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Preface

Welcome to the proceedings of NLPCC 2018, the 7th CCF International Conference on
Natural Language Processing and Chinese Computing. Following the highly successful
conferences in Beijing (2012), Chongqing (2013), Shenzhen (2014), Nanchang (2015),
Kunming (2016), and Dalian (2017), this year’s NLPCC was held in Hohhot, the
capital and the economic and cultural center of Inner Mongolia. As a leading inter-
national conference on natural language processing and Chinese computing organized
by CCF-TCCI (Technical Committee of Chinese Information, China Computer Fed-
eration), NLPCC 2018 served as a main forum for researchers and practitioners from
academia, industry, and government to share their ideas, research results, and experi-
ences, and to promote their research and technical innovations in the fields.

There is nothing more exciting than seeing the continual growth of NLPCC over the
years. This year, we received a total of 308 submissions, which represents a 22%
increase in the number of submissions compared with NLPCC 2017. Among the 308
submissions, 241 were written in English and 67 were written in Chinese. Following
NLPCC’s tradition, we welcomed submissions in eight key areas, including NLP
Fundamentals (Syntax, Semantics, Discourse), NLP Applications, Text Mining,
Machine Translation, Machine Learning for NLP, Information Extraction/Knowledge
Graph, Conversational Bot/Question Answering/Information Retrieval, and NLP for
Social Network. Unlike previous years, this year we intended to broaden the scope
of the program by inviting authors to submit their work to one of five categories:
applications/tools, empirical/data-driven approaches, resources and evaluation, theo-
retical, and survey papers. Different review forms were designed to help reviewers
determine the contributions made by papers in different categories. While it is perhaps
not surprising to see that more than 88% of the submissions concern
empirical/data-driven approaches, it is encouraging to see three resources and evalu-
ation papers and one theoretical paper accepted to the conference. Acceptance deci-
sions were made in an online PC meeting attended by the general chairs, the Program
Committee (PC) chairs, and the area chairs. In the end, 70 submissions were accepted
as full papers (with 55 papers in English and 15 papers in Chinese) and 31 as posters.
Six papers were nominated by the area chairs for the best paper award. An independent
best paper award committee was formed to select the best papers from the shortlist. The
proceedings include only the English papers accepted; the Chinese papers appear in
ACTA Scientiarum Naturalium Universitatis Pekinensis.

We were honored to have four internationally renowned keynote speakers —
Charles Ling, Joyce Chai, Cristian Danescu-Niculescu-Mizil, and Luo Si — share their
views on exciting developments in various areas of NLP, including language com-
munication with robots, conversational dynamics, NLP research at Alibaba, and
megatrends in AI.



We could not have organized NLPCC 2018 without the help of many people:

• We are grateful for the guidance and advice provided by TCCI Chair Ming Zhou,
General Chairs Dan Roth and Chengqing Zong, and Organizing Committee
Co-chairs Dongyan Zhao, Ruifeng Xu, and Guanglai Gao.

• We would like to thank Chinese Track and Student Workshop Co-chairs
Minlie Huang and Jinsong Su, as well as Evaluation Co-chairs Nan Duan and
Xiaojun Wan, who undertook the difficult task of selecting the slate of accepted
papers from the large pool of high-quality papers.

• We are indebted to the 16 area chairs and the 232 reviewers. This year, we operated
under severe time constraints, with only a month between the submission deadline
and the notification date. We could not have met the various deadlines during the
review process without the hard work of the area chairs and the reviewers.

• We thank ADL/Tutorial Co-chairs Wenliang Chen and Rui Yan for assembling a
tutorial program consisting of six tutorials covering a wide range of cutting-edge
topics in NLP.

• We thank Sponsorship Co-chairs Kam-Fai Wong and Ming Zhou for securing
sponsorship for the conference.

• Publication Co-chairs Sujian Li and Hongying Zan spent a tremendous amount of
time ensuring every little detail in the publication process was taken care of and
truly deserve a big applause.

• We thank Dan Roth, Xuanjing Huang, Jing Jiang, Yang Liu, and Yue Zhang for
agreeing to serve in the best paper award committee.

• Above all, we thank everybody who chose to submit their work to NLPCC 2018.
Without their support, we could not have put together a strong conference program.

Enjoy the conference as well as Hohhot’ vast green pastures and natural sceneries!

July 2018 Vincent Ng
Min Zhang
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Abstract. User profiling in social media plays an important role in different
applications. Most of the existing approaches for user profiling are based on
user-generated messages, which is not sufficient for inferring user attributes.
With the continuous accumulation of data in social media, integrating multi-data
sources has become the inexorable trend for precise user profiling. In this paper,
we take advantage of text messages, user metadata, followee information and
network representations. In order to integrate seamlessly multi-data sources, we
propose a novel fusion model that effectively captures the complementarity and
diversity of different sources. In addition, we address the problem of friendship-
based network from previous studies and introduce celebrity ties which enrich
the social network and boost the connectivity of different users. Experimental
results show that our method outperforms several state-of-the-art methods on a
real-world dataset.

Keywords: User profiling � Social media � Multi-data sources
Fusion model

1 Introduction

User profiling, which aims at effectively extracting user attributes from massive data
information, is essentially valuable in various scientific research and business appli-
cations, such as recommendation system [1], search engine optimization [2], political
position detection [3] and social network analysis [4]. Many attempts have utilized
automated analysis model for user profiling tasks, such as user gender [5], age [6],
geolocation [7], occupation [8], hobbies [9], personality [10] and influence [11].

With the rapid development of social media, like Twitter and Facebook, user
profiling in social media obtains increasing attention. Traditional approaches [12–15]
are mainly based on user-generated messages, such as tweets and micro-blogs, from
which they construct a series of sophisticated features as the input of machine learning
algorithms. Nevertheless, user-generated messages are usually short and full of noisy
information. In addition to user’s posts, recently, there have been several attempts to
utilize other data sources in social media. Among them, social relationships network
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[16, 17] takes the most important role. Intuitively, people who become friends are
likely to share the similar attributes. However, one of the existing problems in the
friendship-based network is that if the training model does not include the user’s
friends in the network, the model may fail to predict the user’s attributes.

Apart from text messages and network information, social media provides other
data sources, such as users’ nicknames, self-introductions, and personalized labels,
which are also helpful for the identification of user attributes. Nowadays, more and
more data sources are generated in social media, integrating multi-data sources has thus
become the inexorable trend for precise user profiling. One naïve baseline for inte-
gration is to combine all the data representations one after another, as shown in
Fig. 1(a). However, it does not consider interactions between different data sources. To
address this, [18] built a hierarchical attention mechanism that unified text message,
metadata and network representation for user geolocation prediction, as shown in
Fig. 1(b). However, the attention mechanism may cause a certain loss of information
when features derived from different data sources are combined via the summation
operation. In addition, attention mechanism ignores the correlations between different
data sources.

To better integrate different data sources, we take the advantage of bi-GRU
architecture, which simultaneously captures the complementarity and diversity of each
data source from bi-directions with the update gates and the reset gates. Different from
the attention mechanism which integrates diverse inputs with a summation operation,
we concatenate all the hidden states as the hybrid features, in order to retain the
diversities of different data sources. We evaluate our model on a real-world dataset and
experiment results show that our model outperforms the aforementioned methods.
Besides, we also address the problem of scarcity in friendship network. Practically, we
incorporate celebrity ties into the social network to enrich the information of user
network representations.

The rest of the paper is organized as follows. In Sect. 2, we briefly review on the
related work of user profiling. Then, we deliver a detailed description of our model in
Sect. 3. Section 4 presents experimental results along with our analysis. Finally, we
make a conclusion in Sect. 5.

(a) Concatenation (b) Attention

Fig. 1. Previous baseline models
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2 Related Work

Most previous work in user profiling heavily relied on hand-crafted syntactic and
lexical features extracted from the user-generated messages. [12] analyzed bloggers’
writing styles and high frequency words at different genders and ages. [14] extracted
stylistic features and lexical features from users’ blogs, using SVM and logistic
regression model to predict users’ ages. Recently, deep learning methods have been
applied in user profiling tasks and shown their effectiveness against traditional
approaches. [19] devised a joint learning model with Long Short-Term Memory model
to distinguish users’ genders, ages, and professions.

Besides, network analysis targeting at node interactions in a connected network
becomes a hot field over these years [20–22]. In network analysis methods, user
profiling is treated as a node classification problem. [23] incorporated text features into
network representation by matrix factorization. [4] devised a framework that preserves
user profiles in the social network embeddings via a nonlinear mapping.

In social media, users are free to generate various types of data. It is found that the
combination of two or more types of data is distinctly better than merely a single type
in prediction tasks of user profiles. [24] established multi-scale Convolutional Neural
Networks with an attention mechanism on user-generated contents, combined with user
network representations. [25] unified users’ tweets and other metadata (location, time
zone) to predict user geolocation with a stacking approach. [18] developed a complex
neural network model that joins text messages, user metadata and network represen-
tations for geolocation prediction.

In this paper, we unify user text messages, user metadata, followees’ information
and network representations. Different from previous methods, our model seamlessly
incorporates different data sources by taking advantage of both their complementarity
and diversity.

3 Model

In this section, we introduce our model, a fusion framework which joints four different
types of data sources. Shown in Fig. 2, the model takes user text messages, metadata,
followees’ information and network representations as inputs. Then, four components
are treated as a sequence while a bi-GRU layer is employed to learn their interde-
pendency. Subsequently, all hidden units are concatenated as a new vector represen-
tation to retain their differentia, and then they are fed into the final fully connected
layer. Details of the sub-models will be discussed in Sects. 3.1, 3.2, 3.3 and 3.4.

A Fusion Model of Multi-data Sources for User Profiling in Social Media 5



3.1 Text Messages Representation

Text messages are the most important information for user profiling in social media.
We take each message as one sentence formed by a sequence of words and aggregate
all messages to be a document. To get the document presentation, We adopt the
hierarchical attention network [26], in which there are two hierarchical layers. Figure 3
shows one typical hierarchical layer in the hierarchical attention network.

The input representations can be the word embeddings, while the output comes to
be a sentence embedding. Similarly, sentence embeddings can be combined into a
document. To implement RNN, we use Gated Recurrent Unit (GRU) [27]. Formally,
the formulations of GRU are as follows:

zt ¼ r Wzxt þUzht�1 þ bzð Þ ð1Þ

rt ¼ r Wrxt þUrht�1 þ brð Þ ð2Þ

Fig. 2. Illustration of the fusion model. Hierarchical attention layer denotes hierarchical
attention network. BiRNN denotes bi-recurrent neural network. Concatenation layer indicates
concatenation of all hidden units learned from multi-data inputs.

Fig. 3. The architecture of one hierarchical layer in the hierarchical attention network
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~ht ¼ tanh Whxt þ rt � Uhht�1 þ bhð Þ ð3Þ

ht ¼ zt � ht�1 þ 1� ztð Þ � ~ht ð4Þ

where zt denotes an update gate, rt a reset gate, ~ht a candidate state, ht a hidden state,
and xt an input state, Wz; Wr; Wh; ; Uz; Ur; Uh; bz; br; bh are model parameters, �
denotes the element-wise multiplication operator.

We get the hidden presentation hit by concatenating forward hidden state ~hit and

backward hidden state h
(

it. Then, a self-attention mechanism is introduced, which
automatically assigns weights to different inputs. The formulation of the self-attention
mechanism is defined as follows:

ei ¼ tanh Wwhi þ bwð Þ ð5Þ

ai ¼
exp uTwei

� �
P

i exp uTwei
� � ð6Þ

s ¼
X

i
aihi ð7Þ

where ai is the weight of i-th of the hidden unit hi, and uw is the context vector, Ww and
bw are model parameters, s is the output vector.

3.2 Metadata Representation

Apart from text messages, user metadata information is also useful for inferring user
attributes. In this paper, we regard user nickname, self-introduction, education infor-
mation, work information and individualized labels as user metadata. We represent the
metadata by concatenating all the elements, feeding them into a BiRNN layer and an
Attention layer to the metadata representation.

3.3 Network Representation

For solving the sparsity of user friendships, most of previous works construct a 2-degree
friends network. However, constructing such a network is very labor-intensive and time-
consuming and most users are not well-connected. Therefore, an effective measure is to
intensify the relationships among users. According to our observation, celebrity ties can
be an alternative way to boost the connectivity between different users. As shown in
Fig. 4, although user B and C do not have an explicit friendship, they have an indirect
relationship as they both follow celebrity D and have interactions in blogs. Specifically,
we define a social network as G = (V, E), where V represents the vertices including
ordinary users as well as celebrities, and E indicates the relationships between vertices.
There are three types of social relationship in our network: friendships, follower-
followee relationships and blog-interacted relationships (@mention, repost and vote).
We employ LINE [22] which involves the first-order and second-order proximities
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between nodes to obtain users’ vector representations in the social network, where we
set all the weights of edges set to be 0 and 1.

3.4 Followees’ Information Representation

In addition to the construction of social network, we notice that the information of
followee, especially celebrities, has strong relations with the user’s traits. For example,
if a user follows a certificated company that sells cosmetics, we suppose the user may
be a female. In the followee list, followee usually put an explicit description of their
nickname and self-introduction. Herein, we join the nickname and description to form a
sentence representing one followee, and adopt another hierarchical attention network,
shown as Fig. 5, to get the whole representation of followees’ information.

3.5 Fusion Framework of Multi-data Sources

Given a series of data vector representations fs1; s2; s3; s4g, we adopt a Bi-GRU layer
to learn their interdependencies adaptively on both forward and backward directions,
resulting in corresponding hidden vectors h1; h2; h3; h4f g. Then, we concatenate all the
hidden units, sending them through a fully-connected layer. In practice, the lengths of

Fig. 4. An example of social network relationships

Fig. 5. Model architecture for getting followee information representation
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fs1; s2; s3; s4g may not be the same, so we adjust the hidden size of sub-models to
ensure the same lengths of different inputs. Formally, a user vector representation vu is
computed by:

vu ¼ Wc h1 � h2 � h3 � h4½ � þ bc ð8Þ

hi ¼ fBiGRU sið Þ ð9Þ

where Wc; bc are the model parameters.
We adopt cross-entropy error of the predicted and true distributions as the loss

function for optimization. The loss function is defined as follows:

L ¼ �
XT

i¼1

XC

j¼1
yji log byji

� �
ð10Þ

where T denotes the number of training sets, C denotes the number of classes in user
profiling tasks, and yji; byji are the true labels and prediction probabilities respectively.

4 Experiments

Since there is few public benchmark data set on user profiling yet, we collect a real-
word date set and evaluate our models in three user profiling tasks: gender, age and
location prediction. Users for evaluation are from Sina Micro-blog1, one of the most
popular social media websites in China. We gathered user accounts from the comment
lists of Micro-blog hot-searched event from March to April, 2018. Finally, we get
31,852 users with 21,884 females and 9,968 males, as females are more likely to share
their comments than males. For the fair comparison, we adopt down sampling strategy
that cuts off the sample number of female to 10,942. Figure 6 shows the distribution of
user in age. We split ages into four intervals: [<19, 19–23, 24–27, >27], corresponding
to different educational ages. User locations are in accordance with seven regions of
China. Table 1 summarizes the statistics of our data set, where NE denotes the
Northeast of China, N the North of China, C the Center of China, E the East of China,
NW the Northwest of China, SW the Southwest of China, and S the South of China. We
randomly select 70% as the training set, 10% the validation set and 20% the test set.

4.1 Experiment Setting

We use the pre-trained word2vec [28] vectors with a dimension of 200, and employ an
open source Chinese Segmentation tool Jieba2 to process the Chinese text. Words not
included in the word2vec vectors are endowed with a uniform distribution between
[−0.25, 0.25]. We adopt Adam algorithm [29] for optimization, and mini-batch size is
fixed to 32. We train LINE [22] to get network representations of first-order

1 https://weibo.com/.
2 https://github.com/fxsjy/jieba.
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embeddings and second-order embeddings with 150 dimensions respectively.
The GRU dimensions of words and sentences are set to be 50 and 150 respectively in
hierarchical attention network. Since user metadata only comprises one bi-RNN layer,
we set the GRU dimensions to be 150. The size of all attention units is set to 300, the
dropout rate is 0.5. For evaluation, we use the metrics of F1 measures.

4.2 Baseline Methods

We compare our model with several baseline methods for user profiling tasks:
Text Feature + SVM: In traditional methods, bag of words (BOW) is regularly

used for extracting text feature. In our experiments, different words in BOW model are
weighted by TF-IDF, and then we adopt Singular Vector Decomposition (SVD) to
perform dimensionality reduction, feeding them into an SVM classifier.

Text Feature + HAN: HAN represents the hierarchical attention network. Here,
we use HAN only for extracting text messages features as the baseline method.

Multi-CNN + Network Embedding (MCNE) [24]: Each sentence is learnt by a
convolutional neural network and an attention mechanism is used to assign weights to
different sentences. Both the messages embedding and the network embedding are
concatenated as the user embedding.

Multi-Data + Concatenation (MDC): Four types of data inputs are simply con-
catenated for the fully-connected layer, with details shown in Fig. 1(a).

Multi-Data + Attention (MDA) [18]: Three types of text information are aggre-
gated by an attention mechanism layer, and the output is summed up with the network
vector by another attention mechanism layer, with details shown in Fig. 1(b).

Fig. 6. Distributions of user in age

Table 1. Statistics of datasets for user profiling evaluation

Gender Male Female
9968 10942

Age <19 19–23 24–27 >27
3407 5914 5273 3716

Location NE N C E NW SW S
2364 4359 3058 8144 1445 2951 3827
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4.3 Experimental Results and Analysis

We report results of our proposed model on user profiling tasks along with baseline
methods in Table 2.

We can see that deep learning methods outperform remarkably better than BOW.
MCNE is superior to HAN in gender and location prediction significantly, but slightly
inferior in age prediction. The possible reason is that user gender and location can be
inferred by local salient features, like “homeboy”, “Beijing”, while age requires more
information of different aspects and their relations. In this respect, RNN performs better
than CNN. In general, methods that unifies multi-data sources boost the performance
compared to merely text-messages based methods (SVM, HAN) and the MCNE
method. However, MDA does not make a significant improvement compared to the
baseline MDC. The reason may be that aggregating different inputs by an attention
mechanism may loss the peculiarity of each data source and information is partly lost
when features are shortened to a quarter of the original inputs by the summation
operation. Among all the methods, our model consistently and significantly performs
the best in all user profiling tasks, especially the age identification task with 4.8%
improvements of performance compared with MDC. This indicates our model effec-
tively takes advantage of the relativity and diversity of different data sources.

Visualization: To further illustrate our proposed model, we use t-SNE [30] to make
a 2-dimensional visualization of user embedding vectors in the test dataset. As shown
in Fig. 7, we can observe a clear division of node distributions in gender, location tasks
with 2 and 7 distinct regions respectively, where users with the same attributes are
clustered tightly. Although age prediction has the lowest accuracy, we still observe two
separated parts, in which the left denotes users who are above 24 years old and the right
under 24. Besides, we can see a gradual change of colors from right to left (dark blue,
blue, green and orange), which suggests the transition of different age groups (<19, 19–
23, 24–27, 27 correspondingly). Thus, results of visualization give a strong evidence of
the good performance of our model.

Sequential Order Analysis: To provide more insight into our proposed fusion
model, we investigate the influence of sequence order before the BiRNN-layer.
Specifically, let t denote the text messages representation, i denote the user metadata
representation, ne denote the network representation, and f denote the followee
information. Table 3 reports results on four types of different combinations. It reveals

Table 2. Results of user profiling tasks on Sina micro-blogs data set

Gender Age Location

SVM 76.5 43.8 48.7
HAN 81.8 48.7 61.7
MCNE 84.2 46.8 65.6
MDC 85.5 51.5 68.1
MDA 85.5 52.7 67.5
Our model 86.6 56.3 70.2

A Fusion Model of Multi-data Sources for User Profiling in Social Media 11



the significant differences among different orders in the sequence. The reason is mainly
because of the effect of the update state and the reset state in GRU, which will reduce
the information from the previous hidden state if it has little relevance to the current
state. Herein, we observe that the order ne-u-t-f obtains the best performance, partly
because the middle position of text messages can effectively capture both the infor-
mation from user metadata and followee information from bi-directions since they all
are the text representations and show a strong relevance intuitively. Besides, text
messages preserve the most valuable information for inferring user attributes. A prac-
tical issue is how to let our model find the sequence order automatically, which we
leave for our future work.

Network Analysis: To verify the effect of celebrity ties, we construct five different
social networks by adding friend nodes, celebrity nodes from followee lists, celebrity
nodes from @mention behaviors, celebrity nodes from repost behaviors and celebrity
nodes from vote behaviors incrementally. We obtain the network embeddings by using
LINE and feed them into the MLP classifier. Figure 8 shows the results on different
network scales, from which we are apparently aware of the remarkable promotion by
adding celebrity nodes from followee lists, with a drastic increase of 10% in F1-
measure in gender and age prediction. The possible reason is that celebrity nodes boost
the connectivity of different users who are not friends, and thus enrich the network
structure. In addition, we also observe a significant effect of repost and vote behaviors
on location predictions, probably due to the fact that users usually repost and vote the
micro-blogs concerning local reports.

(a)gender (b)age                        (c)location 

Fig. 7. 2-dimensional visualization of user embeddings in user profiling tasks

Table 3. Results of fusion framework with different orders of sequential combination.

Order Gender Age Location

t_f_u_ne 85.68 55.03 68.64
t_u_f_ne 86.29 54.89 65.91
f_ne_t_u 86.24 53.46 68.59
ne_u_t_f 86.69 56.38 70.24
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5 Conclusion

In this paper, we present a novel fusion model of multi-data sources for user profiling,
which seamlessly integrates them by taking advantage of their relativity and diversity.
Concretely, we carefully devise four different types of data sources: text messages, user
metadata, followee information and network presentations, feeding them into different
sub-models and integrating them via a hybrid bi-GRU framework. To alleviate the
problem of weak connectivity in user-friendship based network, we innovatively
incorporate celebrity nodes, noticing the indirect interactions between users via
celebrity nodes. Experimental results show that our proposed model performs effec-
tively on user profiling tasks. In the future, we will do further research on our model to
implement an automatic mechanism for finding the best sequence combination of
multi-data sources. In addition, we also plan to incorporate other different data sources,
like images and videos that appear in user micro-blogs.
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Fig. 8. Comparison on the performances of user profiling with different network scales
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Abstract. Social networking sites have been growing at an unprece-
dented rate in recent years. User profiling and personalized recommen-
dation plays an important role in social networking, such as targeting
advertisement and personalized news feed. For NLPCC Task 8, there are
two subtasks. Subtask one is User Tags Prediction (UTP), which is to
predict tags related to a user. We consider UTP as a Multi Label Classifi-
cation (MLC) problem and proposed a CNN-RNN framework to explic-
itly exploit the label dependencies. The proposed framework employs
CNN to get the user profile representation and the RNN module captures
the dependencies among labels. Subtask two, User Following Recommen-
dation (UFR), is to recommend friends to the users. There are mainly
two approaches: Collaborative Filtering (CF) and Most Popular Friends
(MPF), and we adopted a combination of both. Our experiments show
that both of our methods yield clear improvements in F1@K compared
to other algorithms and achieved first place in both subtasks.

Keywords: User profiling · User tags prediction
Multi label classification · Friend recommendation

1 Introduction

Nowadays, UTP and UFR have attracted great attention due to the popularity
of social networks. For example, on social networks where people share infor-
mation and connect to each other, users present themselves with demographical
information as well as tags indicating their specialities or interests. These tags
form an important part of user profiling for personalized user/item recommen-
dation. In the absence of tags, user generated data or other information could
be used to predict tags for users. Meanwhile, current social relations of users
can also be used to recommend new users they would like to follow. Since user
behavioral data is heterogeneous, it is still challenging to effectively leverage the
heterogeneous information for user profiling and recommendation.

This shared task includes two subtasks. Subtask one is UTP which can be
considered as a MLC problem. Given users’ other information except tags, we
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 16–26, 2018.
https://doi.org/10.1007/978-3-319-99501-4_2
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need to predict related tags to the users. Subtask two is UFR, where we pre-
dict the users a user would like to follow in the future given users’ following
relationship and other provided information. We will introduce the two subtasks
respectively in the following sections.

1.1 UTP

User Profiling can be defined as user information tagging, which is to assign
user tags based on the users’ past interests/behavior. Wu et al. [3] conducted
unsupervised keywords extraction from Twitter messages to tag Twitter users’
interests and concerns, and evaluated the performance by human annotators.
Lai et al. [2] created a news recommender system to predict users’ interests by
analyzing their reading behaviors. Some works consider user profile inference as a
supervised classification task. Li et al. [1] extracted user information from social
media websites like Twitter, Google Plus or Facebook and make predictions for
user attributes based on their tweets. Yin et al. [4] proposed a probabilistic
model for personalized tag prediction, which integrates three factors: an ego-
centric effect, environmental effects and web page content.

In this subtask, we cast UTP as a MLC problem. For MLC problem, Binary
Relevance (BR) [7] is a classical method. However it lacks of sufficient ability to
discover dependencies among labels. To address this issue, various methods have
been proposed. Classifier chains (CC) [8] extends BR by taking label dependen-
cies into account. CC links binary classifiers as a chain and feeds the predictions
of the earlier classifiers as features to the latter classifiers. Label Powerset (LP)
combines multiple tags as new tags for classification. Condensed Filter Tree
(CFT) [5] tries to find the best label sequences to make the best prediction. For
multi label classification of images, CNN-RNN [6] extends CC by utilizing RNN
to model label dependencies.

1.2 UFR

Friend recommendation is either based on topological structures of a social net-
work, or derived from profile information of users.

Traditional methods use Friend-of-Friend (FOF) to obtain candidate friends
set. This set of friends can be then sorted by several criteria including the popu-
larity of friends and the number of shared friends between the target user and the
candidate friends. This approach requires the existence of second degree linkage
of users in data.

Semantic based methods recommend friends that are similar to the target
user. As for similarity measurement, heterogeneous information could be used.
Chin et al. [10] recommended friends to the target user using proximity and
homophily. Xiao et al. [11] analysed the personality of the users by mining
their tweets content and recommended friends with similar personalities. Wang
et al. [12] proposed Friendbook system which collects user-centric knowledge
from sensors on the smartphone and modeled life styles of users in order to
suggest friends who share similar life styles with the target user. Gou et al.
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[13] designed SFViz system that helps people seek friends with similar inter-
ests. Feng et al. [14] linearly combined multiple similarity measurements to find
friends similar to the target user. This approach can provide with precise per-
sonalized recommendation based on carefully selected features. However a great
effort is needed to collect appropriate information from users as well as their
friends.

Classic recommendation approaches can also be applied to friend recom-
mendation. In this case, a person may have the roles of user and friend at the
same time. Collaborative filtering is amongst the most popular recommendation
algorithms [15,16]. Memory-based collaborative filtering contains user-based and
item-based algorithms, which make recommendations according to the similarity
of user-item behaviors. Another category of collaborative filtering algorithm is
matrix factorization, which learns a dense distributed representation for each
user and item. Different variations of matrix factorization have been explored,
such as SVD, LDA and ALS. The two previous algorithms are usually applied to
explicit data such as movie ratings, and ALS could be more adapted to implicit
datasets [17].

Recent works apply deep neural networks to friend recommendation.
Liu et al. [18] combined deep learning techniques and collaborative informa-
tion to explore the user representations latent behind the topology and content.
Ding et al. [19] extracted deep features of users using CNN and performed rec-
ommendation using Bayesian Personalized Ranking.

2 Proposed Methods

2.1 UTP

The task of UTP is to predict tags which are related to a user. We cast UTP as
a MLC problem. Compared to the multi-class classification, MLC is different:
multi-class refers to classifying instances into one or more classes which does
not take the label dependencies into account, while MLC explicitly models the
dependencies among labels. Motivated by CNN-RNN [6], we utilize CNN to
capture rich representations of users. We employ RNN to model dependencies
among labels. Unlike CNN-RNN [6], which only considers the previous prediction
of the maximum probability, we think and prove that the previous prediction
of multiple labels will have an effect on later predictions. The illustration of the
CNN-RNN framework is shown in Fig. 1.

CNN Module. We employ CNN to get the representation of each user profile.
We use ci,j to represent the feature map element of i -th row and j -th column:

ci,j = f(
D−1∑

d=0

F−1∑

m=0

F−1∑

n=0

wd,m,nxd,i+m,j+n + wb) (1)

where D,F,wd,m,n, xd,i+m,j+n indicate the depth, filter size, the filter and pixel
in the image. d, m, n represent d -th layer, m-th row and n-th column.
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Fig. 1. The architecture of the proposed CNN-RNN model. Our proposed framework
consists of three key modules: the output of CNN is employed as the user profile
representation; the RNN captures the dependencies among labels, and the classification
network combines the CNN output and the output of the recurrent layer as features
to compute label probability.

