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Preface: Volume II

Breeding climate change-resilient varieties, capable of withstanding broad-spectrum
stresses such as drought, heat, cold, salinity, flood, submergence, has become a
major goal in plant breeding programs worldwide. The impetus for this common
objective has arisen from severe negative effects of the climate change on crop
production in the past two decades. Particularly in less-developed countries where
the consequences of changing climate can have a devastating socioeconomic impact
due to the burgeoning population, increasing the resilience of crops to climate
change is the need of the hour for ensuring food and nutritional security.

Further, the objective of reaching a level of production, which is sufficient to
sustain an adequate level of global food security, needs to be accomplished in a
short span of time. Hence, scientists and breeders all over the world have adopted
and integrated genomics-based tools in their breeding pipelines. Genomics-based
approaches have been extensively deployed to dissect the genetic makeup of abiotic
stress adaptation. Given the quantitative nature of abiotic stress tolerance, identi-
fication of quantitative trait loci, genome-wide association mapping, and/or appli-
cation of transcriptomics have been the main target of research to identify the
genetic loci or even candidate genes regulating the adaptive response of crops to
abiotic stresses.

Genomics-assisted breeding is benefiting from the recent upsurge in high-
throughput sequencing and phenotyping platforms, allowing rapid identification of
genes underpinning abiotic stress tolerance. Even in minor and/or orphan crops, the
number of available high-quality reference genomes has been constantly growing
due to the widespread application of genome sequencing technology. This will not
only expedite the dissection and cloning of the loci controlling abiotic stress tol-
erance but also will expand opportunities to tap into wild relatives of crops, hence
increasing the reservoir of genetic diversity available to breeders.

This book elaborates the progress and prospects of genomics-assisted breeding
for improving abiotic stress resilience in various crops in a simple but compre-
hensive mode using suitable examples. This compilation will prove useful to not
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only scientists and Ph.D. students who are working on a specific crop or tacking a
particular abiotic stress tolerance but to a broad community of readers including
graduates and postgraduates who wants to be updated with pros and cons of various
genomics-assisted approaches that has been utilized for genetic improvement of
crop plants.

Delhi, India Vijay Rani Rajpal
El Batán, Mexico Deepmala Sehgal
Hazaribag, India Avinash Kumar
Noida, India S. N. Raina
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Chapter 1
Genetics and Genomics of Stomatal
Traits for Improvement of Abiotic Stress
Tolerance in Cereals

Fahimeh Shahinnia, Penny J. Tricker, Mohammad-Reza Hajirezaei
and Zhonghua Chen

Abstract In traditional breeding programmes for improving abiotic stress tolerance
of cereals, direct selection for grain yield is slow and costly, requiring many years
and sites of field trials. Grain yield largely depends on the flag leaf characteristics
and functions and is correlated to the ability of the plant to regulate its water content
and to synthesize, store and relocate carbohydrates from leaves to grains. Despite the
recognition of the importance of the flag leaf in cereals, little is known about genetic
control of its cellular structure and development under stress. The leaf stomata cells
regulate water loss by transpiration and photosynthetic CO2 uptake in plants. In order
to maintain a high photosynthetic rate for higher yield under drought and salinity
conditions, it is critical to explore the mechanisms of control of stomata. A major
crucial challenge in breeding for abiotic stress tolerance is the knowledge about the
physiological and genetic mechanisms that regulate stomatal morphology and devel-
opment connected to grain yield. Quantitative trait loci (QTL)mapping has been used
to identify the genes that are subject to natural variation of stomatal traits in wheat,
barley and rice. Over the last decade, several studies have demonstrated the impor-
tance of stomatal density and size and their positive association with physiological
processes in grain yield. Further, considerable genetic variation exists for stomatal
and epidermal cell traits that could be exploited for marker-assisted breeding and
used for creation of new effective traits in cereals.

Keywords Epigenetic control · Indirect selection · QTL · Stomatal features
Stomatal regulation · Stress response
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2 F. Shahinnia et al.

1.1 Introduction

Themost important food, feed, and bioenergy crops are produced from the grass fam-
ily Poaceae which includes cereal grains, pasture grasses, sugar cane, and bamboos
(Chase 2004). Humans gain more than 70% of essential calories from the grasses.
The economic value of grasses is difficult to estimate, but the yield of wheat in
2014 alone was valued at over $200 billion globally (http://www.fao.org/statistics/
en/). Poaceae are now the most persistent plants populating mountains, rainforests,
deserts, and even intertidal coastal regions (Kellogg 2001; Prasad et al. 2005; Dai
et al. 2012, 2014). The spread and diversification of grasses began in the understoreys
of tropical forests around 65 million years ago (Mya). The adaptability and evolu-
tion of faster and exceeding transpiration-efficient stomata in grasses have enhanced
during global acidification 30–45 Mya (Kellogg 2001; Franks and Farquhar 2007).

Abiotic stresses, mainly drought and salinity are among the main causes of yield
losses in crops worldwide (Vinocur and Altman 2005). In contrast to control of plant
resistance to biotic stresses by single genes, themultigenic response to abiotic stresses
is complex and thus more difficult to control and manipulate. Hence, both selections
for yield and for less complex characters such as stomatal traits should be considered
to enhance crop tolerance. Stomata as a barrier for gaseous exchange between the
environment and plant cells are subjected to different regulations involving internal
(morphological features, genetic factors, epigenetic and hormonal regulation and
ion channels) and external (light, CO2, and humidity) factors (Fig. 1.1). Stomata
exposed to different environmental adversities have altered size and density and
induce an endogenously triggered signaling pathway, which involves various genes,
gene modification and concomitant activation of the related metabolism such as
hormone biosynthesis and ion transporters.

Light,CO2 concentration andhumidity play a crucial role in determininghowmor-
phological features are establishedwithin the leaves and how the internal factors such
as specific genes and/or hormones can be triggered. During the past decades, phys-
iological aspects of stomatal characteristics have been widely investigated, mainly
in the model plant Arabidopsis. Pillitteri and Torii (2012) reported that at least 40
known genes in Arabidopsis control stomatal regulation and development. However,
the genetic control of stomatal size, density and index that includes the assembly and
modification of new leaves under changing environmental conditions in crops is less
understood (Hetherington and Woodward 2003; Doheny-Adams et al. 2012). Stom-
atal traits contribute to the physiological reactions of plants to climate changes and
accessibility of water (Gailing et al. 2008). Decreasing stomatal density is correlated
with increasing CO2 over the last century (Woodward and Kelly 1995; Ferris et al.
2002). Discrepancies in photosynthetic demand, surface properties, light penetration
and the internal architecture of leaves most likely influence stomatal initiation, allo-
cation and features (Ferris et al. 2002). Application of genetic and genomics-based
approaches would identify agronomical desirable alleles present at quantitative trait
loci (QTL) that affect stress responses in plants. Therefore, a better understanding
of the genetic bases underlying stomatal traits and development in response to harsh

http://www.fao.org/statistics/en/
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Fig. 1.1 Schematic model for processes regulating stomata during development and under stress.
Leaf imprint was taken from the adaxial leaf surface of the RAC875 bread wheat cultivar (Shahinnia
et al. 2016)

environmental conditions enable breeders to develop resilient crops more effectively.
In this chapter, we addresses the influence of internal processes regulating stomatal
functions under abiotic stress conditions and review the progress made in molecular
mapping of important stomatal traits and in comparative genomics.

1.2 Stomatal Responses for Stress Tolerance

Grain yield in cereals is determined by the procedure of grain filling and is strictly
associated with flag leaf characteristics (Slewinski 2012; Biswal and Kohli 2013).
Drought stress predominantly affects flag leaf structure during its development. To
select drought tolerance plants, morphological and physiological characteristics of
the flag leaf such as superior area, leaf rolling, relative dry weight, delayed senes-
cence, weight loss, carbon and chlorophyll contents, residual transpiration and higher
carbon isotope discrimination (CID) have been suggested (Nezhadahmadi et al.
2013). Leaf structural features such as silica and trichomes, stomatal traits, epi-
dermal and bulliform cells are considered to have an important role in controlling
water loss and gas exchange damages (Chen et al. 2011; Khazaie et al. 2011; Xu
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and Zhou 2008). Water loss through the stomatal pores contributes to 70% of total
water usage in plants (Hetherington and Woodward 2003). Stomata regulate 95%
of gaseous fluxes between the leaf surface and the environment (Lawson and Blatt
2014).

Both, plant and environment influence the operation of the stomatal aperture and,
therefore, both internal and external factors affect stomatal regulationof transpiration.
To better copewith temporary dry conditions, stomatamust open to allowCO2 uptake
and close during water-stress periods to minimize water loss by leaves (Ainsworth
and Rogers 2007). In case of the prolongation of drought period, plants have to
complete the growth cycle with a limited amount of water stored in the soil. Under
this circumstance, stomata are able to adjust stomatal conductance to enhance CO2

uptake and transpiration rates for a greater water use efficiency (Kim et al. 2004).
Morphological and physiological characteristics such as stomatal size and frequency,
stomatal conductance, photosynthesis rate, transpiration, and water use efficiency
were suggested to affect grain yields of crops in stressed and non-stressed conditions
(Khazaei et al. 2010;Aminian et al. 2011).Venora andCalcagno (1991) demonstrated
that stomatal size negatively correlate with water loss in durum wheat, grown under
normal conditions. In contrast, in breadwheat,Wang andClarke (1993) demonstrated
a positive correlation between stomatal frequency and the rate of water loss. Higher
stomatal frequency has been suggested to be linked with higher water use efficiency
and photosynthetic pathways in C4 plants in comparison to C3 plants (Hardy et al.
1995b). Leaf stomatal conductance is positively correlated with stomatal density
and leaf net CO2 assimilation rate and increases with temperate drought stress in
the grass, Leymus chinensi (Xu and Zhou 2008). Water-use efficiency is thoroughly
associated with stomatal frequency, through its influence on photosynthesis rate and
stomatal conductance. These are among the traits that have been studied in order
to use them either for indirect selection for yield or their relationships with other
physiological characters. Significant genetic variation for stomatal conductance and
photosynthesis rate was found in wheat cultivars, which showed positive correlation
with grain yield (Richards 2000). Despite the recognition of the importance of such
traits for selecting tolerant plants, little is known about genetic and genomic resources
related to stomatal traits, genes and genetic networks that alter the biochemical and
physiological pathways, signalling, synthesis, accumulation, transport and efficient
use of initial resources in cereals (Biswal and Kohli 2013).

1.3 Evaluation of Stomatal Features

Stomatal guard cells regulate stomatal closing and opening in response to environ-
mental changes. The dumb-bell shape and the kidney shape are two broad types
of morphology for guard cells (Hetherington and Woodward 2003). Several stom-
atal traits such as stomatal pore size, stomatal density, stomatal index and stomatal
aperture area can be easily measured. The precision and quickness of evaluating
stomatal traits are major obstacles to use those traits in breeding selection (Liu et al.
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2014). Two groups of procedures are usually used to visualize stomata, monitoring
of replicas, castings of epidermal features or imprints and controlling the fresh or
prepared material (Gitz and Baker 2009). Each method has its own unique strengths
and weaknesses that must be taken into account depending on the species and the
experimental goals. Direct observation techniques include sectioning and fixing fresh
leaf materials or teasing the epidermis from the leaf and mounting in buffer solution
to view under bright field or fluorescence microscopy. While in impression methods,
peels are made by applying a low viscosity plastic or resin such as fingernail polish,
silicon rubber, nitrocellulose, vinyl film and cyanoacrylate glue to the leaf surface and
letting the liquid to stabilize (Hardy et al. 1995a). The thin film is gently peeled from
the leaf surface using a transparent tape, or fine forceps and mounted on a glass slide
in order to visualize via bright field microscopy, followed by image analysis using
an appropriate image analyser program. The outcome is a stable impression of the
epidermis surface for long-term storage (Meister and Bolhàr Nordenkampf 2001).
As an alternative, other leaf preparation methods such as air drying, tetramethyl-
silane air drying, critical point drying and freeze substitution have been proposed
for stomatal traits evaluation and proceed further by scanning electron microscopy
(SEM) (Hardy et al. 1995a).

Apart from the morphological traits, more recently, chlorophyll fluorescence and
thermal imaging have been proposed as techniques to assess stomatal responsiveness
and speed, concurrently with photosynthesis. It is ideal for phenotyping plants with
no damage in carbon assimilation (McAusland et al. 2013).

Plant phenotyping methods can be complemented with the molecular and genetic
technical advances, for quick and applied screening of plants with desired stomatal
characteristics.

1.4 Mapping of QTL for Stomatal Traits

AQTL is a location on the genome, genetically associatedwith variation in the pheno-
types of a quantitative trait. Chromosomal location, closely linkedmarkers, estimated
additive allelic effects and percentage of phenotypic variance for stomatal traits can
be explored through QTL mapping in a bi-parental mapping population (Pinto et al.
2010; Shahinnia et al. 2009). The advent and development of molecular markers in
quantitative genetics significantly eases exploration of complex quantitatively inher-
ited traits. Construction of high density genetic linkage maps for cereals has made
it possible to detect the poly genes for such traits into individual Mendelian factors
(Shahinnia et al. 2006). Dissected regions can be used in marker-assisted selection
through fine mapping of the identified QTL controlling favourite traits (Pinto et al.
2010).Genetic and phenotypic variation in stomatal traits has been identified (Gailing
et al. 2008; Khazaei et al. 2010; Laza et al. 2010); however; the genetic mechanisms
for these traits remain unknown. In poplar, genetic variation and QTLwere found for
stomatal size, initiation, density and epidermal cell number which delivered initial
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evidence that leaf stomatal and cell traits can be detected by QTL analysis (Ferris
et al. 2002).

In cereals, three QTLs for stomatal density were identified on chromosomes 1, 3
and 7 using 100 lines of F2 population from the cross between twoHordeum chilense
accessions. Two QTLs on chromosome 3 overlapped with a QTL that was assigned
for avoidance of leaf rust. Further, 101 recombinant inbred lines (RILs) have been
developed through a cross between Indica rice and a tropical Japonica varieties (Laza
et al. (2010). Under normal field conditions, they identified ten QTLs for stomatal
density and four QTLs for size on chromosomes 1, 2, 3, 4, 6 and 10 across vegeta-
tive stage, heading time and leaf adaxial and abaxial surfaces. Each QTL explained
9.7–14.3% of total phenotypic variation for stomatal size and 9.3–15.2% for den-
sity. Different allelic effects of parental lines were detected dependent on growth
stage in lowland rice. A crucial aspect of adaptation to salinity stress in barely
is dedicated to genetic control of stomata regulation (Chen et al. 2005, 2007a, b;
Munns and Tester 2008; Munns et al. 2010). Genotypic variation for stomatal
behaviour were studuied in barley cultivars using four experimental trials (Liu
et al. 2014, 2017). Treating salt-tolerant CM72 and salt-sensitive Gairdner with
200 mM Sodium chloride revealed significant differences for stomatal character-
istics like stomatal aperture width and aperture width/length as well as guard cell
volume. Genotyping of 108 double haploid (DH) lines obtained from a cross between
the parental lines was done with Diversity Array Technology (DArT) and Simple
Sequence Repeats (SSR) markers. The QTL QSA-T.CmGa.1H for stomatal area
was located in the interval of DArTmarkers bPb-9081 on chromosome 1H (Liu et al.
2017). The association between grain yield, stomatal traits and slow anion channel
genes for improving salinity tolerance was investigated in barley by Liu et al. (2014).
They found one QTL for relative stomatal aperture width/length on chromosome 3H.
This QTL overlapped with the QTL for salinity tolerance. This trait exhibited sig-
nificant correlation with relative biomass in a DH population of barley. Panio et al.
(2013) using 161 F8-F9 RILs, obtained from a cross between two durum wheat cul-
tivars, detected one QTL for stomatal-conductance on chromosome 7A, explaining
12.8% of phenotypic variation under irrigated conditions in the field. Using 144 DH
lines derived from a cross between RAC875 (drought tolerant) and Kukri (drought
sensitive) Australian bread wheat cultivars, 21 important QTLs were identified for
stomatal traits and yield in low rainfall environments (Shahinnia et al. 2016). The
QTLs for stomatal density and size-related traits were found to be located on chro-
mosomes 1A, 1B, 2B, and 7A in both field and controlled conditions. Remarkably,
some of these loci overlapped with QTL on chromosome 7A that controlled kernel
number per spike, normalized difference vegetation index, harvest index and yield in
the same population (Bennett et al. 2012a, b). The RAC875 drought tolerant parental
line showed numerous and smaller stomata in comparison to Kukri, under field- and
controlled-conditions (Shahinnia et al. 2016).
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1.5 Hormonal Signalling Pathway and the Effect of ABA
on Stomatal Closure

Stomatal complexes, as a regulatory site of atmospheric CO2 uptake and of tran-
spiration, contain important specialized cells that are controlled by external CO2,
hormonal stimulant and environmental conditions. Recently, the interaction and role
of the hormones in response to abiotic and biotic stress has been summarized in the
model plant Arabidopsis and a few other crop plants (Acharya and Assmann 2009;
Raghavendra et al. 2010; Araújo et al. 2011; Zhu et al. 2012a; Misra et al. 2015).
Abscisic acid (ABA), a terpenoid derived from carotinoid, serves as a unique stom-
atal regulator that causes stomatal closure and opening through a complex regulatory
network (Umezawa et al. 2010). Further, ABA receptor was supposed to associate
with Mg-chelatase-H-subunit and act as a positive regulator in seed germination,
post-germination growth and stomatal movement in Arabidopsis (Shen et al. 2006).
ABA signalling includes the activation of ion channels via SLAC1 (a guard cell
anion transporter) in conjunction with OST1 (a protein kinase, Open Stomata1) as
positive regulator of stomatal closure and the type 2C protein phosphatases (PP2C)
ABI1 and ABI2 as negative regulators (Geiger et al. 2009; Raghavendra et al. 2010;
Araújo et al. 2011), the involvement of reactive oxygen species (ROS), cytosolic
calcium concentration and pH changes (Zhu et al. 2012b). Further regulatory com-
ponents were found through the studies with a synthetic growth inhibitor pyrabactin,
which is functioning through PYrabactin Resistance1 (PYR1) and Pyr1-Like pro-
teins (PYL) and is required for ABA signaling in vivo. ABA binds to PYR1, which
in turn inactivates PP2C proteins indicating that the PYR/PYL/RCAR proteins are in
charge of the inhibition of the PP2C proteins (Kim et al. 2010). PP2C proteins in turn
inactivate SnRK2s kinases through dephosphorylation. In general, in the presence
and absence of ABA, PYLs modifies the conformation of PP2C proteins and inhibit
their activity and bring SnRK2s into action (Zhang et al. 2015).

Besides ABA, additional hormones showed distinct functions in stomatal regu-
lation including auxin, cytokinins, ethylene, gibberellins, jasmonates, salicylic acid,
strigolactones and brassinosteroids (Acharya and Assmann 2009; Misra et al. 2015).
Interestingly, in Vicia faba, cytokinins appear to exert their function through the
reduction of hydrogen peroxide, which has been shown repeatedly to act as a stress
indicator, whereas auxin prevents hydrogen peroxide generation and thus induces
stomatal opening in darkness (Song et al. 2006). Using genetic studies with Ara-
bidopsis thaliana mutants, jasmonate (JA) and methyljasmonate (MJA) have been
shown to share several characteristic signalling components with ABA and induce
stomata closure in various species (Munemasa et al. 2011). Although several sig-
nalling components for ABA and JA such as calcium involvement, ROS production,
protein phosphorylation and modulation of ion channels are similar, JA and/or MeJA
cannot prevent or replace theABAsignallingmechanisms, for instance under drought
stress (Murata et al. 2015). Salicylic acid (SA), a known pathogen-related hormone
appears to also play a role in stomatal closure in which SA induces the production of
intercellular ROS and inactivates the plasmamembrane potassium channels. Further-
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more, ethylene as a gaseous plant hormone was supposed to induce stomatal closure
in Arabidopsis in a ROS-dependent way mediated by the NAD(P)H oxidase AtR-
BOHF (Desikan et al. 2006). However, due to contrasting published data in which
ethylene acted in different ways on stomatal regulation by promotion of stomatal clo-
sure in Arachis hypogea (Pallas and Kays 1982) and Arabidopsis thaliana (Desikan
et al. 2006) or induction of stomatal opening in Vicia faba (Levitt et al. 1987) and
Dianthus caryophyllus and Solanum lycopersicum (Madhavan et al. 1983), the func-
tion of ethylene in stomatal regulation appears to be dependent on environmental
conditions. A direct function of other hormones including gibberellin, strigolactones
and brassinosteroids in stomatal regulation has not been implicated yet.

However, these hormones may have an indirect regulatory function in stom-
atal movement (Acharya and Assmann 2009; Daszkowska-Golec and Szarejko
2013). To date, most studies on stomatal movement were carried out with the
model plant Arabidopsis or a few crop plants such as V. faba. Similar mecha-
nisms are expected in cereals, however, recent studies emphasized that regula-
tory responses can be influenced by various environmental adversities (Mori and
Murata 2011; Merilo et al. 2014). Chen et al. (2013) demonstrated a partial recovery
of ABA- or soil drying-induced stomatal closure of older leaves in wheat initi-
ated by the ethylene receptor antagonist, 1-methylcyclopropane, or by inoculation
with the rhizobacterium Variovoray paradoxus 5C-2. This study showed clearly
that the relative sensitivity of stomatal closure to ABA and dry soil is likely due
to modified stomatal sensitivity to ethylene and not to increased ethylene synthe-
sis. In addition, Shen et al. (2015) used epidermal peel assays from wheat, bar-
ley and Brachypodium and showed that stomatal closure in response to ABA and
CO2 was similar to that reported for non-graminacious model plants. Recently,
foliar application of different barley genotypes with MeJA under limited water
regimes was reported to result in an additional increase of ABA concentration
but without any effect on auxin concentration (Pazirandeh et al. 2015).

Altogether, the signalling network in the guard cells of graminaceous species
might share some similarities to that of model species. However, whether the sig-
nalling components and the interaction for different hormones during stress, for
instance drought, are homogenously distributed among graminaceous and non-
graminaceous plants is a matter of further investigations. Indeed, this would lead
to the identification of genetic determinants and open future strategies to improve
water use efficiency and pathogen invasion of cereal plants and thus enhance yield
capacity influenced by climate change.

1.6 Complex Cereal Stomata Are Better Designed
for Abiotic Stress Response

Stomata of cereals are complex structure formed by two dumb-bell shaped guard cells
and by two subsidiary cells (Pallaghy 1971; Raschke and Fellows 1971). Subsidiary
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cells are specialised to provide the guard cells with K+ and anions during stomatal
opening and removal of these ions during stomatal closure. The closure of wheat
(Triticum aestivum) stomata is magnificently faster than other species (Franks and
Farquhar 2007). Light-induced stomatal opening occurred within 30 min in barley
(Koers et al. 2011) as compared to tobacco, wherein it took more than 2 h (Kollist
et al. 2014). In grasses, large and fast modifications in stomatal conductance and
aperture is linked to the “Shuttle Ion Transport” between guard and subsidiary cells
within the stomatal complex and the existence of a concerted membrane transport
system (Mumm et al. 2011; Raschke and Fellows 1971).

1.7 Membrane Transporters for Cereal Stomatal Function

Several studies have been already performed to investigate the stomatal membrane
transporters inVicia faba andArabidopsis, but they are less understood in cereals such
asmaize, rice or barley (Chen et al. 2012; Hills et al. 2012;Wang et al. 2012).Most of
these ion transporters in stomata are potential targets of candidate genes for improving
abiotic stress tolerance in cereals (Schroeder 2013). Furthermore, potassiumchannels
activated by hyperpolarization or depolarisation have been characterized in both
guard cells and subsidiary cells of maize (Majore et al. 2002; Mumm et al. 2011;
Wolf et al. 2006). Interestingly, Buchsenschutz et al. (2005) showed that transcripts
for ZORK , responsible for potassium release, was present in subsidiary and guard
cells of maize that are regulated differently by the cytosolic pH.

Membrane potential and calcium play a crucial role in regulation of maize potas-
sium channels in both cell types (Majore et al. 2002; Philippar et al. 2003; Wolf
et al. 2005; Buchsenschutz et al. 2005). Still, a non-selective maize cation channel
type, called MgC, is activated rapidly upon membrane depolarization in subsidiary
and guard cells. It was shown that abscisic acid had no influence on the MgC chan-
nels but differentially regulated the time-dependent K+ release via ZORK . Thus,
an antiparallel-directed potassium transport between subsidiary and guard cells is
suggested to drive stomatal movements in maize and potentially many other cereals
(Wolf et al. 2005, 2006).

Voltage-independent slow anion channels (SLAC/SLAH) and aluminium acti-
vated malate transporter (ALMT) are known in guard cells and subsidiary cell of
cereals. ZmSLACs were identified in both cell types and were shown to be depen-
dent on cytosolic Ca2+ and pH. Stomatal closure was initiated by hyperpolarisation
and cytosolic acidification of subsidiary cells, which; however, resulted in reverse
responses during stomatal opening (Mumm et al. 2011). Furthermore, ZmALMT12 is
expressed in guard cells that transport malate in an aluminum-insensitive and highly
voltage-dependent manner. In addition, powdery mildew (Blumeria graminis) stim-
ulates S-type anion channels in barley (Hordeum vulgare) whereas stomatal guard
cells mediate anions efflux for stomatal closure (Koers et al. 2011). HvSLAC1 and
HvSLAH3 are the responsible genes coding for mentioned channels (Liu et al. 2014).
The kinetic properties of pumps and co-transporters are less studied in grass stomata.
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One of the few examples is the H+-ATPase of maize that is localised on the plasma-
membrane of stomatal guard cells. The H+-ATPase enrichment in guard cells is rele-
vant to active ion transport during stomata opening (Villalba et al. 1991). In addition,
proteins designated as ATP-binding cassette (ABC), were supposed to be involved
in the membrane transport of various molecules (Verrier et al. 2008; Kang et al.
2010; Kuromori et al. 2010). In maize, ABC transporters ZmMRP3 and ZmMRP4
are targeted to the tonoplast, co-regulating the anthocyanin pathway (Goodman et al.
2004). However, there is limited evidence for a role of ABC transporters in stomatal
regulation in grasses.

1.8 Comparative Genomics for Stomatal Traits in Cereals

The genome sequencing has revolutionized plant breeding techniques for global
sustainable agriculture. The availability of complete genome assemblies of major
cereal crops and theirwild relatives has led to the discovery of genes for key agronomy
and stress tolerance traits (Schroeder 2013). Stomatal membrane transporter genes
are candidates for bioinformatics probing across plant species. Based on the known
Arabidopsis genes regulating stomatal guard cell response to ABA, we obtained
over ten thousand gene sequences and their predicted protein sequences from the
sequenced genomes of 26 plant and algae species. Among those, 5,126 are potential
transporters belonging to 24 protein families (Chen et al. 2017). In five major cereal
crops, Triticum aestivum, Oryza sativa, Zea mays, Sorghum bicolor, and Hordeum
vulgare, there were, on an average, 236 predicted stomatal transporter proteins as
compared to 174 inArabidopsis (Cai et al. 2017; Chen et al. 2017). This demonstrated
that the key stomatal membrane transporters are highly conserved and are present in
large numbers in cereals. Comparative genomics provides an excitingway to evaluate
the membrane transporters governing stomatal opening and closure in cereals. Along
with the maker assisted selection, the genomic analysis will assist the identification
of key genes encoding stomatal traits for abiotic stress tolerance such as salinity
tolerance (Liu et al. 2017) in cereals. Further research is required to compare the
function of these transporters and their roles in abiotic stress tolerance.

1.9 Epigenetic Control of Stomata

Genetic control of stomatal traits, mediated by transporter and hormonal control
of function, is not the whole story of regulation in the genome. Recent evidence
has shown that an additional layer of regulation, the epigenome, is involved in both
stomatal development and functioning. This is especially important when consider-
ing the interaction between genotype and environment as there is evidence that the
environment and abiotic stress in particular, may influence stomata through epige-
netic regulation. Abiotic stress leads to transcriptional reprogramming during guard
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cell development (reviewed in Simmons and Bergmann 2016) and stomatal clo-
sure (Ma et al. 2009). Relaxed or repressed transcriptional states are defined by the
‘open-ness’ of chromatin, the matrix in which the genome is packaged, which may
be regulated epigenetically by modifications to histones or by methylation of DNA
(Bell et al. 2011). These epigenetic modifications may also persist to provide an epi-
genetic memory of previously experienced stress, and may therefore be responsible
for priming plants to alter their responses to stress (reviewed in Bruce et al. 2007;
Conrath 2011).

The fundamental unit of organized chromatin is the nucleosome where DNA is
wrapped around a histone octamer consisting of two copies each of the histones
H2A, H2B, H3 and H4 and further organized into arrays associated with the linker
histone H1. Histone tails are subject to non-covalent modification by epigenetic
marks such as acetylation, phosphorylation, dimethylation and ubiquitination that
activate transcription, and biotinylation, sumoylation and trimethylation that repress
transcription (Berger 2007). Together, these modifications combine to create four
chromatin states that are the signatures of, respectively, active genes, repressed genes,
silent repeat elements and intergenic regions (Roudier et al. 2011).

ABA production in response to abiotic stresses induces chromatin remodelling by
the modification of histone tails and by altering the balance of histone linker H1 vari-
ants (Scippa et al. 2004; Sridha and Wu 2006; Rutowicz et al. 2015). Rutowicz et al.
(2015) demonstrated that the linker variant H1.3 is found in a guard cell-specific pool
and is required for stomatal functioning inArabidopsis thaliana. Increased extracellu-
lar calcium (Ca2+)mediates stomatal closure through the calciumsignallinggeneCAS
and is epigenetically regulated by the histone methylase CAU1, thus altering stom-
atal closure and drought tolerance (Fu et al. 2013). Additional histone modifications
have been observed in response to ABA, water and salt stress and in the phenotypic
and developmental responses to these stresses (reviewed in Han and Wagner 2014).
To unravel epigenetic cause from effect and determine the influence of the histone
code at genetic loci is not trivial. Quantitative genetic approaches that rely on iden-
tifiable DNA polymorphisms may need to be combined with the use of inducible
loss-of-function mutants, fine-scale analysis of chromatin dynamics and the separa-
tion of different histone: chromatin states (Han and Wagner 2014).

Epigeneticmodifications also affect stomatal development and thus regulate stom-
atal density and index (the proportion of epidermal cells forming stomatal guard
cells). In addition to its role in stomatal functioning, histone H1.3 variant affects the
expression of guard cell-specific genes including the master regulators of the guard
cell lineage SPEECHLESS (SPCH), MUTE, ERECTA-family/TMM genes and the
mitogen-activated protein kinase MKK9 (Rutowicz et al. 2015) correlated with the
decrease in stomatal density in the h1.3mutant. Disruption of trimethylation of lysine
27 onH3 causes the Stoma-in-Stoma (SIS) phenotype where new stomata are formed
within the shells of the old (Lee et al. 2014). Remarkably, Lee et al. (2014) demon-
strated that stomatal cell fate was stabilized by epigenetic repression of stem cell
genes by the chromatin-modifying Polycomb Repressive Complex 2 and that dif-
ferentiation could be reprogrammed. H3K27 trimethylation and the SIS phenotype
were also induced in transgenic FOUR LIPS when a transgene of the final, differen-
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tiating gene in the guard cell lineage FAMA was expressed under its own promoter,
FAMAtrans. The connections between the beginning and end of the stomatal lineage
and how epigenetic regulation is involved in programming and differentiation are
now being unravelled (Torii 2015).

Environmental signals regulate stomatal development through the transcriptional
and post-transcriptional control of SPCH, the master transcription factor that deter-
mines entry into, and perpetuationwithin, the stomatal lineage (reviewed in Simmons
and Bergmann 2016). The expression of both SPCH and FAMA is inversely corre-
lated with increased DNAmethylation around the loci in response to a low humidity
environment, controlled by short-interfering, non-coding RNAs (Tricker et al. 2012).
In the ros1 demethylase mutant, where the promoter of the peptide ligand EPF2 gene
is not actively demethylated, stomatal lineage cells proliferate so that active DNA
demethylation combats the action of RNA-directed DNA methylation controlling
SPCH (Yamamuro et al. 2014).

Epigeneticmodificationsmay persist and have a role in priming plants for renewed
exposure to stress (reviewed in Kinoshita and Seki 2014). Ding et al. (2012) showed
that the transcription of Arabidopsis stress-responsive genes was altered during
multiple exposures to dehydration stress, and recovery was correlated with H3K4
methylation so that plants were effectively ‘trained’ by previous exposure. More
recently, Virlouvet and Fromm (2015) demonstrated ABA-dependent, guard cell-
specific transcriptional memory. DNA methylation and the low stomatal index phe-
notypes induced by low relative humidity persist at the SPCH locus and prime plants
for increased tolerance to subsequent drought (Tricker et al. 2013a). Remarkably,
both DNA methylation and the phenotype persist through at least one generation,
but are reversed by exposure to the same stress (Tricker et al. 2013b) suggesting
an adaptive, epigenetic ‘memory’ passed from parent to progeny that escapes re-
programming.

Although regulation by the epigenome in response to abiotic stress is complex,
it may provide us with an additional opportunity to select for quantitative traits
using quantitative (epi) genetics. In epigenetic recombinant inbred line populations
(epiRILs), the control of stress tolerance by DNA methylation is demonstrably her-
itable and amenable to selection at epiQTL (Cortijo et al. 2014; Kooke et al. 2015;
Zhang et al. 2013). The epigenetic regulation of stomatal traits, in particular via DNA
de/methylation, with measurable phenotypes, suggests that selection at epiQTL will
increase the pool of variation beyond DNA sequence-based variation and may have
the additional benefit of pump-priming adaptation (Tricker 2015).

1.10 Genetic Manipulation of Stomatal Traits

Genetic engineering of stomatal size, density and patterning are among the
approaches for improving water use efficiency in cereals. The major challenge to
achieve this goal is preventing concession of carbon gain when stomata regulate
CO2 access to the photosynthetic tissues of the leaf (Lawson et al. 2012).
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Interestingly, smaller stomata show a faster response than larger stomata (Hether-
ington and Woodward 2003). It was shown that larger stomata often display slower
responses to stress conditions, since the guard cell size and geometry affect the speed
of stomatal movements. Engineering of stomatal mechanics and guard cell character-
istics can lead to fine-tuning of the stomatal response or sensitivity to environmental
changes. Also, gaseous conductance of stomata per unit of leaf area can be modified
by altering stomatal densities (Lawson and Blatt 2014).

Engineering stomatal signalling and metabolism will affect stomatal function in
response to stress as well as manipulating stomatal anatomy, patterning and speed.
For example, overexpression of maize (Zea mays) NAD-malic enzyme in tobacco
resulted in plants with a decreased stomatal conductance but increases in biomass
per unit of water used, suggesting that modification of both stomata and mesophyll
processes could enhance plant water use efficiency (Laporte et al. 2002).

Although it is possible to engineer stomatal characteristics, it is essential to recog-
nise possible interactions between other traits in this chain. Reprogramming of stom-
atal function should not make the plants more susceptible to environmental limita-
tions. Such approaches may be dependent on the type of stress and differences in
stomatal behaviour in different species, plant water status and leaf age. Progress
to these ends can be achieved from combinations of physiological and molecular
genetic methods together with quantitative systems analysis. This will also benefit
from supplementary evidence about the quantitative kinetics and signal transduction
pathways in plants (reviewed in Lawson and Blatt 2014).

1.11 Evaluation of Stomatal Traits for Indirect Selection
of Abiotic Stress Tolerant Crops

The enhancement of abiotic stress resilience in cereals by traditional breeding is chal-
lenging due to the complex inheritance and multigenic control of this trait (Vinocur
and Altman 2005). Direct selection for grain yield and biomass under abiotic stress is
often ineffective because of the low heritability especially in early segregating gen-
erations. In addition, grain yield and biomass are complex traits for which gene ×
gene and gene × environment interactions create major restrictions for molecular
breeding and identification of QTL with major and stable effects (Panio et al. 2013).
Oneway to elevate the efficiency of selection for abiotic stress tolerance is by indirect
selection for other traits that are genetically correlated and give early yield prediction
in breeding programmes (Dillen et al. 2008).

Stomatal traits reflectmicro-morphology and cell physiology and are very promis-
ing traits for identification of genetic variation and improvement of biomass and yield
under abiotic stresses (Marron et al. 2007; Panio et al. 2013). Assessment of the
degree of genetic variation and mapping of chromosomal regions controlling these
traits are essential for the development of breeding strategies to increase stress tol-
erance in cereals. Dissecting common QTL controlling stomatal traits in association
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with yield indicates that stomatal traits can be an underlying mechanism increasing
yield at specific loci and used as an alternative to elucidate a target QTL (Shahinnia
et al. 2016). This could eventually facilitate the understanding of the function of
these loci, identifying candidate genes and accelerating positional cloning of yield
QTL.

1.12 Conclusions

Improving water use efficiency and resilience of crops to the contrary effects of
climate change is an important topic in research and the scientific agenda. Stom-
ata play a significant role in reducing water loss and increasing photosynthesis
rate that can be subjected for manipulation, aimed at increasing stress tolerance.
In the post-genomic era, identification of genes responsible for stomatal behaviour
in response to fluctuating environmental conditions will be feasible using quanti-
tative genetic approaches in combination with next generation sequencing (NGS),
RNA-sequencing data and high-throughput non-invasive phenotyping platforms. In
conjunction with other ‘omics’ approaches such as transcriptomics, metabolomics
and proteomics, the knowledge-base of stomatal characteristics and behaviour is
growing with the goal of improving crop productivity and yield in the ever changing
climate regimes.
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Chapter 2
Quantitative Trait Loci Mapping
of Heavy Metal Accumulation
and Resistance in Crop Plants

Meetu Gupta and Afsana Praveen

Abstract Industrial revolution and anthropogenic activities have enhanced the
spread of many heavy metals to different environmental sites from the earths’ crust.
Environmental pollution caused by toxic heavy metals is a major threat to human
health. There are different sources bywhich plants get exposure to heavymetals, such
as fertilizer and pesticides application in fields, mining industries and groundwater.
Heavy metals induce damages in plants at physiological, biochemical and molecular
level, either directly or indirectly by generation of reactive oxygen species or free
radicals. In order to reduce the toxicity of the these heavy metals in plants different
strategies can be used, either by application of specific fertilizer, selection of heavy
metals tolerant plants or through genetic engineering. Analyzing the genetic and
molecular mechanisms that are involved in heavy metals tolerance is expected to
enhance the development of heavy metals tolerant plants, and mapping of quantita-
tive trait locus (QTL) associated with their accumulation and resistance is helpful
to improve the heavy metal resistance in plants. A QTL that is responsible for con-
trolling heavy metals resistance in plants can be used for marker-assisted selection
in selecting low heavy metal content plants or tolerant plants in a breeding program.
In this chapter, we focus on mapping QTL for the selection of agronomic traits for
improving the heavy metals resistance in breeding program.
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2.1 Introduction

In nature, plants are exposed to different environmental stresses, including both
biotic and abiotic. Heavy metals, which include some essential (e.g. Fe, Mn, Zn,
Cu, Mg, Mo, Ni, etc.) and non-essential (e.g. As, Hg, Cr, Pb, Ag, etc.) metals,
are toxic substances, which are released into the environment and contribute to a
variety of toxic effects on living organisms in food chain by its accumulation and
biomagnifications. These metals adversely affect crop productivity and growth by
affecting physiological, biochemical and molecular responses (Gill 2014). Heavy
metals are defined as metals or metalloid having higher density than that of water
and are toxic even at low concentration. They eventually accumulate to levels that
could harmphysiochemical properties of soils and lead to loss of soil fertility and crop
yield. Various anthropogenic and geological activities such as addition of pesticides
and fertilizers in agricultural field, fossil fuels burning,mining and smelting ofmetals,
industrial production of batteries and other products of metal, sludge and disposal
of municipal and sewage waste etc. increase the concentration of heavy metals to a
level that are harmful to both animal and plants (Alloway 1990; Raskin et al. 1994;
Shen et al. 2002). Accumulation and bioavailability of heavy metal in plants depends
on the biology of plant species. Certain pollutants such as arsenic (As) remain in the
environment for an extensive period.Arsenic poisoning ismainly found in the regions
of South America, Asia, and densely populated flood plains and deltas of South and
Southeast Asia, due to consumption of As contaminated drinking water (Brammer
and Ravenscroft 2009). In India, groundwater As contamination was first reported in
West Bengal in 1983.A number of other states have been exposed toAs contaminated
water above permissive limit of 50µg/L from the use of hand tube well. These states
areBihar, Jharkhand,Uttar Pradesh adjacent to theGangaRiver, Rajnandgaon village
in Chhattisgarh state, Assam and Manipur near Brahamaputra and Imphal rivers
(Ghosh and Singh 2001). Lead (Pb) is also found along with other heavy metals,
such as Cd, Zn, and it is a major concern due to its extensive distribution which
affects human health and causes environmental pollution (Hernandez-Allica et al.
2007). Cadmium (Cd), a highly toxic heavymetal is readily taken up and accumulated
by plants due to its highmobility andwater solubility properties (Gallego et al. 2012).
Copper (Cu) ion is an essential element and is a structural component ofmanyproteins
and enzymes that play an important role in growth processes, such as mitochondrial
respiration, photosynthesis, cell wall metabolism, mineral nutrition and hormone
signaling pathway (Costa et al. 1994; Muccifora 2007). Zinc (Zn) plays a vital role
in plant metabolic processes such as metabolism of carbohydrates, protein synthesis
and enzyme activation (Cakmak 2000).

The immobile nature of plants enables them todevelopuniquemechanisms to cope
with different stress factors, for example, via altering their physiology and metabolic
mechanisms, changes in gene expressions and/or developmental activities. However,
variations do exist in tolerance mechanisms in plants. Various specific mechanisms
that exist in plants for avoiding or tolerating heavy metal stress include develop-
ment of mycorrhizas, which restricts metals movement into the root cells, binding of
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metals to cell-wall and root exudates, reduced influx of metal ions through plasma
membrane, active efflux of metal ions that have entered into the cell, chelation of
metals in the cytosol by various ligands like organic acids, amino-acids or peptides,
repair and protection of plasmamembrane by different proteins andmetallothioneins
and compartmentalization of chelated products through transporting them into the
vacuole (Hossain et al. 2012). Assessment of environmental condition on ecology at
molecular and population levels are important in risk quantification and remediation
studies. Genetic ecotoxicology is a multifaceted discipline that examines the effects
of toxic compounds on the structure and function of DNA. It also includes study
of somatic and population genetic effects. Integration of these two approaches i.e.
somatic and population genetics would be advantageous to see the changes in popula-
tion genetic structure and DNA damage, the frequencies of alleles and other genetic
markers that differ between genotoxicant-contaminated and reference populations
and genetic analysis of gene flow, which may provide insight into patterns of disper-
sal in contaminated and reference populations. Only a limited number of DNA-based
genetic marker studies have been reported in plants in the literature regarding this.

Many quantitative traits of economic value are under polygenic control and are
selected for, directly. Such a selection is often ineffective, since the effect of each
gene is small, which is also influenced by the environment. Therefore, there should
be a procedure for indirect selection, which is not influenced by the environment.
In this regard, identification of linkage between genes for quantitative traits and
marker loci can lead to significant improvement. Quantitative trait loci (QTL) are
regions of DNA that contain genes affecting a particular quantitative trait. Identifi-
cation of QTL is done by correlating the trait variation with that of genetic variation,
and a significant correlation between phenotype and genotype identified at a QTL
suggests that particular QTL can be helpful for determining trait expression (Frerot
et al. 2010). QTL mapping based on high-density molecular linkage map is used for
understanding the genetic mechanism behind phenotypic complexity. QTL mapping
is a powerful genetic tool, that is used for identification of number, position and
effects of genetic factors involved in phenotypic variation (An et al. 2006). In this
chapter, we focus on different mechanism of heavy metals toxicity, uptake, transport
and finally different strategies for heavy metals resistance, and QTL mapping for the
selection of agronomic traits for improving the heavy metals resistance in breeding
program.

2.2 Heavy Metal Toxicity in Plants

Many physiological and metabolic changes occur in plants upon exposure to high
concentration of heavy metals with varying degree of toxicity (Dubey 2011; Villiers
et al. 2011). Reduction in plant growth occurs due to heavy metal toxicity, which
is identified by symptoms such as leaf chlorosis, necrosis, decrease in seed germi-
nation, loss of turgidity, damage of photosynthetic apparatus leading to progressing
senescence, and cell death (Carrier et al. 2003; Dalcorso et al. 2010). Heavy metal
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exposure causes changes at ultra-structural, biochemical and molecular level in plant
cell and tissues (Gamalero et al. 2009). Heavy metals contamination in agricultural
soil has become an environmental concern, as they are widely distributed in soil and
having adverse toxic effects in plants (Gill 2014). At high concentration of heavy
metals, toxicity symptoms become apparent in plants, which are mainly due to cel-
lular level interactions (Hall 2002) such as binding of metals to sulfydryl group of
proteins, disrupting the structure and leading to inhibition of its activity (Van Assche
and Clitjers 1990). Plants that grow in Cd rich soil have shown cells or tissue injury
symptoms in the form of inhibition in growth, chlorosis of leaves, root tips browning
and ultimately leading to death (Guo et al. 2008). Previous reports showed that Cd
interferes with other metals (e.g. Mg, P, K, Ca) uptake, transport and use by plants.
It also reduces the absorption and transport of nitrate from roots to shoots by inhibit-
ing the activity of nitrate reductase in the shoots (Hernandez et al. 1996; Das et al.
1997). In roots of sunflower andwheat, Cd toxicity caused reduction inATPase activ-
ity (present in plasma membrane fraction) and lipid peroxidation (Fodor et al. 1995).
Inhibition of chlorophyll biosynthesis and reduction in enzymes activity involved in
CO2 fixation have also been reported due to Cd toxicity (Raziuddin et al. 2011). As
toxicity leads to disruption of various physiological and biochemical processes (Li
et al. 2006; Talukdar 2011). For example, it leads to the generation of reactive oxy-
gen species (ROS) through conversion of arsenate to arsenite, and induces oxidative
stress resulting from cellular damages in terms of enhancement of lipid peroxida-
tion, membrane leakage and ROS accumulation (Mascher et al. 2002). As toxicity
in plants is also noticeable by low biomass production (Singh et al. 2007). Pb, a
toxic heavy metal alters the overall plant growth, reduces or inhibits photosynthesis
(Tian et al. 2014). Other toxicity symptoms include decrease in leaf biomass, leaf
size, blade thickness, disintegration of chloroplast, alteration in protein, lipids and
nucleic acid (Islam et al. 2008; Pena et al. 2008; Ali et al. 2014). Zn is an essential
element but excess amount of it causes nutrient imbalance, leaf chlorosis and pho-
tosynthesis inhibition resulting in plant growth damage (Street et al. 2007). Toxicity
of Al is a major constraint to crops productivity in acidic soils, and it is solubilized
into the soil solution in the highly phytotoxic form as Al3+. This form of Al causes
root growth inhibition leading to reduction in root system thus affecting the plant’s
ability to uptake nutrients and water (Uexkull and Mutert 1995; Adam et al. 2011).
In trace amount, Cu is an essential element for plants, but at a higher concentration,
it can be toxic. It is found in protein bound form in cells, because in free form it
generates oxidative stress causing damage to organic molecules. Cu ion in free form
readily oxidizes the thiol bond of proteins and causes disruption of their secondary
structure (Brian and Lebrun 1999). Mercury (Hg), can exist in different forms such
as HgS, Hg2+, Hg and methyl-Hg, but in agricultural soil Hg2+ form is found more
frequently (Han et al. 2006). It has been reported that Hg2+readily accumulates in
aquatic and higher plants, and its high level is phytotoxic to plant cells (Israr et al.
2006). Toxicity symptoms of Hg2+include visible injury and physiological disorders
in plants such as closing of leaf stomata, generation of oxidative stress and disrup-
tion of lipids (Zhang and Tyerman 1999; Cargnelutti et al. 2006; Zhou et al. 2007).
Figure 2.1 shows the mechanisms of heavy metal toxicity in higher plants.
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Fig. 2.1 Mechanism of heavy metal toxicity in higher plants

2.3 Heavy Metal Uptake and Transport in Plants

Plants uptake some heavy metals and transport to different tissues through various
specific mechanisms, while other heavy metals uptake occurs as a passive process.
For example, Cd is a non-essential metal ion, and there is no particular mechanism
of uptake for it. Cd and other non-essential metal ions enter into plant cells using a
system, which is for essential cations. It has been reported that member of ZIP family
metal transporters (ZRT1/IRT 1 like proteins) represent main Fe uptake system in the
roots of Arabidopsis thaliana (Vert et al. 2002). Previous work on Saccaharomyces
cerevisiae expressing IRT 1, showed that this gene also contributes in uptake of
Zn2+, Mn2+, Co2+ and Cd2+ (Korshunova et al. 1999). Cu is transported in plant
cells through P-type ATPase Cu transporter, a subgroup of the large superfamily of
P-type ATPase. Across biological membranes, they consume ATP to pump a range
of charged substrates (Palmgren and Axelson 1998). Grotz et al. (1998) cloned four
Zn transporter genes (ZIP1, ZIP2, ZIP3 and ZIP4), expressed in A. thaliana and
found that in response to Zn deficiency, ZIP1 and ZIP3 expressed in roots, which
suggested that they were involved in the transport of Zn from the soil into plants.
In Zn limited plants, ZIP 4 expressed in both shoots and roots suggesting that ZIP4
might be involved in intracellular Zn transport and/or between tissues. Earlier work
reported that in higher plants, arsenite is taken up by nodulin2,6-like intrinsic proteins
(NIPs) and arsenate by phosphate transporter, whereas other metals such as sulfur,
silicon and phosphorus interact with As during its uptake from soil to plants (Zhao
et al. 2010).
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2.4 QTL Mapping for Improving the Heavy Metals
Resistance in Crop Plants

Recently, QTLs have been reported in various crops for heavy metals resistance
which can be used for marker-assisted selection (MAS). It has been reported that
in soyabean, a cross between AC Hime (high Cd accumulation) and Westag-97
(low Cd accumulation) was done and a recombinant inbred line (RIL) population
(F6:8) derived from it, that was used for identification of DNA markers linked to
Cda gene/QTLs controlling low Cd accumulation. SSR markers closely linked to
Cda 1 genes were identified and that can be used for marker assisted selection for
development of cultivars containing low Cd in a breeding program (Jegadeesan et al.
2010). Cai et al. (2008) developed a group of recombinant inbred lines (RILs) by
crossing FSWChinese wheat and ND35 (Al-sensitive Chinese line) to map QTLs for
Al resistance. They screened 1,437 SSRs and identified 3 QTLs regulating resistance
of Al in FSW. In Arabidopsis halleri, QTLs controlling Zn hyperaccumulation were
mapped by making an interspecific cross between A. halleri and A. lyratapetraea. In
both low and high pollution treatments, two QTLs were identified on chromosomes
3 and 6, and significant interactions were observed between environment and QTL.
The QTL on chromosome 3 was found adjacent to a major QTL that was identified
for Zn and Cd tolerance previously, thus suggesting that Zn hyperaccumulation and
tolerance have a similar genetic basis, and it might be possible they have simulta-
neously evolved on soils contaminated with heavy metals (Frerot et al. 2010). Ding
et al. (2011) observed a trend in the concentration of As in different parts of maize as
leaves>stems>bracts>kernels. They also identified 11 QTLs for As concentration
of which three QTLs for leaf As concentration were mapped on chromosomes 1, 5
and 8. In bracts, stems and kernels 2, 3 and 3 QTLs were identified, respectively,
for As concentration. These results implied that concentration in different tissues
of maize is regulated by different genomic regions and possibly different molecular
mechanisms. Maize can be used for phytoremediation in As contaminated paddy
soil, and the above identified QTLs can be useful for choosing inbred lines and
hybrids containing low As concentration in kernels. Mapping of QTLs controlling
Pb content in maize kernels was done by using a RIL population derived from cross
of 178 (an inbred line with low accumulation of Pb in the kernels) and 9,782 (a Pb-
hyperaccumulator in the kernels). Using the SSR markers, a molecular genetic map
was constructed and QTLs were mapped for Pb content in maize kernels on chrom-
somes 1 and 4. It was found that there was no significant correlation between Pb
content in the kernels and other yield related traits such as kernel ear length, row
number, ear diameter and weight of per-hundred kernels, indicating that in the pro-
cess of improving Pb concentration in maize breeding, yield related traits would not
change (Zhao et al. 2014). A genome-wide association (GWA) mapping approach
has been utilized for mapping grain concentration of As, Cu, Mo and Zn using
SNPs in brown rice in five different environments over two years. Majority of loci
were significantly associated with variation in grain of these metals. A large number
of candidate genes were located near significantly associated SNPs for the uptake
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Fig. 2.2 Schematic
representation of QTL
mapping

or transports of these elements. For further analysis, this study provided a number
genome sites and candidate genes (Norton et al. 2014). A Schematic representation
of QTL mapping is shown is Fig. 2.2.

