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Abstract Magnetic nanostructures based on transition metals represent a main
building block of standard memory devices. Their unique electronic properties are
related to a complex multiplet structure of the partially filled d-shell with strong
Coulomb interactions. Starting from a general formulation of the effective multi-
orbital impurity problem for a transition metal atom in a fermionic bath of conduc-
tion electrons, the exact Quantum Monte Carlo solution is discussed. The concept
of Hund’s impurities to describe the electronic structure and magnetism of transition
metal adatoms becomes very useful for the interpretation of numerous experimental
data.

3.1 Electron Correlations in Magnetic Nanosystems

Transition metal atoms and small clusters on metallic substrates represent unique
quantum systems to study complex many-body physics beyond standard mean-field
electronic theories [1]. Recent progress in solid state theory allows for the analysis of
the electronic structure and magnetic properties of correlated systems, while taking
into account realistic dynamical many-body effects. These new approaches unify the
Stoner theory of itinerant electron magnetism with the Heisenberg model for local
spin systems into a unique spin-fluctuation Hubbard approach for real multi-orbital
complex materials (see Fig. 3.1). Using the calculated electronic structure of dif-
ferent materials enables one to analyse magnetic properties and effective exchange
interactions [2]. Understanding the properties of transition metal ions in different
environments is a key ingredient and starting point for the modern theory of mag-
netism. The tremendous progress over the last years in experimental fabrication of
new classes of materials, such as iron-based superconductors, magnetoresistance
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Fig. 3.1 Outline of classical magnetic models for different temperatures: Stoner theory of weakly
correlated itinerant electrons, Heisenberg theory of local spin systems and Hubbard theory of spin
and charge fluctuations in transition metal systems

systems, and two-dimensional artificial super-lattices put forward new challenges
to the theory of transition metal systems. It is well known that the ground-state
properties of antiferromagnetic insulators or compounds with orbital ordering can-
not be obtained within the standard density functional theory (DFT) [2]. Recent
angle-resolved photoemission studies of different cuprate materials [3] pointed out
the existence of so-called incoherent peaks in the spectral density, which signals the
strong inter-electron correlations in transition metal compounds.

The origin of such complicated features in the spectral properties of correlated
materials is connected with the strong excitations to various low-energy electronic
configurations, which are represented as a general pattern in Fig. 3.2. Let us discuss
one common situation in which the free energy of correlated materials has one well-
separated non-magnetic ground state. In this case, it is clear that electron fluctuations
will be very small at low temperatures which results in the standard nonmagnetic
quasiparticle structure. In opposing situations, when there are few closed local min-
ima corresponding to different spin and orbital structures, as depicted in Fig. 3.2,
we can be sure that strong many-body fluctuations will result in a non-quasiparticle
structure of the spectral density, originating from Hund’s rule behavior [4]. In or-
der to describe systems with such a complicated energy spectrum, one has to use
general quantum path-integral methods [5] and investigate different correlation func-
tions using the recently developed continuous-time quantum Monte Carlo schemes
[6], which efficiently describe different local minima of the free-energy functional
(Fig. 3.2).

The complicated example of ferromagnetic iron with long-range exchange in-
teractions [8] shows important quantum magnetic fluctuations at high temperature
and high pressure [7]. So-called half-metallic ferromagnets [9] can be a playground
for interesting magnetic correlation effects related to non-quasiparticle states in the
minority-spin gap [10] which in principle can be detected in tunneling experiments
[11]. Ultrafast dynamics of spin systems [12] and spin-spin correlations in magnetic
systems [13] represent future directions of research.
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Fig. 3.2 Left: Simple view of the projection technique from itinerant Bloch states |K 〉 to a localised
Wannier basis |L〉 of a correlated subset. Right: Scheme of multiple local minima for nonmagnetic,
magnetic and orbital states for strongly interacting electron materials