Suppose n filters are used and the n resulting feature maps are C(1), ..., C(n).
Then a pooling operation Pool(·) is applied to each of these n feature maps to
produce n p-dimensional vectors Pool(c(1)), · · · ,Pool(c(n)). The output of CNN
is denoted by oCNN :

oCNN = Flatten(Concat(Pool(C(1)), · · · ,Pool(C(n)))) (2)

RNN Module. The label prediction of time step t is represented as a vector pt,
the prediction label embedding et can be obtained by multiplying the predicted
vector with a label embedding matrix U,

et = Upt (3)

We use the output of CNN and the previous label prediction information as
combined features to feed to the recurrent layer:

xt = Concat(oCNN , et−1) (4)
ht = f(Wxxt−1 + Whht−1 + Wcct) (5)
pt = Wpht + bp (6)

where ht, xt, ct indicate the hidden state of RNN, the RNN input and the cell
state at time step t respectively. Wx, Wh, Wc, Wp, bp are the parameters to be
learned during the training process. f is an activation function.

Classification Network. We combine the output of CNN and the previous
label prediction embedding as features to feed the classification network and
calculate the predicted distribution over labels oout:

oout = WoConcat(oRNN , oCNN ) + bo (7)

where oRNN , oCNN indicate the last hidden state of RNN and the CNN output.
Wo, bo are parameters to be learned during training.
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2.2 UFR

We assume that on social platform, users may follow friends because they know
their friends in the real world, or they are interested in the tweets posted by their
friends, or because the friends are celebrities or the friend accounts are popular.

Based on these hypothesis, the social and other types of information about
all users and friends could be useful for recommending friends to users. However,
neither sufficient tweets nor tags for friends are available in this task, we can
not rely much on the features of friends. And thus, we decided to fully leverage
social relations and user features.

Firstly we tried ALS, an efficient matrix factorization algorithm, which
decomposes the sparse user-item matrix into low-dimensional user factors p and
item factors q:

r′
u,i = pTu qi (8)

where r′
u,i is 1 if user u follows item i, otherwise is 0.

Different from SVD which is optimized using Stochastic Gradient Descent
(SGD), ALS optimizes the two types of factors alternatively by fixing one type
while optimizing the other. Thus, ALS can be easily parallelized, and for implicit
datasets where the user-item matrix is less sparse than explicit datasets, ALS is
usually more efficient.

Apart from social following information, we also tried to incorporate other
types of user information in the Collaborative Filtering algorithm, therefore we
decided to implement user-based CF. For simplicity of implementation, given M
users and N friends, we formulate user-based CF as following:

P = S × C (9)

where C ∈ R
M×N is the user-friend matrix and each element ci,j is 1 if the user

i follows friend j, otherwise is 0; S ∈ R
M×M and each element su,v represents

the similarity between user u and user v; and P ∈ R
M×N is the prediction result

matrix and each element pi,j represents the score for user i and friend j. Using
P , we filter out friend ids that are already friends of each user, and then sort
the rest of the friends by prediction scores.

For this task, we calculated different types of similarity values between users,
and the similarity matrix S is formulated as a weighted sum of different similarity
matrices:

S =
∑

αkSk (10)

Sk = Norm(Gk) × Norm(Gk)T (11)

where αk is a scalar weight, and Gk ∈ R
M×F is the user-feature matrix with each

element gi,j equals 1 if user i has feature j, otherwise equals 0. As for features,
we used users’ social relations, tags, check-in categories, tweets and profile infor-
mation which includes gender, province and city. For social relation similarity,
features are the set of friends. For tags, check-in and profile similarities, features
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are the total set of values of the corresponding information. Using tweets infor-
mation, we compared two types of similarities: one uses the 10,000 most frequent
words tokenized with LTP [21]; the other uses the 10,000 most frequent topics
including hashtags surrounded by “#”, user accounts initialized with“@”, and
emoji tags surrounded by “[” and“]”. Our motivation behind topic extraction
is that we assume that these topics represent users’ emotions, their preferences
on hot topics and popular accounts. We compared several combinations of these
similarities and the results will be discussed in the next section.

3 Experiments

3.1 Data Analysis

In this task, there are several data sets given, including users social information,
users tags, users check-in and tweets, as well as users profile information including
their gender, city and province.

In users’ social information, there are 56,217 users and 2,242,334 friends
in total. 20% of the users (11,602) have only 1 friend and 82% of friends
(1,860,094) are followed by only 1 user. The intersection of user and friend set
is 12,674. All these statistics show that we have a quite sparse social network in
question. As for user information, although all the users have profile and check-
in information, only 11,714 users have tags, and only 9,343 users have tweets.
Friends have even less related information. Lacking of useful user and friend
information makes it hard to leverage similarities between users and their friends.
Detailed statistics for users and different types of information are described in
Table 1.

Table 1. Analysis of all the provided information (Coverage of users/friends is the
number of users/friends having the corresponding types of information)

Information
type

Number of
values

Coverage of
users

Coverage of
friends

Total ids

Tweet - 9,343 4,284 9,743

Tag 22,211 11,714 4,061 11,995

Check-in 260 56,217 12,936 60,000

Gender 2 56,217 12,923 59,320

Province 37 56,217 12,923 59,320

City 55 56,217 12,923 59,320

For submission of subtask one, we need to predict tags for 2,776 user ids.
2,720 of these ids have social relations, but only 769 of them have tweets. None
of the ids has tag information in the provided data.
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For subtask two, 33,857 user ids need to be recommended of potential friends
based on their existent social relations. Among them, 6,091 user ids have no more
than 5 friends in all the provided data, which would probably be involved in cold
start problems.

3.2 Evaluation Metrics

The evaluation of both subtasks will use F1@K as defined below:

Pi@K =
|Hi|
K

(12)

Ri@K =
|Hi|
|Vi| (13)

F1i@K =
Pi@K ∗ Ri@K

Pi@K + Ri@K
(14)

F1@K =
1
N

N∑

i=1

F1i@K (15)

where |Hi| is the correctly predicted item set (item refers to tag in UTP and
friend in UFR) for user i ’s top prediction, |Vi| is the ground truth item set for
user i. Pi@K,Ri@K and F1i@K are the precision,recall and F1 for user i. In
UTP, we set K = 3. In UFR, we set K = 10.

3.3 Experimental Results and Analysis

UTP. As aforementioned, for UTP submission task, only 769 users have tweets.
We combined users’ tweets, social links, check-ins and profile information as
features for training and prediction. In this task, we chose as baselines four
advanced approaches solving MLC problems: BR [7], CC [8], LP and Adapta-
tion Algorithm (AA). The first three approaches use Decision Tree (DT), Naive
Bayes (NB) and Random Forest (RF) methods, while AA is implemented with
MLKNN. In addition, in order to verify the importance of label dependencies, we
employ CNN [9] as a strong baseline. For tweets information, Deep learning(DL)
approaches use 300-dimensional word2vec1 vectors for training, while others use
bag-of-words features.

We compared with 11 methods on the given dataset, and the results for
P@K, R@K, F1@K(K=3) are shown in Table 2. From Table 2, we can see that
our proposed CNN-RNN model achieved the best performance on all metrics
and our model outperformed the second best method by 39.59% in P@K.

It is obvious that DL approaches outperformed other traditional methods.
We notice that the BOW model is not enough to represent the user profile since
the BOW model does not consider the spatial correlation among features, while
CNN uses convolution and pooling operation to capture richer information from
different regions of the feature maps.
1 https://code.google.com/p/word2vec.

https://code.google.com/p/word2vec
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Table 2. Results in P@K,R@K,F1@K, bold numbers indicate the best results each
line.

Approaches Methods Metrics

P@K R@K F1@K

BR DT 5.68% 3.31% 2.09%

NB 8.07% 5.56% 3.29%

RF 5.23% 3.29% 2.02%

CC DT 5.41% 3.19 2.00%

NB 9.13% 6.40% 3.76%

RF 5.50% 3.41% 2.10%

LP DT 5.79% 3.74% 2.27%

NB 6.13% 4.31% 2.53%

RF 5.43% 3.54% 2.14%

AA MLKNN 5.39% 3.24% 2.02%

DL CNN 19.06% 10.91% 6.94%

CNN-RNN 58.65% 31.97% 20.69%

Regarding label dependencies, our model and LP outperformed BR. Com-
pared with CNN, our method takes label dependencies into account and outper-
formed CNN by 13.75% in F1@K. We assume that users’ tags in social networks
are usually relevant. Users who are interested in a certain area are usually inter-
ested in related fields.

UFR. For our off-line experiments, we split social data to form off-line training
and test set. For each user, we randomly choose 80% of his friends as training
set and the rest as test set. In this way we assure that all the test users appear
in training set. We then filter out friends set in the test set to make sure they
appear in users or friends set of the training data. Since we already have the
set of user ids to predict for the shared task, we only keep those user ids in
our test data. It provides with the information of 56,217 users and 1,861,408
friends in training set, and 28,129 users and 167,679 friends in test set. In order
to efficiently do the computation and ensure cover as much user ids in test set as
possible, we filter out friends set and only keep friends with 2 or more followers.
As a result of this filtering process, we have 47,957 users and 293,254 friends in
training set and 24,688 users in test set. We can observe that nearly 20% of the
user ids to be predicted have no more than 5 friends in all the provided data.
And thus we split out our test set into two partitions: users with more than 10
friends in training data, and users with 10 or less than 10 friends. In total, the
first test partition contains 10,438 users, and the second contains 14,250 users.
At submission stage, we took all the provided data as training set to conduct
predictions.
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Firstly, we compare user-based methods (UB) using different information
sources as similarity features. From Table 3, it is clear that using social relations
as features is the best, and adding any other type of information will decrease
the performance. The reason is possibly that it is straightforward to use users’
past social behavior as features rather than other irrelevant ones when to predict
users’ future social relations.

Table 3. Results of user-based methods using different features on the two test set
partitions. (“Coverage of users” means the number of users having recommendation
results using each method; “F1@K cov” refers to the F1 score within users covered
by the corresponding method; “Added to UB-social” refers to the results of the user-
based method on all the users, combining social and the corresponding information
with equal weights as similarity features using formula(8))

methods Test partition 1 Test partition 2

Coverage
of users

F1@K cov
(F1@K
total)

Added to
UB-social
(F1@K)

Coverage
of users

F1@K cov
(F1@K
total)

Added to
UB-social
(F1@K)

UB-social 10438 2.59%
(2.59%)

- 14212 1.35%
(1.34%)

-

UB-tag 1816 1.43%
(0.25%)

−0.05% 3874 0.14%
(0.03%)

−0.26%

UB-vocab 1573 1.41%
(0.21%)

−0.07% 4048 0.09%
(0.02%)

−0.34%

UB-topic 1572 1.71%
(0.25%)

−0.04% 4039 0.14%
(0.04%)

−0.30%

UB-gender 10438 2.19%
(2.19%)

−0.40% 14250 0.48%
(0.48%)

−0.86%

UB-province 10438 2.09%
(2.09%)

−0.49% 14250 0.46%
(0.46%)

−0.87%

UB-city 10436 2.00%
(2.00%)

−0.58% 14249 0.45%
(0.45%)

-0.89%

We also tried ALS and Most Popular Friends(MPF). MPF is an intuitive
method simply recommending K most popular friends to each user after remov-
ing those who are already friends of the user. We set 20 dimensions for user and
friend factors, and conduct 50 iterations while training ALS. Table 4 shows the
performance comparisons of the three methods.

It can be seen from Table 4 that ALS achieves the best performance on the
test partition 1, while UB-social performs the best on test partition 2.

4 Conclusion

In this paper, we compared our algorithms with other mainstream advanced
methods in user profiling and recommendation, and our proposed methods
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Table 4. Results using different methods on the two test set partitions

Methods Test partition 1 Test partition 2

P@K R@K F1@K P@K R@K F1@K

MPF 7.34% 3.01% 2.00% 0.75% 1.18% 0.44%

UB-social 9.39% 3.93% 2.59% 1.98% 6.37% 1.34%

ALS 12.48% 5.13% 3.40% 1.24% 1.99% 0.72%

achieved the best performance in both subtasks. For UTP subtask, we com-
bined tweets, socials, check-ins and profiles as feature for training and prediction
through data analysis. We proposed deep learning framework CNN-RNN, which
employ CNN to get the user profile representation and model the dependencies
among labels by RNN. Experiment results show that utilizing RNN mechanism
to model label dependencies is effective for this MLC problem.

For subtask two, we combine collaborative filtering methods with MPF to
conduct friend recommendations. Our submission results are based on ALS for
most of the users, for the rest of the users who do not have ALS recommendation
results due to lack of social relations, we simply propose K most popular friends
after removing their existent friends. However we found that for users with no
more than 10 friends in the training data, user-based CF is much more efficient
than MPF and ALS. In the future, the ensemble of different recommendation
methods is worth investigating deeply. Ranking methods like wide & deep [20]
could also be tried to re-rank friend candidates set generated by collaborative
filtering methods. Another possible way of studying this subtask is to consider
friend recommendation as a MLC problem and leverage heterogeneous informa-
tion in the process.
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Abstract. We present Summary++, the model that competed in
NLPCC2018’s Summary task. In this paper, we describe in detail of the
task, our model, the results and other aspects during our experiments.
The task is News article summarization in Chinese, where one sentence is
generated per article. We use a neural encoder decoder attention model
with pointer generator network, and modify it to focus on words attented
to rather than words predicted. Our model archive second place in the
task with a score of 0.285. The highlights of our model is that it run
at character level, no extra features (e.g. part of speech, dependency
structure) were used and very little preprocessing were done.

Keywords: Text summarization · Sequence-to-sequence · Pointer
Coverage

1 Introduction

Text summarization is the task of producing a short piece of text from a long
one while preserving main information [1]. Summarization is one of the eight
in NLPCC2018’s evaluation task. As one of the more traditional task in NLP,
it is still attracting a lot of attention and with advancements in deep learning
techniques, there are more opportunities for improvement. As information grows
rapidly, the time needed for a person to consume all these data is insufficient,
summarization is helpful by providing a short text helping reader decide if they
want to read the whole article. NLPCC’s summarization task focuses on Chinese
News articles, where research and support still lacks. The data is provided by
Toutiao.com which consist of News articles. Train and evaluation datasets are
provided to train the model and a test set is used to compare different models.

We participate in the task with our model Summary++, which is based of
the Pointer Generator Network [2] with modifications to obtain our results. In
the paper will focus on pre-processing of data, the model + modification and
hyperparameter tuning. We do not use any feature extraction tools and human
engineered features during pre-processing. We base our solution on character
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 27–37, 2018.
https://doi.org/10.1007/978-3-319-99501-4_3
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level so that we do not need to perform word segmentation. Our model is end-to-
end to keep reduce human involvement during training and testing. Experiment
results and other details will be followed in the paper, including improvement
at each stage and training time. Models are compared with Character-based
ROUGE-F metric [3].

The main contribution of this paper can be summarized as follows:

1. We present our Summary++ which obtained the second highest score of 0.285
in NLPCC2018’s summary task.

2. We present a end-to-end solution for Chinese News article summarization.
3. Our model does not require word segmentation or any feature engineering.

1.1 The Summarization Task for Chinese News Article

The task description and data, provided by Toutiao.com, is a single sentence
summarization task for News articles. The summary is usually a general descrip-
tion removing all details and comes in one sentence. Figure 1 shows one training
point which contains one News article and its corresponding summary. The task
can be regarded as an sequence to sequence problem with the article as input
and summary as output. The standard model in deep learning for such task
is encoder decoder model. Challenges when using such model include accuracy
of word generated, out-of-vocabulary problem and repetition. Pointer generator
network [4], which we base our solution on, is a outstanding model for such
problems which incorporates both copying and generation mechanisms.

Fig. 1. Example of training data point. A article and its summary is provided. In
the figure, the News article is about a murder incident that involves one man hack-
ing another man to death at KFC. The article goes into deep detail of the incident,
including time, place and aftermath. The summary however is very general and goes
as follows, “Internet reports Shangqiu Henan hacking incident at KFC, police says two
mans conflict escalated into fight, two man are locals.”

When revising the data, we find some unusual datapoints, where the content
consist of only html tags or punctuation. We use regular expression to remove

http://www.Toutiao.com
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tags and continuous punctuations for both training and testing set. Another
dataset without summary was also provided but was discarded because such
data was not needed in our model.

The total number of datapoints is 50000 for training, 2000 for evaluation
and 2000 for testing. A only Chinese vocabulary list was provided with 2987
characters but we generated our own which includes digits, punctuation and
English words. The total number of unique tokens was 213789 and ones with
top 10000 frequency were used.

2 Summary++

In this section, we present our model in detail. We briefly describe the model we
use and focus on the modifications we did to improve performance.

2.1 Our Model

Our model is based of Pointer Generator Summarization Network, which has
a network that tell the decoder to use a generated word or a word that was
attended to. In our solution, we try our model the same way, but when we per-
form summarization on the test set, we remove the generation process, because
we find that the pointer network easily overfit the data and provided false facts
in the test results. Figure 2 shows decoding process during training.

The model is encoder decoder model with attention mechanism, pointer net-
work and coverage mechanism [5]. The encoder is a Bi-directional LSTM (BiL-
STM) which takes in a sequence of characters and outputs two final states and
one hidden states for each input character. BiLSTM is used in many state-of-
the-art models and shows promising potentials.

During decoding, A LSTM cell takes in the previous hidden states and con-
text vector as input, and outputs a current hidden state (also known as the
decoder state). Attention is a mechanism which shows the decoder which part of
the sequence to focus on while decoding. We can think of it as giving a weight to
each encoder hidden states. The attention weight is calculated as follows: 1. for
each token in the sequence, concatenate its corresponding encoder hidden state
with decoder hidden state to form a vector; 2. run the vector through a linear
transformation followed by a tanh; 3. run the output from the previous step
through another linear transformation followed by a softmax. We are able to
get a probability distribution for each word after the three steps.

The context vector is a state after considering all encoder hidden states and
attention. We can see it as a vector that is used to predict the next word.
It is calculated by multiplying the encoder hidden state of each token with it
attention weight, then adding together all these weighted state. The context
vector is project through a linear transformation to the size of our vocabulary.
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Fig. 2. Pointer Generator Network Model + Coverage that is used in our Summary++
system. During each decoding step, attention, coverage vector and generation proba-
bility is calculated to predict the next word.

Finally, a softmax is used to obtain the distribution of the next token. The
following equations show calculation of attention and context vector:

eti = vT tanh(Whhi + Wsst + battn) (1)

at = softmax(et) (2)

h∗
t =

∑

i

at
ihi (3)

where hi is the hidden encoder state and st is the hidden decoder state. vT , Wh,
Ws and battn are all trainable parameters. h∗

t is the context vector.
The coverage vector is a summation of attention during the decoding process.

For each token in the input sequence, its initial coverage weight is 0, that means
the token is not attended to. As the output sequence get decoded, coverage
increases for each token as it gets assigned attention weight. As a token get more
attention, it get more difficult to have higher attention scores. Such mechanism
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is used for preventing repetition in the output sequence. The coverage vector
is included in the calculation of attention. Coverage is the new attention is
calculated as following:

ct =
t−1∑

t′=0

at′
(4)

eti = vT tanh(Whhi + Wsst + Wcc
t
i + battn) (5)

ct is initialized to 0. The attention and context calculation is the same as Eqs. 2
and 3.

The pointer network outputs a scalar the tells the model to look at the
predicted token to look at a token that was attened to most. It can be seen
as a soft switch between two choices. The network takes in the context vector
and the decoder states and outputs a scalar for each token in the vocabulary.
The final vocabulary distribution is the weighted sum of predicted distribution
and attention of the input token. The switching scalar also known as generation
probability is calculated as:

pgen = σ(wh∗h∗ + wsst + wxxt + wdd + bptr) (6)

where wh∗ , ws, wx, and wd are trainable parameters. pgen is our generation
probability. Predicted distribution and final distribution is calculated as:

Pvocab = softmaxvocab(V ′(V [st, h∗
t ] + b) + b′) (7)

P (w) = pgenPvocab(w) + (1 − pgen)
∑

i:wi=w

at
i (8)

V , V ′ and b′ are trainable parameters.
The loss we use is negative log likelihood of each token in the output sequence.

We hope that by training, the probability of a suitable next token will have the
highest. Coverage does not converge unless a coverage loss is included. This is the
minimum between attention and coverage value, which slows down the gradient
descent process. Loss is show as below:

losst = − log P (w∗
t ) (9)

loss =
1
T

T∑

t=0

losst (10)

and loss with coverage:

losst = − log P (w∗
t ) + λ

∑

i

min(at
i, c

t
i) (11)

2.2 Character Embedding

For Chinese text we choose to operate at character level, thus leaving out the
need for segmentation. Each character is represented by a vector which is fed
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into the model. We find that segmentation introduces a large number of words
(token), such token is difficult to train due to the fact that data is not sufficient.
A lot of words appear on a few times even though they are everyday words.
Correlation of words become too sparse. Another reason is that we hope that
our model is a end to end model and not a pipeline type of model. Error in
pipeline can propagate along and a better solution would be minimize all errors
within one model. We also do not introduce any human engineered feature of any
kind (POS, DEP, etc). We believe that such feature are not a hundred percent
correct, thus causing the error to be enlarged in the model.

In the dataset, we do find some pieces of data that requires pre-processing.
Due to the fact that our model takes in the first 400 characters as input for an
article, some articles contains only tags and punctuation in the beginning, thus
causing the model to incorrectly identify crucial tokens in the model. We use a
regular expression to remove some text that does not look like news content.

2.3 Attention only Generation

When evaluating our model, we find that some summarizes contain some incor-
rect information. For example, we find that given a article about CBA players as

Fig. 3. Modified model, the whole vocabulary prediction part has been removed, the
whole generation process relies only on attention weights. The parameters are trained
using the full model but only these parts are used for summary generation.
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input, the output summary begins with NBA. After carefully analyzing the mat-
ter, we find that the problem is that predicted value is over confident. We find
that by removing the predicted vocabulary distribution, we can achieve optimal
results. Figure 3 is the model when in testing phrase. We directly use the word
that has the highest attention weight. This is similar to using neural network
as a copying mechanism, at each time step, we copy one word from the original
article. Different from directly copying, attention distribution was trained on the
full model hoping that correct words can be predicted.

3 Experiments

In this section, we describe in detail our experiment. We first discuss hyperpa-
rameter settings and results.

3.1 Hyperparameters and Training

Setting hyperparameters is one of the bigger challenges in our experiment. We
report ROUGE score on the evaluation set to compare different settings and
choose accordingly. We also compare the difference we using the original model
and our simplified model.

On Training Steps. We find that the model easily overfits, which means the
more training steps the more likely the model will overfit. We report F score on
ROUGE-1, ROUGE-2 and ROUGE-L after some number of training to find the
optimal step size. Table 2 shows the relation between performance and training
step size (Table 1).

Table 1. ROUGE result on training step, we find that after about 100,000 training
step, performance seems to stagnate.

num training steps ROUGE-1 ROUGE-2 ROUGE-L

11353 0.43 0.27 0.37

25791 0.44 0.28 0.38

109937 0.46 0.29 0.40

233769 0.46 0.30 0.40

392774 0.46 0.30 0.40

570743 0.46 0.29 0.40

ROUGE result on evaluation set does not tell us everything about the model.
High training step trigger repetition even when coverage is added. In order to
have a high ROUGE score and more readable summary, we choose the training
step to be around 110,000.
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3.2 On Encoder Decoder Max Size Min Size

We find another important factor in competing was setting encoder input size.
Due to hard-ware limitations, we were only able to increase encoder input size
to 400, that is only the first 400 tokens were taken. We find that smaller size
decreases the performance of the model. While sizes too large result in out-of-
memory error.

We also set the minimum decoder size to 15. After some observation, we
estimate the minimum length of summary is about 15 characters. We also try
other sizes such as 20 and 35, we find that performance is slightly worse than
15, so we choose 15 as minimum decoder size. We set the maximum decoder size
to 35. Increasing this size does not have any improvement as well.

3.3 On Attention only Summary Generation

We finally test the results of using pointer generator probability to switch
between generating the next word and using the attended character. We test the
vanilla approach and also the two alternate, where one uses only the attended
character and the other uses only the generated word. We operate our experi-
ment on the final test data and report the official ROUGE score

Table 2. ROUGE score when using different generation methods, Vanilla uses both
generated character and attention with a soft switch. Attention and Generation uses
either only the attended sum or predicted vocabulary.

num training steps ROUGE score

Vanilla 0.243

Generation only 0.270

Attention only 0.285

We also evaluate some example and find that even with the switch method, we
find some obvious mistake in the summary with generated summaries. Figure 4
shows some examples when using a switch between generation and attending.
When using attention guided summary, such problem do not appear.

Fig. 4. Examples of incorrect summary, the model is over confident starting with
“NBA” is a correct way to begin a summary.
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3.4 Final Results Compared in the Evaluation Task

We finally compare results with other team in the evaluation task. Our team
made second place on the score board. All methods are not disclose at the time
of writing, so this is reference to where our model stand in the task. Table 3
shows the top five on the leader board. Difference is rather small.

Table 3. Evaluation result on the final score board. Our mode Summary++ made
second place.

num training steps ROUGE score

WILWAL 0.2938

Summary++ 0.285

CCNU NLP 0.282

freefolk 0.281

kakami 0.278

4 Related Works

Summarization has been around for many decades [1,6], this paper focuses on
multi-sentence summarization where the task is to generate summaries with
multiple sentences. The task has attracted attention when a large multi-sentence
summary corpus was introduced [7].

Neural Extractive Summarization. The extractive approach is based on a
hypothesis that the main idea of a document can be summarized in a few phrases
or words in the document. Then the task of the summarization turns to find the
most important words in the document. The neural extractive approaches [8–10]
are mainly based on the CNN model and some of its deformations. The greatest
problem of this kind of approach is that the generated summarization may be
incoherent and inconsistent.

Neural Abstractive Summarization. The abstractive approach needs to
understand the meaning of the document, and then briefly summarize it by
a highly readable human language. For this target, the RNN/LSTM models
and some of their deformations are adopted to complete the neural abstractive
task [11,12]. Recently, some researchers have used the latest neural networks
model to summarize, such as the sequence-to-sequence model and attention
model.

Sequence-to-Sequence Models. Most of current state-of-the-art models are
based of sequence-to-sequence models which have gained many successes in
machine translation [13,14]. Attention [15], pointer network [4], coverage [5] and
controllable summarization [16,17] are some techniques adapted to the task of
summarization.
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5 Conclusion

This paper present our model in the NLPCC2018 summarization task. We mod-
ify the pointer generator network model to achieve SOTA results on the test set.
We show that the model can sometimes be over confident with its prediction and
we simplify the model to only using attended tokens. We also show that char-
acter level summary in Chinese language is not only possible but also practical.
Our model requires very little pre-processing and no human-engineered feature.
We believe that there is more potentials in the model.
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Abstract. A deep learning model adaptive to both sentence-level and article-
level paraphrase identification is proposed in this paper. It consists of pairwise
unit similarity feature and semantic context correlation feature. In this model,
sentences are represented by word and phrase embedding while articles are
represented by sentence embedding. Those phrase and sentence embedding are
learned from parse trees through Weighted Unfolding Recursive Autoencoders
(WURAE), an unsupervised learning algorithm. Then, unit similarity matrix is
calculated by matching the pairwise lists of embedding. It is used to extract the
pairwise unit similarity feature through CNN and k-max pooling layers. In
addition, semantic context correlation feature is taken into account, which is
captured by the combination of CNN and LSTM. CNN layers learn collocation
information between adjacent units while LSTM extracts the long-term depen-
dency feature of the text based on the output of CNN. This model is experi-
mented on a famous English sentence paraphrase corpus, MSRPC, and a
Chinese article paraphrase corpus. The results show that the deep semantic
feature of text could be extracted based on WURAE, unit similarity and context
correlation feature. We release our code of WURAE, deep learning model for
paraphrase identification and pre-trained phrase end sentence embedding data
for use by the community.

Keywords: Paraphrase identification � Recursive Autoencoders
Phrase embedding � Sentence embedding � Deep learning � Semantic feature

1 Introduction

In general, paraphrase means expressing the same meaning in different words. With the
development of NLP and paraphrase generation, there is a phenomenon that AI
machine writers paraphrase similar news or stories on different websites and social
medias. Paraphrase identification is useful in news event detection and first story
detection. It is also helpful to other NLP applications, including question answering,
information retrieval, plagiarism detection, machine translation evaluation and so on.
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Paraphrase identification is a subtask in natural language processing (NLP), which
aims at recognizing if the given pair of text convey same meaning. That pair of text
might have different length and be expressed in different way. If a pairwise text have
equivalent semantic, it would be labelled as paraphrase. In another way, a pairwise text
is non-paraphrase if they have different meaning.

In this paper, a deep learning model is proposed for paraphrase identification, based
on pairwise unit similarity feature and semantic context correlation feature. The pair-
wise unit similarity feature is extracted from given pairs of text through a convolutional
neural model. Moreover, the work of [1, 9, 10] are extended to get the semantic context
correlation feature based on CNN and LSTM. Also, for the purpose of learning phrase
and sentence embedding, the work of [18] is extended to Weighted Unfolding
Recursive Autoencoders (WURAE).