2.5 Conclusion

Molecular markers are useful when targeting traits, controlled by several genes.
Identification of QTL involved in genetic variation of physiological traits helps in
analyzing the genetic effect of each QTL on quantitative traits, and to determine
the molecular markers linked to QTLs in order to apply marker-assisted selection
for breeding. However, genetic improvement based on selection of markers is still
in infancy in many crops. Marker-assisted selection may solve problems associated
with genotype×environment interactions and can improve the selection efficiency
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to screen metal tolerant plants. Further, the genetic dissection of the quantitative
traits controlling the adaptive response of crops to abiotic stress is a prerequisite
to allow cost-effective applications of genomics-based approaches to breeding pro-
grams aimed at improving the sustainability and stability of yield under adverse
conditions.
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Chapter 3
Progress Towards Identification
and Validation of Candidate Genes
for Abiotic Stress Tolerance in Wheat

Deepmala Sehgal, Nikita Baliyan and Parampreet Kaur

Abstract Identification of candidate gene(s) and its validation in a breeder’s
germplasm is a prerequisite for any successful marker-assisted selection (MAS) pro-
gramme for improving abiotic stress tolerance. Once a candidate gene(s) is identified
and its effects validated under a stress environment, it becomes a powerful marker
resource for developing ‘functional markers’ to assist genomics-assisted breeding
in crops. There are several ways to identify a candidate gene(s) underpinning a
specific abiotic stress tolerance mechanism. The most common methods used are
various ‘omics’ approaches targeting transcriptome (transcriptomics), metabolome
(metabolomics) or proteome (proteomics), co-location of geneswith quantitative trait
loci (QTLs) for abiotic stress tolerance traits (called positional candidates), finemap-
ping of QTLs/QTL cloning, transgenics, RNA interference, mutant screenings and
genome wide/candidate gene-based association mapping among others. The advent
of next generation sequencing (NGS) technologies has completely revolutionized
the identification and characterization of candidate genes underlying various abi-
otic stress tolerance traits. This review focuses on the approaches taken to identify
and validate candidate genes for various abiotic stress tolerances in wheat and the
progress made so far in their validation and implementation in wheat breeding pro-
grams globally.
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3.1 Introduction

Wheat is the third most widely cultivated crop after rice and maize. Consumed
by more than 40% world population, it is a staple food and the primary source of
calories for millions of people worldwide. By 2050, global demand of wheat is
projected to increase by 60% to feed the burgeoning world population. Further, with
the worsening climate change scenarios, wheat production is anticipated to go down
by 29% (Dixon et al. 2009). Abiotic stresses (drought, heat, salinity, metal toxicity,
frost etc.) are predicted to be the major factors, which are likely to be responsible
for this. Breeding for abiotic stress tolerance, therefore, is a major target in wheat
breeding programs globally. Although traditional breeding approaches have pushed
the annual genetic gain to up to 1% in grain yield, but to cope with 2% yearly increase
inworld population under changing climatic conditions, further efforts are required in
a short span of time to generate climate resilient high yielding varieties. Hence, with
the advent of new sequencing and genotyping platforms such as next generation
sequencing (NGS), breeding methodologies have undergone a paradigm shift so
much so that the application of ‘genomics-assisted breeding’ has become common
in most breeding programs. Despite the large (~17 Gb) and complex (AABBDD
allopolyploid) genomeofwheat, these advancedNGSplatformshavebenefitedwheat
by generating large number of markers for gene discovery, lack of which had been a
limitation in the past.

Wheat scientists are employing NGS platforms regularly to get their populations
and germplasm genotyped. As a result, genetic analyses have been conducted in
various sets of germplasm and populations and quantitative trait loci (QTL) and/or
marker-trait associations (MTAs) using association mapping approaches have been
identified for various abiotic stress tolerance traits with an ultimate aim to reach to
the candidate gene(s). In addition, other genomics tools such as ‘omics’ techniques
(transcriptomics, proteomics, metabolomics, and ionomics) have also been adopted
in contrasting lines/parents, for example differing in tolerance to drought or heat
stress or even both, which have not only pinpointed potential candidate genes but
have also unveiled the underpinning tolerance mechanisms. Many of the candidate
genes have also been cloned and validated using transgenic approach; by creating
transgenic wheat, Arabidopsis or tobacco lines transformed with the cloned genes in
wheat.

Further, a remarkable milestone in wheat genome sequencing has been the
sequencing of Chinese Spring (CS42) using the next-generation Roche 454 pyrose-
quencer (Brenchley et al. 2012). With 5×coverage of wheat genome,~96,000 genes
in bread wheat genome have been estimated. Moreover, genes localized on genomes
A, B and D showed conserved orthologous homology with members of grass family
(Brachypodium, rice, sorghum and barley). This has opened doors for utilizing com-
parative genomics approach for positional cloning of more candidate genes in wheat
by utilizing the genome sequence information of small diploid crop species (Brench-
ley et al. 2012). Recently, using shotgun-sequencing approach, genome sequence
drafts of A and D genome progenitors (Triticum urartu and Aegilops tauschii) has
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Fig. 3.1 Genomics-based platforms that can facilitate identification of candidate genes for agro-
nomically important traits in wheat

also been acquired, which can further be used in comparative genomics to get an
insight into genetics of important traits including abiotic stress tolerance and yield.
This chapter reviews these progresses briefly and highlight some examples in detail.
Figure 3.1 summarizes how advanced genetics and genomics approaches can be inte-
grated to reach to the candidate genes for abiotic stress tolerance for their deployment
in breeding.
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3.2 Mapping Approaches Identified Candidate Genes
and Quantitative Trait Loci for Abiotic Stress
Tolerance in Diverse Elite Germplasm

Biparental QTL mapping and association mapping are the two major strategies fol-
lowed for genetic dissection of complex and quantitative traits such as abiotic stress
tolerance. The former approach has been extensively utilized in wheat, particularly
for dissecting drought and heat tolerance (Kirigwi et al. 2007; Mohammadi et al.
2008; McIntyre et al. 2010; Pinto et al. 2010; Vijayalakshmi et al. 2010; Mason
et al. 2010, 2011; Alexander et al. 2012; Nezhad et al. 2012; Paliwal et al. 2012;
Lopes et al. 2013; Tiwari et al. 2013; Talukder et al. 2014) using low to medium-
throughput markers. However, due to the well-known limitations of this approach
and the requirement of fine mapping of the identified QTL to reach to the candidate
gene (time-taking and very expensive), this approach is no longer attractive among
scientists. Nevertheless, Talukder et al. (2014) indicated potential genes for heat tol-
erance underlying a consistent QTL on 7A by in silico analysis of the QTL flanking
markers. They identified stress-responsive gene srg6, calcium/calmodulin dependent
protein kinase gene and a putative DNA topoisomerase I gene in the QTL region.

With the drastic drop in sequencing and genotyping costs, wheat breeding pro-
grams globally have adopted advanced high-density whole-genome genotyping plat-
forms for genotyping their elite germplasm. This has made existing phenotypic data
on breeding lines amenable to genomewide associationmapping (GWAM), a leading
approach for complex trait dissection and identification of novel and superior alleles
in the breeder’s existing germplasm including wheat (Maccaferi et al. 2011; Ain et al.
2015; Lopes et al. 2015; Mwadzingeni et al. 2017; Sehgal et al. 2017). Using CIM-
MYT’s WAMI (Wheat Association Mapping Initiative) and IBWSN (International
Bread Wheat Screening Nursery) association panels, potential novel candidates for
drought and heat stress tolerance or both have been identified on chromosomes 2D,
3A, 3B, 4A, 5B and 7B using high-density 9 K SNP and genotyping-by-sequencing
(GBS) markers (Edae et al. 2014; Lopes et al. 2015; Sehgal et al. 2017). Two of these
candidates included genes belonging to heavy metal transport/detoxification super-
family protein and DNA J heat shock N-terminal domain-containing protein (Sehgal
et al. 2017). Ain et al. (2015) conducted GWAM for grain yield in historical wheat
cultivars fromPakistan under rainfed conditions. Out of 44 stableMTAs identified for
yield and yield-related traits, 14 SNPs showed syntenic relationship to the genes in
rice, sorghum and Brachypodium. These genes encode proteins, which are important
components of pathways triggered in response to stressed environments, for exam-
ple, aldehyde dehydrogenase, cell number regulator 6 protein, glycosyltransferase-
like protein, molybdenum cofactor sulfurase, n-acetyl glucosaminyl transferase III,
NADHdehydrogenase, and serine threonine-protein phosphatase 6. The authors sug-
gested these as possible candidate genes for yield improvement as well as for future
cloning of these loci.

A modification of association mapping (AM) is candidate gene-based AM, which
links phenotypic variation with polymorphic sites in candidate genes to identify
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causative polymorphisms. The choice of candidate gene(s) is generally based on the
relevant information obtained fromgenetic, biochemical, physiological or expression
studies in both model and non-model plant species (Sehgal and Yadav 2009). Thus,
this approach is an alternative to the fine mapping/positional cloning approach and
thus a significant shortcut. In wheat, a candidate gene-based association study iden-
tified MTAs for drought tolerance traits in known drought stress-induced genes in
ABA-dependent (ERA1) and ABA-independent (DREB1A, 1-FEH) pathways (Edae
et al. 2013). In an another candidate gene-based AM in wheat, an SNF-1 type serine-
threonine protein kinase TaSnRK2.8 showed association with plant height, flag leaf
width and water-soluble carbohydrates under drought conditions (Zhang et al. 2013).
This gene was selected based on previous evidence of its role in enhancing toler-
ance to drought, salt and low temperature (Zhang et al. 2010). Similarly, Chang
et al. (2013) worked on TaSAP1, a member of the stress association protein (SAP)
gene family in wheat. A high nucleotide diversity was identified in promotor region,
which allowed development of three markers T7AM5, T7AM2606 and T7AM39
(InDel5-1810, SNP-2606 and InDel39-1637). Application of these markers in 300
wheat accessions identified six haplotypes and their associations with 1000-grain
weight, number of grains per spike, spike length, peduncle length and total number
of spikelets per spike under well-watered and drought-stressed conditions.

3.3 Exploitation of ‘Omics’ Platforms

3.3.1 Transcriptomics

Of all the omics technologies i.e. transcriptomics, metabolomics, proteomics and
ionomics; transcriptomics is the most researched for identification of genes and
understanding mechanisms for abiotic stress tolerance in various plant species. Tran-
scriptome is the complete set of RNA transcripts in a specific cell type or tissue at
a certain developmental stage and/or under a specific physiological condition. By
investigating transcriptome of any plant under different treatments, or any devel-
opmental stage, a wealth of information can be generated which helps to pinpoint
underpinning genes and related mechanisms. There are two key contemporary tech-
niques in this field: microarrays, which quantify a set of predetermined sequences,
and RNAseq (a next-generation sequencing technology; see Sect. 3.5, uses high-
throughput sequencing to capture all sequences).

A plethora of research reports are available in wheat wherein transcriptome
approaches have identified genes involved in abiotic stress response. Related to rice
OsHKT7, two putative sodium transporter genes i.e., TmHKT7A1 and TmHKT7A2
were identified utilizing wheat expressed sequence tag (EST) data, of which later
was found to be expressed in roots and leaf sheaths of salt-tolerant durum wheat line
(Huang et al. 2006). Monroy et al. (2007) utilized 5,740 feature cDNA amplicon
microarray to compare gene expression profile between winter and spring wheat
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cultivar in response to cold stress and identified 450 cold-regulated genes, including
transcription factors (TFs) and genes involved in signaling and regulatory pathways.
WLIP19, wheat lip 19 homologue encoding for b-ZIP transcription factor was found
to function as transcription regulator of Cor/Lea genes to impart freezing tolerance in
wheat (Kobayashi et al. 2008). Higher concentration of WLIP19 under low tempera-
ture stress was confirmed using transgenic tobacco andwheat callus. Qin et al. (2008)
identified 6,560 probe sets responsive to heat stress in comparison of global expres-
sion pattern between Chinese Spring (heat-sensitive) and TAM 107 (heat-tolerant)
wheat genotypes. Identified genes were classified in the following categories; heat
shock proteins (HSPs), TFs, calcium and sugar signal pathways, RNA metabolism,
primary and secondary metabolism, and biotic and abiotic stresses. Kam et al. (2008)
identified 37Q-type zinc-finger protein genes and30genes expressing predominantly
in roots of T. aestivum in response to drought stress. Affymetrix wheat genome
array was used for comparison of global expression pattern of drought-sensitive and
tolerant genotypes that revealed differential expression of various genes involved
in ABA-dependent, ethylene- and IP3-dependent signaling pathways (Ergen et al.
2009). Xu et al. (2008) screened drought-induced cDNA library of wheat and iden-
tified three novel homologues of the DBF (DRE binding factor) gene family. Ristic
et al. (2009) identified a positive correlation among rubisco activase (RCA) of differ-
ent wheat genotypes in response to heat stress. Additionally, 5,500 wheat ESTs were
identified through suppression subtractive hybridization between heat-stressed and
control tissues at 3 stages of development, i.e., seedlings, prepollinated flowers and
developing grains (Chauhan et al. 2011) and their expression was confirmed through
cDNAmacroarray, Northern/RT-PCR as well as real time PCR of the selected genes.
Naydenov et al. (2010) conducted microarray analysis of mitochondrial transcrip-
tome profile of wheat under stress and observed 13, 14 and 23 genes responsive
to low temperature, high salinity and high osmotic stress, respectively. Expression
analysis of 10 MYB TF genes in two wheat RILs was analyzed, and one MYB gene
(TaMYBsdu1) was identified to be markedly upregulated in leaf and root of long term
drought-stressed wheat plants as well as in the salt-tolerant genotypes, thus implying
its role as an important regulator involved in adaptation to both salt and drought
stresses (Rahaie et al. 2010). Akpinar et al. (2015) identified unique transcripts to
function in drought signaling in deep sequencing-based transcriptome analysis of T.
dicoccoides and T. durum.

Recently, microRNAs (miRNA) have emerged as an important regulatory fac-
tor in governing plant adaptability to range of experimental conditions. Agharbaoui
et al. (2015) characterized de novo miRNAome of hexaploid wheat and identified
199 candidate miRNAs associated with different abiotic stress (cold, salt and Alu-
minium) response, tolerance and developmental stages. Wang et al. (2015) identi-
fied TaWRKY44 as a positive regulator in drought, salt and osmotic stress that acts
through either activation of stress-associated gene expression or ROS elimination via
cellular antioxidant system. Zang et al. (2017) identified a novel ferritin gene,TaFER-
5B, from transcriptome of heat-tolerant wheat cultivar (TAM107). Overexpression
of TaFER-5B in Arabidopsis resulted in enhanced thermotolerance, oxidative and
excess ion stress tolerance associated with the ROS scavenging.
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3.3.2 Proteomics and Metabolomics

Any external stimuli bring out a change in the plant’s constituent proteins and pri-
mary or secondary metabolites accumulation. Thus, by assessing the proteome (sum
total of all protein constituents of cell) and metabolome (sum total of all metabo-
lites constituents of cell) of plants by proteomics and metabolomics approaches,
respectively, plant’s response to different stimuli can be investigated and candidate
genes can be pinpointed. A proteomic approach, for example, was recently applied
to identify protein spots involved in cold responses in wheat (Zhang et al. 2016).
Two cultivars contrasting for cold tolerance (UC1110 and PI 610750) as well as their
descendants differing in cold-tolerance were investigated by two-dimensional elec-
trophoresis (2DE) method. Sixteen unique proteins were successfully identified, of
which 14 had significantly enhanced abundance in the cold-sensitive UC1110 and its
20 descendant lines as compared with the cold-tolerant PI 610750 and its 20 descen-
dant lines. A few of these differentially expressed protein spots were validated by
real-time polymerase chain reaction (qRT-PCR) to investigate expression changes at
the RNA level. The transcriptional expression patterns of 11 genes was consistent
with their protein expression models, thus pointing to their candidacy for cold tol-
erance. Similarly, Kamal et al. (2010) analyzed abiotic stress-responsive proteins in
wheat grain by proteomics technique. Endosperm of wheat grain of four cultivars
(two Chinese cvs. China-108, Yennon-78 and two Japanese cvs. Norin-61, Kantou-
107) was fractionated and soluble proteins of whole seed were examined by 2DE.
Selected protein spots were analyzed, which revealed 124 proteins spots as unique
abiotic stress-responsive proteins, induced by heat (31.56%), drought (26.61%), salt
(23.38%), cold (21.77%) and other environmental stresses (22.58%). Jiang et al.
(2012) characterized wheat proteome of 2 genotypes under drought stress and iden-
tified 26, 23 and 17% of differentially expressed proteins involved in carbohydrate
metabolism, detoxification and defense, respectively. Budak et al. (2013) character-
ized proteome of two wild emmer varieties and one durum variety under drought
stress and identified 75 differentially expressed proteins. Similarly, Alvarez et al.
(2014) identified 1,656 proteins along with 2 unique peptides in root proteome anal-
ysis of drought-tolerant (Nesser) and drought-sensitive (Opata) wheat varieties in
response to ABA. Of 151 ABA responsive proteins, 100 and 50 proteins displayed
an increased and decreased expression level, respectively.

Metabolome changes during abiotic stress are also important to characterize as
different metabolites constitutes different developmental changes and thus the char-
acteristic metabolites identified under particular conditions such as specific devel-
opmental stage or stress could be used to identify metabolic markers diagnostic for
plant stress. Targeted or non-targeted metabolic profiling under stress conditions will
enrich our understanding of plant metabolism to develop cultivars with better tol-
erance and adaptation to stress conditions. Metabolic profiling, however, is limited
to analysis of pre-determined metabolites for specific pathways, while metabolic
fingerprinting involves a global, high throughput and rapid assay. Targeted GC-MS
approach was used to characterize 103 metabolites from leaves of wheat plants i.e.,
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Kukri, Excalibur and RAC875 experiencing cyclic drought stress, which revealed
cultivar-specific differences indicating different mechanisms adopted by the three
tolerant cultivars (Bowne et al. 2012). Two hundred and five metabolites from flag
leaves of double haploid (DH) population of Excalibur and Kukri under terminal
drought conditions were characterized by Hill et al. (2013) and were correlated with
the agronomic data for 29 traits, which identified 95 metabolite QTLs (mQTLs). The
study further identified 5 wheat genomic regions that affected both the metabolite
and agronomic traits.

A complete understanding of the abiotic stress-responsive metabolome and pro-
teome inwheatwill require considerable amount of time and resources, but amethod-
ical and concerted effort will help identify most appropriate genes that could be
targeted for wheat improvement.

3.4 Status of Cloned Genes for Abiotic Stress Tolerance
and Their Characterization in Wheat

Cloning and gene identification in wheat is a difficult task. However, it is becom-
ing less daunting due to the extensive genomic efforts by the international wheat
community. One of the first abiotic stress genes that was cloned in wheat was
for aluminum (Al)-tolerance (ALMT1; Sasaki et al. 2004). This gene was isolated
from root apices of Al-tolerant wheat by subtractive hybridization of cDNAs iso-
lated from near isogenic wheat lines ET8 and ES8. Sequence analysis of ALMT1
cDNAs from ET8 and ES8 showed differences at six nucleotides resulting in pro-
teins differing at two amino acids. These were designated as ALMT1-1 and ALMT1-2
derived from ET8 and ES8, respectively. To establish the association between Al-
tolerance and ALMT1, populations segregating for Al-tolerance were analyzed for
expression of the ALMT1-1 and ALMT1-2 alleles. Al-tolerant seedlings showed the
expression of either ALMT1-1 or both ALMT1-1 and ALMT1-2 alleles, while Al-
sensitive seedlings showed the expression of only ALMT1-2 allele. Further, at DNA
level too ALMT1-1 allele showed complete co-segregation with Al-tolerance phe-
notype, which suggested that ALMT1-1 confers in Al-tolerance. In 2007, another
gene for abiotic stress tolerance was fine mapped, Bo1; underlying a major QTL for
boron tolerance on 7B (Schnurbusch et al. 2007). Bo1 was fine mapped using the
DH population Cranbrook (intolerant) x Halberd (originally used to map the QTL)
(Jefferies et al. 2000). To increase the marker density in the Bo1 QTL region as a
first step, commonly available RFLP, PCR and SSR markers were used. In addition,
intron-based markers were designed from 26 genes identified in the syntenic region
of rice genome on chromosome 6L and recombinant lines were selected. One of
these markers, AWW5L7, co-segregated with Bo1 in the 13 recombinant DH lines.

An aquaporin (AQP) gene TaNIP (Triticum asetivum L. nodulin 26-like intrinsic
protein), known to involved in salt tolerance pathway in plants, was cloned and
characterized in wheat by Gao et al. (2010). The TaNIP gene was identified based
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on previous expression gene chip results of a salt-tolerant wheat mutant RH8706-49.
This gene was again validated under salt stress in the salt-tolerant and salt-sensitive
wheat mutants, which revealed its much higher expression in the salt-tolerant mutant
RH8706-49 than in the salt-sensitive mutant H8706-34 after 72 h. Its expression
pattern was also tested in the roots and leaves of the samemutants under other abiotic
stresses viz. ABA, polyethylene glycol (PEG) and cold treatments. Sequence analysis
of the cloned gene revealed that TaNIP shares the same conserved structural domains
as the AQPs and is a member of the AQP family. The overexpression of TaNIP in
transgenic Arabidopsis produced higher salt tolerance than wild-type plants. The
mechanism behind the salt tolerance was also unraveled i.e. due to accumulation of
higher K+, Ca2+ and proline contents and lower Na+ levels in TaNIP-overexpressing
Arabidopsis plants than the wild-type. In the same year, another group in China
cloned wheat gene TaSnRK2.8 (Zhang et al. 2010), whose role in proving tolerance
to multiple stresses (drought, salt and cold stresses) was provided by transferring it
to Arabidopsis.

Thegenetics group at IARI (IndianAgriculturalResearch Institute, India) reported
cloning of two heat shock protein (HSP) genes,HSP 17 andHSP 90, in 2012 (Kumar
et al. 2012 a, b). Both genes were cloned from thermotolerant wheat cultivar C-306.
HSP 17 belongs to a family of small HSP (sHSP). Its role under heat stress tolerance
was provided by qRT-PCR in thermotolerant (C-306) and thermosensitive (HD2329)
cultivars. HSP17 gene showed a 34 fold increase in transcript in C-306 and only 1.5
fold in HD2329 in response to differential treatment of putrescine (1.5–2.5 mM+
heat shock of 42°C for 2 h). TheHSP 90 belongs to high molecular weight HSP.HSP
90 isolated from C-306 was 2.5 kb long and alignment of its sequence with other
HSPs in NCBI (National Centre for Biotechnology Information) database showed
a large variability in the sequences. Phylogenetic analysis of the diverse sequences
have grouped them into four subgroups andHSP 90 fromC-306 belongs to subgroup
IV.

Chauhan et al. (2013) cloned heat shock factor (HSF) gene TaHsfA2d in bread
wheat cv. CPAN1676 and provided evidence of the role of this gene in heat tolerance.
Wheat EST showing homology with rice HSF was identified from developing seed
tissue EST library andwas used for designing the primers for RACE (Reverse Ampli-
fication of cDNA Ends)-PCR. The resultant fragments were cloned and sequenced.
The sequence analysis revealed highest similarity with HSF of riceOsHsfA2d (69%)
than with other plants (65% with Arabidopsis HsfA2). The evidence of its role in
tolerance to heat stress was provided by creating transgenic Arabidopsis plants over-
expressing TaHsfA2d. The transgenic lines possessed higher tolerance towards high
temperature and to salinity and drought stresses. Higher yield and biomass accumula-
tion under constant heat stress conditions was also noticed in transgenicArabidopsis.
Hu et al. (2013) cloned a transcription factor (TF) geneTaASR1, belonging to a family
of ASR [Abscisic acid (ABA)-, stress-, and ripening-induced] genes, in cv. Chinese
Spring. Although ASR genes are known to respond to various stresses in wheat, their
exact roles in abiotic stresses tolerance was not known. Cloning of TaASR1 gene in
wheat not only provided evidence of its role under drought stress but also shed light
on the exact mechanism. Overexpression of TaASR1 gene was analyzed in tobacco,
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which demonstrated that transgenic lines expressing TaASR1 gene had lesser mal-
ondialdehyde content, ion leakage and ROS, but higher relative water content, and
superoxide dismutase and catalase activities than wild type under drought stress.
These results suggested strongly that TaASR1 confers drought stress tolerance by
activating the antioxidant system.

In the last four years, many more genes have been cloned and characterized
in wheat; conferring pre-harvesting tolerance (TaSdr; Zhang et al. 2014), salin-
ity tolerance (TaAOC1; Zhao et al. 2014) and multiple abiotic stress tolerance
(TaPP2AbB′′- α; TaWRKY44, TaCRT -D; Liu et al. 2014; Wang et al. 2015, 2017).
TaSdr genes (TaSdr-A1, TaSdr-B1 and TaSdr-D1) were cloned by a comparative
genomics approach. These are orthologs of rice OsSdr4, known to confer seed dor-
mancy in rice. A single nucleotide polymorphism (SNP) (A/G) at the position 11
upstream of the initiation codon was revealed in TaSdr-B1, with bases A and G
in cultivars with low and high germination indices, respectively. A CAPS (cleaved
amplified polymorphism sequence) marker was developed based on this SNP, which
was used for validation by linkage and association mapping approaches (Zhang et al.
2014). For validation of TaAOC1, transgenic wheat and Arabidopsis lines expressing
TaAOC1 were generated. An enhanced level of tolerance to salinity was observed
in transgenic lines of both species. Further, transgenic plants accumulated a higher
content of jasmonic acid (JA) and developed shorter roots. This study provided first
evidence that JA can also be involved in the plant salinity response, in addition
to its proven role in defense responses to biotic stresses. The gene TaPP2AbB”-
α was cloned in wheat cv. Hanxuan 10. The full-length cDNA sequence was
obtained using the candidate sequence from rice (NM_001071385.1) and sequence
information for a dehydration-inducible cDNA library of wheat D genome progeni-
tor Aegilops tauschii. Transgenic Arabidopsis plants overexpressing TaPP2AbB”-α
were generated for its validation, which showed extensive development of lateral
roots, especially when treated with mannitol or NaCl. These results suggested that
this gene positively regulates lateral root development under osmotic stress. Cloning
of TaWRKY44 revealed a very similar underpinning mechanism for osmotic stress
tolerance as shown by TaASR1 gene i.e. activation of the cellular antioxidant sys-
tems.However,TaWRKY44 conferred drought and salinity tolerance to the transgenic
tobacco lines, whereas TaASR1 conferred mainly drought tolerance. The most recent
cloned gene in wheat TaCRT -D (Wang et al. 2017) conferred multiple stress tol-
erance (drought, cold, salt, mannitol) to transgenic Arabidopsis plants at multiple
stages (seed germination and seedling stages). Most importantly, based on DNA
sequence analysis genome-specific and allele-specific markers were developed for
the TaCRT -D gene for MAS.

3.5 Role of Next Generation Sequencing (NGS) Tools

Genotyping of large breeding populations, especially in huge breeding programs
where all germplasm is routinely genotyped, by second or third generation markers
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can take several months, and hence can be very expensive. Thus, the need for more
efficient technologies that are cost- and time-effective and high-throughput (geno-
type large populations within a smaller time frame) laid the stone for the advent of
NGS or alternatively whole genome sequencing technologies. Availability of NGS
has transformed the whole perspective of the identification of DNA markers from
fragment-based polymorphism to sequence-based single nucleotide polymorphism
(SNP), to expedite the marker identification process and to increase the number of
informative markers at a cost as low as 10-40 USD per sample, depending on the
type of NGS platform. Of the various NGS technologies, genotyping-by-sequencing
(GBS), restriction-site associated DNA-seq (RADseq), sequence-based genotyping
(SBG), exome sequencing have already been proved to be effective for next gen-
eration plant breeding including wheat (Elshire et al. 2011; Berkman et al. 2012;
Poland et al. 2012; Winfield et al. 2012; Kumar et al. 2015). Recent applications
include the shotgun sequencing of the wheat chromosomes 7DS, 7BS, and 4A (Berk-
man et al. 2011 a, b; Hernandez et al. 2012), 5-fold coverage of the wheat cultivar
Chinese Spring (http://www.cerealsdb.uk.net/) and deep Illumina sequence data for
the D-genome donor Aegilops tauschii (http://www.cshl.edu/genome/wheat).

Although, shorter reads are produced by NGS technologies and their error rates
are also higher than Sanger sequencing, NGS are popular due to their ability to
produce vast quantities of data at a relatively low cost and in a short time. These NGS
platforms have particularly benefited wheat, whose large and complex allopolyploid
genome had kept it recalcitrant to molecular technologies for a long time. Now
generation of genome-wide markers or sequencing of transcriptome by RNAseq or
exome sequencing to identify candidate genes is no longer daunting in wheat, and
is being carried out routinely in wheat (Poland et al. 2012, van Poecke et al. 2013;
Winfield et al. 2012). For instance, Kumar et al. (2015) used IlluminaHiSeq 2000 and
Roche GS-FLX 454 for high-throughput deep sequencing of whole transcriptome of
a heat-sensitive wheat cv. HD2329 under the control (22°C±3°C) and heat-stress
(42°C, 2 h) conditions. RNAseq expression analysis showed significant differential
expression of 1,525 transcripts under heat stress, of which 27 transcripts showed very
high (>10) fold upregulation.Most of the differentially expressed genes (DEGs)were
associated with ATP binding, serine threonine kinase activity, zinc ion binding, and
metal ion binding. Similarly, Liu et al. (2015) performed deep RNA sequencing of
1-week old wheat seedling leaves subjected to drought, heat and a combination of
drought and heat stress (HD) for 1 h and 6 h using the Illumina sequencing platform.
Gene ontology enrichment analysis revealed an overlap of drought, heat and HD-
responsive genes. Moreover, 4,375 wheat TFs were identified on a whole-genome
scale, of which 1,328 were responsive to stress treatments.

Recently, RNAseq analysis in a spaceflight-induced wheat mutant st1 resulted in
identification of candidate genes for salinity tolerance (Xiong et al. 2017). Themutant
st1 was identified in a screen for induced wheat mutants grown in hydroponics with
high salinity. Its transcriptome sequence variation analysis revealed that multiple
genes involved in Na+ transport and genes encoding arginine decarboxylase and
polyamine oxidase are contributing to salinity tolerance in st1. In addition, ‘Butonate
metabolism’ was identified as a new pathway for salinity tolerance.

http://www.cerealsdb.uk.net/
http://www.cshl.edu/genome/wheat
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3.6 Validation of Candidate Genes

Although comparative genomics is a powerful tool in trait dissection, confirmation of
the roles of individual genes is still required through functional validation. In wheat,
nearly hundred genes have been reported to be involved in various abiotic stress
tolerance via approaches described above and many more are being discovered. A
few of them have been cloned and validated using transgenic approach or expression
evidences have beengenerated to validate their role in abiotic stress tolerance inwheat
(see above Sect. 3.4). In addition to this approach, two other approaches described
below have also been employed for validation.

3.6.1 Allelic Variation in Transcription Factors and Known
Target Genes for Abiotic Stress Tolerance

Many families of transcription factors (TFs) have been demonstrated to play a role
in stress responses in wheat. Among these, bZIP, DREB, WRKY, bHLH, MYB and
NAC TFs represent the major groups of regulatory genes found to be involved in
wheat stress tolerance. The sequence data of few of these genes has been utilized
by simple multialignments of their conserved domains to design genome-specific
primers, which were then tested on genotypes contrasting for tolerance to differ-
ent abiotic stresses to identify functional SNPs (Wei et al. 2009; Garg et al. 2012;
Mondini et al. 2012). Wei et al. (2009) designed genome-specific and allele-specific
markers based on the available sequences of DREB1 genes in common wheat and
related species. Two SNPs (S646 and S770) were detected in DREB-B1 sequence,
which distinguished the Opata 85 and W7984 parents of the ITMI (International
Triticeae Mapping Initiative) mapping population. No polymorphism, however, was
detected between the orthologous DREB-A1 and DREB-D1 sequences. An allele-
specific primer P40 based on SNP S770 in DREB-B1 sequence was designed and
validated using wheat lines differing for drought tolerance. This was subsequently
mapped on chromosome 3BL. Mondidni et al. (2012) designed primers from align-
ment of conserved domains in two TFs; DREB1, WRKY1 and a sodium transporter
gene HKT -1. These primers were used to test several genotypes of durum wheat
that were differentially tolerant to salt and drought stress. By sequencing the poly-
merase chain reaction (PCR)products fromcontrastinggenotypes, several SNPswere
subsequently identified and validated. Garg et al. (2012) chose heat shock protein
(HSP16.9) as the target gene anddesigned primers fromapartial sequence ofTriticum
aestivum L. HSP16.9. These primers were used for amplification of the gene from
heat-tolerant (K7903) and heat-susceptible (RAJ4014) genotypes. Sequence analy-
sis of PCR products identified a SNP between these genotypes (A/G) which resulted
in a missense mutation from aspartic acid to asparagine residue. An allele-specific
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marker was designed based on this SNP and tested on various other heat-tolerant and
heat-susceptible genotypes, which revealed 29.89 and 24.14% phenotypic variation
for grain weight per spike and thousand grain weight, respectively. This is the first
report of HSP-derived SNP marker associated with terminal heat stress in wheat.

3.6.2 Cosegregation of Fine Mapped QTL/Cloned Genes
with Phenotype in the Existing Germplasm or Diverse
Accessions

Only two genes have been validated using this approach; candidate genes for Al
and boron tolerance (Soto-Cerda et al. 2015; Schnurbusch and Sutton 2008; Pallotta
et al. 2014). Soto-Cerda et al. (2015) not only validated the candidate gene TaALMT -
1 for Al-tolerance but also used it in marker-assisted breeding to introgress the gene
in Al-sensitive cultivar Kumpa-INIA. They designed a functional marker ALMT1-4

from upstream of the TaALMT -1 coding region for screening Al-tolerant Kumpa-
INIA lines, which were derived in three backcross generations. Similarly, for boron
tolerance Bo1-specific codominant PCR marker AWW5L7 was designed after fine
mapping (see Sect. 3.4; Schnurbusch et al. 2007), which was subsequently validated
in a range of exotic bread and durum wheat accessions (Schnurbusch et al. 2010)
and Australian bread wheat cultivars and breeding lines (Schnurbusch et al. 2010).

3.7 Conclusions

To generate climate resilient and high yielding wheat varieties in a short span of
time, scientists globally are utilizing advanced genetics and genomics tools on their
current germplasm. As a result, list of potential candidate genes with a probable
role in abiotic stress tolerance is increasing in number. Unfortunately, only a handful
of these have been validated, and converted into functional markers for MAS. The
two best-validated cloned gene-related markers are for boron tolerance QTL Bo1
(Bo1-specific PCR marker AWW5L7) and Al tolerance QTL (ALMT1-4). Similarly,
HSP16.9-derived allele-specific SNPmarker for screening heat tolerance genotypes,
TaSdr-B1 gene-derived CAPS marker Sdr2B for screening preharvest sprouting tol-
erance tolerance and the latest TaCRT -D-derived PCR-RFLP marker for screening
plants for multiple stress tolerance are three another validated functional gene-based
markers (for details see above sections).Many other cloned genes have been validated
using transgenic approach; most of the time these transgenics have been evaluated
under controlled environments. To be able to use these genes for marker-assisted
selection, it is important that these are validated directly on breeder’s germplasm
both under controlled and field conditions. The importance of validating the genes
in a breeder’s germplasm under field conditions emerged from contrasting results
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obtained for DREB-1A gene. Greenhouse experiments confirmed the advantages of
transgenic DREB1A-wheat in recovery after severe water stress. However, under
field conditions, the transgenic lines could not outperform the controls in terms of
grain yield under water deficit, as was predicted based on greenhouse performance
(Saint Pierre et al. 2012). Hence, in future focus should be more on cloning and
validating the reported candidate genes rather than discovering new. By increasing
the frequency of favorable alleles of the validated genes, robust germplasm can be
made ready for developing next generation climate smart varieties.
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Chapter 4
Genomics and Molecular Breeding
for Improving Tolerance to Abiotic Stress
in Barley (Hordeum Vulgare L.)

Andrea Visioni, Ayed Al-Abdallat, Jamal Abu Elenien,
Ramesh Pal Singh Verma, Sanjaya Gyawali and Michael Baum

Abstract Barley is oneof themost important cereal crop in theworld, in termsof har-
vested area, trade value, cattle feed and human nutrition. It is one of the most adapted
plant species to marginal environments, where abiotic stresses, such as drought, heat,
cold, low fertility and salinity, are prevalent and limit crop productivity. Due to its
wide adaptability, barley is often the only crop that can be grown in many countries
of West Asia and North Africa, thus representing a very important resource for farm-
ers and the principal feed for livestock in these areas. To cope with these adverse
conditions, the selection for barley cultivars with stable and economic yield under
variant environments is a primary requirement of any breeding program. Recently,
new genomic and molecular tools have increased the number of genes identified in
the barley gene pool, involved in abiotic stress tolerance and in the adaptation to
unfavorable environments. The complementation of traditional breeding approaches
with new analytical selectionmethodologies is required for future yield gains tomeet
the global food/feed and industrial demand as well as to cope up with the effects of
climate changes. Therefore, exploiting new genomics- and molecular-based breed-
ing strategies to increase barley yield as well as the development of new varieties
with improved adaptation to abiotic stresses is crucial. In this chapter, the utilization
of genomics- and molecular-based tools and their integration with classical breed-
ing approaches is presented to improve the tolerance to abiotic stresses in barley.
Major challenges in breeding for tolerance to major abiotic stresses are described
in the beginning, followed by the exploitation and utilization of different genomics
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and genetic resources, and breeding approaches currently used to produce tolerant
varieties. The application of marker-assisted selection and markers discovery using
quantitative genetics, association mapping and bioinformatics approaches for abiotic
stress tolerances in barley are also highlighted. Furthermore, comparative and func-
tional genomics approaches used to understand abiotic stress tolerance mechanisms
in plants and their potential application for improving tolerance to abiotic stresses
in barley have been discussed. Finally, challenges and future perspectives for the
application of genomics- and molecular-based breeding strategies for barley crop
improvement under abiotic stress conditions are overviewed.

Keywords Association mapping · Drought tolerance · Frost tolerance · Hordeum
vulgare · Salinity tolerance

4.1 Introduction

Barley (Hordeum vulgare L.) is a cereal plant that belongs to the family Poaceae,
and tribe Triticeae. It is a diploid (2n � 14) plant with a complex haploid genome of
5.1 Gb (IBGSC et al. 2012). The first signs of barley domestication were recorded
more than 10,000 years ago in the Middle East in a region known as the “Fertile
Crescent” (Badr et al. 2000; Pourkheirandish and Komatsuda 2007; Comadran et al.
2012). Archaeo-botanical evidences show that cultivated barley (H. vulgare ssp.
vulgare) was derived from its wild progenitor (H. spontaneum), which is still widely
distributed in the Fertile Crescent region particularly in the driest areas (Harlan
and Zohary 1966). The domestication process resulted in populations known as
“landraces”, which weremaintained by farmers andwere known to have high genetic
diversity for tolerance to environmental stresses such as drought, disease and pests
(Jarvis et al. 2000; Berthaud et al. 2001). Landraces are considered as a valuable
source for sustainable agriculture in the context of future climate change, and their
in situ conservation strategies can allow their preservation for future use (Bellucci
et al. 2013).

Nowadays, barley is the fourth most important cereal crop in the world after rice,
wheat and maize and is one of the most important feed and food crops in dry areas
(FAOSTAT 2016). In such areas, barley is considered the crop of choice due to its
wide adaptability to different abiotic stresses such as drought and terminal heat (Baum
et al. 2007). There are many end-uses of barley including animal feed and forage,
human consumption and malting (Horsley et al. 2009). Its productivity varies among
years primarily due to the seasonal variability in precipitation and temperatures
and associated stresses. Under climate change conditions, the development of new
barley varieties is needed tomitigate expected yield reduction associatedwith several
abiotic stresses. To deal with these adverse conditions, breeding for barley varieties
with stable and economic yield under prevailing variant environments is needed.
Efficient and effective genotypes with tolerance to major abiotic stresses should be
utilized to produce new improved cultivars with enhanced productivity to overcome
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the adverse effects of climate change (Varshney et al. 2012). In dry environments,
breeders are usually establishing their programs based on direct selection for grain
yield (Richards et al. 2002). Besides grain yield, many different traits have been
targeted by breeders to select for drought tolerance in barley that include growth
habit, early growth vigor, flowering time, maturity rate, plant height and grain filling
duration (Baum et al. 2007).

Drought stress has always played an important selective role in the evolution of
plant growth, development and physiology. The combined effects of drought and
temperature and other related stresses on physiology, growth, water relations and
yield are significantly higher than their individual effects. Therefore, to cope with
these challenges there is an urgent need to identify and utilize new genetic mate-
rial with high elasticity to climate change (Araus et al. 2008). Plant adaptation is a
key factor that will determine the future of crop production systems in response to
climate change. Shifting planting dates or switching to short growing-season crop
varieties may be the best way to reduce the negative impact of climatic change and
associated stresses. Under arid conditions, the selection of drought tolerant geno-
types with shorter growing seasons is considered a successful escaping strategy that
might enhance crop productivity. Nowadays, the development of new crop varieties
with early flowering and maturity and improved stress tolerance is considered a pri-
mary objective for many breeders in marginal areas. New varieties that can escape
stresses at the most sensitive stages of crop development, such as reproductive and
grain filling period, should be considered as the judicial way to alleviate the adverse
impact of high temperature and drought. Combining recent advances in genomics
with current breeding activities and utilization of modern molecular tools will enable
the production of improved lines that are more adapted to dry environments and still
highly productive.

4.2 Breeding Challenges for Abiotic Stresses

Abiotic stresses such as drought, salinity, heat and cold have always played an impor-
tant selective role in the evolution of plant growth, development and physiology and
they are always considered asmajor limiting factors in crop production. Such stresses
are consideredmajor constraints on barley production inmany areas around theworld
and the future climate change scenarios predict that the frequency of drought and
heat stresses is likely to increase, especially in arid and semi-arid regions (Rizza
et al. 2004). Therefore, there is an urgent need to develop new plant varieties with
enhanced resistance to abiotic stresses and to cope with the new climate change
conditions (Cattivelli et al. 2008).

Barley is considered a drought tolerant cereal crop that can be utilized in rainfed
agriculture systems. Among the major cereal crops, barley shows superior drought
and heat adaptation and it is considered an excellent model for studying physiologi-
cal, genetic and breeding aspects of stress tolerance (Ceccarelli and Grando 2002).
For instance, in the eastern parts of the Mediterranean basin, barley is generally
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grown in arid and semi-arid areas, which are characterized with low rainfall and
extreme temperatures. Barley varieties that produce stable and economic yields of
both grain and biomass under these inconsistent rainfed conditions are needed. There-
fore, improving barley crop yield in dry areas is an important objective for majority
of the breeding programs.

In dry environments, breeders are establishing their programs based either on the
selection for physiological or developmental traits (analytical breeding) or on direct
selection for grain yield (empirical or pragmatic breeding) (Richards et al. 2002).
Direct selection for grain yield and biomass underwater-limited conditions is difficult
due to various factors including the complexity of the traits themselves, complexity
of the stress tolerance mechanisms and the annual variability in the amount and
timing of rainfall (Lakew et al. 2011). Many different secondary traits have been
targeted by breeders to select for stress tolerance in barley that include growth habit,
early growth vigor, flowering time, maturity rate, plant height, peduncle length and
grain filling duration (Ceccarelli and Grando 2002). The direct selection for grain
yield under stress conditions has been hampered by low heritability, epistasis and
high genotype by environment (G × E) interactions (Baum et al. 2007). Due to its
complexity, the genetic mechanisms underlying the expression of stress tolerance
in cereal plants, including barley are poorly understood and these traits are usually
difficult to characterize and analyze (Lakew et al. 2011).

Huge efforts were carried out to understand the interactions between genes and
environments on yield under rainfed conditions in barley (Ceccarelli and Grando
2002; Richards et al. 2002) and large variations in genotype × season and geno-
type × location interactions were attributed to its genetic makeup (Richards et al.
2002). Quantitative trait loci (QTL) that contribute to differences in barley adapta-
tion and plant development were found to have a major impact on grain yield in dry
environments (Baum et al. 2007). Several candidate genes involved in adaptation
to water limitations were identified in drought susceptible and tolerant barley lines
(Guo et al. 2009). The expression of these candidate genes was found to be regulated
in cis indicating that regulatory variation plays a major role in stress tolerance in
cereal plants (von Korff et al. 2008).

During the last 50 years, most of the progress in releasing new varieties has
been achieved from conventional or traditional breeding methods. In general, such
conventional approaches has taken the yield as the main trait for selection, while
there was an obvious neglect of other important traits such as tolerance to biotic and
abiotic stresses (Ceccarelli and Grando 1996). An example for empirical breeding
approach was the gradual replacement of the traditional tall cultivars with the semi-
dwarf and fertilizer-responsive varieties with superior harvest indices (Araus et al.
2008). However, to maintain a sustainable increase in cereal yield, the development
of location-specific and high-yielding varieties with resistance and/or tolerance to
stresses is needed and should be the aim of plant breeders. The complementation of
traditional breeding with new analytical selection methodologies, such as molecular
tools, is needed for future yield gains tomeet the global food demand. Exploiting new
breeding strategies to increase barley yield per unit area as well as the development
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of new varieties with improved adaptation to drought is considered crucial for crop
improvement under rainfed conditions. As drought is unpredictable, the best way to
copewith it is to develop tolerant varieties that performwell under such environments
(Araus et al. 2008).

4.3 Mechanisms of Abiotic Stress Tolerance in Barley

The advances in understanding of key stress tolerance mechanism in plants, has led
to the development of abiotic stress-tolerant plants by the activation of either one
or both pathways through the over expression of key regulatory genes (Umezawa
et al. 2006). In general, abiotic stress responses are mediated through abscisic acid
(ABA)-dependent and -independent signal transduction pathways (Shinozaki and
Yamaguchi-Shinozaki 2007). ABA is a phytohormone that regulates various plant
growth and development aspects such as seed dormancy, germination, and control
of stomata closure as well as in mediating responses to different environmental
stresses (Nambara and Marion-Poll 2005). Water deficit condition triggers the accu-
mulation of ABA in plants, which in turn activates signal transduction pathways
that are involved in the activation of several genes involved in drought tolerance
(Wasilewsk et al. 2008). Under such conditions, ABA promotes the expression of
stress-responsive genes that cause growth inhibition, stomatal closure and/or accu-
mulation of osmo-protectants. The role of ABA in stress tolerance was confirmed by
ABA-deficient, -insensitive and -hypersensitive mutants (Xiong 2007).

On the other hand, genetical evidences revealed the existence of an ABA-
independent stress responsive pathway that plays a major role in tolerance against
drought, salinity and cold conditions (Shinozaki and Yamaguchi-Shinozaki 2000). A
cross-talk between ABA-dependent and ABA–independent pathways was found to
exist, regulating the gene expression of many abiotic stress responsive genes. Such
responses are governed by specific genes and their expression is governed by a spe-
cialized set of proteins known as transcription factors. The cross-talk between both
pathways was found to be regulated via cis-element found in many stress-responsive
genes indicating that transcriptional regulatory variations play a major role in con-
ferring stress tolerance in plants (Shinozaki and Yamaguchi-Shinozaki 2000). For
instance, ABA and different abiotic stresses are known to induce the H. vulgare
abundant protein 1 (HVA1) resulting in the accumulation of late embryogenesis
abundant (LEA) proteins such as LEA3 (Marttila et al. 1996). The overexpression
of HVA1 in different cereal plants was found to improve tolerance against differ-
ent stresses (Nguyen and Sticklen 2013). In another study, the overexpression of
HvSNAC1, a stress-responsive transcription factor, improved drought tolerance in
transgenic barley plants at different developmental stages without causing any yield
reduction (Al-Abdallat et al. 2014). The drought-inducible expression of TaDREB2
and TaDREB3 by using the maize Rab17 promoter in transgenic wheat and barley
plants improved tolerance to multiple stresses with less impact on plant growth and
development compared to the constitutive over-expression of these genes (Morran
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et al. 2011). The overexpression of TaCBF14 and TaCBF15 fromwheat in transgenic
barley plants enhanced frost tolerance and low freezing temperature when compared
with wild type spring barley plants (Soltész et al. 2013). Therefore, the identification
of new stress tolerance genes using modern genomics and bioinformatics tools and
sequence information in combinations with recent advances in genetic transforma-
tion and genome editing could have a major impact on barley productivity in dry
areas around the globe (Gürel et al. 2016; Lawrenson et al. 2015).

4.4 Bi-Parental and Association Mapping to Dissect Abiotic
Stress Response in Barley

Quantitative trait loci (QTL) bi-parental mapping and more recently genome-wide
association mapping (GWAM) are used to dissect the genetic architecture of com-
plex traits such as abiotic stress tolerance. Furthermore, second generation mapping
resources like multi-parent advanced generation inter-cross (MAGIC) and nested
association mapping (NAM) populations are also available to dissect complex traits.
MAGIC population allows to: (i) use both linkage and association mapping, without
the difficulties of highly structured populations, (ii) sample a greater proportion of
genetic variability, (iii) have a population that segregates for multiple QTL/traits,
(iv) model cytoplasmic effects (Cavanagh et al. 2008). Despite the privilege of hav-
ing a MAGIC population, its application in barley is still in infancy. Nevertheless,
MAGIC population approach has been successfully used to map major flowering
time genes and to confirm its advantages in barley (Sannemann et al. 2015). NAM
populations have been recently developed for autogamous species and they offer the
advantage of investigating genomic regions with unprecedented genetic resolution
by combining the advantages of linkage analysis and association mapping. In barley,
NAM populations have been used to study agronomic traits like flowering time and
salt tolerance (Maurer et al. 2015; Saade et al. 2016).

QTL mapping is powerful method to identify genes co-segregating with a trait
either in F2 lines, recombinant isogenic lines (RILs) and/or in double haploids
(DH). Bi-parental QTL mapping has been intensely used in past years. However,
this method suffers from several limitations: (i) only allelic diversity that segregates
between the parents of the population can be assayed, (ii) only limited recombi-
nation events can be captured in a bi-parental population, and (iii) the usually large
pleiotropic and epistatic effects involving major genes segregating within bi-parental
crosses, limit our capacity to detect other loci with smaller effects. Relatively low
resolution in QTL analysis typically produces large genetic intervals that compli-
cate the determination of the best candidate gene(s) controlling the trait of interest
(Balasubramanian et al. 2009). Although bi-parental mapping has been successful
in identifying key genetic switches affecting abiotic stress responses, such as frost
tolerance in barley (Francia et al. 2004), it can be argued that both the limited size and
the genetic origin of the mapping populations capture only a portion of the genetic



4 Genomics and Molecular Breeding for Improving Tolerance … 55

diversity of the species (Visioni et al. 2013). Association mapping allows to over-
come these limitations. Furthermore, the emergences of high-throughput genotyping
platforms have enabled its implementation in crop plants. GWAM became very pop-
ular in recent years and is now routinely applied in almost all important crop species
including barley. Barley, universally considered as a model crop of the Triticeae tribe
including rye and wheat (Hayes and Szucs 2006), is a diploid autogamous crop plant
where linkage disequilibrium (LD) is predicted to be extensive (Caldwell et al. 2006;
Rostoks et al. 2006; Comadran et al. 2011). Therefore, medium resolution GWAM
can potentially be used to capture significant genetic effects segregating in the cul-
tivated gene pool. However, there are some complications in performing GWAM
studies in barley arising from the inbreeding nature of the crop, in fact, non-random
mating and selection cause population stratification (e.g. 2 rows vs. 6 rows or winter
vs. spring growth habit) that may produce confounding effects. Population struc-
ture increases the chances of both false positives and false negatives, if not properly
taken into account using the appropriate structure correction model (Wang et al.
2012; Pasam et al. 2012). The first report on association mapping in barley was on
the identification of candidate genes for two simply inherited traits e.g. anthocyanin
pigmentation (candidate gene Ant-2; Cockram et al. 2010) and lateral spikelet fer-
tility (candidate gene INT-C; Ramsay et al. 2011). Both studies demonstrated that in
the cultivated gene pool there is enough accumulated recombination to identify and
functionally validate the candidate genes responsible for the traits. Both GWAM and
bi-parental QTLmapping can be utilized as complementary approaches in a breeding
program;GWAMcan be used to identify the genetic basis of the trait investigated that
can facilitate the choice of the parents to develop bi-parental populations for QTL
analysis and fine-mapping and for mutagenesis and transgenics (Korte and Fallow
2013).

