
Chapter 13
Fluctuations and Dynamics of Magnetic
Nanoparticles

Elena Vedmedenko and Michael Potthoff

Abstract The stability of magnetic moments in a nanostructure against thermal and
quantum fluctuations and the real-time dynamics of strongly excited nanosystems
on metallic surfaces are studied theoretically on the basis of microscopic models
addressing the degrees of freedom on the atomic level. To this end, different the-
oretical approaches and computational tools are employed and developed, such as
classical Monte-Carlo simulations, quantum-classical hybrid dynamics and time-
dependent density-matrix renormalization group.

13.1 Introduction

Fluctuations and real-time dynamics of a magnetic moment in an infinite magnetic
film, in an isolated nanostructure or in a nanostructure coupled to a nonmagnetic
metallic surface can be very different fromfluctuations of the spin degrees of freedom
in a magnetic bulk system. In addition, the magnetic properties of real nanomagnetic
samples are measured during a finite observation time [1]. This fact and the strong
influence of the substrate electrons may give rise to a couple of sometimes rather
fundamental questions. For magnetic nanoparticles and atomic clusters it also has
considerable physical and technical consequences. Namely, the recent investigations
onmagnetic properties of nanoislands [2] verymuch rely on the fact that information,
encoded in the magnetic state of a small unit representing a single bit, is sufficiently
stable over the respective observation time. This stability is important for applications
inmagnetic data storage technology [3] and intimately related to the above-mentioned
dynamical properties.
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The purpose of this review is threefold: (i)Wefirst discuss, on a rather fundamental
level, different theoretical approaches to the real-time dynamics of a single spin
coupled to a metallic substrate or host. In particular, this discussion serves to place
the famous Landau–Lifschitz–Gilbert (LLG) equation in a broader context. This is
important as the LLG equation serves as the basis for extended and very successful
simulations of dynamical properties ofmagnetic systemswhen formulated for several
spins and when including various magnetic interactions and anisotropies.

(ii) In a second step, wemove from dynamics to thermodynamics and consider the
equilibrium thermal properties of a magnetic nanoparticle. In particular, we discuss
the role of finite lateral dimensions of magnetic nanoobjects for the definition of
various crossover and critical temperatures.

(iii) In the third part we finally address a couple of highlights of the application
of the spin-dynamics theory and review the study of life-times of polarizations of
magnetic adatoms placed on semiconducting and metallic substrates and perturbed
by the tip of a spin-polarized scanning tunneling microscope (SP-STM) and discuss
a theoretical proposal of the manipulation of magnetic domain walls by the SP-STM
tip.

The chapter is organized as follows: Sect. 13.2 gives an introduction and some
overview of the dynamics of spins coupled to conduction electrons. Spin dynamics in
the prototypical Kondo-impurity model is discussed in Sect. 13.3, followed by linear-
response theory in Sect. 13.4. Effects of electron correlations on the spin dynamics
are addressed in Sect. 13.5. Section13.6 is devoted to the theoretical description of
static and dynamic correlation functions in nanomagnets of finite lateral extensions,
while theoretical concepts of microscopic manipulation of magnetic domain walls
at the nanoscale are reviewed in the last Sect. 13.7.

13.2 Dynamics of Spins Coupled to Conduction Electrons

The real-time dynamics of a classical spin S in an external magnetic field is deter-
mined by the Laudau–Lifschitz (LL) [4] equation

Ṡ = S × B , (13.1)

where we have absorbed constants, such as the g-factor, Bohr’s magneton μB and
Planck’s constant � in the definition of the field B. Considering as a prototypical
system a magnetic atom on a metallic surface, the LL equation does not realistically
model the dynamics of themagneticmoment since there is a coupling to the substrate.
This coupling will result in a damping of the spin dynamics. If, for example, the field
direction is suddenly flipped from −z to +z-direction, the spin will align to the new
field direction, i.e., the system will reach its ground state in the course of time. This
is well described by the Landau-Lifschitz-Gilbert (LLG) equation [4, 5],

Ṡ = S × B − αS × Ṡ , (13.2)
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where α is the famous Gilbert-damping constant.
There is a huge number of studies on spin-dynamics based on the LLG equation

and of its various extensions [6, 7] covering many-spin systems, direct and indirect
magnetic couplings between the spins, nonlocal Gilbert damping, and anisotropic
interactions of different kind. Furthermore, the LLG approach is extremely success-
ful in practice, even on an atomistic level [8]. On the other hand, from a fundamen-
tal perspective, the LLG equation (13.2) has been introduced phenomenologically.
Apparently, it also violates energy and spin conservation. We will therefore consider
a different theoretical route here and study the dynamics of a classical spin in contact
with a large Fermi sea of conduction electrons by treating the electron degrees of
freedom explicitly.