The model is adaptive to both sentence-level and article-level paraphrase identifi-
cation (PI) task. The sentence-level PI task is experimented in an English sentence
corpus, Microsoft Research Paraphrase Corpus (MSRPC), and compared with the state-
of-art models. In our work, an extension to existing problem is made by introducing
article-level paraphrase detection, detecting whether the given pair of articles talk about
the same matter. The article-level PI task is experimented in a Chinese article para-
phrase dataset, which is generated from sports and entertainment news.

In the rest of paper, we first review related works in Sect. 2. In Sect. 3, our
methodology is introduced in detail. Experimental setup and results are discussed in
Sect. 4. Finally, conclusion and future work plans are exposed in Sect. 5.

2 Related Work

The coverage of existing literature is about paraphrase identification (PI) and sentence
embedding. The part of PI is divided into lexical similarity, semantic feature, syntactic
feature and traditional features. The issue of sentence embedding is mainly about
unsupervised learning method and certain-task-supervised learning method.

2.1 Paraphrase Identification (PI)

To compare the meaning of given pairwise text, a traditional method is based on their
lexical similarity. The basic method includes Longest Common Subsequence
(LCS) [2], similarity of name entity, calculating the cosine distance of word embed-
ding, obtaining statistics feature by Vector Space Model (VSM), n-gram overlap and so
on. [16] used corpus-based and knowledge-based measures of similarity with WordNet.
A set of words in different order may differ in meaning. Thus, meaning of phrases
should be taken into account. Considering continuous and discontinuous linguistic
phrases, [8] extended TF-IDF by discriminative weights of words and phrases. With the
development of neural networks and word embedding, deep learning algorithm is
widely used in NLP. [6] proposed a pairwise semantic and lexical similarity mea-
surement based on CNN. [9] figured out a method of using wide one-dimension
convolution to get n-gram feature, which [1] have used in paraphrase detection. [1] also
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combined it with LSTM to get semantic representation of sentences. [10] used multiple
filter widths, getting various n-gram feature maps, in sentence classification task.

Syntactic feature is helpful for deep semantic comprehension. Structured alignment
in syntactic feature based on dependency trees is explained in [15]. [18] used dynamic
pooling layer to construct a fixed-sized similarity matrix from phrase embedding.

Some other features can be added to improve the accuracy of identification.
Number feature was applied in [18]. The use of machine translation (MT) evaluation in
paraphrase identification was explained by [14] which made use of 8 different MT
metrics.

2.2 Sentence Embedding

The distributed representation of nature language makes the computer process natural
language more convenient. Recently, many studies have proposed various methods for
distributed representation of phrase, sentence or even paragraph. [9, 10] explained a
way of modelling a sentence by CNN while they are both concerned on one certain
topic, training sentence embedding with the labelled data. [13] advised a self-attention
mechanism and a special regularization term. [12] proposed Paragraph Vector, an
unsupervised learning algorithm, which learns fixed-length representation from
variable-length pieces of sentences, paragraph or documents. [18] proposed Unfolding
Recursive Autoencoders, an unsupervised learning method to calculate phrase or
sentence embedding based on parse tree. [11] used continuity of text from books,
training an encoder-decoder model that tries to reconstruct surrounding sentences of an
encoded passage.

3 Methodology

The inputs of our deep learning models are the distributed representation of words.
Then, the phrases and sentences embedding are learned from WURAE, an unsuper-
vised learning algorithm trained by a large scale of both English and Chinese sentence
corpus. In the sentence-level PI task, word and phrase embedding are regarded as the
units of sentence like the nodes in parse tree. By analogy, sentence embedding is
considered as the units of article in the article-level PI task. With the distributed
representation of text, pairwise unit similarity feature is extracted from the unit simi-
larity matrix through CNN and k-max pooling layers. In addition, semantic context
correlation feature is learned from the combination of CNN and LSTM. Some other
features are also added to the model. The probability of being paraphrased is predicted
by the combination of features. The overall architecture of sentence-level paraphrase
identification would be described in Sect. 3.5, including lexical, syntactic and semantic
feature. And the entire architecture of article-level one would be explained in Sect. 3.6.

3.1 Distributed Representation of Words

Distributed representation of data is a must for applying deep learning method into
NLP. Word embedding can convert one word in natural language into a node of vector
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space, which helps computer process NLP tasks more convenient. With the imple-
mentation of word embedding, a sentence could be represented with a list of fixed-
dimensional vectors. If a sentence is composed of n words and the dimension of word
embedding is m, the sentence could be expressed as w1;w2; � � � ;wi; � � � ;wnð Þ where wi

equals x1; x2; � � � ; xi; � � � ; xmð Þ. In the work of learning phrase or sentence embedding,
word embedding is the data of every leaf node in parse tree. A pre-trained word
embedding with the dimension of 300, Google News vectors1, is used in the experi-
ment of sentence-level PI task. Since the article-level paraphrase dataset is constructed
from Chinese sports and entertainment news, we trained 300-dimensional vectors
through Word2Vec algorithm based on the corpus of Chinese Wiki data2 and Sogou
News data3.

3.2 Distributed Representation of Phrase and Sentence

Owing to the diversity and complexity of natural language, although word embedding
could represent sentences as lists of vectors, it is still difficult to get the accurate
semantic feature. The phrases composed of ordered words are more important than
separate words while understanding meaning of sentences. For the purpose of
extracting deep semantic feature, there is a need to train on phrase or sentence
embedding, capturing syntactic and semantic feature besides lexical one. In this
research, the work of [18] is extended to Weighted Recursive Autoencoders
(WURAE). Here we will introduce their previous work briefly and then propose our
improvement on it.

Unfolding Recursive Autoencoders (URAE). Based on parse tree of sentence, we
can obtain a binary tree structure representing the sentence. The leaf nodes of the tree
are word embedding of words in the sentence. The internal nodes representing phrases
and root node representing sentence are computed from their children, which is called
as encoding part. The child node could be a leaf node or an internal node. For the given
n-length sentence S, represent it with a list of m-dimensional vectors as S ¼
w1;w2; � � � ;wi; � � � ;wnð Þ where wi ¼ x1; x2; � � � ; xi; � � � ; xmð Þ. In the encoding part, the
parent node p is calculated from its children c1; c2ð Þ by a standard neural network layer:

p ¼ f We c1; c2½ � þ beð Þ ð1Þ

where c1; c2½ � means the concatenation of its children, f is an element-wise activation
function such as tanh, be 2 Rm is the encoding bias vector and We 2 Rm�2m is the
encoding matrix to learn.

1 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing.
2 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2.
3 http://www.sogou.com/labs/resource.
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To optimize the training and improve the representation of phrase or sentence, the
reconstruction is calculated during the decoding part. The decoding calculation of one
parent node p reconstructs its children as c

0
1; c

0
2

� �
:

c
0
1; c

0
2

h i
¼ f Wdpþ bdð Þ ð2Þ

where f is an element-wise activation function, Wd 2 R2m�m is the decoding matrix and
bd 2 R2m is the decoding bias vector. In the URAE, decoding part of node pi recon-
structs the entire subtree underneath pi. With all the reconstructed leaf nodes under-
neath pi, we could get the reconstruction error by computing Euclidean distance
between the concatenation of original inputs and its reconstructions:

Erec y i;jð Þ
� � ¼ wi; � � � ;wj

� �� w
0
i; � � � ;w

0
j

h i���
���
2

ð3Þ

where node y i;jð Þ is encoded from leaf nodes wi; � � � ;wj
� �

.

Weighted Unfolding Recursive Autoencoders (WURAE). As is mentioned above,
URAE could calculate the distributed representation of phrases and sentence. Its
method of reconstruction error ensures the increased importance of the child which has
larger subtree. However, the method also causes that the more a word occurs in the
corpus, the more times it would be reconstructed, the more contributions it would make
to the reconstruction error. Because URAE optimizes weights by minimizing the
reconstruction error, the more time a word occurs, the more effect it would have on the
model weights, and it would be reconstructed better. It would happen that stopwords
like ‘the’, ‘a’ and etc. have the same effect or even more effect than the others while
representing phrases. But different words affect semantic meaning of phrases in dif-
ferent degrees. So, we propose that reconstruction error of every leaf nodes should be
weighted by the reciprocal of its frequency:

Erec y i;jð Þ
� � ¼

X j

k¼i

1
count wkð Þ � wk � w

0
k

�� ��2 ð4Þ

where count wkð Þ means the count of the word in the corpus.

WURAE Training. A large set of sentences is used to train this unsupervised learning
algorithm. The model minimizes the sum of all node’s reconstruction errors in a mini-
batch. It uses backward propagation through structure [5] to compute the gradient and
optimizes with L-BFGS in the mini-batch training.

After learning phrase and sentence embedding, we can get the sentence represented
as w1;w2; � � � ;wn;wnþ 1; � � � ;w2n�1ð Þ, where w1; � � � ;wnð Þ are word vectors,
wnþ 1; � � � ;w2n�2ð Þ are phrase vectors and w2n�1 is the sentence vector.
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3.3 Pairwise Unit Similarity from CNN

In order to find out whether the given pair of text convey same meaning, we take the
similarity of basic units into account. Words and phrases are regarded as the units of
sentence. By analogy of sentence and article, sentences are considered as the basic units
of article. For the given pair of l1-length text T1 and l2-length text T2, T1 and T2 are
represented by the unit embedding lists, like S mentioned above. To extract basic unit
similarity feature, we firstly compute similarity matrix via the unit embedding lists of
the pairwise text. The similar or same pair of units, matched from T1 and T2, might
appear in different positions of the two lists. Thus, we need to compare every unit
vector in one text with all the unit vectors in another one. A similarity matrix with the
size of l1 � l2 is constructed by calculating cosine distance between the matched-pairs
of units.

Convolution neural network is used to learn the patterns of pairwise semantic
resemblance. The architecture of pairwise unit similarity measurement is as described
in Fig. 1. The model consists of 3 convolution layers and the former two convolution
layers are both followed by a max-pooling layer. The output of the third convolution
layer is fed into a k-max-pooling layer, which extracts the top k most important features
and gets the result of a flattened feature F unit similarity. Due to the dissymmetry of
two text, the pairwise unit resemblance is calculated through two directions of the input
similarity matrix. Then the pairwise unit similarity feature could be obtained by con-
catenating the two features, F unit similarity1 and F unit similarity2.

3.4 Semantic Context Correlation from CNN and LSTM

Different arrangements of words and phrases express various semantics in the sen-
tences. Also, various sequences of sentences make the meaning of articles different. So,
besides pairwise unit similarity feature, we also regard semantic correlation among the
units as an important feature. In this part, a combination of CNN and LSTM is used to
get semantic context correlation feature as depicted in the Fig. 2. The input of this
model is a list of basic unit embedding which represents the text.
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Fig. 1. The architecture of pairwise unit similarity measurement
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Firstly, CNN is utilized to get the collocation information between adjacent units in
context, like n-gram feature in sentences. The model uses 4 one-dimensional convo-
lutional layers with window sizes of 2, 3, 5 and 7 to get features from embedding list,
resembling 2-gram, 3-gram, 5-gram and 7-gram feature. The input of embedding list is
fed into the four different convolutional layers respectively. New unit embedding is
constructed by concatenating these 4 results and the original unit embedding list. For
the given input of m-dimensional embedding, the new unit embedding would have the
dimension of 5�m.

The new unit embedding is fed into LSTM so as to learn long-term dependencies
from sequential units of text. Here a bidirectional LSTM performs both forward pass
and backward pass on the new unit embedding matrix. Then, other two LSTM layers
learn more from its output. The last hidden state is taken as deep semantic feature of the
input text.

For the given pair of texts, each one is fed into the model separately to get its own
deep semantic feature F semantic. And then the pairwise deep semantic features
F semantic1;F semantic2ð Þ generate the semantic context correlation feature:

Fsub sem ¼ F semantic1 � F semantic2 ð5Þ

Fmul sem ¼ F semantic1 � �F semantic2 ð6Þ

Feuclidean sem ¼ Fsub sem � �Fsub sem ð7Þ

Fig. 2. The architecture of semantic context correlation similarity measurement

Paraphrase Identification 47



where semantic context correlation feature equals to the concatenate of those features,
F semantic1;F semantic2;Fmul sem;Fsub sem;Feuclidean sem½ �.

3.5 Paraphrase Identification on Pairwise Sentence

MSRPC, an English paraphrase sentences corpus, is used in the sentence-level PI task.
The entire architecture is shown in Fig. 3. Firstly, WURAE is trained in a large scale of
English news sentences and then it calculates the phrase embedding of sentence. The
sentence is represented by pre-trained word embedding and phrase embedding. For the
purpose of classification, we extract its pairwise word & phrase similarity feature and
semantic context correlation feature from models proposed in Sects. 3.3 and 3.4.
Moreover, other features are added to the model, including number feature, BLEU
score, ratio of Longest Common Subsequence (LCS), ratio of edit distance and simi-
larity based on TF-IDF.

3.6 Paraphrase Identification on Pairwise Article

The overall methodology of article-level PI task is depicted in Fig. 4. A dataset of
Chinese news paraphrase article (CNPA) is used in this task. Chinese word embedding
is trained by Word2Vec. Then, WURAE is trained in a large scale of Chinese sports &
entertainment news sentences. Sentence embedding, calculated by WURAE, represents
the articles. For classification, pairwise sentence similarity feature and semantic context
correlation feature are extracted from the given pair of articles through the models
mentioned above. To get better performance, number feature is also added to this
method. The probability of being paraphrased is predicted by the combination of
features.
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Fig. 3. The overall architecture of sentence-level paraphrase identification
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4 Experiments

4.1 Datasets and Settings

MSRPC. In our sentence-level PI task, we use the benchmark Microsoft Research
Paraphrase Corpus. The length of sentences in this corpus ranges from 7 to 35 and 67%
of the pairs are paraphrased. The origin train set has 4,076 pairs and we split it into train
set and validation set with the ratio of 9 to 1. And the origin test set has 1,725 pairs of
sentences. Owing to the asymmetry of two sentences, we expand the dataset by
exchanging position of two sentences in one pair. As is mentioned above, a 300-
dimensional English word embedding of Google News vectors is applied in this task.

Chinese News Paraphrase Article Dataset (CNPA). An article paraphrase corpus of
Chinese sports & entertainment news is used in our article-level PI task. Non-paraphrase
pairs are constructed in this corpus by randomly matching articles from different
paraphrase pairs. We further introduce comparison on length and TF-IDF to prevent
negative pairs from differing too much. The length of articles, which means the number
of its sentences, varies from 10 and 55. We split the dataset into train set, validation set
and test set, as shown in Table 1. The Chinese word embedding is trained from
Word2Vec with Chinese Wiki data and Sogou News data in the dimension of 300.
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Fig. 4. The overall architecture of article-level paraphrase identification

Table 1. Statistics of Chinese news paraphrase article dataset

Set Article pairs Paraphrase Non-paraphrase

Train 10191 5721 4470
Val 2909 1633 1276
Test 1455 817 638
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Settings. The hyperparameters are tuned on the validation set of MSRPC. The settings
of English sentence-level PI experiment are chosen as Adadelta optimizer, learning rate
of 0.175, dropout rate of 0.1 and mini-batch size of 50. We adjusted the mini-batch size
of Chinese article-level PI experiment to 64. The size of k-max pooling in pairwise unit
similarity measurement is separately 15 for word-level or sentence-level unit and 17 for
phrase-level unit.

4.2 Distributed Representation of Phrase and Sentence

WURAE is trained in the mini-batch of the sentences from a large scale of English and
Chinese corpus. The English corpus is constructed by COCA (Corpus of Contemporary
American English), NOW (News on the Web)4 and MSRPC train set, which have
80,697 sentences. The Chinese corpus is composed of Sogo News data and sentences
in train set, which has 421,293 sentences. To get the parse tree, we preprocessed the
corpus by Stanford Parser. Based on WURAE, the phrase and sentence embedding is
learned from the parse tree with the initial word embedding.

4.3 Results

MSRPC. Firstly, we test performance of separate and combined features, shown in
Table 2. We can find that phrase embedding improve the performance of pairwise
similarity by 0.76% on accuracy and 2.22% on F1-score. A performance of 71.42% is
obtained from semantic context correlation. Our entire sentence-level paraphrase
identification model gained the accuracy of 76.70% and F1-score of 83.44%.

We also compare our methodology with lots of state-of-art methods. The compar-
ison is shown in Table 3. Our method achieves a competitive result compared with the

Table 2. Performance of different features

Model Accuracy F1-score Model Accuracy F1-score

WE + Pairwise Similarity 71.94% 79.13% With
Other
Features

75.01% 82.23%
WE + Semantic Context
Correlation

71.42% 80.73% 73.80% 81.58%

WE + PE + Pairwise
Similarity

72.70% 81.35% 75.48% 82.38%

WE + PE + Pairwise
Sim + Context Corr

73.91% 81.99% 76.70% 83.44%

4 https://corpus.byu.edu/.
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existing methods. It shows that deep semantic features of sentences could be extracted
by the combination of WURAE, pairwise similarity and context correlation method.

CNPAD. This dataset is experimented on both separate and combined features, shown
in Table 4, where SE means sentence embedding. The pairwise sentence similarity gets
the accuracy of 96.15% and semantic context correlation gets the accuracy of 96.91%.
Through combination of those two methods, we could get an improvement of 0.55% on
accuracy. And the overall architecture obtains the accuracy of 99.31% and F1-score of
99.39%. We can see that the combination of sentence embedding, pairwise similarity
and semantic context correlation do capture the deep semantic feature of articles.

Table 3. Experimental results of english sentence-level paraphrase detection

Method Open resources Acc F1-
score

All paraphrase (Baseline) 66.5% 79.9%
Hu et al. [7] Convolutional

Matching Model
Project homepage 69.9% 80.91%

Socher et al. [18] URAE with Dynamic
Pooling

Pre-trained phrase
vector data, PI code

76.8% 83.6%

Madnani et al. [14] 8 Machine
Translation Metrics

Error analysis data 77.4% 84.1%

Pang et al. [17] Text Matching via
CNN

75.94% 83.01%

El-Sayed et al. [3] Similarity &
Abductive Network

73.91% 81.25%

Eyecioglu et al. [4] Character-Based
Features

74.2% 82.7%

Our Work WURAE with K-
Max, CNN and
LSTM

WURAE, PI code,
pre-trained data5

76.70% 83.44%

Table 4. Experimental result of Chinese article-level paraphrase detection

Method Accuracy F1-score

All paraphrase (Baseline) 56.15% 71.92%
SE + Pairwise Sentence Similarity 96.15% 96.57%
SE + Semantic Context Correlation 96.91% 97.23%
SE + Pairwise Similarity + Context Correlation 97.46% 97.72%
SE + Pairwise Similarity + Context Correlation + Number feature 99.31% 99.39%

5 https://github.com/SannyZhou/WURAE_Paraphrase_Identification_CNN_LSTM.
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5 Conclusion

In this paper, we proposed a method of sentence-level paraphrase identification and
introduced an article-level paraphrase identification method by analogy. Also,
Weighted Unfolding RAE, an unsupervised learning algorithm, is proposed for
learning phrase and sentence embedding. In the sentence-level PI task, words and
phrases embedding represents the sentences while the articles are represented by
sentence embedding in the article-level PI task. Pairwise unit similarity feature is
captured from unit similarity matrix through CNN and k-max pooling layers. After
getting region information from sequences by multiple CNN layers with different
window sizes, the model implements LSTM to learn the long-term dependency of text.
The experimental results prove that our methodology could capture deep semantic
feature and perform well in paraphrase identification. It also shows that we can get
better semantic feature with the distributed representation of phrases and sentences
based on WURAE. In the future, we could build an open domain Chinese paraphrase
corpus. Also, we would adjust our paraphrase identification method and our algorithm
of phrase & sentence embedding in different NLP applications, such as question
answering, information retrieval, text classification, etc.
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Abstract. Word embeddings have been used as popular features in vari-
ous Natural Language Processing(NLP) tasks. To overcome the coverage
problem of statistics, compositional model is proposed, which embeds
basic units of a language, and compose structures of higher hierarchy,
like idiom, phrase, and named entity. In that case, selecting the right
level of basic-unit embedding to represent semantics of higher hierarchy
unit is crucial. This paper investigates this problem by Chinese phrase
representation task, in which language characters and words are viewed
as basic units. We define a phrase representation evaluation tasks by
utilizing Wikipedia. We propose four intuitionistic composing methods
from basic embedding to higher level representation, and investigate the
performance of the two basic units. Empirical results show that with
all composing methods, word embedding out performs character embed-
ding on both tasks, which indicates that word level is more suitable for
composing semantic representation.

Keywords: Word embedding · Phrase representation
Composing model

1 Introduction

Word embeddings have been working as popular features in nearly every NLP
task like named entity recognition [15], similarity measurement [8,10], machine
translation [3,14], etc. Popular embeddings methods such as skip-gram, CBOW
[8], and Glove [11] adhere to the Distributional Hypothesis [5]. They first gen-
erate a token list from a specific vocabulary of a language, and then calculate
embeddings for each token with token cooccurrence information.

However, limited by the vocabulary and resource, embeddings do not cover
all language phenomenon, like idioms, named entities and phrases.

The research is supported by the National Key Research and Development Program
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Table 1. Semantics of a Chinese phrase

[8] generate embeddings for phrases in a statistical way. Frequent bigrams
in corpus are viewed as idiomatic phrases. These frequent bigrams are recorded
as new tokens and participate in embeddings with other words. This method
partially breaks from vocabulary restrictions, but is still restricted to the corpus.
Named entities, for example that come into existence after the corpus are not
embedded.

Hierarchical structure of language makes it possible to form composed entities
and phrases with basic units. Based on this idea, compositional models [18]
embed basic units and compose into higher hierarchy structures. This overcomes
the coverage problem in both vocabulary and corpus.

For languages like Chinese, token definition is also a problem in embeddings,
in which vocabulary can be built on characters or words. Embeddings of charac-
ters and words are semantically different, and this difference affects the semantic
representing ability of compositional model. Generally, a character embedding
is an average of more senses while word embeddings are more specific. Whether
with characters or with words is an important question in composing models.
As is shown in Table 1, a location entity is composed with different units. The
quality of compositional semantic representation is largely decided by compos-
ing unit selection. Consequently, which embedding level is better for semantic
representing becomes an important research question.

To be specific, We evaluate the quality of semantic representation with (1)
measuring the distance between composed embedding and trained embedding for
Wikipedia titles, and (2) comparing semantic similarity of phrase embeddings
against Wikipedia redirection. Under this evalutaion measure, we use three intu-
itionistic composing methods, component average(CA), neighbor average(NA)
and neighbor cluster average(NCA) and investigate performance of these models
on word embeddings and character embeddings.

Results of experiments on this task show that with each composing model,
word embeddings outperform character embeddings, which suggests in semantic
analyzation tasks, word embeddings might be more suitable.
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This paper is organized as follows. Section 2 summarizes related works, espe-
cially on how to generate word embeddings, how to use them and how to ensem-
ble component embedding into greater parts embedding. Section 3 illustrates
our methods, from embedding short words and characters to calculating long
words and phrases. Section 4 shows experiments on embedding error and on
Wikipedia redirection prediction tasks. Section 5 summarizes our model and dis-
cusses remaining research points.

2 Related Works

Word embedding can be categorized into 3 classes, which are language model
based, task based, and direct generation.

Both language model based and direct generation models follow Distribu-
tional Hypothesis [5], which states that words with same contexts tend to have
similar meanings. In different models, this hypothesis is implemented with dif-
ferent optimization objectives. In NNLM [1], a 3-layer neural network is used to
estimate P (wi|wi−(n−1), ..., wi−1), where embeddings of (wi−(n−1), ..., wi) serve
and get trained as the first layer.

CBOW and skip-gram [8] try to generate word embedding with a simple
task. The task is to predict the word with context words or reversely. CBOW
predicts by dot production current word and the average of embeddings in con-
text window. Skip-gram is similar. GloVe [11] records co-occurrence of words and
suppose words co-occurrence frequency ratio as similarity ratio. Ideally GloVe
and skip-gram converge to the same embedding if an optimum embedding exists.

Task based embedding solve supervised tasks with neural network. The
embedding layer can be generalized to other tasks and serve as word embedding.
Fasttext [6], for example, use a shallow neural network for text classification.
The first layer is taken as word embedding.

All word embeddings mentioned above claim to represent syntactic and
semantic embedding. These trained embeddings are released for use in other
tasks.

Models are put forward to improve word embedding or solve problems in
application with hierarchical structure of language, especially in dealing with
OOV(out of vocabulary) words. [12] model words with a convolutional network
over its characters. Character patterns in English is believed to be strong in
syntactic and the combination of characters can make up any word. [?] used
Byte-Pair Encoding(BPE) to control vocabulary size in machine translation.
Words are first encoded with character pairs before fed into neural machine
translator. [17] built a recursive neural network on its syntactic tree to encode
a sentence. When encountering an OOV word, the recursive network is formed
in a primitive left-to-right way on its sub-word parts. These sub-word parts are
found by BPE and serve as leaf embedding nodes in the syntactic tree.

In Chinese, most researchers use word embedding as is parallel in English.
Still, character embedding is also used, especially in word segmentation [20] and
text classification [19]. Characters can also enrich word embeddings or even be
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divided into sub-character parts. CWE [2] modifies CBOW, Skip-gram and
GloVe by adding character embedding average into context vector, and improve
the quality of target word embedding. [13] breaks Chinese characters into rad-
icals. They use CBOW for radical embedding, and feed radical embedding to
different neural networks for short text classification, Chinese word segmenta-
tion and web search ranking.

[9] work on composing phrase with its components on early vector based
models of word meaning. They designed additive model and multiplication
model. Both models are enlightening for composing on word embedding.

3 Methodology

This section illustrates the framework of word embedding generation and phrase
embedding composing.

3.1 Problem Definition

With a given segmented corpus D and an embedding method, sets of chars SC,
words SW and phrases SP are defined. To avoid repetitive description, we denote
these language units tokens, ST = SC∪SW ∪SP . Embedding methods give every
token t a vector representation e(t). We research on long tokens t = (c1c2...cn)
where c1, c2, ..., cn ∈ ST . These substrings c1, ..., cn are called components. The
aim of this research is to compose estimation of e(t) with e(c1), ..., e(cn), and
make the composed estimation ecomp(t) as close to trained e(t) as possible if
t ∈ ST .

3.2 Modified CBOW

CBOW is used to generate word embedding as a basis of phrase embedding
composing. In order to capture composability from Chinese characters to words,
a modification is made.

The original version of CBOW works on Chinese words as follows. First,
sentences in the corpus are segmented into words with segmentation algorithm.
Secondly, words with frequency above the threshold are selected as tokens and
form token list. Finally CBOW iterates on the corpus several times, on each
word in token list with objective described in Eq. 1. e(word) and e ′(word) are
two sets of embeddings, and econtext is the average vecter of context words.

Cost =
∑

(word,context)∈D

exp(e ′(word)econtext)∑
word′∈V exp(e ′(word′)econtext)

(1)

In order to compare estimating precision of different composition methods,
embedding of characters, words and phrases are needed. CBOW can produce
phrase embedding by including them in user segmentation dictionary and seg-
menting by large-grain. Thus, those phrases in the corpus are included in the
token list and get an embedding.
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A large majority of characters are also included in the token list, but they
are not character embeddings. Single characters appear in word-level token list
for two reasons. It is a single-character word, or it is left because of segmentation
error. A Chinese character has a lot more senses than words. Senses of a character
as an independent word are usually different from those composing other words.
Embedding of single-character words in CBOW is thus infeasible in character to
word/phrase composition.

An option is to train CBOW on character level separately and generate char-
acter embedding with composing senses. However, the alignment between char-
acter embedding space and word embedding space takes extra effort, and existing
research of alignment is not satisfying in Chinese character to word alignment
task. CWE produce character embedding and word embedding at the same time,
too, but that character embedding is an additive part in context, which is not
in word embedding space either.

We modify CBOW by randomly replacing a word as a character composing it
in each iteration. With enough iteration, the character embedding is a combina-
tion of single-character word sense and word composing sense. Experiments show
that this modification dose not harm CBOW in its ability to embed semantic
information of words. Character sense is improved since when looking for similar
words of a character, more words that it composes are recalled.

3.3 Trivia Combination Model

In the discussion to follow, we discuss methods to calculate representation of
tokens via components of lower level linguistic units.