4.5 Mapping Studies for Frost Tolerance

Low temperature tolerance is induced by cold acclimation, which occurs during the
induction of vernalization response, mediated by temperature and photoperiod sen-
sitivity (under short day). Furthermore, cold temperature tolerance is gradually lost
once plants switch from the vegetative to the reproductive phase (Galiba et al. 2009).
The principal determinants of low temperatures tolerance in barley are the Frost-
Resistance loci (Fr-H1 and Fr-H2); both located on the long arm of chromosome
5H (Francia et al. 2004; Skinner et al. 2005; Galiba et al. 2009). Fr-H1 co-segregates
with Vrn-H1 candidate gene HvBM5A. Various QTL for frost resistance for win-
ter hardiness (crown fructan content, photoperiod sensitivity and low temperature
tolerance) have been mapped on chromosome 5H in the Dicktoo × Morex map-
ping population (Hayes et al. 1993), the predicted position of Vrn-H1 (Karsai et al.
1997). The coincidence of low temperature tolerance QTL with Vrn-H1 has been an
interesting focus of research due to the parallelism of Vrn-H1 expression with both
cold tolerance and flowering time. Fr-H2 co-segregates with a cluster of CBF genes
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(C-Repeat Binding Factors), a family of transcription factors involved in low tem-
perature tolerance and in drought stress response (Vágújfalvi et al. 2003; Skinner
et al. 2006; Tondelli et al. 2006; Francia et al. 2007). It has been debated in the past,
especially in wheat, if the coincident positions of the QTL for frost resistance (Fr-1)
and vernalization requirement (VRN-1) are due to true pleiotropy of the MADS-box
gene, or tight linkage. Recently, Dhillon et al. (2010), using two Triticum mono-
coccum mutants (maintained vegetative phase; mvp), demonstrated that the allelic
variation at VRN-1 is sufficient to determine differences in freezing tolerance and
they suggest that the coincident position of QTL for frost tolerance and vernalization
is due to pleiotropy rather than the effect of separate closely linked loci . The Vrn-H1
mediate the genetic control of flowering time and it may have a role in down regu-
lating the expression of HvCBF genes at Fr-H2, as suggested by Stockinger et al.
(2007). Both vernalization and photoperiod genes play an important role in cold toler-
ance, the allelic combination of these two loci controls the beginning of reproductive
phase that has an important effect on the degree of frost resistance (Turner et al.
2005; Trevaskis et al. 2003; Yan et al. 2003, 2004). More than 13 genes have been
identified in the HvCBFs cluster on chromosome 5H (Tondelli et al. 2011). These
genes encode forHvCBFs transcription factors which bind highly conserved regions
at promoters of genes involved in drought and cold stress response (Stockinger et al.
1997; Liu et al. 1998; Skinner et al. 2006; Tondelli et al. 2006; Francia et al. 2007). A
common problem for both spring and winter barley genotypes is reproductive frost
tolerance. Late frost events often overlap with flowering time with negative effects
on yield potential and grain quality of barley by damaging reproductive organs in the
later stages of their development. QTLs for reproductive frost induced floret sterility
and frost induced seed damage have been mapped in a multi-population study per-
formed by Reinheimer et al. (2004). A QTL on chromosome 2HL for frost induced
floret sterility was detected in two mapping populations out of three used; while
a QTL on chromosome 5HL (position of the Vrn-H1 gene) was mapped for both
frost induced floret sterility and seed damage in all the three bi-parental populations
used in the study (Reinheimer et al. 2004). Four association mapping studies have
been published to date for frost tolerance in Triticeae, three on barley and one in
rye. von Zitzewitz et al. (2011) performed a GWAM of winter hardiness traits using
a set of accessions consisting of advanced breeding lines from the Oregon barley
breeding program. This study identified significant associations with principal deter-
minants of low temperature survival that have been studied for nearly twodecades; the
Fr-H1 and FR-H2 loci. Another study performed using a collection of diverse barley
germplasm, representative of barley genetic diversity of theMediterranean basin over
an extended time period, revealed new significant associations for frost tolerance;
located in genomic regions never reported before on chromosomes 1H, 2H, 3H and
6H. Two of the significant associations were closely linked to the already known
Fr-H2 and HvBmy loci on chromosomes 5H and 4H. A subsequent haplotype anal-
ysis revealed that most of the significant SNP loci are fixed in facultative and winter
genotypes, while they are freely segregating in the spring barley gene-pool (Visioni
et al. 2013). Exploring frost tolerance within unadapted spring gene pool, through
association mapping revealed a major role of Fr-H1/Vrn-H1 and Fr-H2 loci. This
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finding suggests that allele richness at these two loci might exist also in spring barley
cultivars (Tondelli et al. 2014a). Fr-H2 locus overlaps with HvCBF transcription
factor that plays a major role in response to low-freezing temperature. In particular,
a tandem duplication of two genes of the CBF family has been related with the Fr-
H2 QTL effect in the bi-parental mapping population ‘Nure’ ×’Tremois’mapping
population (Knox et al. 2010; Tondelli et al. 2014a). Higher HvCBF copy number
has been found in both barley and wheat genotypes harboring the recessive winter
vrn-H1 allele (Knox et al. 2010). Recently, variation in copy number of HvCBFs
co-locating with Fr-H2 has been investigated through RT-PCR by Francia et al.
(2016). Their results are in part in accordance with previous studies and showed that
genotypes with increased copy number of HvCBF2A and HvCBF4 showed greater
frost resistance. A third Frost-Resistance locus (Fr-H3) has been discovered by Fisk
et al. (2013) on chromosome 1H, however, further studies are required to confirm the
precise position of the locus in the genome and to identify the genetic determinants
at this locus. In summary, the three main determinants of low temperature tolerance
are FR-H1, FR-H2 and Fr-H3 in addition to several minor determinants reported by
various authors (Fisk et al. 2013; Visioni et al. 2013; Tondelli et al. 2014a). Once
the genetic determinants at Fr-H3 locus will be identified, the variation at the three
FR loci can be exploited for MAS in order to fix favorable alleles at those loci (Fisk
et al. 2013).

4.6 Mapping Studies for Salinity Tolerance

Soil salinity is a major constraint to crops production because it decreases crop yield
and restricts the use of agricultural land; FAO (2008) estimated that approximately
6% of total world land and 20% of total irrigated land is salinized and that poor irri-
gation management and climate changes are further increasing soil salinity (Athar
and Ashraf 2009). Barley is the most salt-tolerant member of the Triticeae tribe, its
higher level of tolerance depends on its rapid growth and fast phenological develop-
ment that leads to early maturity under less favorable conditions (Walia et al. 2007;
Munns et al. 2006). Salt tolerance is physiologically complex and shows the char-
acteristics of multigenic trait, thus requires changes in many biochemical pathways
and in all the major processes like photosynthesis, protein synthesis, energy and
lipid metabolism (Parida and Das 2005). Plant responses to salinity are divided into
an osmotic phase that inhibits growth of young leaves and an ionic phase, where
senescence of mature leaves is accelerated. The level of salinity tolerance at the ger-
mination and seedling stages affects the initial plant stand and has been used in the
past to screen plants. QTL analysis for salt tolerance, using two different mapping
populations, showed that salt tolerance at these two different growing stages is con-
trolled by multiple genes located at different loci (Mano and Takeda 1997). In past
years, due to the scarce information about QTL controlling salt stress in literature,
physiological traits have been used for screening salinity tolerant genotypes (Munns
2002) such as Na+ and K+ concentration in tissues (Chen et al. 2005) and K+/Na+
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discrimination in ion transport (Chen et al. 2007). Recently, using different genetic
approaches, many genes associated with salt tolerance have been identified. These
genes have been divided into three groups: (i) genes enhancing osmotic protection
and scavenging reactive oxygen species (ROS) radicals (Garg et al. 2002); (ii) genes
involved in Na+, Ca+ and K+ transport such as salt overly sensitive (SOS) involved
in Na+/H+ antiport systems (Apse et al. 1999; Shi et al. 2000); and (iii) transcrip-
tion factors functioning in signal transduction pathways such as C-Repeat Binding
Factors (CBFs) (Wu et al. 2011; Morran et al. 2011). Growth decrease under saline
conditions has been attributed to the accumulation of Na+ in leaves at toxic levels
(Mano and Takeda 1997; Shabala et al. 2010). While Cl− is the principal anion in
saline soils, it has detrimental effects on plants, reduces photosynthesis capacity and
chlorophyll content (White and Broadley 2001; Tavakkoli et al. 2011). Nguyen et al.
(2011) evaluated the effects of several ions and their associations with salt tolerance
in 150 double haploids of the Steptoe×Morexmapping population (NorthAmerican
Barley Genome Mapping Project, NABGMP) by comparing shoot and root growth
and their ion content between stressed and non-stressed plants. They found significant
correlation between salt tolerance and ion contents (Cl−, Na+ and K+) in shoots and
roots. QTL analysis revealed significant QTL for both ion contents and salt tolerance
on chromosomes 2H and 3H. Using a bi-parental mapping population, derived from
the cross between the barley salt tolerant cultivar YYXT and the salinity sensitive
cultivar Franklin, Zhou et al. (2012) identified 5 QTLs on chromosomes 1H, 2H, 5H,
6H and 7H accounting for more than 50% of phenotypic variations for salt tolerance
at late seedling stage. Some of the QTLs mapped were coincident with the position
of previously reported QTL for salt stress tolerance, while others corresponded with
QTL for the same traits located in syntenous regions of both rice and wheat genomes.
Further, advances on the understanding of salt tolerance in barley comes from asso-
ciation genetics studies. Through GWAS and haplotype analysis, Wu et al. (2011)
identified a strong positive association between one haplotype of the gene encoding
the transcription factor HvCBF4 and salt tolerance in Tibetan annual wild barley
(Hordeum vulgare L. spp spontaneum and H. vulgare L. spp. agricrithum). In par-
ticular, this haplotype exhibited highly significant shoot dry weight and whole plant
dry weight under salt stress, while no significant associations were found between
other members of CBFs family and salt tolerance. GWAM for salt tolerance and
ion contents performed using a panel of 192 genotypes from a wide geographical
range identified two major QTLs for salt tolerance and related traits on chromosome
6H and for ion content on chromosome 4H (Long et al. 2013). The genomic region
identified on chromosome 6H was strongly associated with salt tolerance and traits
related with plant development and growth vigor under salt stress such as chloro-
phyll content, plant height, tiller number, and leaf senescence. On chromosome 4H,
another strong QTL was detected related with ion content that overlapped with the
position of other QTL for salt tolerance and yield related traits under saline condi-
tions, such as number of spikes per plant and tiller numbers (Long et al. 2013). Genes
involved in Na+ exclusion or K+/Na+ discrimination have been reported in both bread
wheat and durum wheat, respectively known as Knal and Nax2 (Dubcovsky et al.
1996; Byrt et al. 2007). Huang et al. (2008) mapped HKT1;5 (the candidate gene
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for the Nax2 locus) on chromosome 4H, where a QTL was reported by Long et al.
(2013). It has been reported that HKT1;5 results in salt tolerance and yield increase
by 25% in saline soil (Munns et al. 2012). Shavrukov et al. (2010) reported a QTL
on chromosome 7H for Na+ exclusion that can be related with the HvNax3 locus.
Recently, a new QTL for salt tolerance was identified on the long arm chromosome
4H (Fan et al. 2016). Based on in silico analysis, two possible candidate genes were
identified: a glutathione-regulated potassium-efflux system protein and respiratory
burst oxidase-like protein. Both are related with Na+ and K+ homeostasis that plays
an important role in salinity tolerance as reported by Munns and Tester (2008). A
GWAMstudy designed to dissect flowering time under salt stress used theNAMpop-
ulation HEB-25 (Schnaithmann et al. 2014), which revealed that the wild alleles of
flowering time genesHvELF3 andHvCEN are associated with increased salinity tol-
erance andwith reduced flowering time, resulting in increased thousand kernel weigh
and grain yield, respectively (Saade et al. 2016). It is noteworthy that HvCEN has
already been reported as the most frequently detected QTL associated with reduced
flowering time and increased grain yield in a multi environment study performed in
eighteen locations in the Mediterranean Basin in the ‘Nure’ × ‘Tremois’ bi-parental
mapping population (Tondelli et al. 2014b). Furthermore, the same GWAS study
reported another QTL located on chromosome 2HL with direct effect on grain yield
under salt stress. Lines homozygous for the wild allele at this locus showed 30%
more grain yield than the lines homozygous for the allele from the modern cultivar
Barke.

4.7 Mapping Studies for Drought Tolerance

Among the different abiotic stresses, drought is by far the most complex and devas-
tating on global scale. Causing the major crop losses worldwide, it continues to be
a challenge to breeders. Furthermore, under the scenarios of global climate change,
incidences of drought are expected to increase especially in semi-arid and arid regions
(Pennisi 2008; Ceccarelli et al. 2010). Attempts have beenmade to dissect themolec-
ular mechanisms underlying drought tolerance through several approaches such as
QTL and association mapping, QTL cloning, functional genomics and transcrip-
tomics, the success has been limited (Mir et al. 2012). This could be explained
by the complex genetic basis of the trait, its co-occurrence with other abiotic and
biotic stresses and by variability in timing, frequency and severity of drought (von
Korff et al. 2008). Plants during their evolution have developed different strategies
to cope with drought stress: (i) escape strategy via a short life cycle mostly medi-
ated by photoperiod sensitivity and developmental plasticity; (ii) drought avoidance
through enhanced water uptake capacity and reduced water loss; (iii) drought tol-
erance mediated by osmotic adjustment; and (iv) drought recovery via desiccation
tolerance (Chen et al. 2010). Many morphological and physiological traits are found
to be linked with drought tolerance, that could be dissected into several components
(Karamanos and Papatheohari 1999; Cattivelli et al. 2002). In last twenty years,
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many QTLs associated with drought tolerance and related traits have been reported
in literature such as QTL for relative water content (RWC), a trait that shows positive
correlation with grain yield in the Triticeae tribe. QTL for RWC stable across a wide
range of environments were detected on chromosome 2H, 4H and 6H, in the popu-
lation of recombinant isogenic lines (RILs) obtained from a cross between the two
barley cultivars Tadmor and Er/Apm (Teulat et al. 2003). Osmotic adjustment (OA)
is also considered an important adaptive trait for drought tolerance and, together with
RWC contributes in increasing yield and yield stability under drought stress (Blum
1989; Matin et al. 1989). QTL for OA and related traits have been mapped on chro-
mosomes 1H, 2H, 5H, 6H and 7H (Teulat et al. 1998, 2001). Using a RIL population
derived from the cross between the cultivar ‘Arta’ and the genotype of Hordeum
spontaneum 41-1, Baum et al. (2003) identified several QTLs on seven barley chro-
mosomes for grain yield and other agronomic traits such as biological yield, days
to heading and plant height under drought stress in Mediterranean environments.
The same population was used by Guo et al. (2008) to map chlorophyll fluorescence
parameters (indicators of the photosynthetic capacity during reproductive stage),
which are positively correlated with crop yield (Rawson and Constable 1980). No
coincident QTLs for fluorescence parameters were detected under well-watered and
drought stress conditions, which suggested that the genetic control of traits related
to photosynthesis differ under different water conditions. Carbon isotope discrim-
ination (CID) provides a direct measurement of the ratio of dry matter produced
to water transpired, also called transpiration efficiency; and it has been associated
with drought tolerance in terms of water use efficiency and yield stability in drought
prone environments. QTLs for grain CID have been mapped on chromosomes 2H,
3H, 6H and 7H in the RIL population from a cross between the cultivars Tadmor and
Er/Apm. Most of these QTLs overlapped with the genomic regions where QTLs for
physiological traits related to water status and/or osmotic adjustment were reported
(Teulat et al. 2002). Only a few studies have been attempted to dissect drought toler-
ance using field trials (Baum et al. 2003; Talamè et al. 2004; Forster et al. 2004; von
Korff et al. 2006; Comadran et al. 2008; Tondelli et al. 2013). In attempts to iden-
tify drought tolerance QTLs suitable for MAS, experiments have been conducted
in greenhouses and in field in rainfed and well-irrigated environments, however, in
most cases QTL effects were coincident with those detected in environments charac-
terized by moderate to high rainfall. This could be due to the fact that those QTLs are
underlying genes related with yield potential. Recently, advanced-backcross lines
QTL analysis has been also used to identify novel QTLs related with drought tol-
erance traits such as proline content and leaf wilting and for yield and seed quality
under terminal drought stress (Sayed et al. 2012; Kalladan et al. 2013). Sayed et al.
(2012) identified a novel QTL for yield under terminal drought that co-localized with
a QTL for drought tolerance index on chromosome 3H. The study of Kalladan et al.
(2013) identified several QTLs for proline accumulation, with the most interesting
located on chromosome 5H where the drought inducible exotic allele from the wild
H. spontaneum accession ISR42-8 seems to increase proline accumulation by 53%.
Two QTLs associated with leaf wilting decrease were also found in the same DH
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population. This remarks the importance of barley wild relatives as potential donors
of alleles to increase barley resilience to abiotic stress.

Despite association mapping is considered a powerful approach that is routinely
used for quantitative traits dissection in cereal crops, its application on the study
of drought stress response has been very scarce. A GWAM study for yield and
yield components and developmental and physiological traits under well-watered
and drought conditions was performed using a panel composed by cultivated and
wild barley (Varshney et al. 2012). A few QTLs explaining low phenotypic variation
were detected in only drought sites, and furthermore, these QTLs could not unequiv-
ocally related to drought tolerance when compared with QTLs previously mapped by
traditional QTL analysis (Varshney et al. 2012). A more recent study indicated that
GWAMcould be effective for the identification of major QTL for complex traits such
as drought tolerance (Wehner et al. 2015). Through GWAM approach, they studied
effects of drought stress and drought-induced leaf senescence in barley plants in
juvenile phase. Two major QTLs for both biomass yield and SPAD (indicator of leaf
senescence) were identified on chromosomes 2H and 5H, the first was located at
comparable position in other studies while the second was never reported before. If
validated, these two QTLs may represent a starting point for MAS for drought stress
at juvenile phase.

4.8 Future Perspectives

Barley is grown in many production systems tailored by different climatic and soil
conditions, and also by end user requirements. Thewide variability in yield, observed
in different growing areas, depends on many factors including the occurrence of abi-
otic stresses and its combinations. A better understanding of the genetic factors
controlling the ability of genotypes to cope with abiotic stresses and their interac-
tions with the environment are of primary importance, especially in the context of
predicted climate change scenarios and food security. Despite the continuous efforts
of the barley scientific community in the past twenty years, the number of markers
for abiotic stress that are currently used in MAS is scarce. MAS has had a lim-
ited impact in breeding for multi-genic traits with strong genotype by environment
interaction. The limited impact of MAS on barley breeding in past years has been
associatedwith the lack of appropriate type and number ofmolecularmarkers, and the
lack of effectiveness of how to use markers in breeding programs. Recent advances
in next-generation sequencing technologies and bioinformatics together with high-
throughput phenotypingmethods will increase our ability to identify loci relatedwith
abiotic stress tolerance, and in exploiting natural variation at these loci for breeding
new varieties through marker assisted selection. Genomic selection (GS) has been
implemented especially in animal breeding, and recent research shows its potential
for plant breeding although more studies are required to identify the best strategy.
Nevertheless, the recent advances in GS looks promising for solving the issue of
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selection of multiple genes of small genetic effects for traits for which conventional
selection is difficult and phenotyping is time consuming.
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Chapter 5
Innovative Role of DH Breeding
in Genomics Assisted-Crop
Improvement: Focus on Drought
Tolerance in Wheat

H. K. Chaudhary, A. Badiyal, W. Hussain, N. S. Jamwal, N. Kumar,
P. Sharma and A. D. Singh

Abstract Wheat production across world is greatly hampered due to huge fluctu-
ations in water availability. There is a dire need to seek more efficient approaches
towards genetic tailoring of crops for enhanced drought tolerance in a sustainable
way and in less time.Wide hybridization in complementationwith genomics-assisted
doubled haploidy (DH) breeding, molecular cytogenetic tools and marker-assisted
selection can help in quick identification and integration of drought-tolerant genes in
wheat. Such approaches result in the genetic up-gradation of elite cultivars with high
precision in a very short time span. Development of multiparent advanced genera-
tion inter-cross (MAGIC) populations is greatly facilitated by DH breeding for stable
incorporation of desirable genes in elite wheat cultivars from a variety of sources. In
this chapter, the authors discuss the significance of doubled haploidy breeding in sus-
tainable wheat genome upgradation through its integration with advanced genomic
tools for the development of widely adaptable drought resistant high yielding
cultivars.
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5.1 Introduction

Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20%
of the calories consumed by humans. It is most widely grown crop, covering more
than 200 million hectares of land. The world population is estimated to reach 9.1
billion by the middle of this century, 34% higher than today, comprising of 70%
urban population compared to 49% today. Since its domestication about 10,000 years
ago, wheat has been continuously grown in the mainstream agriculture and today it
comprises themajor part of staple human diet and one of the important contributors of
the food security mosaic, particularly in the developing nations (Graham and Vance
2003; Bohra et al. 2015). In view of the logarithmically growing demand for food,
wheat grain production must increase at the annual rate of two per cent, without an
additional land to become available for this crop (Gill et al. 2004).

Systematic wheat breeding began around 100 years ago, but farmers’ efforts for
the improvement of wheat strains by selective breeding can be traced back to the
beginnings of agriculture almost 10,000 years ago. The ‘Green Revolution’ of the
1960s and thereafter a series of advances in agricultural research, technology and
infra-structure triggered a drastic improvement in wheat yields. However, wheat
production has struggled to meet global demand and an increasingly variable and
unstable climate is adding to the problems of wheat supply. Moreover, in the mod-
ern agricultural systems, popular wheat cultivars are sown over wide area for the
development of elite cultivars with various desirable agronomic traits such as high
yield or superior quality and adaptable to a variety of diverse climates. This practice
makes the plants inevitably exposed to a variety of stresses including abiotic and
biotic stresses.

Among all abiotic stresses, drought is the most devastating one affecting crop
productivity, and is characterized by the complicated interaction of various factors
like limiting water availability, lower rainfall, altered precipitation patterns, reducing
ground water level and increasing temperature (Toker et al. 2007). Drought stress is
considered as the most widespread limitation to wheat productivity and stability in
rain-fed production systems and has become an important problem due to increasing
water shortages and uneven distribution of rainfall (Rustgi et al. 2013). Consequently,
developing wheat cultivars with enhanced drought tolerance and high yield has been
the focus of many wheat improvement programs. The limited success in improving
drought resistance is primarily due to the difficulty in identifying and accuratelymea-
suring the key morpho-physiological determinants of yield under drought conditions
(Maccaferri et al. 2009).

The wheat breeders across the world have to join hands to develop drought tol-
erant wheat cultivars that can sustain crop yield in normal as well as water-stressed
conditions. Though the development of such cultivars has always remained the prior-
ity of breeders but relatively little breeding work has been carried out on improving
crops for drought tolerance. Thus, there is a need to seek more efficient approaches
for genetically tailoring crops for enhanced drought tolerance.
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Improvement in drought tolerance of a crop through selection and breeding
requires a substantial magnitude of heritable variation. Wheat has undergone numer-
ous rigorous selection cycles during the course of domestication due to which the
genetic variability has been greatly reduced in current germplasm. To maintain the
variability inwheat, wild or close relatives ofwheat in primary, secondary and tertiary
gene pools have been extensively exploited for sustainable improvement in wheat.
Introgression of favorable alleles, gene or gene complexes from wild relatives offers
an excellent opportunity to enhance the genetic base of cultivated gene pool for
various desirable traits. The wild species of wheat are still a valuable source of
useful agronomic traits for the continued improvement of cultivated wheat. Numer-
ous wild relatives of wheat have been evaluated for drought tolerance worldwide
through various research agencies. Useful variation for this trait has been identified
in Triticum urartu, T. boeticum, T. dicoccoides (Valkoun 2001) and Aegilops genic-
ulata (Zaharieva et al. 2001). According to Skovmand et al. (2001), Ae. tauschii is
the predominant source of variation for drought tolerance. Moreover, genotypes gen-
erated from hybridization with Triticum wild relatives have been found to produce
high grain yield under both favorable and dry conditions. Under drought, the crosses
identified to be better performers were those with Triticum carthlicum, T. dicoc-
coides, Aegilops species, T. monococcum, T. polonicum, and T. dicoccum (Tadesse
et al. 2016). Wide hybridization of wheat with such related grasses coupled with
cytogenetic manipulation of the hybrid material can be instrumental in introgressing
the genes responsible for drought tolerance from such relatives into wheat. Wheat
breeders have followed this approach in addition to the traditional methods across
the globe. This has enabled the breeders to identify the genetic variability for drought
tolerance among crop cultivars and introduce it into elite cultivars through different
mating designs.

In recent years, advances in genetics and genomics have greatly enhanced our
understanding of structural and functional aspects of plant genomes and have
strengthened our ability to improve crop plants. Genomics approaches offer unprece-
dented opportunities to dissect complex traits such as drought tolerance and clone
the identified genes underlying them. Genomic tools are facilitating the detection
of quantitative trait loci (QTL) and the identification of existing favorable alleles of
small effect, which have frequently remained unnoticed and have not been included
in the gene pool used for breeding. Linkage and association mapping based on high
density markers has allowed us to identify QTLs for traits that influence drought
resistance and yield in wheat. Once major genes and QTLs that affect yield under
drought conditions are identified, their cloning provides a more direct path for min-
ing and manipulating beneficial alleles. While QTLmapping and cloning addressing
natural variation will increasingly shed light onmechanisms of adaptation to drought
and other adverse conditions, more emphasis on approaches relying on resequencing,
candidate gene identification, ‘omics’ platforms and reverse genetics will accelerate
the pace of gene/QTL discovery. Genomic selection that estimates marker effects
across the whole genome provides a valuable option to improve wheat performance
under drought conditions without prior knowledge of the relevant QTLs.
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Breeders and molecular geneticists have routinely used populations derived from
bi-parental crosses for variety development and mapping QTLs for drought related
traits of interest. Typical populations used for QTL mapping include F2, backcross
(BC), doubled haploids (DH) or recombinant inbred (RI) populations derived from
two parents. Among these, DH populations are more suitable for QTL mapping
studies due to their complete homozygous nature and less time required for their
development. One of the major hurdles in harvesting the desired fruits for success-
ful introgressions after wide hybridization of wheat with distantly related species
is segregation on advancement of generations. Marker-assisted breeding can help
in identifying the segregants containing the introgressed alien chromatin but cannot
control the recombination events. The segregation in further generations can lead to
the loss of the newly introduced variations or generate novel combinations. To avoid
loss of alien chromatin and harness the novelty of recombinants, the introgressed
chromatin has to be fixed immediately. Doubled haploidy breeding offers a stable
solution to the hurdle. It not only results in the attainment of homozygous population
in just one step but also ensures that the manipulation is also integrated stably in the
genetic complement of the crop. DH breeding accompanied with marker-assisted
selection (MAS) can result in the upgradation of elite cultivars with high precision
in a very short time span. These DH lines either can be directly released as varieties
for general cultivation or used as parents in breeding programs or even in developing
inbred lines for hybrid seed production in case of cross-pollinated species. The use
of DHs in the study of quantitative trait loci is indispensable. DH lines are valuable
and the most important material for quantitative inheritance studies as these are com-
pletely homozygous. This makes them best fit for studying quantitative inheritance
as the size of population needed is far less than other types of nearly homozygous
inbred lines. Important components of quantitative inheritance like number of genes
controlling a quantitative trait, interactions among different genes, gene linkages,
additive or additive × additive variances and chromosome locations can be studied
using only DH lines in small grain crops.

The commonly used methods of DH production in wheat are anther culture
(Ouyang et al. 1973; Chaudhary et al. 2003), wheat×maize (Zenkteler and Nitzsche
1984; Laurie and Bennett 1986; Chaudhary et al. 2002; Dhiman et al. 2012) and
wheat × Imperata cylindrica (Chaudhary et al. 2005). The androgenesis-mediated
haploid induction methods are not generally used in wheat improvement programs
due to genotype specificity and poor response ofwheat varieties to anther culture. The
wheat × maize system, though genotype non-specific and more efficient approach
of haploid induction in wheat has failed to produce haploids in wide hybrids like
triticale × wheat and wheat × rye (Kishore et al. 2011). Wheat × Imperata cylin-
drica—mediated chromosome elimination approach of doubled haploidy breeding
has been identified (Fig. 5.1) as most innovative and efficient alternative for haploid
induction in wheat (Chaudhary et al. 2004, 2005, 2013a, b, 2014, 2015, 2016; Chaud-
hary 2007, 2008a, b, 2009, 2010a, b, 2011, 2012, 2013a, b; Kaila et al. 2012; Tayeng
et al. 2012; Chaudhary and Mukai 2004; Rather et al. 2013, 2014; Mayel et al. 2015)
as well as in durum wheat (Mahato and Chaudhary 2015). Similar to wheat×maize
system, I. cylindrica-mediated system is also genotype non-specific and insensitive
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Fig. 5.1 Protocol of Imperata cylindrica-mediated wheat doubled haploid production

to crossability inhibitor genes. This novel system is capable of inducing haploids in
wheat× rye and triticale xwheat derivatives, wheremaize was not successful (Pratap
et al. 2005; Pratap and Chaudhary 2007a, b, 2012; Kishore et al. 2011; Badiyal et al.
2014, 2016; Jamwal et al. 2016).

Wide hybridization of elite wheat cultivar with a wild relative (carrying genes
for drought tolerance) followed by MAS of plants carrying the desired genetic com-
binations and further development of doubled haploids from such plants in the F1,
advanced segregating generations as well as back crossed generations can lead to
instant fixation of introgressed alien chromatin (including some rare recombinants)
in the wheat genetic background. This chapter critically analyses how DH breeding
can add new dimensions to genomics-assisted crop improvement in wheat with a
focus on drought tolerance.

5.2 Doubled Haploids for Development of Bi-parental
Mapping Populations

The success of genetic mapping largely depends upon the nature of mapping pop-
ulations. Several types of mapping populations such as F2 progenies, F2 immortal
populations, backcross (BC) progenies, recombinant inbred lines (RILs), doubled
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haploids (DHs), near isogenic lines (NILs) and nested association mapping (NAM)
populations have been used for linkage mapping analysis. Both F2 and BC popula-
tions are simplest and easy to construct, but they are highly heterozygous and cannot
be propagated indefinitely through seeds. Due to several advantages associated with
DH population as mentioned before, they have been largely used in wheat breeding
to map important genes related to drought. Numbers of studies have been conducted
on wheat doubled haploids to locate the QTLs for drought tolerance using different
molecular markers i.e. restriction fragment length polymorphism (RFLP), ampli-
fied fragment length polymorphism (AFLP) and simple sequence repeats (SSR) (see
Table 5.1). Wu et al. (2011) located number of QTLs for yield and related characters
while working on wheat doubled haploids on all the chromosome of wheat genome
except 1A, 4D, 5A, 5B and 6D. Despite their importance in drought tolerance, roots
have attracted little attention in genetic studies. Nevertheless, Liu et al. (2013) iden-
tified 23 QTLs related to different traits of roots i.e. maximum root length, seminal
root number, total root length, root area, root surface area, and seminal root angle
under drought conditions.

5.3 Role of Doubled Haploids in Development
of Multiparent Advanced Generation Intercross
(MAGIC) Populations

The multiparent advanced generation inter-cross (MAGIC) population is one of the
new generation of emerging mapping resources within plant genetics (Huang et al.
2015). In case of aMAGIC population, multiple parents (involving 4–20 parents) are
used for the development of a mapping population (Cavanagh et al. 2008; Lehmen-
siek et al. 2009). MAGIC populations have been developed in wheat and are under
development in many breeding programs (Gupta et al. 2010).

The development of a MAGIC population starts from the selection of founders
based on geographic, genetic and phenotypic diversity. Mixing of parents is done
through hybridization in a predefined pattern (see Fig. 5.2). Intercrossing is used
for individuals derived from founder population for additional generations. Methods
like selfing and double haploidization of individuals are involved either directly on
hybrid founder population or after advanced intercrossing to form inbred lines. They
are created by several generations of intercrossing among multiple founder lines.
Multiple founders allow more allelic diversity to be captured than two parents in
a typical bi-parental mapping population. Further, multiple cycles of intercrossing
provide greater opportunities for recombination and hence, greater precision in QTL
location. During the advanced intercross stages of MAGIC population development,
double haploidization of individuals may be preferred to form inbred lines in a faster
and easy way (Fig. 5.3).
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Fig. 5.2 Stages of MAGIC population development design. Source Huang et al. (2015)

5.4 Doubled Halpoidy Breeding and Genomic Selection

Traditionally, QTL mapping has been used to identify markers linked to traits.
Another approach used to identify markers linked to traits is association mapping in
which populations with broad diversity are used. Although these methods are use-
ful in identifying markers linked to traits, their application in breeding programs is
limited (Bernardo 2008). This is mainly because the individual marker effects are
often small, especially for complex quantitative traits, which are influenced by many
genes. In a landmark article, Meuwissen et al. (2001) proposed a newmethod termed
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Fig. 5.3 Development of multiparent advanced generation intercross (MAGIC) populations.
Source Bandillo et al. (2013)

‘Genomic Selection’ (GS), which uses information from genome-wide markers to
predict phenotypes. GS is a revolutionary approach where a breeder’s selection is
made based on genomic estimated breeding values (GEBVs) obtained from genome-
wide DNA marker information. It involves the development of training populations
with which to model selection criteria for lines (testing population) within a breeding
program. The immortal nature of doubled haploid populations makes them useful
for generating data for modeling as is needed for the application of genomic selec-
tion. The greater precision in phenotyping attributed to doubled haploid populations
should improve the resolution of genomic selection models. Doubled haploid map-
ping populations in hexaploid wheat have been recently used for comparison of
genomic selection models to predict the flowering time and spike grain number
under controlled and osmotic stress treatments.
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5.5 Genomics-Assisted Breeding to Improve Drought
Tolerance in Wheat

After developing adequate mapping population, the next step towards the develop-
ment of drought tolerant crops is the dissection of drought related traits at molecu-
lar as well as phenotypic level. In the recent years, the most imperative science i.e.
‘omics’ has emerged to play a significant role in crop improvement by facilitating the
identification of genes, proteins, and metabolites associated with drought tolerance
and also by characterizing their functions (Zargar et al. 2011). Further, advance-
ment in genome mapping and functional genomics technologies has provided new
powerful tools for molecular dissection of drought tolerance (Worch et al. 2011).
Identification of molecular markers and/or candidate genes associated with drought
tolerance/avoidance-related traits provides a better understanding of the molecular
basis of drought tolerance and once validated, they can be used in molecular breed-
ing. But for the utmost utilization of molecular markers/candidate genes, precise
monitoring of crop at genotypic as well as phenotypic level is required.

The outline of breeding procedure that can be implemented to breed for drought
tolerance related traits in wheat in genomics era is given in Fig. 5.4. First and fore-
most there should be enough variability for these traits in available germplasm. The
relevant germplasm can be evaluated and screened for all the traits at multiple loca-
tions trials to identify the best and stable lines. These best lines can be utilized to
develop the mapping population like bi-parental, association mapping panels etc.
After the development of mapping populations, various genetic and genomic tools
can be used to identify the key genes underlying these traits and incorporate these
genes into desirable cultivars.

5.6 Application of ‘Omics’ of Drought Tolerance
for Precise Genotyping

The established tools of genomics are molecular markers. Since their first use in
the study of genetics of agricultural plants, these have enabled discrimination of
cultivars and breeding lines and thus have offered the scientific community with
most powerful tools to monitor, track and exploit sequence variation in germplasm.
Many types of markers have been developed and they are an essential part of struc-
tural and functional genomics and for molecular breeding (Varshney et al. 2007).
Microsatellite markers or single sequence repeats (SSR) have proved useful in wheat
research since they offer reproducibility, multi-allelic nature, co-dominant inheri-
tance, genome specificity, relative abundance and good genome coverage (Varshney
et al. 2005; Ganal and Roder 2007). Utilizing them, breeders have localized many
stress-related candidate genes on chromosomes (Roder et al. 2004), and have identi-
fied various QTLs controlling yield and quality traits (Ganal and Roder 2007) to use
them in developing new varieties by MAS or marker-assisted backcrossing (Donini
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Fig. 5.4 Outline of general overview how to breed and develop improvedwheat cultivar for drought
tolerance

et al. 2000; Roder et al. 2004). Besides SSRs, another promising type of marker
is single-nucleotide polymorphism (SNP), which are widely distributed across the
genome and amenable to high multiplex detection systems (Ganal and Roder 2007).
The identification of SNP markers depends on comparative sequencing of lines or
analysis of expression sequence tags (ESTs).



5 Innovative Role of DH Breeding in Genomics Assisted-Crop … 81

5.7 Next Generation Sequencing (NGS) Approach

In recent years, the evolution of next generation sequencing (NGS) technologies
has enabled many exciting opportunities for crop research in plants with or with-
out a reference genome. Availability of reference genome/transcriptome sequence
greatly enhances our ability to decipher the underlying molecular mechanisms of a
trait, understand the gene regulatory mechanisms, determine gene expression dif-
ferences and variations in expressed gene sequences and other structural variations
such as copy number variations (CNV) and presence-absence variations (PAV). NGS
approach offers an answer to a wide variety of difficult and cumbersome problems
such as sequencing of complete genomes and transcriptomes and genome-wide anal-
ysis of DNA-protein interactions (Bräutigam and Gowik 2010). NGS along with
other accessory technologies can be used for whole genome sequencing, transcrip-
tome sequencing, genome-wide and candidate gene marker development, targeted
enrichment of crops and other applications for the sustainable crop improvement.
Analysis of NGS data obtained from genome-wide association studies, transcrip-
tomics and epigenomics in combination with data from proteomics, metabolomics
and other ‘omics’ can provide an integrative biology approach to understand the
regulation of complex traits like drought. Wheat genome, being hexaploid, large and
complex than other crops, could not be explored efficiently using genomic tools but
recent advances in new DNA sequencing technologies (454, Solexa, and SOLiD)
(Pettersson et al. 2009) will enable low-cost SNP discovery over larger genomic
regions in such species.

5.8 Understanding Drought Tolerance Through Precise
Phenotyping

After establishing themost suitable target trait for selecting grain yield under drought
stress, the next step is to establish the correlation between the candidate gene/genes
and their morphological as well as physiological accomplishment as a trait which is
tightly connected to yield (Tuberosa 2010). Genetic improvement under drought can
be achieved through direct or indirect selection for yield in the target environment
(Ceccarelli and Grando 1996; Araus et al. 2008). Though it seems simple to imple-
ment but low heritability and high genome× environment (G× E) interactions pose
great hurdles in breeding for genetically improved crops under drought-stressed envi-
ronments. Though, advancement during the recent years in the area of computational
biology, bioinformatics and genomics have helped us to understand the genetic basis
of drought tolerance yet a direct correlation between the genotype and phenotype
could not be established due to a much slow progress in the area of phenomics (Xu
and Crouch 2008; Passioura 2010).
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Thus, a complementary strategy has been adopted to target traits closely corre-
lated with yield and yield potential and this has been termed as indirect selection,
analytical or physiological breeding. Crop physiological studies on cereals under
drought environments have identified several indirect traits that can be considered
for physiological breeding: radiation and water use efficiency, green leaf duration,
harvest index, rate of senescence, grain fill duration, leaf area index, deep roots, vig-
orous crop establishment, stem-reserve utilization andmaintaining cellular hydration
(Araus et al. 2008; Reynolds and Tuberosa 2008). Other ‘constitutive’ type traits have
also been selected and have proven very useful in escaping drought such as time to
flowering.

It becomes very cumbersome to generate andmaintain the data pertaining to afore-
said traits when the population size is large (thousands of plants). Hence, now-a-days
the traditional methods of plant phenotyping are being replaced by high-throughput
precise and non destructive imaging techniques which include: (i) infrared cameras
to scan temperature profiles and transpiration, (ii) fluorescent microscopy and spec-
troscopy to assess photosynthesis and photosynthetic rates, (iii) three-dimensional
cameras to record minute changes in growth responses, (iv) lidar (light detection and
ranging) to measure growth rates and (v) magnetic resonance imaging to examine
root or leaf physiology (Finkel 2009; Gupta et al. 2012). Digital imaging allows us to
monitor, measure and track many aspects of plant development, function and health
that were unimaginable using conventional measurement techniques.

Several software programs have been developed for extracting data from digital
images taken from roots, shoots, leaves, seeds and grains (Sozzani and Benfey 2011;
Cobb et al. 2013). The already developed as well as the futuristic phenomics tools
will allow the scanning of thousands of plants in a working day, similar to high-
throughput DNA sequencing in the field of genomics (Finkel 2009). The precise and
accurate data generated from these facilities is very important and useful for mean-
ingful genetic dissection of complex traits and finds immense applications in various
crop improvement programs. One of such high-throughput integrated phenotyping
platforms was developed by Lemna Tec, a German company (http://www.lemnatec.
com) that includes the pipeline of imaging, image processing automatization and data
handling modules. The platform has the capacity to measure almost unlimited sets of
parameters easily, allows comprehensive screening and provides statistics on various
plant traits in a dynamic way. Depending on the degree of automatization, plants are
manually placed on the 3D Scan analyzer or transported via conveyor belts directly
from the greenhouses to the imaging chambers. Such chambers provide top and side
imaging of both shoot and root systems to quantify plant height/width, biomass and
plant architecture.

http://www.lemnatec.com
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5.9 Discovery of QTLs Responsive to Drought-Related
Traits

After high throughput genotyping and precise phenotyping, data is collected and ana-
lyzed for the construction of genetic maps and locate QTLs responsible for drought-
related traits. A large number of studies involving linkage mapping have been con-
ducted in several crops to identify QTLs linked to drought tolerance (Cattivelli et al.
2008; Fleury et al. 2010). However, linkage mapping-based QTL mapping does not
provide precise information on QTLs because of limitations such as (1) insufficient
time for recombination to occur, (2) insufficient phenotypic variation for the trait
present in the mapping population and (3) segregation of different QTLs for the
same trait in different mapping populations. To overcome some of the above con-
straints, linkage disequilibrium (LD)-based association mapping has been utilized as
an alternative for QTL mapping in crop species (Myles et al. 2009; Rafalski 2010).
The technique involves natural population/germplasm collection instead of mapping
population for locating the desired QTLs. Using association mapping, several mark-
ers linked to drought tolerance traits have been identified in wheat (Sanguineti et al.
2007;Maccaferri et al. 2011), barley (Ivandic et al. 2003; Baum et al. 2007; Varshney
et al. 2012) and maize (Lua et al. 2010).

In summary,QTLs for drought tolerance have been identified for severalmajor and
important crop species like rice, maize, wheat, barley, sorghum, pearl millet, soybean
and chickpea. These QTLs were identified for a variety of important traits including:
(1) yield and yield contributing traits under water-deficit conditions (in the case of
wheat, maize, rice, soybean and pearl millet), (2) physiological responses including
water-soluble carbohydrates, carbon isotope ratio, osmotic potential, chlorophyll
content, flag leaf rolling index, grain carbon isotope discrimination, relative water
content, leaf osmotic potential, osmotic adjustment, chlorophyll and chlorophyll
fluorescence parameters to drought stress (in the case of wheat, maize and rice), (3)
flowering time including anthesis to silking interval (in maize), (4) root traits (rice,
maize, wheat, soybean and chickpea), (5) stay green (sorghum) and (6) nitrogen
fixation (soybean).

However, QTLs identified through linkage mapping-based approaches have been
found to be located in 10–20 cM intervals. Such short intervals span several hundred
genes and hence identifying the right candidate gene(s) with its significant effect is
very difficult and cumbersome. So positional cloning of QTLs have been undertaken
in several crop species (Salvi and Tuberosa 2005; Tuberosa and Salvi 2006).

5.10 Marker-Assisted Selection

Several QTLs have been identified for drought tolerance in wheat (Rebetzke et al.
2008; Wu et al. 2011; Liu et al. 2013). Several major loci for yield under different
environmental regimes have been mapped which are tightly linked to QTLs for late
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senescence of the flag leaf in winter wheat (Verma et al. 2004). However, the major
limitation in useful execution of MAS for drought tolerance is the complex nature
of drought-associated traits and the segregation of the traits on advancement of gen-
erations. Hence, the marker-assisted recurrent selection (MARS) approach, which
involves intermating selected individuals in each selection cycle, has been recom-
mended (Eathington et al. 2007; Ribaut andRagot 2007; Bernardo 2008). It generally
involves the use of an F2 base population and can be used in self-pollinated crops
like wheat, barley and chickpea for developing pure lines with superior per se perfor-
mance (Bernardo 2008). SinceMAS is practiced in each cycle following intermating,
it overcomes the limitation of inadequate improvement in the frequency of superior
alleles in F2 enrichment (Eathington et al. 2007). MARS for water use efficiency is
being exercised in wheat under an Indo-Australian project involving partners from
Directorate of Wheat Research, Karnal; Punjab Agricultural University, Ludhiana;
IndianAgricultural Research Institute,NewDelhi andUniversity of TechnologySyd-
ney and Department of Industry, Innovation, Science, Research and Tertiary Educa-
tion (DIISRTE), Australia. Generation Challenge Programme (GCP) also launched
a challenge initiative to improve heat/drought tolerance in wheat through MARS
approach involving the IARI, New Delhi, India, Chinese Academy of Agricultural
Sciences (CAAS), China and partners from Australia (http://www.generationcp.org/
ci_feb_2010_launch_meeting_feature).

Sometimes undesirable or deleterious genes are also accompanied with QTLs
from the donor genotypes (linkage drag), which can be harmful to the field per-
formance of the resulting hybrids. This can be minimized through marker-assisted
backcrossing (MABC). Following this approach superior lines or cultivars have been
developed that contain only the major gene/QTL from the donor parent, while retain-
ing the whole genome of the recurrent parent (Hospital 2003; Varshney and Dubey
2009; Gupta et al. 2010). Although MABC has been used extensively for introgress-
ing resistance to biotic stresses, only a few reports are available on the use of MABC
to develop the superior lines/varieties for drought tolerance (Gupta et al. 2017).

5.11 Genome-Wide Selection (GWS)

Genome-wide selection (GWS) or genomic selection (GS) is another important
approach to develop superior cultivars with overall excellent performance in a target
environment. It utilizes genotyping with genome-wide markers instead of selected
markers. In this approach, individuals in a phenotyped population (generally called
as the ‘training population’) are genotyped using genome-widemarkers and breeding
values of alternative alleles of all the markers are fitted as random effects in a linear
model. Individuals in subsequent recurrent selection generations are then selected
based purely on the sum of those genomic estimated breeding values (GEBV);
Meuwissen et al. 2001). Therefore, GWS reduces the frequency of phenotyping
and similarly also increases annual gains from selection by reducing cycle time
(Rutkoski et al. 2010). Several scientific groups across theworld have recently started

http://www.generationcp.org/ci_feb_2010_launch_meeting_feature
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exploring theGWS approach in both self- and cross-pollinated cropswith somemod-
ifications for both types of crops (Bernardo 2010). The success of the GWS approach
is dependent on the availability of a diverse and representative training population.
This approach has recently been used to improve durable stem rust resistance in
wheat (Rutkoski et al. 2010) and subsequently can be explored to bring together
different components of multigenic drought tolerance using the GWS approach.

5.12 Future Strategies

Research in the last three decades has come up with three approaches (viz., plant
physiology, molecular genetics and molecular biology) which contributed signifi-
cantly to the crop improvement programs. The integration of molecular biology and
geneticswith physiology has led to the identification of themost relevant loci control-
ling drought tolerance and their respective phenotypic expression. But the challenge
in front of breeders is to develop drought tolerant cultivars without compromising
their yield potential. Hence, drought tolerance traits should be tested in both stressed
and non-stressed environments before being introduced in a MAS breeding pro-
gram. QTLs for drought-related traits which are closely linked with QTLs for yield
potential should be considered as priority targets for MAS. Once the target traits
have been identified and introduced in MAS breeding program, these should be inte-
grated stably in the wheat genetic background using advanced breeding approaches
like doubled haploidy breeding technique. This integrated approach will lead to the
development of stable drought tolerant elite cultivars which will ensure the swift evo-
lution of agriculture in the direction of fulfillment of the food supply of the increasing
population.
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Chapter 6
Genomics Assisted Approaches
for Improving Abiotic Stress Tolerance
in Forage Grasses

Leif Skøt, Rhys Kelly and Mike W. Humphreys

Abstract Ryegrasses, such as Perennial, Italian and Hybrid ryegrass are globally
important forage crops in cool season livestock agriculture, and make up most of the
acreage used in grassland agriculture. These forages are grown chiefly in Northwest
Europe, New Zealand and temperate regions of Japan, Australia, South Africa and
South America. Regions dominated by permanent grassland tend to have reasonably
high annual rainfall, while lower rainfall regions are dominated by arable crops.
However, extreme and unpredictable weather events are likely to occur more often
as a result of climate change. This may include dryer hotter summers, and wetter
winters. Ryegrass forage crops would thus be exposed to a wide range of abiotic
stresses, including drought, cold, flooding and even heat. Generating varieties which
can perform well in response to all these diverse stresses is thus an important and
difficult challenge for grass breeders. The advent of low cost, high throughput next
generation sequencing and genotyping technologies provide new opportunities to
increase the speed with which genetic improvement can happen. The availability of
high density genotyping platforms makes genomic selection in forages a realistic
prospect. They can also be used with great effect in marker-assisted backcrossing
strategies to introgress desirable traits from ecotypes or other donor material. The
ability of ryegrass and fescue to hybridize, opens up further opportunities for gen-
erating new genetic combinations with beneficial characteristics in terms of abiotic
stress tolerance from fescue background with the traditional ryegrass properties in
terms of forage quality and biomass yield.
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6.1 Introduction

Forage grasses are of key importance providing food and feed for livestock, hay or
silage. FAO estimates that around 70% of agricultural land area is used for pasture
and fodder crops (http://www.fao.org/ag/agp/agpc/doc/grass_stats/grass-stats.htm).
Apart from providing livelihoods for millions of livestock farmers, forage grasses
serve many other useful purposes in terms of carbon sequestration, maintenance
of biodiversity and provision of wildlife habitats. Given their perennial life cycle,
forage crops are highly likely to be exposed to abiotic stresses such as drought,
temperature, salinity or flooding at some point. Climate change is likely to exacerbate
such events and/or make them more frequent. This can have serious consequences
for crop productivity, as well as a big threat to the areas that can be used for forage.
Development of varieties that are better at withstanding abiotic stresses is thus an
important breeding target.

Forages are predominantly outbreeding and often polyploid, which introduces
more complexity to the breeding effort and for elucidating the genetic and molecular
mechanisms underlying important complex agronomic traits. Forage crop breeding
is generallymore resource poor compared to some of themajor cereal crops, like rice,
maize andwheat. Furthermore, there aremany targets to consider in a forage breeding
programme, including biomass yield and productivity, forage quality, digestibility,
seed yield in addition to biotic and abiotic stresses. This has been suggested as a
contributing cause of the generally slower rate of progress in breeding compared
to the major cereals (Wilkins and Humphreys 2003; Casler and Brummer 2008;
Conaghan and Casler 2011).

Drought, heat, frost and salinity can all lead to water deficit, and this is a major
determinant of how plants are distributed geographically. Plants have developed
different strategies to deal with water stress (Levitt 1972). Some escape by flowering
prior to onset of drought for example. Resistance mechanisms involve avoidance and
tolerance. Plants that avoid water deficit do so by either saving or spending water
at different stages/time of their life cycle. Water saving plants prevent water loss by
minimising stomatal opening during the day, while water spending plants maintain
high transpiration rates by accessing water resources usually via large root systems.
Tolerance to water deficit can be achieved by maintaining the osmotic potential via
synthesis of osmolytes or compatible solutes. Alternatively, repair mechanisms can
be used to maintain cell integrity. While the escape strategy is difficult to achieve for
perennial crops, the other mechanisms listed above are employed by forage grasses
to deal with water deficit. A significant review was published in 2006 dealing with
molecular and genomic studies on stress tolerance in forage grasses (Zhang et al.
2006). Here, we will try to review progress since then, with particular emphasis on
how the advent of next generation sequencing (NGS) and genotyping is impacting
on our understanding of the traits and efforts to breed more resilient forage grass
varieties.

http://www.fao.org/ag/agp/agpc/doc/grass_stats/grass-stats.htm
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6.2 Next Generation Genomic Tools and Resources
for Forage Crops

The advent of NGS technology and high throughput genotyping is paving the way
for genomics-assisted breeding not only in the major cereals and pulses, but also
in a wide array of crop species (Varshney et al. 2014, 2016). Among the forage
grasses, genome assemblies are available for perennial ryegrass (Lolium perenne
L.) (Byrne et al. 2015; Velmurugan et al. 2016). Genome assemblies of two other
members of the Pooideae subfamily, barley (Hordeum vulgare) (IBGSC 2012) and
Brachypodiumdistachyon (IBI 2010) are serving as useful tools for comparativemap-
ping and synteny analysis (Pfeifer et al. 2013). Additionally, a number of transcrip-
tome assemblies have been produced by RNA-seq technology for various purposes
(Dinkins et al. 2012; Studer et al. 2012; Bushman et al. 2016; Stočes et al. 2016).
High throughput genotypingmethods have been developed, including restriction site-
associated DNA (RAD) sequencing (Baird et al. 2008), genotyping-by-sequencing
(GBS) (Elshire et al. 2011) and diversity arrays technology (DArT) (Jaccoud et al.
2001; Kopecky et al. 2009), all of which have been used in forage grass research
and breeding. Together with ryegrass SNP arrays (Blackmore et al. 2015, 2016;
Grinberg et al. 2016), these methodologies have almost completely replaced low
throughput methods like amplified fragment length polymorphism (AFLP), random
amplified polymorphic DNA (RAPD) and simple sequence repeats (SSR) methods.
Only the latter is still used significantly in plant genetics, mapping and quantitative
trait locus (QTL) analysis. High throughput genotyping is providing detailed char-
acterization of germplasm and genetic resources, and for genome-wide association
studies (GWAS) of populations for identification of novel allelic variation and map-
ping of useful traits. Whole genome resequencing is now used in the major crops
for germplasm characterization, GWAS and genomics-assisted breeding (Lam et al.
2010; Huang et al. 2012; Mace et al. 2013; Lu et al. 2015). In the near future whole
genome resequencing and pan-genomes will be more common even in less resource
rich crops such as forages.