3.2 Realistic Impurity Models for Correlated Electron
Systems

We developed a general scheme for partitioning the local orbital degrees of freedom,
which provides practical tools for the investigation of different magnetic adatoms on
metallic substrates. In the case of classical Kondo systems, based on cobalt adatoms
on the gold surface, these local orbitals are related to the 3d electrons of the Co atom.
Only a few electronic states from the total basis are needed to be taken into account
in the many-body treatment. One of the most useful electronic structure approaches
was thus related to the projector scheme which separates the total basis into the
subset of Bloch states describing the standard itinerant electrons |K 〉, and these local
correlated d orbitals |L〉 represented by a numerical Wannier basis (see Fig. 3.2 for
simple illustration).

In order to use the Monte-Carlo method for correlated subsystems one first needs
to calculate the local Green functions and hybridization functions for the five local d
orbitals. Standard density functional computer codes use a plane-wave basis set |K 〉.
In this case the transformation of the basis set is straightforward, and the convergence
properties are easy to control. One of the most precise and efficient plane-wave based
approaches is related to the projector augmented wave (PAW) method [14] and was
successfully used in the general projection scheme from the Bloch itinerant basis to
the local orbital states, seen in Fig. 3.2, using the overlap matrix 〈K |L〉.

Our universal projection scheme is based on the implementation of a projection
operatorP = ∑

L |L〉 〈L|within a DFT+DMFTmethod which is described in detail
in [15–17]. Using this projector it is easy to transform the full Kohn–Sham Green
function GK (ω) into a set of five d orbitals {|L〉}:

GL(ω) = PGK (ω). (3.1)

The subspace {|L〉} will represent the local correlated d-orbitals. Only these five d
orbitals will be used in the many-body investigations which produce the important
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corrections to the DFT spectrum due to electronic fluctuations. Within the plane-
wave scheme, the Bloch Green’s function GK (ω) with the Matsubara frequencies
iω can be calculated in terms of the complete basis of Bloch states |K 〉. The Bloch
states represent the solution of the general Kohn–Sham eigenvalue problem for an
effective Hamiltonian HK , with

HK |K 〉 = εK |K 〉 . (3.2)

Using (3.1) and (3.2), and the definition of projections overlap 〈L|K 〉, one can
easily evaluate the Green’s function in the local basis |L〉 with a given chemical
potential μ as

GL(iω) =
∑

K

〈L|K 〉〈K |L〉
iω + μ − εK

. (3.3)

For magnetic transition metal adatoms on different surfaces the set of correlated
states are represented by five d orbitals. These correlated orbitals are located mostly
inside PAW augmentation spheres (Fig. 3.2) which allowed us to use the standard
representation of a Bloch state |K 〉 projection onto local five d orbitals [14]. If we
use only a small number of bands near the Fermi energy for projection onto the local
impurity orbitals, it is important to properly orthogonalize the local basis functions
[15, 16].

We can define the effective hybridization matrix�(iω) for the d orbitals impurity
model using the following equation for the local Green’s function

G−1(iω) = iω − εd − �(iω). (3.4)

The impurity energy εd describes the crystal field effects from substrates. In general,
(3.4) represents a L × L matrix equation for �. In order to separate the static DFT
crystal field energy εd from the frequency dependent hybridization function �, one
normally evaluates the limit ω → ∞, where �(iω) → 0, and therefore G−1(iω) →
iω − εd .