CA (Component Average) is a trivia model of estimation is component aver-
age. Let T be the component sepuence of a token t.

ecomp(t) =
1

|T |
∑

c∈T

e(c) (2)

NA (Neighbor Average) explores more information of the components by
finding m most similar words in the embedding space and then calculates average
of these neighbors. Let N be the set of neighbours, i.e. N = {q|rank(q, ci) <
m, ci ∈ T}

ecomp(t) =
1

|N |
∑

n∈N

e(n) (3)

3.4 Neighbor Cluster Average

NCA is based on the following hypothesis in composing tokens from components:
Sense Activation Hypothesis: A component as words or characters has sev-
eral senses. When composing high level structures, i.e. tokens or sentences, one
sense of the component is activated. Activated senses of components compose
semantic meaning of tokens and sentences.
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In the embedding point of view, this hypothesis means that component
embedding is an average of its sense embeddings. This is in accordance with
Distributional Hypothesis and the process of CBOW. Each sense of a component
can be represented by a distribution of context words. Training on the corpus
by CBOW is training the embedding of a component by a superposition of its
sense context distributions and results in an average of senses.

It is observed from word similarity task that similar words, or neighbors of
a word requires interpretation from different senses of a word, concluding that
more information of different senses can be recovered from word neighors.

NCA model aims to discover combination of senses by clustering. Neighbors
of each component are retrieved with a large window, ensuring that as many
senses represented by neighbors are included as possible. Since the embedding
model views cooccurance as similarity. If two senses of two components are likely
to be acitvated in the same token, their corresponding neighbour clusters should
be close in the embedding space and forms one cluster when clusting all neighbors
of all components. Selecting the largest cluster is thus selecting the most likely
average of combined senses. Let Cmax be the largest cluster over all n ∈ N as
defined in 3.3

ecomp(t) =
1

|Cmax|
∑

n∈Cmax

e(n) (4)

We use k-means cluster algorithm. k is set to size of components. We take
the centroid of the largest cluster as the representation of the token.

3.5 Self Attention Model

Self attention model(denoted as ATTN) follows attention machenism preopsed
in [16].

ecomp(t) =
1

|T |
∑

ci∈T

α(ci)e(ci) (5)

α(ci) = tanh(w ∗ cos(econtext, e(ci)) + bp) (6)

econtext =
1

|T | − 1

∑

cj∈T,j �=i

e(cj) (7)

The importance or weight of a component ci is estimated as coherence with
other components in the token. w is used for controlling weight ratio of high
relavance to low relavance. bp ∈ {begin,middle, end} is the position bias of
weight encoding positional information of a component. The cost to train w and
bp is: every combosed estimation embedding is close to its trained embedding.

Cost = −
∑

t∈ST

cos(ecomp(t), e(t)) (8)
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4 Experiments

To find the right level of representing phrase semantics, we compare segment-
ing phrase into words and characters. We also experiment on composing words
with characters to show composability of characters. Absolute Embedding Error
compares the precision of composing compared to standard embedding trained
by CBOW.

4.1 Experiment Settings

Corpus and Dictionary. We use modified CBOW on cleaned Chinese
Wikipedia corpus. We extracted 1GB pure text from dumped wiki-pages. Jieba1

is used to segment the pure text. Wikipedia title list is added as user dictio-
nary to ensure that we retrieve enough phrases and train their embedding for
comparison.

Embedding Algorithm and Parameters. We run our modified CBOW on
the text. Replace ratio is 0.1, and iteration is set to 20 times, larger than usual
to ensure replacement balance. The embedding dimension is 60 and minimum
occurrence of a token is set to 3.

Character, Word and Phrase Selection. The identification of characters,
words and phrases is by length. We take into consideration only tokens purely
consist of Chinese characters.

We select tokens with a length of 1 as characters, 2–3 as words and longer than
5 as phrases. This selection is based on reasons that follows. First of all, it is hard
to separate characters and single-character words. Thanks to our modification
over CBOW, embedding of tokens with the surface form of single characters
always contain semantic information as characters.

According to [7], Chinese linguists listed the most frequently used words.
Among 56008 of them, only 162 are of 5 characters and above and most of them
have an inner structure of shorter words. We are confident that these long tokens
are phrases.

2–3 characters long tokens are words without doubt. Words with 4 charac-
ters are a mixture with independent words, short phrases, and a lot of Chinese
traditional idioms of weak composability. As a result, we end up with 10386
characters, 118348 words and 49878 phrases for composing experiments.

Compose Levels. Table 2 shows all 4 composing levels that we test on. Com-
posing from characters to words is also included, in case the number of compo-
nents affects composing quality.

Though our separation and composing method is abrupt and simple. It sep-
arates composing from words and composing from characters well. Any other
1 http://www.oss.io/p/fxsjy/jieba.

http://www.oss.io/p/fxsjy/jieba
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Table 2. Illustration of different composing levels

given composing divides into word-to-phrase and character-to-phrase composing
patterns.

4.2 Relative Composing Precision

Relative Composing Precision experiment compares the composed phrase
embedding with trained phrase embedding. Formally, this precision is defined
as Eq. 9. e(n) is the embedding of the most similar token in ST .

RCP = cos(ecomp(t), e(t)) − cos(e(n), e(t)) (9)

Note that ecomp(t) is the only variable for a given sample token. The reason
not using bit-wise L2-loss is, in CBOW similiarity is valued by cosine. The norm
of token vecters is not 1. |ecomp(t) − e(t)|2 can still be large even if we get the
exact meaning. It is acceptable that our composed embedding is synonym of the
original phrase. The reason for adding reference score cos(e(n), e(t)) is to align
samples at different composing difficulties. For tokens that lies in dense parts of
embedding space, the error is penalised by likely higher reference score.

Table 3. Relative composing precision on different levels and methods

CA ATTN NA NCA

p w p c p l p w p c p l p w p c p l p w p c p l

Mean

RCP

−0.28 −0.56 −0.30 −0.28 −0.56 −0.29 −0.21 −0.46 −0.22 −0.20 −0.43 −0.21

Best

sample

0.01 −0.13 0.01 0.02 −0.12 0.02 0.06 −0.08 0.06 0.06 −0.05 0.04

RCP

@75%

−0.14 −0.47 −0.17 −0.13 −0.45 −0.15 −0.08 −0.35 −0.09 −0.09 −0.31 −0.10

RCP

@50%

−0.26 −0.56 −0.28 −0.24 −0.55 −0.26 −0.17 −0.44 −0.20 −0.16 −0.40 −0.19

RCP

@25%

−0.36 −0.65 −0.40 −0.39 −0.67 −0.42 −0.30 −0.58 −0.30 −0.28 −0.57 −0.29

Worst

sample

−0.75 0.93 −0.80 −0.75 −1.00 −0.80 −0.68 −1.00 −0.71 −0.70 −0.95 −0.64

We compare composing methods in Table 3. On each composing level, NCA
always achieves the best performance. On p w, NCA advantage over NA exists
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in the low-quality cases. Attention model improves at most 0.05 points over
CA model. The improvement of introducing neighbor for more information is
significant, as on each level, NA and NCA are a lot better than CA.

Comparing between p w level and p c level. Even the worst model for p w is
better than p c. This comparison shows the importance of level selection. Pure
character level is not suitable for semantic composing task.

CA NA NCA ATTN
average affect -0.02 -0.01 -0.02 -0.02
p w leads by 0.03 0.03 0.04 0.03
p l leads by 0.01 0.01 0.02 0.01

Fig. 1. Comparison between p w and p l

Improvements of information from left characters is not significant. Table 3
shows the result of introducing leftover characters for more information(level
p l). We also scatter sample points in Fig. 1 to show p l improvments over p w
results when the original p w scores differently. Overall, p l result is better when
p w score is small, but becomes noise when p w socre is large.

Fig. 2. w c Results

Figure 2 shows the performance of composing words with characters. A poten-
tial reason why p c performs badly is segments the phrase into too many com-
ponents for the model to process. w c has 2–3 components and is similar to p w
segmentation. If character embedding were also a good level of composing, w c
should achieve similar performance as p w. However, as is shown in the figure,
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w c performs similar to p c level. The reason lies in characters or character
embedding, but not in component number.

These experiments show that word alone is the only level that compose the
embedding of phrase with low difference. Character level is not only unsuitable
itself, but also bring noise when integrating with words.

4.3 Wikipedia Redirections Prediction

The most direct semantic task is word similarity test like word-sim 393 in English
and wordsim245 and wordsim297 in Chinese. However, wordsim245 and word-
sim297 contains very few phrases and we have to compose our own semantic
similarity task.

We compose phrase-word semantic similarity task by utilizing Wikipedia
redirections. Redirections in Wikipedia are paraphrases of the same thing or
closely related things noted by Wikipedia editors. A pair of redirections are thus
semantically identical or very close.

We construct positive set by finding all redirections with at least one embed-
ded phrase. Negative set is constructed by sampling a pair of words and phrases
from positive set, making sure that the pair is not in positive set. The size of
positive and negative set each is 426.

We use word similarity directly for this classification task and adopt AUC
[4] to examine precision of similarity without setting threshold manually.

Table 4. AUC of Wikipedia redirection prediction

Composing level

p w p c

CA 0.9485 0.7845

NA 0.9336 0.6841

NCA 0.9295 0.7037

Trained value of words and phrases are used as standard reference value.
Composed embedding of phrases are used for each test case and The AUC values
are shown in Table 4. High AUC of standard reference show that our embedding
and cosine similarity is a good feature for the task. With each method, p w is
a lot better than p c. This again proves word is the only right level to compose
semantic embedding of phrases.

4.4 Case Study: Difference in Component Quality

Opposite from common sense that if we understand all characters in a word well,
we will understand the word. Composing words and phrases from characters is
impossible. We explain this phenomenon with descriptive experiments.
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nearest neighbor
p w p c p l

mean RCP -0.0364 -0.0894 -0.0312
best sample 0.0000 -0.0000 0.0000
RCP @75% 0.0000 -0.0163 0.0000
RCP @50% 0.0000 -0.0824 0.0000
RCP @25% -0.0468 -0.1304 -0.0284
worst sample -0.2924 0.3693 -0.2924

Fig. 3. Difference in component quality

Figure 3 left illustrates the most ‘precise’ neighbor we retrieved in NA and
NCA at different levels.2 This precise neighbor is useless in models because we
need the standard answer to identify its precision, and the composing model is
mostly sorting this neighbor by all information. Still, it helps to illustrate quality
of our components. It is shown that half p w components include synonym of
the target token in neighbor set, while character levels finds only close words.

We also try to retrieve the target phrase as most similar word of its compo-
nents. As Fig. 3 shows, to achieve a 50% recall rate, Character need to expand
similarity words window to 4,000 tokens. In contrast, 1,000 tokens window
retrieves 63.8% phrases with word level components.

We conclude that the failure with character level composing lies in the char-
acter embeddings being too far away from words and phrases that it forms.

5 Conclusion and Future Work

We investigate the token definition problem of embedding for semantic represen-
tation by phrase composition task in Chinese. Evaluated on different composing
methods, composing precision and Wikipedia redirection prediction both show
that each method with word embedding outperforms the same method with char-
acter embedding. This indicates word embedding might be better in semantic
representation then character embedding.

Our future work includes 2 directions. (1) We plan to conduct more experi-
ments on semantic analyze tasks and evaluate on semantic representativeness of
word embedding and character embedding from more perspectives. (2) We plan
to create more complex and precise phrase semantic composing models and try
to compose phrase, entities and out of vocabulary tokens better.

2 We have excluded token themselfs in neighbors in all composing experiments to avoid
bias.
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Abstract. Word embedding is a distributed representation of words
in a vector space. It involves a mathematical embedding from a space
with one dimension per word to a continuous vector space with much
lower dimension. It performs well on tasks including synonym and
hyponym detection by grouping similar words. However, most existing
word embeddings are insensitive to antonyms, since they are trained
based on word distributions in a large amount of text data, where
antonyms usually have similar contexts. To generate word embeddings
that are capable of detecting antonyms, we firstly modify the objec-
tive function of Skip-Gram model, and then utilize the supervised syn-
onym and antonym information in thesauri as well as the sentiment
information of each word in SentiWordNet. We conduct evaluations on
three relevant tasks, namely GRE antonym detection, word similarity,
and semantic textual similarity. The experiment results show that our
antonym-sensitive embedding outperforms common word embeddings in
these tasks, demonstrating the efficacy of our methods.

Keywords: Antonym detection · Word embedding · Thesauri
SentiWordNet

1 Introduction

Word embedding plays an important role in word representation since it effec-
tively captures semantic information of words. A good embedding provides vector
representations of words such that the relationship between two vectors mirrors
the linguistic relationship between the two words. Such distributed representa-
tions of words in a vector space contribute to achieving better performance in
many natural language processing tasks such as text classification [7], abstraction
generation, and entity recognition.

By grouping similar words, the existing word embeddings perform well on
synonyms, hyponyms, and analogies detection. However, most of them are insen-
sitive to antonyms, since they are trained based on the distributional hypothesis
[4] and word distributions in a large amount of text data, where antonyms usu-
ally have similar contexts. To be specific, a pair of antonyms, for example, “long”
c© Springer Nature Switzerland AG 2018
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and “short”, tend to appear in similar context environment. This leads to the
serious problem that it is extremely difficult to discriminate antonyms from syn-
onyms. It is important to solve this problem and obtain antonym-sensitive word
embedding, since such embedding has the potential to make contribution in some
certain tasks such as semantic textual similarity.

A key characteristic of current word embeddings attracts our attention: the
vectors of related words are supposed to have close directions while unrelated
words correspond to vectors in opposite directions. Therefore, the cosine dis-
tance between completely unrelated words is close to −1, while the cosine dis-
tance between a pair of related words, including both synonyms and antonyms, is
close to 1. In other words, instead of evaluating sematic similarity, these embed-
dings evaluate the relatedness between words, treating synonyms and antonyms
equally without discrimination.

To obtain antonym-sensitive word embedding, we start from modifying the
above characteristic. In our model, the cosine distance between related words is
supposed to be either close to 1 or close to −1, while the cosine distance between
unrelated words is close to 0. Then in the vector space, the related words of a
particular word distribute in two areas, either around the position of the word or
around the head of the reversed vector. In this situation, we can design a more
reasonable model to detect antonyms. Given that both antonyms and synonyms
are highly-related word pairs, our goal is to make the cosine distance of synonyms
close to 1 and the cosine distance of antonyms close to −1. Then a pair of words
with a negative cosine distance close to −1 are likely to be antonyms.

With this idea, we propose a novel approach to train our antonym-sensitive
embedding, named Word Embedding Using Thesauri and SentiWordNet with
Distributional Corpus-based Information (WE-TSD). Firstly, we modify the
objective function of Skip-Gram model in order to achieve the goal stated in
the previous paragraph. Secondly, our model uses thesauri information to get
supervised synonym and antonym word pairs, and we also utilize SentiWord-
Net provided by [1] to make sentimental analysis of every word in vocabulary.
SentiWordNet is a dataset which labels each English word with a corresponding
3-dimensional vector. The three components of the vector respectively represent
the positive emotion rate, negative emotion rate and objective rate of the word
with their sum 1.

To demonstrate the efficacy and task adaptability of our antonym-sensitive
embedding, we conduct evaluations on three relevant tasks, namely GRE
antonym detection, word similarity, and semantic textual similarity. The exper-
iment results show that our antonym-sensitive embedding outperforms common
word embeddings in all these tasks, convincingly demonstrating the effectiveness
of our methods.

2 Related Works

In the past decades, research on natural language processing has made great
success, where a good word representation plays an crucial role. At first, one-hot
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word vector has been widely used in the bag-of-words (BOW) text model. The
success of text categorization [5] with BOW popularized this model. However,
one-hot vector has a serious weak point: with each word represented as a com-
pletely independent entity, this word representation hardly provides any notion
of similarity.

To reduce the size of vector space and encode the relationship between words,
Rumelhart et al. [17] described a new learning procedure to learn representations.
With the word embedding model, many natural language processing tasks, such
as entity recognition and dependency parsing, gained second life. In this word
embedding model, semantic relationship between words are well encoded and
can be easily detected.

However, the huge time cost and computational complexity became an obsta-
cle, leading researchers to find a more efficient and less complex model. In 2013,
two highly efficient models were proposed by Mikolov et al. [9], namely CBOW
(continuous bag-of-words) and Skip-Gram. CBOW aims to predict a center word
from the surrounding context in terms of word vectors. Skip-gram does the oppo-
site, and predicts the distribution of context words from a center word. With
these two models, we are able to learn word embeddings with large corpus.

On antonym detection tasks, Polarity Inducting Latent semantic Analysis
proposed by Yih et al. abstracts polarity information from thesauri and they
use context vectors to cover those words out of thesauri vocabulary. Ono et al.
[14] proposes a word embedding-based antonym detection using thesauri and
distributional information, which combined the traditional Skip Gram objective
function [8] and the polarity thesauri information. This model contributes to
finding a balance between the Skip Gram model and WE-T (Word Embedding
with Thesauri Information) model. Nguyen et al. [13] proposes a novel model
which integrates distributional lexical contrast into word embedding. However,
the results of these previous work are far from perfection, motivating us to
conduct the research in this paper and make some improvement.

3 Our Approach to Obtain Antonym-Sensitive Word
Embeddings

3.1 Skip-Gram Model and Our Modification

In this section, we firstly introduce the original Skip-Gram Model and nega-
tive sampling proposed by Mikolov et al. [8], which is one of the most popular
methods to train word embeddings. Next, to adapt for our antonym-sensitive
embedding, we make some modification on the objective function in the Skip-
Gram Model.

Skip-Gram Model with Negative Sampling. A word embedding is a map-
ping V → RD that maps a word to its corresponding D-dimensional word vec-
tor. This is called a D-dimensional word embedding. The most widely used
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approaches of training word embeddings are Skip-Gram and CBOW [8]. In this
paper, we mainly focus on the former one.

In the standard Skip-Gram Model, we aim to obtain a word embedding that
can predict the context words around a given target center word effectively. To
be specific, our goal is to maximize the following objective function,

1
T

T∑

t=1

(
∑

t−c≤i≤t+c,i�=t

log p(wi|wt)), (1)

where w1, w2, · · · wT are the words in the whole training corpus, and c is a
hyperparameter corresponding to window size, determining the number of con-
text words induced by the target center word wt. The most essential part of this
model is the conditional probability p(wi|wt). Following Mikolov et al.’s idea [9],
the conditional probability is expressed as follows,

p(wi|wt) =
eu

′T
wi

uwt

∑|W |
j=1 e

u′T
wj

uwt

, (2)

where u′
w, uw denote the representations of word w respectively as context and

target word. W is the vocabulary set extracted from the training corpus and
|W | denotes the vocabulary size. Further, Eq. (2) can also be written as

p(wi|wt) = softmax
(
u′T
wi

uwt

)
. (3)

Although the basic model described above seems reasonable, its performance
is actually not satisfying enough. Due to the normalization term, the time com-
plexity of the above conditional probability equation is O(|W |), which is unac-
ceptable especially when W is large. Therefore, two modifications have been
proposed. Firstly, Mikolov et al. [8] present hierarchical softmax as a much more
efficient alternative to the normal softmax. With hierarchical softmax, the time
complexity can be reduced to O(log(|W |)).

Another idea to improve the efficacy of word embeddings and reduce the
training cost is negative sampling, which is also provided by Mikolov et al. [8].
For every training step, instead of looping over the entire vocabulary, we just
sample several negative examples. Although negative sampling is based on the
Skip-Gram model, it is in fact optimizing a different objective. The new objective
function tries to maximize the probability of a word and context being in the
corpus data if it indeed is, and maximize the probability of a word and context
no being in the corpus data if it indeed is not, which is shown as follows,

L =
∑

w∈W

(
∑

t−c≤i≤t+c,i�=t

log(σ(v′T
w vwi

)) +
∑

u∈NEG(w)

log(σ(−v′T
w vu))), (4)

where σ denotes the sigmoid function, and NEG(w) denotes a small subset of
all the negative examples of target word w sampled from a modified unigram
distribution [8]. The number of components in the negative sampling subset is
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called “negative size”. Besides, we employ the subsampling [8] which discards
the words according to the following probability:

P (w) = 1 −
√

t

p(w)
, (5)

where t is a threshold to control the discard action and p(w) is the occurrence
probability of w in the training corpus. Subsampling is very useful and it aims
to make less frequent words be sampled more often.

Modified Skip-Gram Model. However, the widely used Skip-Gram Model
described above can not fulfill our goal. In the result embeddings, the cosine dis-
tance between unrelated words is close to −1, while the cosine distance between
a pair of related words, including both synonyms and antonyms, is close to 1.
In other words, instead of evaluating sematic similarity, these embeddings eval-
uate the relatedness between words, treating synonyms and antonyms equally
without discrimination.

To obtain antonym-sensitive word embedding, we want the cosine distance
between related words to be either close to 1 or close to −1, while the cosine
distance between unrelated words to be close to 0. Then in the vector space,
the related words of a particular word distribute in two areas, either around the
position of the word or around the head of the reversed vector. Next, given that
both antonyms and synonyms are highly-related word pairs, our goal is to make
the cosine distance of synonyms close to 1 and the cosine distance of antonyms
close to −1.

Therefore, in our model, the objective function with distributional informa-
tion of unsupervised training corpus should be:

Func1 =
∑

w∈C

(
∑

t−c≤i≤t+c,i�=t

log(σ((v′T
w vwi

)2)) +
∑

u∈NEG(w)

log(σ(−(v′T
w vu)2))).

(6)

Our modification is the square functions inside the sigmoid function σ. With
the square functions, the absolute value of the dot product of positive samples
and target word will get closer to 1 during training, which means their cosine
distance will be either close to 1 or close to −1. This result fulfills our expectation.

The modified Skip-Gram Model with the new objective function (6) plays
an important role in our final model. However, both antonym and synonym are
considered “related” and we still can not discriminate antonyms from synonyms
based on their cosine distance. Therefore, we need to utilize supervised dataset
including Thesauri Dataset and SentiWordNet, in order to make the cosine dis-
tance between synonyms close to 1 while the cosine distance between antonyms
close to −1. As a result, the lower their cosine distance is, the more likely to be
antonyms they are.
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3.2 Word Embedding Injecting Thesauri Dataset Information with
Max Margin Framework (WE-TM)

In this section, we introduce a sub-model using thesauri dataset information.
Following Ono et al.’s work [14], we are going to embed all the words in thesauri
into vectors.

According to our target, we need to increase the dot product between syn-
onyms and decrease the dot product between antonyms. Therefore, we set up an
objective function as shown below,

Func2 = −
∑

w∈V

max(0, γ − 1

|S(w)|
∑

s∈SY N(w)

sim(w, s) +
1

|A(w)|
∑

a∈AY N(w)

sim(w, a)),

(7)

where V denotes the vocabulary in thesauri; SY N(w) denotes all the synonyms
of word w and ANT (w) denotes all the antonyms of w. |S(w)| and |A(w)| denote
the sizes of SY N(w) and ANT (w). The hyper-parameter γ will be set later.
sim(w, s) denotes the similarity of the two words in our model, which can be
mathematically expressed as:

sim(w, s) = v′T
w vs. (8)

The maximization of Func2 makes the similarity score between synonyms
very high and that between antonyms very low. Besides, for some indi-
rect antonyms, for example, “beautiful” and “bitter”, although they are not
antonyms according to thesauri information, their similarity score will also be
relatively low because “beautiful” is the synonym of “nice” and “bitter” is the
antonym of “nice”. The directions of word vectors of “beautiful” and “nice” are
almost the same while the directions of word vectors of “nice” and “bitter” are
almost opposite. This sub-model is reasonable and effective, and we name this
model WE-TM (Word Embedding using Thesauri Dataset Information with Max
Margin Framework). Comparing with the WE-TD model proposed by [14], our
model introduces the Max Margin Framework which can significantly decrease
the risk of overfitting.

3.3 Word Embeddings Based on SentiWordNet (WE-S)

Besides thesauri, the other supervised knowledge base we are going to use is Sen-
tiWordNet [1], which is explicitly devised for supporting sentiment classification
and opinion mining applications. It is a lexical resource in which each WORD-
NET synset w is associated to three numerical scores [Pos(w), Neg(w), Obj(w)],
describing how objective, positive, and negative the terms contained in the synset
are. The triple has the following property:

Pos(w) + Neg(w) + Obj(w) = 1. (9)

From this dataset, we need to abstract some senti-synonym word pairs and
some senti-antonym word pairs according to their corresponding sentiment triple.
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We hope the senti-synonym word pairs have high word similarity scores and senti-
antonym word pairs have low word similarity scores, just like those in thesauri
information. Firstly, we drop all the synsets with the sentiment triple [0, 0, 1]
because words in these categories are completely objective and we can hardly
conduct any sentimental analysis on them. Then we define a concept named
senti-similarity, which evaluates the degree one word is similar to another in
respect of sentimental inclination. Mathematically, it is expressed as follows,

SentiSim(w1, w2) =
Pos(w1)Pos(w2) + Neg(w1)Neg(w2)√

((Pos(w1)2 + Neg(w1)2)(Pos(w2)2 + Neg(w2)2)
.

(10)

In this expression, we ignore the objective judgement ratio Obj(w) of these
words and calculate the normalized dot product of [Pos(w1), Neg(w1)] and
[Pos(w2), Neg(w2)]. The higher the senti-similarity is, the more similarly these
two words express in sentimental inclination. In our model, we think that those
senti-synonyms should have not only high senti-similarity score but also high
word similarity score and vice versa. So our objective function is:

Func3 =
∑

w1,w2∈SWN

(SentiSim(w1, w2)−SentiSim) · log σ(sim(w1, w2)), (11)

where SWN denotes the vocabulary of SentiWordNet, and SentiSim denotes
the average senti-similarity value of all word pairs in SWN ; σ is the sigmoid
function. Through the maximization of Func3, word pairs with higher senti-
similarity score will also have higher word similarity.

3.4 Our Approach(WE-TSD)

Our final model is the integration of the three sub-models above. Our objective
function is:

Func = Func1 + c1Func2 + c2Func3, (12)

and our goal is to maximize the function. All the three sub-models are necessary.
The first model Modified Skip-Gram makes use of distributional corpus informa-
tion and describes the relatedness of words based on unsupervised corpus. The
WE-T model controls the word similarity between synonyms and antonyms,
and the WE-S model controls the similarity between senti-antonyms and senti-
synonyms. The vocabulary size of WE-S is a lot larger than WE-T and it almost
covers the whole vocabulary. Each of the three models has its own effect and
none of them can be discarded.

In our objective function, c1 and c2 are two coefficients used to balance the
importance of the three sub-models. While conducting experiments, we need
to tune the coefficients and parameters to achieve better performance. We call
this novel model WE-TSD which means Word Embeddings Based on Thesauri,
SentiWordNet and Distributional information.
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4 Experiments

4.1 Evaluation Settings

In this section, we introduce three relevant tasks which we utilize to evaluate our
methods, namely GRE antonym detection task, word similarity task and tex-
tual similarity task. Both the dataset and the evaluation metrics are described
in detail below. In our experiments, we not only compare our model with sev-
eral baselines but also with some advanced embeddings including WE-T (Word
Embedding using Thesauri only), WE-TD (Word Embedding using Thesauri and
discributional condition [14]) and WE-S (Word Embedding using SentiWordNet
only).

GRE Antonym Detection Task. GRE antonym questions dataset is widely
used in antonym detection tasks which is originally provided by [11]. It is a set
of questionnaires with several hundreds of single-choice questions. Each question
has a target word and five candidates. We need to choose the only antonym of
the target word in the five candidates. Moreover, this dataset is divided into two
parts, development set which contains 162 questions and test set which contains
950 questions. Since there are 160 questions appear in both of the two sets, we
will report results on both the whole test set and the remaining test set with
790 (= 950 −160) questions just like [14] do in their evaluation experiment of
WE-TD model.

When we evaluate our model on these single-choice questions, we calculate
the similarity of the target word and the five candidates one by one, and then
the candidate who has the lowest similarity with the target word is declared the
winner. After finishing all the questions, we evaluate our embedding by F-score
following Zhang et al. (2014). If our model doesn’t contain the target word or
the five candidates, the question will be left unanswered. Unanswered questions
are regarded the same as wrong-answered.

Word and Semantic Text Similarity Task. In word similarity experiments,
one of the most widely used dataset is WordSim353 provided by [3]. In this exper-
iment, we use dataset WordSim353. Since this dataset consists of two parts, the
relatedness part and the similarity part, we conduct our experiment on the two
parts respectively. Obtaining three results on WordSim353 (Rel), WordSim353
(Sim) and WordSim353 (Combined), we can show the effectiveness of our model
comprehensively. In WordSim353, there are 353 word pairs and a human labeled
word similarity score for each word pair.

We compute the similarity of these word pairs according to the absolute
value of the cosine distance of their corresponding word vectors. The higher the
calculated value is, the more related or similar the word pair is supposed to be.
Then, we calculate the Spearman correlation between the word similarity scores
from our model and the human labeled scores for comparison.
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Semantic Textual Similarity (STS) is the task of determining the degree of
semantic similarity between two sentences. STS task is an important founda-
tion of many natural language processing applications, but the performance still
remains to be improved. One of the difficulties is that common systems are insen-
sitive to antonyms. Two sentences with high overlap but also a pair of antonyms
usually indicate opposite meanings, but common systems tend to generate a
high similarity score. Therefore, our antonym-sensitive embedding has a great
potential to improve the results by avoiding such errors.