6.3 Cold Stress and Freezing Tolerance

6.3.1 Photoinhibition

Freezing temperatures and ice can cause water deficit in plants. When ice forms in
the extracellular space, water moves along the water potential gradient from the cyto-
plasm to the extracellular space causing depletion of water intracellularly. For peren-
nial species growing in climates with cold winters, exposure to low non-freezing
temperatures in the autumn is the key to their acclimation to freezing and winter
hardiness. This process involves changes in gene expression, morphology and phys-
iology. Recent progress on mechanisms of freezing tolerance, cold acclimation and
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de-acclimation in some of the most important temperate forage grasses such as fes-
cue (Festuca spp.), ryegrass (Lolium spp.) and timothy (Phleum pratense L.) has
been reviewed (Sandve et al. 2011; Kovi et al. 2016). The complex nature of this trait
is highlighted by the fact that plants need to respond not only to water deficit and
ice crystal formation, but also to the imbalance between the reduction of enzymatic
reactions of the photosynthetic carbon pathway and the rate of electron transfer. This
leads to over-excitation of photosystem II (PS II), and triggers photoinhibition of PS
II. There is evidence to suggest some link between winter survival and frost tolerance
with improved photosynthetic acclimation in androgenic populations derived from
hybrids of tetraploid Festuca pratensis and Loliummultiflorum parents (Rapacz et al.
2004). Subsequent work appear to suggest that in F. pratensis a non-photochemical
quenching mechanism provides it with tolerance to low temperature photoinhibi-
tion, while in L. multiflorum, increased photochemical quenching was predominant
(Humphreys et al. 2007). Better frost tolerance was observed in a L. multiflorum
line containing an introgression of a segment of chromosome 4 from F. pratensis
than in the L. multiflorum parent, possibly due to changes in the non-photochemical
mechanism providing the photosynthetic acclimation (Humphreys et al. 2007).

6.3.2 Fructans and Frost Tolerance

Fructans are fructose polymers of sucrose, and occur widespread in plants, and they
are the most important storage carbohydrate in temperate grasses (Chatterton et al.
1989; Morvan-Bertrand et al. 2001; Hisano et al. 2008). The idea that fructan accu-
mulation might be associated with cold acclimation in temperate grasses has been
around for a long time (Eagles 1967; Pollock et al. 1988; Eagles et al. 1993). More
recently, transcriptomics work, transgenic experiments, genetic, molecular and bio-
chemical research have provided strong evidence to support a role for fructans in
cold acclimation and frost tolerance (Livingston et al. 2009). Fructans are readily
polymerised and depolymerised, and the partitioning of solutes was suggested as
a mechanism to increase the survival of apices and lateral buds in grasses due to
the osmotic effect of the hexoses generated by mobilization and depolymerization
(Pontis 1989; Eagles et al. 1993). Expression analyses of perennial ryegrass indicate
an important role for genes involved in fructan biosynthesis and metabolism during
cold acclimation (Hisano et al. 2008; Abeynayake et al. 2015). Fructans can also
interact with cell membranes to stabilize them or minimise damage during freezing
(Demel et al. 1998; Hincha et al. 2000; Vereyken et al. 2001). Transgenic ryegrass
containing fructosyltransferase genes from wheat provided further support for the
role of fructans in protecting cell membranes from damage (Hisano et al. 2004).
Genetic transformation of rice with fructosyltransferase genes from wheat, enabled
it to make fructans, and this was associated with improved tolerance to low temper-
ature (Kawakami et al. 2008). Recently, transgenic ryegrass with altered patterns of
fructan accumulation shows the potential for manipulating the distribution of fruc-
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tans between different parts of the plant (Panter et al. 2017). This may have potential
for manipulating responses to abiotic stress in grasses.

6.3.3 Antifreeze Proteins

Forage grasses also contain genes encoding antifreeze proteins or ice recrystallization
inhibiting (IRI) proteins. It was first reported by Sidebottom et al. (2000), who found
an antifreeze protein in perennial ryegrass which seemed to be better at inhibiting
ice recrystallization, than acting as an antifreeze. This was consistent with mod-
elling work on the ryegrass antifreeze protein (Kuiper et al. 2001). Phylogenetic
analyses of IRI genes in grasses demonstrated that the cold tolerant grasses of the
Pooideae subfamily, such as perennial ryegrass, wheat and barley, have developed a
specific lineage of these genes, probably through expansion of repeat motifs (Sandve
et al. 2008). They also identified four IRI genes in L. perenne. Transgenic plants of
Arabidopsis thaliana expressing IRI genes from L. perenne had better tolerance to
frost treatment, and lower electrolyte leakage after cold acclimation than control
plants (Zhang et al. 2010). The same two genes were also shown to be upregulated
in response to cold acclimation treatment in L. perenne (Zhang et al. 2017). In F.
pratensis, an IRI gene was mapped to linkage group 5 in close proximity to a QTL
for frost tolerance (Alm et al. 2011). This gene was also upregulated in response
to cold acclimation treatment (Rudi et al. 2011). It is also interesting to note that
the grass IRI genes contain a signal peptide targeting the proteins to the apoplast
(Sandve et al. 2008; Zhang et al. 2010), consistent with their role in interaction with
extracellular ice crystals or in minimising damage to the cell membrane.

6.3.4 Regulation of Cold Tolerance Mechanisms

Plants respond to abiotic stresses such as cold by changing the expression of a
range of genes, which in turn elicit various mechanisms by which they cope with
these stresses. In Arabidopsis thaliana, cold-responsive genes are regulated by a
signal transduction mechanism in which transcription factors bind to a cis-acting
dehydration-responsive element (DRE)/C-repeat (CRT) to activate gene expression
(Yamaguchi-Shinosaki and Shinosaki 2009). The transcription factors are called
DREB1/CBF and DREB2. The former regulates cold-responsive gene expression,
while the latter is involved in osmotic stress-responsive gene expression, both in
an abscisic acid (ABA)-independent manner. Homologues to these genes have been
identified in cereals like rice (Dubouzet et al. 2003), wheat (Shen et al. 2003), barley
(Skinner et al. 2005) andmaize (Qin et al. 2004), and they have all been implicated in
cold tolerance. In forage grasses, a homologue of the riceOsDREB1A/CBF3genewas
isolated from perennial ryegrass. Its expression was induced during cold stress, and
when transferred to A. thaliana it induced the expression of cold-responsive genes



96 L. Skøt et al.

(Xiong and Fei 2006). This would suggest a high degree of functional similarity
between these genes in divergent plant species. Expression of ten CBF genes iden-
tified in perennial ryegrass was increased in response to low temperature (Tamura
and Yamada 2007). CBF genes from L. perenne have also been associated with
improved cold tolerance and winter survival (Hulke et al. 2012; Yu et al. 2015). A
complex picture emerges from work with F. pratensis, from which it is clear that the
expression and function of cold-responsive genes and transcription factors involved
in the signal transduction pathway, is influenced by vernalization, de-acclimation
and re-acclimation (Ergon et al. 2016).

6.4 Drought and Salt Stress

6.4.1 Plant Responses to Osmotic Stress

Drought, heat and salt stress in plants are all likely to lead to water deficit, and
plants respond by closing their stomata through ABA production and signalling, in
order to minimise water loss by transpiration. Another effect is a reduction in pho-
tosynthetic activity due to degradation of the photosynthetic machinery and reduced
development of leaf material (Shinozaki and Yamaguchi-Shinozaki 2007; Farooq
et al. 2009). Enhanced production of reactive oxygen species (ROS) during water
deficit stress can contribute to the degradation of the photosynthetic machinery (Gill
and Tuteja 2010). The ability of plants to activate antioxidant pathways is an impor-
tant element of detoxifyingROS.Gene expression analysis and candidate gene-based
association studies in perennial ryegrass have suggested that it is an important ele-
ment of the defence against drought (Liu and Jiang 2010; Yu et al. 2013). These
authors identified two superoxide dismutase genes as being significantly associated
with drought tolerance. Expression analysis in Kentucky Bluegrass exposed to salt
stress also showed enhanced expression of genes known to be involved in antioxidant
metabolism (Bushman et al. 2016).

Other mechanisms used to deal with osmotic stress include heat shock proteins
(HSP). They act as molecular chaperones by stabilising protein structure and prevent
their denaturation during abiotic stress (Wahid et al. 2007). Recently, three families
of heat shock factor genes (hsf ) (transcription factors regulating the expression of
HSPs) were identified in F. arundinaceae and L. perenne (Wang et al. 2016). The
targets for these transcription factors also included ascorbate peroxidase, which is
involved in antioxidant metabolism.

Late embryogenesis abundant (LEA) proteins are very hydrophilic, and are
believed to confer drought tolerance by increasing the water binding capacity and
generating a protective environment for other proteins (Farooq et al. 2009). Genes
encoding LEAs from perennial ryegrass have been associated with drought tolerance
(Yu et al. 2013).
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In a genome-wide association study (Kelly and Skøt, unpublished) found 3 DArT
markers associated with biomass retention in drought-treated L. perenne varieties.
These markers have been mapped onto linkage group 4 close to the dhn4/5 gene
locus, a member of the dehydrin gene family. The dehydrins are another important
family of proteins in the ABA-mediated drought response. They are hydrophilic and
thus perform a similar role to that of LEAs in retaining water and cellular structure
in water stressed cells. Their differential expression in Bermuda grass was shown
to confer a drought tolerant phenotype (Hu et al. 2010). Introgression mapping in
hybrids between F. arundinaceae and L. multiflorum revealed that linkage group 3
is another potential source of drought tolerance in these grasses (Humphreys et al.
2005). A QTL mapping study in F. pratensis also identified a major QTL on linkage
group 3 (Alm et al. 2011), and reviewed in Humphreys et al. (2006).

6.4.2 Other Factors Affecting Tolerance to Abiotic Stress

Neotyphodium/Epichloë is a group of endophytic fungi which can form a symbiotic
relationshipwith temperate grasses such asL. perenne andFestuca spp. (Schardl et al.
2004). Endophyte-infected grasses can confer a number of advantages in terms of
competitiveness, disease resistance and abiotic stress to the grass host (Kane 2011).
Exactly how endophyte-infected plants gain better abiotic stress resistance compared
to uninfected plants is not yet clear (Malinowski and Belesky 2000).

The potential of Festulolium hybrids and lines with introgressions of Festuca
chromosomal segments in a Lolium genome background was alluded to in Sect. 6.3
in terms of cold acclimation and frost tolerance. It has also been shown that such
hybrids can have a mitigating effect on run-off during flooding compared to either
parental genus (Macleod et al. 2013).

6.5 Conclusions and Future Prospects

Recent advances in genomics technologies have enabled significant progress in our
knowledge of the molecular, biochemical and physiological mechanisms behind abi-
otic stress tolerance in plants, including forage grasses to some extent. The impor-
tance of improving abiotic stress tolerance in forage grasses is emphasized by the
fact that grassland is often occupying marginal land where other, perhaps more valu-
able cash crops are impossible to grow profitably, often because of extra pressures
from abiotic stresses in terms of temperature and precipitation (Jones et al. 2015).
Climate change is likely to impose further stresses, possibly from more erratic and
extreme weather patterns in the future. Grasses grown in areas with cold winters
would need to be adapted to sudden temperature changes in terms of de-acclimation
and re-acclimation (Kovi et al. 2016). In order to counteract the loss of agricultural
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land to urban development and desertification, it may also be necessary to breed
crops adapted to geographical areas beyond their current limits.

Given the complex multi-genic nature of abiotic stresses they would seem to
be good candidates for genomics-assisted breeding methodologies such as genomic
selection (GS), as this approach takes into account the small effects of eachmolecular
marker on all chromosomes (Meuwissen et al. 2001). Implementation of GS requires
a training populationwith both phenotypic and genotypic data available. A predictive
model is used to obtain a genomic estimated breeding value (GEBV) of the training
population. This is then used to predict the phenotypic value in a breeding population
which has only got genotypic data. As with plant crops in general, there is great
interest in developing GS approaches for forage grasses in order to increase the rate
of genetic gain by speeding up the population improvement cycle time. A number
of papers have described various scenarios, simulations and methodologies for GS
in forage crop breeding (Resende et al. 2014; Lin et al. 2016, 2017a, b; Skot and
Grinberg 2017). Apart from prediction accuracy, which is determined primarily by
the size of the training population, heritability and to some degree by marker density,
the risk of inbreeding and its potential negative effect on breeding programmes with
GS, is highlighted (Lin et al. 2016, 2017a, b). Some empirical studies of GS have
been carried out in perennial ryegrass, although not with traits relating directly to
abiotic stress (Fè et al. 2015, 2016;Grinberg et al. 2016; Byrne et al. 2017). Prediction
accuracies vary, but with high heritability traits such as flowering time and disease
resistance, the accuracies were high.

GS and related designs for genomics-assisted breeding can in theory be applied
to any quantitative trait. It also provides tools and resources for biological discovery
(Hickey et al. 2017). Thus, the potential of GS is there, but there is still some way
to go before its routine implementation for a wider range of traits, especially abiotic
stresses. The desire to implement GS in breeding programmes also highlights the
need for accurate phenotype data from field experiments in order to achieve high and
reliable prediction (White et al. 2012).

The use of the most appropriate mating designs to minimise inbreeding in out-
crossing forage crops is another important factor in breeding programmes. The avail-
ability of genomic data provides new opportunities for controlling inbreeding, and
this was explored recently in perennial ryegrass where the genomic relationship
matrix was used to design the best parent combination to reduce inbreeding while
maintaining genetic gain (Lin et al. 2017a). Prior to that, the concept of genomic
mating to select complementary parents for the most optimal mating design was
proposed (Akdemir and Sanchez 2016). Furthermore, some of the many molecular,
genetic and physiological investigations mentioned above have demonstrated that
even for complex traits like abiotic stress, key genes involved in signal transduction
or other processes can havemajor effects. This provides opportunities to improve our
understanding of the mechanisms controlling these important traits, and to improve
stress tolerance through other approaches such as transgenics or genome editing.
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Chapter 7
Molecular Responses to Cold Stress
in Temperate Fruit Crops with Focus
on Rosaceae Family

Arghavan Alisoltani, Marziyeh Karimi, Rudabeh Ravash, Hossein Fallahi
and Behrouz Shiran

Abstract Cold stress is considered as one of themain limiting environmental factors
causing a significant loss in the production of fruit crops. Although many fruit crops
require chilling during winter to develop fruiting buds, late winter, and early spring
frost can severely damage buds, flowers, and fruits and can lead to the reduction of
productivity. Among different plant families, the Rosaceae family contains several
economically pivotal fruit-producing crops, such as Fragaria (strawberries),Malus
(apple),Rubus (blueberries) andPrunus (stone fruits), which suffer fromcold injuries
during the blooming period. This chapter provides a general overview of the role of
various molecular components involved in sensing and signal transduction processes
as well as the regulation of gene expression in response to cold stress in fruit crops.
Besides, the impact of next-generation sequencing approaches is highlighted in the
molecular studies of the Rosaceae family. Also, we have addressed the existing gaps
to help researchers identify areas that need more attention.
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7.1 Introduction

Abiotic stresses impair the growth and development of plants, limit their geographical
distribution and reduce their productivity. Cold stress is one of the abiotic stresses that
causes tissue injuries, photosynthesis reduction, and delay in the growth of plants.
Therefore, enhancing the tolerance of plants in response to cold stresses is one of the
primary aims of crop breeding. Plants adapt to adverse environmental conditions by
developing various molecular, biochemical and physiological strategies (Cushman
and Bohnert 2000; Shinozaki et al. 2003; Yadav 2010). Over the last decades, enor-
mous efforts have been made in deciphering molecular mechanisms of plants in
response and adaptation to cold stress (Chinnusamy et al. 2007; Shinozaki et al.
2003).

The Rosaceae is one of the important crop families which includes main fruit
crops such as apple (Malus domestica), pear (Pyrus communis), almond (Prunus
dulcis), apricot (Prunus armeniaca), cherry (various Prunus species), peach (Prunus
persica), blackberry (various Rubus species), strawberry (genus Fragaria) and plum
(variousPrunus species). Althoughmany species ofRosaceae require chilling during
winter to develop fruiting buds, frost stress during late winter and early spring can
significantly damage the reproductive tissues of these plants, consequently leading to
the reduction in the productivity (Dai et al. 2013; Stepulaitiene et al. 2013; Szymajda
et al. 2013; Alisoltani et al. 2015; Matzneller et al. 2016). In this chapter, we have
described different molecular aspects of cold injury in fruit crops with special focus
given to the Rosaceae family.

7.2 Cold Injury and Cold Acclimation in Fruit Crops

7.2.1 Chilling and Frost Injury

The suite of molecular, biochemical and physiological changes in plants that are
induced by low non-zero temperatures, together with the subsequent morphological
symptoms is called chilling injury. The rate of chilling injury in crop fruits is primarily
associated with both the level of low temperature and the duration of exposure to cold
stress. The two most acute chilling injury symptoms observed in the fruit crops are
the delay in the ripening and development of fruits. Low temperatures during storage
of the fruits can also lead to severe injuries such as flesh browning, reddening, and
woolliness, which consequently reduces the fruit’s storage life (Crisosto et al. 1999;
Lurie and Crisosto 2005). Several other phenotypic symptoms reported in fruit crops
under chilling stress are reduction of leaf expansion, loss of rigidity, loss of leaves,
chlorosis (loss of the leaf chlorophyll) c) and necrosis (death ofmost of the plant cells
and/or tissues) (Mahajan and Tuteja 2005). Cold stress also affects the development
of reproductive tissues of fruit crops. For instance, the risk period of some Rosaceae
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fruit crops (e.g., almond) starts from late winter which is during tree’s blooming
period (Rodrigo 2000).

Compared to chilling stress, frost causes the formation of ice crystals in the extra-
cellular spaces in the tissues and damaging plant’s cells, and in severe conditions
leads to plant’s death (Levitt 1980b). The intensity of frost injury is mainly influ-
enced by the type of plant cultivar and severity of cold stress. Tissues drastically
injured by frost generally have water-soaked appearance especially after ice thaw-
ing (Whiteman 1957; Parsons and Day 1970). The intensity of frost damage also
depends on types of plant’s organ (e.g., root, trunks, branches, and buds) and devel-
opmental stage. As an example, for the most species of Rosaceae, the highest lethal
temperature 90 (LT90: 90% plant mortality) ranges between −1 and −4°C during
post-bloom stage, while the lowest LT90 ranges between −14 and −17°C during
silver tip stage (Proebsting and Mills 1978).

7.2.2 Main Injuries Caused by Cold Stress in Fruit Crops

Chilling stress influences fruit crops by affecting their membrane integrity, gene
expression, ion leakage, proteins and other biomolecules activities. Although above
mentioned changes in plants are considered as the main reasons that help plants to
resist low temperatures, the underlying mechanisms of tolerance to cold stress are
not fully understood (Dhanapal and Crisosto 2013). The following section discusses
the most severe injuries to the crop plants under cold stress in more details.

7.2.2.1 Membrane Damage

Themetabolism of chilled cells gets altered due to transition ofmembrane lipids from
crystalline to gel phase, leading to the injury of chilling sensitive plants (Shinozaki
and Yamaguchi-Shinozaki 1999). Membrane damage and metabolic dysfunction
through stimulation of secondary dehydration stress can also happen due to frost
(Mahajan and Tuteja 2005). Murata et al. (1982) and Sun et al. (2015) reported a
strong relationship between the degree of sensitivity to cold stress and the proportion
of desaturated phosphatidylglycerol across different plant species. Reactive oxygen
species (ROS), such as hydrogen peroxide found at higher level in cold stressed
plants, can enhance the membrane damage. For example, hydrogen peroxide content
has been found to be associated with brownish pistils and fruits in almond and peach
during blooming and storage stages at low temperatures (Ding et al. 2009; Alisoltani
et al. 2015).
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7.2.2.2 Protein Changes and Degradation

The susceptibility of plant tissue to cold injuries depends on the level and balance
of certain plant growth hormones (Ismail and Grierson 1977). For instance, abscisic
acid (ABA) decreases the ion leakage and prevents the reduction of glutathione and
cell membrane phospholipids and can also enhance the stability of microtubular net
(Rikin et al. 1979). Similarly, treatment of cold-sensitive plants with methyl jas-
monate (JA) induces the synthesis of stress proteins such as heat shock proteins
(HSPs), pathogenesis-related proteins (PRPs), and alternative oxidase (Ding et al.
2001, 2002). Proteome analysis in the peach fruits unveiled upregulation of four
membrane stability related proteins and repression of three proteins related to phe-
nolic compounds metabolism at 0°C as compared to that of 5°C. It was found that
the abundance of enzymes related to sugar metabolism and energy pathways reduces
in peach fruit stored at 0°C (Zhang et al. 2010a).

7.2.2.3 Oxidation

Cold stress induces the generation of ROS including singlet oxygen, superoxide rad-
ical, hydrogen peroxide and hydroxyl radical, therefore leads to secondary oxidative
stress (Mittler 2002). Plants accumulate different types of metabolites during cold
stress such as polyamines which are a group of polycationic organic compounds.
It was demonstrated that treatment with exogenous polyamines resulted in higher
internal polyamine contents and suppressed cold injury (Kramer and Wang 1989).
The reduction of cold injury by polyamines is likely associated with their antioxidant
and stabilizing activities on the cell membrane.

7.2.2.4 Photosynthesis and Respiration

Photoinhibition of photosynthesis is reported in many cold-sensitive species. As
photosystem II (PSII) is more sensitive to light, the slow enzymatic reactions in
the thylakoid and decreased carbon metabolism under cold stress can decrease the
efficiency of PSII (Allen et al. 2000). Several differentially expressed genes related to
dysfunction of the photosystem II in the peach such as degradation of photodamaged
D1,D2, CP43, andCP47 has been recognized byNilo-Poyanco et al. (2018), and they
also highlighted the dissimilar abilities of cold-sensitive and non-sensitive varieties
to keep the plastids homeostasis under chilling stress.



7 Molecular Responses to Cold Stress in Temperate Fruit Crops … 109

7.3 Molecular Aspects of Cold Sensing and Signal
Transduction in Temperate Fruit Crops

Cold stress could be considered as a physical stress that could be sensed by all
molecules and components in plant cells. Different factors are considered as primary
sensors of cold stress; cell membrane and cytoskeleton, photosynthesis system and
various types of biomolecules. The primary effect of cold on cells is the change in
fluidity and rigidity of plant’s plasma membranes (Levitt 1980a; Vigh et al. 1993).
Several studies have suggested that the cell membrane, through dynamic changes in
the physical state of membrane lipids, is one of the primary sensors of cold stress
(Mikami et al. 2002). Peroxidation of lipids, which affects membrane integrity, was
observed in several Rosaceae plants grown under low temperatures, for example,
peach (Wang et al. 2006) strawberry (Gülen et al. 2008), almond (Karimi et al. 2013),
and apricot (Bayat et al. 2013; Wang et al. 2016b). Wang et al. (2006) demonstrated
that treatment of peach fruit with salicylic acid reduces chilling injury, and delays
the peroxidation of membrane lipids during cold storage (Wang et al. 2006).

Various proteins such as dehydrin proteins (DHNs), heat-shock proteins (HSPs)
and cold-regulated proteins (CORs) are also involved in membrane stabilization in
response to cold stress (Janská et al. 2010). Low temperature can also change protein
folding, which might be another primary sensor of cold stress (Pastore et al. 2007).
Dehydrins are one of the several proteins that have been associated with changes in
the cold tolerance of plants. In peach (Prunus persica (L.) Batsch) the expression
patterns of dehydrin genes (PpDhn2 and PpDhn1) were examined in response to
low temperature and water deficit conditions. PpDhn2 was significantly induced by
water-deficit stress but not by low temperatures, whereas PpDhn1 was induced by
both water deficit and low-temperature stresses (Wisniewski et al. 2006). In another
study byZhang et al. (2010a, b), proteomeprofile of peach fruit stored at low tempera-
turewas examined.Differentially expressed (DE) proteinswere identified usingmass
spectrometry in peach fruit stored at 0 and 5°C. Among DE proteins, membrane sta-
bility related proteins including enolase, major allergen Prup1, temperature-induced
lipocalin, and type II SK2 dehydrin were upregulated. In addition, low tempera-
ture of 0°C might regulate the endogenous hydrogen peroxide level, resulting in
the activation of genes encoding proteins that stabilizes the membrane (Zhang et al.
2010b). The impacts of the accumulation of dehydrin-like protein in microshoots
of pear (Pyrus communis L.) was investigated under cold acclimation conditions
using immuno-blot, and eight protein bands corresponding to dehydrin-like proteins
were characterized in different genotypes (Baniulis et al. 2012). In another study by
Li et al. (2012), the expression profile of cell membrane proteins was analyzed in
brassinolide-treated and controlmango (Mangifera indicaL.) fruit in response to cold
stress. Fourteen DE proteins were identified by mass spectrometry, and among them,
remorin type II SK2 dehydrin was upregulated in brassinolide treatment under cold
stress. In apple (Malus domestica L.), 12 dehydrin genes (MdDHNs) were identified
with a typical K domain. Expression profiling of nine MdDHNs indicated that tran-
script levels of someMdDHNswere significantly upregulated under low temperature,
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drought and ABA treatment, which suggested an essential role of the apple dehydrin
gene family during stress adaptation (Liang et al. 2012a). In almond, changes in
the expression of genes involved in cell membrane structure were observed in both
anther and ovary tissues in response to cold stress (Mousavi et al. 2014). The study
revealed many upregulated genes involved in lipid metabolic process in both tissues.
In pomegranate and loquat, it has been shown that fatty acid compositions correlate
with susceptibility of these fruits to chilling injury (Moellering et al. 2010; Cao et al.
2011). Expressed sequence tags (ESTs) analysis of Prunus campanulata Maxim.
also revealed upregulation of DRP, HSP, MYB, and GPX in plants cultivated at low
temperature (Zhang et al. 2015).

In addition to the cell membrane and different types of proteins, metabolic pro-
cesses are also considered as one of the primary sensors of cold stress. Low temper-
ature causes an imbalance between the source of energy and the sink of metabolites.
Photosynthesis acts as the sensor of this imbalance via the redox state of electron-
transport components. Photosynthesis also interacts with different processes, such as
crosstalk between photosynthetic redox and sugar-signaling pathways, during adap-
tation to the cold (Ensminger et al. 2006).Cold stress under light leads to the inhibition
of the photosystems. It is argued that PSII is more sensitive to cold stress compared
to PSI because the increase in the cyclic electron flow around PSI is insufficient to
protect PSII (Paredes and Quiles 2015).

After temperature changes are perceived, the signal of cold is transduced to the
nucleus where regulation of gene expression and transcription occurs (Zeller et al.
2009). Large numbers of studies have investigated signaling pathways triggered by
low temperatures. It is proved that ROS, hormones, and calcium play pivotal roles in
signal transduction and regulation of gene expression in response to low temperatures
(Liu et al. 2012). Plant hormones such as salicylic acid, abscisic acid, and jasmonic
acid are the critical regulators in stress signal transduction and tolerance of the plants
to low temperatures (Miura and Tada 2014; Wang et al. 2016a). The increase in
ABA content occurs in response to both cold stress and water loss (Wang et al.
2015). The ABA level was found to increase in deeply dormant potato tubers, which
was also reported in sweet cherry (Chengguo et al. 2004; Destefano-Beltrán et al.
2006). Several cold-responsive genes are induced through the increase in the level
of hormones mentioned above, in particular, ABA. As an example, 19 out of 30
late embryogenesis abundant (LEA) proteins were upregulated by ABA treatment in
Chinese plum (Prunus mume) (Du et al. 2013).

Protein phosphorylation by protein kinases is crucial for cellular signaling
pathways and is essential for the regulation of cold-responsive genes in plants
(Chinnusamy et al. 2007). Different types of protein kinases are known to be induced
through exposure to cold stress and are involved in perception and transduction of
signal under different environmental stresses (Furuya et al. 2013; Jonak et al. 1996).
Mousavi et al. (2014) showed that a considerable number of DE genes are involved
in signaling processes using high throughput transcriptome sequencing of almond
under cold stress. Most of these genes have protein kinase domain and are mainly
clustered in two groups; Ca2+/calmodulin-dependent protein kinase (CAMK) and
mitogen-activated protein kinase (MAPK). In plant cells, the calmodulin/calcium-
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binding protein is a member of the receptor-like kinase family and acts as a primary
sensor for changes in free Ca2+ levels. The expression level of calmodulin in Prunus
incisa× serrula has been assessed under various abiotic stress conditions, which
indicated that calmodulin is differentially regulated in response to multiple stresses
(Maghuly et al. 2009). The expression patterns of calmodulin genes were also mea-
sured in different tissues of strawberry (Fragaria×ananassa) under various abiotic
stresses (Leng et al. 2015). Results revealed a distinct expression profile of this gene
in response to heat, cold, and salt stress. In almond, the upregulation of calmod-
ulin was reported in response to cold stress (Alisoltani et al. 2016). The authors also
demonstrated amicrosatellite variation at calmodulin gene locus in frost-tolerant and
frost-sensitive genotypes of almond. They concluded that calmodulin could be used
as a functional marker in marker-assisted selection (MAS) of plants for tolerance to
cold stress (Alisoltani et al. 2016).

7.4 Regulation of Gene Expression Under Low
Temperatures in Temperate Fruit Crops

7.4.1 Transcriptional Regulation of Gene Expression During
Cold Conditions

Plants reprogram their genes through regulatory mechanisms (transcriptional, post-
transcriptional, and post-translational modifications) in response to cold stress.
Therefore, studying the regulatory mechanisms involved in response and adaption
to cold stress is pivotal to improve cold tolerance in plants (Alisoltani et al. 2015).
A significant finding towards understanding the mechanisms of gene regulation in
response to cold stress was the identification of the Arabidopsis C-repeat-binding
factors (CBFs) which is an AP2/ERF transcription factor, (Gilmour et al. 1998;
Medina et al. 1999), also known as DREB1 (Liu et al. 1998). The CRT/DRE motifs
are observed in the promoters of different cold-inducible genes (Thomashow 1999),
and these motifs activate genes following cold stress (Yamaguchi-Shinozaki and
Shinozaki 1994).

Cold-inducible DREB1/CBFs have been identified in numerous members of
Rosaceae, such as Prunus avium (Kitashiba et al. 2004), Malus ×domestica (Yang
et al. 2011),Prunusmume (Zhang et al. 2013),Prunus persica (Artlip et al. 2014), and
Prunus dulcis (Barros et al. 2012; Alisoltani et al. 2015). The CBF/DREB1 pathway
plays a crucial role in the cold response and tolerance of Rosaceae plants. Iezzoni
et al. (2002) investigated the effect of CBF1 over-expression on strawberry frost tol-
erance. Their results showed that, although 50% electrolyte leakage occurred in the
two transgenic lines at the −8.2 and −10.3°C respectively, no significant change in
the frost tolerance of transgenic lines was detected compared to the wild-type plants.
The frost tolerance values were significantly higher than the value for the wild-type
plants under −6.4°C (Iezzoni et al. 2002; Owens et al. 2002).
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A new gene encoding a DREB1 transcription factor, MbDREB1, was cloned
and characterized from dwarf apple, Malus baccata (Yang et al. 2011). Expres-
sion of MbDREB1 was induced by low temperature. Transgenic plants over-
expressing MbDREB1 showed increased tolerance to cold stress, compared with
wild-type Arabidopsis. In another study, 68MdDREB genes that were classified into
six subgroupswere identified in apple. Results from expression analysis revealed that
transcript levels of some predicted MdDREB genes were significantly upregulated
under abiotic stresses (Zhao et al. 2012).

Barros et al. (2012) isolated two almond CBF genes (PdCBF1 and PdCBF2), and
they found that low temperatures induce the transcription of these genes. Addition-
ally, this study reported that PdCBF1 and PdCBF2 could be induced by ABA and
drought treatments. To isolate CBF genes in Prunus mume, primers were designed
based on the CRT/DRE binding factor of peach, sweet cherry and other related
Rosaceae member sequences and two genes, PmCBFa and PmCBFb, were isolated
fromPrunus mume (Barros et al. 2012). In this study, phylogenetic analysis indicated
differences in monocot and eudicotCBF genes. Moreover, sequencing ofCBF genes
from 16 cultivars and wild species of Prunus mume revealed intraspecific evolution
of these genes (Zhang et al. 2013). CBF gene regulation is more complicated in
woody plants than in herbaceous plants. Gene expression of five tandem peach CBF
genes (linkage group at scaffold 5) and oneDREB2 gene revealed the high induction
of CBF genes by subjective dawn + 4 h (ZT4; where ZT is Zeitgeber time).

In contrast,CBF geneswere less expressed in leaf, and to a lesser degree in the bark
samples, exposed todawn+ 16 h (ZT16) (Artlip et al. 2013). The authors also revealed
that the peachDREB2 orthologwas induced by both low temperature and dehydration
(Artlip et al. 2013). In another study on peach fruit, sixCBF genes (PpCBF1-6) were
isolated, and their expression profile was assessed in response to low temperature.
PpCBF1/5/6 were all induced at low temperature, whereas no change in expression
level of other CBF genes was observed (Liang et al. 2013). Comparison with the
control plants revealed that the over-expression of a peach CBF (PpCBF1) in apple
enhances the level of frost tolerance. The ectopic expression of PpCBF1 in apple
also affects growth and dormancy of transgenic plants (Wisniewski et al. 2015).

Promoter analysis of CBF genes in peach revealed the presence of cis-element
ICE1 (inducer ofCBF expression 1) in the upstream sequence ofPpCBF1/5/6 (Liang
et al. 2013). ICE1 is a bHLH (MYC-type basic helix–loop–helix) transcription factor,
which can bind to the CBF3 promoter and activates the transcription of CBF3 in
response to low temperature (Chinnusamy et al. 2003). Feng et al. (2012) found
that theMdCIbHLH1 gene (Cold-Induced bHLH1) of apple, which encodes an ICE-
like protein, was significantly induced in response to cold stress. The MdCIbHLH1
protein can bind to the promoter of CBF2 and CBF3. The over-expression of the
MdCIbHLH1 gene, as a result, enhanced cold tolerance in transgenic Arabidopsis.
Authors also suggested that theMdCIbHLH1 gene, through the CBF pathway, acts in
cold stress tolerance of apple. PuICE1 gene was isolated from Pyrus ussuriensis, and
its expression level was investigated under different stress conditions (Huang et al.
2015). Results indicated that PuICE1 could be induced by cold, dehydration and salt,
with the greatest induction under cold conditions. Ectopic expression of the PuICE1
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in tomato improved tolerance to cold stress, and it enhanced the expression levels of
six stress-responsive genes in the transgenic plants under cold stress. These findings
demonstrated the pivotal roles of PuICE1 and PuDREBa in the cold tolerance of
Pyrus ussuriensis (Huang et al. 2015). Moreover, there are many other TFs and
regulators, for instance, MYB,WRKY, NAC, Dof, SIZ1, and HOS1, which have key
roles in cold stress tolerance in the Rosaceae members (Alisoltani et al. 2015).

WRKY genes, one of the largest TF families in plants, plays pivotal roles in
response and adaptation to various environmental stresses. For instance, the upregu-
lation ofWRKY21was observed in almond under frost stress (Alisoltani et al. 2015).
Authors also reported that the expression of PdWRKY21 was decreased in the frost-
sensitive genotypes of almond compared to other genotypes under frost stress. The
induction of PdWRKY21 gene in the frost-tolerant genotypes of almond under low
temperature implies the critical role of PdWRKY21 in the frost tolerance of almond.
In apple, a total of 127MdWRKY geneswere identified, some ofwhichwere involved
in response to waterlogging and drought stress (Meng et al. 2016).

Interaction and inter-relation of different regulatory genes at transcriptional and
post-transcriptional, as well as post-translational levels, regulate the gene expression
of plants in response to low temperature (Chinnusamy et al. 2007, 2010; Alisoltani
et al. 2015). Feng et al. (2012) noted that the degradation of theMdCIbHLH1 protein
in apple can be potentially mediated by ubiquitination and SUMOylation mecha-
nisms under cold stress. The E3 protein ligases participate in the ubiquitination and
SUMOylation pathways in plants. The HECT ubiquitin-protein ligases belong to
E3 proteins, and are sensitive to cold, drought, and salt stress in apple (Xu et al.
2015). HOS1 is another member of E3s that participates in the ubiquitination pro-
cess and mediates the degradation of the ICE1 protein under cold stress (Dong et al.
2006). The negative correlation between the expression level of PdHOS1 gene and
PdMIR7122a-3p was reported in almond under frost stress (Alisoltani et al. 2015).
Based on the findings, the authors suggested that PdMIR7122a-3p has a positive role
in the frost tolerance of almond. Similar to HOS1, SIZ1 is a member of E3 ligases
with a pivotal role in SUMOylation process of plants. However, unlike HOS1, SIZ1
mediates cold tolerance of plants by positive regulation of ICE1 activity. SIZ1 also
regulates other proteins, such as MYC2, ANNAt4, and MYB15, under stress condi-
tions (Catala et al. 2007; Miura et al. 2007). In almond, the upregulation of PdSIZ1,
PdICE1, and PdCBF/DREB1 was observed in frost-tolerant genotypes of almond
(Alisoltani et al. 2015).

7.4.2 MicroRNAs as Post-transcriptional Regulators
of Genes Under Cold Stress

The main regulatory mechanisms of plants at the post-transcriptional level include
alternative splicing (AS) of RNA, and gene silencing through small interfering RNAs
(siRNAs) and microRNAs (miRNAs). Post-transcriptional modifications and their
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interactions at other regulatory levels can mediate the gene expression in response
to various stresses (Guerra et al. 2015). Discovery of small RNAs (sRNAs) and
extensive studies on them have produced comprehensive information about post-
transcriptional regulatory mechanisms. sRNAs are mainly grouped into two major
classes: endogenous siRNAs and miRNAs (Carthew and Sontheimer 2009; Ku et al.
2015). The differences between these two classes of regulatory molecules are related
to the structural and biogenesis pathways. siRNA and miRNA are derived from
different precursors; the precursors of siRNA are double-stranded, while miRNAs
(with self- complementary sequences) have hair-pin-like precursors. The specificity
in several factors in synthesis pathway also mediates differences in the biogene-
sis pathways for each group of sRNAs, including RNA polymerases (Pol), RNA-
dependent RNA polymerases (RDR), Dicer-like (DCL) and ARGONAUTE (AGO).
The regulatory mechanism for both siRNA and miRNA is post-transcriptional gene
silencing (PTGS) through the cleavage of the transcript or translational inhibition
(Ku et al. 2015). Different siRNAs are classified into heterochromatic siRNAs (hc-
siRNAs), natural antisense siRNAs (nat-siRNAs), trans-acting siRNAs (ta-siRNAs)
and repeat-associated siRNAs (ra-siRNAs) (Xia et al. 2012). In different studies, the
role of some miRNAs in the biogenesis of ta-siRNAs has been demonstrated. For
instance, miR173-ARGONAUTE1 (AGO1) complex and miR390-ARGONAUTE7
(AGO7) complex process the primary transcript of ta-siRNAs by cleavage
(Montgomery et al. 2008a, b). The impact of miRNA on ta-siRNAs transcripts have
been reported in various members of the Rosaceae family. Xia et al. (2012) showed
that miR390 and miR828 trigger the production of MdTAS4 and MdTAS3 in apple.
Interestingly, in this study, an additional miR390-TAS3-2 pathway was identified that
was not previously reported in Arabidopsis. Similar results about miR390-PpTAS3
andmiR828-PpTAS4 pathways have been reported in peach (Zhu et al. 2012). In both
apple and peach fruits, a kind of siRNA derived from TAS4, namely TAS4-siR81,
was found. The homologue of this molecule in Arabidopsis targets some members
of the transcription factors, such as MYB TFs (Xia et al. 2012; Zhu et al. 2012).

Modulation of gene networks under different abiotic stresses provided an original
perspective about the molecular regulatory mechanisms. In the Rosaceae family,
the gene regulatory network in response to frost stress has been constructed only
in almond (Alisoltani et al. 2015). In this network, PdMIR7122-3p/PdHOS1 was
introduced as the only post-transcriptional/translational interaction under cold stress.
Under abiotic stresses, miRNAs are known as stress-up regulated/negative regulators
and stress-down regulated/positive regulators (Chinnusamy et al. 2010). Different
miRNAs related to cold stress are recognized in some species ofRosaceae. Several of
these miRNAs are specific to some Rosaceae family. For instance, miR396, miR414,
miR2275, and miR5021 are specific to Prunus persica (Barakat et al. 2012), and
miR408 and miR1507 are specific to Pyrus bretschneideri (Niu et al. 2013). Besides,
some miRNAs such as miR156, miR172, and miR535 respond to cold stress in
several species (Barakat et al. 2012; Niu et al. 2013; Karimi et al. 2016). The target
prediction of these miRNAs revealed that miR156, miR172, and miR396 control the
expression levels of squamosa promoter-binding protein-like (SPL), APETALA2
protein (AP2) and growth-regulating factor (GRF), which probably are involved in
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the stress response of Arabidopsis and rice (Liu et al. 2008; Lv et al. 2010). It was
observed that some miRNAs could also act as multiple stress-responsive regulators.
For example, miR156, miR159, miR167, miR393, and miR396 in Prunus persica
were identified as both drought and cold-stress-responsive miRNAs. Furthermore,
somemiRNAs are involved in developmental processes and stress responses in plants
such as miR156 and miR172 (Gao et al. 2012).

Cold-responsive miRNAs have different expression profiles under cold stress
based on the type of species. For instance, miR319 and miR393 showed upregu-
lated in Arabidopsis (Liu et al. 2008) and almond (Karimi et al. 2016) under cold
stress, whilemiR319 showed down-regulation in poplar (Chen et al. 2012), sugarcane
(Thiebaut et al. 2012) and trifoliate orange (Zhang et al. 2014b). Additionally, unlike
the Arabidopsis and almond, miR393 was down-regulated in wheat under cold stress
(Tang et al. 2012). Moreover, the up-regulation of miR169 was observed in several
species viz., Arabidopsis (Liu et al. 2008), Brachypodium (Zhang et al. 2009), rice
(Lv et al. 2010) and soybean (Zhang et al. 2014a). The differences in the expression
patterns of miRNAs depend on various factors, including regulatory elements in the
promoters of miRNAs. Most of the cold-responsive miRNAs have anaerobic induc-
tion elements (AREs), which are essential in responses to low temperature, hypoxic
and dehydration stresses (Liu et al. 2008). Besides, the existence of ABA-responsive
elements (ABREs) and GA-responsive elements (GAREs) in upstream sequence of
miR319 in rice could validate the importance of phytohormones in the regulation
of cold-responsive miRNAs (Lv et al. 2010). Among cold-responsive miRNAs in
Rosaceae, miR319 and miR394 have been functionally recognized as the regulators
of cold stress response in rice and Arabidopsis, respectively (Song et al. 2016; Yang
et al. 2013). The over-expression of miR394 suppressed the level of LCR transcripts
and subsequently induced the expression of CBF1, CBF2, and CBF3. Following
these changes,COR genes were activated; and RD29A andKIN1 genes were induced
afterward. This cascade pathway resulted in cold stress tolerance. Additionally, the
over-expression of miR394 increased the amount of proline and soluble surge, which
helped improving cold tolerance (Song et al. 2016).

7.5 Impact of High Throughput Technologies in the Study
of the Fruit Crops Under Cold Stress

Knowledge in the field of plant science has been revolutionized by whole tran-
scriptome sequencing using next-generation sequencing (NGS) techniques, known
as RNA-seq (RNA sequencing). More than 31,500 RNA-seq records can be found
in NCBI SRA (Sequence Read Archive), of which about 630 records belong to
Rosaceaemembers (Fig. 7.1). The ability to sequence the whole trancriptome under
various conditions like abiotic stresses has allowed large-scale comparative analysis
of many plants. Polygenic nature of abiotic stresses made them detectable from the
entire gene pool including the rare or minor genes.
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Fig. 7.1 Rate of RNA-seq
data deposited on
NCBI-SRA for Rosaseae
Family.Malus sp. and
Prunus sp. have the highest
number of records,
respectively

Although there are several ways to characterize differentially expressed genes
like (differential display of reverse transcriptase, microarrays, serial analysis of gene
expression, selective subtractive hybridization, massive parallel sequence signatures
and cDNA-amplified fragment length polymorphisms), each of them have some
advantages and disadvantages. Nevertheless, newer techniques are superior to the
older ones. The broader range and sensitivity of RNA- seq have contributed dynami-
cally to the rapid application of sequencing for differential expression analysis (Mon-
dal and Sutoh 2013). Genes responsible for tolerance against various biotic and
abiotic stresses have been recognized and exploited by many researchers through
construction of EST library. Nogueira et al (2003) documented twenty novel cold-
inducible genes in sugarcane EST database, which were previously not reported.

High throughput sequencing has also been properly utilized for sequencing of
the genome and transcriptome of Rosaceae including apricot (Zhong et al. 2013),
apple (Ke et al. 2014), peach (Verde et al. 2013; Chen et al. 2014), sweet cherry
(Alkio et al. 2014) and almond (Mousavi et al. 2014). The genes responsible for cold
acclimatization in blueberry (Vaccinium corymbosum) have been found using RNA-
seq technology, and their expressions were authenticated through Q-PCR analysis
(Rowland et al. 2012). RNA-seq data are indisputably valuable resources to serve as
a platform to accelerate the understanding on flower bud development, cold acclima-
tion, chilling unit accumulation/vernalization, flowering, fruit development, and/or
nutritional quality traits (Die and Rowland 2013). Consequently, they can boost the
identification and functional analysis of potential genes, and transcription factors
involved in the metabolism and signaling of hormones under different stresses.

Beginning with the characterization of the plant microRNAs (miRNAs) in Ara-
bidopsis (Reinhart et al. 2002), various miRNAs have been predicted and charac-
terized through different approaches in plants; forward genetics, direct cloning and
bioinformatics along with experimental confirmation (Jones-Rhoades et al. 2006;
Zhang et al. 2009). Advances in sequencing technologies permitted more accurate
and efficient identification of miRNAs as they use less time and money compared to
the earlier methods (Morozova et al. 2009;Morozova andMarra 2008). Additionally,
sRNA sequencing (sRNA-seq) is extensively used to determine the expression lev-
els of known miRNAs, prediction of unknown miRNAs and other small non-coding
RNAs (Liu et al. 2011; Lee et al. 2013).
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There are numerous software packages available for analyzing sRNA-seq data.
Different databases,which are valuable resources for knownmiRNAs sequences have
also been developed; miRBase (Griffiths-Jones et al. 2008), miRNAMap (Hsu et al.
2008),miRGen2.0 (Alexiou et al. 2009), PMRD(Zhang et al. 2010a, b) anddeepBase
(Yang and Qu 2012). Among these databases, miRBase (with 821 citations) is the
most popular database. Software packages have also been designed for aligning short
sequencing reads such as SeqMap (Jiang and Wong 2008), MAQ (Li et al. 2008a),
SOAP (Li et al. 2008b), TopHat BWA (Li and Durbin 2009), Bowtie (Langmead
2010) and Bowtie 2 (Langmead and Salzberg 2012). One of the popular tools for
the prediction of new miRNAs is mirDeep (Friedländer et al. 2008). RNA folding
algorithm from the Vienna Package is used for examining the Hairpin structure
(Hofacker et al. 1994, 2003). Moreover, several tools are available for the prediction
of miRNAs targets. These tools seek putative binding sites in the 3′ and 5′ UTRs as
well as CDS of the candidate mRNA targets, including RNAHybrid (Rehmsmeier
et al. 2004), miRU (Zhang 2005) miTarget (Kim et al. 2006), microRNA.org (Betel
et al. 2008), DIANAmicroT (Maragkakis et al. 2009) and psRNATarget (Dai and
Zhao 2011). According to the citation statistics, a large number of studies have used
microRNA.org, RNAHybrid and, psRNATarget for the prediction of miRNA targets.

The impact of miRNAs has been confirmed in different biological and metabolic
processes; thus, many studies have focused on the identification and functional anal-
ysis of miRNAs. At the post-transcriptional level, miRNAs are pivotal in regulating
the gene expression (Sunkar et al. 2007). Some cold-responsive miRNAs have been
characterized by microarray technology in Arabidopsis and rice (Liu et al. 2008;
Lv et al. 2010). Similarly, high-throughput sequencing studies have aimed at scan-
ning miRNAs under cold stress treatments. For instance, cold-responsive miRNAs
have been found by Solexa sequencing technology in poplar (Chen et al. 2012),
wheat (Tang et al. 2012), tomato (Cao et al. 2014), soybean (Zhang et al. 2014a), tea
(Zhang et al. 2014c) and in trifoliate orange (Zhang et al. 2014b). A large number
of abiotic stress-responsive miRNAs have been detected by NGS technology. As an
example, the sRNA-seq analysis led to identification of stress responsive miRNAs in
Arabidopsis thaliana under nitrogen starvation (Liang et al. 2012b), in Glycine max
under cadmium stress (Fang et al. 2013), in Populus euphratica under salt stress (Li
et al. 2013) and in Sorghum bicolor under drought stress (Katiyar et al. 2015).

Moreover, siRNAs have been found under different abiotic stresses, using
sRNA-seq approaches. Sunkar and Zhu (2004) and Borsani et al. (2005) were
among the first researchers who exhibited the importance of siRNAs in Ara-
bidopsis’s response to abiotic stress. The main effects of these non-coding sRNAs
have also been exhibited in Triticum aestivum. In this study, the expression lev-
els of four siRNAs (siRNA002061_0636_3054.1, siRNA005047_0654_1904.1,
siRNA080621_1340_0098.1, and siRNA007927_0100_2975.1) were reported to
change in response to heat, cold, drought and salt stresses (Yao et al. 2010). Fur-
thermore, sRNA-seq analyses have been accomplished on various members of the
Rosaceae family (Table 7.1).

Genome-wide identification of drought-responsive miRNAs in peach under con-
trol and drought conditions was conducted by Eldem et al. (2012). In this study, 368
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and 465 differentially expressed miRNAs were detected in leaf and root, respec-
tively. In another study on rose petals, miRNA profiling was carried out by Illumina
HiSeq-2000, during flowering and in response to ethylene treatment. Here, ethylene
treatment functioned as a suppressor for miR164, miR390 andmiR396 in rose petals.
A total of 28 known miRNAs and 22 novel miRNAs were recognized as ethylene
responsive miRNAs (Pei et al. 2013). Wu et al. (2014) applied deep small RNA-
seq to find miRNAs involved in the development and quality of the fruit in Pyrus
bretschneideri. Many miRNAs were identified, of which 297 novel miRNAs were
predicted using MIREAP software. KEGG pathway analysis of predicted miRNA
targets confirmed that most of these miRNA targets contribute in the development
of pear fruit.

Since spring frost is restraining fruit production in the Rosaceae and threaten-
ing the stone or drupe fruits (such as peach, almond, plum, and apricot) more than
the pome fruits (apple, pear, and quince) (Miranda et al. 2005; Folta and Gardiner
2009), some studies have focused on scanning the miRNAs related directly or indi-
rectly in cold stress tolerance. Barakat et al. (2012) characterized ten chilling- stress-
responsive miRNAs in leaves and winter buds of Prunus persica, revealing that
these miRNAs were upregulated in both the leaves and buds of peach. Remark-
ably, this study demonstrated the co-localization of some conserved new miRNAs
and their targets with quantitative trait loci (QTL) for blooming date and chilling
requirement. Another study related to Prunus dulcis indicated that from 94 miRNA
families in reproductive tissues under control and cold stress, 35 miRNAs showed
differential expression in response to cold stress. In this study, most predicted targets
were categorized into transcription factors group, most of which have a vital role
in diverse environmental stresses (Karimi et al. 2016). Besides the studies that seek
cold-responsive miRNAs under cold stress, other studies tend to find the miRNAs
involved in various processes like flowering and blooming. Identification of these
miRNAs and their subsequent engineering could direct researchers to manipulate the
flowering process such as flowering date regulation. These approaches could protect
fruit trees against cold stress injuries. Gao et al. (2012) used Solexa sequencing tech-
nology to characterizedmiRNAs that participate in the development ofPrunus mume
flowers. In this study, some members of miR319 and miR160a families were found
to be influential in the development of the flower. Gene ontology annotation showed
that 14% of miRNA targets are classified as stress-responsive genes. In another study
on Prunus mume, deep sequencing was used to identify miRNAs involved in the pro-
cess of blooming (Wang et al. 2014). They found that 43% of predicted targets were
transcription factors, which are critical in response to environmental changes.