3.3 Multiorbital Quantum Impurity Solvers

The formulation of a numerical solution to the multi-orbital impurity model was a
challenge for the quantum many-body problems. During the last decade we devel-
oped the novel continuous-time quantum Monte-Carlo (CT-QMC) solver [6] for the
general multi-orbital impurity problem. The CT-QMC scheme is based on stochastic
Monte-Carlo sampling and consists of two complementary approaches: the interac-
tion and the hybridization expansion. We describe here the most efficient approach
for the strongly correlated case, which is the hybridization algorithm (CT-HYB).
For simplicity, we discuss the so-called segment scheme, which allows for a fast
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Fig. 3.3 Example of a single-orbitalCT-HYBexpansion in the segment formalism:The annihilation
operators are represented by the blue dots and the creation operators by red ones. The black lines
describe hybridization functions�(τi − τ ′

j ) for two spin projections. The time interval in which two
electrons are present on the impurity ismarked by a green regionwith total time ld , and consequently
an energy penalty of U has to be payed here

analytical evaluation of the path-integral trace for d-electrons in the case of diagonal-
density types of Coulomb interaction.

The quantum impurity problem at temperature β−1 can be represented by the
action

Simp = Sat + S� (3.5)

with the atomic component

Sat =
∑

σ

∫ β

0
dτc∗

στ [∂τ − μ]cστ +
∫ β

0
dτUn↑τn↓τ (3.6)

where c∗
στ , cστ are Grassmann variables which depend on spin σ, and τ is the imag-

inary time space. For simplicity we skip orbital indices and nστ = c∗
στcστ . The hy-

bridization action S� contains the term �(τ ), and can be written as

S� =
∑

σ

∫ β

0

∫ β

0
dτdτ ′c∗

στ�(τ − τ ′)cστ ′ , (3.7)

and is the Fourier transform of the �(iω) matrix.
To simplify the notation, we suppress the spin indices and view the proceeding

expressions as diagonal matrices in spin and orbital space. We expand the impurity
action (3.5) in the hybridization part (3.7) around the atomic limit (3.6). It can then
be found, that at a given perturbation order k of the hybridization expansion of
the impurity action Simp in power of S�, different terms can be combined into a
determinant of hybridization functions. Therefore, the impurity partition function
may be written in the following form:

Z/Zat =
∑

k

∫ β

0
dτ1 . . .

∫ β

τk−1

dτk〈c∗
τ1

. . . cτk 〉at det �̂(k). (3.8)
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The average trace 〈c∗
τ1

. . . cτk 〉at in this expression should be calculated over exact
states of the atomic action Sat. In principle, this can be done numerically for an
arbitrarily complicated multi-orbital interaction matrix U [6].

The hybridization matrix determinant det �̂(k) consists of a k × k matrix in imag-
inary time space �̂i j = �(τi − τ j ). Assembling the k! different terms into a single
hybridization determinant is crucial for the suppression of the so-called fermionic
sign problem inCT-QMC [6]. One should point out that the time interval in imaginary
space of equation (3.8) can be considered as a circle with antiperiodic (fermionic)
boundary conditions.

In the simplest case of a single-orbital impurity model with Hubbard interaction
(3.6), the segment formalism gives a very intuitive picture of CT-QMC insertion in
imaginary τ -space in the interval [0,β], which is shown in Fig. 3.3. An arbitrary
configuration can be represented by two separate world-lines for different spins. In
this scheme one can exactly calculate the impurity trace which is related to con-
tributions from the chemical potential μ and the Hubbard-U interaction term for
time-intervals of double occupancy on the impurity, and resulting in the simple ex-
pression e−Uld+μ(l↑+l↓), where lσ represents the time spent by a spin-σ electron on
the impurity, and ld corresponds to the total time of a doubly occupied impurity state
[6].

3.4 Transition Metal Impurities on Metallic Substrates

Using the continuous-time quantumMonteCarlomethodswithin the interaction (CT-
INT) [18] or hybridization (CT-HYB) expansion [19], we investigated accurate low-
temperature spectral functions of transition metal impurities on metallic substrates.
As an example, we present the electronic structure of cobalt atoms on the Cu(111)
surface based on realistic DFT supercell calculations, in combination with the many-
body CT-QMC investigation of the multi-orbital local impurity problem [19].