We conduct experiments on STS Benchmark [2], which comprises a selec-
tion of the English datasets used in the STS tasks organized in the context of
SemEval between 2012 and 2017. The performance is measured by the Pearson
correlation of machine scores with human judgments. We build a convolutional
neural network, which achieves best results on this dataset, as described in [18],
and use different word embeddings as the input of the model.

4.2 Training Resource and Parameter Settings of Our Model

Our supervised datasets used to train our WE-TSD model include two parts.
The first one is antonym and synonym pairs in two thesauri, WordNet provided
by [10] and Roget provided by [6], the other is SentiWordNet provided by [1].
The unsupervised training corpus comes from Wikipedia. We lowercase all the
words and drop all the stopping words and punctuations. The size of raw text is
over 10GB and the huge size of unsupervised dataset helps us to train the word
embedding more accurately.

When training our WE-TSD model, the dimension of embeddings is set to
300, the negative size is 10, window size is 5, and the threshold for subsampling
was 10−8. We utilize Adam as the optimizer. During training, we use learning
rate decay to fit the training corpus, and the number of iteration epochs is set to
50. In Func2, γ = 0.6. The parameter c1 is 100, c2 was 2.5. While determining
these two hyper-parameters, we take the proportion of the size of Wiki Corpus,
Thesauri and SentiWordNet vocabulary into account.

4.3 Results of Experiments

GRE Antonym Detection Task. In experiments, we compare our model with
baselines including Encarta lookup from [?], S2Net from [?], WordNet & Roget
BFTP from [12], WE-T and WE-TD from [14] and so on. Since we evaluate on
the same data as [14], we simply report the evaluation results reported by them.

In the GRE Antonym Detection Task, two models obviously surpass the oth-
ers, namely WE-TD proposed by [14] and our WE-TSD. Both these two mod-
els make use of supervised information about synonyms and antonyms, which
may play an important role in this task. The major difference between WE-
TD and our WE-TSD is our utilization of SentiWordNet. On the complete
test set TestSet(950), we get an F-score of 92% and outperform the WE-TD
model which achieves an F-score of 89%, demonstrating the contribution of the
semantic information in SentiWordNet.
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More detailed results are listed in Table 1. Obtaining the state-of-the-art
results, we can state that our antonym-sensitive embedding is capable of detect-
ing antonyms more effectively than other existing embeddings.

Word and Text Similarity Task. As a tool of antonym detection, it is worth
celebrating that our WE-TSD method performs well on the GRE antonym detec-
tion task. However, it is far from enough as a general word embedding. In order to
demonstrate the efficacy and task adaptability of our methods, we then conduct
experiments on a basic task, word similarity evaluation.

Table 1. Results on the GRE antonym detection task. The best values are marked in
bold font.

Model DevSet TestSet(950) TestSet(790)

Prec. Rec. F Prec. Rec. F Prec. Rec. F

Encatra lookup 0.65 0.61 0.63 0.61 0.56 0.59 - - -

WordNet and
Roget lookup

1.00 0.49 0.66 0.98 0.45 0.62 0.98 0.45 0.61

WE-T Model 0.92 0.71 0.80 0.90 0.72 0.80 0.90 0.72 0.80

WE-D Model 0.09 0.08 0.09 0.08 0.07 0.07 0.07 0.07 0.07

EnCarta PILSA 0.88 0.87 0.87 0.81 0.80 0.81 - - -

WordNet &
Roget BPTF

0.88 0.88 0.88 0.82 0.82 0.82 - - -

WE-TD Model 0.92 0.91 0.91 0.90 0.88 0.89 0.89 0.87 0.88

WE-TM Model 0.92 0.91 0.91 0.91 0.89 0.90 0.89 0.87 0.88

WE-S Model 0.88 0.87 0.87 0.83 0.81 0.82 0.81 0.79 0.80

WE-TSD Model 0.95 0.92 0.935 0.93 0.91 0.92 0.92 0.90 0.91

In word similarity experiment, we compare our model with many baselines
such as path similarity based on hypernym-hyponym structure in WordNet by
[16], mutual information based on WordNet by [15], Word2Vec and LDA simi-
larity proposed by [9] based on English Wikipedia data, WebJaccard algorithm
based on Google Search webpages, WE-TD by [14] and so on. Our experimental
results are listed in Table 2. The results of our model WE-TSD surpass both the
Gensim Word2Vec and WE-TD model on WS353(Sim), WS353(Combined)
and MEN-TR-3k dataset. Since our embedding aims to reflect the semantic sim-
ilarity rather than the relatedness between words, WE-TSD performs not that
well on WS353(REL). On WS353(REL) dataset, our model is slightly inferior
to the Gensim Word2Vec model, but the results are still acceptable and out-
perform the other methods, which shows the effectiveness and versatility of our
model.

In text similarity experiment, we compare our word embeddings with WE-TD
Model, Gensim Word2Vec Model and GLOVE Word Representation Model to
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Table 2. Spearman’s rank correlation coefficients in different models. The best values
are marked in bold font.

Model WS353(Sim) WS353(Rel) WS353(Com) MEN-TR-3k

Path Similarity
on WordNet

0.347 0.262 0.315 0.298

Mutual
Information on
WordNet

0.388 0.257 0.349 0.325

Gensim
Word2Vec on
Wiki

0.651 0.648 0.650 0.611

LDA Method on
Wiki

0.660 0.487 0.575 0.614

WebJaccard on
Google Search

0.277 0.050 0.157 0.105

WE-TD Model
on Wiki

0.621 0.617 0.620 0.717

WE-TM Model
on Wiki

0.625 0.615 0.621 0.720

WE-S Model on
Wiki

0.669 0.635 0.650 0.727

WE-TSD Model
on Wiki

0.675 0.635 0.656 0.732

Table 3. The calculation of text similarity using CNN. The best values are marked in
bold font.

Model Test set Validation set

GLOVE Word Representation 0.790 0.832

Gensim Word2Vec 0.794 0.831

WE-TD Model 0.715 0.733

WE-TM Model 0.725 0.746

WE-S Model 0.784 0.831

WE-TSD Model 0.808 0.859

demonstrate the applicability and efficacy of our antonym-sensitive embeddings
on this task. The experimental results are listed in Table 3. Our WE-TSD model
outperforms the other embeddings on both test set and validation set.

As is shown above, our model consists of three important parts, namely
Modified Skip-Gram, Thesauri based and SentiWordNet based model. In fact,
all of them are necessary. The first part is the most basic one and it assures that
all the existing word in Wiki Corpus are taken into account in our model. The
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second part shows its strength in antonym detection task, and the third part
plays a vital role in word and task similarity tasks. Our model performs well on
all of the three tasks, demonstrating its effectiveness and task adaptability.

5 Conclusions

In this paper, we propose a novel word embedding model to get better per-
formance on discriminating antonyms from synonyms and our model achieves
an F-score of 92% on GRE antonym detection task, outperforming the current
state-of-the-art. Also this model has an satisfying performance on both word and
textual similarity tasks, demonstrating its effectiveness and task adaptability. In
future work, we plan to extend our ideas to train word embeddings which are
capable of capturing other semantic relations, such as hyponyms and hypernyms.
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Abstract. Chinese word segmentation (CWS) is an important task for
Chinese NLP. Recently, many neural network based methods have been
proposed for CWS. However, these methods require a large number of
labeled sentences for model training, and usually cannot utilize the useful
information in Chinese dictionary. In this paper, we propose two methods
to exploit the dictionary information for CWS. The first one is based on
pseudo labeled data generation, and the second one is based on multi-task
learning. The experimental results on two benchmark datasets validate
that our approach can effectively improve the performance of Chinese
word segmentation, especially when training data is insufficient.

Keywords: Chinese word segmentation · Dictionary · Neural network

1 Introduction

Different from English texts, in Chinese texts there is no explicit delimiters
such as whitespace to separate words. Thus, Chinese word segmentation (CWS)
is an important task for Chinese natural language processing [3,17], and an
essential step for many downstream tasks such as POS tagging [20], named
entity recognition [9], dependency parsing [2,15] and so on.

Since a Chinese sentence is usually a sequence of Chinese characters, Chinese
word segmentation is usually modeled as a sequence labeling problem [13,17].
Many sequence modeling methods such as hidden Markov model (HMM) [5]
and conditional random field (CRF) [6] have been applied to the CWS task. A
core problem in these sequence modeling based CWS methods is building the
feature vector for each character in sentences. In traditional CWS methods these
character features are constructed via manual feature engineering [10,19]. These
handcrafted features need a large amount of domain knowledge to design, and
the size of these features is usually very large [3].

In recent years, many neural network based methods have been proposed for
CWS [3,16,17,20]. For example, Peng et al. [11] proposed to use Long Short-
Term Memory Neural Network (LSTM) to learn the character representations for
CWS and use CRF to jointly decode the labels. However, these neural network
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 80–91, 2018.
https://doi.org/10.1007/978-3-319-99501-4_7
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based methods usually rely on a large number of labeled sentences. For words
which are scarce or absent in training data, these methods are very difficult to
correctly segment the sentences that contain these words [17]. Since these words
are in large quantity, it is very expensive and even unpractical to improve the
coverage of these words via annotating more sentences. Luckily, many of these
words are well defined in existing Chinese dictionaries. Thus, Chinese dictionaries
have the potential to improve the performance of neural network based CWS
methods and reduce the dependence on labeled data [17].

In this paper we propose to incorporate the dictionary information into neu-
ral network based CWS approach in an end-to-end manner without any feature
engineering. More specifically, we propose two methods to incorporate the dic-
tionary information for CWS. The first one is based on pseudo labeled data gen-
eration, where we build pseudo labeled sentences by randomly sampling words
from Chinese dictionaries. The second one is based on multi-task learning. In
this method we introduce another task named Chinese word classification (i.e.,
classifying a sequence of Chinese characters based on whether they can form a
Chinese word), and jointly train this task with CWS by sharing the parame-
ters of neural networks. We conducted extensive experiments on two benchmark
datasets. The experimental results validate that our methods can effectively
improve the performance of CWS, especially when training data is insufficient.

2 Related Work

In recent years, many neural network based methods have been proposed for
Chinese word segmentation [3,16,17,20]. Most of these methods model CWS
as a sequence labeling task [3,17]. The core difference between these methods
mainly lies in how they learn the contextual feature representation for each
character in sentence. For example, Zheng et al. [20] proposed to use multi-
layer perceptrons to learn feature representations of characters from a fixed
window. Chen et al. [3] used LSTM to capture global contextual information.
They also explicitly captured the local context by combining the embedding of
current character with the embeddings of neighbouring characters as the input
of LSTM. In [11], LSTM is used to learn character representations and CRF
is used to jointly decode the labels. These methods rely on a large number of
labeled sentences to train CWS models and cannot exploit the useful information
in Chinese dictionaries [17]. Since there are massive Chinese words which are
scarce or absent in the labeled sentences, these neural CWS methods usually
have difficulty in correctly segmenting sentences containing these words [17].

Recently, incorporating the dictionary information into neural Chinese word
segmentation has attracted increasing attentions [14,17]. For example, Yang
et al. [14] proposed to incorporate external information such as punctuation,
automatic segmentation and POS data into neural CWS via pretraining. How-
ever, the useful information in Chinese dictionaries is not considered in their
method. Zhang et al. [17] proposed to incorporate the dictionary information into
an LSTM based neural CWS method via feature engineering. They used several
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handcrafted templates to build an additional feature vector for each character
using the dictionary and the neighbouring characters. These additional feature
vectors are fed to another LSTM network to learn additional character represen-
tations. However, designing these handcrafted feature templates needs a lot of
domain knowledge. In addition, more model parameters are introduced in their
method, making it more difficult to train neural CWS model especially when
training data is insufficient. Different from [17], our method to incorporate dic-
tionary information into neural CWS can be trained in an end-to-end manner
and does not need manual feature engineering. Experimental results show that
our approach can achieve better performance than the method in [17].

3 Our Approach

In this section we first present the basic neural architecture for Chinese word
segmentation used in our approach. Then, we introduce our methods of incor-
porating dictionary information for neural CWS.

3.1 Basic Neural Architecture

Following many previous works [3,17], in this paper we model Chinese word
segmentation as a character-level sequence labeling problem. For each character
in a sentence, our model will assign one of the tags in a predefined tag set to
it, indicating its position in a word. We use the BMES tagging scheme, where
B, M and E mean the beginning, middle and end position in the word, and S
represents single character word.

The basic neural architecture for CWS used in our approach is CNN-CRF.
This neural architecture contains three main layers. The first layer is the charac-
ter embedding layer. In this layer, the input sentence is converted to a sequence
of vectors. Denote the input sentence as x = [c1, c2, ..., cM ], where M is the sen-
tence length and ci is the i-th character in this sentence. After the embedding
layer, the input sentence will become x = [c1, c2, ..., cM ], where ci ∈ RD is the
embedding of character ci and D is the embedding dimension.

The second layer is the CNN layer. Previous studies show that local con-
text information is important for Chinese word segmentation [1,14]. In addition,
many researchers have shown that CNN is effective in capturing local context
information [7,12,18]. Motivated by these observations, we use CNN to learn
the contextual representations of characters for CWS. Denote w ∈ RKD as the
parameter of a filter with kernel size K, then the hidden representation of the
i-th character generated by this filter is formulated as follows:

hi = f(wT × ci−� k−1
2 �:i+� k−1

2 � + b), (1)

where ci−� k−1
2 �:i+� k−1

2 � is the concatenation of the embeddings of neighbouring
characters, f is the ReLU function, and w and b are the parameters of the filter.
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Multiple filters with different kernel sizes are used. The final hidden representa-
tion of the i-th character is the concatenation of the output of all filters at this
position, which is denoted as hi ∈ RF (F is the number of filters).

The third layer is the CRF layer. In Chinese word segmentation there are
usually strong dependencies among neighbouring tags [3]. For example, the tag
M cannot follow tag S or E. Following many previous works on CWS [11,17],
we use CRF to capture the dependencies among neighbouring tags. Denote the
input sentence as x = [c1, c2, ..., cM ], and the predicted tag sequence as y =
[y1, y2, ..., yM ], then the score of this prediction is formulated as:

g(x,y) =
M∑

i=1

(Si,yi
+ Ayi−1,yi

), (2)

where Si,yi
is the score of assigning tag yi to the i-th character, and Ayi−1,yi

is
the score of jumping from tag yi−1 to tag yi. In our approach, Si is defined as:

Si = WThi + b, (3)

where hi is the hidden representation of the i-th character learned by the CNN
layer, and W ∈ RF×T and b ∈ RT (T is the size of the tag set) are the
parameters for character score prediction. In CRF, the probability of sentence
x having tag sequence y is defined as:

p(y|x) =
exp(g(x,y))∑

y′∈Y(x) exp(g(x,y′))
, (4)

where Y(x) is the set of all possible tag sequences of sentence x.
Then the loss function can be formulated as:

L = −
N∑

i=1

log(p(yi|xi)), (5)

where N is the number of labeled sentences for training, and yi is the ground-
truth tag sequence of the i-th sentence.

For prediction, given a sentence x to be segmented, the predicted tag sequence
y� is the one with the highest likelihood:

y� = arg max
y∈Y(x)

p(y|x). (6)

We use Viterbi algorithm to solve the decoding problem in Eq. (6).

3.2 Incorporating Dictionary Information for Neural CWS

Existing neural CWS methods usually rely on a large number of labeled sentences
for model training. Researchers have found that the neural models trained on
labeled sentences usually have difficulties in segmenting sentences which con-
tain OOV or rarely appearing words [17]. For example, a Chinese sentence is
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(Recently AI is hot). Its ground-truth segmentation is
. However, if (AI) does not appear in the

labeled data or only appears for a few times, then there is a large probability
that this sentence will be segmented into , since
and are both popular words which may frequently appear in the labeled
data. Luckily, many of these rare words are included in Chinese dictionary. If
the neural model is aware of that is a Chinese word, then it can
better segment the aforementioned sentence. Thus, dictionary information has
the potential to improve the performance of neural CWS methods.

In this paper we propose two methods for incorporating dictionary informa-
tion into training neural CWS models. Next we will introduce them in detail.

Pseudo Labeled Data Generation. Our first method for incorporating
dictionary information into neural CWS model training is based on pseudo
labeled data generation. More specifically, given a Chinese dictionary which
contains a list of Chinese words, we randomly sample U words and use them
to form a pseudo sentence. For example, assuming that three words ,

and are sampled, then a pseudo sentence
can be built. Since the boundaries of these words are

already known, the tag sequence of the generated pseudo sentence can be auto-
matically inferred. For instance, the tag sequence of aforementioned pseudo
sentence is “B/E/B/E/B/M/M/E” under the BMES tagging scheme. Then
we repeat this process until Np pseudo labeled sentences are generated. These
pseudo labeled sentences are added to labeled data set to enhance the training
of neural CWS model.

Since the pseudo labeled sentences may have different informativeness from
the manually labeled sentences, we assign different weights to the loss on these
two kinds of training data, and the final loss function is formulated as:

L = −
N∑

i=1

log(p(yi|xi)) − λ1

Np∑

i=1

log(p(ys
i |xs

i )), (7)

where xs
i and ys

i represent the i-th pseudo labeled sentence and its tag sequence,
and λ1 is a non-negative coefficient.

Multi-task Learning. Our second method for incorporating dictionary infor-
mation into neural CWS model training is based on multi-task learning. In this
method, we design an additional task, i.e., word classification, which means clas-
sifying a sequence of Chinese characters based on whether it can be a Chinese
word. For example, the character sequence will be classified to be
true, while the character sequence will be classified to be false. The
positive samples are obtained from a Chinese dictionary. The negative samples
are obtained via randomly sampling a word from the dictionary, and then each
character in this word will be randomly replaced by a random selected charac-
ter with a probability p. This step is repeated multiple times until a predefined
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Fig. 1. Our proposed framework for jointly training CWS and word classification mod-
els. The left part is for CWS and the right part is for word classification.

number of negative samples are obtained. We use a neural method for the word
classification task, whose architecture is similar with the CNN-CRF architecture
for CWS, except that the CRF layer is replaced by a max-pooling layer and a
sigmoid layer for binary classification. The loss function of the word classification
task is formulated as:

L =
Nw∑

i=1

log(1 + e−yisi), (8)

where Nw is the number of training samples for word classification, si is the
predicted score of the i-th sample, and yi is the word classification label which
can be 1 or −1 (1 represents true and −1 represents false).

Motivated by multi-task learning, we propose a unified framework to jointly
train the Chinese word segmentation model and the word classification model,
which is illustrated in Fig. 1. In our framework, the CWS model and the word
classification model share the same embedding layer and CNN layer. In this way,
these two layers can better capture the word information in Chinese dictionary
via jointly training with the word classification task, and the performance of
CWS can be improved. In model training we assign different weights to the loss
of these two tasks, and the final loss function is:

L = −(1 − λ2)
N∑

i=1

log(p(yi|xi)) + λ2

Nw∑

i=1

log(1 + e−yisi), (9)

where λ2 is a coefficient ranging from 0 to 1.
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4 Experiment

4.1 Dataset

In our experiments we used two benchmark datasets released by the third inter-
national Chinese language processing bakeoff1 [8]. The detailed statistics of these
two datasets are summarized in Table 1. We used the last 10% data of the train-
ing set as development set.

Table 1. The statistics of datasets.

Dataset #Sentence #Word #Character OOV Rate

MSRA Train 46.3K 1.27M 2.17M -

Test 4.4K 0.10M 0.17M 3.4%

UPUC Train 18.8K 0.51M 0.83M -

Test 5.1K 0.15M 0.26M 8.8%

4.2 Experimental Settings

The character embeddings used in our experiments were pretrained on the Sogou
news corpus2 using the word2vec3 tool. The dimension of character embedding
is 200. We used 400 filters in the CNN layer and the kernel sizes of these filters
range from 2 to 5. Rmsprop [4] was used as the algorithm for neural model
training. The learning rate was set to 0.001 and the batch size was 64. Dropout
was applied to the embedding layer and the CNN layer. The dropout rate was
set to 0.3. We use early stopping strategy. When the loss on the development set
doesn’t reduce after 3 consecutive epochs, the training is stopped. We repeated
each experiment for 5 times and reported the average results.

4.3 Performance Evaluation

In this section we compare our approach with several baseline methods. These
baseline methods include: (1) Chen et al. [3], a LSTM based CWS method which
also considers local contexts; (2) LSTM-CRF, a popular neural CWS method
based on the LSTM-CRF architecture [11,17]; (3) CNN-CRF, a neural CWS
method based on the CNN-CRF architecture, which is the basic model for our
approach; (4) Zhang et al. [17], a neural CWS method which can incorporate
dictionary information via feature templates. In order to evaluate the perfor-
mance of different methods under different amounts of labeled data, we randomly
sampled different ratios of labeled data for training. The experimental results
are summarized in Tables 2 and 3. According to Tables 2 and 3, we have two
observations.
1 http://sighan.cs.uchicago.edu/bakeoff2006/download.html.
2 http://www.sogou.com/labs/resource/ca.php.
3 https://code.google.com/archive/p/word2vec/.

http://sighan.cs.uchicago.edu/bakeoff2006/download.html
http://www.sogou.com/labs/resource/ca.php
https://code.google.com/archive/p/word2vec/
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Table 2. The performance of different methods on the MSRA dataset. P , R and F rep-
resent precision, recall and Fscore respectively. Ours Pseudo represents our approach
based on pseudo labeled data generation, and Ours Multi represents our approach
based on multi-task learning.

1% 10% 100%

P R F P R F P R F

Chen et al. [3] 75.50 75.80 75.64 87.71 86.22 86.96 94.24 93.35 93.80

LSTM-CRF 75.88 74.86 75.36 85.52 84.81 85.16 94.26 93.29 93.78

CNN-CRF 75.59 74.43 75.00 89.72 89.14 89.43 95.03 94.53 94.78

Zhang et al. [17] 75.75 75.95 75.85 89.52 89.01 89.27 95.71 95.41 95.56

Ours Pseudo 80.58 77.97 79.25 90.49 89.59 90.04 95.36 94.71 95.03

Ours Multi 78.47 77.31 77.88 89.91 89.27 89.59 95.10 94.50 94.80

Table 3. The performance of different methods on the UPUC dataset.

5% 25% 100%

P R F P R F P R F

Chen et al. [3] 82.31 82.60 82.44 88.00 89.90 88.94 90.79 92.92 91.84

LSTM-CRF 81.08 80.88 80.98 86.76 88.40 87.57 91.39 92.58 91.98

CNN-CRF 82.44 84.50 83.46 89.95 91.57 90.75 92.22 93.84 93.02

Zhang et al. [17] 83.38 84.98 84.17 89.93 91.41 90.66 92.60 93.89 93.24

Ours Pseudo 87.37 86.56 86.97 90.97 92.04 91.50 92.77 94.09 93.43

Ours Multi 84.59 86.22 85.40 90.43 91.68 91.05 92.35 93.93 93.13

First, both of our approaches perform better than various neural CWS meth-
ods which do not consider dictionary information, and the performance advan-
tage becomes larger when training data is insufficient. This result validates
that by incorporating the dictionary information our approaches can effectively
improve the performance of neural CWS. This is because there are many words
which do not appear or rarely appear in the training data, and the neural
CWS models which are trained purely on labeled data usually have difficulty
in segmenting sentences containing these words. Many of these words are usu-
ally included in Chinese dictionaries, and exploiting the useful information in
dictionaries can help the neural CWS model better recognize these words.

Second, although the method proposed in [17] can also incorporate the dictio-
nary information for CWS, our approaches usually can outperform it, especially
when training data is insufficient. This result shows that our approaches are more
appropriate for incorporating dictionary information for CWS than the method
proposed in [17]. This is maybe because in [17] the feature templates for incorpo-
rating dictionary information are manually designed, which may not be optimal.
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In addition, in [17] an additional LSTM network is used to learn character rep-
resentations from these dictionary based features. Thus, more model parameters
are incorporated, making it more difficult to train the CWS model especially
when training data is insufficient. Our approaches do not rely on feature engi-
neering and the additional model parameters introduced in our approaches are
limited. Thus, our approach can achieve better performance than [17].

4.4 Influence of Dictionary

In this section we conducted several experiments to explore the influence of the
type and the size of Chinese dictionary on the performance of our approach.

UPUC MSRA
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Fig. 2. The influence of dictionary
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Fig. 3. The influence of dictionary size.

First, we explore the influence of dictionary type. In previous section, the
Chinese dictionary used in our approach is the Sogou Chinese Dictionary, which
can be regarded as an external dictionary. We also built an internal dictionary
using the words appearing in the training data. The results of our approach
without any dictionary, with only internal dictionary, with only external dictio-
nary, and with both dictionaries are summarized in Fig. 2. We randomly sampled
5% training data of UPUC dataset and 1% training data of MSRA dataset for
model training.

According to Fig. 2, with external dictionary our approach can improve the
performance of CWS. In addition, our approach can also improve the perfor-
mance with only internal dictionary. This result is promising, since the internal
dictionary is built on the words appearing in training data and no external
resource is involved. In addition, incorporating both internal and external dic-
tionaries can further improve the performance of our approach, which indicates
that these two dictionaries contain complementary information.

Next, we explore the influence of the dictionary size on the performance of
our approach. We randomly sampled different numbers of words from the Sogou
dictionary, and the experimental results on UPUC dataset are summarized in
Fig. 3.
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From Fig. 3, with the size of dictionary grows the performance improves.
This result is intuitive since when a dictionary contains more words it can have
a better coverage of the Chinese words, and our approach can benefit from this
by incorporating the useful information in these words into training neural CWS
model.

4.5 The Influence of Parameters

There are two most important parameters in our approaches. The first one is λ1,
which controls the relative importance of pseudo labeled samples. The second
one is λ2, which controls the relative importance of word segmentation task. The
influence of these parameters on the performance of our approaches is illustrated
in Figs. 4 and 5.
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From Figs. 4 and 5 we can see that when λ1 and λ2 are too small, the perfor-
mance of our approach is not optimal, and improves as λ1 and λ2 increase. This
is because when these parameters are too small, the useful information in the
dictionary is not fully exploited. However, when λ1 and λ2 become too large, the
performance of our approach decreases. This is because in these cases the pseudo
labeled samples and the word classification task are over-emphasized. Accord-
ingly, the manually labeled samples and the CWS task are not fully respected.
Thus, a moderate value is most appropriate for λ1 and λ2.

4.6 Case Study

In this section we conducted several case studies to explore why our approach
can improve the performance of Chinese word segmentation via incorporating
the dictionary information. Several segmentation results of our approach with-
out dictionary (i.e., the CNN-CRF method), with internal dictionary and with
external dictionary are shown in Table 4. For illustration purpose, we only show
the results of our approach based on pseudo labeled data generation.
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Table 4. Several Chinese word segmentation examples.

According to Table 4, after incorporating the dictionary information, our app-
roach can correctly segment many sentences where the basic CNN-CRF method
has difficulties. For instance, in the first example, the true segmentation of

is . However, CNN-CRF incorrectly segments it into
, because is an OOV word which does not appear in training

data. Our approach with external dictionary can correctly segment this sentence
because the word is in the external dictionary and our approach can
fully exploit this useful information. In the second example, CNN-CRF incor-
rectly segments into , because is an rare word which
only appears 2 times in the training data which is difficult for neural CWS model
to segment it. Since this word is in both internal and external dictionaries, our
approach with either dictionary can correctly segment this sentence. Thus, these
results clearly show that incorporating dictionary information into training neu-
ral CWS methods is beneficial.

5 Conclusion

In this paper we present two approaches for incorporating the dictionary infor-
mation into neural Chinese word segmentation. The first one is based on pseudo
labeled data generation, where pseudo labeled sentences are generated by com-
bining words randomly sampled from dictionary. The second one is based on
multi-task learning, where we design a word classification task and using the
dictionary to build labeled samples. We jointly train the Chinese word segmen-
tation and the word classification task via sharing the same network parameters.
Experimental results on two benchmark datasets show that our approach can
effectively improve the performance of Chinese word segmentation, especially
when training data is insufficient.
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Abstract. Discourse structure analysis is an important task in Natural Lan-
guage Processing (NLP) and it is helpful to many NLP tasks, such as automatic
summarization and information extraction. However, there are only a few
researches on Chinese macro discourse structure analysis due to the lack of
annotated corpora. In this paper, combining structure recognition with nuclearity
recognition, we propose a Label Degeneracy Combination Model (LD-CM) to
find the solution of structure recognition in the solution space of nuclearity
recognition. Experimental results on the Macro Chinese Discourse TreeBank
(MCDTB) show that our model improves the accuracy by 1.21%, compared
with the baseline system.