7.6 Conclusion and Perspective

This chapter summarized recent advances made in understanding cold stress
responses in the Rosaceae family. Impact of molecular components in sensing, sig-
naling and regulating cold stress was also discussed. The general response model to
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cold stress has been illustrated in Fig. 7.2. This simplified model includes reception
of cold stimulus, signal transduction, gene regulation and the downstream responses
of crop plants. To put it briefly, different cellular molecules and organelles can per-
ceive cold signals. The plasma membrane and the receptor-like kinases are crucial
in perceiving the signals of cold stress. Several signal transduction pathways, such
as hormone signaling pathways, have been described in response to cold stress. In
addition to hormonal pathways,CBF/DREB1 pathway is also pivotal in the induction
of cold tolerance in Rosaceae members. We also inferred that different TF family
members have interrelations withCBF/DREB1 pathway such as AP2/ERFs, bHLHs,
MYBs,MYCs, NACs, andWRKYs.Moreover, varieties of cold-responsivemiRNAs
and regulatory proteins directly or indirectly interact with theCBF/DREB1 pathway,
which has a central role during cold stress response in theRosaceae crop fruits. How-
ever, themolecular mechanism of cold tolerance is complicated, andmore studies are
needed to elucidate this mechanism completely. Advances in sequencing technology
along with the availability of numerous datasets in plants could speed up the survey
and understanding of molecular mechanism of cold stress tolerance. The genome
and transcriptome of several Rosaceae family have been completely sequenced; the
assembly and gene annotation are available on the Genome Database for Rosaceae
and SRA NCBI.

Fig. 7.2 The general response model to cold stress in Rosaceae Family. This simplified model
includes reception of cold, signal transduction, gene regulation and the downstream responses of
crop plants
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Sun S-K, Yang N-N, Chen L-J, Irfan M, Zhao X-H, Li T-L (2015) Characterization of LpGPAT
Gene in Lilium pensylvanicum and response to cold stress. Biomed Res Int Article ID 792819
https://doi.org/10.1155/2015/792819

Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from
Arabidopsis. Plant Cell 16:2001–2019

Sunkar R, Chinnusamy V, Zhu J, Zhu J-K (2007) Small RNAs as big players in plant abiotic stress
responses and nutrient deprivation. Trends Plant Sci 12:301–309
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Chapter 8
Strategies to Enhance Drought Tolerance
in Peanut and Molecular Markers
for Crop Improvement

M. Jyostna Devi, Thomas R. Sinclair, Vincent Vadez, Avat Shekoofa
and Naveen Puppala

Abstract The production of peanut (Arachis hypogaea L.) in warm environments
and on sandy soils makes the crop vulnerable to soil drying in nearly every cropping
season. Several traits are being explored to overcome yield decreases resulting from
the inevitable water deficits that develop in the soil. In this review, two traits: (1) an
early limitation on transpiration rate (TR) as the soil dries, and (2) limitation onmaxi-
mumTR (TRlim) under high vapor pressure deficit (VPD) in peanut will be discussed.
Both of these traits result in water conservation by limiting plant transpiration rates
and are potential reasons for genetic variation in Transpiration Efficiency (TE). The
basis for transpiration response to soil water deficits and high VPD at the tissue and
whole plant levels appears to be leaf and root hydraulic properties. A contributing
factor in determining hydraulic limitations is water transport through membranes
via aquaporins (AQP). Overall, both of the two traits result in phenotypes with an
ability to conserve water especially under late-season drought events. While large
genetic variability in these traits has been observed in peanut, breeding efforts are
still required to exploit these promising traits in commercial cultivars. This review
focuses on the traits in peanut that allow identification of tolerant genotypes with
potential yield increase in water-limited environments. A recent progress in molecu-
lar marker technology has made it possible to measure polymorphism in peanut and
to identify molecular markers or quantitative trait loci (QTL) linked to TE and its
surrogate traits despite its low levels of molecular polymorphism and complex poly-
ploid genome. We also reviewed some of these QTLs and their potential application
for molecular breeding in peanut under water-limited environments.
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8.1 Introduction

Peanut (Arachis hypogaea L.) is grown in the warm tropics and in temperate humid
regions with sufficiently long warm summers, making it an important oil and food
crop in Africa and Asia. In America, it is grown as a food crop. It is often grown on
sandy soils with low water-holding capacity and in environments with variable rain-
fall. Consequently, without irrigation peanut may be frequently subjected to drought
stress. Drought is a meteorological event which involves the lack of rainfall for a
period to cause moisture diminution in soil resulting in plant water deficit (Kramer
1980). It often affects the crop adversely by drastically lowering plant mass produc-
tion and seed yield. Peanut is generally considered a drought-tolerant species that
has the ability to contend with soil moisture deficit through minimization of plant
dehydration, regardless of the fact that water deficit can result in large decreases in
pod yield (Clifford et al. 2000). Annual peanut yield losses due to drought have been
estimated at US$520 million worldwide (Sharma and Lavanya 2002) and drought
leads to approximately 70% of yield loss in peanut (Pandey et al. 2012b).

Several strategies have been proposed to screen the drought tolerance in peanut. In
an empirical approach, drought resistant peanut varieties were developed by select-
ing for high yielding genotypes under imposed water-limited conditions (Branch
and Kvien 1992). However, the yield is particularly sensitive to environmental con-
ditions, and there is a considerable influence of G x E on pod yield (Zhang et al.
2013). Therefore, the empirical approach often does not lead to an identification of
genotypes that can be used widely. A more targeted approach in developing drought-
tolerant cultivars can be dissection of physiological components for specific trait
improvement. This trait-based approach allows yield formation under drought to be
dissected into a combination of various specific traits, whose importance varies based
on the type of environment. This approach has been attempted based on the simple
phonological framework of yield (Y) defined as a product of Transpiration (T), Tran-
spiration efficiency (TE) and Harvest Index (HI) (Passioura 1977). Studies on TE
(mass produced per unit of water transpired) found extensive genotypic variation for
TE (Rao et al. 1993; Rao and Wright 1994; Wright et al. 1994, 1996; Sheshshayee
et al. 2003, 2006; Krishnamurthy et al. 2007; Devi et al. 2009; Ratnakumar et al.
2009) in peanut. However, attempts to apply this framework to peanut have not been
successful. Challenges such as a negative relationship between TE and HI (Wright
et al. 1991, 1996) confounded the simple framework of Passioura (1977).

An alternative to the phenological approach is to develop an understanding of
the physiological mechanisms that can contribute directly to drought tolerance. Such
understanding opens the possibility for phenotyping traits that alleviate the impact of
drought on crops. In this chapter, two plant traits that result in soil water conservation
for use during drought periods are reviewed: (i) early limitation on transpiration rate
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(TR) as the soil dries, and (ii) limitation on maximum TR under high vapor pressure
deficit (VPD) conditions. Both traits allow partial restriction on TR and limit the rate
of soil water use, which conserves water in the soil for sustained crop physiological
activity when late-season drought is encountered.

To exploit the water conserving traits, it has been proposed that molecular mark-
ers and quantitative trait loci (QTL) analysis can be used to identify the genomic
locations of genes controlling the two water-conservation traits. Molecular markers
are useful in constructing linkage maps, gene mapping, marker-assisted selection
(MAS), and gene discovery (Hyten et al. 2010). Combination of trait-based pheno-
typing strategies with genomic approaches is proposed to expedite breeding efforts.
Tremendous progress has been made in peanut to combine trait-based phenotyping
strategies with genomic approaches and several molecular markers have been iden-
tified for various biotic and abiotic traits (Varshney et al. 2009; Gautami et al. 2012;
Pandey et al. 2012a, b, 2014a, b; Varshney et al. 2014; Peng et al. 2016).

8.2 Limited TR with Soil Drying

One of the putative traits to identify drought tolerance is a decreased TR when
soils dry to a volumetric water content so that water transfer in the soil is inade-
quate to match water loss rate of fully open stomata (Ritchie 1981). The fraction of
transpirable soil water (FTSW) is used as a covariate for soil moisture available to
compare transpiration response and different physiological mechanisms to soil dry-
ing. It has been successfully used across a wide range of species and plant processes
with threshold of decline generally occurring in the FTSW range of 0.3–0.4 (Sinclair
and Ludlow 1986;Weisz et al. 1994; Sadras andMilroy 1996; Ray and Sinclair 1997,
1998; Ray et al. 2002; Bhatnagar-Mathur et al. 2007, 2009; Devi et al. 2009, 2013,
2014; Devi and Sinclair 2011; Shekoofa et al. 2013; Sinclair et al. 2015).

TR response of plants to drying soil has been studied in breeding commer-
cial and transgenic peanut genotypes (Bhatnagar-Mathur et al. 2009; Devi et al.
2009, 2013; Shekoofa et al. 2013). Transgenic peanut genotypes transformed with
rd29A:DREB1A showed variation in their TR response when exposed to water-
limited conditions with FTSW thresholds ranging from 0.36 to 0.64 (Bhatnagar—
Mathur et al. 2009). Devi and Sinclair (2011) and Shekoofa et al. (2013) evaluated
transpiration responses in US commercial peanut cultivars exposed to drought stress
and noted threshold for the decline in TR was from 0.36 to 0.46. However, in a
study of 17 peanut breeding lines from India, a large variation in FTSW threshold
for transpiration was observed ranging from 0.22 to 0.71 (Fig. 8.1) (Devi et al. 2009).
Therefore, with selection, it seems quite likely that peanut lines with FTSW thresh-
olds for decreased transpiration rate with soil drying at higher than the usual range
of 0.3 and 0.4 can be identified.

Decreases in stomatal conductance at high soil water contents allow initiation of
water conservation at an earlier stage in soil drying. As a result, the imposition of
severe water-deficit stress on the plant is delayed and may increase TE. Simulations
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Fig. 8.1 Normalized transpiration rate—Fraction of transpirable soil water of peanut genotypes a
ICGV 86388 b ICGV 86699 c PI 259747 and d TAG 24 subjected to water deficit conditions. The
solid line represents the composite fit of all data using inverse exponential model and dotted lines
are the result from two-segmental regression. The figure was adopted from Devi et al. (2009)

models with maize (Sinclair and Muchow 2001) and soybean (Sinclair et al. 2010,
2014) have shown this to be a beneficial trait. Water conservation by declining the
stomata conductance early in soil drying in soybean resulted in simulated a yield
increase in more than 80% of the growing seasons (Sinclair et al. 2010).

8.3 Limited TR with High VPD

A key in understanding water use, especially as it relates to VPD, is the equation
defining the TE ratio.

TE � kd/(e ∗a − e)d (8.1)

where kd is a coefficient reflecting leaf photosynthetic capacity and the biochemical
constituents of synthesized plant mass, and (e*a − e)d is VPD (Sinclair et al. 1984;
Sinclair 2012). Therefore, VPD has a direct effect on TE and an increasing VPD has
an inverse relationship with TE (Bierhuizen and Slatyer 1965; Tanner and Sinclair
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1983). TE will clearly be greater under conditions when VPD is low as compared to
when VPD is high.

An important outcome of eq. (8.1) is that on a daily basis TE will increase if the
daily weighted VPD is decreased. Consequently, during the midday period when
VPD is usually at its maximum, decreasing the total contribution of daily water loss
during midday will increase TE. Importantly for crop yield, the limitation of TR
during the midday results in soil water conservation that will be available to prolong
crop physiological activity when late-season drought develops. The potential impor-
tance of this response on yield was initially shown in a simulation study of sorghum
production in dryland conditions in Australia (Sinclair et al. 2005). Another puta-
tive drought-tolerance trait for increasing crop yield is limited-transpiration (TRlim)
under high atmospheric VPD (Sinclair et al. 2005). As a standard response, plants
have continually increasing TRwith increasing VPD (Sinclair et al. 1984). However,
TRlim at elevated VPD has been observed in some crops. Maximum TR may occur
at VPD of around 2 kPa (Fletcher et al. 2007; Sadok and Sinclair 2009; Devi et al.
2010; Gholipoor et al. 2010; Kholova et al. 2010; Zaman-Allah et al. 2011; Devi
et al. 2014). The TRlim trait has the potential for water conservation under high VPD,
which, if it occurs early in the growing season, results in increased availability of
water during late-season water deficits. Water conservation as a result of the TRlim

has been shown to increase yields in soybean and sorghum over a broad range of
geographical areas (Sinclair et al. 2005, 2010, 2014).

Genotypic differences of peanut in expression of TRlim has been studied both
under controlled environmental conditions and in the field. The sensitivity of TR to
VPD in peanut breeding lines and commercial cultivars (Devi et al. 2010; Devi and
Sinclair 2011) was noted under controlled environmental conditions. In a study with
17 peanut lines, Devi et al. (2010) found that 9 of the lines had a TRlim with increasing
VPD at about 2 kPa. Above ~2 kPa, there was little or no further increase in TR for
these 9 genotypes and the remaining 8 lines continued their linear increase in TRwith
increasingVPD (Fig. 8.2) (Devi et al. 2010). Similarly, 8 commercial peanut varieties
exhibited TRlim when tested in the VPDs obtained with low temperature. However,
in the high temperature experiment, the uniformly linear increase in transpiration
with VPD was displayed by the same peanut lines (Devi and Sinclair 2011).

Recently, the TRlim trait under both growth chamber and field conditions
was compared in several peanut genotypes (Shekoofa et al. 2015). In con-
trolled environments, the trait was evaluated on whole plants. There was
a difference in expression of the TRlim trait between the two controlled-
environment experiments and this was attributed to differences in temperatures
conditions. In an experiment conducted in a growth chamber at 31°C, 3 out
of 6 peanut genotypes (N05008, Georgia Green, and HTS 02-05) expressed
the TRlim trait under high VPD while the other 3 genotypes expressed a
linear response in TR to increasing VPD (Table 8.1). In the second growth-chamber
experiment at 36°C, all six genotypes expressed a linear response in TR to increasing
VPD (Table 8.1). The loss of the TRlim at high temperature is consistent with what
was reported by Seversike et al. (2013) for the soybean cultivar Hutcheson in which
the expression of TRlim at 30°C was lost at 35°C.
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Fig. 8.2 Transpiration rate (mg H2O m−2 S−1) response of peanut genotypes to different levels
of vapor pressure deficit (kPa) (Devi et al. 2010). Results from a and b were fitted with linear
regression and c and d were with two segmental linear regression. Figure redrawn from Devi et al.
(2010)

Table 8.1 Regression results of transpiration rate versus vapor pressure deficit for chamber studies
(31/26 and 36/26°C day/night temperature) (Shekoofa et al. 2015). Those results represented by the
two-segment linear regression include results for the two slopes and the VPD at the breakpoint
32/26°C 36/26°C

Genotypes n Slope1±S.E. Break point
(X0)±S.E.
(kPa)

Slope2±S.E. R2 Slope1±S.E. Break point
(X0)±S.E.
(kPa)

R2

SPT06-07 24 13.7±1.26 Linear – 0.85 30.8±3.45 Linear 0.78

HTS02-05 24 12.2±1.99 2.8±0.22 −10.7±8.30 0.72 28.5±4.77 Linear 0.61

Bailey 24 11.0±1.35 Linear – 0.75 29.8±4.68 Linear 0.64

Georgia
green

24 14.0±2.73 2.3±0.24 −6.3±4.77 0.70 21.81±3.55 Linear 0.63

N05006 24 12.1±1.63 Linear – 0.72 15.42±3.58 Linear 0.50

N05008 24 16.5±3.19 2.6±0.19 17.1±13.23 0.70 25.98±2.81 Linear 0.79

In the field, none of the 6 peanut genotypes were found to express the TRlim

with temperatures 35°C or above (Shekoofa et al. 2015). It appears likely that the
lack of expression of the TRlim trait in the field was due to high temperature to
which the plants were subjected to in the field. In summary, this study indicated that
caution is needed in extrapolating chamber results in identifying the TRlim trait to
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the field situation. Temperature differences used in the controlled environment and
those experienced in the field may play an important role. Based on the results here,
expression of the TRlim trait in peanut appears to be sensitive to a shift in temperature
between 31 and 36°C (Shekoofa et al. 2015).

8.4 Plant Hydraulics and Aquaporins

In rhizosphere pressurization experiments, Sinclair et al. (2008) found a congruence
in low hydraulic conductance and expression of TRlim at elevated VPD in soybean
genotype PI 416937. Low hydraulic conductivity was hypothesized to limit water
flow to the guard cells causing a loss of turgor in the guard cell. The loss of turgor in
guard cell results in decreased stomatal conductance, which limits water vapor flux
through the stomatal pore to the atmosphere under high VPD conditions.

Hydraulic conductivity in leaves appears to be largely facilitated through the
activity of aquaporins (AQP), water channeling proteins that allow transmembrane
water transport (Heinen et al. 2009). Leaf hydraulic conductance has been found to
adjust quickly in response to changes in the environment variables such as atmo-
spheric humidity and soil water status (Nardini and Salleo 2005; Levin et al. 2007;
Shatil-Cohen et al. 2011), thus corroborating molecular involvement.

To understand the association of low leaf hydraulic conductance with TRlim at
high VPD and its link with AQPs, de-rooted shoots of soybean genotypes were
subjected to AQP inhibitors (Sadok and Sinclair 2010). Lack of silver-sensitive AQP
in the genotypes with TRlim at high VPD was hypothesized to be responsible for
low leaf-hydraulic conductance in soybean (Sadok and Sinclair 2010). Similarly,
in peanut, it was demonstrated that treating de-rooted shoots of peanut with AQP
inhibitors can result in rapid changes in plant TR (Devi et al. 2012). Clear differences
were observed among four peanut genotypes treated with hydrogen tetrachloroaurate
(HAuCl4) and silver nitrate (AgNO3). This study indicated that differences in the
relative populations of Au and/or Ag-sensitive AQPs might have led to differences
in genotype’s TR response to VPD.

Shekoofa et al. (2013) examined the response to silver treatment of two peanut
RIL (recombinant inbred line) populations derived from parents that diverged in their
responses. A large range of response was observed among the RILs with a substantial
fraction of RILs expressing more sensitivity to the silver test than either parent, indi-
cating a dominance for a genetic loss in the TRlim trait in this population. Differences
in leaf AQP transcript abundance in peanut genotypes differing in the expression of
TRlim trait was established in a recent study (Devi et al. 2016). Under exposure to
high VPD environment, peanut cultivars with the TRlim trait had decreased AQP
transcript abundance for four of the six AQPs tested cultivars (Devi et al. 2016).
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8.5 Molecular Markers

Drought is a quantitative trait governed by several genomic regions (genes/QTLs)
and to improve such complex trait, several small effect QTLs needs to be selected
(Ravi et al. 2011; Gautami et al. 2012). Cultivated peanut is an allotetraploid with
a large genome accompanied with a low level of genomic variation (Kochert et al.
1996; Zhao et al. 2012). However, with improved genomic technologies a num-
ber of studies have identified polymorphism and molecular markers. Polymorphism
in cultivated peanut was first observed by using DNA amplification fingerprinting
(DAF) and amplified fragment length polymorphism (AFLP) (He and Prakash 1997).
Polymorphismwas also noticed using random amplified polymorphic DNA (RAPD)
marker in peanut genotypes that are different for various phenotypic traits (Subra-
manian et al. 2000; Dwivedi et al. 2001). Other work has been done with different
molecular markers such as RFLP and isozymes, but very little genetic variation
has been detected (Stalker and Mozingo 2001). Hopkins et al. (1999) found 5 simple
sequence repeats (SSR) polymorphic markers from 26 primer pairs among 19 peanut
accessions tested (Hopkins et al. 1999). Some studies were successful in identifying
the polymorphism in peanut utilizing SSR markers (He et al. 2003; Ferguson et al.
2004; Moretzsohn et al. 2005; Cuc et al. 2008).

Krishnamurthy et al. (2007) studied 318 RILs derived from parents ICGV 86031
and TAG 24, which were diverse in their TE and for various other traits related to
water use. Phenotypic data on transpiration, TE, SLA (specific leaf area), and SCMR
(SPAD chlorophyll meter readings) were collected for the RIL population over two
consecutive years. Using the same population, Varshney et al. (2009) first developed
the first SSR-based linkage genetic map of cultivated peanut. Out of 1,145 SSR
markers screened, 144 (12.6%) showed polymorphism among the studied cultivars.
Both phenotypic and genotypic data were analyzed to identify QTLs for drought
tolerance in peanut. For each physiological trait studied, 2–5 QTLs were identified,
with the phenotypic variation in the range of 3.5–14.1% (Varshney et al. 2009).

Ravi et al. (2011) used the same RIL population derived from ICGV 86031 and
TAG 24 in the F8/F9/F10 stage to phenotype for transpiration, TE, SLA, leaf area
(LA), SCMR, carbon isotope discrimination, canopy conductance, total dry matter,
dry weight, pod weight, seed weight, and stalk weight for 2 to 3 seasons under both
water-stressed and well-watered conditions. They used 1,145 SSRs from Varshney
et al. (2009) along with an additional 2,070 SSR markers and obtained segregation
data for 215 marker loci. This resulted in production of a comprehensive map of
cultivated peanut based on a single-mapping population (Ravi et al. 2011).

Gautami et al. (2012) extended the work Varshney et al. (2009) and Ravi et al.
(2011) with two new RIL populations based on the crosses ICGS 76×CSMG 84-1
and ICGS 44× ICGS 76 along with ICGV 86031 X TAG 24 to identify the genetic
basis of drought tolerance and to identify QTL. They used 3,215 SSR markers on
the parental genotypes and developed two new genetic maps with 119 SSR loci for
ICGS 76×CSMG 84-1 and 82 SSR loci for ICGS 44× ICGS 76. These RIL popula-
tions segregated for various traits such as transpiration, TE, SLA, SCMR, vegetative



8 Strategies to Enhance Drought Tolerance in Peanut and Molecular … 139

weight/plant at harvest, pod weight/plant and harvest index under both irrigated and
intermittent drought stress conditions (Krishnamurthy et al. 2007; Gautami et al.
2012). A total of 153 main effect QTLs and 25 epistatic QTLs for drought-tolerance
traits were identified. The major QTLs identified were for transpiration, TE, SLA,
SCMR, biomass, shoot dry weight, haulm weight, harvest index, canopy conduc-
tance, total dry matter and carbon isotope discrimination.

Fonceka et al. (2012) also mapped 95 QTLs in well-watered and water-limited
regimes that differentiated cultivated peanut from a wild relative as well as wild alle-
les that contributed the positive variation to several traits related to flowering, plant
architecture, plant morphology, seed morphology and yield components involved in
peanut productivity and adaptation. A comprehensive analysis of marker trait associ-
ation (MTA) was studied utilizing a reference set of 300 genotypes from 48 countries
at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) for
several economically important agronomic traits. A total of 68 MTAs were identi-
fied under the drought-stress condition for leaf area, leaf dry weight, SCMR, haulm
weight, harvest index and seed weight with phenotypic variation ranging from 8.83
to 90.09% (Pandey et al. 2014b).

8.6 Conclusions

In this review, two water conservation traits were considered for improving drought
tolerance in peanut. These two traits are: limiting transpiration rate at relative high
soil water contents and limiting transpiration rate under high VPD. Both traits result
in water conservation during early season of the drought so that plant can utilize the
water for the grain development, when the drought occurs later in the growing sea-
son. Based on the current research, genetic variation has been identified for these two
traits and phenotyping strategies are being developed for drought-stress environments
to increase peanut productivity. However, development of the sufficient number of
markers and marker technologies are much needed in peanut to understand the asso-
ciation between the molecular markers and phenotypic traits to utilize in breeding
programs for the development of drought tolerant varieties. Along with QTLs for
drought tolerance there are several other approaches like marker-assisted recurrent
selection and genomic selection that need to be explored. These may become the
preferred approaches for introgression of a larger number of QTL in order to breed
drought-tolerant peanut genotypes.
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Chapter 9
Genetics of Drought Tolerance, Mapping
QTLs, Candidate Genes and Their
Utilization in Rice Improvement

K. K. Vinod, S. Gopala Krishnan, R. Thribhuvan and Ashok K. Singh

Abstract Drought is one of the major challenges in sustaining crop production
worldwide with impending risks due to climate change. Rice, a semi-aquatic crop
that feeds majority of the global population will be severely stricken by drought
stress. Adaptation to drought varies significantly in rice, which is under the regu-
latory control of several genes involved in several pathways. Most of these genes
contribute little to the adaptation process, making it one of the most complex bio-
logical mechanisms. Identification of these adaptation genes is the prime target to
enable breeding for drought tolerance in rice. Several genes and quantitative trait loci
(QTLs) have already been reported in rice associated with traits related to drought
tolerance, most of which are identified from landraces as well as in the wild rela-
tives adapted towater limited environments. Recent development in phenotyping and
genomic tools has opened up newer vistas of investigation on drought adaptation in
rice. This has helped in development and release of improved cultivars with inbuilt
tolerance to drought. This chapter summarizes the developments in understanding
drought tolerance, its genetics, the underlying mechanisms and efforts for breeding
drought tolerant rice cultivars.

Keywords Breeding · Candidate genes · Drought tolerance ·Meta QTLs
Rice

9.1 Introduction

Drought resistance is one of the most complex and a challenging trait to breed.
Drought imposes water stress on plants causing reduced fitness and in severe cases
affects the survival of the plants. About 33% of the global population resides in
areas prone to water stress and lives below poverty line (Sullivan 2002). Estimates
suggest that with worsening climate change scenarios there will be a rise in episodes
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of drought in many parts of the world (Wassmann et al. 2009). Cyclical occurrence
of drought approximately in every five years is predominant in eastern Indian states
of Jharkhand, Odisha and Chhattisgarh, often resulting in up to 40% loss in total rice
production in India (Bhandari et al. 2007; Wassman et al. 2009).

Asia Pacific region tops the world cultivation of rice (Oryza sativaL.), the premier
staple cereal crop, by accounting for more than 90% of production and consumption.
In particular, rice is life for Asia as it supports 1/3rd of calorific requirement of the
Asian population. Recent estimates indicate that rice is cultivated in an area of 163.2
million hectares (mha) in more than 117 countries across the world with an annual
production of about 751.9 million tonnes (mt) of paddy with an average productivity
of 4.60 t/ha (FAO 2017). Estimates show that by 2025, world demand for rough rice
would be approximately about 880 mt (Lampe 1995). Average rice yield in India
hovers around 3.60 t/ha which is lower than the world average and almost half that is
realized in China (6.81 t/ha). However, the Indian scenario of food demand is highly
challenging with an estimated grain requirement of 113.3 mt of rice by the year 2021
(Kumar et al. 2009a) to be produced from an area of 43.3 mha, which has produced
104.3 mt during 2014–15 (DES 2016). This comes with an additional challenge of
different stresses imposed due to climate change.

9.2 Status of Rice Cultivation in India

The area under rice cultivation has increased from 34.69 to 43.88 mha during
1961–2016, with an increase in production from 35.66 to 104.32 mt. This 192%
increase in rice production as against 26% increase in area is solely attributable to
green revolution that began in the mid-1960s. However, the annual compounded
growth rate of rice production in the country has diminished from 3.55% during
1981–90 to 1.74% during 1991–2000 (Singh and Krishnan 2015) as against annual
exacerbated human growth rate of 2.44 and 1.94%, respectively during the cor-
responding period (www.censusindia.gov.in). This decline in production trends as
against the projected population increase is quite alarming, since there is a need to
produce146mt by the year 2030 (Goyal and Singh 2002), with diminishing resources
and challenges of climatic vagaries.

In India, rice is cultivated in five diverse regions; northeastern, central, north-
ern, western and southern regions. The north-eastern region comprising of Assam,
West Bengal, South Bihar and Odisha has the highest rice cultivation intensity in
India, where rice cultivation is primarily confined to the Brahmaputra, Ganga and
Mahanadi river basins. This region is characterized by heavy rainfall and therefore
supports rice to be grown mainly as a rainfed crop (Ghosh et al. 1960). Currently,
the eastern India region includes plains of Assam, Bihar, Chhattisgarh, East Uttar
Pradesh, Jharkhand, Odisha and West Bengal which represents 20.9% geographical
area of the country, encompassing 61.3% of rice grown area that supports 41.3%
of country’s rice production (MOSPI 2016). Therefore, eastern India is the key for
ensuring national food security. Although the region is rich in natural resources,

http://www.censusindia.gov.in


9 Genetics of Drought Tolerance, Mapping QTLs, Candidate Genes … 147

the rice productivity remains below the national average primarily because of the
challenges of growing under unpredictable water scarcity and frequent droughts. In
addition to climatic vagaries, eastern India is dominated by marginal lands rendering
rice production uncertain and risky. Eastern states account for 26.9 mha rice area,
with different rice ecologies. The largest portion falls under rainfed lowland ecol-
ogy with nearly 10.6 mha (~39%), followed by irrigated ecology extending about
5.6 mha (~21%) area. Of the remaining, upland rice is spread over about 4.4 mha
(~16%), which is prone to frequent drought. Other water rich ecosystems such as
rainfed lowland medium deep, deep water and floating rice accounts for about 6.2
mha (~23%) in eastern India (Adhya et al. 2009; Pandey and Bhandari 2009). Eastern
India alone accounts to 75% of the total rainfed rice area of 20.7 mha in India (Singh
and Singh 2000). Jharkhand is a major state in eastern India, where rice cultivation
is traditional. There are three cropping seasons in Jharkhand—kharif , rabi and sum-
mer—of which 75–80% of the net cultivated area in kharif season falls under rice
crop. Traditionally, the rice is cultivated in an area of 1.48 mha under rainfed con-
dition in Jharkhand with a productivity of 1.0–1.4 t/ha. This low productivity is of
high concern in a country wherein 45% of nation’s cereal production is contributed
by rice and this region alone covers 78% of the total rainfed rice area. Therefore,
to ensure food sufficiency it is important to improve rice productivity in the eastern
India, where most of the rainfed rice is grown by small-scale farmers for sustenance.
In this region, drought is a major detrimental factor, which is either due to low overall
rainfall or longer interval between rains (Serraj et al. 2008).

Unpredictable nature of drought in the upland and rainfed lowland ecologies is
the primary reason behind poor and unstable rice productivity of the eastern India.
Therefore, emphasis should be on intensification of rice production in these areas, by
development and adoption of drought tolerant cultivars in conjunctionwith improved
management practices (Yang and Zhang 2010). Several of the popular cultivars in
the rainfed areas of eastern India are varieties bred for irrigated ecosystems. They are
adopted solely for their high yield potential replacing more resilient local cultivars
that are low yielding. Furthermore, farmers in rainfed ecosystems are constrained
to choose lowland varieties partly due to unavailability of high yielding and high
quality drought resistant varieties (Vikram et al. 2011). These cultivars, such as
IR64, IR36, Swarna, BPT5204, Savitri (CR1009), Sarjoo52, Rajendra Sweta and
Rajendra Subhashini are highly sensitive to water stress often leading to severe yield
loss under drought. Resultantly, there is a compelling need to improve the cultivar
adoption using high yielding drought tolerant varieties to enhance rice production in
the eastern region (Kumar et al. 2014). In recent years, improved drought tolerant
varieties such as CR Dhan 40, Indira Barani Dhan, NDR 97, Sahbhagi Dhan, Shushk
Samrat (NDR 1045-2) etc., have been released for cultivation in the drought prone
areas. Successful adoption of the drought resistant varieties by farmers imply that
future gains for sustaining food security in eastern states can be obtained only through
deployment of more drought tolerant cultivars.
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9.3 Drought as a Constraint in Rice Production

Rice is inadequately adapted to water limitation (Lafitte et al. 2006). The Asian cul-
tivated rice has been domesticated under diverse agro-ecological systems, including
environments with contrasting water availability. This natural adaptation of rice to
contrasting and constraining environments, conditioned by the genetic plasticity of
rice genome, could conserve a large morphological diversity (Courtois et al. 2000;
Robin et al. 2003; Liu et al. 2004). There are two major ecologies for rice, viz.,
upland and lowland based on the water management. These can either be rainfed or
irrigated. Upland ecology is aerobic and normally rainfed with poor water retention,
while lowland environments are anaerobic and have flooded soils. Lowland flooding
can occur through irrigation or rainfall or both, which can result in either temporary
flooding or natural inundation as in the case of flood plains (Tuong and Bouman
2003; Rebolledo et al. 2012). Drought occurs on 50% of the rainfed lowlands and
100% of uplands (Garrity et al. 1986). Rice is versatile in its adaptation and grows
in all the conditions, anaerobic, aerobic or both (Wade et al. 1998).

In eastern India, drought is a major challenge for rice production, followed by low
light and submergence. Although drought is transient in this region, being predomi-
nantly rainfed, the major crop failure in eastern India is attributed to drought-related
stresses (Adhya et al. 2009). Unlike lowland rice, upland rainfed farming does not
enjoy standing water in rice fields after a rainfall. The risk of rice culture under water
deficit and frequent prolonged rainless intervals has been identified as the key factor
which affects rice productivity in eastern India, where the largest drought-affected
area in the world extending about 13.6 mha prevails (Pandey and Bhandari 2009).
The reduction in yield due to annual drought can reach more than 60% in eastern
states. Odisha suffered a production loss of 54.6% on account of drought alone dur-
ing 2002–03 (Adhya et al. 2009). Rainfed lands of erstwhile Bihar state including
Jharkhand were recorded to suffer a yield loss of nearly 95–100 thousand tonnes
on account of drought and floods, annually. While drought is a major constraint in
uplands, flash flood and submergence can also cause serious damage in lowland rain-
fed conditions (Herdt 1996). The loss due to flood in lowland is about 12–27% per
annum (Singh et al. 2012).

9.4 Drought Responses and Adaptation

Rice genotypes vary in their responses to drought situations. To sustain the crop
cultivation under drought prone areas it is prudent to genetically improve crops aug-
menting drought resistance. Rice possesses several traits that contribute to resisting
drought situations with tremendous amount of genetic variability for each of these
traits. Despite the genetic plasticity, rainfed rice lands of the world extending about
74 mha accounts for only one fourth of global rice grain production (David 1991).
This is because, varietal responses to drought rely upon the genetic makeup, degree



9 Genetics of Drought Tolerance, Mapping QTLs, Candidate Genes … 149

of drought and the interaction between the two components (Atlin 2003), all of which
together may bring about yield reduction when their effects are modest, or total crop
loss when severe. Therefore, degree of genetic response of a rice variety towards
drought ranging from susceptibility to resistance, together with physical degree of
severity of the stress are main considerations exploited during breeding for improved
drought stress resistance (Fukai and Cooper 1995). India has enormous genetic diver-
sity in rice, with several locally adapted landraces that are highly adapted to drought
stress (Londo et al. 2006;McNally et al. 2009). Although landraces are relatively low
yielders, they possess several genes that can be efficiently deployed for improving
drought tolerant mechanisms in future cultivars.

Ontogenetic responses to drought stress in rice vary diversely from seedling to
terminal stages. Of the three developmental stages, the most sensitive to drought is
the reproductive stage particularly during the microsporogenesis and pollen mother
cell differentiation (Sarkarung et al. 1995). Mechanisms of drought adaptation in
rice, therefore, depends on the time of onset of the drought as well as the duration,
depending upon which responses such as drought escape (reduced duration), drought
avoidance (deep roots) and drought tolerance (osmotic balancing) occurs (Price et al.
2002). Levitt (1980) recognizes two forms of drought adaptation, escape and resis-
tance, wherein in escape mechanism, plants accelerates flowering and completes its
life cycle before the onset of drought, while in tolerance, physiological alterations
are brought in to reduce the detrimental effect of drought on plant development and
survival. In drought avoidance, plantsmaintain leafwater potential and in drought tol-
erance, either dehydration avoidance or dehydration tolerance are manifested (Price
et al. 2002).

Drought resistance has been researched extensively in rice, and several poten-
tial contributing traits have been identified (Fukai and Cooper 1995; Nguyen et al.
1997; Price and Courtois 1999). These particularly include traits that help to mini-
mize water starvation such as increased abscisic acid (ABA) production, leaf rolling,
reduced respiration, root growth enhancement and stomatal closure. The root system
plays a significant role in imparting drought tolerance by sustaining water and min-
eral uptake to maintain nutrient homeostasis and ionic balance in the plant system.
Particularly, a thick and deep root system in an upland rice variety determines its
potential to withstand adverse instances of water deficit by acquiring water from
deeper soil layers. Possession of thick or thin root system is important when it comes
to penetrate deeper into soil, where a hard soil pan may require thicker roots with
penetration ability, while a coarse textured soil may require thin roots for penetration
(Price et al. 2002). Similarly, there are several shoot oriented traits that are influential
in imparting drought resistance in rice. They include osmotic adjustment and dehy-
dration tolerance (Lilley and Ludlow 1996; Lilley et al. 1996; Fukai et al. 1999),
high water use efficiency (Dingkuhn et al. 1991), membrane stability (Tripathy et al.
2000), photo-inhibition resistance (Jiao and Ji 2001), rapid leaf rolling and stomatal
closure (Dingkuhn et al. 1989, 1999), stay greenness (Hoang and Kobata 2009) and
thick epicuticular wax (O’Toole and Cruz 1983). Manifestation of drought resistance
indicates a few critical behaviour of the above traits such as sustaining of high ion
balance under tissue water deficit (Tripathy et al. 2000), use of maximum avail-
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able water (Jones 1993; Condon et al. 2004) and resistance to photo-inhibition and
capability for non-photochemical quenching (Horton 2000). Incidence of drought
triggers a cascade of signals leading to several biochemical pathways synthesizing
osmoprotectants, antioxidants and downstream proteins that aid in activities such
as retaining of cell membrane integrity, enzymatic activity associated with carbon
fixation and scavenging of reactive oxygen species to evade cell injury under water
starved situations (Blum 2009; Farooq et al. 2009). Physiological traits such as leaf
water potential, which is an indicator of the whole plant water status and osmotic
adjustments are adjudged as a selection criteria for drought tolerance. The mainte-
nance of whole plant water status takes coordination of several mechanisms related
to balancing of soil water uptake and restraining of water loss through plant upper
parts especially through stomatal apparatus, such as stomatal conductance, internal
resistance, transpiration area, leaf rolling, and cellular solute accumulation (Jongdee
et al. 2002).

Rice plant suffers significantly from drought stress during flowering stage, culmi-
nating in serious yield loss (Kamoshita et al. 2008), the extent of which depends on
the degree and duration of water scarcity and the interval between drought spells. It
is estimated that yield reduction due to water stress alone surpasses the cumulative
loss due to all other abiotic stresses put together. Enhancing yield in water scarce
environments would accordingly require drought tolerant rice varieties to sustain
notional rice production. On the contrary, most of the popular rice cultivars in use in
upland rice areas are lowland varieties developed for irrigated ecosystems. Because
of their high yielding potential and preferred grain quality, these varieties are grown
on a large scale by rainfed farmers. During normal years of sufficient and distributed
rainfall, these varieties do perform well, but fail totally during drought years due to
their high susceptibility to drought and incur severe yield loss (Kumar et al. 2008).

9.5 Genetics of Drought Adaptation

Rice is a self-pollinated crop, predominantly inbred and produces homogeneous
and homozygous populations. Natural gene flow in rice is limited and any cross
breeding will eventually and tends to restore homozygosity. Therefore, ecological
and geographic isolations favour development of distinct genetic groups and
sub-populations in rice (Garris et al. 2005). Glaszmann et al. (1984) classified
world rice germplasm into five distinct groups, indica, tropical japonica, temperate
japonica, aus and aromatic based on isoenzymatic patterns. These natural sets have
enormous admixed genotypes among them, making an array of germplasm with
specific adaptation to nearly every rice ecosystem. Further, almost all of the modern
high yielding rice varieties have comparatively poor allelic diversity (Fukai and
Cooper 1995) having developed from a few founder parents (Javier and Toledo
2004) and hence lack several adaptation specific genes. These adaptation specific
genes are however conserved in local germplasm that are fit for the local niche, such
as landraces, traditional varieties and wild congeners. For instance, by virtue of
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their adaptation to aerobic situations tropical japonicas may possess better drought
resistance (Lilley et al. 1996; Courtois and Lafitte 1999). Therefore, there is an
increased focus on such locally adapted genotypes as sources for genes governing
stress tolerance. They possess diverse alleles that confer tolerance through one or the
other mechanism, which determines their degree of tolerance, durability and crop
stage in which they are active. Since allele diversity are identified by polymorphisms
at DNA level, which can be visualized using molecular markers, exploring of
variations in the niche adapted germplasm may constitute mining for tolerance
genes that can further be used for gene transfer, pyramiding and marker-assisted
selection (MAS) (McNally et al. 2009; Jahn et al. 2011; Xu et al. 2011).

By using molecular marker technology and classical genetic linkage analysis sev-
eral marker loci dispersed on rice genome have been mapped as quantitative trait loci
(QTLs) associated with complex traits (Champoux et al. 1995). Tolerance to drought
is recognized as a quantitative trait because of its complex nature and myriad of
crop responses (morphological, physiological and biochemical) associated with it
(Mitra 2001). Evidences indicate that various adaptation mechanisms to cope up
with drought have distinct genetic controls, and their interaction may be essential
for sustaining plant survival and growth under drought (Yue et al. 2006). Monogenic
control of leaf rolling was reported in rice (Singh and MacKill 1991). Tomar and
Prasad (1996) reported a gene, Drt1 with pleiotropic effects on root system, plant
height, pigmentation, awning behaviour, etc., in drought tolerant lines challenged
with stress. However, because of the difficulty in phenotyping the responses in a
breeding population due to extreme influence of environments and poor heritability
of such traits, mapping genes governing drought tolerance has been a challenge.
Therefore, QTL mapping has been suggested for elucidating the genetics of drought
tolerance in rice (Price et al. 2002). These loci are either proximal or centric to genes
that control drought resistant traits, hence can be used for improving drought sensitive
genotypes using MAS techniques (Subashri et al. 2009; Vikram et al. 2015; Sandhu
and Kumar 2017; Menguer et al. 2017). Several QTLs associated with drought resis-
tance and related traits have been mapped in rice (Table 9.1). However, many of
these QTLs have been mapped from a few drought tolerant backgrounds and map-
ping populations involving limited source germplasm. Therefore, consistency and
magnitude of phenotypic variation across different genetic background is essential
for using the QTLs for MAS-based breeding. Apart from above, QTLs also show
inconsistency under different environments rendering them unstable. It is essential
to have a stable QTL for successful MAS programme (Podlich et al. 2004; Collins
et al. 2008).

Currently, use of several phenotyping facilities, from rain-out shelters to high
throughput phenomics platforms (Granier et al. 2006) for drought evaluation in rice,
has helped in mapping a large number QTLs associated with drought adaptation for
yield and componentmorphological, physiological and biochemical traits (Table 9.1)
(Nguyen et al. 1997; Jongdee et al. 2002; Lafitte et al. 2006; Negin and Moshelion
2017). However, deployment of these QTLs in practical breeding has been a chal-
lenge due to enormity of their numbers, poor precision and specificity to certain
backgrounds. Notwithstanding, few of these QTLs have been found to be stable
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Table 9.1 Quantitative trait loci (QTLs) mapped for drought resistance related traits in rice

Trait No. of
QTLs

Chromosome(s) R2 (%) Population References

Biomass 8 1, 2, 4, 6 6.3–36.8 IR20/Nootripathu Prince et al. (2015),
Gomez et al. (2010)

4 3, 6 14.6–24.8 Swarna/WAB450 Saikumar et al.
(2014)

1 12 – IR74371/Sabitri Mishra et al. (2013)

2 1, 3 8.6–20.1 N22/Swarna Vikram et al. (2011)

1 1 22.6 N22/IR64 Vikram et al. (2011)

1 1 30.3 N22/MTU1010 Vikram et al. (2011)

11 4 14.8–19.8 CT9993/IR62266 Sellamuthu et al.
(2011), Kumar et al.
(2007), Lanceras
et al. (2004)

3 7, 8, 10 4.6–20.2 IR64/INRC10192 Srividya et al. (2011)

1 12 18 Way
Rarem/Vandana

Bernier et al. (2007)

Canopy
temp.

6 2, 4, 7 4.8–32.2 IR20/Nootripathu Prince et al. (2015),
Gomez et al. (2010)

1 3 16.9 Swarna/WAB450 Saikumar et al.
(2014)

1 1 14.1 Zhenshan
97/IRAT109

Yue et al. (2008)

Drought
index

3 2, 4 4.9–18.4 IR20/Nootripathu Prince et al. (2015),
Gomez et al. (2010)

1 7 22.7 CT9993/IR62266 Sellamuthu et al.
(2011)

1 12 37.0 Way
Rarem/Vandana

Bernier et al. (2007)

1 10 15.5 Zhenshan
97/IRAT109

Yue et al. (2008)

1 2 2.0 IRAT109/Yuefu Li et al. (2005)

1 12 16.1 IR64/Azucena Hemamalini et al.
(2000)

Flowering
time

1 6 55.8 IR20/Nootripathu Prince et al. (2015)

5 3, 6 7.8–47.9 Swarna/WAB450 Saikumar et al.
(2014)

1 2 4.5 Kali
Aus/2*MTU1010

Sandhu et al. (2014)

(continued)
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Table 9.1 (continued)

Trait No. of
QTLs

Chromosome(s) R2 (%) Population References

1 2 3.0 Kali Aus/2*IR64 Palanog et al. (2014)

Grain
weight

2 2, 6 5.9–36.1 IR20/Nootripathu Prince et al. (2015)

2 2, 5 6.9–12.3 Guanghui
116/LaGrue

Zhou et al. (2013)

1 2 2.3 IR64/INRC10192 Srividya et al. (2011)

1 2 9.7 Zhenshan
97/IRAT109

Zou et al. (2005)

6 1, 2, 3, 5, 12 5.9–11.3 IR64/Azucena Thomson et al.
(2003)

1 11 – Caiapo/O.
rufipogon

Moncada et al.
(2001)

Grain
yield

4 1, 6, 8 6.7–20.9 IR20/Nootripathu Prince et al. (2015)

4 3, 6 13.0–38.0 Swarna/WAB450 Saikumar et al.
(2014)

5 1, 2 5.0–9.0 Kali Aus/2*IR64 Saikumar et al.
(2014), Palanog et al.
(2014), Sandhu et al.
(2014)

5 1, 2 6.2–17.0 Kali
Aus/2*MTU1010

Palanog et al. (2014),
Sandhu et al. (2014)

24 1, 2, 3, 7, 9, 11,
12

6.3–27.3 Danteshwari/Dagad
Deshi

Verma et al. (2014)

4 2, 9 4.4–10.2 Aday Sel/IR64 Dixit et al. (2012b)

3 5, 8 6.7–9.7 Guanghui
116/LaGrue

Zhou et al. (2013)

3 2, 3, 12 3.8–7.5 IR74371-46-1-
1/Sabitri

Mishra et al. (2013)

2 2 2.2–6.9 Apo/Swarna Dixit et al. (2012b)

2 1 9.3–32.0 IR64/Azucena Ghimire et al. (2012)

6 1, 2, 3, 10 3.2–16.9 N22/Swarna Vikram et al. (2011)

9 1, 3, 4, 6, 10, 11 7.3–15.5 CT9993/IR62266 Sellamuthu et al.
(2011), Kumar et al.
(2007), Lanceras
et al. (2004)

1 8 15.7 IR64/INRC10192 Srividya et al. (2011)

1 12 33 Way
Rarem/Vandana

Bernier et al. (2007)

(continued)
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Table 9.1 (continued)

Trait No. of
QTLs

Chromosome(s) R2 (%) Population References

1 11 – Teqing/Lemont Xu et al. (2005)

Panicle
length

2 1, 8 4.3–10.7 IR20/Nootripathu Prince et al. (2015)

1 11 33.6 CT9993/IR62266 Sellamuthu et al.
(2011)

1 3 – Azucena/Bala Lafitte et al. (2002)

3 1, 2, 4 7.1–21.2 IR64/Azucena Thomson et al.
(2003)

Panicle
number

1 12 – IR74371/Sabitri Mishra et al. (2013)

3 1, 5 12.6–30.2 CT9993/IR62266 Sellamuthu et al.
(2011)

1 4 9.17 Zhenshan
97/IRAT109

Zou et al. (2005)

1 5 – Azucena/Bala Lafitte et al. (2004)

2 3 7.8 IR64/Azucena Thomson et al.
(2003), Lafitte et al.
(2002)

1 6 – Caiapo/O. rufipogin Moncada et al.
(2001)

Seed-
setting
rate

6 2, 7, 10 4.8–10.0 IR20/Nootripathu Prince et al. (2015),
Gomez et al. (2010)

7 3, 4, 5, 6, 9, 12 10.0–18.7 Guanghui 116/La
Grue

Zhou et al. (2013)

1 5 14.7 CT9993/IR62266 Sellamuthu et al.
(2011)

2 6, 8 3.9–15.7 IR64/INRC10192 Srividya et al. (2011)

5 1, 4, 5, 6, 10 7.1–18.6 IR64/Azucena Thomson et al.
(2003)

Tiller
number

1 4 19.8 IR64/Azucena Hemamalini et al.
(2000)

Plant
height

10 1, 2, 9, 8 5.0–52.2 IR20/Nootripathu Prince et al. (2015),
Gomez et al. (2010)

3 3 18.7–27.0 Swarna/WAB450 Saikumar et al.
(2014)

1 1 4.6 Kali
Aus/2*MTU1010

Sandhu et al. (2014)

1 12 1.1 IR74371/Sabitri Mishra et al. (2013)

(continued)
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Table 9.1 (continued)

Trait No. of
QTLs

Chromosome(s) R2 (%) Population References

5 1 17.1–52.6 IR64/Azucena Ghimire et al. (2012),
Venuprasad et al.
(2002); Lafitte et al.
(2002)

3 1 32.6–53.5 N22/Swarna Vikram et al. (2011)

2 1, 11 9.5–15.2 CT9993/IR62266 Sellamuthu et al.
(2011)

5 1, 5, 7, 8 5.4–12.5 IR64/INRC10192 Srividya et al. (2011)

Root
thickness

13 1, 2, 3, 4, 6, 7, 8,
9, 12

8.5–31.3 CT9993/IR62266 Zhang et al. (2001)

Root
weight

8 1, 2, 4, 6, 9, 10,
12

8.6–20.2 CT9993/IR62266 Zhang et al. (2001)

Root
length

5 3, 4, 12 8.3–17.0 CT9993/IR62266 Zhang et al. (2001)

R2 Phenotypic variation explained

across backgrounds as well as environments. To address this problem, precise iden-
tification and positioning of these ‘robust’ QTLs is needed. Comparative analysis of
all the hitherto reported QTLs with necessary information and corresponding map
data will be highly relevant in generating consensus maps, and positioning the robust
QTLs (Khavkin and Coe 1997; Lin et al. 1995). Earlier attempts used descriptive
statistics to attain the congruency of QTLs, while a QTL meta-analysis using mixed
models was proposed by Goffinet and Gerber (2000).

9.5.1 Meta QTLs

Meta-analysis is an abstracting method, as indicated by its name in which ‘meta’
means ‘after’ or ‘beyond’ in Greek, which involves a concept of abstraction behind a
concept that can be modular in nature and amended by adding new insights into the
concept in future. In statistics, meta-analysis involves scrutiny of data from isolated
studies to identify and report commonality in the results (Glass 1976; Rosenberg et al.
2004). These consensus QTLs are known asmeta-QTLs (mQTLs). In QTL literature,
meta-analysis assumes prominence to abstract or to identify meaningful associations
between genomic locations and traits by compiling the information from indepen-
dent QTL mapping experiments (Gyenis et al. 2007), thereby the consensus infor-
mation can be used directly into marker-assisted breeding programmes (Bernardo
and Charcosset 2006). Meta QTL analysis proposed by Goffinet and Gerber (2000)
has improved identification of congruent QTLs from the earlier approaches. By this
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Table 9.2 List of meta QTLs reported in rice

Trait No. of studies
involved

Total number
QTLs

Identified
mQTLs

References

Blast resistance – 435 165 Ballini et al. (2008)

Root traits 24 306 119 Courtois et al. (2009)

Grain yield
under drought

15 53 14 Swamy et al. (2011)

Grain yield 11 68 23 Swamy et al. (2011)

Panicle related
traits

82 837 87 Wu et al. (2016)

Drought
related QTLs

13 – Khowaja et al. (2009)

Grain
size/weight

7 64 6 Daware et al. (2017)

Root
development

– 14 1 Coudert et al. (2010)

approach, they demonstrated that consensus information can be elucidated on the
QTL positions by using amaize QTL database at University ofMissouri. Themethod
involves testing the likelihood of grouping the QTLs in as many as four groups and
identification of optimal number of clusters by using a model approach that uses
a ‘Akaike’ information criterion for selection. This is done over a consensus map
created by iterative merging of the corresponding linkage maps over which the QTLs
are mapped. Arcade et al. (2004) implemented these algorithms into a software suite,
‘BioMercator’.