The electronic structure of the cobalt adatom on the Cu(111) surface was first
analyzed within a large supercell scheme of twelve atoms in a plane with a thickness
of five atomic layers, using thePAWscheme [14] (seeFig. 3.4).Using (3.4) and results
of DFT calculations we obtained the hybridization functions shown in Fig. 3.4 for
orbitals within the local C3v point group symmetry. The five Co d orbitals split into
three subblocks of two doubly degenerate and one non-degenerate representations
with corresponding orbitals dxz , dyz for the E1 representation, dx2−y2 , dxy for E2,
and dz2 for A1, respectively. A full four-index Coulomb correlation vertex U for
the five d orbitals [2] was obtained via screened Slater parameters F0, F2, and F4

corresponding to an effective Hubbard parameterU = 4eV and to aHund interaction
J = 0.9eV.

Since the hybridization of a cobalt atom with the substrate Cu(111) is rather
weak (Fig. 3.4), the correlation effects will be strong. The results of the many-body
CT-QMC calculations for the density of states (DOS) shows the corresponding new
features. There is strong renormalization of the DFT quasiparticle structure near EF,
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Fig. 3.4 Left: Sketch of cobalt impurities on top of a copper surface and in the bulk. Right: the
imaginary parts of the hybridization functions Im� for different orbital symmetries

producing sharp Kondo-like peaks, and at higher energies the formation of lower
and upper Hubbard bands is clearly visible (Fig. 3.5). One can also see the strong
anisotropy of the local DOS of Co on Cu(111) for the different orbitals belonging to
the E1, E2, and A1 representations. The smallest hybridization function corresponds
to orbitals of E2 symmetry located in the x-y plane and therefore atomic-likeHubbard
bands are well pronounced with the strong suppression of the quasiparticle peak at
EF.We noted that the low-energy quasi-particle peaks appear in all five Co d orbitals,
which was not expected within the model for the two-channel Kondo problem for
spin S = 1, which was assumed to apply for the Co adatom, and where the resonance
at EF would appear within two orbitals only.

The formation of a local Fermi-liquid state of Co on Cu for all five d orbitals
at low-temperature indicate a strong hybridization with the metallic substrate. For
the estimation of the Kondo temperature TK one can use the quasiparticle renor-
malization factor Z calculated from the CT-QMC scheme and a general result from
the single impurity Anderson model [20]: TK = − π

4 Z Im�(0). The corresponding
Kondo temperatures within the irreducible representations are: TK = 60K in E2,
TK = 310K in E1, and TK = 180K in A1, and the agreement with the experimental
result TK ≈ (54 ± 5)K is reasonable [21]. We were also able to reproduce the large
difference of the Kondo scale for the impurity in the bulk and the adatom on the
surface [19]. To our knowledge, this is the first successful calculation of the Kondo
temperature for a realistic correlated impurity with five orbitals.

3.5 Hund’s Impurities on Substrates

Themagnetic behavior and electronic structure of d-metal impurities in the fermionic
bath of the substrate crucially depends on the multiplet structures and Hund’s rule
physics [4]. In order to show such Hund’s effects we investigated single Mn, Fe,
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Fig. 3.5 Left: Orbitally resolved DOS of the Co impurities on Cu obtained by analytical continu-
ation of the CT-QMC imaginary time Green’s function for β = 40 eV−1. Right: a corresponding
orbitally resolved self-energies on the Matsubara axis

Co and Ni adatoms on the metallic Ag(100) surface [22]. The experimental pho-
toemission spectra for the 3d series shows a monotonous reduction of high-energy
splittings together with non-monotonous features at low-energy peaks. We can now
explain this behavior by means of Hund’s physics. On the one hand, the high-energy
peaks are related to splitting of the ground state energy into multiplets with different
spin quantum numbers, to a monotonous decrease of the local magnetic moment m,
and to the Hund’s splittings Jm which monotonously decrease to the end of the 3d
series due to filling of the d band. On the other hand, the effective Hubbard energies
U = En+1 + En−1 − 2En [2, 4], (where En is the impurity ground state energy with
n particles) has strongly non-monotonous variation in the 3d series related to Hund’s
rules physics.

