provided by the LibSVM library [6]. For
evaluation, we computed the unweighted average f-measure (UAF) as the har-
monic mean of the unweighted average recall and precision over all classes of one
speaker, and then the unweighted average over all speakers. In order to include
variations over speakers, we report the average values as well as the standard
deviation as performance measures.

4.2 Classification Performance

The classification results are shown in Fig. 4 – we report the classification perfor-
mance for each dataset, the baseline performance using all 988 emobase features
and the performance using the previously selected features. Furthermore, we also
report the results using cross-corpus feature selection. For this, we performed the
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Fig. 4. The UAF of the classification performance for the emobase feature set FE , the
best feature selection set FS , the cross-corpus feature set with the lower correlation
FCC1 and with the higher correlation FCC2

classification on one dataset using the feature set obtained on another one. Since
we used three corpora, this procedure results in two additional values per cor-
pus: FCC1 denotes the results using the feature set with the lower correlation
coefficient (as obtained in Sect. 3), FCC2 the results with the higher correlation
coefficient.

The classification with feature selection outperforms the classification using
the full emobase feature set for all three corpora by several percent absolute –
but the improvements lie within the standard deviation of the average values of
the speakers. However, the results show that for all three corpora, a performance
improvement can be achieved using between 40 and 60% less features than the
original feature set. This is an interesting finding since feature extraction as well
as classification are resource-intensive tasks, where a reduction of the processing
overhead can be a real benefit – for example in the domain of mobile applications.

Regarding the performance of the different feature sets across corpora, we can
observe that the results are almost as expected: except for SUSAS, the “alien”
feature sets obtained by feature selection on another corpus do not perform as
good as the one obtained on the same corpus. Furthermore, FCC2 outperforms
FCC1 in all cases (albeit marginally as for emoDB), which corresponds to the
higher correlation between FCC2 and FS compared to FCC1 and FS . The only
exception is SUSAS, where the FCC2 works about 0.7% better than FS .

Based on these results, we can conclude that RF-based feature selection is
a viable method to improve emotion recognition performance for different types
of data.

5 Conclusion

The first question we aimed to investigate in this study was whether the number
of features used for emotion recognition can be reduced achieving the same or
even better performance. We have shown that by applying RF-based feature
selection, we can reduce the number of features roughly by half and obtain an
even better performance than using the full emobase set – furthermore, by using
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three different corpora we have shown that this result is independent of the type
of emotions, language and recording conditions.

The second research question was whether there are inter-corpus similarities
in the selected features. Here our finding is that the most important features are
not consistent over different corpora, and therefore the feature selection needs to
be done for each emotion recognition task separately. However, different MFCCs
are among the most important features of all three corpora indicating that there
is a common ground of acoustic information.

There are two main directions for further research. The first interesting ques-
tion here is to investigate further feature sets – besides larger versions of the
emobase feature set including up to 6552 features also novel and less frequently
used features such as the Fourier parameters and wavelet-based features are of
interest. The second open question is to consolidate feature classes according
to the type of material used – in this investigation, we have seen that features
important for EmoDB differ from those for AVIC. The question is whether these
differences are based on the type of emotions, on the emotional classes, on the
recording conditions, or on some still unknown factors. This needs to be further
investigated in order to understand the relations between the features and the
information on the emotional status of the speaker contained in them.
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