Figure13.1 gives an overview: The paradigmatic model for a single spin coupled
to a Fermi sea is the Kondo-impurity model. In case of a classical spin, the model
is easily amenable to an exact numerical solution which is reminiscent of Ehrenfest
dynamics in the context of molecular dynamics (see, e.g., [9] for an overview), where
one also treats the nuclear degrees of freedom classically while the electron system is
(effectively) noninteracting, i.e., moves in an effective single-electron potential. An
important simplification is linear-response theorywhich applies to theweak-coupling
limit. This approach is quite attractive since it represents a spin-only theory and, as
the spin dynamics is typically much slower than the electron dynamics, allows us
to access long time scales. The linear-response approach still keeps the full mem-
ory effects. This is not always necessary, and exploiting the largely different time
scales of spins and electrons explicitly, one can re-derive the LLG theory with the
help of a Markov approximation. The physics of the classical-spin Kondo model is
very rich and has been studied in various ways and with various model extensions in
recent years [10–13]. To some extent it will be reviewed here. Beyond that, there are
quantum-spin effects, either on the exact level of the quantum-spin Kondo model or
within a time-dependent hybridization mean-field theory [14], which become impor-
tant for antiferromagnetic coupling, small spin quantum numbers and at extremely
low temperatures. Below the Kondo temperature, time-dependent screening effects
are worth being explored, see [12, 15, 16].

13.3 Tight-Binding Spin Dynamics

The prototypical model is the Kondo-impurity model of a classical spin coupled to
a Fermi sea of conduction electrons:

H =
∑

i jσ

Ti j c
†
iσc jσ + J si0 S − BS . (13.3)

The inset of Fig. 13.2 gives a sketch of the Hamiltonian. Here, a classical spin S
with fixed length S is antiferromagnetically (J > 0) exchange-coupled to a system
of conduction electrons hopping with an amplitude Ti j over the sites i , j of a lattice.
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Fig. 13.1 Various approaches to real-time spin dynamics. See text for discussion

For simplicity, we assume Ti j = −T for nearest neighbors on a one-dimensional
chain of length L . Setting T = 1 fixes the energy and (with � ≡ 1) the time scale.
We further consider a half-filled system, i.e., if N is the total electron number, the
electron density n = ∑

σ=↑,↓〈c†iσciσ〉 is fixed to n = N/L = 1.Real-time dynamicsis
initiated by suddenly flipping the field direction from−z to z-direction at time t = 0,
while the spin initially points in the −z-direction (with a slight distortion to break
the symmetry).

We will start the discussion with the classical-spin Kondo (or s-d) model, i.e.,
with the numerically exact solution of the model (13.3). The equation of motion for
S derives from the classical Hamilton function Hclass = 〈�(t)|H |�(t)〉 and is of the
LL form but with an additionalWeiss field produced by themagnetic moment 〈si0〉 of
conduction electrons at the site i0 where the classical spin couples to. With the help
of the Pauli matrices τ , this can be expressed in terms of the one-particle reduced
density matrix ρ = 〈c†c〉 as 〈si0〉 = (1/2)

∑
σσ′ ρi0σ,i0σ′τ σ′σ . The equation of motion

for ρ is of the von Neumann type and, besides the hopping matrix T , involves a
contribution from the Weiss field produced by S. Therewith, one obtains a closed
nonlinear system of coupled ordinary differential equations which can be solved by
means of a high-order Runge-Kutta method, for example. System sizes of L = 103

are easily accessible in this way.
Figure13.2 shows a typical result. After the sudden flip of the field, the x- and

y-components of S show oscillations reflecting the precessional motion with Larmor
frequencyω = B. In addition, visible in the z-component, there is spin damping. The
spin aligns to the newfield direction in a few hundred inverse hoppings. This behavior
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Fig. 13.2 (Adapted from [10]). Real-time dynamics of a classical spin (x and z components)
within the model (13.3). Parameters: S = 1, J = 1, L = 1001, i0 = 501, chain geometry with open
boundaries. Energy and time units are chosen by fixing the nearest-neighbor hopping to T = 1. At
time t = 0, the field direction is suddenly flipped from the −z to the z direction. The inset provides
a sketch of the system studied