In recent years, several instances of meta-QTL approach are reported from several
crops such as rice, maize, wheat, barley, soybean, cocoa, cotton and potato. Meta-
QTLs have been mapped for several traits such as yield and related components,
abiotic and biotic stress tolerance, fruit and fibre quality, seed quality including
micronutrient concentrations, oil content, root system architecture and drought and
water stress adaptation in these studies. A list of mQTLs reported in rice for various
traits is given in Table 9.2. Reports of marker-assisted transfer of mQTLs for traits
such as yield have been published in rice (Sandhu and Kumar 2017).

In rice, drought adaptation is highly complex and much investigated to identify
traits and genomic regions associated with it. Meta-QTL analysis has aided tremen-
dously in this effort to consolidate QTLs reported on different chromosomes. By this
approach, Khowaja et al. (2009) identified a consistent drought avoidance QTL on
chromosome 1, lying proximal to the semi-dwarfing gene, sd1 that was strongly asso-
ciated with plant height. Subsequent mQTL studies have revealed that this locus was
putatively associated with osmotic balancing mechanisms and leaf rolling behaviour
(Trijatmiko et al. 2014). Additionally, Khowaja et al. (2009) located a pleotropicQTL
on chromosome 5 influencing leaf and root morphology and another QTL cluster on
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chromosome 9 strongly influencing root morphology and behaviour. Subsequently,
onemQTLwas located on chromosome 12 and three on chromosome 1 (Swamy et al.
2011), identifying them to be ideal candidates for use in marker-assisted selection
(MAS). Another meta analyses also revealed mQTLs of similar behaviour, affecting
plant height and flowering time on chromosomes 1, 3, 8 and 9 (Sellamuthu et al.
2011). An mQTL on chromosome 8, identified for seed set percentage and grain
number under drought, was co-localized with previously reported QTLs for osmotic
adjustment (Trijatmiko et al. 2014). While running a meta QTL analysis for panicle
traits, a stable mQTL was located on chromosome 10 by Wu et al. (2016), which
harboured two strong QTLs for spikelets per panicle and seed setting.

Consistent and robust QTLs are the ones, which often are mapped from several
mapping populations across different environments. Isolating information of such
QTLs from several independent studies could be a best approach to assemble QTLs
quickly and efficiently. This is generally achieved by a meta-QTL (mQTL) approach
(Goffinet and Gerber 2000). Genetic variability in Indian rice germplasm, especially
in the landraces is enormous and has contributed genes for several abiotic stresses.
For instance, QTLs such as Sub1 for submergence tolerance (Septiningsih et al.
2009), Saltol for salt tolerance (Gregorio et al. 1997) and Pup1 for phosphorus
starvation tolerance (Wissuwa et al. 1998, 2002) have been mapped from Indian
landraces. Furthermore, several drought tolerance QTLs were also mapped in Indian
rice cultivars such as Nootripathu (Gomez et al. 2010), Norungan (Subashri et al.
2009), Nagina 22 (Paterson and Reddy 2005), Dagad Desi (Dixit et al. 2012a, b) and
Vandana (Bernier et al. 2007).Meta-QTL analyses have identified promisingmQTLs
among the drought tolerance QTLs (Table 9.3), such as qDTY1.1 (Venuprasad et al.
2012), qDTY2.1 (Venuprasad et al. 2009), qDTY2.2 (Swamy et al. 2013), qDTY3.1
(Venuprasad et al. 2009), qDTY3.2 (Yadawa et al. 2013), qDTY6.1 (Venuprasad
et al. 2012), qDTY9.1 and qDTY10.1 (Swamy et al. 2013), and qDTY12.1 (Bernier
et al. 2007). There are several Indian donors for these QTLs, such as Nagina 22
carrying qDTY1.1 and qDTY3.2, Kali Aus with qDTY1.2, qDTY1.3, qDTY2.2 and
qDTY2.3, Dagad Desi with qDTY1.1, Vandana carrying qDTY6.1 and MTU1010
with qDTY10.1 (Kumar et al. 2014). A recent meta-QTL analysis performed using
novel QTLs, identified congregation of consistent QTLs on chromosomes 1, 3, 4
and 9. The tolerant alleles of the meta-QTLs were widely distributed among the
drought-adapted germplasm of the Eastern India (Thribhuvan 2017).

9.5.2 Candidate Genes

There are several genes reported to impart drought adaptation in rice, most of which
have been validated using transgenic approach (Nguyen et al. 1997). The mecha-
nism of drought adaptation is regulated by complex signalling cascades and gene
expressions, often involving thousands of genes (Yoo et al. 2017). One of the earliest
studies in rice reported transgenic expression of a barley late embryogenesis abun-
dant (LEA) protein, HVA1 (Xu et al. 1996), which improved water stress tolerance in
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rice. The genes governing drought tolerance can be broadly grouped under three cat-
egories; signalling factors, transcription factors and functional proteins. The signal
proteins include protein kinases such as mitogen-activated protein kinase (MAPK)
namely OsMAPK5 (Xiong and Yang 2003), Nicotiana protein kinase (NPK1, Xiao
et al. 2009), and drought-hypersensitive mutant 1 (DSM1, Ning et al. 2010); cal-
cineurin B-Like protein (CBL)-interacting protein kinase (CIPK) such asOsCIPK12
(Xiang et al. 2007); calcium-dependent protein kinase (CDPK) such as OsCDPK7
(Saijo et al. 2000) and other kinases such as rice stress-induced protein kinase gene
1 (OsSIK1, Ouyang et al. 2010), salt overly sensitive (SOS2, Xiao et al. 2009)
and rice glycogen synthase kinase3-like gene1 (OsGSK1, Koh et al. 2007). Tran-
scription factors include APETALA2/ethylene response factor (AP2/ERF) such as
dehydration-responsive element-binding protein 1 (DREB1)/C-repeat-binding fac-
tors (CBF, Ito et al. 2006; Ishizaki et al. 2013), DREB2 (Cui et al. 2011) and ERF
(Fukao et al. 2011); basic Leucine zipper (bZIP) such as OsbZIP (Redillas et al.
2012b; Jeong et al. 2010, 2013) and ABA responsive element binding factor (ABF,
Oh et al. 2005); no apical meristem (NAM), Arabidopsis transcription activation
factor (ATAF), cup-shaped cotyledon (CUC) transcription factors) such as OsNAC
gene family (Hu et al. 2006; Redillas et al. 2012a); Zinc finger proteins such as C2H2
zinc finger like drought and salt tolerant 1 (DST1, Huang et al. 2009), stress associ-
ated protein (SAP) like OsiSAP8 (Kanneganti and Gupta 2008) and cold inducible
gene, OsCOIN (Liu et al. 2007); and other transcription factors such as basic helix
loop helix (bHLH) like OsbHLH148 (Seo et al. 2011), myeloblastosis (MYB) like
OsMYB2 (Yang et al. 2012), WRKY (tryptophan, W; arginine, R; lysine, K; tyro-
sine, Y, Wu et al. 2009; Rushton et al. 2012), homeodomain-leucine zipper (HD-Zip,
Zhang et al. 2012b) and jasmonate ZIM-domain protein (TIFY , Ye et al. 2009).
OsbZIP66 is a Group-E bZIP TF, which is induced under drought stress, overexpres-
sion of which imparts drought tolerance through putative ABA dependent pathway.
The promoter region of OsbZIP66 contains ten ABA responsive cis-elements (Yoon
et al. 2017). A few other regulatory proteins with proven role in drought response
mechanisms are protein degrading E3 ubiquitin ligases, seven in absentia (SINA)
protein 1 (OsDIS1, Ning et al. 2011), salt-and drought-induced ring finger 1 (OsS-
DIR1, Gao et al. 2011), RING domain-containing E3 ubiquitin ligase (OsRDCP1,
Bae et al. 2011), and delayed seed germination 1 (OsDSG1, Park et al. 2010); pro-
tein modifiers like farnesyl transferase/squalene synthase (SQS1, Manavalan et al.
2012); phytochrome B (PHYB, Liu et al. 2012) and other nuclear proteins such
as Ski-interaction protein (OsSKIPa, Hou et al. 2009), ribosome-inactivating pro-
tein (OsRIP18, Jiang et al. 2012) and 14-3-3 proteins (ZmGF14-6, Campo et al.
2012). A novel ERF gene, OsERF109, is reported to enhance plant survival when
repressed in transgenic systems under drought, indicating its negative role in impart-
ing drought tolerance by negatively regulating ethylene biosynthesis (Yu et al. 2017).
There are several functional proteins that were reported in rice which includes genes
involved in metabolism of ABA and other hormones, osmotic adjustment involv-
ing spermine, trehalose, proline, dehydrins/LEA, heat/cold shock proteins (HSP),
aquaporins, reactive oxygen species (ROS) scavengers, defence-related proteins, ion
channel transporters and genes involved in synthesis of pyramidines, porphyrins,
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amino acids, myo-inositol etc. The DSM2 gene encoding β-carotene hydroxylase is
identified to impart resistance to drought and oxidative stresses by enhancing ABA
and xanthophyll synthesis (Du et al. 2010). A gold hull and internode 3 (OsGH3.13)
gene, known as TLD1 (increased tiller number, wider leaf angle and dwarfism 1),
encoding for indole acetic acid (IAA) amido synthetase is reported to impart drought
tolerance by downregulating IAA (Zhang et al. 2009). Recently, drought tolerance 11
(OsDT11), a putative ABA signalling gene, was reported to enhance drought toler-
ance when overexpressed, inducing increased ABA accumulation, reduced stomatal
density and water loss (Li et al. 2017a). OsDT11 is located on chromosome 11
(LOC_Os11g10590), and encodes for short chain peptide, a cysteine-rich protein
(CRP) that is 88 amino acids long. Another ABA-related gene, abscisic acid stress
and ripening 5 (OsASR5) showed improved drought tolerance when overexpressed
transgenically in Arabidopsis and rice, by regulating ABA and hydrogen peroxide-
dependent stomatal closure pathway (Li et al. 2017b). Li et al. (2011) demonstrated
that overexpression of OsTPS1 gene enhanced tolerance for abiotic stresses such
as cold, salt and drought. In similar fashion, two rice LEA proteins OsLEA3-1 and
OsLEA3-2were found to play key roles in drought resistance (Xiao et al. 2007; Duan
and Cai 2012). BothOsLEA3-1 andOsLEA3-2were found to safeguard lactate dehy-
drogenase (LDH) from inactivation on desiccation (Duan and Cai 2012; Hu et al.
2014). Further, HSPs such as OsHsp17.0, OsHsp23.7 and OsHsp17.7 were estab-
lished to confer drought resistance in rice on over expression (Murakami et al. 2004;
Sato and Yokoya 2008; Zou et al. 2012). The relative water content 3 (RWC3) gene
from rice was reported to enhance drought tolerance by improving hydraulic con-
ductivity in transgenic plants overexpressing the gene (Lian et al. 2004). RWC3 is an
isoform of rice plasma membrane intrinsic protein (OsPIP1;3) encoding for a mem-
brane aquaporin. A recent RNA-seq analysis proposes a negative regulatory pathway
of drought tolerance in rice roots mediated by rice phytochrome B (OsPhyB) that
affects ROS scavenging system by repressing two key enzymes, catalase and ascor-
bate peroxidase (Yoo et al. 2017). Further, ROS scavenging activity of rice drought
stress response 1 (OsDSR1), a calmodulin-like (CML) gene is demonstrated to impart
enhanced plant survival by preventing the oxidative damage under drought stress (Yin
et al. 2017). In transgenic rice seedlings challengedwithwater stress, aPINFORMED
(PIN) gene namely OsPIN3t, which is an auxin flux carrier gene, was shown to
impart drought resistance by improving polar auxin transport (Zhang et al. 2012a).
Other defence-related genes from rice that are reported to enhance drought resilience
are type 1 metallothionein (OsMT1a, Yang et al. 2009), pathogenesis-related (PR) 4
(OsPR4a, Wang et al. 2011) and chymotrypsin inhibitor (OCPI1, Huang et al. 2007).
Auxiliary improvement of drought resistance was also attributed to metabolism-
related proteins from rice such as a putative cytosolic dihydroorotate dehydroge-
nase (OsDHODH1, Liu et al. 2009) involved in pyramidine biosynthesis, ornithine
δ-aminotransferase (OsOAT ) associated with amino acid synthesis (You et al. 2012)
and myo-inositol oxygenase (OsMIOX) involved in myo-inositol metabolism (Duan
et al. 2012). Recently, a novel gene OsAHL1 (AT-hook content nuclear localized
protein) is reported to enhance both drought avoidance and tolerance (Zhou et al.
2016). OsAHL1 confers drought avoidance by improving root growth on exposure
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to drought, and it plays a role in regulating oxidative stress responses thus confer-
ring drought tolerance. In addition to rice genes, a stress-associated protein (SAP)
gene AlSAP derived from the C4 halophyte grass Aeluropus littoralis was found to
significantly enhance grain yield in transgenic rice lines subjected to reproductive
stage drought stress (Ghneim-Herrera et al. 2017).

9.6 Breeding for Drought Tolerance

Improving crop performance under drought is a worldwide concern under scenarios
of increasing recurrence and intensity of dry spell (Mpelasoka et al. 2008;Wassmann
et al. 2009). In areas, where rice cultivation depends on rainwater management,
such as upland rice in Asia, the repercussions of uncertain dry spells are gruesome.
Such macabre situations demand immediate need for replacing the drought sensitive
cultivars with better-adapted ones that combine higher yield potential and improved
drought resilience (Lafitte et al. 2006; Kumar et al. 2008). However, introducing
newer varieties generally face an unpredicted threat from locally adapted flora, which
are adapted to perform better under limited water. Consequently, it is prudent to
combine efforts to breed varieties that are better weed competitors with ability to
access limited water resources quickly and efficiently to garner vegetative phase
growth and ultimately a good harvest (Kumar et al. 2009b; Okami et al. 2011).

Although huge variation exists in rice germplasm for drought adaptation, only a
handful of varieties are useful in breeding for drought resistance in rice. This may be
either due to poor agronomic features tightly linked to drought adaptation or due to
incompatibility in using them as source for drought resistant genes. Nevertheless, use
of wild rice has long been recognized as an alternate source for drought adaptation
genes that are currently absent in cultivated germplasm (Ariyatanakatawong 2015).
Widely recognizedwild rice for drought research include species such asO. barthi,O.
australiensis, O. perennis, O. longistaminata, O. rufipogon (Brar and Khush 1986),
and cultivated African rice, O. glaberrima (Sano et al. 1984; Sitch et al. 1989; Jones
et al. 1997;Maji et al. 2011; Sarla and Swamy 2005). Seventeen new lines, developed
from O. glaberrima and O. sativa crosses, with superior drought tolerance than the
O. sativa species, are under production in few countries in Africa (WARDA 2005;
Lorieux et al. 2013).

Drought is genetically a complex trait to design a straight-forward breeding solu-
tion, because many of the drought-related traits are damages rather than symptoms of
stress, which makes them unsuitable for effective genotypic response evaluation and
are highly unstable and weighs substantial influence from the environment, thereby
exhibiting very lowheritability. Therefore, using conventional strategy, drought resis-
tance breeding in rice lags behind when compared to breeding for other stresses.
Recent development in genomic tools and technologies has boosted the efforts in
breeding by helping to identify genes responsible for drought adaptation and help in
deploying these genes in elite cultivars that lack resistance (Roy et al. 2011; Miura
et al. 2011).
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Earlier breeding efforts towards drought adaptation in rice were primarily devoted
to selecting for yield under drought but met limited success due to lack of precision
of selection process. Predominantly, efforts were anchored on selection of physio-
logical traits related to turgor and leaf water status and morphological traits such
as root system architecture, stomatal apparatus etc. (Kumar et al. 2008). Moreover,
most of these studies were conducted under lowland ecology by artificially creating
physiological drought. All these earlier attempts for drought tolerance breeding in
rice had limited success primarily because of the absence of an effective screening
strategy and combined with low heritability of traits (Ouk et al. 2006). Later studies
on rice yield under upland situations, however, opened up vistas of exercising selec-
tion under such situations (Venuprasad et al. 2007) and combining drought adaptation
with high yield potential, a route to develop high yielding drought adapted varieties.
This emphasized the importance of precision phenotyping in selection for drought
adaptation in rice. Further, the use of modern, high throughput and accurate pheno-
typing could help in improvement of heritability of selection traits largely, thereby
accelerating the breeding progress (Kumar et al. 2008)

Targeted breeding for drought tolerance in rice is now being done by incorporation
of QTLs into leading cultivars. This approach focuses primarily on the improvement
of mega-varieties using marker-assisted breeding approach, either by transferring
single or by pyramiding several QTLs (Singh et al. 2015). QTL introgression into
mega-varieties such as IR64 was reported to combine assortment of QTLs such
as qDTY9.1, qDTY2.2, qDTY10.1and qDTY4.1 into several backcross-derived lines.
These lines were reported to have a yield advantage of 500 to 1800 kg/ha as against
the background cultivar, IR64 under various degrees of stressed conditions (Swamy
et al. 2013). Several rice lines have been released for commercial cultivation in
different rice growing countries of south and Southeast Asia and Africa in the past
ten years (Table 9.4). Most of these are conventionally bred lines that are selected
using modern phenotype screens. Recently, products of marker-assisted breeding
are also being introduced into cultivar chain (Kumar et al. 2014; Singh et al. 2015).
Marker-assisted improvement of popular varieties from major rice growing nations
of Asia, such as India (Singh et al. 2015; Dwivedi et al. 2015; Gopala Krishnan et al.
2017), Vietnam (Ha et al. 2016), Philippines (Dixit et al. 2017a), Nepal (Dixit et al.
2017b), and Malaysia (Shamsudin et al. 2016a, b) are underway.

9.7 Conclusions and Future Prospects

In the wake of increasing challenges of water scarcity and global warming, develop-
ment of drought tolerant varieties to suit the needs of every rice growing nation is a
contemporary reality today. Significant research efforts have been made during the
past few years for the development of drought tolerant rice cultivars, mostly from
the work carried out at International Rice Research Institute, Los Baños (Sandhu and
Kumar 2017). These achievements can be attributed to advancement in phenotyping
and genotyping technologies. Drought being a complex trait with diverse tolerance
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mechanisms, there are several loci associated with tolerance that are yet to be dis-
covered. Therefore, integration of technological advancements in genome, proteome
and metabolome biology together with computational and statistical advancements
can define the future for drought breeding in rice.Methods such as genomic selection
is now becoming a reality to be experienced and drive rapid turnover of drought tol-
erance genotypes, which can be quickly phenotyped and characterised for release as
cultivars. Keeping an array of drought adaptable andmultiple stress tolerant cultivars
is a need of the hour to cope up with the challenges of the future.
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Chapter 10
Genomics-Assisted Breeding for Drought
Tolerance in Cowpea

Siva K. Chamarthi, Nouhoun Belko, Abou Togola, Christian A. Fatokun
and Ousmane Boukar

Abstract The importance of cowpea,Vigna unguiculata, in human and animal nutri-
tion and sustainability of soil fertility are recognized globally especially in sub-
Saharan Africa (SSA) where the crop is mainly produced in the Savanna and the
Sahelian agro ecologies. However, cowpea productivity is adversely affected by both
biotic (insect pests, diseases, parasitic weeds, nematodes) and abiotic (drought, heat,
low soil fertility) constraints. Appreciable progress has been made in the improve-
ment of cowpea for resistance to some biotic stresses particularly diseases such as
bacterial blight, ashy stem blight, marcophomina, parasitic weeds like Striga and
Alectra and some insects like aphid, leaf and flower thrips among others. There is
need for intensifying research activities with focus on improving cowpea resistance
to abiotic stresses. As a crop grown commonly in arid regions, cowpea is subjected
to seedling stage, midseason and terminal droughts. In the recent past, the amount
of rainfall, during the cropping season in the dry savannah regions of SSA, is getting
less. Consequently the cropping season is getting shorter occasioned by late com-
mencement or early cessation of the rain. Farmers in the cowpea producing areas of
SSA generally have no access to irrigation hence their crops are grown under rain-
fed conditions. With the impending higher frequency of drought in the dry savannah
region due to climate change, efforts should be made in developing climate resilient
cowpea varieties that farmers will grow. Efforts have been made in enhancing toler-
ance to drought in some improved cowpea varieties using conventional breeding but
progress has been slow in this regard. Drought tolerance is a complex trait and many
genes are involved in its inheritance. Pyramiding of these genes in improved varieties
would therefore, be desirable. Such varieties with pyramided genes are likely to be
stable in performance over the years and across several locations in the savannahs.
Recent developments in molecular biology could play significant role in the develop-
ment of such resilient varieties. In a number of crops, molecular markers associated
with resistance loci have been identified and are being used in marker assisted breed-
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ing. Marker assisted backcrossing (MABC) is the choice when single traits that are
simply inherited are to be moved to varieties with superior performance but lacking
in the trait being transferred. Also, marker assisted recurrent selection (MARS) has
shown promise in accumulating multiple genes in improved varieties of some crops.
Some work has been initiated in cowpea on the use of MARS to pyramid resistance
to Striga, yield and drought. Results obtained so far show the potential of this method
in pyramiding desirable genes in cowpea. As more resources get committed to cow-
pea research a solid foundation would be established for the generation of molecular
tools that should facilitate their routine application to the improvement of the crop.

Keywords Cowpea · Drought tolerance · MAGIC populations · MARS · Striga

10.1 Introduction

Cowpea (Vigna unguiculata L. walp.) belongs to the genus Vigna and family
Fabaceae. It is one of the four cultivated species of the genus with the remaining
three being V. cylindrica, V. sesquipedalis and V. textilis. It is a highly self-pollinating
crop, diploid with 2n � 22 and has an estimated genome size of 620 Mb (Chen et al.
2007). Its genome is similar to that of some other warm season legumes, particularly
the common bean (Phaseolus vulgaris L.) (Vasconcelos et al. 2015). Although, cow-
pea is one of the most important crops in sub-Saharan Africa where it is considered
drought-tolerant as compared to other legumes and cereals cultivated in the semi-arid
regions, but it still encounters significant damage and yield losses due to severe and
frequent droughts. Its grains andpods play an important role in humannutrition,while
biomass provides good nutritious fodder to livestock (Ehlers and Hall 1997; Singh
et al. 2003; Boukar et al. 2016). Its grains are rich in carbohydrates, protein and folic
acid, and contain respectable amounts of some minerals (Boukar et al. 2011, 2016;
Carvalho et al. 2017). The pods are also rich in protein, chlorophyll, carotenoids,
phenolics and have high antioxidant activity, low concentrations of nitrates and raffi-
nose family oligosaccharides (Karapanos et al. 2017). It is a great source of income
for small holder famers and food vendors. Based on evaluation of 1541 germplasm
lines, cowpea grains were estimated to contain on average approximately 25% pro-
tein, 53.2 mg/kg iron, while zinc, calcium, magnesium, potassium, and phosphorus
content were reported to be 38.1, 826, 1915, 14,890, and 5055 mg/kg, respectively
(Boukar et al. 2011). As a leguminous species, cowpea has the ability to fix nitrogen
from the atmosphere, some of which is left in the soil for succeeding crops (Sanginga
et al. 2000). As a relatively drought tolerant crop, cowpea is excellent for studying
the genetic basis of drought tolerance.
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Globally, cowpeaproduction is projected at around6.5millionmetric tonnes annu-
ally on about 14.5 million hectares. Approximately 83% of the worldwide cowpea
production is obtained inAfrica, out of which, 80%production is inWest-Africa. The
world’s major producer and consumer of cowpea is Nigeria (45% production), fol-
lowed by Niger (15%), Brazil (12%), and Burkina Faso (5%). Fatokun et al. (2012a)
reported that during 1980–2010, there was an increase of an average rate of 5%, with
3.5% annually in area and 1.5% in yield, implying that 70% of the total growth in
cowpea production during this period is accounted for area expansion. Worldwide,
the proportion of cowpea in total cultivated area under pulses increased from 10% in
1990 to nearly 20% in 2007 (Boukar et al. 2016). According to Fatokun et al. (2012a)
and Boukar et al. (2016), demand for cowpea in West Africa is expected to grow at a
faster rate of 2.68%per year than supply (2.55%) over the period 2007–2030.Average
cowpea yield in farmer’s field is very low due to several biotic and abiotic stresses.
Among abiotic stresses, drought is the major constraint in cowpea production in the
West African Sahel and dry Savannahs.

Climate change may lead to a higher frequency and severity of drought events as
already being experienced in the dry savannah regions of sub-Saharan Africa (SSA).
Drought is a major constraint to crop production in SSA where irrigation facilities
are grossly inadequate. It has been forecasted that by 2050, water shortages will
affect 67% of the world’s population (Ceccarelli et al. 2004). Terminal drought is
one of the most common environmental stresses that continues to be a challenge
to sub-Saharan African farmers and plant breeders. Drought tolerance is a complex
trait controlled by polygenes whose expressions are influenced by environmental
factors. Therefore, unraveling its genetic basis is crucial for both breeding and basic
research. Breeding for drought tolerance with conventional methods could be dif-
ficult and time consuming. This calls for concerted efforts by various players such
as geneticists, breeders, molecular biologists, physiologists and agronomists among
others. Due to rapid population growth particularly in the developing countries where
climate change is likely to have greater devastating impact, conventional breeding
procedures may not be adequate in developing improved varieties that can amelio-
rate the challenges. New tools involving molecular breeding have the potential to
contribute positively to needed progress in developing appropriate technologies to
combat effects of climate change. With the recent progress in genomics, it should
be feasible to breed robustly drought tolerant varieties within shorter period. In this
chapter, we describe recent developments in genetic and genomic resources, and
molecular breeding in cowpea with emphasis on drought tolerance.

10.2 Drought Tolerance Phenotyping and Mechanisms
in Cowpea

Breeding for drought tolerance and high yield under drought has not been as
successful as for simply inherited traits in cowpea. This is mainly due to the
complexity of abiotic factors and plant mechanisms involved in drought toler-
ance and the lack of simple, accessible and reliable trait-based phenotyping tech-
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niques to select drought-tolerant progenies from segregating populations (Singh and
Matsui 2002). Drought tolerance in plants is a complex trait since various environ-
mental parameters (air temperature and humidity, soil texture, moisture and fertil-
ity) and plant features and strategies (in shoots and roots) operate jointly to enable
crop plants cope with drought stress. Therefore, it is important to discriminate and
investigate these factors and mechanisms individually, study and understand their
interactions and contributions to plant drought tolerance in a given environment or
drought scenario, so they will be easy to manipulate by breeders and use in crop
improvement (Vadez et al. 2013; Sinclair et al. 2015). Physiological phenotyping
for drought tolerance is quite expensive, time consuming, and difficult to use for
screening crop germplasm with large number of accessions. However, significant
efforts and achievements were made in developing high throughput plant physiology
screening methods for improving drought tolerance in cowpea over the past decades.

Singh et al. (1999a) developed a simple “wooden box screening technique” which
eliminates the influences of the root system and allows nondestructive identification
of plant shoot dehydration tolerance at seedling stage in cowpea. Two types of drought
tolerance mechanisms at vegetative stage were identified and described by Mai-
Kodomi et al. (1999a).Upon exposure to progressive soilwater deficit stress, theType
1 drought-tolerant lines (TVu-11986 and TVu-11979) stopped growth and conserved
water in all the plant tissues, stayed alive for over two weeks without irrigation, and
gradually the entire plant parts dried as the drought stress became intense and drastic.
The type 2 drought-tolerant lines (Dan’Ila andKanannado) continued slow growth of
the trifoliates but with increased soil moisture deficit stress, their unifoliates senesced
early and dropped off with their growing tips remaining turgid and alive relatively
longer. Mai-Kodomi et al. (1999b) studied the inheritance of drought tolerance at
seedling stage of cowpea. Three cowpea genotypes: TVu-11986 with Type 1 drought
tolerance, Dan’Ila with Type 2 drought tolerance, and TVu-7778 as drought sensitive
were crossed in multiple combinations, and the segregation pattern revealed that
vegetative stage drought tolerance is a dominant trait and both Type 1 and Type 2
reactions are controlled by a single dominant gene but the genes are independent
in the two types. The box screening method showed good correlation with drought
tolerance at vegetative and reproductive stages, and was also efficient in evaluating
and selecting drought-tolerant plants in different crop species (Singh et al. 1999b;
Tomar and Kumar 2004; Slabbert et al. 2004; Ewansiha and Singh 2006).

Pot experiments in the screen-house and growth chamber showed that reduced
plant leaf area, restricted canopy water loss, transpiration efficiency, delayed leaf
senescence, prolonged and sustained stem greenness are important traits for enhanc-
ing cowpea growth and grain yield in drought-prone environments (Muchero et al.
2008; Belko et al. 2012, 2013). However, selection based on phenotype has been
relatively slow and difficult mainly due to the unpredictable timing, intensity and
occurrence of drought and considerable genotype-by-environment interactions and
effects on phenotypic expression in the field. Cowpea has a noteworthy capabil-
ity to survive drought by limiting its water loss or enhancing soil water uptake
and use through various anatomical, morphological, biochemical and physiological
strategies. Plants “escape” drought by changing phenological development and the
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period of a particular growth phase (Agbicodo et al. 2009). Some cowpea varieties
evade terminal drought by early flowering (around 12 days), whereas other varieties
respond by staying green for weeks and flower later when favorable conditions are
re-established (Fatokun et al. 2012b).

Drought “avoidance” strategies are predominantly physiological andmorpholog-
ical alterations to withstand drought stress while maintaining relatively high tissue
moisture. A few of the intrinsic and stress-induced mechanisms documented in cow-
pea include, but not limited to, higher root density or depth (Sicher et al. 2012),
decreased leaf area, enlarged leaf waxiness and thickness (Singh and Raja Reddy
2011), reduced stomatal and lenticular conductance and leaf rolling (Fatokun et al.
2012b; Hall 2012). The crop shows very little variations in leaf water content under
extreme drought; an isohydric phenomenon, associated with three drought evading
mechanisms i.e. stomata closure, paraheliotropism, and high root hydraulic conduc-
tivity (Agbicodo et al. 2009). Drought “tolerance” traits are mainly associated with
osmotic adjustments, which result from the synthesis and accumulation of compati-
ble solutes in the cytoplasm as well as movement of solutes into the vacuoles (Warren
et al. 2011; Khan et al. 2015; Blum 2017). These hydrophilic solutes, by replacing
water molecules on membrane and protein surfaces, raise the cellular osmotic pres-
sure and concomitantly the water potential gradient between soil and roots, which
allows continued water influx via osmosis. Modifications and/or stabilization of cell
walls and membranes also confer tolerance to drought (Lugan et al. 2010; Jin et al.
2016). To lessen the deleterious consequences of water shortage, plants use these
mechanisms either independently or jointly.

Belko et al. (2014) evaluated the impacts of reproductive stage drought stress
on the growth, development and yields of a diverse set of thirty early and thirty
medium maturity cowpea cultivars under post-flowering water stressed (WS) and
well-watered (WW) conditions in the field using stress tolerance selection indices e.g.
stress tolerance index (STI) and geometric mean productivity (GMP). Overall, lines
IT85F3139, IT93K-693-2, IT97K-499-39, IT93K-503-1, IT96D-610, IT97K-207-
z15, KVx-61-1, KVx-403, KVx-421-25, and Mouride exhibited the highest grain
yield in both WS and WW environments and were therefore identified as the most
drought-tolerant lines based on their outstanding STI and GMP values. Vadez et al.
(2012a) argued that despite the complexity of the plant’s response to drought, sim-
ple hypotheses based on soil water availability and plant water-use pattern (water
supply vs. demand) can be developed to guide selection of critical plant traits that
are capital for adaptation to drought-prone regions. Hence, Belko et al. (2012) tested
the hypothesis that water saving shoot traits is important for end-of-cycle drought
tolerance and thereby discriminates drought tolerant and susceptible lines. Thus they
phenotyped awide range of cowpea genotypes for their variation in vegetative growth
attributes and water-use patterns under different water regimes (WW and WS) and
atmospheric vapor pressure deficit (VPD) outdoors, in glasshouse and growth cham-
ber. However, gravimetric measurement of whole plant leaf canopy transpiration rate
(TR) involves weighing pots and can be laborious and time consuming. Therefore,
Belko et al. (2013) set the conditions (plant age, time of the day) and tested and val-
idated a method in which plant transpiration rate (TR) can be indirectly assessed via
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plant canopy temperature (CT) in a high throughput mode using an infrared imaging
system. Under WS conditions, canopy transpiration dropped at a lower fraction of
transpirable soil water in drought tolerant than in susceptible lines. Tolerant lines also
maintained higher transpiration efficiency (TE) and TR, and lower CT under severe
water stress (Belko et al. 2012). Under WW conditions, cowpea plants grew and
developed larger biomass under low VPD than under high VPD, with a consistent
trend of lower leaf area and biomass in drought tolerant lines. Substantial differences
existed among cowpea lines in their TR response to natural variation of VPD, with
drought tolerant lines having significantly lower TR than sensitive ones, especially at
times of highest VPD. Cowpea genotypes also varied in their TR response to progres-
sively increasing VPD, with some tolerant lines displaying a clear VPD breakpoint
at about 2.25 kPa, above which there was very little increase in TR whereas sensitive
genotypes showed a linear increase in TR as VPD increased. Canopy temperature,
estimated with thermal imagery, was highly correlated with TR and could therefore
be used as proxy for canopy transpiration (Belko et al. 2013). Plant traits that control
canopy water loss when soil water is available at vegetative stage such as low leaf
area, low TR by stomata control, and reduced TR in response to high VPD discrimi-
nated between drought tolerant and sensitive cowpea lines and, therefore, are reliable
indicators of terminal drought stress tolerance. A lower TR could limit plant growth
and water use at vegetative stage, and allow drought tolerant genotypes to behave
like unstressed plants late in the season when the soil water is progressively depleted.
The water saving shoot characteristics of some cowpea genotypes are hypothesized
to conserve more water in the soil profile, which is crucial for pod and grain filling
and subsequently terminal drought adaptation.

Root-related traits i.e. deep, profuse, dense and extensive root systems are thought
to be key in conferring drought tolerance to cultivated crop plants (Lynch 2007; Singh
et al. 2010; Gowda et al. 2011). Although variation in root growth and morphology
can increase the amount of water uptake under drought and root traits are used as
surrogates for soil water extraction (Vadez et al. 2008, 2012; Gowda et al. 2012),
the relationships between root traits and water acquisition and their contribution
to yield formation under drought remain unclear across crop species (Vadez et al.
2007). Few investigations have been carried out on roots in cowpea and most have
focused on the analysis of root growth and morphological differences using limited
number of test lines (Matsui and Singh 2003; De Ronde and Spreeth 2007; Onuh and
Donald 2009). Moreover, these studies did not address whether root attributes relate
to soil water accessibility and use under drought, especially during critical pod and
grain filling stages. A “root-box pin-board’ technique was developed to study the
two-dimensional root system of large number of cowpea plants and progenies, and
permitted characterization of major variations for root system architecture (deep and
profuse vs. shallow and dense systems) in cowpea (Singh and Matsui 2002). More
recently, Burridge et al. (2016) developed an integrated low-cost and high throughput
visual, manual (shovelomics) and image-based (DIRT: digital imaging of root traits,
an automated image analysis software) phenotyping technique for in situ field and
laboratory evaluation of root phenes in cowpea. Themethodwas used for quantitative
evaluation of root architectural traits, and identification and selection of useful root
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phenes among 189 lines of cowpea diversity panel. Like in other major crops of
economic importance (maize, common bean, soybean), several root phenotypes i.e.
adventitious and basal root numbers and growth angle, tap root diameter at different
soil layers, secondary or lateral root numbers and branching density, root nodules
and diseases scores, significantly varied among tested cowpea genotypes. Genetic
analysis was performed to evaluate the relationships between cowpea root traits and
agronomic performance and tolerance to parasitic weeds in the field. It was found that
plants with steep and profuse root system were better adapted to drought conditions
while those with shallow and dense root system were tolerant to low phosphorus
and Striga infestation (Burridge et al. 2016). The results therefore suggested the
adoption of this integrated root phenotyping platform in the breeding program to
improve cowpea adaptation to multiple constraints e.g. vegetative and reproductive
stage droughts and Striga infestation.

10.3 Genetic Resources in Cowpea

Genes responsible for resistance/tolerance to several abiotic and biotic stresses have
been identified through the germplasm screening, available in different countries. The
International Institute of TropicalAgriculture (IITA) ismaintainingmore than 15,000
accessions of cultivated cowpea and over 2000 wild relatives, in its genetic resources
center. Mining these resources has identified several potential donors, which can
impart resistance to biotic and abiotic stresses. Several cowpea lines resistant/tolerant
to abiotic and biotic stresses have been reported (Ferry and Singh 1997; Singh 2002;
Boukar et al. 2013, 2015, 2016). Breeders will continue to rely on these genetic
resources as sources of genes for desirable traits in cowpea improvement. They have
the potential to provide genes for developing newvarieties that will help in combating
emerging problems that would arise due to climate change as well as human food
and animal feed requirements. It is also worth noting that wild cowpea relatives
have hardly been utilized in the development of new improved varieties. A lack of
interest in the use of cowpea wild relatives can be attributed to the possibility of
linkage drag that may occur from their use as parents. For example, wild cowpea
relatives have very small seed size with smooth and unattractive seed coat colors.
Several backcrosses to the recurrent parents would be needed in order to recover
the cowpea seed size desired by consumers. However, with recent developments in
genomics which can facilitate progress in breeding new varieties through marker-
assisted selection,more interestsmay shift in favor of the available cropwild relatives
as sources of new genes.



194 S. K. Chamarthi et al.

10.4 Genomic Resources in Cowpea

The development of genomic resources for cowpea has lagged behind compared
with many other crops. However, because of the advantages associated with the
new marker technology, concerted efforts are now being devoted to the development
of genomic resources in cowpea. An appreciable amount of progress has already
been made from these efforts (Muchero et al. 2009a, 2010, 2013; Amatriain et al.
2017). The molecular markers based genetic linkage maps for cowpea have been
published, although not yet aligned with physical maps (Amatriain et al. 2017).
These linkage maps have been utilized to identify quantitative trait loci (QTL) asso-
ciated with morphological as well as stress related traits (Table 10.1) (Boukar et al.
2016). Major recent developments in cowpea genomics include sequence assemblies
from 65× coverage whole-genome shotgun (WGS) short reads, a bacterial artificial
chromosome (BAC) physical map, minimal tiling path (MTP) BACs, and assem-
bled sequences from 4355 BACs using an improved variety (IT97 K-499-35) which
has been released to farmers in several African countries due to its superior yield
performance and resistance to Striga gesnerioides. Additionally, more than one mil-
lion SNPs have been discovered from sequences of 36 diverse cowpea accessions
supported by the development of a genotyping assay (Illumina Cowpea iSelect Con-
sortium Array) for 51,128 SNPs. Five bi-parental RIL populations (Tvu-14676 ×
IT84S-2246-4, Sanzi × Vita7, ZN016 × Zhijiang282, CB46 × IT93 K-503-1, and
CB27× IT82E-18) were genotyped with this genotyping platform to produce a con-
sensus genetic map containing 37,372 SNP markers. This genetic map has enabled
the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of
genetic diversity along each linkage group, and synteny between cowpea and com-
mon bean (Amatriain et al. 2017). Updated versions of the cowpea consensus map
are accessible via HarvEST:Cowpea (http://harvest.ucr.edu/). With the above listed
genomic resources in cowpea, opportunities now abound for the fine mapping of
QTLs, map-based cloning, assessment of genetic diversity, association mapping and
marker-assisted breeding.

The first DNA marker based genetic linkage map for cowpea was published by
Fatokun et al. (1993) followed by Menendez et al. (1997), Ubi et al. (2000) and
Ouedraogo et al. (2002a) using RFLP, RAPD, AFLP, cDNA and morphological
markers. However, cowpea genome resolution was poor based on these published
maps. First attempt to improve these maps was carried out by Muchero et al. (2009a,
b), using an IlluminaGoldenGate assay having 1,536 EST-derived SNPmarkers. The
authors genotyped a total of 13 recombinant inbred line (RIL) populations, which
not only improved the map resolution but also made orthologous gene identification
easier by increased synteny with soybean genome (Lucas et al. 2011). The most
recent consensus genetic map described above (Amatriain et al. 2017) has a 4-fold
increase in marker density and a four-fold increase in resolution (number of bins)
over the consensus map of Lucas et al. (2011). This map has dense coverage of all
eleven cowpea linkage groups, with 1.85 cM on LG1 being the largest gap.

http://harvest.ucr.edu/
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In addition, a core germplasm of landraces collected from across cowpea-growing
regions inAfrica and other parts of theworld has been characterized using SNPmark-
ers (Huynh et al. 2013). Using DNA markers, QTLs have been detected by several
authors for key traits including drought tolerance (Muchero et al. 2010, 2013), seed
quality traits (Lucas et al. 2013), resistance to root-knot nematodes (Huynh et al.
2016), root pathogens including Macrophomina phaseolina (Muchero et al. 2011)
and fusarium wilt (Pottorff et al. 2012b, 2014), insects (Huynh et al. 2015; Lucas
et al. 2012), and the parasitic weed Striga (Boukar et al. 2004; Ouedraogo et al. 2001,
2002a, b, 2012). Fatokun et al. (1993) reported an orthologous QTL for seed size
in both cowpea and mungbean using RFLP generated linkage maps of both crops.
Same RFLP markers spanned the regions associated with seed weight QTL in the
two leguminous crops. In addition, an aphid resistance locus defined by an RFLP
marker was reported by Myers et al. (1996). Muchero et al. (2009b) identified 12
QTLs for seedling drought tolerance and maturity using a RIL population based on
the cross between IT93 K-503-1 and CB46. A few of these QTLs colocated with
QTLs for recovery dry weight (rdw) and stem greenness (stg) under drought stress
both under field and greenhouse conditions. A major QTL affecting cowpea leaf
shape (associated with drought tolerance) was reported by Pottorff et al. (2012a).
Recently, Muchero et al. (2013) utilized phenotypic data from multiple locations
and identified seven SNP-trait associations with stay-green trait. Five of these loci
also showed pleiotropic effects on biomass, grain yield, and delayed leaf senescence.
These QTLs, particularly those identified in two RILs and diverse germplasm can
be potential targets for marker-assisted breeding of cowpea varieties with improved
drought tolerance. In another study, co-location of three Macrophomina resistance
QTLs (Mac-4, Mac-5 & Mac-9) and three seedling drought response QTLs (Dro-5,
Dro-10 & Dro-7) were identified from the RIL population IT93 K-503-1 × CB46
(Mucheroet al. 2009b 2011). Burridge et al. (2017) conducted a genome-wide asso-
ciation study and reported 32 significant QTLs for root architecture traits.

10.5 MAGIC Population in Cowpea

QTLmapping using bi-parental populations has limitations because of limited allelic
diversity and genomic resolution. A multi-parent advanced generation inter-cross
(MAGIC) population strategy has been proposed to integrate multiple alleles and
provide increased recombination and mapping resolutions (Bandillo et al. 2013).
The increased recombination in MAGIC populations can lead to rearrangements of
alleles and greater genotypic diversity.

Cavanagh et al. (2008) proposed thatMAGICpopulations should provide state-of-
the-art approach for developing plant population resources for genetic analysis and
increased genetic variability in breeding. In creating a MAGIC population, multiple
elite parents are inter-crossed for several cycles followed by single-seed descent,
which results in RILs having a mosaic of genome blocks coming from all founders.
Development of MAGIC populations have been carried out in a few crops includ-
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ing rice, wheat and chickpea (Huang et al. 2015). In cowpea, MAGIC population
was established employing eight founder parents (SuVita 2, CB27, IT93K-503-1,
IT89KD-288, IT84S-2049, IT82E-18, IT00K-1263, & IT84S-2246-4) that were not
only genetically diverse but also carried genes for resistance to several biotic and
abiotic stresses, seed quality and agronomic traits relevant to SSA. Phenotyping and
genotyping of the MAGIC RILs at F8 generation showed an average of 99.74%
homozygosity and diversity in 38 agronomic traits (Huynh et al. 2017). Due to its
wide genetic base, the cowpea MAGIC population has become an important genetic
resource for high-resolution genetic mapping and for gene discoveries (Huynh et al.
2017).

10.6 Marker-Assisted Selection in Cowpea

Marker-assisted selection (MAS) offers great prospects for increasing genetic gain
per crop cycle, by stacking favorable alleles at target loci and reducing the number of
selection cycles. Markers identified in one population need to be validated in other
populations or germplasm collections, and closely linked markers flanking the QTL
should be used for indirect selection of the trait. Once potential markers, validated
QTL are identified, they can be used in breeding. We describe belowmarker-assisted
backcrossing (MABC), marker assisted recurrent selection (MARS) and genome
wide association mapping (GWAM) schemes, which are currently being used in our
cowpea breeding program to incorporate genes for resistance to some abiotic and
biotic stresses (Fig. 10.1).

10.6.1 Marker-Assisted Backcrossing

Marker-assisted backcrossing (MABC) is a fast-track approach to increase the
genetic gain of crops and is in use for variety development of several crops (Chamarthi
et al. 2011; Varshney et al. 2014; Boukar et al. 2016; Cheng et al. 2017; Ouedraogo
et al. 2017). MABC can be used to introgress major genes/QTL from one genetic
background (donor parent) to another (recurrent parent) much more precisely than
phenotypic selection. The outcome of MABC is a line containing only the major
genes/QTL transferred from the donor parent, while retaining a vast proportion of
the genome of the recurrent parent. Three types of selection can be done in MABC:
foreground, recombinant and background. Foreground selection involves the selec-
tion of target genes/QTL on the carrier chromosomewith the help of twoQTL-linked
flankingmarkers. It can be used to select for laborious or time-consuming traits and it
allows selection of heterozygous plants at the seedling stage and therefore identifies
plants desirable for backcrossing. Furthermore, identification and selection of reces-
sive alleles can be done, which is otherwise difficult to achieve using conventional
methods. Recombination events between the target locus and linked flanking mark-
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Fig. 10.1 Schematic diagram shows integrated molecular and conventional breeding approaches
in cowpea. MAGIC Multi-parent Advanced Generation Inter-Cross populations, QTL Quantita-
tive Trait Loci, MABC Marker Assisted Backcross, MARS Markers Assisted Recurrent Selection,
GS Genomic Selection, IETs Initial Evaluation Trials, PETs Preliminary evaluation Trials, AETs
Advance Evaluation Trials, ANCTs All Nigeria Co-ordinated Trials, CITs Cowpea International
Trials, FPVS Farmer Preferred Varietal Selection
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ers can also be identified in backcross progeny. This can be used to reduce linkage
drag, which is difficult to overcome through the use of conventional backcrossing.
Background selection involves selection of BC progeny with highest proportion
of recurrent parent genome, using unlinked markers present on non-carrier chro-
mosomes (Hospital and Charcosset 1997; Frisch et al. 1999; Chamarthi et al. 2011;
Varshney et al. 2014; Batieno et al. 2016). Using tightly linked markers, a target gene
can be transferred with minimum linkage drag in two backcross generations, which
otherwise would take 8–10 generations by conventional backcrossing (Tanksley et al.
1989).

In cowpea, MABC has been implemented through the CGIAR-GCP-TLI
(Consultative Group of International Agricultural Research-Generation Challenge
Programme-Tropical Legumes I) project at IITA and NARS centers in collaboration
with the University of California, Riverside (UCR). At IITA, using IT97K-499-
35 as the donor, two released varieties, IT93K-452-1 and IT89KD-288, have been
improved in Nigeria, for Striga resistance. At INERA, efforts are being made to
improve Moussa and KVx745-11P for Striga resistance and seed size using IT93K-
693-2 and KVx414-22, as donors for Striga resistance and seed size, respectively. At
EduardoMondlane University (EMU),Mozambique, IT85F-3139 is being improved
for grain quality (seed size) using CB27 as a donor.

10.6.2 Marker-Assisted Recurrent Selection

While MABC targets major large effect QTL that has been validated across different
genetic backgrounds,MARS aims at accumulating a large number ofQTLs in a given
population using a subset ofmarkers that are significantly associatedwith target traits
(Bernardo 2008; Ribaut et al. 2010; Chamarthi et al. 2011; Xu et al. 2013a, b; Boukar
et al. 2016). In brief, MARS is a modern breeding approach that enables breeders to
increase the frequency of several beneficial alleles with small individual but additive
effects in recurrent cycles. This involves multiple cycles of marker-based selection
that include improvement of F2 progeny by one cycle of MAS based on marker and
phenotypic data, followed by three recombination cycles of the selected progenies
based on marker data only and repetition of these cycles to develop the population
for multi-location phenotyping (Tester and Langridge 2010). In MARS, a selection
index is used that gives weights to markers according to the relative magnitude of
their estimated effects on the trait (Lande andThompson 1990). Severalmultinational
companies, such as Syngenta and Monsanto, are routinely using MARS in their
breeding programmes (Ribaut et al. 2010).

In cowpea, MARS has been implemented at IITA and NARS centers in collabora-
tion with UCR by using genomic resources developed during the GCP-TL1 project.
At IITA, Nigeria, to develop cowpea varieties with enhanced drought tolerance, two
lines (IT84S-2246-4 and IT98K-1111-1) were crossed to develop a MARS popula-
tion. After QTL mapping with 102 polymorphic SNPs, seven QTLs were identified
for yield, drought tolerance and staygreen. One hundred and seventy seven plants
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were fixed for favorable alleles at these seven QTLs and advanced breeding lines are
being generated. At Eduardo Mondlane University (EMU), Mozambique, the cross
CB27 × IT97K-499-35 was used to initiate MARS for large seed, grain quality,
and heat tolerance traits. Screening of lines fixed for favorable alleles is going on
under drought and irrigated conditions. At ISRA, Senegal, the cross IT93K-503-1 ×
Mouride has been made for MARS for drought tolerance and resistance to Striga,
nematodes and Macrophomina.

10.6.3 Genome-Wide Association Mapping Studies

The genome-wide association mapping (GWAM) approach provides opportunities
to explore the tremendous allelic diversity existing in natural germplasm (Deshmukh
et al. 2014). A GWAM or whole genome association mapping (WGAM) or linkage
disequilibriummapping (LDM) is used to evaluate associations betweenmarkers and
trait(s) of interest scored across a large number of individuals. The advancements in
genomic technologies have led to a better understanding of the genetic basis of traits
usingGWAM.This approach results in high-resolutionmappingof genetic variability
from germplasm sets that have undergone many rounds of recombination (Yu and
Buckler 2006). However, to get the associations at a fine mapping resolution, large
number of markers are required to screen the genome. Recently GWAM studies have
been proven effective by identifyingmarker-trait associations in several legume crops
such as cowpea (Lucas et al. 2013; Burridge et al. 2017; Qin et al. 2017), common
bean (Villegas et al. 2017) and soybean (Dhanapal et al. 2015). As mentioned above,
a GWAM study in cowpea identified 32 QTLs for root architecture traits. Further,
comparisons of results from this study with others revealed QTL co-localizations
between root traits and seed weight per plant, pod number and Striga tolerance
(Burridge et al. 2017).

10.7 Using Wild Germplasm in Cowpea Breeding

Plant breeders mostly use existing germplasm and landraces to develop new varieties
characterized by desirable agronomic traits. In many crops, yields have remained
stagnant relatively because sufficient genetic diversity is missing for progress in
some of the traits or due to genetic bottlenecks that occurred during the domes-
tication process (Tanksley and McCouch 1997; Gur and Zamir 2004). It is well
known that wild relatives provide important sources of genetic variation for crop
improvement. However, their exploitation is limited by different sexual incongruity
and linkage drag (Wang et al. 2017). Somewild cowpea relatives have been identified
as potential sources of genes that confer resistance to a number of pests that have
devastating effects on grain yield and stored seeds. Vigna vexillata is one such wild
cowpea relative with resistance to pod sucking bugs (IITA 1988) and bruchids (Birch
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et al. 1986). Strong incompatibility barrier, however, exists between cowpea and V.
vexillata (Fatokun 2002) which has prevented transferring the desirable genes from
the latter to cultivated cowpea through conventional breeding. Some wild cowpea
relatives are cross compatible with cultivated types but have hardly been used in
developing improved varieties. With the advent of latest genomic tools, it is now
feasible to transfer into elite germplasm the favorable alleles left behind by the
domestication process more efficiently using genomics-assisted breeding strategies.
These tools should facilitate overcoming linkage drag, which is one major reason for
the non-interest in the use of wild cowpea lines by breeders. In this context, several
methods such as construction of introgression libraries (ILs), advanced backcross-
QTL (AB-QTL) analysis, have been suggested for transferring superior alleles from
wild species to cultivated lines. AB-QTL analysis has been used in several legume
species such as common bean (Blair et al. 2006), and soybean (Chaky et al. 2003) to
develop ILs with seed weight, days to flowering and yield traits in common bean and
yield traits in soybean. With an initiative of the Global Crop Diversity Trust project
in cowpea, we initiated the use of wild cowpea accessions in cowpea breeding pro-
gramme to introgress genes for drought tolerance into cultivated cowpea lines. In
future, AB-QTL approachmay be employed to introgress genes for drought tolerance
in cowpea improvement efforts.