Keywords: Label degeneracy � Combination model
Macro discourse structure

1 Introduction

Nowadays, the focus of most previous works on Natural Language Processing
(NLP) has shifted from word to larger semantic levels, such as sentence and event. This
trend makes discourse structure analysis more important because it is the foundation of
many discourse-based NLP tasks. Discourse refers to a series of clauses, sentences or
paragraphs as a whole [1]. It includes not only the text sequence but also the structural
and logical relationships among them. Commonly, discourse structure analysis is
divided into micro and macro structure analysis. The former studies the intra- or inter-
sentence relationship, while the latter studies the discourse relationships among sen-
tence groups, paragraphs and chapters [2], which pays attention to understanding the
full text from higher-level semantics.

Macro discourse analysis uses paragraphs as elementary discourse units, and
constructs a discourse structure tree between the paragraphs. It is a challenging task due
to there is no connective between macro discourse units, and the length of the discourse
unit is longer. In general, macro discourse analysis includes three tasks: structure
recognition, nuclearity recognition, and relationship recognition. Structure recognition

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 92–104, 2018.
https://doi.org/10.1007/978-3-319-99501-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99501-4_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99501-4_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99501-4_8&amp;domain=pdf


is to identify whether there is a relationship between adjacent discourse units. Nucle-
arity recognition is to identify which is more important among discourse units.
Moreover, relation recognition is to identify the logical relationship between discourse
units. These three tasks constitute the analysis of macro discourse structure, and ulti-
mately build a discourse structure tree of an article.

Table 1 is a sample text including a title and five paragraphs. Figure 1 is its macro
discourse structure tree, in which the leaf nodes are paragraphs, and the parent nodes, the
larger discourse units, connect the adjacent child nodes. A directed edge connected
parent and child nodes, with the arrow’s edge pointing to the important child node and
the non-arrowed edge pointing to the secondary child node. In Fig. 1, P2, P3 and P4 form
a Joint relation, and they are equally important; P1 and DU2-4 form a Commentary

Table 1. Contents of chtb_0156.
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relation, in which P1 is more important; DU1-4 and P5 form an Evaluation relation, in
which DU1-4 is more important. A good article always has a good discourse structure
tree. If we can construct a discourse structure tree, it will play an active role in down-
stream tasks such as automatic summarization and information extraction. In the task of
automatic summarization, after constructing a macro structure tree, we can follow the
arrow from the top down to the leaf node to get a more natural summary. For example,
according to the Fig. 1, chtb_0156’s abstract in Table 1 is the topic sentence of P1.

Discourse structure recognition is the first step and the most important step in the
tasks of discourse structure analysis. In this paper, we first use the features of structure
information and semantic macro-information to form a combination model from dif-
ferent views. On this basis, it uses the label degeneracy to find out the solution of
structure recognition in the solution space of the nuclearity recognition to obtain more
detailed feature expression. Finally, we use the minimum probability post-editing to
ensure that the model can automatically build a complete macro structure tree. The
experimental results on MCDTB, a RST style macro Chinese discourse TreeBank,
justify the effectiveness of our model.

2 Related Work

Discourse structure analysis is divided into micro and macro structure analysis. In
micro discourse analysis, Hernault et al. [3] was the first to implement a complete
discourse analyzer in English, and used SVM with rich textual features (including
structure features, syntactic features and dominant sets) in structure recognition. Recent
studies followed this research line and focused on effective features. Joty et al. [4] and
Feng et al. [5] used sequence labeling instead of classification. The former used
Dynamic Conditional Random Field (DCRF) model combining structure recognition
with relationship recognition, and the latter used Conditional Random Field
(CRF) model with post-editing avoiding meaningless sequence labeling. Li et al. [6]
and Li et al. [7] used the recursive neural network and attention-based hierarchical
neural network with the distribution representation of text for recognizing structure,

P1 P2 P3 P4 P5

DU2-4

DU1-4

DU1-5
Evaluation

Joint

Elaboration

Fig. 1. The macro structure tree of chtb_0156.
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respectively. Besides, Feng et al. [9] and Wang et al. [10] introduced N-gram and the
tree features to recognize structure on the previous work [3, 8]. Due to the lack of
unified theories and corpus, there are few researches on Chinese discourse analysis. Lv
et al. [11] using Chinese FrameNet (CFN) and Li [1] using Connective-driven
Dependency Tree (CDT) with maximum entropy model attempted to recognize the
discourse structure on their self-built corpus, respectively.

There is less research at the macro level due to lack of corpus. In English, Sporleder
et al. [12] used a maximum entropy model to recognize the macro discourse structure
of RST-DT after correction and clipping. In Chinese, Jiang et al. [13] used the max-
imum entropy model to identify the macro discourse nuclearity with annotated dis-
course structures in MCDTB, the only one Chinese corpus labeled on the macro level.

3 Label Degeneracy Combination Model

Label Degeneracy Combination Model (LD-CM) is shown in Fig. 2. We first use
structural information to train the Structure Model, and use semantic and macro
information to train the Semantic and Macro Information Model to recognize the macro
discourse nuclearity. Then, we use these models to form a combination model. The
combination model can learn different features from different views, and decode the
prediction results in a unified way to compensate for the bias caused by a single model,
thereby improving system performance.

Finally, we use the label degeneracy to map the nuclearity results to reveal the
macro-structure. In previous work [1, 5], structure recognition and nuclearity recog-
nition were mainly cascading tasks. That is to say, structure recognition is binary
classification (whether the adjacent discourse units can be merged) and nuclearity is
three-classification (Nucleus Ahead, Nucleus Behind and Multi-Nucleus) on the
merging part that is obtained from structure recognition. We improve the nuclearity
recognition and regard the No-Relationship as the fourth class. In this way, there is a

Structure
Model

Semantic And 
Macro

Information
Model

Maximum
Probaility

Combination
Model

Label
Degenerate

Nuclearity 
Recognition

Structure 
Recognition

Fig. 2. The label degeneracy combination model.
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mapping relationship between structure recognition and nuclearity recognition: the
adjacent discourse units should be merged (Nucleus Ahead, Nucleus Behind and Multi-
Nucleus) or not (No-Relationship). Therefore, it can make the model capture more
detailed feature expression from three classes of nuclearity to be distinguished from
No-Relationship, which helps to recognize structure.

3.1 Sequence Labeling on Chinese Discourse Structure Recognition

In Chinese discourse structure recognition, Li et al. [1] and Lv et al. [11] both regarded
it as a classification problem, that is, to determine whether two given discourse units
should be merged. However, their methods have certain disadvantages, such as the
inability to consider contextual information and to recognize multi-relationship
structure.

Therefore, we regard this problem as sequence labeling following Joty et al. [4] and
Feng et al. [5], which has achieved good performance in English discourse structure
recognition. For the task of predicting macro discourse structure in Chinese, the
sequence labeling model has the following advantages: (1) it can consider the context
information; (2) it can keep the original discourse structure; (3) it can achieve a balance
between greedy algorithm and global optimization.

As shown in Fig. 3, DUi is the i
th discourse unit and Si is the structure label whether

the ith discourse unit is merged with the previous DUi−1. On the one hand, when
annotating Si, we can take into account the information of DUi−1 and DUi+1, so as to
increase the accuracy of discourse structure recognition. On the other hand, there is no
need to convert multi-relationship structure. For example, when DUi−1, DUi and DUi+1

form a multi-relationship structure, we only need to consider whether DUi and DUi−1

should be merged and whether DUi+1 and DUi should be merged. When both of them
labeled as merged, three successive discourse units form a multi-relationship structure.

3.2 Feature Combination

Table 2 shows the features used in the previous studies on RST-DT, an English dis-
course corpus, where Sporleder et al. [12] focused on macro structure analysis and the
rest focused on micro level. Table 2 illustrates that syntax information and dominant
set are very useful in microstructure analysis. However, we cannot introduce them to
macro structure analysis because the elementary of macro discourse unit is paragraph

Fig. 3. Macro-structure sequence labeling model.
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that does not have syntax information and dominant set. Therefore, we select the other
common features used in the previous studies as the structural features as follows:

• The position of the beginning and the end of a discourse unit;
• The number of sentences and the number of paragraphs contained in a discourse

unit;
• The comparison of the number of sentences in a discourse unit to its previous unit;
• The comparison of the number of paragraphs in a discourse unit to its previous unit.

Inspired by the distributed representation of text [14], we improved the “word co-
occurrence” feature adopted by Sporleder et al. [12] and used semantic similarity to
measure the semantic connection between two discourse units. We used Word2Vec
model to train word vectors on CTB8.0, and used the method proposed by Xu [15] to
calculate semantic similarity.

In macro structure, it is not possible to display the connectives explicitly, but there
may be a connective in the first sentence of a discourse unit. Therefore, we regard the
first connective and its part of speech in the discourse unit as one of the features. In
addition, because macro-structure analysis focuses more on macroscopic understand-
ing, we add some macro information as features, such as whether a discourse unit is a
leaf node and whether a discourse unit was merged at the previous round. Due to
differences in language characteristics and discourse unit granularity, we do not use
tense and N-gram features. Finally, we select the semantic and macro information
features as follows:

• The semantic similarity between a discourse unit and its previous unit;
• The connective of the first sentence and it’s part of speech in a discourse unit;

Table 2. Statistics of the features used in recent studies.

Features Sporleder
[12]

Hernault
[3]

Feng
[9]

Joty
[4]

Feng
[5]

Wang
[10]

Location information and
distance information

p p p p p

Structure information
p

Syntax information,
dominance set

p p p p p

N-gram
p p p p

Number of paragraphs
and sentences

p p p p p

Tree features
p p p

Status information
p

Word co-occurrence,
semantic similarity

p p

Punctuation, tense
p

Cue words, lexical chains.
p p p

Contextual features
p p

Entity transfer
p
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• Whether a discourse unit is a leaf node;
• Whether a discourse unit was merged in the previous round.

We first use the structural features to train Structure Model and use semantic and
macro information features to train Semantic and Macro Information Model on the
training set, respectively. Then we use the above two models to predict nuclearity of
two given discourse units in the test set, respectively. For each nuclearity label in the
prediction sequence, the one with the highest probability from the above two models is
selected as the final result.

3.3 Label Degeneracy

Previous studies have considered nuclearity recognition as part of relationship recog-
nition following the structure recognition. Different from them, we use label degen-
eracy to recognize the structure after nuclearity recognition. In nuclearity recognition,
we added No-Relationship as the fourth class to form a model for recognizing structure
and nuclearity simultaneously. In this way, there is a mapping relationship between
structure recognition and nuclearity recognition: the adjacent discourse units should be
merged (Nucleus Ahead, Nucleus Behind and Multi-Nucleus) or not (No-Relationship).

Our label degeneracy approach is as follows: when DUi is merged with the pre-
vious discourse unit DUi−1, the label Si is 1, otherwise 0. In nuclearity recognition,
when DUi isn’t merged with DUi−1, the label Ni is 0. When DUi is less important than
DUi−1 (Nucleus Ahead), Ni is 1; when DUi is more important than DUi−1 (Nucleus
Behind), Ni is 2; when DUi and DUi−1 are equally important (Multi-Nucleus), Ni is 3.
The degenerate mapping relationship between the labels of the discourse structure
recognition and the nuclearity recognition is shown in Eq. (1).

Si ¼ LD Nið Þ ¼ 0; Ni ¼ 0
1; Ni ¼ 1; 2; 3

�
ð1Þ

Therefore, it can make the model capture more detailed feature expression from
three classes of nuclearity to be distinguished from No-Relationship, which helps to
recognize structure. Jiang’s experiment [13] shows that the main mistakes of nuclearity
recognition is that it always recognizes Nuclearity Behind as other two types by
mistake because this class is scarce. In contrast, the other two relations Nuclearity
Ahead and Multi-Nucleus can be well recognized. This result means that their models
can capture differences between different nuclearity classes, making the characteristics
of the merged part more detailed (not only labeled 1 in structure recognition, but also
labeled 1, 2 and 3 in nuclearity recognition), thereby enhancing distinction with No-
Relationship (labeled 0 in structure and nuclearity).

For example, if one relationship is labeled as 3 (Multi-Nucleus), usually it is a
Coordination relation which may have more than two children. In this way, the label 3
(Multi-Nucleus) can strengthen the feature expression of this discourse structure (the
adjacent discourse units should be merged). So that it is not only distinguished from
No-relationship (label 0), but also distinguishable from the Nuclearity Ahead (label 1)
and Nuclearity Behind (label 2), thus improving the accuracy of the structure
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recognition. In addition, even if the error is confused with three nuclearity classes
(Nuclearity Ahead, Nuclearity Behind and Multi-Nucleus), label degeneracy can also
make it not reduce the accuracy of the result.

4 Experiment

In this section, we first introduce the experimental setting, and then report the exper-
imental results and analysis.

4.1 Experimental Setup

There are few genuine macro discourse corpora, especially in Chinese language. The
Macro Chinese Discourse TreeBank (MCDTB) [13] is the only available corpus in
Chinese. Different from RST-DT, MCDTB adopts the three categories of 15 classes of
discourse relationships formed by the improved CDTB [1] in macro-level discourse
relationship annotation. In addition, MCDTB also includes macro discourse informa-
tion, such as paragraph topic sentences, summaries, abstracts and pragmatic functions.
MCDTB annotated 720 news reports (0001-0325, 0400-0454, 0500-0554, 0600-0885
and 0900-0931) from CTB 8.0. As shown in Table 3, the corpus has 3,981 paragraphs,
and the average number of paragraphs is 5.53 per document. Besides, a document
contains at most 22 paragraphs and at least 2 paragraphs. The corpus contains 8,319
sentences, 398,829 words, with an average of 553.93 words per document.

We use Conditional Random Field (CRF) to train the Structure Model and the
Semantic and Macro Information Model, with the parameter C of 4, the feature window
of 3 and other parameters are default. There are 8,863 samples in total, including 3,261
positive samples and 5,602 negative samples. We use five-fold cross validation to
ensure the objectivity of the experiments. In particular, according to the article lengths,
we divided the articles of different lengths into five sets, so that the size of each set is
almost the same.

Feng et al. [5] pointed out that there were two constraints used in the serialization
labeling method of discourse structure recognition: discourse units cannot be

Table 3. The statistical of MCDTB.

Items Number

#documents 720
#paragraphs 3,981
#paragraphs of the longest document 22
#paragraphs of the shortest document 2
#sentences 8,319
Average length (paragraphs/document) 5.53
Average length (sentences/paragraph) 2.09
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consecutively merged and there is no merger at all in the sequence result. For the above
two constraints, we take the measures as following:

First, we maintain the multi-relationship structure. In RST-DT, the multi-
relationship structure is relatively small. According to statistics, 95% of annotated
relations are binary. In MCDTB, the multi-relationship structure accounts for 8.6%,
reaching 246 and the multi-relationship has 16 child nodes at most. Using the right-
branching tree to replace the multi-relationship tree, the number of newly generated
relations will account for 19.66%. At the same time, it also increases the distortion of
the structure tree. We use the original structure to ensure the objectivity of recognition.

Second, we use the minimum probability post-editing to ensure that the second case
does not occur. When there is no merger at all in the sequence result, we traverse the
probability values of each label in prediction, and replace the label 0, that has minimum
probability, with label 1 to ensure that the prediction meets the constraint condition.

4.2 Experimental Results and Analysis

We use the features of Sporleder [12] that can be migrated to Chinese (distance
information, location information, number of sentences and paragraphs, sentences and
paragraphs’ number comparison, semantic similarity and connectives) to form Spor-
leder Liked Model as a benchmark system. As shown in Table 4, the performance of
the Structure Model (M1) and the Semantic and Macro Information Model (M2) in
discourse structure recognition is slightly worse than the baseline. However, composed
of M1 and M2, the Combination Model (M1 + M2) obtained 77.56% accuracy, which
is 0.5% higher than Sporleder Liked Model. Our model LD-CM outperforms all other
six models in accuracy and this justifies the effectiveness of the combination model and
label degeneracy.

As shown in Table 5, there is 14.11% difference prediction between the Structure
Model (M1) and the Semantic and Macro Information Model (M2). This proves that
different features can learn different views, thereby enhancing the ability of discourse
structure recognition.

Table 4. The comparison of each model’s accuracy. Significant differences between SLM and
LD-CM* (with p < 0.01).

# Model Accuracy

M1 Structure Model (structure recognition) 76.09%
M2 Semantic and Macro Information Model (structure recognition) 77.01%
M3 Sporleder Liked Model (SLM) 77.06%
M4 Combine Model (M1 + M2) 77.56%
M5 Label Degeneracy Model (based on M2) 77.78%
M6 Label Degeneracy Combination Model (LD-CM) 78.27%*
M7 LD-CM with Post-Editing (LD-CMWP) 78.24%
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Label Degeneracy Model (M5) based on M2 achieved a correct rate of 77.78%,
which was 0.72% higher than that of Sporleder Liked Model and was about the same as
Combine Model (M4). Therefore, we also statistics the differences between the pre-
dictions of M4 and M5 as shown in Table 6. There is 11.94% difference prediction
between these two models. This proves that different methods have improvement in the
different direction, so it is effective to combine them into a Label Degeneracy Com-
bination Model (LD-CM).

Label Degeneracy Combination Model (LD-CM) achieves an optimal value of
78.27%, 1.21% higher than Sporleder Liked Model. We use LD-CM with Post-Editing
(LD-CMWP) to ensure that it can build a complete tree automatically with only reduce
the accuracy slightly. To find out how LD-CM can improve the performance of macro-
structure recognition, we analyzed the experimental results and found two phenomena:

1. LD-CM can overcome overfitting caused by a large amount of samples from short
articles. LD-CM is calmer than other models for whether the third and fourth
discourse unit should be merged. In those short articles, the third and fourth dis-
course unit (usually paragraphs) are often merged. However, in those long articles,
they are acted as higher-level discourse unit in high probability.

2. LD-CM is better at recognizing complex higher-level macro structure. Figure 4
shows the prediction results of each model for the high-level macro-structure of
chtb_0112. LD-CM predicts the structure correctly (a). Structures (b), (c), and
(d) are the results of Sporleder Liked Model, Combination Model and Label
Degeneracy Model, respectively. In complex high-level macro structure, more
attention should be paid to the information in the front part of the article, due to the
fact that if the article is longer, its topic is more dispersed, and its important part is
more likely to gather in the front part. Sporleder Liked Model did not show learning
this. Combination Model shows such a predictive behavior: if a discourse unit is not
merged with other discourse unit before, it is more likely to be merged with the next
discourse unit. However, it does not take into account that the important part in the
front of the article. Label Degeneracy Model also captures discourse units, which
are more likely to be merged in the front part of the article, but does not consider the
fact that the behind part has been merged.

Table 6. The difference between the predictions of M4 and M5.

Prediction Wrong (M5) Correct (M5)

Wrong (M4) 16.36% 6.08%
Correct (M4) 5.86% 71.70%

Table 5. The difference between the predictions of M1 and M2.

Prediction Wrong (M2) Correct (M2)

Wrong (M1) 16.39% 7.51%
Correct (M1) 6.60% 69.49%
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In addition, to study the performance of each model for articles on different lengths,
we divide the corpus into two parts: the short articles whose paragraph lengths are less
than or equal to 6 and the long articles whose paragraph lengths are more than 6. We
model the corpora of 535 short articles and 185 long articles respectively and analyzed
the results. Figure 5 shows the performance on different paragraph lengths. In those
short articles, compared with the benchmark system M3, Combination Model (M4) and
Label Degeneracy Model (M5) have improved 0.8% and 0.5% in accuracy, reaching
81.63% and 81.33%, respectively. The reason that M4 is better than M5 is that the
structural information and semantic and macro information are equally important in the
short article. It can capture different features from different aspects, to compensate for
the bias caused by the single model.

In those long articles, M5 performed better than M4, reaching 72.61% accuracy.
With the increasing of the article length, the structural information is more difficult to
express for the structural characteristics of the discourse, and sometimes even exces-
sively learning the low-level structure will cause the prediction error of the high-level
structure. In those long articles, multi-relationships (usually Joint relation) appear more
frequently, and this structure usually is labeled as 3 (Multi-Nucleus) in nuclearity, so it
is easier to capture the special structure by the label degeneracy.

DU1-2 P3 DU4-6 P7 DU8-10 P11

DU1-3

DU1-2 P3 DU4-6 P7 DU8-10 P11

DU7-10
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Fig. 4. High-level macro discourse structure of chtb_0112.
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Fig. 5. The performance of models in different length articles.
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It is worth noting that LD-CM has achieved the best performance in both long and
short article, reaching 72.81% and 82.25% respectively. Even LD-CMWP with slightly
lower performance is better than other models, reaching 72.64% and 82.06% accuracy
in long and short article respectively. This proves the effectiveness of our model.

5 Conclusions

In this paper, we propose a Label Degeneracy Combination Model (LD-CM) in rec-
ognizing macro discourse structure. We combine structural features with the semantic
and macro-information features to form a combination model, and use the label
degeneracy to find the solution of structure recognition in the solution space of
nuclearity recognition. In this way, the model can capture a more detailed feature
expression. The experimental results on MCDTB show that our LD-CM improves the
accuracy by 1.21%, compared with the benchmark system. In particular, we use the
post-editing to ensure generating a complete discourse structure tree automatically. In
the future work, we will focus on recognizing discourse nuclearity and relationship, and
eventually form an end-to-end macro discourse analyzer.
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Abstract. Word segmentation and part-of-speech tagging are two pre-
liminary but fundamental components of Chinese natural language pro-
cessing. With the upsurge of deep learning, end-to-end models are built
without handcrafted features. In this work, we model Chinese word seg-
mentation and part-of-speech tagging jointly on the basis of state-of-the-
art BiRNN-CRF architecture. LSTM is adopted as the basic recurrent
unit. Apart from utilizing pre-trained character embeddings and trigram
features, we incorporate neural language model and conduct multi-task
training. Highway layers are applied to tackle the discordance issue of
the naive co-training. Experimental results on CTB5, CTB7, and PPD
datasets show the effectiveness of the proposed method.

Keywords: Chinese word segmentation · POS tagging · LSTM
Language model

1 Introduction

Word segmentation and part-of-speech(POS) tagging are two preliminary but
fundamental components of Chinese natural language processing(NLP). Ng and
Low [18] demonstrate that word segmentation and POS tagging could be mod-
eled as a sequence labeling problem, in which target labels are the combinations
of segmentation boundaries and POS tags, namely the joint S&T. Based on tra-
ditional handcrafted features, researchers have done a lot of remarkable work
[8,10,30,33].

With the rapid development of the artificial neural network and deep learn-
ing, many neural models are applied to the joint S&T, reducing the efforts of
feature engineering and boosting the performance. Currently, character-based
BiRNN-CRF model achieves state-of-the-art performance on the Chinese joint
S&T [2,32], in which bidirectional recurrent neural network(BiRNN) is the main

c© Springer Nature Switzerland AG 2018
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backbone for sequence tagging, and conditional random fields(CRF) [11] on top
of BiRNN is used to gain the optimal tag sequence over the entire sentence.
Moreover, LSTM [7] and GRU [3] are often applied to capture long-term rela-
tionship. Unlike previous pipeline methods, in which segmentation is put at the
very first stage and then followed by POS tagging, the joint S&T model does
not suffer from error propagation problem and word segmentation could make
the most of information extracted from POS tagging to alleviate the ambigu-
ity problem. Therefore, the joint S&T model outperforms the pipeline model
significantly [2,24,33].

Recently, most researchers have focused on enriching the features of char-
acter embeddings [2,14,24,27,31]. However, given the complexity of neural net-
work(NN) models and limited resources of the labeled corpus, it could be insuf-
ficient to train complicated models with annotations alone. Actually, there is a
lot of semantic and syntactic knowledge that could be extracted from raw texts.
Consequently, some semi-supervised and multi-task methods are proposed to
improve sequence labeling performance [15,22,23].

In this paper, we extend the spirit of semi-supervising to the Chinese joint
S&T and go a few steps further. Basic BiRNN-CRF framework for sequence
labeling is adopted. We pre-train the Chinese character embeddings on large
raw texts with GloVe [21]. In addition, we utilize n-gram embeddings to enrich
the character features. More importantly, we propose to argument the current
Chinese joint S&T architecture with a neural language model. The intuition is
that it may be difficult for RNN to learn the proper representation as the hidden
state considering the large number of parameters. Thus, it could be beneficial to
add an extra but direct objective for the learning. The neural language model
is simple and requires no additional data or annotation. It could be used as a
training method and brings no extra computing cost during decoding.

To sum up, our contributions in this work are as follows:

1. Apply BiRNN-CRF model to the Chinese joint S&T and achieve state-of-the-
art performance.

2. Propose to argument the current Chinese joint S&T architecture with a neu-
ral language model, which helps RNN to learn the proper hidden state but
requires no additional data or annotation.

3. Conduct extensive experiments on three different datasets. Experimental
results show that our best model outperforms previous state-of-the-art
models.

2 LM Enhanced BiRNN-CRF Model

2.1 Overview of the Proposed Model

As visualized in Fig. 1, the proposed model is an adaptation of BiRNN-CRF
enhanced by a neural language model. For a Chinese sentence X = (c1, . . . , cn),
where ci is the i-th character, all characters are represented as vectors and
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BiRNN

Input sentence

Forward LSTM Unit

Backward LSTM Unit

Highway Unit

Concat

Forward LM

Backward LM

CRF Layer

E_N B_V E_VB_N Output TagsS_P

Fig. 1. LM Enhanced BiRNN-CRF Model Architecture

fed into BiRNN. LSTM is adopted as the basic recurrent unit. We employ the
dropout [25] strategy to the output of BiRNN and then feed it into the first-order
CRF layer. The sentence-level optimal tag sequence is predicted at the end. As
for the tagging scheme, following the work of Kruengkrai et al. [10], we employ B,
I, E, S as the word boundary tags, which represent a character at the beginning,
inside, end of a word or a single character word respectively. In addition, in order
to make the most of raw texts, output of BiRNN is also used as the input of a
neural language model, which predicts the previous or next character. Highway
layers are placed between output of BiRNN and target tasks to map the hidden
state to different semantic space.

2.2 Character Representations

Character representations is of wide interest in Chinese NLP. Sun et al. [27]
propose to enhance Chinese character embeddings with radical information, Li
et al. [13] develop two component-enhanced Chinese character embedding models
and their bigram extensions. Shao et al. [24] propose three different approaches
to effectively represent Chinese characters, namely the concatenated n-gram,
radicals and orthographical features as well as the pre-trained character embed-
dings. In order to keep the model as simple as possible, only pre-trained character
embeddings and n-gram embeddings are employed in this paper.

n-gram Embeddings. Although RNN is good at extracting contextual fea-
tures from context-free character representations, many researchers have shown
that traditional n-gram embeddings is beneficial for many NLP tasks [5,12,29].
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trigram 
embedding

Fig. 2. Trigram embedding of a Chinese character in a given context

n-gram embeddings employed in this paper is demonstrated in Fig. 2. In this
example, trigram embeddings of the pivot character in the given context is
the concatenation of the context-free vector representation of itself along with
the bigram as well as the trigram .

Pre-trained Character Embeddings. The context-free vector representa-
tions of single characters used above could be replaced by pre-trained charac-
ter embeddings trained from raw texts. In this paper, we pre-train character
embeddings on Wikipedia1 using GloVe [21]. This kind of pre-trained character
embeddings is used to initialize the very bottom input of our neural networks.
For those characters that are not in the embedding vocabulary, we randomly
initialize them.

2.3 Neural Language Model

Although the character embeddings described above could carry a lot of gen-
eral language knowledge, it is not task-specific, thus may contain a considerable
irrelevant portion and maybe not optimal for the Chinese joint S&T. More-
over, due to the large number of parameters, it may be difficult for BiRNN to
learn the proper hidden state. In order to address these problems, we propose to
incorporate a language model with the joint S&T model and conduct multi-task
learning.