is very much like the spin dynamics that could have been derived within the LLG
framework, and one could easily extract a value of the Gilbert damping by fitting the
numerical results. However, the spin dynamics shown in the figure emerges from a
non-phenomenological, microscopic setup where, e.g., all macroscopic conservation
laws resulting from the symmetries of H are fully satisfied. One should note that the
energy of the local excitation of the system, 2BS, is dissipated into the bulk such
that locally, at i0, the system approaches its ground state. The calculation stops at a
maximum propagation time beyond which one would get (unphysical) distortions of
the spin due to reflections from the open boundaries of the system. This also implies
that the accessible time scale is approximately given by twice the half length of the
chain divided by the Fermi velocity vF = 2T . In our example, this amounts to about
500 inverse hoppings. Also the spin changes locally and thus, besides the energy,
also spin must be transported into the bulk of the system. A detailed analysis [10]
shows that this takes place in form of a spinful wave packet that is emitted from the
core region, propagating with vF and broadening slightly due to dispersion.

13.4 Linear-Response Theory

Typically, local exchange couplings are weak as compared to the energy scale set
by the electron hopping and, therefore, a perturbative approach for the weak-J
limit is reasonable (see “linear-response theory” in Fig. 13.1). Via standard time-
dependent first-order perturbation theory in J , namely via the Kubo formula,
〈si0〉t = J

∫ t
0 dt

′χloc(t − t ′)S(t ′), the response of the conduction-electron magnetic
moment at i0 due to the spin that stirs in the Fermi sea can be expressed in terms of
the local retarded magnetic susceptibility χloc(t) at i0. The latter is an equilibrium
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Fig. 13.3 (Adapted from [10]). Spin dynamics after a sudden flip of the field from x- to z-direction,
as obtained by linear-response theory, see (13.4), for two different coupling constants J (solid lines).
Dashed lines: results of the full tight-binding spin dynamics for comparison

quantity which can easily be calculated for a system of noninteracting electrons.
Using this result for 〈si0〉t the classical-spin equation of motion yields an effective
spin-only theory, i.e., an equation of motion for an open quantum system with the
full memory effect [10, 17, 18]:

Ṡ(t) = S(t) × B − J 2S(t) ×
∫ t

0
dt ′χloc(t − t ′)S(t ′) . (13.4)

Figure13.3 shows corresponding results for J = 1 and J = 3. The linear-response
theory provides extremely accurate results for rather strong couplings up to J = 1
as can be seen in the figure by comparing with the exact nonperturbative result,
and only at J = 3 do we find significant deviations. This may appear surprising as
the relevant dimensionless parameter t J is not “small”; one should note, however,
that its effects are rather moderate as only the non-adiabatic terms ∼ S(t) × S(t ′)
with t 	= t ′ contribute, see (13.4). For J = 3 (see figure), visible artifacts of the
linear-response theory already appear on a time scale which is smaller by almost two
orders of magnitude as compared to the J = 1 case. This is attributed to the strong
enhancement of retardation effects with increasing J , which lead to a much more
effective perturbation.

The LLG equation (13.2) can be derived from (13.4) as a Redfield equation
[19] using a Markov-type approximation [18, 20] which assumes that the elec-
tron dynamics is much faster than the spin dynamics. Formally, we exploit that
the memory kernel χloc(t − t ′) in (13.4) is peaked at t ′ ≈ t and cut the expansion
S(t ′) ≈ S(t) + (t ′ − t)Ṡ(t) + · · · at first order under the integral in (13.4). Further-
more, the upper bound of the integral must be set to infinity to get a constant. This
is usually again justified by the peak structure of the kernel. With this we arrive at
Ṡ(t) = S(t) × B − α(t)S(t) × Ṡ(t) where the damping constant is given by

α = −J 2
∫ ∞

0
dτ τ χloc(τ ) . (13.5)
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Interestingly, for a one-dimensional system, this quantity is ill-defined as the integral
diverges at the upper bound t ′ → ∞ due to the slow long-time decay ∝ 1/t of
the kernel (see [10] for a detailed discussion of this point). This implies that the
LLG approach becomes questionable in one dimension. A pragmatic way out is
to supplement the theory with an artificial cut-off for long times or by an ad hoc
damping of van Hove singularities on the frequency axis. A physical regularization
of the theory comes, for example,with the additional inclusion of electron-correlation
effects.