Using a rotationally invariant Coulomb interactionmatrix [2] one can find a strong
dependence of the effective Hubbard parameter Ũ as a function of 3d-occupation n:

Ũ ≈
⎧
⎨

⎩

U + 4J (n = 5)
U − 3J/2 (n = 6, 9)
U − J/2 (n = 7, 8).

(3.9)

From these results we were able to make a conclusion about the non-monotonous
behavior of the charge fluctuations and the renormalization of the DOS at EF which
depends on the effective Hubbard parameter Ũ in the 3d series. Our results show
strong charge fluctuations for Fe (n = 6) and Ni (n = 9) related to the almost mixed-
valence regimedue to the small value of Ũ . For the case ofMn (n = 5) andCo (n = 7)
the Hubbard parameter U is much larger, which suppresses the charge fluctuations
and promotes the multi-orbital Kondo behavior.

Figure3.6 shows the valence photoemission spectrum for Mn, Fe, Co and Ni
adatoms on the silver surface together with theoretical QMC results of the corre-
sponding impurity problem containing first-principle hybridization functions [22].
The Mn (n = 5) impurity has the largest effective interactionU (3.9), and the single
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(a) (b)

Fig. 3.6 a Experimental valence electron photoemission spectra of 3d adatoms onAg(100) surface.
b Theoretical spectral function from QMC results at β = 20eV−1

multiplet spectrum for the maximum-spin ground state S = 5/2 can explain the sin-
gle high-energy peak at−3.5eV in the spectral function. For the Fe (n = 6) impurity,
the calculations show a broad lower-Hubbard band at−3eV and a sharp quasiparticle
resonance below EF, and can be well compared with the experimental peaks 1 and 2
(Fig. 3.6a). This broad Hubbard band at−3eV is formed by all 3d orbitals and can be
found in simple atomic exact diagonalization (ED) results, and is related to d6 → d5

excitations (Fig. 3.6b). From the orbitally resolved DOS in Fig. 3.6b one can identify
the dx2−y2 orbital which is responsible for the experimental peak 2 (Fig. 3.6a). The
occupation of the dx2−y2 orbital is equal to n = 0.8 due to strong charge fluctuations
in the Fe 3d shell and indicates that this peak is not related to a spin-Kondo reso-
nance. If one inspects the atomic ED calculations for the Fe impurity with crystal
field splitting from the surface hybridization (Fig. 3.6b), this peak also results from
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Fig. 3.7 DOS for Mn a, Fe b, Co c and Ni d impurities from QMC calculations (thick black lines)
and from exact diagonalization (dashed lines) for different occupations of the d shell

multiplet d6 → d5 excitations. The energy difference between photoemission peaks
1 and 2 can be understood from the ED results as splitting of the final d5 multiplets:
low-energy peak 2 is related to the S = 5/2, L = 0 state and high-energy peak 1
with the S = 3/2, L ≥ 0 states. Moreover, we can estimate this energy difference as
Jm, which relates to Hund’s rule exchange.

Our theoretical QMC calculations for the Co adatom on Ag(100) with occupation
n = 7.8 describe well the three-peak structure of the experimental photoemission
spectrum (Fig. 3.6). The orbital character of theDOS fromEDcalculations (Fig. 3.7c)
shows that the experimental peak 2 at −1eV comes from excitations within the dxz ,
dyz and dx2−y2 orbitals. Moreover, the high-energy experimental peak 1 is related
to multi-orbital transitions between d8 → d7 multiplets. Similar to the Fe case, the
energy difference between peaks 1 and 2 is related to Hund’s rule exchange and
becomes smaller by J due to the different magnetic moment of Co.