As shown in Fig. 1, the language model and the S&T model share the same
BiRNN, which fits the setting of multi-task learning and transfer learning. How-
ever, these two tasks are apparently not strongly related, which means directly
using the output from the recurrent neural network layer could hurt the perfor-
mance of the joint S&T model. Thus, highway layer [26] is applied to further
transform the hidden state of RNN into different semantic space for different
objectives. The highway layer can be illustrated as follows:

H(X) = g(WHX + bH) � T (X) + X � C(X), (1)

1 https://dumps.wikimedia.org/.

https://dumps.wikimedia.org/
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where operator � indicates element-wise product, g(·) is a certain type of non-
linear transformation. T (·) represents the transform gate and C(·) is the carry
gate. In our experiments, C(·) = 1 − T (·) is adopted. Transform gate T (·) could
be formalized as:

T (X) = σ(WT × X + bT ) (2)

where WT and bT are both trainable parameters.
In order to extract language knowledge from both directions, we adopt two

language model, namely the forward language model(i.e., from left to right) and
the backward language model(i.e., from right to left), which makes predictions
for the next and previous character respectively. The forward language model is
defined as

Pf (c1, . . . , cn) =
N∏

i=1

Pf (ci|c1, . . . , ci−1) (3)

where Pf (ci|c1, . . . , ci−1) is computed by the neural network with the following
formula

Pf (ci|c0, . . . , ci−1) =
exp(wT

cifi−1)∑
ĉj

exp(wT
ĉj

fi−1)
(4)

where wci is the weight vector for predicting character ci, fi−1 is output of
corresponding highway unit. Consequently, the average negative log probability
of the target words is applied as the object function of the forward language
model:

JF−LM = − 1
N

∑

i

log Pf (ci) (5)

Accordingly, the backward language model is defined as

Pb(c1, . . . , cn) =
N∏

i=1

Pb(ci|ci+1, . . . , cN ) (6)

where Pb(ci|ci+1, . . . , cN ) =
exp(wT

ci
bi)

∑
ĉj

exp(wT
ĉj

bi)
. And the loss function is calculated as

JB−LM = − 1
N

∑

i

log Pb(ci) (7)

With Eqs. 5 and 7, the overall objective function of our language model could
be written as

JLM = JF−LM + JB−LM (8)

2.4 CRF

Since we model the joint S&T as a sequence labeling task, it is beneficial to
consider the correlations between labels in the neighborhood and jointly decode
the optimal label sequence for a given input sentence. Therefore, we build a
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CRF layer upon the BiRNN to decode each label jointly instead of independently.
Formally, we use z = (z1, . . . , zn) to represent the BiRNN output(transformed by
highway layer and concatenated with both directions) for an input sentence x =
(c1, . . . , cn). y(z) = (y1, . . . , yn) is the corresponding label sequence for z. The
probabilistic model of CRF describes the conditional probability of generating
the whole label sequence y given z. Similar to Ma and Hovy [16], we define this
probability with the following form:

p(y|z;W, b) =

n∏
i=1

ψi(yi−1, yi, z)

∑
y′∈Y (z)

n∏
i=1

ψi(y′
i−1, y

′
i, z)

(9)

where ψi(y′, y, z) = exp(WT
y′,yzi + by′,y) are potential functions, and WT

y′,y and
by′,y are the weight vector and bias corresponding to label pair (y′, y), respec-
tively.

In the training phase, the maximum conditional likelihood is applied, i.e.,
minimize the negative log-likelihood as follows:

JCRF = −
∑

i

log p(yi|zi) (10)

In the testing or decoding phase, our target is to search for the optimal label
sequence y∗ with the maximum conditional probability:

y∗ = argmax
y∈Y (z)

p(y|z;W, b) (11)

In this paper, we employ first-order CRF layer; the Viterbi algorithm can solve
the training and decoding in an efficient way.

2.5 Multi-task Learning

With Eqs. 8 and 10, our multi-task loss function could be written as

J = JCRF + λJLM (12)

where λ is a weight parameter to make a balance between the language model
and the joint S&T model.

3 Experiments

We conduct our experiments on three different datasets: Chinese Treebank
5.1(CTB5), Chinese Treebank 7.0(CTB7), as well as PKU’s People’s Daily
(PPD). Table 1 summarizes the brief statistics of these corpora in terms of sen-
tence number and word number. CTB5 is split according to [8], CTB7 is split
according to [30], and PPD datasets are from the Fourth International Chinese
Language Processing Bakeoff [9]. We apply the standard F1-score to evaluate
both the word segmentation and the joint S&T performance.
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Table 1. Datasets’ statistics

Datasets Splits Num of sentences Num of words

CTB5 Train 18,086 494 k

Dev 350 6.8 k

Test 348 8.0 k

CTB7 Train 31,088 718 k

Dev 10,036 237 k

Test 10,291 245 k

PPD Train 66,691 1.1 M

Test 6,424 160 K

Table 2. Hyper-parameters.

Char. embedding size 64

LSTM state size 200

LSTM depth 1

Highway depth 1

Optimiser Adagrad

Initial learning rate 0.1

Decay rate 0.05

Gradient clipping 5.0

Dropout rate 0.5

Batch size 20

3.1 Implementation

We implement our model based on the TensorFlow library [1]. Bucket strategy
is adopted in our word, namely grouping the sentences of similar length into the
same bucket and pad them to the equivalent length accordingly. Each bucket
has their own computational graph.

The hyper-parameters adopted in this paper is shown in Table 2. We use
the same hyper-parameters for all the experiments on different datasets without
further fine-tuning. The weights of the neural networks are initialized as Glorot
and Bengio [6]. We use the error back propagation algorithm to train the net-
work. Mini-batch stochastic gradient descent with momentum is employed for
optimization [4]. We apply dropout in our model, and the dropout rate is fixed
at 0.5. Gradient clipping [19] of 5.0 is used for model stability.

3.2 Component Effects

In order to find out the effects of each component of our neural network archi-
tecture, we run some ablation experiments, and the results are shown in Table 3.
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Table 3. Effects of each component on test sets of CTB5, CTB7, PDD datasets.

Models CTB5 CTB7 PPD

P R F P R F P R F

BiLSTM-CRF 91.23 91.08 91.15 89.44 88.46 88.95 89.12 89.21 89.16

+ pre-trained embeddings 92.43 92.03 92.23 89.74 89.16 89.45 89.52 89.74 89.63

+ trigram embeddings 93.16 92.88 93.02 90.32 90.14 90.23 90.11 90.03 90.07

+ language model 93.04 92.92 92.98 90.82 90.04 90.43 89.93 89.89 89.91

+ highway layer 94.83 94.25 94.54 91.65 90.38 91.01 91.76 90.39 91.07

Table 4. Comparisons with previous models on test sets in word segmentation and
joint S&T F1-scores.

Models CTB5 CTB7 PPD

Seg Seg&Tag Seg Seg&Tag Seg Seg&Tag

ZPar 97.69 93.79 94.59 89.71 94.62 89.94

Shap et al. [24] 97.98 94.06 95.37 90.54 94.95 90.76

Ours 98.72 94.88 95.74 91.24 95.45 91.32

The base model is BiRNN-CRF, in which character embeddings are randomly
initialized. Pre-trained embeddings, n-gram embeddings, neural language model,
and highway layer are incrementally incorporated into the base model.

Pre-trained Embeddings and Trigram Embeddings. From Table 3, we
could learn that employing the pre-trained embeddings as initial vector repre-
sentations for characters achieves improvements on all three datasets. Intuitively,
the pre-trained character embeddings give a more reasonable initialization for
NN. Further improvement is obtained by adding trigram embeddings, which
reveals rich local information could be encoded in n-gram with a statistical co-
occurrence way.

Language Model and Highway Layer. The third and fourth row of Table 3
elucidate the effects of the neural language model and the highway layer. As
the third row shown, incorporating language model but without highway layer
yields a little or no performance improvement. We conjecture the reason for this
is that the joint S&T model and the language model are not strongly related so
that they could not get benefits easily from each other. However, by employing
highway layer, we get notable improvements. From these results, we could see
that the language model is able to capture task-specific language knowledge, and
the highway layer plays an important role in mediating the joint S&T model and
the language model. In general, we incorporate all the essential components: pre-
trained embeddings, trigram embeddings, neural language model, and highway
layer into the basic BiRNN-CRF as our final model.
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Table 5. Comparisons with [2] on test sets in joint S&T Precision, Recall and F1-
scores.

Models CTB5 CTB7 PPD

P R F P R F P R F

Chen et al. [2] 92.88 93.49 93.19 84.40 86.25 85.31 90.27 90.05 90.16

Ours 94.28 95.48 94.88 85.51 89.04 87.24 92.03 90.62 91.32

3.3 Performance Comparison

In this section, we focus on comparisons between the proposed model and previ-
ous state-of-the-art models. Ensemble decoding of three models trained indepen-
dently is employed to get the best performance. Experimental results are shown
in Table 4.

We first compare our model with ZPar [34], which is one of the most preva-
lent joint tagger using structured perceptron and beam decoding. We retrain a
ZPar model and reproduce the performance reported in the original paper on
CTB5. Then we train and evaluate ZPar on CTB7 and PPD respectively. As
shown in Table 4, our model outperforms ZPar on all the three datasets. The-
oretically, ZPar utilizes discrete local information at both character and word
levels and employs structured perceptron for global optimization [32], while we
employ BiRNN to model complex features and capture long-term dependencies.
The CRF layer is applied on top of BiRNN for sentence level optimization. More-
over, we propose to incorporate a neural language model to conduct co-training
to extract task-specific language knowledge from the raw text. We further employ
highway layer to unify the joint S&T model and the language model. In con-
trast to the traditional methods, our model need no feature engineering or data
preprocessing and benefits from large raw texts.

Recently, Shao et al. [24] propose several vector representations of Chinese
characters to improve the joint S&T performance. We retrain their model on
CTB5 using the best setting reported in their paper and reproduce their eval-
uation scores. We also retrain and evaluate their model on PDD and CTB7 for
comparison. As shown in Table 4, besides without any feature engineering our
model still outperforms theirs.

In Table 5, we compare our model with Chen et al. [2] in terms of the joint
S&T F1 score. Chen et al. [2] introduce the convolution layer into the Chinese
joint S&T and use different filters to model the complex compositional features
of Chinese characters. We take the performance scores from their paper directly.
Notably, they split the CTB7 dataset in a different way to estimate the model
robustness. Following their setting, we also test our model on web blogs and train
it on the rest of dataset. As shown in Table 5, our model outperforms theirs by
a relatively large margin.
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4 Related Work

As two of the most fundamental tasks in Chinese NLP, word segmentation and
POS tagging have been studied for decades. Traditional methods like CRFs,
HMMs, and maximum entropy classifiers [17,20,28] focused on feature engineer-
ing to create powerful handcrafted features for each specific task, which means
that it is difficult to apply them to new tasks or domains. Recently, with the
upsurge of deep learning, we have gotten rid of feature engineering but build end-
to-end models. Meanwhile, CRF layer has also been demonstrated to be effective
in capturing the dependency among labels and is widely used as the tag inference
layer for sequence labeling tasks. Our model is built upon the success of BiRNN-
CRF model and is further extended to better capture the character information
for the Chinese S&T with a co-training neural language model.

Recently, Shao et al. [24] propose a character-based joint S&T model for
Chinese using BiRNN-CRF. They mainly focus on enrich the character embed-
dings such as extracting radicals and orthographical features with convolutional
neural networks(CNN), whereas we propose to enhance the current BiRNN-CRF
model with a neural language model in a multi-task learning way. Peters et al.
[22] propose to enrich word embeddings with pre-trained language model and
obtain notable performance improvement. But this method requires expensive
resources and time. Liu et al. [15] and Rei [23] both propose to empower sequence
labeling with semi-supervised language model. We extend this spirit and modi-
fied the model architecture to make it applicable for the Chinese S&T.

5 Conclusion

In this paper, we model the Chinese S&T jointly as a fully character-based
sequence labeling task. BiRNN-CRF is adopted and LSTM is used as the basic
recurrent unit. In order to effectively extract language knowledge from the
unstructured corpus, in addition to utilizing pre-trained character embeddings
and trigram embeddings, we propose to incorporate neural language model and
conduct multi-task training to help RNN learn the proper hidden state. High-
way layers are applied to overcome the discordance issue of the naive co-training.
Our model is extensively evaluated on CTB5, CTB7, and PPD datasets. The
experimental results on the test sets show that the proposed model outperforms
ZPar and other state-of-the-art models.

Acknowledgement. This research work has been funded by the National Natural
Science Foundation of China (Grant No.61772337, U1736207 and 61472248), the SJTU-
Shanghai Songheng Content Analysis Joint Lab, and program of Shanghai Technology
Research Leader (Grant No.16XD1424400).



Neural Language Model Enhanced BiRNN-CRF 115

References

1. Abadi, M. et al.: Tensorflow: a system for large-scale machine learning. In: Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI 2016, pp. 265–283. USENIX Association, Berkeley (2016)

2. Chen, X., Qiu, X., Huang, X.: A long dependency aware deep architecture for joint
Chinese word segmentation and POS tagging. CoRR abs/1611.05384 (2016)
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Abstract. This paper introduces the Alibaba NLP team’s system for
NLPCC 2018 shared task of Chinese Grammatical Error Correction
(GEC). Chinese as a Second Language (CSL) learners can use this sys-
tem to correct grammatical errors in texts they wrote. We proposed a
method to combine statistical and neural models for the GEC task. This
method consists of two modules: the correction module and the com-
bination module. In the correction module, two statistical models and
one neural model generate correction candidates for each input sentence.
Those two statistical models are a rule-based model and a statistical
machine translation (SMT)-based model. The neural model is a neural
machine translation (NMT)-based model. In the combination module,
we implemented it in a hierarchical manner. We first combined models
at a lower level, which means we trained several models with different
configurations and combined them. Then we combined those two statis-
tical models and a neural model at the higher level. Our system reached
the second place on the leaderboard released by the official.

Keywords: Grammatical Error Correction · Combination
Statistical machine translation · Neural machine translation

1 Introduction

With the economy booming, China becomes more and more attractive to for-
eign businesses, students, and travelers, and learning Chinese is becoming more
and more popular. The number of CSL learners grows up rapidly, but learning
Chinese would not be easy for them, because Chinese is quite different from
other languages, especially from English. For example, in Chinese, questions are
conveyed by intonation and the subject and verb are not inverted as in English.
Nouns cannot be post-modified as in English, and adverbials usually precede
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verbs, unlike in English where complex rules govern the position of such sen-
tence elements. It has quite flexible expressions and loose structural grammar.
These traits bring a lot of trouble to CSL learners, leading to the rapid growth
of the demands for Chinese GEC.

GEC for English has been studied for many years, with many shared tasks
such as CoNLL-2013 [24] and CoNLL-2014 [23], while those kinds of studies on
Chinese are less yet. This NLPCC shared task gives researchers an opportunity
to build systems and exchange opinions, which can promote progress in this
field. Another important contribution of this shared task is that it released a
huge dataset for Chinese GEC. The details of this dataset will be described in
Sect. 3. This shared task could make the community more flourish which benefits
all CSL learners.

This paper is organized as follows: Sect. 2 describes some related works in
English as well as Chinese GEC task. Dataset will be described in Sect. 3.
Section 4 illustrates our system and explains two modules of it, including three
models. The evaluation and discussion of the combination of statistical and neu-
ral models are shown in Sect. 5. Section 6 concludes the paper and discusses the
future work.

2 Related Work

2.1 English GEC

Earlier methods for English GEC mainly use rule-based approaches [4,13] and
classifier-based models [11,25,30], which can correct limited and specific type of
errors. To address more complex errors, Machine Translation (MT) models are
proposed and developed by many researchers. Statistical Machine Translation
(SMT) has been dominant for a long time. In the work of Brockett et al. [2],
they propose an SMT GEC model.

Since 2013, the GEC shared tasks in CoNLL2013 [24] and CoNLL2014 [23]
boost this field, with a great many approaches developed. A POS-factored SMT
system is proposed [34] to correct five types of errors in the text. In the work of
Felice et al. [8], they propose a pipeline of the rule-based system and a phrase-
based SMT system augmented by a web-based language model. The word-level
Levenshtein distance between source and target is used as a translation model
feature [15] to enhance the model.

Nevertheless, Neural Machine Translation (NMT) systems have achieved sub-
stantial improvements in this field [1,29]. Inspired by this phenomenon, Sun et al.
[27] utilize the Convolutional Neural Network (CNN) for the article error correc-
tion. The Recurrent Neural Network (RNN) is also used [33] to map the sentence
from learner space to expert space.

2.2 Chinese GEC

A great number of resources including annotated corpus are available in English
GEC. However, the resource for Chinese is much less, and previous works related to
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Chinese GEC is relatively scarce. The NLPTEA CGED shared task [9,16,17,32]
boosts the Chinese Grammatical Error Diagnosis (GED) field greatly, and most
works in Chinese GEC focus on the detection of errors instead of correction.

A probabilistic first-order inductive learning algorithm [5] outperforms many
basic classifiers for error classification. In 2014, Lee et al. propose a judgment
system at sentence level [18] combining N-gram statistical features and prede-
fined rules. Several methods including CRF and SVM, together with frequency
learning from a large N-gram corpus are used to detect and correct word order-
ing errors [7]. The work of Chang et al. [6] utilizes rules manually constructed
as well as automatically generated. In the work of NTOU [19] they propose a
traditional supervised model, which extracts word N-grams and POS N-grams
as features. Rule-based methods and n-gram statistical methods are combined
[31] to get a hybrid system for the CGED shared task.

3 Dataset Description

The dataset is provided by the NLPCC 2018 GEC shared task. The training data
is collected from Lang-8 and each input sentence may have zero to k different
corrections. The test data is texts written by foreign students and carefully
corrected by professors. Both the training data and the test data are collated
into the same form.

Each instance in the training data is in the form of [so, k, C], where so is the
original sentence written by CSL learners, k denotes the number of correction
candidates written by native speakers for so, and C is the set which contains k
correction candidates as {c1, c2, ..., ck}. After thresholding invalid lines whose k is
0, and filtering 216 lines whose k > 0 but C is empty, we got 593,524 valid lines.
For each line of the data, we had two options of generating training instances. The
first choice is to only use the candidate which has the minimal edit distance from
the original sentence. In this method, for an original sentence so, we form a train-
ing instance (so, ci) where 1 < i < k and ci = arg minci EditDistance(ci, so).
We denote the training set generated by this method as ‘NLPCC MinEd’, which
contains 593,524 data pairs. Another choice is to use all the candidates in C.
For an original sentence so, we make pairs of the original sentence and each of
the candidates to form a training set as {(so, c1), (so, c2), ..., (so, ck)}. We denote
the training set generated by this method as ‘NLPCC Expand’, which contains
1,097,189 data pairs. This dataset is much larger than previous datasets released
for the Chinese GEC field.

4 System Description

Our system combined statistical models as well as neural models, including the
correction module and the hierarchical combination module. The pipeline is
shown in Fig. 1.
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Fig. 1. Pipeline of our system with two modules

4.1 Correction Module

In the correction module, we used both statistical models and neural models with
different configurations for the GEC task. The statistical models include the rule-
based GEC model and SMT-based GEC models with different configurations.
The neural models consist of several NMT-based GEC models with different
structures.

Rule-Based GEC Model. The rule-based model starts by segmenting Chinese
characters into chunks, which incorporates useful prior grammatical information
to identify possible out-of-vocabulary errors. The segments are looked up in the
dictionary built by Gigawords [10], and if a segment is out of vocabulary, it will
go through the following steps:

1. If the segment consists of two or more characters, and turns out to be in the
dictionary by permuting the characters, it will be added to the candidate list.

2. If the concatenation with a previous or next segment is in the dictionary, it
will be added to the candidate list.

3. All possible keys in the dictionary with the same or similar Pinyin (the
Romanization system for Standard Chinese) or similar strokes to the seg-
ment are generated. The generated keys for the segment itself, concatenated
with those of previous or next segments, will be added to the candidate list
of possible corrections.

After the steps, a candidate list of all possible corrections will be processed to
identify whether there might be out-of-vocabulary error and its probability using
a language model. The negative log likelihood of a size-5 sliding window suggests
whether the top-scored candidate should be a correction of the original segment.
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SMT-based GEC Model. The SMT GEC model consists of two components.
One is a language model, which assigns a probability p(e) for any target sentence
e, and the other one is a translation model, which assigns a conditional proba-
bility p(f |e). The language model is learned from a monolingual corpus of the
target language, while the parameters of the translation model are calculated
from the parallel corpus. We used the noisy channel model [3] to combine the
language model and the translation model, and incorporated beam search to
decode the result.

To explore the ability of SMT GEC models with different configurations, we
trained two SMT GEC models with different data granularity as described in
Sect. 5.1, including a char-level model Schar and a word-level model Sword. The
correction result of sentence si generated by Sm was denoted as CiSm

where
m ∈ {char, word}.

NMT-based GEC Model. We used the encoder-decoder structure [1] with the
general attention mechanism [20]. The NMT GEC model can capture complex
relationships between the original sentence and the corrected sentence in GEC.
We used a two-layer LSTM model for both encoder and decoder. To enhance the
ability of NMT GEC models, we trained four NMT GEC models with different
data pairs and configurations as described in Sect. 5.1. Those four NMT models
were denoted as Nj , where j ∈ {1, 2, 3, 4} was the model index. The correction
result of sentence si generated by Nj was denoted as CiNj

.
We used the character-based NMT because most characters in Chinese have

their own meanings, which is quite different from English characters, and the
Chinese word’s meaning often depends on the meaning of its characters. On the
other hand, the errors in original sentences can make the word-based tokenization
worse, which will introduce larger and lower quality vocabulary list.

4.2 Combination Module

We performed a hierarchical combination of the correction candidates generated
by models in the correction module. The hierarchical combination was composed
of a low-level combination and a high-level combination. The low-level combina-
tion was used within each category of models, such as combining two SMT GEC
models, combining four NMT GEC models, and so on. The high-level combina-
tion aimed to combine the candidates generated by the low-level combination,
which means that it merged statistical and neural models.

One of the most significant problems in combination is to solve conflicts.
The conflict means that when we want to merge several models, a sentence
has different candidates from two or more models. For the conflict between two
models, we designed five methods to solve the conflict, denoted as Mt where
t ∈ {0, 1, 2, 3, 4}. M0 is the simplest method to solve conflicts, which picked one
side as the prior side, and then always chose the candidate in the prior side if
conflicts occur. M1 took the union operation on editing sets of two models if
conflict occurred. Here the editing set is generated by the difference between
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the original sentence and the corresponding candidate sentence. Because the
editing set is not unique between two sentences, we chose to use the editing
set which could minimize the editing distance between two sentences. M2 took
the intersection operation on editing sets of two models if the conflict occurred.
M3 and M4 both used the language model to assess the quality of candidate
sentences. The language model was implemented by KenLM [12] to score each
of the candidates and picked up the one with the higher score. The only difference
is that M4 used the length of the sentence to normalize the score, which means
we divided the score by the length of the candidate sentence.

Low-Level Combination. For the two SMT GEC models Schar and Sword, we
used M3 to solve the conflict. For the four NMT GEC models, we first picked up
two models, because incorporating too many models would confuse the model
and provide many wrong candidates. Then we used those Mt where t ∈ {1, 2, 3, 4}
methods to solve conflicts between two models. We ranked those four models by
the score on the development dataset split from the training dataset. Then we
explored the combination of those four models with method M0, and the order
of combination is decided by the ranking order. For example, if model N3 ranked
prior to N1, it will be used as higher priority during combination, which means
that if a sentence si has different candidates in CiN3 and CiN1 , we picked up
CiN3 as the final result. Following this rule, we found that N3 combined with
N4 with M0 performed best, so we used this combination as the backbone, and
tested Mt where t ∈ {1, 2, 3, 4} on this combination. The detailed experimental
results of the combination can be found in Sect. 5.2.

High-Level Combination. After the low-level combination, for each original
sentence si, we had three candidates {CiR, CiS , CiN} generated by rule-based
model, SMT GEC model, and NMT GEC model separately. We performed high-
level combination on these candidates. If there were only two candidates which
conflicted with each other, we could still use the method described as Mt where
t ∈ {0, 1, 2, 3, 4}, but when all three candidates conflicted at the same time,
we expanded the method Mt to fit three candidates, Those operations in Mt

such as union and intersection could be easily expanded. We also designed a
protection mechanism for the high-level combination according to the degree
of agreement of three GEC models. If those three candidates of GEC models
conflicted a lot, we assumed none of them is right and protected the sentence to
keep it untouched. According to the sensitivity of the trigger of the protection
mechanism, we designed two degrees of protection denoted as P1 and P2. The
detailed experimental results of the combination can be found in Sect. 5.2.

5 Evaluation and Discussion

5.1 Experimental Settings

We randomly picked 10% of the training dataset as the development dataset, on
which we tested our models and chose the combination method according to the
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scores. Because the official scorer was not released during the contest, we used
the script written by ourselves to score the result on the development dataset.
Firstly we converted the candidate to the editing set in the form of ‘m2’, which
contains the editing steps between the original sentence and the candidate. Then
we also converted the ground truth correction sentence to the ‘m2’ form. For all
the valid editing sets we chose the one which minimized the editing distance.

For the SMT GEC model, we used different data granularities. Schar was
trained on char-level data and Sword was trained on word-level data. Because
most characters in Chinese have their own meanings, so it is reasonable to train
a char-level SMT GEC model. We simply split every char by space to get the
char-level data, and we used the Jieba [28] segmentation tool to split the word
in a sentence by space to produce the word-level data.

For the NMT GEC model, we used the pre-trained embedding in different
parts of the model. The first choice was to use it for the whole model, which forced
the model to learn a proper embedding by itself. Considering the dataset is not
large enough for the model to learn the embedding from scratch, we also tested
the pre-trained embedding used for both encoder and decoder parts. But the
embedding was trained on the Gigaword [10], which was quite different from the
sentences written by CFL learners, so we also used the pre-trained embedding
only in the decoder part. The configurations of our four different NMT GEC
models Nj , j ∈ {1, 2, 3, 4} are shown in Table 1. For the ‘Network’ column, the
‘BiLSTM’ means bi-directional LSTM [26].

5.2 Experimental Results

As described in Sect. 4.2, we used our own scorer during the contest, and used the
scorer tool released by NLPCC to assess the performance again after the contest.
It is worth to mention that the official scorer was released after the contest, so we
chose the model combination based on the unofficial scorer written by ourselves.
Because the official document released before contest used the F1 score as the
evaluation example, we calculated the F1 score in our unofficial scorer instead
of F0.5 score. According to the evaluation of the single model performance of
four NMT GEC models by our unofficial scorer, we ranked those models as
N3 > N4 > N1 > N2, which determined the order of combination of NMT GEC
models in Table 2. In Tables 2 and 3, the ‘Precision’, ‘Recall’, and ‘F0.5 (official)’
columns are calculated by the official scorer, and the ‘F1 (unofficial)’ column is
generated by our own scorer.

Table 1. Configurations of four NMT models

Model Network Embed Dataset

N1 LSTM No Pre-trained Embedding NLPCC MinEd

N2 BiLSTM Pre-trained Embedding for Encoder and Decoder NLPCC MinEd

N3 BiLSTM Pre-trained Embedding for Encoder and Decoder NLPCC Expand

N4 BiLSTM Pre-trained Embedding Only for Decoder NLPCC Expand
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According to the results shown in Table 2, we chose Schar + Sword for the
SMT GEC model, and N3 + N4 with M3 for the NMT GEC model. For a
specific sentence si, with the candidate CiR generated by the rule-based model,
the combination candidates CiS and CiN generated by the low-level combination
of SMT and NMT GEC models separately, we used the high-level combination
to generate the final result. According to Table 3, we first explored the influence
of different Mi on combining three candidates, and chose the best one to add
protection mechanism on it. Because we used the unofficial scorer during the
contest, we chose M2 as the conflict solving method and add P2 protection as
our final submission.

Table 2. Low-level Combination

Model Solve conflict Precision Recall F0.5 (official) F1 (unofficial)

Schar None 0.2096 0.0758 0.1549 0.1366

Sword None 0.2107 0.0597 0.1399 0.1090

Schar + Sword M3 0.2376 0.0928 0.1811 0.1462

N3 M0 0.362 0.0996 0.2371 0.1166

N3 + N4 M0 0.3453 0.1196 0.2507 0.1260

N3 + N4 + N1 + N2 M0 0.3187 0.1292 0.2464 0.1152

N3 + N4 M1 0.3363 0.1283 0.2540 0.1266

N3 + N4 M2 0.3433 0.1130 0.2439 0.1259

N3 + N4 M3 0.3485 0.1241 0.2559 0.1318

N3 + N4 M4 0.3493 0.1238 0.2561 0.1304

Table 3. High-level combination

Model Solve conflict Precision Recall F0.5 (official) F1 (unofficial)

R + S + N M0 0.3321 0.1714 0.2797 0.2731

R + S + N M1 0.3145 0.1969 0.2809 0.2342

R + S + N M2 0.3397 0.1664 0.2811 0.2786

R + S + N M3 0.3382 0.1782 0.2867 0.2370

R + S + N M4 0.336 0.1781 0.2854 0.2573

R + S + N M2 + P1 0.3528 0.1622 0.2856 0.2853

R + S + N M2 + P2 0.4100 0.1375 0.2936 0.3371

5.3 Case Analysis

We picked up some cases from the test dataset to illustrate the strengths and
weaknesses of models in different categories.

As shown in Table 4, different models focus on different types of errors, so it is
necessary to combine candidates generated by different models. The rule-based
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model is good at correcting errors which share similar intonation or font with
the original character, such as to (similar intonation), to
(similar font) and so on. The rule-based model can also solve a more complicated
situation defined as character-order problem in a word, for example, correct to

(change the order of characters). The SMT GEC model can also cope with
some error-writing characters if they appear frequently in the training corpus.
However, the most useful field of this model is to deal with errors which need
adding or deleting a character, such as to and so on. The NMT
GEC model is good at correcting some complex errors, which need change the
whole word with several characters, or reorder and add characters at the same
time. For example, it can correct to , and to ,
and so on, which to some extent ‘understand’ the collocation of characters.