13.5 Correlated Conduction Electrons

Electron correlations among the conduction electrons are expected to have a sub-
stantial impact on the spin dynamics. Within different models and using various
approximations, this has been addressed in a few pioneering studies [21–23] but
only via the effect of the Coulomb interaction on the Gilbert damping, i.e., in an
indirect way. The emergence of new energy (and time) scales, however, is a hallmark
of strongly correlated systems, and here the entire LLG concept is expected to break
down. Studying these effects is important, e.g., for a microscopic understanding of
the relaxation time scales emerging in modern nano-spintronics devices [24–26].
Here, we review our recent theoretical work [11] where the breakdown of the LLG
theory is demonstrated by referring to the correlation-induced Mott insulator as a
paradigmatic example [27].

We start from (13.4) assuming a weak (or moderate) coupling of the spin to
the system of conduction electrons but replace the noninteracting Fermi sea by
a one-dimensional Hubbard model with local Coulomb interaction U [28]. The
time-dependent density-matrix renormalization-group approach (t-DMRG) [29–31]
is used to compute the retarded local magnetic susceptibility of the Hubbard model,
and the numerical solution of (13.4) provides us with the full memory and correlation
effects. Results for different U are shown in Fig. 13.4.

At half-filling, the Hubbard model is a correlation-induced Mott insulator. For
strong U , it perturbatively maps onto an antiferromagnetic Heisenberg model with
Heisenberg coupling JH = −4T 2/U , i.e., there is a single energy scale only. Con-
sequently, the susceptibility must show a scaling behavior according to χloc(t) =
F(t JH) with some function F . Inserting this into the expression for the Gilbert
damping, (13.5), we find

α = J 2

J 2
H

∫ ∞

0
dx x F(x) = J 2

J 2
H

α0 = J 2U 2

16T 4
α0 , (13.6)

where α0 is a universal dimensionless Gilbert damping constant of a Mott insulator.
From the numerical data we find α0 ≈ 4.8. Thus, for fixed J, T , we have α ∝ U 2

implying that increasing interactions lead to a shorter spin relaxation time.
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Fig. 13.4 (Adapted from [11]). Upper panel: Time dependence of the local spin susceptibility
χloc(t) at i0 = 1 for an openHubbard chain with L = 60 sites. t-DMRG for half-filling and different
U as indicated. The nearest-neighbor hopping T = 1 fixes energy and time scales. Lower panel:
Resulting real-time dynamics of a classical spin S(t) with |S(t)| = 1

2 coupled at i0 = 1 (main
plot: Sz(t), inset Sx (t)). Calculations using (13.4) for J = 1 and different U . The spin dynamics
is initiated by switching the field direction at t = 0 from x to z where Bfinal = 1. Thin black lines:

Heisenberg model with JH = 4T 2

U (L = 400) and, for improved accuracy at U = 8, with n.n. and

n.n.n. couplings JH = 4T 2

U − 16T 4

U3 and J ′
H = 4T 4

U3 [32] (L = 300)

The actual physics, however, is completely different: Fig. 13.4 (top panel) demon-
strates that magnetic excitations which provide the dissipation of energy and spin to
the bulk of the system get more and more weight with increasing U . However, they
also become active on a later and later time scale. For U → ∞ this means that they
will actually never be activated and, since these magnetic excitations are the only
ones available for a Mott insulator, this implies that there is no spin damping at all
in this limit.

This expectation is indeed verified by the spin-dynamics results (see lower panel).
In the weak-U regime, there is a fast relaxation of the spin to the field direction with
a relaxation time which decreases with increasing U , see results for U = 0 up to
U = 2. This regime is followed by some intermediate-coupling regime with a less
regular behavior of S. For an interaction strength ofU = 8 or stronger, however, the
relaxation time appears to diverge; the spin, after some initial dynamics, does not
fully relax at all. It is easily shown, however, that a constant z-component of the spin
and an undamped oscillation of the x- and y-component (see inset) is not a solution
of the equation of motion (13.4). In the extreme long-time limit, we therefore expect
that the spin finally undergoes a full relaxation.
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The incomplete relaxation of the spin should be understood as a “pre-relaxation”,
i.e., analogously to the concept of prethermalization which is well known for purely
electronic systems [33–36]. In cases of close parametric distance to points or limits
of integrability, those systems are trapped, during a substantial period of time, in
a prethermalized state and do not thermalize directly. For the present quantum-
classical hybrid system and referring to relaxation rather than thermalization, the
analog of the integrable point is given by the limitU → ∞. Namely, for every finite
time t , the memory kernel χloc(t) ≡ 0 in this limit, and thus (13.4) simplifies to
the linear Landau-Lifschitz equation [4]. The situation is also similar to the case of
quantum excitations which are metastable on a long time scale due to a very small
phase space for decay. A prominent example is given by doublon excitations in the
Hubbard model for interactions U much larger than the bandwidth [37–40]. Energy
conservation requires the decay via a high-order process, such that the relaxation
time diverges for U → ∞.