The experimental and theoretical photoemission spectrum of the Ni adatom with
only one broad peak below EF is very different fromother 3d impurities (Fig. 3.6).We
can understand such a featureless spectrum from the Hund’s rule physics related to a
strong reduction of exchange splitting in Ni and very small splitting between atomic
multiplets (Fig. 3.7d) which are washed out by hybridization with the substrate.
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Fig. 3.8 Schematic view of a magnetic transition metal adatom (red) with additional hydrogens on
a substrate. Top-left panel: The electronic spectrum with spin-up (red arrows) and spin-down (blue
arrows) states of the five adatom 3d orbitals is filled up. The Hubbard energyU has to be paid if an
additional electron is put into an orbital where there is already one, and Hund’s rule energy J is paid
if electron spins are flipped. Top-middle panel: Optimal electronic structure for the five orbitals in
valance configurations with crystal field splitting �CF and spin-orbit coupling ξls. Top-right panel:
Hybridization parameter Vdk of the adatom orbitals with the substrate DOS ρsubstrate which results
in the broadening of impurity states

To understand why the experimental peak 2 for Fe, the peak 3 for Co and the
broad peak for Ni are quite close to EF, we investigate effects of valence fluctuations
and formation of the Kondo resonance in 3d adatoms. One can see from Fig. 3.7b
that for the dz2 state of Fe there is only one peak in the DOS, just above the Fermi
energy, without any signature of Hubbard bands. Moreover, the occupation of the
Fe 3d shell of about n = 6.4 indicate strong charge fluctuations with mixed valence
behavior. The similar situation applies for the Ni impurity where QMC calculations
show broad spectra with strong renormalization of the quasiparticle peak towards
EF. Opposite to Fe and Ni, for the Co adatom on Ag(100) our results show much
smaller charge fluctuations and the formation of Hubbard bands together with a
sharp resonance at EF which can be related to the multi-orbital Kondo effect. This
conclusion is supported by STM spectroscopy of the Kondo resonance for a Co
adatom on Ag(100) [21]. Similar correlation effects can be found for adatoms on
insulating surfaces [23–28] and in f electron systems [29, 30].
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Fig. 3.9 Coulomb matrix for the d orbitals of the Co adatom obtained with the cRPA method
(left) and subsequently rotationally averaged by the Slater approximation (right). The order of the
orbitals is given byUmlkn . The outlined elementU1221 corresponds to the termU1221c

+
1↑c

+
2↓c2↓c1↑,

the index notation 1–5 refers to the orbital ordering (dxy , dyz , d3z2−r2 , dxz , dx2−y2 )

We cannowdiscuss the concept ofHund’s impurities [31] for the case of a 3dmetal
adatom on different substrates (Fig. 3.8). An isolated 3d atom corresponds to integer
electronic configurations with occupation of different orbitals in accordance with the
first Hund’s rule. The different 3d states first are filled with spin-up electrons, and
finally with spin-down electrons (Fig. 3.8). The reason for such configurations with
maximal total spin is related with Hund’s rule exchange energy J , which prevents a
spin-flip process to a non-magnetic local configuration. For the case of a 3d transition
metal adatom on ametallic substrate, electrons hybridize with the bath of conduction
electrons with DOS ρsubstrate. This hybridization leads to fluctuations of the charge on
the adatom. The strength of hybridization Vdk between the 3d adatom and itinerant k
bands [32], and degree of valence fluctuations [22], will definewhether the electronic
state of the adatomcanbedescribedby atomicmultiplets, itinerant bands, or bothwith
specific correlation effects. In the case of weak hybridization Vdk ≈ 0, the adatom
electronic structure can be analyzed in terms of atomic multiplets with crystal field
splittings�CF and spin-orbit coupling ξlswith integer valence occupations. For small
hybridization the adatom still has the integer valency, but the Coulomb correlations
lead to the formation of a Kondo singlet.