10.8 Summary

Cowpea [Vigna unguiculata (L.) Walp.] is a multipurpose African legume crop,
which feeds millions of people and their livestock especially in West and Central
Africa. Because of its ability to fix nitrogen, it improves soil fertility, and conse-
quently helps to increase the yields of cereal crops when intercropped or grown in
rotation and thus contributes to the sustainability of cropping systems (Singh and
Ajeigbe 2007). Cowpea yields in farmer’s fields are very low due to several con-
straints (abiotic and biotic), as well as limited access to quality seeds of improved
varieties. Among abiotic constraints, drought is one of themost important factors that
could affect all growth stages of the cowpea crop. In the last three decades, efforts
of scientists at international and national cowpea research institutions have recorded
good progress in variety development through conventional breeding. However, to
meet the rising global demand for cowpea to feed the increasing human population,
more efforts are required to speed up variety development. With the availability of
latest genetic and genomic resources and the establishment of high-throughput SNP
genotyping platforms, it is now possible to usemodernmolecular methods in cowpea
to successfully and quickly develop and release improved varieties to farmers, which
would help bridge the existing yield gap. However, high throughput plant pheno-
typing for precise and accurate agronomical, morphological and physiological data
in large number of genotypes and segregating populations remains a bottleneck for
modern breeding. Further, the shortage of qualified human resources and advanced
research equipment and infrastructure in developing countries constitute other chal-
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lenges. Although genomic resources for cowpea still lag behind as compared with
similar crops, a number of cowpea genetic linkage maps and QTLs associated with
desirable traits such as resistance/tolerance to Striga, drought, macrophomina, fusar-
ium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been
reported. Several national and international cowpea breeding programs are exploiting
the developed genomics resources to some extent to implement molecular breeding
for abiotic and biotic traits, especially by MABC, MARS and GWAM to accelerate
cowpea improvement. The recently available MAGIC RIL population and cowpea
genome sequence (Amatriain et al. 2017) will further accelerate molecular breeding
efficiently in cowpea improvement. The combination of conventional and molecular
breeding strategies should result in the development of varieties with genetic gains
that would boost cowpea production and productivity in SSA.
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Chapter 11
Hybrid Wheat and Abiotic Stress

Takashi Okada and Ryan Whitford

Abstract Bread wheat (Triticum aestivum L.) is one of the major crops for human
nutrition and an important one for food security. However, wheat yields are highly
dependent upon environmental conditions and are affected by various types of abiotic
stresses. One strategy for improving wheat yield stability across environments is
to harness hybrid vigour. Estimates of yield improvements associated with hybrid
vigour in wheat range from 5 to over 20%, which needs to be further enhanced to
meet the future global demand. This yield advantage comes with improved yield
stability under both biotic and abiotic stress conditions. This chapter focuses on the
current status of hybrid wheat breeding, including hybrid seed production systems,
hybrid performance under abiotic stresses and prediction of hybrid performance.

Keywords Abiotic stress · Genomic selection · Hybrid wheat · Heterosis
Male sterility

11.1 History of Hybrid Wheat Breeding and Status

Global food security is of rising concern, and the World Food Summit on Food
Security in 2009 set a target of 70% increased food production by 2050, in order to
meet future global food demand. This target takes into account population growth and
impending changes to climate as well as decreasing availability of arable land (FAO
2009).Capturing heterosis is one of the fewhighpriority strategies towards increasing
yield and yield stability (Fig. 11.1a), as has been achieved for allogamous plants such
as maize (Zea mays L.) and rye (Secale cereale L.) (Melchinger and Gumber 1998).
For example, average maize yields in the United States have improved by 400% from
1930 to 2002, which can largely be attributed to advances in hybrid breeding (Russell
and Sandall 2005). On the other hand, hybrid breeding for autogamous cereals, such
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as rice, barley and wheat, is more challenging due to their self-pollinating nature and
reduced expression of heterosis (Coors and Pandey 1999; Longin et al. 2012). Despite
this, hybrid breeding of rice in China was successfully established commercially in
the mid-70’s and China is now the leading country for hybrid rice production. The
area within China cultivated to hybrid rice production has increased from 2.1 million
ha in 1977 to 15.3 million ha in 1997 (~50% of rice growing area), with growers
receiving a yield advantage of between 20 and 30% over traditional line cultivars (Li
and Yuan 2000; GRiSP 2013).

In wheat, efforts towards establishing an efficient hybrid seed production sys-
tem were initiated in the late 1960s and since have had a long history (Curtis and
Johnston 1969; Driscoll 1972; Mukai and Tsunewaki 1979; Pickett 1993). Hybrid
wheats are expected to provide increased tolerance to a range of abiotic stresses,
including drought, heat and frost (Jordaan 1996; Pickett 1993). However, only less
than 1% of the current global wheat growing area is planted to hybrids (Longin et al.
2012). France is a leading country in exploiting wheat hybrids, with cultivation also
in areas of Germany, China and India. Hybrid wheats remain a small fraction of cur-
rent global wheat production due to high production costs. This can be attributed to
wheat’s strong self-pollinating nature, lack of available genetic resources necessary
for improving efficient cross-pollination as well as an efficient fertility control sys-
tem. Overcoming these factors are necessary for stable and economical hybrid seed
production (Whitford et al. 2013; Nguyen et al. 2015). Despite such issues, there is
strong interest from both public and private sectors to facilitate deployment of wheat
hybrids in countries with increasing food security concerns, for example in China
and India. An overriding concern is whether the yield benefit from hybrid vigour
will be sufficient to offset the substantial costs of restructuring breeding programs
for hybrid seed production (Longin et al. 2012; Mette et al. 2015). In the following
section, current hybrid wheat seed production systems are explained with discussion
on their associated advantages and disadvantages.

11.2 Hybrid Wheat Seed Production Systems

Wheat is a predominantly self-pollinating species, in which natural cross-pollination
rates are low, generally less than 5% (de Vries 1974; Tsunewaki 1969). Therefore,
most hybrid breeding approaches rely on creating male sterile female inbred to
ensure obligate cross pollination with a male fertile inbred (Fig. 11.1a, Whitford
et al. 2013). There are three major approaches for ensuring male sterility in wheat:
(1) the use of chemical hybridization agents (CHA), (2) cytoplasmic male sterility
(CMS) and (3) genic male sterility (GMS) either via genetic modification (GM) or
via non-GM methods (Fig. 11.1b–d and Table 11.1). Currently, commercial hybrid
wheat seed in Europe is produced by using the CHA Croisor® 100 (Longin et al.
2012; Whitford et al. 2013). Generally, inbred parental lines are grown in alternate
female and male strip planting with the CHA applied by spraying the female inbred
parental rows at an early stage of floral development (Fig. 11.1b). Timing and dosage
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Fig. 11.1 As (a) A basic concept of hybrid wheat breeding.Male sterile (MS) line A is crossedwith
male fertile (MF) pollinator line B to obtain F1 hybrid seed. F1 hybrid shows heterosis by increasing
biomass, yield and stability under multiple environments. Superior hybrids will be obtained by
pyramiding multiple favourable traits with the aid of marker assisted selection and/or genomic
selection. (b) Schematic representation of hybrid seedproduction systemusing chemical hybridizing
agent (CHA). (c) Hybrid seed production system by using T. timopheevii cytoplasmic male sterility
(CMS). Large circles represent type of cytoplasm (dotted; G-type from T. timopheevii or open; B-
type from common wheat) and small filled circles represent nucleus with the allele type of fertility
restore gene (Rf or rf ). (d) Split-Barnase system for hybrid seed production (Kempe et al. 2013,
2014). The barnase coding information is divided (A1 and A2) and located at two loci on allelic
positions of the chromosome. Co-expression of both A1 and A2 fragments induce male sterility,
while presence of only one of two components in F1 hybrid remains fertile. F1 hybrid is a GM plant
in this method. Illustration of wheat in panels (a) and (b) is designed by Freepik.com

http://www.freepik.com
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Table 11.1 Advantages and disadvantages of hybrid wheat seed production system

System Advantage Disadvantage

Chemical hybridizing agent
(CHA)

Simple application/Application
to wider varieties/Flexibility of
use

Effect of weather
conditions/Efficiency and
penetrance variation/Toxicity
to environment/Adverse effect

Cytoplasmic male sterility
(CMS)

Common in hybrid breeding
system/High penetrance of
MS/Purity of hybrid
seed/Environmentally
safe/Cost effectiveness

Limited wheat
varieties/Incomplete function
of fertility restore gene
(Rf )/Multiple Rf
genes/Adverse growth
effect/Reduced seed set in F1

Genic male sterility (GMS) Application to wider
varieties/High penetrance of
MS/Purity of hybrid
seed/Environmentally safe

High cost to establish
system/Identification of
restorer genes/Public
acceptance of GM/Cost of
hybrid seed production (GM
regulation)

of CHA application is critical for successful induction of male sterility, with modern
CHAs being efficacious across genotypes and showing relatively low phytotoxicity
(Adugna et al. 2004). However, several limitations exist that hamper the use of CHAs
in a large commercial production setting. These include significant effects of weather
on the efficiency of sterility induction and therefore hybrid seed purity, environmen-
tal phytotoxicity, application cost, and often compromised seed set associated with
adverse effects of chemicals (Pickett 1993; Whitford et al. 2013; Mette et al. 2015).

Genetic control of male fertility is more cost-effective, environmentally safe and
less dependent upon prevailing weather conditions for sterility induction. CMS has
been extensively used as a hybridisation platform for many vegetables and crops
(Duvick 1959; Havey 2004). In wheat, cytoplasms from several related species
(Triticum and Aegilops spp.) in combination with various cultivated genotypes have
been shown to induce male sterility (Tsunewaki et al. 1976; Mukai and Tsunewaki
1979). To date, the Triticum timopheevii cytoplasm is considered themost effective in
inducing complete male sterility across many common cultivated wheat genotypes
(Tsunewaki et al. 1976), and has therefore been used for commercial production.
T. timopheevii-based CMS (Wilson and Ross 1962) has found application in com-
mercial production within India, whilst photoperiod sensitive CMS using an Ae.
crassa cytoplasm (Murai and Tsunewaki 1993) has found commercial application
in China (Longin et al. 2012; Mette et al. 2015). Generally, these systems require
a three-line crossing strategy to maintain the CMS line and produce the F1 hybrid
seed (Fig. 11.1c). T. timopheevii G-type cytoplasm (Tsunewaki et al. 1996, 2002)
induces completemale sterility in the absence of a dominant nuclear-encoded fertility
restoration gene (Rf ), while the fertile maintainer line possesses a recessive nuclear
rf gene and B-type cytoplasm derived from the common wheat. The fertile main-
tainer, when used as a pollinator on CMS-induced male sterile females, maintains
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and multiplies CMS induced male sterile female inbred seed (Fig. 11.1c). Paternal
hybrid inbreds contain a dominant Rf gene which results in F1 hybrids of a heterozy-
gous Rf :rf , yet containing a G-type cytoplasm, therefore enabling pollen fertility
restoration and seed set. However, a limitation to the T. timopheevii CMS system is
that it requires multiple Rf genes, each affecting fertility restoration (Bahl and Maan
1973), and therefore F1 hybrid seed-set is dependent upon dosage of Rf s (Adugna
et al. 2004). Furthermore,T. timopheevii cytoplasmhas several unwanted side effects,
which include delayed flowering, reduced height and sometimes poor vigour (Jošt
et al. 1975; Mukai and Tsunewaki 1979). On the other hand, photoperiod-sensitive
CMS (PCMS) utilising the Ae. crassa cytoplasm system has potential advantages
over T. timopheevii system as it simplifies maintenance of CMS female inbred and
avoids incomplete fertility restoration (Murai and Tsunewaki 1993; Murai 1997).
CMS induction with Ae. crassa cytoplasm in the cultivar Norin 26 was shown to
require long days (≥15 h) at floral induction stage, while under short days (≤14.5 h)
pollen remained fertile (Murai and Tsunewaki 1993). F1 hybrids carrying the fertility
restoring gene (Rf ) grown under short days did not exhibit full fertility restoration,
but revealed up to 40% mid-parent heterosis in grain yield, highlighting its potential
application (Murai 1997, 1998; Murai et al. 2008). A major issue in PCMS system
is the necessity for growth under long days at floral induction stage. This is a com-
mercial limitation to the application of this system for spring wheat genotypes, as
it restricts geographical deployment to high latitudes (Murai and Tsunewaki 1993).
Therefore, successful application of CMS systems necessitates stable and high pene-
trance of CMS in broad germplasm, coupled with the identification of a simple single
locus dominant Rf that completely restores fertility in the F1 hybrid.

GMS is advantageous in that it can overcome problems with restricted genotypic
combinations and the requirement to track multiple restorer loci, unlike many CMS-
based systems. Several dominant and recessive male sterile mutant loci have been
identified in wheat with their potential application to hybrid wheat breeding being
outlined (Driscoll 1975; Sasakuma et al. 1978; Barlow and Driscoll 1981; Bing-
Hua and Jing-yang 1986; Zhou et al. 2008). Driscoll (1972) proposed the XYZ
system for hybrid wheat breeding based on the utilisation of a recessive male sterile
mutant (ms). Pollen fertility is restored by nuclear encoded fertility restoring locus
(Ms) on the additional rye chromosome 5R, containing the morphological selectable
marker locus hairy peduncle. The XYZ system utilises these traits in the maintainer
line which is used to propagate male sterile female inbred lines for hybrid seed
production (Driscoll 1972). A similar system (4E-ms system) uses a blue seed colour
marker linked to the fertility restorer (Ms) gene present on the 4E chromosome of
Agropyron elongatum (Zhou et al. 2006, 2008). Both of these systems utilize an alien
Ms locus and morphological markers on the same chromosome. Poor recombination
between alien and cultivated wheat chromatins allow these markers to be tightly
linked, therefore ensuring easy separation of male fertile versus male sterile lines, an
important component for maintaining hybrid seed purity (Whitford et al. 2013). In
each of these systems, however, there is the potential for deleterious effects on plant
vigour derived from the alien chromatin.
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Alternatively, genetic modification (GM) poses an opportunity to overcomemany
of these limitations and effectively control fertility. The use of recombinant DNA
technology can physically link the necessary gene sequences at a single locuswithout
the requirement of extra unwanted chromatin. An example is the use of the barnase
gene, encoding a cytotoxic bacterial ribonuclease, for inducing male sterility. Its
utility has been demonstrated in wheat transgenics (DeBlock et al. 1997). More
recently, Kempe et al. (2013, 2014) has refined the use of barnase by developing a
split gene system, whereby the barnase coding fragment necessary for inducingmale
sterility works in trans through the action of two transgenes (Fig. 11.1d). Although
the split-gene system is efficient, the final F1 hybrid contains a transgenic element,
which could be an obstacle for commercialisation considering public concern over
GM. An alternate methodology overcoming this issue is the development of Seed
Production Technology (SPT), a hybridisation platform whereby the transgene is
biologically contained within the maintainer line. This SPT has been successfully
developed and implemented for use in the production of maize hybrid seed (Wu et al.
2016). The use of GM plants for hybrid wheat seed production still requires public
acceptance in many countries, although we may see the adoption of GM plants in
some countries and areas. However, GM regulation fees and associated handling
costs will ultimately result in increased hybrid seed price.

In summary, low cost hybrid seed production system and application to broad
wheat genotypes are essential for either of the systems (CHA, CMS or GMS) uti-
lized for the induction of male sterility in hybrid wheat breeding. More importantly,
improved hybrid performance via increased grain yield and yield stability, are addi-
tional critical factors necessary for the successful implementation of a hybrid wheat
breeding system.

11.3 Hybrid Performance and Abiotic Stress in Wheat

Hybrid wheat performance has been investigated in many studies using various
genotypic combinations, experiment sizes under a range of environmental condi-
tions, measuring mainly yield and yield components (summarized in Longin et al.
2012). More recently, a large-scale field study revealed positive commercial hetero-
sis for grain yield in hybrid winter wheat varieties (Gowda et al. 2012; Longin et al.
2013; Mette et al. 2015). The average yield increase by heterosis was reported to
be approximately 10% in hybrids that displayed improved resistance to frost, leaf
rust and Septoria tritici blotch across multiple field environments (Longin et al.
2013). The higher yield stability across multiple environments was also reported for
related autogamous cereals, barley and triticale (Muhleisen et al. 2014). The relative
yield advantage of hybrids over pure line cultivars is expected to be even higher
under marginal and stress conditions (Oettler et al. 2005). Enhanced yield stability
of hybrids compared to inbred lines justifies and facilitates the application of hybrid
wheat breeding to cope with increasing pressure from abiotic stressors (Muhleisen
et al. 2014).
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Assessment of yield stability is done by comparing performance of lines across
multiple environmental conditions, including all the potential biotic and abiotic stress
factors. Abiotic stresses such as high and low temperatures, drought, salinity and
mineral deficiencies or toxicities, severely reduce cereal crop yields. These stresses
are becoming more important due to the declining availability of irrigation water
and arable land, and increasing stress levels expected in a changing climate (Fleury
et al. 2010; Langridge et al. 2006). However, only a limited number of investigations
have been reported for hybrid wheat performance and yield stability against specific
abiotic stresses. Among these abiotic stresses, low temperature stress was shown
to have a significant impact on yield in European, North American and Australian
wheat production (Boer et al. 1993; Gu et al. 2008;Worland 1996). Low temperature
and frost cause tissue damage, inhibits vegetative growth and affects reproductive
development, leading to significant reductions in wheat yield (Galiba et al. 1995;
Sutka 1981). Even though the effect of low temperature has been investigated on
hybrid wheat more than any other type of abiotic stress, it is limited to only a few
studies (Longin et al. 2013; Sutka 1981, 1994). Longin et al. (2013) demonstrated
that cereal hybrids were superior to the mean of their parents for resistance to frost.
Frost tolerance is a complex trait, shown to be associated with vernalisation sensitive
gene VRN1 (Galiba et al. 1995). QTL analysis has identified a major locus for frost
tolerance on chromosome 5A and a minor locus on chromosome 1D (Baga et al.
2007). These genetic loci and associated markers could be used for selection of
inbred cross combinations and prediction of frost tolerance in hybrids.

Drought is one of the most critical stresses linked to plant survival, whereby lim-
ited water supply and/or periodic conditions of water deficit can affect all stages of
the plant life cycle. Crop plants under natural drought conditions are often subject
to a combination of stresses including high temperatures, excessive irradiance, soil
resistance to root penetration and low water potentials. These conditions affect vege-
tative growth, tiller number, reproductive development, pollination, and grain filling
which lead to significant grain yield reduction (Fleury et al. 2010; Langridge et al.
2006; Mendelsohn et al. 1994; Saini and Westgate 1999). Despite the importance
of drought stress, there are only a few studies that have demonstrated hybrid wheat
yield stability under drought stress. Hybrid performance under drought condition
was investigated in 30 wheat hybrids, which revealed that a few hybrid combi-
nations outperformed line varieties (Riaz and Chowdhry 2003). Because drought
tolerance is a complex quantitative trait associated with various phenotypes under
complex genetic control, multiple quantitative trait loci (QTLs) have been identified
(Bennett et al. 2012; Pinto et al. 2010). Drought stress is quite often accompanied
by heat stress and QTLs associated with heat tolerance can be classified as either
dependent or independent of drought stress (Mohammadi et al. 2008; Pinto et al.
2010; Bennett et al. 2012). Fokar et al. (1998) demonstrated that F1 hybrids of spring
wheat varieties significantly exceeded the mid-parent value for heat tolerance sug-
gesting that the underlying gene(s) controlling heat tolerance function in a dominant
fashion. Moreover, nitrogen use efficiency (NUE) has been investigated using ten
combinations of hybrid winter wheat varieties, with heterosis for grain yield being
higher at low N levels when compared to high N levels. In this study, an average
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of 14.6% mid-parent heterosis was observed at low N conditions relative to 4.0% at
high N levels (LeGouis and Pluchard 1996).

As demonstrated by a number of studies, hybrid wheats show both yield increase
and stability across multiple environments, especially under low yielding condi-
tions due to abiotic stresses. However, most previous investigations for hybrid wheat
performance against various abiotic stresses utilized a small number of hybrid com-
binations (Sutka 1981; Fokar et al. 1998; LeGouis and Pluchard 1996; Riaz and
Chowdhry 2003), except for a recent study (Longin et al. 2013). Further studies
are needed to address hybrid performance and yield stability, particularly related to
specific abiotic stresses. A thorough understanding of the genetic control for such
stresses will be critical for maximizing yield potential and stability, through targeted
tracking and pyramiding multiple loci for stress tolerance.

11.4 Superior Hybrid and Prediction of Hybrid
Performance

Obtaining superior hybridwheats and predicting their performance for large numbers
of possible inbred combinations requires a modelling system that links genotype to
phenotype based on parental selection. Over a century of discussion aimed at defining
the genetic basis of heterosis has culminated in three models, namely dominance,
overdominance and epistasis (Shull 1908; Bruce 1910; Crow 1948; Birchler et al.
2003; Schnable and Springer 2013). More recently, a role for epigenetics in heterosis
has been proposed (Chen 2013; Groszmann et al. 2013), adding another layer of
complexity to the genetic basis of heterosis. Therefore, selection of superior hybrids
based on genomic and genetic information from a vast number of potential single
cross combinations requires a logical and practical selection system. Large-scale
field evaluation for yield is costly, therefore breeding programs are limited in the
total number of hybrid combinations that can be tested. An ability to accurately
predict and select only those elite performing hybrid combinations for multi-site
yield trails is a critical component to any hybrid breeding program (Mette et al.
2015; Zhao et al. 2013).

Prediction of hybrid performance is generally based on both general combining
ability (GCA) and specific combining ability (SCA), as calculated from pre-existing
parental and hybrid performance training sets (Sprague and Loyd 1942; Griffing
1956). The magnitude and the ratio of variance (σ2) of GCA and SCA (σ 2

GCA/σ 2
SCA)

enables prediction of selection gain in hybrid breeding, whereby GCA effects corre-
latemorewith hybrid performance (Longin et al. 2013). Awinter wheat experimental
study using 940 hybrids revealed that GCA variance is more pronounced than SCA
variance with a medium to high (r � 0.50–0.92) correlation between predicted GCA
and the hybrid performance. This suggested that inbred parental selection predom-
inantly based on GCA effects seems to be a promising strategy towards achieving
rapid yield gain (Gowda et al. 2012). The σ 2

GCA/σ 2
SCA ratio can vary considerably
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depending upon allele frequencies within the genetic pool, therefore increasing the
σ 2
GCA/σ 2

SCA ratio can be achieved by increasing genetic divergence of the parental
groups (Fischer et al. 2008; Reif et al. 2007). The low σ 2

GCA/σ 2
SCA ratio observed in

wheat could be due to the lack of genetic diversity within the groups (Wurschum et al.
2013). Therefore, breeding genetically divergent heterotic groups for parental geno-
types is pivotal for the development of an effective hybrid breeding program. Fur-
thermore, both heterotic group development and the subsequent selection of hybrid
cross-combinations can be facilitated by genetic models.

Genomic selection (GS) has great potential to facilitate parental selections so that
released hybrid wheat varieties have multiple favourable traits suited to different
growing regions. In GS, a training population that is fully phenotyped and geno-
typed is used to estimate breeding values using statistical models such as RR-BLUP
and/or Bayesian methods (Heffner et al. 2009). Development of new genotyping
platforms, e.g. high density SNP array and genotyping-by-sequencing (GBS), in
combination with more effective computational prediction models improves cor-
relation between true breeding value and the genomic estimated breeding values.
Accuracy improvement in breeding value prediction for GS has been demonstrated
by increasing marker density via techniques such as GBS (Poland et al. 2012). GS
potential for yield improvement has been demonstrated for hybrid wheats on a rel-
atively small scale (90 hybrid combinations), however its efficacy for selection of
other agronomic traits has been demonstrated on a larger scale (>1000 hybrid com-
binations) (Miedaner et al. 2013; Zhao et al. 2013, 2014). These GS studies have
successfully shown an increase in the accuracy of prediction for target traits using
various prediction models, highlighting its potential for utilization for hybrid wheat
breeding.

Recent progress towards sequencing the wheat genome (Brenchley et al. 2012;
IWGSC 2014) and the anticipated availability of a high quality reference sequence
(IWGSC 2016) will facilitate marker discovery; hence GS for commercial hybrid
breeding will become more attractive, practical and realistic. Figure 11.2 provides a
schematic overview of a GS-based hybrid wheat breeding program, focusing on abi-
otic stresses tolerance as target traits. The availability of a wheat genome reference
sequence, high-density markers (HDM) combined with the use of GBS for assessing
diversity in germplasm collections, can now help in identifying and further devel-
oping heterotic groups. These heterotic groups are most effectively developed by
recurrent selection using germplasm derived from the broader genetic pool. Hybrid
combinations selected by a GS model that incorporates both multi-environment tri-
als and performance prediction, need to be tested and validated in the field. High-
throughput phenotyping is an approach for collating data from large parental com-
bination matrices. In combination with HDM or GBS genotypic information, this
wealth can be used to train the GS models, which in turn can improve prediction
accuracy of breeding values. Furthermore, incorporation of marker-trait associations
for biotic and abiotic stress tolerance derived from other studies can improve GS
modelling and therefore selection gain in hybrid breeding (Hoffstetter et al. 2016;
Spindel et al. 2016). Improved selection of parental combinations will reduce breed-
ing costs and will ensure heterotic yield advantage.
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Fig. 11.2 A diagram of hybrid wheat breeding program by using genomic selection (GS) with the
focus on abiotic stress tolerance. Abbreviations: GBS, genotyping-by-sequencing; GCA, general
combining ability; HDM, high density markers; SCA, specific combining ability

11.5 Conclusion

Hybrid wheat has the potential to significantly increase grain yield and yield stabil-
ity under marginal, stressed and low-yielding environments. Establishing a system,
which reduces hybrid seed production costs, is a key for success. Empirical knowl-
edge and data to support hybrid performance predictionmodels for specific biotic and
abiotic stresses is currently lacking. Research therefore should be focussed on estab-
lishing an efficient seed production system, and improving algorithms for genomic
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selection. Public-private partnerships for hybrid wheat breeding will be an important
component towards achieving these goals in the near future.
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Chapter 12
Genomic Landscapes of Abiotic Stress
Responses in Sugarcane

R. M. Devarumath, S. J. Mirajkar, A. S. Thorat, F. J. Farsangi
and P. Suprasanna

Abstract Occurrence of abiotic stresses imposes devastating threat to global food
security by causing more than 50% loss in crop yield and productivity. Under the
scenario of global climate change, these abiotic stresses pose a serious challenge
to ensure sustainable food production for the rapidly escalating world population.
Plants respond to a wide range of adverse environmental conditions by dynamic
regulation of various physiological, developmental, and biochemical pathways in
order to tolerate stress and/or to sustain growth. A thorough understanding of such
responses to abiotic stresses is, therefore, imperative to design tolerant crop varieties.
In sugarcane, genetic advancements have beenmade by adopting novel crop breeding
strategies to obtain improved varieties for abiotic stresses using novel biotechnolog-
ical approaches, combined with approaches involving genetics, molecular biology,
breeding, and physiology. Lately, transgenic approaches have been emerged as ver-
satile tools to combat the adverse impacts of abiotic stresses on crop production and
have proven to be one of the prospective ways for the genetic enhancement. Uti-
lization of current molecular biology tools to determine the regulatory mechanisms
for abiotic stress tolerance and engineering stress tolerant crops depends on the
expression of specific set of stress-related or responsive genes. As a result, several
abiotic stress-responsive genes have been identified, isolated, cloned and utilized
for building stress tolerance in susceptible genotypes. Transgenic sugarcane lines
carrying genes for abiotic stress tolerance have been developed by using Agrobac-
terium-based method besides other methods of gene transfer. Extensive research has
been carried out in these areas and several transgenic sugarcane plants with enriched
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abiotic stress tolerance have been advanced for field trials. The present chapter sum-
marizes studies on insights into the molecular responses and genetic manipulation
of abiotic stress in sugarcane.

Keywords Abiotic stress tolerance · Transcriptome · Salinity · Genetic
engineering · Sugarcane · Transgenic plants

12.1 Introduction

Sugarcane (Saccharum officinarum L.) is one of the ten most cultivated crops that
contribute more than 80% of the global sugar production (McQualter et al. 2004;
Lakshmanan et al. 2005). It is cultivated across the tropical and subtropical regions of
the world not only for the production of sugar but also it is considered as a potential
bio-fuel resource for ethanol production. However, sugarcane yield is significantly
affected by numerous abiotic stresses like salinity, alkalinity, water-logging, drought
etc. Amongst these, drought is the major cause of decreased productivity both in
terms of magnitude and severity which result in rapid reduction in photosynthesis
and growth inhibition (deAndrade et al. 2015). Being a typical glycophyte, sugarcane
exhibits modest or no growth along with ≥50% yield reduction when grown under
saline conditions (Akhtar et al. 2003; Wiedenfeld 2008). Besides this, in the flood-
prone areas, sugarcane crop growth is severely affected by reduced germination
and difficulties in root establishment, crop lodging, reduced growth and tillering
and consequently yield drop (Solomon 2014). Elucidating tolerance mechanisms
would facilitate the development of cultivars tolerant to salinity and drought, allowing
cultivation in trivial areas, while assuring the viability and sustainability in such
stress-prone areas of the industry (Lakshmanan and Robinson 2014).

Abiotic stresses trigger a series of morphological, physiological, biochemical and
molecular changes in plants (Tuteja et al. 2012). Stress-induced gene expression is
generally categorized as: (1) genes encoding proteins with yet unknown functions,
(2) genes encoding proteins with known structural or enzymatic functions, and (3)
genes encoding regulatory proteins (Bhatnagar-Mathur et al. 2008). The defense
mechanism has molecular networks including components of hormone signaling,
reactive oxygen species (ROS) scavenging system, changes in amino acid profile
and lipid peroxidation (Fig. 12.1). Plant genetic engineering offers a powerful mean
of over-expression of a broad-spectrum single gene to up or down-regulate spe-
cific metabolic step in order to modulate specific abiotic stress response. However,
this approach has overlooked the fact that stress tolerance results from the action
of several of such stress responsive genes, and single gene tolerance is unlikely to
be sustainable. As a result, there has been a continued interest to develop alterna-
tive strategies that emerged to transform plants with regulatory genes. Activation of
early-responsive genes within minutes of stress signal includes a variety of transcrip-
tion factors, while late-responsive genes consist of the major stress-responsive genes
which modulate and encode the proteins needed for synthesis of membrane stabiliz-
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Fig. 12.1 Key components of drought stress-related mechanisms in sugarcane. Impact of drought
stress conditions on an array of components those are responsive depending on duration, intensity
and genetic makeup of sugarcane cultivars. Pathways for individual components may or may not
be influenced by one another and their mutual interactions are always dynamic. (Source Ferreira
et al. 2017)

ing proteins, antioxidants and osmolytes, for instance, late embryogenesis abundant
(LEA) like proteins (Tuteja and Sopory 2008). Recent studies have reported the
development of transgenic sugarcane plants comprising of various genes that encode
a number of transcription factors (TFs), compatible organic osmolytes, LEA pro-
teins, and heat shock proteins (HSPs). Cis-acting promoter elements and TFs are
significant regulators of modulated gene expression and their over-expression has
proven to be helpful for promoting stress tolerance in plants (Shinozaki et al. 2003).
Genetic engineering allows control on spatio-temporal expression of a particular tar-
get gene for optimal function and metabolic efficacy. This is specifically important
when the action of a given transcription factor or a gene is desired only at a specific
time and/or under specific conditions of stress. This chapter presents various stress-
induced biochemical and molecular responses and also summarizes the cloned and
characterized transcription factors in sugarcane. The efforts undertaken to impart
abiotic stress tolerance in sugarcane by employing several stress-related transgenes
are also discussed.

12.2 Stress-Induced Biochemical and Molecular Responses
in Sugarcane

Sugarcane possesses a C4 metabolism and is grown across tropical and subtropical
areas (Inman-Bamber and Smith 2005; Zhang et al. 2006). Although acquiescent to
high-temperature, sugarcane is prone to freezing temperatures (Zhao and Li 2015).
The low temperatures slow down the sugarcane growth, forcing the conversion of
reducing sugars into sucrose. Clements (1962) and Du et al. (1999a, b) reported that
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the sugarcane cultivars differing in original growth habitat showed sharp differences
in cold sensitivity to photosynthesis.

Salinity stress severely brings down sugarcane productivity and quality of the
product, due to drastic reduction in photosynthetic efficiency (Akhtar et al. 2003)
that continues to accumulate less sucrose in the stalk (Rozeff 1995). In fact this is
causedmainly by disruption in the homeostasis of water potential and ion distribution
both at cellular and whole plant levels (Munns and Tester 2008). On the other hand,
extreme temperatures and drought stress are the two major factors that severely
affect agricultural production and cause economic impacts in many regions of the
world. Effects of drought on sugarcane growth and development depend on plant
growth stage, magnitude and duration of the stress. In general, drought in early and
mid growth stages mainly reduces cane yield leading to low sucrose yield. However,
moderate ormild drought in late growth stage favors improvements in sucrose content
in stalks (Zhao and Li 2015).

Biochemical studies in sugarcane have explored several aspects of cellular
metabolism under salinity stress that laid a solid foundation for our understanding
of the adaptation mechanisms to high salinity. For instance, in vitro studies found
increased leaching of salts from NaCl-treated calli compared to the control calli,
which suggested that sugarcane can be considered as a Na+-excluder plant species.
On the other hand, corresponding higher concentration of K+ ions was found in the
control calli than in the NaCl-treated calli. This obvious phenomenon of increased
Na+ and corresponding decline in K+ ion concentrations ultimately led to growth
inhibition and reduced cell viability, demonstrating the typical glycophytic nature of
sugarcane (Patade et al. 2009). Wahid and Ghazanfar (2006) reported that a salinity-
tolerant clone of sugarcane accumulated less Na+ and more K+ compared to a sensi-
tive contrasting clone, and consequently exhibited a higherK+:Na+ ratio. Antioxidant
properties of flavonoids havebeen considered important for tolerance, andwere found
to be greater in tolerant sugarcane clones as compared to the susceptible clones. This
confirmed the role of flavonoids to protect sugarcane from ion-induced oxidative
stress during salinity stress (Wahid and Ghazanfar 2006). Furthermore, priming of
sugarcane setts with NaCl solutions could explain the tolerance behavior and stress
memory of sugarcane seedlings to NaCl treatments (Patade et al. 2009). Now, it
is well proven that priming treatments modulate numerous pathways in association
with induction of an antioxidant pathway that ensures plant growth under stressful
conditions (Atreya et al. 2009).

The application of cDNA microarray methodologies in sugarcane has greatly
helped to identify candidate genes for water stress tolerance. Rocha et al. (2007)
subjected sugarcane plants to water deprived state for 24, 72, and 129 h, and using
cDNA microarray approach, changes in gene expression were studied. Their results
showed that fifty-two percent of the 179 differentially expressed genes to be drought-
responsive. Similarly, Prabu et al. (2010) identified 158 genes in the sugarcane
variety Co740 under water-deficit conditions by using PCR-based cDNA suppres-
sion subtractive hybridization and dot blot technique. Sequencing and annotation of
expressed sequence tags (ESTs) from the public database revealed that most EST-
encoded proteins were involved in cellular organization, signal transduction, protein
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metabolism, and/or transcription. The WRKY-like transcription factor, abscisic acid
(ABA)-inducible gene, drought-induced proteins HVA22, and MIPS were shown to
be expressed in the stressed plants (Marone et al. 2001; Jiang et al. 2012). Changes
in the generation of ROS alongside changes in superoxide dismutase and ascorbate
peroxidase activities were observed in sugarcane leaves when grown under methyl
viologen (paraquat)-induced oxidative stress (Chagas et al. 2008). Studies involving
drought tolerant and sensitive cultivars resulted in finding a total of 165 genes to
be regulated in response to water stress and most of these genes were involved in
cellular functions (Rodrigues et al. 2009). On the other hand, short term exposure (up
to 24 h) to salinity (200 mM NaCl) and iso-osmotic (20% w/v polyethylene glycol
PEG 8000) stresses showed up-regulation of several stress-responsive genes such
as shaggy-like kinase (sugarcane shaggy like protein kinase-SuSk) and NHX genes
belonging to the families of Na+/H+ and K+/H+ antiporters (Patade et al. 2011a, b).

The mechanism of photosynthetic changes in sugarcane leaves upon exposure
to chilling temperature (10°C) showed substantial accumulation of aspartate and
alanine amino acids (Du et al. 1999a, b). Furthermore, few other experimental evi-
dences concluded that orthophosphate dikinase (PPDK) and NAD-malate dehydro-
genase (NADP-MDH) are the key enzymes that regulate the cold sensitivity during
photosynthesis process.

Sugarcane transcriptome studies have unraveled modulation of gene expression
of several stress-associated genes. The expression profile of 1,536 ESTs was inves-
tigated in sugarcane cultivar SP80-3280 exposed to cold stress for 3–48 h (Nogueira
et al. 2003). Thirty four cold-inducible ESTs were identified, of which 20 were cold-
responsive genes including ESTs for cellulose synthase, an ABI3-interacting protein
2, a phosphate transporter, and a negative transcription regulator. One of the iden-
tified transcription factors, SsNAC23, belonging to the NAC family was reported to
have a role in growth and development of sugarcane and under abiotic and biotic
stresses (Olsen et al. 2005). Accumulation of stress-responsive metabolites such as
proline, glycine betaine, and soluble sugars was found to be higher in sugarcane
sprouts exposed to high temperatures such as 40°C (Wahid 2007). In another study,
these authors found that the expression of heat stress-induced dehydrin proteins
(DHNs) was shown to improve the integrity of cellular membranes and suggested
that expression of DHNs was independent of dehydration stress and DHNs have
definitive protective role like other heat stress proteins (Wahid and Close 2007).

Theyield and thephysiological responses of sugarcane are also affectedby toxicity
ofmetals like copper (Cu) and cadmium(Cd),which leads to antioxidant response and
increase in metallothioneins (MTs). MTs are low-molecular-weight, cysteine-rich,
metal-binding proteins, which play a vital role in detoxification (phytoremediation),
metal transport adjustment and metal ion homeostasis (Cobbett and Goldsbrough
2002). DNA gel blot analyses using MT probe found homology of eight fragments
with MT Type I, 10 bands with MT Type II and 8 with MT Type III proteins (Sereno
et al. 2007). Similar studies conducted with another metal (Zn) revealed that it inter-
fered with the normal mitosis and led to the inhibition of DNA synthesis as well as
photosynthetic pigment content within leaf tissue (Jain et al. 2010).
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12.3 Genomics of Abiotic Stress Tolerance in Sugarcane

Genomics approaches through transcriptome sequence data are beingmade available
for sugarcane, mainly generated by EST sequencing and also by methodologies
such as probe hybridization arrays, or using known genes from other crops. With
over 238,000 redundant ESTs derived from 26 diverse cDNA libraries, sugarcane
expressed sequence tag (SUCEST) is the biggest database (Vettore et al. 2001). This
endeavor brought a broader platform compared to former ESTs produced by other
consortia in countries like the United States (Ma et al. 2004) and Australia (Casu
et al. 2003, 2004; Bower et al. 2005).

Microarray platforms have also been used to evaluate sugarcane expression pro-
files. Initially, these were used to examine gene expression variances between matur-
ing and immature stem tissues of sugarcane (Casu et al. 2003, 2004). About 4,715
non-redundant random ESTs obtained from stems (immature and maturing) and
roots were studied using glass microarrays. Subsequently, a custom made cDNA
microarray (3,598 genes) platform was developed for other purposes such as to pro-
file effects of elevated atmospheric CO2 level on sugarcane leaves (De Souza et al.
2008). Further attempts were made to characterize sugarcane leaf transcriptome
by using SAGE (Serial Analysis of Gene Expression) analysis that showed ~70%
transcripts matching to at least one sugarcane assembled sequence (SAS) having
pre-assigned putative function (Calsa and Figueira 2007). Gene ontology studies of
these transcripts revealed that the gene product was most frequently located in pho-
tosystem (PS) I reaction center besides other sites such as PS I, PS II and thylakoid
complexes.

In spite of the availability of sufficient data for sugarcane transcriptome repre-
senting diverse conditions, only a few reports comprise of transcriptome sequences
fromdrought-stressed libraries.A study involving expression profiling of 1,545 genes
concerned in signaling processes showed that about 485 differentially expressed can-
didate genes were responsive to water deficit stress conditions (Rocha et al. 2007).
Another study wherein sequencing of >35,000 ESTs of an Indian subtropical variety
was carried out, an attempt to profile the selected EST clusters using real-time PCR
resulted in an overall two-fold increase in relative expression of twenty-five stress-
related clusters from sugarcane grown under water-deficit stress (Gupta et al. 2010).
Iskandar et al. (2011) studied expression profile of genes of proline biosynthesis path-
way and found that they were associated with both sucrose accumulation and water
deficit in the internode tissue of a high sucrose cultivar under water deficit stress.
Except POX (down-regulated after 15 days), all other genes showed up-regulation
under water-deficit stress. However proline content was negatively correlated with
sucrose concentration suggesting that proline has no osmo-protective role in sugar-
cane culms.

There has also been considerable focus on the transcription factors (TFs) (such as
AP2/EREBP, bZIP,WRKY,MYB, and zinc finger proteins), which play a crucial role
in stress responses by regulating numerous biochemical and physiological functions
of the organism (Grotewold 2008;Du et al. 2013; Ambawat et al. 2013). Accordingly,



12 Genomic Landscapes of Abiotic Stress Responses in Sugarcane 231

development of transgenic plants over-expressing such TFs could improve tolerance
to several stresses, particularly to water stress by elevation of water-use efficiency.

Peroxidases, heat shock proteins and water transport proteins are known to play
important roles in plant defense under water deficit conditions (Borges et al. 2001;
Xiong and Zhu 2002; Wang et al. 2004; Casu et al. 2005). An investigation of 3,575
ESTs of a drought-tolerant sugarcane cultivar yielded total of 165 differentially
expressed genes, specifying a huge number of genes related with drought tolerance
(Rodrigues et al. 2011). A data mining investigation of SUCEST database yielded
enhanced expression of genes encoding co-chaperones, chaperones, and other pro-
teins (Borges et al. 2001).Many of such genes have vital importance for the synthesis
of chaperone HSP70 (heat-shock protein) and its co-factors (viz., HSP40), as well
as in accumulation to other encoder proteins (viz., HSP100, HSP90), and small HSP
chaperones (Wang et al. 2004). The heat stress response regulates chaperone move-
ment of small HSPs in sugarcane (Tiroli and Ramos 2007).

Studies on the expression profiles of twelve genes in the leaves of a drought-
tolerant genotype of sugarcane and its comparative analysis with those obtained
from other gene expression revealed considerable fluctuations in the patterns of gene
expression (De Andrade et al. 2015). This variation was proposed to be due to a
high degree of complexity in the response of sugarcane to water stress. Based on
semi-quantitative RT-PCR analysis, Prabu et al. (2010) showed increased accumu-
lation of a 22-kDa drought induced protein, along with higher transcript expression
of WRKY, MIPS and ornithine-oxo-acid amino transferase during initial stages of
stress induction that was followed with a gradual reduction. The study also revealed
differential expression of several other sugarcane transcripts in response to water
deficit stress using a PCR-based cDNA suppression subtractive hybridization (SSH)
technique.

The transcript analyses of sugarcane plants exposed to short-term (up to 24 h) salt
(NaCl, 200 mM) or iso-osmotic polyethylene glycol-PEG 8000 (20% w/v) stress
conditions was carried out to study differential expression of stress responsive genes
(Patade et al. 2011c). The study reported down regulation of a sugarcane homologue
of NHX that is a member of Na+/H+ and K+/H+ antiporter family in response to the
salinity stress. Upon long-term exposure to salt or PEG stress, transcript levels of
bothPDH andP5CS genes were improved (Patade et al. 2009), which was correlated
with increased proline accumulation under stressful conditions (Patade et al. 2011a).
Gene expression profiles were compared under water stress in tolerant sugarcane
roots (Vantini et al. 2015). Two diverse cultivars, a drought susceptible (SP86-155)
and a drought tolerant (RB867515), were estimated at four sampling time points (1, 3,
5, and 10 days) using the cDNA-amplified fragment length polymorphism technique.
A transcriptome study of a cold susceptible sugarcane hybrid (CP72-1210) and a cold
tolerant Saccharum spontaneum (TUS05-05) revealed a total of 35,340 and 34,698
SAS genes, respectively, and were found to be expressed before and after exposure
to chilling stress (Park et al. 2015).

Recent studies have also focused on high throughput technologies for unrav-
eling genomics resource under drought stress. Simultaneous application of high-
throughput transcriptome profiling by Super-SAGE and the Solexa sequencing tech-
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nology has been adopted to study sugarcane transcriptome under drought stress
conditions (Kido et al. 2012). The resultant Super-SAGE libraries comprised of
8,787,315 tags (26 bp), and after exclusion of singlets they gave information about
205,975 unitags. Gene Ontology (GO) studies of the ESTtags permitted the in silico
identification of 213 upregulated unitags that are responsive to abiotic stresses.

In summary, transcriptomics studies have significantly contributed to the under-
standing of expression of genes involved in water stress response in sugarcane.
Despite the large number of reports, it is necessary to undertake direct correlation of
gene expression to higher tolerance level with well-characterized sugarcane genetic
lines or mutants (Ferreira et al. 2017). Most studies have been performed at pot level
and hence extension of such studies to field conditions needs to be done.

12.4 Sugarcane miRNA and Stress Responses

MicroRNAs (miRNAs) are highly conserved and naturally occurring transcripts gen-
erally short in size (20–24 nt), single stranded and, non-coding. Past studies have
proved that their expression and a number of miRNAs are either up or down reg-
ulated by abiotic stresses, suggesting that they may be involved in regulation of
other stress responsive genes during stress and variation (Sunkar and Zhu 2004;
Shriram et al. 2016). The contribution of miRNA during drought and salt stress con-
ditions was reported through enhanced expression of miR159 in sugarcane (Patade
and Suprasanna 2010). These authors also compared the expression of MYB under
salinity and drought stress conditions to study the modification in target gene expres-
sion in response to alterations in over or under expression of miR159. Lin et al.
(2014) reported a total 57 miRNA families out of which 23 were conserved, and
34 were novel. More than 400 targets genes of 44 miRNA families were identified
from drought stress imposed drought tolerant sugarcane cultivar (ROC22) during
PEG stress. The study also investigated 11 gene families that were differentially
expressed in normal and treated plants. Out of these, nine were up regulated and
remaining two gene families were down regulated. The potential targets of these
11 miRNA families were associated with plant growth and stress resistance. With
the exceptions of SPBP, NCBP and BCP, the other genes were down-regulated in
response to drought stress. Although many miRNAs were recognized, but only few
studies have been performed to discover the mature miRNA sequences and investi-
gate their expression in response to drought stress in sugarcane (Ferreira et al. 2012;
Thiebaut et al. 2012; Gentile et al. 2013).

Thiebaut et al. (2012) selected eight sugarcane varieties on the basis of drought
tolerance. Drought tolerant and sensitive plants were exposed to drought imposition
by withholding of irrigation, for every 24 h till 12 weeks, and it was found that higher
number of miRNAs was detected only in drought tolerant variety. Similar results
were also obtained by Ferreira et al. (2012) using contrasting high and low tolerance
sugarcane varieties grown under water limiting conditions under controlled green
house conditions for 12 weeks and kept without water for 2–4 days. Few miRNA
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likemiR397,miR164were foundonly in the greenhouse grown (control) plantswhile
some miRNA like miR166, miR160, miR169, miR172 and miR171 were detected in
field grown plants. Out of the total microRNAs detected, somewere up regulated and
some were down regulated, depending on the variety. Prediction of the six precursors
and the targets of the differentially expressed miRNA using an in silico approach
suggested that majority of the targets played important role in drought tolerance.

Gentile et al. (2013) investigated two drought tolerant sugarcane varieties in the
field under irrigation with and without water for 28 weeks. The authors identified
18 miRNA families including 30 established miRNA sequences. Out of these, 13
miRNAs expressed differentially during stress and 7 were commonly distinguished
in both the varieties. Only five miRNAs (induced-miR 399 and miR160; repressed-
miR166, miR396 and miR171) from irrigated field plants showed a similar profile in
both of them. Furthermore involvement of other factors such as type of variety, nature
of stressed tissue (leaves, seedlings, root and spikelets) and growth environment
(greenhouse, field, hydroponic culture system) on expression pattern of miRNA
was also reported (Gentile et al. 2015). These studies contributed greatly to our
understanding of the function of miRNAs in the regulation of drought stress under
field-grown sugarcane providing important avenues to develop new drought tolerant
sugarcane varieties. Thiebaut et al. (2014) performed deep sequencing analysis to
identify the small RNAswhich are regulated in leaves and roots of sugarcane cultivars
with different drought sensitivities (sensitive cultivar SP90-1638, tolerant cultivars
SP83-2847 and SP83-5073). The study identified 28 (leaf) and 36 (root) conserved
miRNA families whichwere differentially expressed in leaves and roots, respectively
upon exposure towater deficit conditions. Khan et al. (2014) used a subtractive cDNA
library from leaf tissue, sequenced the cDNAclones and their putative functionswere
annotated. The study showed that majority of ESTs were related to stress (15%),
catalytic activity (13%), cell growth (10%) and transport related proteins (6%). The
authors then conducted an in silico investigation to detect novel microRNAs which
have a role in the regulation of plant responses under water stress in sugarcane.

12.5 Genetic Engineering in Sugarcane

Genetic engineering has shown great promise and potential for incorporation of for-
eign gene resource in sugarcane aimed at genetic enhancement for desirable gene(s)
to develop transgenic plants bearing unique traits, such as strengthening of built-in
defense mechanism, enhanced nutritional content, yield and agronomic attributes.
Initial efforts were made to augment abiotic stress tolerance by modifying the rear-
rangement of genes through genetic engineering that are either directly linked to
encounter adverse environmental conditions; straightly concerned in defense of cells
against water scarcity or the genes that encode proteins vital for regulating signal
transduction pathways in response to environmental stress. Successful efforts are
being made to transfer plant and non-plant genes either individually or in combina-
tion, to improve abiotic stress tolerance in sugarcane (Table 12.1). Enhancement in
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drought tolerancewas achieved by enhancing proline accumulation in transgenic sug-
arcane (Molinari et al. 2007). Drought tolerant transgenic sugarcane was developed
by incorporatingDREB2A transcription factor (EMBRAPA, Brazil) which is helpful
for regulating the genetic machinery for controlling abiotic stresses like drought,
salinity, etc. On the other hand, genes for enhanced sucrose accumulation were iden-
tified and validated through genetic transformation, and increased sucrose accumu-
lation was achieved in transformed plants compared to control plants (Papini-Terzi
et al. 2009). In a first study, transcription activator-like effector nuclease (TALEN)
was used to induce mutations in a highly conserved region of the caffeic acid O-
methyltransferase (COMT) of sugarcane (Jung and Altpeter 2016) suggesting that
suchmethods canbeused for genomeediting for other important traits.GMsugarcane
has been developed in several countries and is approved in Indonesia for commercial
cultivation since it could provide 20–30% higher sugar production under drought
(Parisi et al. 2016).