13.6 Critical Properties and Magnetization Reversal
in Nanosystems

Physical characteristics of themagnetization reversal are closely related to the critical
properties of the object. While the critical properties of infinitely large magnets are
well known, they have to be reconsidered for nanoparticles.One of themost important
critical parameters is the Curie temperature. In the following, we describe some
aspects of this critical temperature at the nanoscale and describe the magnetization
switching in nanomagnetic ensembles.

13.6.1 Crossover Temperatures of Finite Magnets

From the experimental point of view, the critical temperature is a well defined quan-
tity which can be measured. From the theoretical point of view, there is no Curie
temperature as there is no phase transition in a systemwith a finite number of degrees
of freedom and magnetic susceptibilities stay finite in the entire temperature regime.
Nevertheless, they show enhancements at T = TC(L), which defines a “reduced
Curie temperature”. Typically, one finds TC(L) < TC(∞) for open boundaries.

Above TC(L), the magnetic state of the system is not stable temporally, but rather
shows a superparamagnetic (SPM) behavior at temperatures Tb(L) < T < TC(L),
which is neglected in finite-size scaling. For storage technology the blocking temper-
ature Tb(L) is even more relevant than TC(L) because it characterizes the crossover
from the ferromagnetic (FM) state at low T to the SPM state, where the system
changes its magnetization orientation between several energy minima determined
by magnetic anisotropies. The Tb(L) is not a pure property of the system, but rather a
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relative value, which depends on the observation time τ . For infinitely large τ , there
is no temporal blocking of the magnetization because of quantum tunneling and
thermal excitations, and thus Tb(L) → 0. For τ → 0 (referring to e.g. laser-probe
methods), Tb(L) → TC(L) while for intermediate τ (like in spin-polarized scanning
tunneling microscopy) 0 < Tb(L) < TC(L). This discussion shows that theoretical
studies based on a microscopic spin model have to be refined when dealing with
the superparamagnetic regime. A recent publication [41] shows that additional to a
Monte-Carlo (MC) approach, where with an increasing number ofMC steps per tem-
perature, the blocking temperature Tb(L) decreases, a simple but reliable effective
theory can cover the phenomenology of magnetic nanoparticles. A central quantity
of this phenomenological theory is a two-point order-parameter correlation function
defined between two spins Si and S j at sites ri and r j by

G(r) = 1

n(r)

∑

i< j
|ri−r j |=r

〈SiS j 〉 , (13.7)

and a connected correlation function

G̃(r) = G(r) − M2 = 1

n(r)

∑

i< j
|ri−r j |=r

〈
Si S j

〉 − M2 , (13.8)

which explicitly takes account of the finite system size. Here, the sum in the first
term runs over all n(r) pairs separated by the distance r . The second term involves
the magnetization M = |∑i 〈Si 〉|/N with N being the number of sites. It turns out
that the quantities defined above can be used for unambiguous definitions of TC(L)

and Tb(L), and moreover, lead to a new method to determine critical temperatures
for infinite systems.

To get insight into the new method of determining the critical temperatures the
above-defined correlation function G̃(r) is evaluated and presented in Fig. 13.5 for
a linear chain of Ising spins (see Fig. 13.5a) and for a 5 × 5 Ising system on a square
lattice (Fig. 13.5b). Analyzing the data of Fig. 13.5 in detail we identify three specific
temperatures: (i) For any finite T , the magnetization is M = 0, while for T1 = 0
the magnetization jumps to M = 1. Therefore, the function G̃(r) jumps from unity
to zero as the temperature approaches T = 0 as seen in Fig. 13.5a, b. (ii) At the
temperature T2 (1.7J in Fig. 13.5b) the curvature of G̃(r) and G(r) changes its sign.
(iii) At the temperature T3 = 2.3J the trend of G̃(r) changes from algebraic convex
to exponential.