For large hybridization and the case of a single magnetic orbital, the adatom
spin moment would be simply quenched by the conduction electrons. Nevertheless,
for the case of multi-orbital 3d adatoms with relatively strong hybridization but
smaller effects of J , profound charge fluctuations can coexist with large local mag-
netic moments, which are strongly coupled to the substrate. This situation may be
referred to the Hund’s impurity regime [4, 31]. It is characterized by a complex inter-
play of charge fluctuations, crystal field splitting, spin-orbit coupling, and electron
correlations. The investigation of this regime was a challenge for the newly devel-
oped theoretical methods which we have explained [6]. Moreover, the experimental
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Fig. 3.10 Comparison between the representation-resolved imaginary-timeGreen’s functionsG(τ )

for five d orbitals of the Co impurity calculated with the cRPA and the Slater Coulombmatrix. Total
impurity occupations are given in squared brackets, orbital ones in round boxes. The upper row
contains the full QMC Green’s functions at lower filling together with the atomic solution in the
insets (orbital occupations in brackets), and the lower row contains the corresponding Green’s
functions at higher filling. The filling can be adjusted by the double-counting chemical potential.
The calculations were performed at β = 20 eV−1, with the Matsubara self-energy Σ(iωn) (last
column) for the different symmetry representations calculated with the cRPA (upper) and the Slater
Coulomb matrix (lower), both at higher co filling

realization of a Hund’s impurity, and, more importantly, the full control over all the
relevant parameters, i.e. magnetic anisotropy, hybridization, temperature and mag-
netic field, had remained incomplete so far.

An important theoretical problem for correlated adatoms on substrates is related to
the realistic representation for theCoulomb interactionvertex.The effectiveCoulomb
interaction matrix screened by conduction electrons can be calculated using the so-
called cRPA method [33]. All 625 elements of the cRPA Coulomb matrix Umlkn

constructed in this way are shown in Fig. 3.9 for the case of the 3d orbitals of cobalt
adatoms on the graphene surface. If we compare the full U -matrix with the atomic-
like Slater parametrisation based on theU − J average interactions, one can clearly
see the lower symmetry of the Coulomb vertex obtained from cRPA calculations.

Moreover, we can still find the numerically exact solution of the multi-orbital
quantum impurity problem with anisotropic hybridization functions and the full
Coulomb U -matrix using the CT-QMC scheme [6]. The imaginary-time of multi-
orbital Green’s functions obtained by the CT-QMC impurity solver are shown in
Fig. 3.10. Let us compare results obtainedwith the cRPA and the Slater Coulombma-
trix. Rotationally averaging the Coulombmatrix by the Slater approximation slightly
reduces and redistributes the overall weight of the interaction strength (Fig. 3.9). The
most pronounced differences occur for the higher filling considered, ntot = 8.48, es-
pecially in the A1 representation. The hybridization in A1 is small, thus the effect
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entirely comes from the Coulomb interaction and its reduction in the spherical case.
Lowering the Co filling by adjusting the chemical potential shows that the orbitals
of E1 symmetry change their occupation, and its main weight crosses the Fermi
level. This is a consequence of the orbitals within this representation being the most
hybridized as well as having the strongest partial screening of the Coulomb interac-
tion. The self-energies show a characteristic Hund’s impurity low-frequencymetallic
behaviour. As Co on graphene at higher Co filling of 8.48 is a Fermi-liquid, the self-
energies should tend to zero at very low energies. This property is better resolved
with the calculations using the cRPAmatrix (Fig. 3.10). There is also a change of the
order of the self-energy strengths between the orbitals of E1 and E2 symmetry, and
they intersect in the cRPA case.

Finally, we mention that non-local generalizations of effective impurity models
in the path-integral formalism [34–41] open up new directions for investigations of
magnetic correlations and Kondo fluctuations [42–44]. The effects of long-range
interactions are very important in graphene-based systems [45–53] and can be com-
pared with different experimental data [54–58].
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