12.6 Conclusions

Abiotic stresses adversely impact sugarcane crop production and productivity by elic-
iting a series of biochemical, cellular andmolecular changes. The genomic endeavors
to catalogue these responses to external stimuli are challenging due to the complexity
and polyploid genome of sugarcane. The plant tolerance responses are orchestrated
by regulatorymechanisms that need to be understood to fine-tune themetabolic path-
ways to achieve tolerance against different abiotic stresses. Thus, manipulation of
metabolic pathways assumes great significance. Genetic engineering has emerged as
a novel strategy for sugarcane crop improvement to enable incorporation of genes
for novel traits, such as stress tolerance, qualitative and quantitative traits, and plant
architecture. Attempts have been made to enhance abiotic stress tolerance through
the manipulation of pathways involved in modulating regulator and effector genes
involved in protection of plants against salinity, drought, temperature, heavy metals
etc. Several candidate genes that produce metabolites, enzymes, osmolytes, osmo-
protectants, and chaperones etc. have been used to develop transgenic sugarcane for
abiotic stress tolerance.More effortswill be necessary to unravelmolecular cross-talk
machinery involving signal transduction pathways in plants subjected to combina-
tion of stress factors of drought, temperature, and salinity. The recent advancements
of genome editing are being attempted in sugarcane. Since most of the traits are
polygenic and because of lack of readily available targets, strategies will have to
be made available to target a specific gene copy or several homologous copies for
successful genetic engineering in sugarcane.
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Table 12.1 Examples of transgenic sugarcane developed for abiotic stress tolerance

Gene Gene origin Method Response Reference

P5CS Vigna
aconitifolia

Microprojectile Overexpression
of proline,
drought stress
tolerance

Molinari et al.
(2007)

AVP1 Arabidopsis
thaliana

Agrobacterium Salt stress
tolerance

Kumar et al.
(2014)

H+-Ppase AVP1 Arabidopsis
thaliana

Microprojectile Drought stress
tolerance

Raza et al. (2016)

P5CS Vigna
aconitifolia

Microprojectile Salt stress
tolerance

Guerzoni et al.
(2014)

RmBetA Rhizobium
meliloti

Agrobacterium Drought stress
tolerance

Waltz (2014)

Trehalose
synthase (TSase)

Grifola frondosa Agrobacterium Osmotic stress
tolerance

Wang et al.
(2005)

Trehalose
synthase (TSase)

Grifola frondosa Agrobacterium Drought stress
tolerance

Zhang et al.
(2006)

OsglyII Oryza sativa Microprojectile Methylglyoxal
and salt stress
tolerance

Rani et al. (2012)

EaHSP70 Erianthus
arundinaceus

Agrobacterium Drought stress
tolerance

Augustine et al.
(2015a)

EaHSP70 Erianthus
arundinaceus

Agrobacterium Drought and
salinity tolerance

Augustine et al.
(2015b)

AtDREB2A Arabidopsis
thaliana

Agrobacterium Drought stress
tolerance

Reis et al. (2014)

EaDREB2 Erianthus
arundinaceus and
Pisum sativum

Agrobacterium Drought and
salinity tolerance

Augustine et al.
(2014)

EaDREB2 +
PDH46

Erianthus
arundinaceus and
Pisum sativum

Agrobacterium Drought and
salinity tolerance

Augustine et al.
(2014)

rd29A Arabidopsis
thaliana

Microprojectile Drought stress
tolerance

Wu et al. (2008)

PDH45 Pisum sativum Agrobacterium Drought and
salinity tolerance

Augustine et al.
(2014)

Isopentenyl
transferase (IPT)

Arabidopsis
thaliana

Microprojectile Cold stress
tolerance

Belintani et al.
(2012)

AtBI-1 Arabidopsis
thaliana

Microprojectile Drought stress
tolerance

Ramiro et al.
(2016)
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Chapter 13
Genomics Assisted Breeding for Abiotic
Stress Tolerance in Millets

C. Tara Satyavathi, R. K. Solanki, R. K. Kakani, C. Bharadwaj,
Tripti Singhal, Jasdeep Padaria, V. Khandelwal, Rakesh Srivastava,
R. S. Tomar and M. A. Iqubal

Abstract Large-scale genomic resources have been generated in sorghum, finger
millet and pearl millet leading to availability of large number of molecular markers
and transcriptome sequences. With the availability of genome sequence in sorghum,
pearl millet, and others in progress, integration of genomic technologies in millet
breeding has now started in general for most of the stresses. This has raised the
status of millets to genome rich crops from resource poor crops. Genomics-assisted
breeding is an advanced breeding approach, wherein both the genomic information
and the phenotypic selection are considered concurrently for designing phenotypes.
Genomics-assisted breeding is strongly supported by third generation DNA sequenc-
ing techniques, which have provided enormous nucleotide information. Data mining
and allele identification tools have allowed us to generate information for genes of
interest and their functional specificity. For genomics-assisted breeding the basic
need is to have maximum genomic information, trait specific mapping populations
and highly precise phenotyping facilities. In millets, whole genome sequence infor-
mation of sorghum, pearlmillet and foxtailmillets are available,which can be utilized
efficiently to identify candidate genes for abiotic stress tolerance and for advancing
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breeding strategies such as genomic selection. QTLs conferring stress tolerance have
been identified in few of the major millet crops but fine mapping and development of
gene specificmarkers for high throughput selection needs emphasis. This chapter is a
brief account of the accomplishments made in field of genomics for important millet
crops like sorghum, pearl millet, foxtail millet, proso millet etc. and its application
in improving abiotic tolerance.

Keywords Drought · Genomics-assisted breeding · Heat and high temperature
Millet

13.1 Introduction

Genomics-assisted breeding is an advanced breeding approach, wherein phenotypic
selection (PS) and genomic selection (GS) both are taken into account together.
It may also be called as ‘Third Generation Plant Breeding’. First generation plant
breeding (PB) was dependent entirely on phenotypic selection; in second genera-
tion selectable molecular/biochemical information was correlated with traits. In the
third generation plant breeding, both the genomic information and the phenotypic
selection are considered concurrently for designing phenotypes. The paradigm shift
to genomics-assisted breeding happened only due to development of third genera-
tion DNA sequencing techniques, which provided enormous nucleotide information.
Data mining and allele identification tools have allowed to tag genes of interest and
to know its functional specificity. In addition, it has transpired molecular informa-
tion into designing genetic or genomic architecture of any plant type. Genome wide
nucleotide survey and its analysis has become a job of days; locating gene(s) or
region of interest on genome using bio-informatics tools has become less daunting.
For genomics-assisted breeding to enter into crop improvement domain, the basic
needs are to have maximum genomic information, trait specific mapping popula-
tions and highly precise phenotyping facilities. These three combinations demand a
team approach for designing plants of future. This chapter is a brief account of the
accomplishments made in genomics of important millet crops and its application in
improving abiotic tolerance.

13.2 Millet Crops: An Overview

Millet is a broad term used for diverse group of small seeded annual C4 panicoid
grasses whose seeds are consumed as food and biomass as fodder. The inherent
ability to survive and produce in adverse environments, high genetic adaptability and
high nutrition value led to domestication of millet in the Neolitic and Bronze Age
period. History of millet cultivation reveals that they are crops of the ancient world
(Zhang et al. 2012a, b). Archaeological findings confirm millet production way back
to 10,000 years ago (Lua et al. 2009). The ancient vedic Sanskrit text ‘Yajurveda’
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Table 13.1 Important millet crops and their common names, center of origins and chromosome
numbers

Crop Scientific name Origin Chromosome number

Sorghum Sorghum bicolor North Eastern Africa 2n � 2x � 20

Pearl Millet Pennisetum glaucum West Africa 2n � 2x � 14

Finger Millet Eleusine coracana East Africa, India 2n � 4x � 36

Foxtail Millet Setaria italic Eastern Asia 2n � 2x � 18

Proso Millet Panicum miliaceum Egypt and Arabia 2n � 4x � 36

Barnyard Millet Echinochloa
frumentacea, E. utilis

India, Japan 2n � 6x � 54

Little Millet Panicum sumatrense Southeast Asia 2n � 4x � 36

also mentions about foxtail millet (priyangava), barnyard millet (aanava) and black
finger millet (shyaamaka). There are nearly 10 genera and 14 species of millets,
which belong to Poaceae family. Based on the cultivation area, millets are generally
characterized as major or minor; major millets include pearl millet having highest
area under cultivation, followed by sorghum, fingermillet, prosomillet, foxtailmillet;
whereasmillets of minor value are polishmillet, Indian barnyardmillet, burgumillet,
little millet, kodo millet, browntop millet, guinea millet etc. Compared to wheat and
rice, millet crops are rich in protein, fiber, minerals, iron and calcium. Millets are
natural wealth provided by nature, having huge nutraceutical potential (Table 13.1).

13.2.1 Millets as Potential Abiotic Stress Tolerant Crops

The potential productivity of any crop is affected by biotic and abiotic factors. Impor-
tant abiotic factors causing yield losses at farmers’ field includeswater stress, temper-
ature stress, soil related problems like salinity, alkalinity, acidity or elemental toxicity,
lodging from wind, rain, snow or hail (Lobell et al. 2009). Abiotic stresses are major
constrains to global food security; besides affecting yield, they also affect quality of
harvested produce (Wang and Frei 2011). Among the main cultivated crops across
globe, millets are considered to be climate resilient due to their minimum vulnerabil-
ity to environmental stresses, high adaptive potential to vast ecological conditions,
high tolerance to abiotic stresses and low input requirement (Bandyopadhyay et al.
2017). There are various morphological, genetical and biochemical factors, which
contribute to potential of millets for being abiotic stress tolerant (Table 13.2).
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Table 13.2 Important traits in millet crops imparting abiotic stress tolerance

Trait/metabolites/genes Specificity Reference

Morphological traits

Earliness, plasticity to
flower as per pattern of
rainfall

Early life cycle completion confers escape from
water stress, temperature stress at critical growth
stages

Bidinger et al.
(2007)

Small leaf area, waxy
leaves and plant surface,
thickened cell wall

Reduced evapo-transpiration rate, high water use
efficiency,

Bandyopadhyay
et al. (2017)

Early, dense and long
root system

Quickly colonizes in soil, avoids early drought
and deep roots helps in terminal drought

Li and Brutnell
(2011), Passot
et al. (2016),
Kumar and
Panneerselvam
(2014)

Physiological/ biochemical traits

Enhanced Photosynthetic
rates

Due to C4 system, millets have high water use
efficiency under warm temperature, higher copy
number and enhanced expression of MDH
(Malate dehydrogenase) and PPDK (pyruvate
orthophosphate dikinase) genes

Sage and Zhu
(2011)

Enhanced level of
metabolites

Increase in antioxidants and reactive oxygen
species (ROS) scavenging

Lata et al.
(2011)

Molecular/genes traits

Over-expressed genes in
abiotic stress

ASR (Abscisic acid ripening), AGO (Argonaute
protein encoding), ATG (Autophagy), LEA (Late
embryogenesis abundant protein), ARDP
(ABA-responsive DRE binding protein), DREB
(dehydration responsive element binding protein),
NAC transcription factor, Aldose reductase,
Glutamine synthetase, Pyyrroline-5-carboxylate
reductase, OPR (12-oxophytodienoic acid
reductase), WD-40, PHGPX (Phospholipid
hydroperoxide glutathione peroxidase), NAC
Transcription Factors, bHLH transcription factor,
Dehydrin 7, Heat shock factor, Ascorbate
peroxidase, β-carbonic anhydrase, Glutathione
reductase, VDAC (Voltage-dependent anion
channel), Dehydroascorbate reductase

Bandyopadhyay
et al. (2017)

13.2.2 Millet Genomics: An Overview

13.2.2.1 Molecular Markers

Genome characterization using polymerase chain reaction (PCR) and non-PCRbased
techniques in millets has accounted in identification of numerous markers for appli-
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Fig. 13.1 Information on number of molecular markers identified in foxtail millet (Lata 2015;
Bandyopadhyay et al. 2017)

cation in genetic improvement (Figs. 13.1, 13.2 and 13.3). In foxtail millet, more
than 75,000 markers (Fig. 13.1) are identified [64% (50,305) SSR markers; 26%
(20,278) transposable elements-based markers]. In pearl millet, more than 1500
markers (Fig. 13.2) are reported (38% SSR and 38% DArT markers), whereas in
finger millet (Fig. 13.3) only 180 markers are reported. In foxtail millet, in the past
20 years four physical maps and three genetic maps (based on single nucleotide
polymorphism (SNP), SSR and restriction fragment length polymorphism (RFLP)
markers) are reported. In pearl millet, in the past 25 years 7 linkage/genetic maps are
reported (based on expressed sequence tags EST-SSR & STS markers; DArT and
SSR markers; EST-SSR markers; RFLP and SSR markers and gene-based SNPs).

13.2.2.2 Whole Genome Studies

Whole genomes of millet crops have been deciphered for sorghum, pearl millet and
foxtail millet (Table 13.3). In sorghum, more than 85% of genome is sequenced
covering 699 Mb of 800 Mb genome; 29,488 genes, 5,599 SSR markers sites and
38,85,829 SNP sites were identified. In pearl millet, 90% of the genome is mapped,
using whole genome data and GBS (genotyping-by-sequencing) of 994 lines consti-
tuting 260 B lines, 320 R lines and 345 Pearl Millet inbred Germplasm Association
Panel (PMiGAP); 88,256 SSR motifs are tagged (Varshney et al. 2017). Using these
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SSR motifs, 74,891 SSR site-specific primers are designed, which will be helpful
in MAS for strengthening the breeding programs in pearl millet. In foxtail millet,
more than 85% of the genome has been mapped accounting for 423 Mb; repeat
elements comprised of 29% of the genome and 38,801 genes have been mapped in
the genome (Zhang et al. 2012a, b). The genomic homology among millet crops
has produced interesting results. A close genomic synteny is observed among pearl
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Table 13.3 Genomic information extracted from whole genome data in millet crops

Crop Genome
size

Genome
sequences

Total
genes

SSR
identified

SNP
identified

References

Pearl Millet 1.96 Gb 1.79 Gb 38,579 88,256 29,542,173 Varshney et al.
(2017)

Foxtail
Millet

490 Mb 423 Mb 38,801 – – Zhang et al.
(2012a, b)

Sorghum 800 Mb 699 Mb 29,448 5599 38,85,829 Devos (2010),
Yonemaru et al.
(2009), Bekele
et al. (2013)

Table 13.4 List of genomic databases developed in millets

Pearl Millet Pearl Millet Drought Transcriptome
database (PMDTDb) http://webtom.cabgrid.res.in/pmdtdb/

(Unpublished)

Foxtail
millet

Foxtail millet Marker Database
(FmMDb): http://www.nipgr.res.in/foxtail.html

Foxtail millet Transcription Factor
Database (FmTFDb) http://59.163.192.91/FmTFDb/

Foxtail millet miRNA Database
(FmMiRNADb) http://59.163.192.91/FmMiRNADb/

Foxtail millet Transposable
Elements-based Marker Database
(FmTEMDb)

http://59.163.192.91/FmTEMDB/

Sorghum Sorghum Functional Genomics
Database http://structuralbiology.cau.edu.cn/sorg

hum/index.html
Sorghum transcriptome database

http://sorghum.riken.jp/morokoshi/Ho
me.html

SorGSD—Sorghum genome SNP
database http://sorgsd.big.ac.cn/

Sorghum Transcription Factor Database http://www.planttfdb_v1.cbi.pku.edu.cn
:9010/web/index.php?sp=sb

millet, sorghum and foxtail millet genomes- with 14,398 common genes. Pairwise,
pearl millet and sorghum have 15,078 common genes, pearl millet and foxtail millet
have 15,887 common genes and sorghum and foxtail millet share 16,688 genes in
common (Varshney et al. 2017). The genomic information generated in these crops
is also available in public domain (Table 13.4).

http://webtom.cabgrid.res.in/pmdtdb/
http://www.nipgr.res.in/foxtail.html
http://59.163.192.91/FmTFDb/
http://59.163.192.91/FmMiRNADb/
http://59.163.192.91/FmTEMDB/
http://structuralbiology.cau.edu.cn/sorghum/index.html
http://sorghum.riken.jp/morokoshi/Home.html
http://sorgsd.big.ac.cn/
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13.3 Status of Genomic Understanding of Millets
for Abiotic Stress Tolerance

13.3.1 Sorghum

In semi arid regions of world sorghum is mainly cultivated as a staple food and
fodder crop.Molecular studies have provided valuable information on gene(s)/QTL’s
existing in sorghum conferring tolerance against drought and other abiotic stress.

13.3.1.1 QTL Mapping

In sorghum, stay green trait is themost important trait strongly associated with termi-
nal drought tolerance. Crasta et al. (1999) developed recombinant inbred line (RIL)
mapping population between B35 and Tx430. Based on simple interval mapping
using RFLP markers, 3 major stay green QTLs (SGA, SGD and SGG) were tagged
contributing 42%of phenotypic variation. Further composite intervalmapping-based
and QTL × environment interaction-based studies validated the QTL’s association
with stay green trait. A mapping population developed between B35 x Tx7000 was
tested over environment by Subudhi et al. (2000) for four stay green QTLs (Stg1,
Stg2, Stg3 and Stg4) identified earlier by Xu et al. (2000), which suggested impor-
tance of Stg2 for control of stay green trait. Near isogenic lines (NILs) carrying stay
green QTL in rabi sorghum were studied by Chaudhari and Fakrudin (2017). They
identified 16 genes linked with three QTLs qSTG1, qSTG2 and qSTG3, which were
reported to have significant role in drought tolerant pathways.

13.3.1.2 Transcriptome Analysis

Transcriptome analysis for heat and drought in sorghum revealed role of unique tran-
scription factorsMYB78andATAF1, heat shockproteins andpolyaminebiosynthetic
pathways in abiotic stress tolerance (Johnson et al. 2014). Aquaporin gene (AQP)
families are responsible for water transportation in plants. Genome wide survey
deciphered 41 non-redundant AQP genes belonging to 4 families- plasma membrane
intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like intrinsic
proteins (NIPs), small basic intrinsic proteins (SIPs) in sorghum, and SbAQP gene
has been identified as a valuable resource for stress adaptation (Reddy et al. 2015).

13.3.2 Pearl Millet

Pearlmillet is highly tolerant to drought (2.5 tolerance degree in a scale of 3; Creswell
andMartin 1993) but terminal drought during reproductive stage significantly reduces
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yield and in-turn productivity. The crop has the inherent ability to recover from inter-
mittent drought due to its fast growth rate and asynchronous tillering habit (Bidinger
et al. 1987). Breeding for drought resistance or tolerance is one of the major breed-
ing objectives for pearl millet breeders. The complex nature of drought has provided
limited scope in characterizing the genetic stock for drought resistance, which has
limited use of trait-based plant breeding strategy to develop drought resistant geno-
types. Molecular breeding using genomic tools have certainly made us understand
the genetics behind drought tolerance/resistance.

13.3.2.1 QTL Mapping

Drought resistant/tolerant QTL have been mapped in the crop responsible for yield
under drought conditions. In 2004 and 2005, a major QTL, DT-QTL, was located
on linkage group (LG) 2 in two independent mapping populations i.e., H77/833-
2 × PRLT 2/89-33 and ICMB 841 × 863 B (Bidinger et al. 2005; Serraj et al.
2005). This QTL was validated by developing NILs of H-77/833-2 using MABC
(markers assisted back crossing) approach. DT-QTL is reported to confer high leaf
abscisic acid (ABA) content and limit the transpiration rates at high vapor pressure
deficits, hence conferring drought tolerance (Kholová et al. 2010). Yadav et al. (2016)
reported the advances made in utilization of genomic tools in tagging the DT-QTL,
its validation and fine mapping. Another drought tolerance QTL have been reported
using mapping population ICMB 841 × 863B (Yadav et al. 2004) on LG 5 and LG
6. Bidinger et al. (2007) reported QTLs on LG 3 and LG 4 for late drought stress
conditions. Among all QTLs, DT-QTL on LG 2 has the highest LOD score (6.3–6.9)
and represents 32% of phenotypic variation (Yadav et al. 2004)). Further, absence of
QTL× environment interaction (Yadav et al, 2004) and its consistency in two genetic
backgrounds has made it a major target for marker-assisted breeding for enhancing
yielding ability of pearl millet under terminal or post flowering drought stress.

13.3.2.2 Transcriptome and Germplasm Association Panel Studies

Sehgal et al. (2012) reported 75 new EST gene-based markers for identifying candi-
date genes underlying the DT-QTL in pearl millet. Eighteen new gene-basedmarkers
were mapped having association with DT-QTL on LG-2, which earlier had only five
EST-SSRmarker loci (Rajaram et al. 2010). The study by Sehgal et al. (2015) involv-
ing 37 SSR and CISP markers on 250 lines of PMiGAP revealed that in DT-QTL
(LG 2) UBC (ubiquitin conjugating enzyme), LHCP (light-harvesting chlorophyll
a/b-binding proteins) and PhyC (phytochrome C)were the key regulatory and down-
stream genes, which were associated with the stay green trait. Most importantly,
significant association of a SNP in putative acetyl CoA carboxylase gene was found
with grain yield, grain harvest index and panicle yield under all water stress treat-
ments.



250 C. T. Satyavathi et al.

13.3.3 Foxtail Millet

Foxtail millet has inherent ability to withstand against drought. The phenotypic
makeup of the plant makes it efficient to use water better than other cereals and
millet crops. The plants of foxtail millet have relatively small leaf area, cells walls
are thick and the root system is dense which makes it a model crop for studying
drought tolerance mechanism.

13.3.3.1 QTL Mapping

Dehydration responsive element binding (DREB) proteins play a critical role against
abiotic stress-mediated gene expression. In foxtail millet, DREB homologs have
been tagged and a SNP is reported in SiDREB2 gene and an allele-specific marker
(ASM) has been developed, which can be used for identifying putative drought tol-
erant genotypes (Lata et al. 2011). The SiDREB2-ASM was validated on 122 foxtail
millet accessions (Lata and Prasad 2014), which were characterized as highly tol-
erant, tolerant, sensitive and highly sensitive based on PEG induced dehydration
stress. The SiDREB2-ASM is found to be controlling 20% of phenotypic variation
and hence important for MAS application in foxtail millet for screening drought tol-
erant genotypes. Wild progenitor i.e., Green foxtail (Setaria viridis) (from Uzbek-
istan) and S. italica cv. Yugu 1 (from China) were crossed to develop a mapping
population to identify QTL for early seedling osmotic adjustment. Out of the18
QTL characterized for the target trait, 8 QTLs were contributed by wild progenitor
S. viridis (Qie et al. 2014) showing the importance of wild species in identifying
valuable genes in millets. Wang et al. (2014) characterized a novel late embryoge-
nesis abundant (LEA) gene SiLEA14 in foxtail millet. Transgenic foxtail millet and
Arabidopsis plants with SiLEA14 gene showed high degree of tolerance to salt and
osmotic stress. Overexpression of abscisic acid stress ripening gene ASR1 in tobacco
enhanced drought and oxidative tolerance in transgenic plants showing the poten-
tial of transgenic approaches for developing abiotic stress tolerance in foxtail millet
(Feng et al. 2016).

13.3.3.2 MicroRNA and Genome Studies

MicroRNAs role in drought stress is also tagged in foxtail millet. Yadav et al. (2016)
based on genome wide survey identified 14 known and 29 novel miRNA families
responsive to dehydration stress. Genome wide analysis assisted in identifying 124
C2H2 type zinc finger transcription factor (TFs) in the foxtail genome. Of these,
expression profile of candidate SiC2H2 genes were studied in response to drought,
salinity and cold stress, which showed differential pattern of the genes at a given
point of time of stress (Muthamilarasan et al. 2014)
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13.3.4 Finger Millet

Fingermillet is considered abiotic stress tolerant, however, the information pertaining
to application of genomics in finger millet is very limited (Gupta et al. 2017).

13.3.4.1 Transcriptome and Genome Analysis

In few of the recent studies, expression analysis done under drought conditions
revealed presence of genes induced under stress viz., EcDehydrin7, Ec-apx1, Met-
allothionein, Farnesylated protein ATFP6, Farnesyl pyrophosphate, Protein phos-
phatase 2A, RISBZ4, NAC 67, EcNAC1. RNA sequencing, assembling and qRT-
PCR in finger millet cultivar ML-365 identified 2866 drought responsive genes, of
which the major genes were MYB, WRKY, ZFHD, MYC, ABF, NAC, GRF, AREB,
and NF-Y transcription factors (Hittalmani et al. 2017).

13.3.5 Proso Millet

Genomic information pertaining to proso millet is very meager; a few studies are
reported onESTs andgene expression. Saha et al. (2016) studied 211ESTwhichwere
derived from stress induced leaf tissues. Thirty two PmWRKY genes are reported to
be involved in abiotic stress response (Yue et al. 2016). The first linkagemap in proso
millet was reported by Rajput et al. (2016). They made an F2 mapping population
of Huntsman × Minsum cross and genotyped it with GBS markers and phenotyped
for agro-morphological traits including water use efficiency. Eighteen QTLs were
mapped on 14 linkage groups.

13.4 Salinity Stress

13.4.1 Pearl Millet

The response of the major DT-QTL identified on LG2 in pearl millet was evaluated
in a range of salinity and alkalinity stress conditions, which showed that this QTL
also governs tolerance effect against saline and alkaline conditions (Sharma et al.
2011). The study also determined that DT-QTL limits the accumulation of Na+ ions
in the leaves. Genome scan studies have shown that wild pearl millet populations
possess valuable genes for abiotic stress tolerance (Salazar et al. 2016).
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13.4.2 Finger Millet

Trancriptome analysis of leaf from salt tolerant genotype Trichy 1 showed upreg-
ulation of various functional group of genes belonging to families of transporters,
transcription factors, cell signaling, osmotic homeostasis and biosysntheis of compat-
ible solutes, whereas down regulation of flavonoids biosysthesis was also observed
in salt tolerant genotype (Rahman et al. 2014).

13.4.3 Sorghum

In Sorghum, meager information is available on genomic application for salt toler-
ance. Buchanan et al. (2005) studied transcriptome following exposure of seedlings
to high salinity (150 mM NaCl) in addition to osmotic stress (20% polyethylene
glycol) or abscisic acid (125 mM ABA). Authors demonstrated that there exists a
complex gene regulatory network that differentially modulates gene expression in
a tissue- and kinetic-specific manner in response to ABA, high salinity and water
deficit.

13.5 Conclusion

Next generation sequencing technologies have provided an insight into the nucleotide
arrangements of a crop aswell as have allowed generation of large number ofmarkers
required for genomics-assisted breeding inmany crops. Inmillets too, whole genome
sequence information of sorghum, pearl millet and foxtail millets have been made
available recently, which has been utilized efficiently to identify candidate genes
for abiotic stress tolerance and for advancing breeding strategies such as genomic
selection. QTLs conferring stress tolerance have been identified in few of the major
millet crops but fine mapping and development of gene specific markers for high
throughput selection needs emphasis. Though efforts are going on for identification
of genomic regions conferring stress tolerance against salinity and heat stress but
the available information in millet crops is meager. Hence, it is necessary to give
importance to these traits also besides drought to design climate resilient genotypes.

References

Bandyopadhyay T, Muthamilarasan M, Prasad M (2017) Millets for next generation climate-smart
agriculture. Front Plant Sci 8:1266. https://doi.org/10.3389/fpls.2017.01266

Bekele WA, Wieckhorst S, Friedt W, Snowdon RJ (2013) High-throughput genomics in sorghum:
from whole-genome resequencing to a SNP screening array. Plant Biotech J 11(9):1112–1125

https://doi.org/10.3389/fpls.2017.01266


13 Genomics Assisted Breeding for Abiotic Stress Tolerance … 253

Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Identification of QTLs for grain
yield of pearl millet [Pennisetum glaucum (L.) R. Br.] in environments with variable moisture
during grain filling. Crop Sci 47:969–980

Bidinger FR, Mahalakshmi V, Rao GDP (1987) Assessment of drought resistance in pearl millet
[Pennisetum americanum (L.) Leeke]. Factors affecting yield under stress. Aust J Agric Res
38:37–48

Bidinger FR, Serraj R, Rizvi SMH et al (2005) Field evaluation of drought tolerance QTL effects
on phenotype and adaptation in pearl millet [Pennisetum glaucum (L.) R. Br.] topcross hybrids.
Field Crops Res 94:14–32

Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT et al (2005) Sorghum bicolor’s
transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58(5):699–720

Chaudhari GN, Fakrudin B (2017) Candidate gene prediction and expression profiling of near
isogenic lines (NILs) carrying stay-green QTLs in rabi sorghum. J Plant Biochem Biotechnol
26(1):64–72

Crasta OR, Xu WW, Rosenow DT et al (1999) Mapping of post-flowering drought resistance traits
in grain sorghum: association between QTLs influencing premature senescence and maturity.
Mol Genet Genomics 262(3):579–588

Creswell R, Martin FW (1993) Dryland farming: crops and techniques for arid regions. ECHO
Staff, p 23

Devos KM (2010) Grass genome organization and evolution. Curr Opin Biol 13:139–145
Feng ZJ, Xu ZS, Sun J et al (2016) Investigation of the ASR family in foxtail millet and the role of
ASR1 in drought/oxidative stress tolerance. Plant Cell Rep 35:115–128

Gupta N, Srivastava AK, Pandey VN (2017) Biodiversity and nutraceutical quality of some Indian
millets. Proc Natl Acad Sci India, Sect B Biol Sci (April–June 2012) 82(2):265–273

Hittalmani S, Mahesh HB, Meghana DS et al (2017) Genome and transcriptome sequence of finger
millet [Eleusine coracana (L.) Gaertn.] provides insights into drought tolerance and nutraceutical
properties. BMC Genom 18:465–481

Johnson SM, LimFL, FinklerA et al (2014) Transcriptomic analysis of Sorghumbicolor responding
to combined heat and drought stress. BMC Genom 15:456–475

Kholová J, Hash CT, Kumar PL et al (2010) Terminal drought-tolerant pearl millet [Pennisetum
glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit.
J Exp Bot 62:1431–1440

Kumar AIP, Panneerselvam R (2014) ROS scavenging system, osmotic maintenance, pigment
and growth status of Panicum sumatrense Roth. under drought stress. Cell Biochem Biophys
68:587–595. https://doi.org/10.1007/s12013-013-9746-x

Lata C, Prasad M (2014) Association of an allele-specific marker with dehydration stress toler-
ance in foxtail millet suggests SiDREB2 to be an important QTL. J Plant Biochem Biotechnol
23(1):119–122

Lata C, Bhutty S, Bahadur RP et al (2011) Association of an SNP in a novel DREB2-like gene
SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401

Lata C (2015) Advances in Omics for enhancing abiotic stress tolerance in millets. Proc Indian
Natn Sci Acad 81(2):397–417

Li P, Brutnell TP (2011) Setaria viridis and Setaria italica model genetic systems for the panicoid
grasses. J Exp Bot 62:3031–3037. https://doi.org/10.1093/jxb/err096

Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and
causes. Ann Rev Environ Res 34:179–204

LuaH, Zhanga J, LiubK et al (2009) Earliest domestication of commonmillet (Panicummiliaceum)
in East Asia extended to 10,000 years ago. Proc Natl Acad Sci 106(18):7367–7372

Muthamilarasan M, Bonthala VS, Mishra AK et al (2014) C2H2 type of zinc finger transcription
factors in foxtail millet define response to abiotic stresses. Funct Integr Genomics 14(3):531–543

Passot S, Gnacko F, Moukouanga D et al (2016) Characterization of pearl millet root architecture
and anatomy reveals three types of lateral roots. Front Plant Sci 7:829 Published online 2016
June 13. https://doi.org/10.3389/fpls.2016.00829

https://doi.org/10.1007/s12013-013-9746-x
https://doi.org/10.1093/jxb/err096
https://doi.org/10.3389/fpls.2016.00829


254 C. T. Satyavathi et al.

Qie L, Jia G, Zhang W et al (2014) Mapping of quantitative trait locus (QTLs) that contribute
to germination and early seedling drought tolerance in the interspecific cross Setaria italic and
Setaria viridis. PLoS ONE 9(7):e101868. https://doi.org/10.1371/journal.pone.0101868

Rahman HN, Jagadeeshselvam R, Valarmath B et al (2014) Transcriptome analysis of salinity
responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-
sequencing. Plant Mol Biol 85(4–5):485-503

Rajaram V, Varshney RK, Vadez V et al (2010) Development of EST resources in pearl millet and
their use in development and mapping of EST-SSRs in four RIL populations. In: Abstracts of the
plant and animal genome conference, San Diego, California, USA, 373

Rajput SG, Santra DK, Schnable J (2016) Mapping QTLs for morpho-agronomic traits in proso
millet (Panicum miliaceum L.). Mol Breed 36:1–18

Reddy PS, Tata S, Rao RB et al (2015) Genome-wide identification and characterization of the
aquaporin gene family in Sorghum bicolor (L.). Plant Gene 1:18–28

Sage RF, Zhu XG (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62:2989–3000.
https://doi.org/10.1093/jxb/err179

Saha D, Channabyre GMV, Arya L, Verma M, Bansal KC (2016) Genetic and genomic resources
of small millets. Crit Rev Plant Sci 35:56–79

Salazar CB, Thuillet AC, Rhoné B et al (2016) Genome scan reveals selection acting on genes
linked to stress response in wild pearl millet. Mol Ecol 25(21):5500–5512

Sehgal D, Rajaram V, Armstead IP et al (2012) Integration of gene-based markers in a pearl millet
genetic map for identification of candidate genes underlying drought tolerance quantitative trait
loci. BMC Plant Biol 12(9):2–13

Sehgal D, Skot L, Singh R et al (2015) Exploring potential of pearl millet germplasm association
panel for association mapping of drought tolerance traits. PLoS ONE 10(5):e0122165. https://d
oi.org/10.1371/journal.pone.0122165

Serraj R, Hash CT, Rizvi SMH et al (2005) Recent advances inmarker-assisted selection for drought
tolerance in pearl millet. Plant Prod Sci 8:334–337

Sharma PC, Sehgal D, Singh D, Singh G, Yadav RS (2011) A major terminal drought tolerance
QTL of pearl millet is also associated with reduced salt uptake and enhanced growth under salt
stress. Mol Breed 27:207–222. https://doi.org/10.1007/s11032-010-9423-3

Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in
sorghum (Sorghum bicolor L. Moench): Consistency across genetic backgrounds and environ-
ments. Theor Appl Genet 10(5–6):733–741

Varshney RK, Shi C, Thudi M et al (2017) Pearl millet genome sequence provides a resource to
improve agronomic traits in arid environments. Nat Biotechnol 35(10):969–976

Wang Y, Frei M (2011) Stressed food—the impact of abiotic environmental stresses on crop quality.
Agric Ecosyst Environ 141(3–4):271–286

Wang M, Li P, Li C, PanY Jiang X, Zhu D, Zhao Q, Yu J (2014) SiLEA14, a novel atypical LEA
protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol 14:290

Xu W, Subudhi PK, Crasta OR et al (2000) Molecular mapping of QTLs conferring stay-green in
grain sorghum (Sorghum bicolor L. Moench). Genome 43(3):461–469

YadavA,KhanY, PrasadM (2016)Dehydration-responsivemiRNAs in foxtailmillet: genome-wide
identification, characterization and expression profiling. Planta 243:749–766

Yadav RS, Hash CT, Bidinger FR et al (2004) Genomic regions associated with grain yield and
aspects of post-flowering drought tolerance in pearl millet across stress environments and tester
background. Euphytica 136:265–277

Yonemaru J, Ando T, Mizubayashi T et al (2009) Development of Genome-wide simple sequence
repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.)
Moench). DNA Res 16(3):187–193

Yue H, Wang M, Liu S, Du X, Song W, Nie X (2016) Transcriptome-wide identification and
expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum
miliaceum L.). BMC Genomics 17:343. https://doi.org/10.1186/s12864-016-2677-3

https://doi.org/10.1371/journal.pone.0101868
https://doi.org/10.1093/jxb/err179
https://doi.org/10.1371/journal.pone.0122165
https://doi.org/10.1007/s11032-010-9423-3
https://doi.org/10.1186/s12864-016-2677-3


13 Genomics Assisted Breeding for Abiotic Stress Tolerance … 255

Zhang G, Liu X, Quan Z et al (2012a) Genome sequence of foxtail millet (Setaria italica) provides
insights into grass evolution and biofuel potential. Nat Biotechnol 30(6):550–556

Zhang J, LuH, GuW,WuN, ZhouK et al (2012b) Earlymixed farming ofmillet and rice 7800 years
ago in the middle yellow river region. China. PLoS ONE 7(12):e52146. https://doi.org/10.1371/
journal.pone.0052146

https://doi.org/10.1371/journal.pone.0052146


Index

A
ABA signaling, 7
Ability to fix nitrogen, 188, 202
Abiotic stress, 50–54, 59, 61, 241

drought, 212
frost, 212
heat, 212

Abiotic stress tolerance, 1, 9, 10, 13, 225, 226,
227, 230, 233–235, 243

biochemical traits, 244
genes, 244
morphological traits, 244

Abiotic stress tolerance mechanisms, 50
Abscisic acid, 7, 9, 108, 110, 149, 249, 252
Accumulation, 22
Adaptation specific genes, 150
Advanced Backcross-QTL (AB-QTL), 202
Allelic variation, 42, 56, 93
Amplified Fragment Length Polymorphism

(AFLP), 74, 93, 138
Aquaporins, 131, 137
ARGONAUTE, 114, 244
Association mapping, 32, 34, 40, 54–56, 59,

61, 71, 77, 79, 83, 194
Atmosphere, 137, 188

B
Bacterial Artificial Chromosome

(BAC) physical map, 194
Barley crop improvement, 50
Biotic and abiotic stresses, 36, 52, 92, 116,

189, 193, 198
Breeding, 149, 151, 155, 167–174

genomics assisted, 93, 98

C
Ca2+/calmodulin-dependent protein kinase,

110
Candidate genes, 9, 14, 26, 32–34, 37, 41–44,

52, 55, 59, 79, 157, 228, 230, 234
Canopy Temperature (CT), 75, 192
cDNA, 35, 36, 38–40
Cereals, 1, 3–6, 8–10, 12, 13, 82, 211
Chemical Hybridization Agent (CHA), 212,

214
CIMMYT, 34
Climate change, 50, 51, 57, 59, 61
Climate resilient varieties, 32, 43
Cold, 51, 53, 55, 56
Cold-regulated proteins, 109
Combining ability

general (GCA), 218
specific (SCA), 218

Comparative genomics, 3, 10, 50
Concepts of drought

avoidance, 191
escape, 190
tolerance, 187–192, 197, 200–202

Consensus genetic map, 194
Cowpea species

cultivated, 193, 202
wild, 193, 201, 202

C-Repeat Binding Factors (CBF), 56, 58, 111,
112, 122, 165

D
Dehydration tolerance, 149, 190
Dehydrin, 97
Dehydrin protein, 109, 229

© Springer Nature Switzerland AG 2019
V. R. Rajpal et al. (eds.), Genomics Assisted Breeding of Crops for Abiotic Stress
Tolerance, Vol. II, Sustainable Development and Biodiversity 21,
https://doi.org/10.1007/978-3-319-99573-1

257



Digital Imaging of Root Traits (DIRT), 192
Direct selection, 1, 13, 51, 52
DNA, 138
DNA Amplification Fingerprinting (DAF), 138
DNA methylation, 12
Doubled haploids, 72–74
Drought, 1–4, 6–8, 11, 12, 50–53, 56, 59–61,

145–152, 156–158, 165–169
adaptation, 149–151, 157, 167, 168
avoidance, 149, 156, 166
escape, 149
resistance, 148, 149, 151, 166
tolerance, 149–151, 157, 165–168, 174

Drought tolerance
dehydration responsive element binding

(DREB), 250
GBS-SNP marker, 251
genes, 250, 251
markers assisted back crossing (MABC),

249
microRNA, 250
near isogenic lines (NILs), 248
QTL Mapping in millets, 248–250
SiDREB2 gene, 250
SiLEA14 gene, 250
transcriptome, 247–249
type 1, 190
type 2, 190

E
Endophyte, 97
Epicuticular wax, 149
Epigenetic control, 10
Expressed Sequence Tags (ESTs), 110, 116

F
Fertility restoration gene (Rf), 214, 215
Fescue, 94
Festuca pratensis, 94, 97
Forage crop, 92, 98
Fraction of transpirable soil water, 133, 134
Fructan, 94
Functional genomics, 50, 59, 79
Functional proteins, 165

G
Gene cloning, 32, 34, 35, 38–40, 44
Gene expression, 35, 36
Genetic engineering, 227, 233, 234
Genetic linkage maps, 5, 194, 203

Genetic manipulation, 12
Genetic Modification (GM), 212, 216
Genetic resources center, 193
Genome Wide Association Mapping (GWAM),

198, 201, 203
Genome-Wide Selection (GWS), 84, 85
Genomic assisted breeding, 241
Genomic database

millets, 247
Genomics, 230, 231, 234
Genomic Selection (GS), 61, 71, 77, 78, 84, 98,

213, 219–221
Genotype, 132–139
Genotyping-By-Sequencing (GBS), 34, 41, 93,

219, 220, 245
Global Crop Diversity Trust, 202
Global warming, 168
Grains are rich in

carbohydrates, 188
folic acid, 188
minerals, 188
protein, 188

Green revolution, 70
Growth, Oxidative stress, 24
Guard cells, 4, 8–10, 137

H
Harvest index, 132, 139
HarvEST:Cowpea, 194
Heat Shock Protein (HSP), 36, 39, 42, 96,

108–110
Heterosis, 211, 215–218
High temperature tolerance

millets, 252
QTL, 252

Histone modification, 11
Hybrid

breeding, 211, 212, 218, 219
performance, 216–218, 220
rice, 212
vigour, 212
wheat, 211, 212, 215–220

Hydrogen peroxide, 107–109
Hydrogen tetrachloroaurate, 137
Hydroxyl radical, 108

I
Illumina Cowpea iSelect Consortium Array,

194
Imperata cylindrica, 72, 73

258 Index



Impression method, 5
Improved variety, IT98 K-499-35, 194
Inbred lines, 72, 74
India, 146–149, 168, 169
Institute of Tropical Agriculture (IITA), 193,

200, 201, 203
International nurseries, 34
Introgression Libraries (ILs), 202
Ions channel, 7

J
Jasmonate, 7, 108
Jasmonic acid, 110

L
Late Embryogenesis Abundant (LEA), 53, 96,

97, 110, 157, 227, 250
Leaf hydraulic conductance, 137
Leaf rolling, 3, 83, 149–151, 156, 191
Linkage disequilibrium, 83
Lolium perenne, 93

M
Maintainer line, 214–216
Male sterility

cytoplasmic (CMS), 212
genic (GMS), 212

Mapping populations, 73, 78, 79, 83
Marker-Assisted Backcrossing (MABC), 198,

200, 203
Marker-assisted breeding, 194, 197
Marker Assisted Recurrent Selection (MARS),

84, 188, 198, 200, 201, 203
Marker Assisted Selection (MAS), 61, 72, 73,

79, 84, 85, 133, 151, 157
Membrane stability, 108, 109, 149
Meta-QTLs, 155–157
Metabolome, 37, 38, 174
Millets, 241, 243
Mitogen-activated protein kinases, 110
Molecular markers, 187, 194

EST-SSR, 245, 249
millets, 243, 244
SNP, 245
SSR, 245

Multi Environment Trials (MET), 219
Multiparent Advanced Generation Inter-Cross

(MAGIC) population, 74, 197
MYC-type basic helix–loop–helix, 112

N
NARS centers, 200
Nested Association Mapping

(NAM) populations, 74

Next generation sequencing, 32,
40, 81

O
Omics, 79, 81
Osmo-protectant, 150
Overexpression, 36, 39, 53, 54, 165, 250

P
Pathogenesis-related proteins, 108
Peanut, 132–139
Phenomics, 81, 82
Phenomics platform, 151
Photoinhibition, 94
Photosynthesis, 106, 108–110
Phytohormones, 53, 115
Post-transcriptional gene silencing, 114
Protein

antifreeze, 95
Ice Recrystallization Inhibiting (IRI), 95

Proteome, 37, 38

Q
QTL introgression, 168
QTL mapping, 34, 54, 55
QTL mapping, Toxicity, 23
Quantitative Trait Loci (QTL), 1, 2, 71, 72,

133, 151, 152, 155–158, 168, 194, 197,
198, 200–203, 217

R
Rainfed ecosystems, 147
Reactive Oxygen Species (ROS), 96, 107, 108,

110
Recombinant inbred, 72
Repeat-associated siRNAs (ra-siRNAs), 114
Rhizosphere, 137
Rice, 146–151, 156–158, 165–169
RNA sequencing, 41
Root system, 149, 151, 156, 168
Ryegrass

hybrid, 91, 97
Italian, 91
perennial, 93–96, 98

S
Salicylic acid, 7, 109, 110
Salinity, 1, 2, 6, 10, 51, 53, 57–59
Salinity stress tolerance, 251

millets, 252
NaCl tolerance, 252
QTL, 252

Seed Production Technology (SPT), 216
Selection, 27

Index 259



Shovelomics, 192
Shuttle transport, 9
Signalling factors, 165
Silver Nitrate, 137
Simple Sequence Repeats (SSR), 74, 75, 79, 80
Single Nucleotide Polymorphism (SNP), 40,

41, 80, 81
Soil water status, 137
Stomatal

closure, 7–9, 11
morphology, 1
regulation, 2, 4, 7, 8, 10
traits, 1–6, 10, 12–14

Stomatal pore, 137
Stress

abiotic, 92, 95–98
biotic, 92
cold, 95
drought, 92, 96
flooding, 92, 97
heat, 92, 96
salinity, 92

Sub-Saharan Africa (SSA), 187–189, 203
Sugarcane, 225–234

T
Terminal drought, 187, 189, 191, 192
Tolerance, Stress, 22
Traditional breeding, 1, 13
Transcription factor, 56, 58, 95, 96, 165
Transcriptome, 81
Transcriptomics, 32, 35
Transgenic plants, 231
Transmembrane water transport, 137
Transpiration Efficiency (TE), 132, 192
Transpiration Rate (TR), 132–134, 136, 139,

191, 192

Transport, 131
Transporter, Marker, 25
Tropical Legumes project of Bill and Melinda

Gates Foundation, 203
Turgor, 137

U
University of California, Riverside (UCR), 200
USAID, 203

V
Validation, 40, 42
Vapor flux, 137
Vapour Pressure Deficit (VPD), 133, 136, 191,

192

W
Water channeling protein, 137
Water deficit, 132, 134, 135
Water stress, 145, 147, 150, 156, 157, 166
Whole genome

genome size, 247
genotype based sequencing, 247
Germplasm Association Panel, 245
millets, 246

Whole-Genome Shotgun (WGS), 194
Wild relatives of wheat, 71
Wooden box screening technique, 190

X
XYZ system, 215

Y
Yield, 132, 134, 135, 139

increase, 216, 218
stability, 211, 216–218, 220

260 Index


	Preface: Volume II
	Acknowledgements
	Contents
	Contributors
	1 Genetics and Genomics of Stomatal Traits for Improvement of Abiotic Stress Tolerance in Cereals
	1.1 Introduction
	1.2 Stomatal Responses for Stress Tolerance
	1.3 Evaluation of Stomatal Features
	1.4 Mapping of QTL for Stomatal Traits
	1.5 Hormonal Signalling Pathway and the Effect of ABA on Stomatal Closure
	1.6 Complex Cereal Stomata Are Better Designed for Abiotic Stress Response
	1.7 Membrane Transporters for Cereal Stomatal Function
	1.8 Comparative Genomics for Stomatal Traits in Cereals
	1.9 Epigenetic Control of Stomata
	1.10 Genetic Manipulation of Stomatal Traits
	1.11 Evaluation of Stomatal Traits for Indirect Selection of Abiotic Stress Tolerant Crops
	1.12 Conclusions
	References

	2 Quantitative Trait Loci Mapping of Heavy Metal Accumulation and Resistance in Crop Plants
	2.1 Introduction
	2.2 Heavy Metal Toxicity in Plants
	2.3 Heavy Metal Uptake and Transport in Plants
	2.4 QTL Mapping for Improving the Heavy Metals Resistance in Crop Plants
	2.5 Conclusion
	References

	3 Progress Towards Identification and Validation of Candidate Genes for Abiotic Stress Tolerance in Wheat
	3.1 Introduction
	3.2 Mapping Approaches Identified Candidate Genes and Quantitative Trait Loci for Abiotic Stress Tolerance in Diverse Elite Germplasm
	3.3 Exploitation of ‘Omics’ Platforms
	3.3.1 Transcriptomics
	3.3.2 Proteomics and Metabolomics

	3.4 Status of Cloned Genes for Abiotic Stress Tolerance and Their Characterization in Wheat
	3.5 Role of Next Generation Sequencing (NGS) Tools
	3.6 Validation of Candidate Genes
	3.6.1 Allelic Variation in Transcription Factors and Known Target Genes for Abiotic Stress Tolerance
	3.6.2 Cosegregation of Fine Mapped QTL/Cloned Genes with Phenotype in the Existing Germplasm or Diverse Accessions

	3.7 Conclusions
	References

	4 Genomics and Molecular Breeding for Improving Tolerance to Abiotic Stress in Barley (Hordeum Vulgare L.)
	4.1 Introduction
	4.2 Breeding Challenges for Abiotic Stresses
	4.3 Mechanisms of Abiotic Stress Tolerance in Barley
	4.4 Bi-Parental and Association Mapping to Dissect Abiotic Stress Response in Barley
	4.5 Mapping Studies for Frost Tolerance
	4.6 Mapping Studies for Salinity Tolerance
	4.7 Mapping Studies for Drought Tolerance
	4.8 Future Perspectives
	References

	5 Innovative Role of DH Breeding in Genomics Assisted-Crop Improvement: Focus on Drought Tolerance in Wheat
	5.1 Introduction
	5.2 Doubled Haploids for Development of Bi-parental Mapping Populations
	5.3 Role of Doubled Haploids in Development of Multiparent Advanced Generation Intercross (MAGIC) Populations
	5.4 Doubled Halpoidy Breeding and Genomic Selection
	5.5 Genomics-Assisted Breeding to Improve Drought Tolerance in Wheat
	5.6 Application of ‘Omics’ of Drought Tolerance for Precise Genotyping
	5.7 Next Generation Sequencing (NGS) Approach
	5.8 Understanding Drought Tolerance Through Precise Phenotyping
	5.9 Discovery of QTLs Responsive to Drought-Related Traits
	5.10 Marker-Assisted Selection
	5.11 Genome-Wide Selection (GWS)
	5.12 Future Strategies
	References

	6 Genomics Assisted Approaches for Improving Abiotic Stress Tolerance in Forage Grasses
	6.1 Introduction
	6.2 Next Generation Genomic Tools and Resources for Forage Crops
	6.3 Cold Stress and Freezing Tolerance
	6.3.1 Photoinhibition
	6.3.2 Fructans and Frost Tolerance
	6.3.3 Antifreeze Proteins
	6.3.4 Regulation of Cold Tolerance Mechanisms

	6.4 Drought and Salt Stress
	6.4.1 Plant Responses to Osmotic Stress
	6.4.2 Other Factors Affecting Tolerance to Abiotic Stress

	6.5 Conclusions and Future Prospects
	References

	7 Molecular Responses to Cold Stress in Temperate Fruit Crops with Focus on Rosaceae Family
	7.1 Introduction
	7.2 Cold Injury and Cold Acclimation in Fruit Crops
	7.2.1 Chilling and Frost Injury
	7.2.2 Main Injuries Caused by Cold Stress in Fruit Crops

	7.3 Molecular Aspects of Cold Sensing and Signal Transduction in Temperate Fruit Crops
	7.4 Regulation of Gene Expression Under Low Temperatures in Temperate Fruit Crops
	7.4.1 Transcriptional Regulation of Gene Expression During Cold Conditions
	7.4.2 MicroRNAs as Post-transcriptional Regulators of Genes Under Cold Stress

	7.5 Impact of High Throughput Technologies in the Study of the Fruit Crops Under Cold Stress
	7.6 Conclusion and Perspective
	References

	8 Strategies to Enhance Drought Tolerance in Peanut and Molecular Markers for Crop Improvement
	8.1 Introduction
	8.2 Limited TR with Soil Drying
	8.3 Limited TR with High VPD
	8.4 Plant Hydraulics and Aquaporins
	8.5 Molecular Markers
	8.6 Conclusions
	References

	9 Genetics of Drought Tolerance, Mapping QTLs, Candidate Genes and Their Utilization in Rice Improvement
	9.1 Introduction
	9.2 Status of Rice Cultivation in India
	9.3 Drought as a Constraint in Rice Production
	9.4 Drought Responses and Adaptation
	9.5 Genetics of Drought Adaptation
	9.5.1 Meta QTLs
	9.5.2 Candidate Genes

	9.6 Breeding for Drought Tolerance
	9.7 Conclusions and Future Prospects
	References

	10 Genomics-Assisted Breeding for Drought Tolerance in Cowpea
	10.1 Introduction
	10.2 Drought Tolerance Phenotyping and Mechanisms in Cowpea
	10.3 Genetic Resources in Cowpea
	10.4 Genomic Resources in Cowpea
	10.5 MAGIC Population in Cowpea
	10.6 Marker-Assisted Selection in Cowpea
	10.6.1 Marker-Assisted Backcrossing
	10.6.2 Marker-Assisted Recurrent Selection
	10.6.3 Genome-Wide Association Mapping Studies

	10.7 Using Wild Germplasm in Cowpea Breeding
	10.8 Summary
	References

	11 Hybrid Wheat and Abiotic Stress
	11.1 History of Hybrid Wheat Breeding and Status
	11.2 Hybrid Wheat Seed Production Systems
	11.3 Hybrid Performance and Abiotic Stress in Wheat
	11.4 Superior Hybrid and Prediction of Hybrid Performance
	11.5 Conclusion
	References

	12 Genomic Landscapes of Abiotic Stress Responses in Sugarcane
	12.1 Introduction
	12.2 Stress-Induced Biochemical and Molecular Responses in Sugarcane
	12.3 Genomics of Abiotic Stress Tolerance in Sugarcane
	12.4 Sugarcane miRNA and Stress Responses
	12.5 Genetic Engineering in Sugarcane
	12.6 Conclusions
	References

	13 Genomics Assisted Breeding for Abiotic Stress Tolerance in Millets
	13.1 Introduction
	13.2 Millet Crops: An Overview
	13.2.1 Millets as Potential Abiotic Stress Tolerant Crops
	13.2.2 Millet Genomics: An Overview

	13.3 Status of Genomic Understanding of Millets for Abiotic Stress Tolerance
	13.3.1 Sorghum
	13.3.2 Pearl Millet
	13.3.3 Foxtail Millet
	13.3.4 Finger Millet
	13.3.5 Proso Millet

	13.4 Salinity Stress
	13.4.1 Pearl Millet
	13.4.2 Finger Millet
	13.4.3 Sorghum

	13.5 Conclusion
	References

	Index