The first characteristic temperature T1 is evidently equivalent to Tb(L). Themostly
remarkable feature, however, is the change in the curvature of G̃(r) from concave
to convex at some temperature which cannot be expected from previously published
results.
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(a) (b)

Fig. 13.5 (Adapted from [41]). a Two-point correlation functions G̃(r) (symbols) calculated for an
Ising chain with open ends and consisting of 10 atomic sites; b Two-point correlation functions for
a 5 × 5 square lattice of Ising spins at T = 0.5J � TC(∞). The lines in (a) and (b) are fits of the
numerical data by the model correlation function given in (13.9). Three thick lines correspond to
three critical temperatures: Tb(L) - the blocking temperature, TC(L) the reduced Curie temperature,
and TC(∞) the Curie temperature of an infinite sample

To identify the physical meaning of T2 and T3, a model function G(r) has been
constructed.

G(r) = G(r, T ) ≈ B(T )e−r/ε(T ) + y(T ) , (13.9)

The form ofG(r) is reminiscent of the Ornstein-Zernicke theory. Note, however, that
(13.9) refers to a finite system and that it applies to all distances r up to the system
boundary. In particular, there are no constraints on the sign of the r -independent
constants ε(T ), B(T ) and y(T ).

Using the above mentioned model, the numerically exact expectation values for
the 1D, 2D and 3D finite Ising systems (Fig. 13.5) can be used to fit the parameters
ε(T ), B(T ) and y(T ). It has been found that the quality of the fit is very good, see
lines in (a) and (b) and it excellently describes the data in the entire temperature
range. From this fit (see details in [41]) the temperature T3 can be interpreted as the
Curie temperature at a thermodynamic limit (infinite samples): T3 ≈ TC(∞), and
the temperature T2 = TC(L) corresponding to the change in the curvature of G̃(r)
gives the reduced Curie temperature of a finite magnet. Thus, the described method
yields a good estimate of TC(∞), TC(L) and Tb(L) from a single calculation without
finite-size scaling. Analysis presented in [41] shows that TC(L) as well as Tb(L)

satisfy the finite-size scaling law (TC(∞) − T (L))/TC(∞) = (L/L0)
−1/ν [42].

Hence, a simple analytical form for the two-point magnetic correlation function
suggested in [41] for magnetic nanoparticles leads to an excellent numerical agree-
ment with exact Ising, Heisenberg and Monte-Carlo data of finite anisotropic spin
models and gives accurate definitions of crossover temperatures for finite systems.



278 E. Vedmedenko and M. Potthoff

Fig. 13.6 Dynamical correlation-functionCdyn (spheres) and normalized dipolar energyC (circles)
as a function of 1/r3i j normalized to 100nm. It can be seen that Cdyn decreases more slowly than
the C , which is responsible for the antiparallel correlation. The damping parameter α = 0.2 has
been considered in the calculations. The form of Cdyn(1/r3i j ), however, is independent of α

13.6.2 Switching of Nanoparticles in Systems with
Long-Range Interactions

While the described spin-spin correlations define averaged, time independent prop-
erties of nanosystems, the understanding of time-dependent correlations in nano-
magnetic systems is also of great interest for fundamental science as well as for
applications. Particularly crucial is the dynamical spin-spin correlation function for
certain magnetic states used as bits of information, because the ultimate goal for any
storage media is to create a highest possible packing density. This requires a small
distance between islands or grains and, at the same time, one needs to switch the
bits individually. So the question arises whether the spin-spin correlations remain
the same in static (non-switching) and dynamical (switching) systems of identical
geometry?

To investigate this exciting question theoretical and experimental investigations
of magnetization reversal of ferromagnetic nanodots and their switching field distri-
butions have recently been performed in [43–45]. In these investigations the dynam-
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ical correlation function Cdyn = ∫ ∞
−∞ dt Sz,i (t)Sz, j (t + s) between pairs of magnetic

moments i and j has been considered.Hereby, Sz is the vertical component ofmoment
i or j at times t and t + s, respectively. The proposed expression gives information
on time correlations in a given state. For Cdyn → 1 the switching is correlated, while
Cdyn → 0 corresponds to stochastic noise. The dynamical correlation function was
calculated numerically for s = 0 and variable distances ri j to check for the degree
of correlation during the switching of different ensembles of dipolar nanoparticles
coupled by the dipolar interaction [43]. The dependence of the correlation function
on the interdot distance is shown in Fig. 13.6.

Figure13.6 demonstrates that the time-dependent correlations decrease slower
than the dipolar coupling itself. Even the dots at rather large separations (ri j > 140
nm) show strong correlations (see Fig. 13.6), which are responsible for the in-phase
switching of magnetization, although the dipolar energy is very weak at these large
distances. The physical essence of this dynamical phenomenon is the time-averaged
minimization of the potential energy of the ensemble of dots, which manifests itself
in themany-body long-range correlations and prohibits dephasing of individual mag-
netic moments. Hence, the many-body dynamical effects described here, correspond
to a minimization of a spin dynamical version of the action, rather than to a mere
minimization of static dipolar energy. The most intriguing outcome of presented
investigation is the long-ranged order of dynamical correlations and, thus, their influ-
ence on the collective states close to the thermal instability. The importance of these
long-range order interactions and correlations for thermally assisted switching is
supported by experiments described in [43].

13.7 Control of Ferro- and Antiferromagnetic Domain
Walls with Spin Currents

There are two main concepts of the magnetic data storage: the first one relies on
magnetic domains or other two-dimensional magnetic objects as bits of information;
the second one uses one-dimensional transition regions between two domains; that is
domainwalls, as bits of information. Previous chapters were devoted to the switching
of magnetic domains between two binary states corresponding to the first concept.
Within the second concept towards new storage and logic devices the information
is written or deleted by the current- and field-driven motion of magnetic domain
walls (DWs) [46–48]. There are several proposals for reading or writing devices.
Generally, an object corresponding to a bit of information has to be moved to the
reading or writing device or the device has to bemoved towards the bit. Nevertheless,
it is difficult to address each DW individually in both cases, because a current often
moves neighboringbits (DWs) in the samedirection,whilst amagnetic field requires a
movement in opposite directions. Domain walls can be individually addressed by the
strayfield coming froma tip of amagnetic forcemicroscope (MFM) [49].Aparticular
challenge is, however, themanipulation of narrowDWs like those inmonolayer thick
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nanowires of Fe/W(111). The width of these walls is of the order of 2nm, which is
at least one order of magnitude smaller than the resolution of MFM. Therefore,
new concepts for individual manipulations of such narrow DWs are required. One
possible theoretical concept for such manipulations will be reviewed below [50–54].

In [50–52, 54] the manipulation of a magnetic DW was proposed to be per-
formed by the tip of a Spin-Polarized Scanning Tunneling Microscope (SP-STM).
The influence of an SP-STM tip on a DW has been studied by means of quantum-
and classical atomistic spin dynamics as well as by Monte-Carlo (MC) simulations.
Different modes, systems and time regimes were studied. The investigations have
shown that this setup might be suitable for manipulation of ferromagnetic [50] as
well as antiferromagnetic [51] domain walls. The theoretically proposed setup is
depicted in Fig. 13.7.

An example is given by a ferromagnetic monolayer stripe of dimensions up to
Lx × Ly = 40 a × 70 a (15 × 26 nm (sc(001) or bcc(110) stacking) with the lattice
constant a and classical Heisenbergmoment Si = (Si x , Si y, Si z) of unit lengthμi/μs

at each lattice point. Themagnetic properties are given by the followingHamiltonian:

H = −J
∑

〈i j〉
SiSj − Dx

∑

i

(Sx
i )2 + Dz

∑

i

(Szi )
2, (13.10)

with J > 0 being the ferromagnetic exchange coupling between nearest neighbors,
Dx > 0 an easy-axis and Dz > 0 a hard-axis anisotropy, respectively. The Heisen-
berg magnetic rotors were confined to the xy-plane by the anisotropies. The dipolar
interaction of such an in-plane system is typically vanishing. Material parameters
for Fe/W(110) or Co/Pt(111) monolayers (J = 10...13meV, Dx = 0...5meV and
Dz = 0...2.5meV) have been used in the calculations.

To describe the motion of DWs the generalized Landau-Lifshitz-Gilbert equation
has been utilized:

∂Si
∂t

= − γ(
1 + α2

)
μS

Si × [Hi + α (Si × Hi )]

+ CSi × T i + DSi × (Si × T i ) , (13.11)

whereγ is the gyromagnetic ratio,α = 0.025 is theGilbert damping,Hi = −∂H/∂Si
is the internal field, and Ti is the polarized spin current. The last two terms are the
contributions corresponding to the precession and relaxation terms of the torque from
the tunnel current. The concept similar to the case of a spin valve C = 0 and D = 1
has been used. In the numerical MC calculations, the sd-model has been used to
account for the spin torque of tunneling electrons:

HT = −g
∑

i

T i · Si , (13.12)

with the coupling constant g = 1. Here, the complete information on the current is
provided by Ti.
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Fig. 13.7 Scheme of the initial state of the studied sample: two domains are separated by a DW
elongated in y-direction, while the magnetic moments are pointing in −x (blue) and +x (red)
directions. A tip with a magnetization mtip and distance h from the sample moves towards the DW
on the indicated track (white dashed line). Displacement ofDW�xDW as a function of time obtained
in MC simulations (left) and spin dynamics (LLG, right) are shown in the top panel. The tip moves
with constant velocity marked by the dashed line. (I a) and (I b) correspond to a tip magnetization
parallel and antiparallel to the initial domain (mtip|| ± x), (II a) and (II b) parallel and antiparallel
to the DW orientation (mtip|| ± y), and (III a) and (III b) pointing into or out-of-plane (mtip|| ± z)
[50]

The local strength and the orientation of the tunneling current can often be
described by the Tersoff-Hamann model:

Ti = −I0 · e−2κ
√

(xi−xtip)2+(yi−ytip)2+h2 · P · mtip, (13.13)

where P is the polarization of the SP-STM tip with magnetization mtip, κ is the
inverse decay length of the wave function in vacuum, the time dependent tip and
atom positions are rtip = (xtip, ytip, h, t), ri = (xi , yi , 0, t), and the current density
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I0. In the spin dynamics simulation we set I0 = 1.0 · 107 μS

γt J , However, the MC
procedure does not allow for the direct time evaluation. Therefore, we choose a
current density sufficiently high for domain wall manipulation. κ contains the work-
function φ of the tip material and is set to 4.5 eV, in the range of magnetic materials
used in experiments (e.g. Fe or Cr). For the chosen sample and tip parameters, we
assume the spin torque acting on the magnetic moments to be large compared to
Oersted-fields and Joule heating, which have been neglected in our simulations.

The following tip-sample geometries have been considered: (i) mtip|| ± x ; (ii)
mtip|| ± y, and (iii) mtip|| ± z. The explored initial set-ups are shown in Fig. 13.7.
During the simulation, the tip is moved at a constant height h || + z along the stripe
(in+x-direction) with a constant velocity vtip. All presented calculations correspond
to a constant height of the tip above the studied sample with a spin current, which
is sufficiently high to influence the magnetization of a DW. The time dependence
of the DW displacement �xDW for the three scenarios is plotted in Fig. 13.7. The
black/gray solid curves correspond to the parallel/antiparallel orientation of the tip
to a corresponding axis while the dashed line represents the tip displacement.

As one can see from Fig. 13.7 for ferromagnetic domain walls, almost all studied
geometries are suited for DWmanipulation as the black and gray lines corresponding
to the displacement of the walls follow the dashed line representing the motion of
the tip. One can also see that both simulation methods give identical results with one
exception revealed for mtip ⊗ Sd. This effect is a result of the different simulation
models and disappears in the regime of strong currents, when neglecting the hard-
axis anisotropy, and also in the regime of strong damping. The detailed analysis given
in [50–52] has demonstrated that there are at least three different modes suitable for
DW manipulation, but the investigation of costs and benefits reveals the mtip ↑↑
SDW as the optimal one. Similar calculations have been performed to study the
possibility of manipulation of antiferromagnetic domain walls, which possess zero
net magnetization. It has been concluded in [51, 52] that in order to manipulate such
domain walls, the mtip has to be othogonal to the magnetization of the domain as
well as the domain walls. The directionality of the domain wall motion is identical
for mtip|| ± z. To change the direction of the domain wall motion one has to change
the orientation of the tip polarization to the opposite one [51, 52].

13.8 Conclusions

On the fundamental level, the studies that have been reviewed here can be extended
in various ways: Most interesting is the generalization of the theory to the case of
the Kondo lattice model, i.e., to several spins which represent, for example, a chain
of magnetic atoms on a metallic surface. The real-time dynamics of such magnetic
chains is crucially determined by the underlying electronic system, and there is not
much known about such setups on the theoretical side. While long-time dynamics in
the quantum-spin Kondo lattice is probably out of reach with the presently available
numerical methods (also including the one-dimensional case), studying the classical-
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spin Kondo lattice appears quite promising and first computations are in progress.
Particularly, two-dimensional systems featuring the Kosterlitz-Thouless transition,
systems with superconducting substrates (modeled by extensions of standard BCS
theory to the inhomogeneous and time-dependent case) and systems in the extreme
adiabatic limit, where the electron dynamics can be assumed to follow instanta-
neously the trajectories of classical spin configurations, represent highly interesting
avenues for future research in this field. On the level of applications, the devel-
oped methods can be extended to describe the non-equilibrium dynamics of systems
with complex magnetic structures and magnetic quasiparticles for their successful
manipulation.
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