As shown in Table 5, there still exists many limitations for those GEC models.
The rule-based model would accidentally hurt some correct words if the statisti-
cal threshold is not set properly, such as to . Although the SMT GEC

Table 4. The cases which can be corrected by our GEC models

Table 5. The cases which cannot be corrected by our GEC models
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model can deal with errors about adding or deleting a character, it sometimes
would add or delete wrong characters, such as add and delete The NMT
GEC model sometimes would direct throw away a part of the sentence if it is
too difficult to correct, as the part in the table.

6 Conclusion and Future Work

In this paper, we proposed a system for the GEC task, which combined statis-
tical and neural models. This method consisted of two modules: the correction
module and the combination module. In the correction module, two statistical
models, including a rule-based model and an SMT GEC model, and an NMT
GEC model generated correction candidates for each input sentence. In the com-
bination module, we implemented it in a hierarchical manner. In the low-level
combination, we combined models with different configurations within the same
category. Then, in the high-level combination, we combined candidates of two
statistical models and the neural model generated in the low-level combination.
Our system reached the second place on the leaderboard released by the official.

In the future, we will further explore the strengths as well as limitations of
three GEC models and combination methods in our system. We will focus on
improving the ‘Recall’ metric of our system.
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Abstract. Natural Language Inference (NLI) is a fundamental and chal-
lenging task in Natural Language Processing (NLP). Most existing meth-
ods only apply one-pass inference process on a mixed matching feature,
which is a concatenation of different matching features between a premise
and a hypothesis. In this paper, we propose a new model called Multi-
turn Inference Matching Network (MIMN) to perform multi-turn infer-
ence on different matching features. In each turn, the model focuses on
one particular matching feature instead of the mixed matching feature.
To enhance the interaction between different matching features, a mem-
ory component is employed to store the history inference information.
The inference of each turn is performed on the current matching fea-
ture and the memory. We conduct experiments on three different NLI
datasets. The experimental results show that our model outperforms or
achieves the state-of-the-art performance on all the three datasets.

Keywords: Natural Language Inference · Multi-turn inference
Memory mechanism

1 Introduction

Natural Language Inference (NLI) is a crucial subtopic in Natural Language
Processing (NLP). Most studies treat NLI as a classification problem, aiming
at recognizing the relation types of hypothesis-premise sentence pairs, usually
including “Entailment”, “Contradiction” and “Neutral”.

NLI is also called Recognizing Textual Entailment (RTE) [7] in earlier works
and a lot of statistical-based [9] and rule-based approaches [19] are proposed
to solve the problem. In 2015, Bowman released the SNLI corpus [3] that pro-
vides more than 570 K hypothesis-premise sentence pairs. The large-scale data
of SNLI allows a Neural Network (NN) based model to perform on the NLI.
Since then, a variety of NN based models have been proposed, most of which
can be divided into two kinds of frameworks. The first one is based on “Sia-
mense” network [3,22]. It first applies either Recurrent Neural Network (RNN)
or Convolutional Neural Networks (CNN) to generates sentence representations
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 131–143, 2018.
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on both premise and hypothesis, and then concatenate them for the final clas-
sification. The second one is called “matching-aggregation” network [33,36]. It
matches two sentences at word level, and then aggregates the matching results
to generate a fixed vector for prediction. Matching is implemented by several
functions based on element-wise operations [25,34]. Studies on SNLI show that
the second one performs better.

Though the second framework has made considerable success on the NLI
task, there are still some limitations. First, the inference on the mixed matching
feature only adopts one-pass process, which means some detailed information
would not be retrieved once missing. While the multi-turn inference can overcome
this deficiency and make better use of these matching features. Second, the mixed
matching feature only concatenates different matching features as the input for
aggregation. It lacks interaction among various matching features. Furthermore,
it treats all the matching features equally and cannot assign different importance
to different matching features.

In this paper, we propose the MIMN model to tackle these limitations. Our
model uses the matching features described in [5,33]. However, we do not simply
concatenate the features but introduce a multi-turn inference mechanism to infer
different matching features with a memory component iteratively. The merits of
MIMN are as follows:

• MIMN first matches two sentences from various perspectives to generate
different matching features and then aggregates these matching features by
multi-turn inference mechanism. During the multi-turn inference, each turn
focuses on one particular matching feature, which helps the model extract
the matching information adequately.

• MIMN establishes the contact between the current and previous matching fea-
tures through memory component. The memory component store the infer-
ence message of the previous turn. In this way, the inference information
flows.

We conduct experiments on three NLI datasets: SNLI [3], SCITAIL [12] and
MPE [14]. On the SNLI dataset, our single model achieves 88.3% in accuracy
and our ensemble model achieves 89.3% in terms of accuracy, which are both
comparable with the state-of-the-art results. Furthermore, our MIMN model
outperforms all previous works on both SCITAIL and MPE dataset. Especially,
the model gains substantial (8.9%) improvement on MPE dataset which contains
multiple premises. This result shows our model is expert in aggregating the
information of multiple premises.

2 Related Work

Early work on the NLI task mainly uses conventional statistical methods on
small-scale datasets [7,20]. Recently, the neural models on NLI are based
on large-scale datasets and can be categorized into two central frameworks:
(i) Siamense-based framework which focuses on building sentence embeddings
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separately and integrates the two sentence representations to make the final
prediction [4,17,22–24,29,32]; (ii) “matching-aggregation” framework which
uses various matching methods to get the interactive space of two input sen-
tences and then aggregates the matching results to dig for deep information
[8,10,15,16,21,25,27,28,32,36,38].

Our model is directly motivated by the approaches proposed by [5,34]. [34]
introduces the “matching-aggregation” framework to compare representations
between words and then aggregate their matching results for final decision.

[5] enhances the comparing approaches by adding element-wise subtraction
and element-wise multiplication, which further improve the performance on
SNLI. The previous work shows that matching layer is an essential component of
this framework and different matching methods can affect the final classification
result.

Various attention-based memory neural networks [37] have been explored to
solve the NLI problem [6,15,23]. [15] presents a model of deep fusion LSTMs
(DF-LSTMs) (Long Short-Term Memory) which utilizes a strong interaction
between text pairs in a recursive matching memory. [6] uses a memory network
to extend the LSTM architecture. [23] employs a variable sized memory model
to enrich the LSTM-based input encoding information. However, all the above
models are not specially designed for NLI and they all focus on input sentence
encoding.

Inspired by the previous work, we propose the MIMN model. We iteratively
update memory by feeding in different sequence matching features. We are the
first to apply memory mechanism to matching component for the NLI task. Our
experiment results on several datasets show that our MIMN model is significantly
better than the previous models.

3 Model

In this section, we describe our MIMN model, which consists of the following five
major components: encoding layer, attention layer, matching layer, multi-turn
inference layer and output layer. Figure 1 shows the architecture of our MIMN
model.

We represent each example of the NLI task as a triple (p, q, y), where
p = [p1, p2, · · · , plp ] is a given premise, q = [q1, q2, · · · , qlq ] is a given hypothesis,
pi and qj ∈ R

r are word embeddings of r-dimension. The true label y ∈ Y indi-
cates the logical relationship between the premise p and the hypothesis q, where
Y = {neutral, entailment, contradiction}. Our model aims to compute the con-
ditional probability Pr(y|p, q) and predict the label for examples in testing data
set by y∗ = argmaxy∈YPr(y|p, q).

3.1 Encoding Layer

In this paper, we utilize a bidirectional LSTM (BiLSTM) [11] as our encoder to
transform the word embeddings of premise and hypothesis to context vectors.
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Fig. 1. Architecture of MIMN Model. The matching layer outputs a matching sequence
by matching the context vectors with the aligned vectors (green and blue) based on
three matching functions. The multi-turn inference layer generates inference vectors by
aggregating the matching sequence over multi-turns. (Color figure online)

The premise and the hypothesis share the same weights of BiLSTM.

p̄i = BiLSTMenc(p, i), i ∈ [1, 2, · · · , lp] (1)
q̄j = BiLSTMenc(q, j), j ∈ [1, 2, · · · , lq] (2)

where the context vectors p̄i and q̄j are the concatenation of the forward and
backward hidden outputs of BiLSTM respectively. The outputs of the encoding
layer are the context vectors p ∈ R

lp×2d and q ∈ R
lq×2d, where d is the number

of hidden units of BiLSTMenc.

3.2 Attention Layer

On the NLI task, the relevant contexts between the premise and the hypothesis
are important clues for final classification. The relevant contexts can be acquired
by a soft-attention mechanism [2,18], which has been applied to a bunch of tasks
successfully. The alignments between a premise and a hypothesis are based on
a score matrix. There are three most commonly used methods to compute the
score matrix: linear combination, bilinear combination, and dot product. For
simplicity, we choose dot product in the following computation [25]. First, each
element in the score matrix is computed based on the context vectors of p̄i and
q̄j as follows:

eij = p̄Ti q̄j , (3)
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where p̄i and q̄j are computed in Eqs. (1) and (2), and eij is a scalar which
indicates how p̄i is related to q̄j .

Then, we compute the alignment vectors for each word in the premise and
the hypothesis as follows:

p̃i =
lq∑

j=1

exp(eij)∑ lq
t=1exp(eit)

q̄j , q̃j =
lp∑

i=1

exp(eij)∑ lp
t=1exp(etj)

p̄i, (4)

where p̃i ∈ R
2d is the weighted summaries of the hypothesis in terms of each

word in the premise. The same operation is applied to q̃j ∈ R
2d. The outputs

of this layer are p̃i ∈ R
lp×2d and q̃j ∈ R

lq×2d. For the context vectors p̄, the
relevant contexts in the hypothesis q̄ are represented in p̃. The same is applied
to q̄ and q̃.

3.3 Matching Layer

The goal of the matching layer is to match the context vectors p̄ and q̄ with
the corresponding aligned vectors p̃ and q̃ from multi-perspective to generate a
matching sequence.

In this layer, we match each context vector pi against each aligned vector
p̃i to capture richer semantic information. We design three effective matching
functions: fc, fs and fm to match two vectors [5,31,33]. Each matching function
takes the context vector p̄i (q̄j) and the aligned vector p̃i (q̃j) as inputs, then
matches the inputs by an feed-forward network based on a particular match-
ing operation and finally outputs a matching vector. The formulas of the three
matching functions fc, fs and fm are described in formulas (5)–(7). To avoid
repetition, we will only describe the application of these functions to p̄ and p̃.
The readers can infer these equations for q̄ and q̃.

uc
p,i = fc(p̄i, p̃i) = ReLU(W c([p̄i ; p̃i]) + bc), (5)

us
p,i = fs(p̄i, p̃i) = ReLU(W s(p̄i − p̃i]) + bs), (6)

um
p,i = fm(p̄i, p̃i) = ReLU(Wm(p̄i � p̃i]) + bm), (7)

where ; , −, and � represent concatenation, subtraction, and multiplication
respectively, W c ∈ R

4d×d, W s ∈ R
2d×d and Wm ∈ R

2d×d are weight param-
eters to be learned, and bc, bs, bm ∈ R

d are bias parameters to be learned. The
outputs of each matching function are uc

p,i, u
s
p,i, u

m
p,i ∈ R

d, which represent the
matching result from three perspectives respectively. After matching the context
vectors p̄ and the aligned vectors p̃ by fc, fs and fm, we can get three matching
features uc

p = {uc
p,i}lp1 , us

p = {us
p,i}lp1 and um

p = {um
p,i}lp1 .

The uc
p can be considered as a joint-feature of combing the context vectors

p̄ with aligned vectors p̃, which preserves all the information. And the us
p can

be seen as a diff-feature of the p̄ and p̃, which preserves the different parts and
removes the similar parts. And the um

p can be regarded as a sim-feature of p and
p̄, which emphasizes on the similar parts and neglects the different parts between
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p̄ and p̃. Each feature helps us focus on particular parts between the context vec-
tors and the aligned vectors. These matching features are vector representations
with low dimension, but containing high-order semantic information. To make
further use of these matching features, we collect them to generate a matching
sequence up.

up = [u1
p, u

2
p, u

3
p] = [uc

p, u
s
p, u

m
p ], (8)

where u1
p, u

2
p, u

3
p ∈ R

lp×d.
The output of this layer is the matching sequence up, which stores three

kinds of matching features. The order of the matching features in up is inspired
by the attention trajectory of human beings making inference on premise and
hypothesis. We process the matching sequence in turn in the multi-turn inference
layer. Intuitively, given a premise and a hypothesis, we will first read the original
sentences to find the relevant information. Next, it’s natural for us to combine
all the parts of the original information and the relevant information. Then we
move the attention to the different parts. Finally, we pay attention to the similar
parts.

3.4 Multi-turn Inference Layer

In this layer, we aim to acquire inference outputs by aggregating the informa-
tion in the matching sequence by multi-turn inference mechanism. We regard
the inference on the matching sequence as the multi-turn interaction among var-
ious matching features. In each turn, we process one matching feature instead of
all the matching features [5,8]. To enhance the information interaction between
matching features, a memory component is employed to store the inference infor-
mation of the previous turns. Then, the inference of each turn is based on the
current matching feature and the memory. Here, we utilize another BiLSTM for
the inference.

ckp,i = BiLSTMinf (Winf [uk
p,i;m

(k−1)
p,i ]), (9)

where ckp,i ∈ R
2d is an inference vector in the current turn, k = [1, 2, 3] is the

index current turn, i = [1, 2, 3, · · · , lp], m
(k−1)
p,i ∈ R

2d is a memory vector stores
the historical inference information, and Winf ∈ R

3d×d is used for dimension
reduction.

Then we update the memory by combining the current inference vector ckp,i

with the memory vector of last turn m
(k−1)i
p . An update gate is used to control

the ratio of current information and history information adaptively [35]. The
initial values of all the memory vectors are all zeros.

mk
p,i = g � ckp,i + (1 − g) � m

(k−1)
p,i ,

g = σ(Wg[ckp,i;m
(k−1)
p,i ] + bg), (10)
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where Wg ∈ R
4d×2d and bg ∈ R

2d are parameters to be learned, and σ is a sigmoid
function to compress the ratio between 0–1. Finally, we use the latest memory
matrix {m3i

p }lp1 as the inference output of premise minf
p . Then we calculate minf

q

in a similar way. The final outputs of this layer are minf
p and minf

q .

3.5 Output Layer

The final relationship judgment depends on the sentence embeddings of premise
and hypothesis. We convert minf

p and minf
q to sentence embeddings of premise

and hypothesis by max pooling and average pooling. Next, we concatenate the
two sentence embeddings to a fixed-length output vector. Then we feed the
output vector to a multilayer perceptron (MLP) classifier that includes a hidden
layer with tanh activation and a softmax layer to get the final prediction. The
model is trained end-to-end. We employ multi-class cross-entropy as the cost
function when training the model.

4 Experiment

4.1 Data

To verify the effectiveness of our model, we conduct experiments on three NLI
datasets. The basic information about the three datasets is shown in Table 1.

The large SNLI [3] corpus is served as a major benchmark for the NLI task.
The MPE corpus [14] is a newly released textual entailment dataset. Each pair in
MPE consists of four premises, one hypothesis, and one label, which is different
from the standard NLI datasets. Entailment relationship holds if the hypoth-
esis comes from the same image as the four premises. The SCITAIL [12] is a
dataset about science question answering. The premises are created from rele-
vant web sentences, while hypotheses are created from science questions and the
corresponding answer candidates.

Table 1. Basic information about the three NLI datasets. Sentence pairs is the total
examples of each dataset. N, E, and C indicate Neutral, Entailment, and Contradiction,
respectively.

Dataset Sentence pairs Train Valid Test Labels

SNLI 570k 549,367 9,842 9,824 N, E, C

MPE 10k 8,000 1,000 1,000 N, E, C

SCITAIL 24k 23,596 1,304 2,126 N, E

4.2 Models for Comparison

We compare our model with “matching-aggregation” related and attention-
based memory related models. In addition, to verify the effectiveness of these
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major components in our model, we design the following model variations for
comparison:

• ESIM: We choose the ESIM model as our baseline. It mixes all the matching
feature together in the matching layer and then infers the matching result in
a single-turn with a BiLSTM.

• 600D MIMN: This is our main model described in Sect. 3.
• 600D MIMN-memory: This model removes the memory component. The

motivation of this experiment is to verify whether the multiple turns infer-
ence can acquire more sufficient information than one-pass inference. In this
model, we process one matching feature in one iteration. The three matching
features are encoded by BiLSTMinf in multi-turns iteratively without previ-
ous memory information. The output of each iteration is concatenated to be
the final output of the multi-turn inference layer:

ckp,i = BiLSTMinf (Winf [uk
p,i]), (11)

minf
p = [{c1p,i}lp1 ; {c2p,i}lp1 ; {c3p,i}lp1 ]. (12)

• 600D MIMN-gate+ReLU: This model replaces the update gate in the
memory component with a ReLU layer. The motivation of this model is to
verify the effectiveness of update gate for combining current inference result
and previous memory. Then the Eq. (10) is changed into Eq. (13).

mk
p,i = ReLU(Wm[ckp,i;m

(k−1)
p,i ]). (13)

4.3 Experimental Settings

We implement our model with Tensorflow [1]. We initialize the word embed-
dings by the pre-trained embeddings of 300D GloVe 840B vectors [26]. The
word embeddings of the out-of-vocabulary words are randomly initialized. The
hidden units of BiLSTMenc and BiLSTMinf are 300 dimensions. All weights
are constrained by L2 regularization with the weight decay coefficient of 0.0003.
We also apply dropout [30] to all the layers with a dropout rate of 0.2. Batch
size is set to 32. The model is optimized with Adam [13] with an initial learn-
ing rate of 0.0005, the first momentum of 0.9 and the second of 0.999. The
word embeddings are fixed during all the training time. We use early-stopping
(patience = 10) based on the validation set accuracy. We use three turns on all
the datasets. The evaluation metric is the classification accuracy. To help dupli-
cate our results, we will release our source code at https://github.com/blcunlp/
RTE/tree/master/MIMN.

4.4 Experiments on SNLI

Experimental results of the current state-of-the-art models and three variants
of our model are listed in Table 2. The first group of models (1)–(3) are the
attention-based memory models on the NLI task. [15] uses external memory

https://github.com/blcunlp/RTE/tree/master/MIMN
https://github.com/blcunlp/RTE/tree/master/MIMN
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Table 2. Performance on SNLI

Model (memory related) Parameters Train(% acc) Test(% acc)

(1) 100D DF-LSTM [15] 320k 85.2 84.6

(2) 300D MMA-NSE with attention [23] 3.2m 86.9 85.4

(3) 450D LSTMN with deep attention fusion [6] 3.4m 88.5 86.3

Model (bidirectional inter-attention) Parameters Train (% acc) Test (% acc)

(4) 200D decomposable attention [25] 380k 89.5 86.3

(5) “compare-aggregate” [33] – 89.4 86.8

(6) BiMPM [36] 1.6m 90.9 87.5

(7) 600D ESIM [5] 4.3M 92.6 88.0

(8) 300D CAFE [32] 4.7m 89.8 88.5

(9) 450D DR-BiLSTM [8] 7.5m 94.1 88.5

(10) BiMPM (Ensemble) [36] 6.4m 93.2 88.8

(11) 450D DR-BiLSTM (Ensemble) [8] 45m 94.8 89.3

(12) 300D CAFE (Ensemble) [32] 17.5m 92.5 89.3

Human Performance (Estimated) – – 87.7

Model (this paper) Parameters Train (%acc) Test (%acc)

(13) 600D MIMN 5.3m 92.2 88.3

(14) 600D MIMN-memory 5.8m 87.5 87.5

(15) 600D MIMN-gate+ReLU 5.3m 90.7 88.2

(16) 600D MIMN (Ensemble ) – 92.5 89.3

to increase the capacity of LSTMs. [23] utilizes an encoding memory matrix
to maintain the input information. [6] extends the LSTM architecture with a
memory network to enhance the interaction between the current input and all
previous inputs.

The next group of models (4)–(12) belong to the “matching-aggregation”
framework with bidirectional inter-attention. Decomposable attention [25] first
applies the “matching-aggregation” on SNLI dataset explicitly. [33] enriches the
framework with several comparison functions. BiMPM [36] employs a multi-
perspective matching function to match the two sentences. ESIM [5] further
sublimates the framework by enhancing the matching tuples with element-wise
subtraction and element-wise multiplication. ESIM achieves 88.0% in accuracy
on the SNLI test set, which exceeds the human performance (87.7%) for the first
time. [9,32] both further improve the performance by taking the ESIM model
as a baseline model. The studies related to “matching-aggregation” but without
bidirectional interaction are not listed [27,34].

Motivated by the attention-based memory models and the bidirectional inter-
attention models, we propose the MIMN model. The last group of models (13)–
(16) are models described in this paper. Our single MIMN model obtains an
accuracy of 88.3% on SNLI test set, which is comparable with the current state-
of-the-art single models. The single MIMN model improves 0.3% on the test
set compared with ESIM, which shows that multi-turn inference based on the
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matching features and memory achieves better performance. From model (14),
we also observe that memory is generally beneficial, and the accuracy drops 0.8%
when the memory is removed. This finding proves that the interaction between
matching features is significantly important for the final classification. To explore
the way of updating memory, we replace the update gate in MIMN with a ReLU
layer to update the memory, which drops 0.1%.

To further improve the performance, an ensemble model MIMN is built for
comparison. We design the ensemble model by simply averaging the probabil-
ity distributions [36] of four MIMN models. Each of the models has the same
architecture but initialized by different seeds. Our ensemble model achieves the
state-of-the-art performance by obtains an accuracy of 89.3% on SNLI test set.

4.5 Experiments on MPE

The MPE dataset is a brand-new dataset for NLI with four premises, one hypoth-
esis, and one label. In order to maintain the same data format as other textual
entailment datasets (one premise, one hypothesis, and one label), we concatenate
the four premises as one premise.

Table 3 shows the results of our models along with the published models on
this dataset. LSTM is a conditional LSTM model used in [27]. WbW-Attention
aligns each word in the hypothesis with the premise. The state-of-the-art model
on MPE dataset is SE model proposed by [14], which makes four independent
predictions for each sentence pairs, and the final prediction is the summation
of four predictions. Compared with SE, our MIMN model obtains a dramatic
improvement (9.7%) on MPE dataset by achieving 66.0% in accuracy.

To compare with the bidirectional inter-attention model, we re-implement
the ESIM, which obtains 59.0% in accuracy. We observe that MIMN-memory
model achieves 61.6% in accuracy. This finding implies that inferring the match-
ing features by multi-turns works better than single turn. Compared with the
ESIM, our MIMN model increases 7.0% in accuracy. We further find that the
performance of MIMN achieves 77.9% and 73.1% in accuracy of entailment and
contradiction respectively, outperforming all previous models. From the accu-
racy distributions on N, E, and C in Table 3, we can see that the MIMN model
is good at dealing with entailment and contradiction while achieves only average
performance on neural.

Consequently, the experiment results show that our MIMN model achieves a
new state-of-the-art performance on MPE test set. All of our models perform well
on the entailment label, which reveals that our models can aggregate information
from multiple sentences for entailment judgment.

4.6 Experiments on SCITAIL

In this section, we study the effectiveness of our model on the SCITAIL dataset.
Table 4 presents the results of our models and the previous models on this
dataset. Apart from the results reported in the original paper [12]: Majority
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Table 3. Performance on MPE. Models
with # are reported from [14].

Models Test

(%acc)

N E C

LSTM# 53.5 39.2 63.1 53.5

WbW-Attention# 53.9 30.2 61.3 66.5

SE# 56.3 30.6 48.3 71.2

ESIM (our imp) 59.0 34.1 68.3 65.1

MIMN 66.0 35.3 77.9 73.1

MIMN-memory 61.6 28.4 72.7 70.8

MIMN-gate+ReLU 64.8 37.5 77.9 69.1

Table 4. Performance on SCITAIL.
Models with � are reported from [12].

Models Valid

(%acc)

Test

(%acc)

Majority class� 63.3 60.3

decomposable attention� 75.4 72.3

ESIM� 70.5 70.6

Ngram� 65.0 70.6

DGEM� 79.6 77.3

CAFE [32] – 83.3

MIMN 84.7 84.0

MIMN-memory 81.3 82.2

MIMN-gate+ReLU 83.4 83.5

class, ngram, decomposable attention, ESIM and DGEM, we compare further
with the current state-of-the-art model CAFE [32].

We can see that the MIMN model achieves 84.0% in accuracy on SCI-
TAIL test set, which outperforms the CAFE by a margin of 0.5%. Moreover,
the MIMN-gate+ReLU model exceeds the CAFE slightly. The MIMN model
increases 13.3% in test accuracy compared with the ESIM, which again proves
that multi-turn inference is better than one-pass inference.

5 Conclusion

In this paper, we propose the MIMN model for NLI task. Our model intro-
duces a multi-turns inference mechanism to process multi-perspective matching
features. Furthermore, the model employs the memory mechanism to carry pro-
ceeding inference information. In each turn, the inference is based on the current
matching feature and previous memory. Experimental results on SNLI dataset
show that the MIMN model is on par with the state-of-the-art models. Moreover,
our model achieves new state-of-the-art results on the MPE and the SCITAL
datasets. Experimental results prove that the MIMN model can extract impor-
tant information from multiple premises for the final judgment. And the model
is good at handling the relationships of entailment and contradiction.
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Abstract. Off-colour humour is a category of humour which is con-
sidered by many to be in poor taste or overly vulgar. Most commonly,
off-colour humour contains remarks on particular ethnic group or gender,
violence, domestic abuse, acts concerned with sex, excessive swearing or
profanity. Blue humour, dark humour and insult humour are types of
off-colour humour. Blue and dark humour unlike insult humour are not
outrightly insulting in nature but are often misclassified because of the
presence of insults and harmful speech. As the primary contributions of
this paper we provide an original data-set consisting of nearly 15,000
instances and a novel approach towards resolving the problem of sepa-
rating dark and blue humour from offensive humour which is essential so
that free-speech on the internet is not curtailed. Our experiments show
that deep learning methods outperforms other n-grams based approaches
like SVM’s, Naive Bayes and Logistic Regression by a large margin.

Keywords: Off-colour humour · Deep learning · Insult detection

1 Introduction

In the last decade, there has been an exponential increase in the volume of social
media interactions (twitter, reddit, facebook etc.). It took over three years, until
the end of May 2009, to reach the billionth tweet [1]. Today, it takes less than
two days for one billion tweets to be sent. Social media has increasingly become
the staple medium of communication via the internet. However, due to the non-
personal nature of online communication, it presents a unique set of challenges.
Social media has become a breeding ground for hate speech and insults as there
is a lack of accountability that can be abused.

We need to discern between content which is an honest attempt at humour as
opposed to content which is purely derogatory and insulting. Humour is an essen-
tial part of communication and allows us to convey our emotions and feelings.
Humour is the tendency of particular cognitive experiences to provoke laughter
and provide amusement.

Humour that is sometimes considered to be purely offensive, insulting or a
form of hate speech is described as off-colour humour. Off-colour humour (also
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 144–153, 2018.
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known as vulgar humour, crude humour, or shock humour) is humour that deals
with topics that may be considered to be in poor taste or overly vulgar. It
primarily consists of three sub-categories, dark humour, blue humour and insult
humour.

Dark Humour has been more frequently discussed in literary, social research
as well as psychology but not much attention has been given to it in linguistics.
It is a comic style that makes light of subject matter that is generally considered
taboo, particularly subjects that are normally considered serious or painful to
discuss such as death as defined by wikipedia. Dark humour aims at making fun
of situations usually regarded as tragic, such as death, sickness, disability, and
extreme violence, or of the people involved or subject to them [4]. It is inspired
by or related to these tragic events and do not in any way make fun of them [5].
In dark humour a gruesome or a tragic topic is mixed with an innocuous topic
which creates shock and inappropriateness. This invoked inappropriateness or
shock generally amusing to the listeners [6]. Dynel [7] in their paper show that
dark humour inspired by tragic events such as a terrorist attacks just addresses
topics tangential to them and do not in any way make fun of them directly. Blue
humour is a style of humour that is indecent or profane and is largely about
sex. It contains profanity or sexual imagery that may shock. It is also referred
to as Ribaldry. Insult humour is that kind of humour which consists of offensive
insults directed to a person or a group. Roasting is a form of insult comedy in
which specific individual, a guest of honor, is subjected to jokes at their expense,
intended to amuse the event’s wider audience as defined by Wikipedia. All the
three categories mentioned above seem to be interrelated to each other but have
very fine differences. Dark humour is different from straightforward obscenity
(blue humour) in the way that it is more subtle. Both dark and blue humour
are different from insult humour in the sense that there is no intent of offending
someone in the former two whereas in insult humour the main aim is to jokingly
offend or insult the other person or a group of people [8].

People often get offended on such misunderstood instances of humour more
than would otherwise be the case. The significance of our contribution can be
fully conceived only when we realise that such occurrences can lead to gratuitous
censorship and therefore curtailment of free speech. It is in this context that we
are trying to formulate our problem of separating dark humour and blue humour
from insult humour. In short our contributions can be summarised as follows:

– We present a dataset of nearly 15,000 jokes out of which 4,000 are of positive
types.

– A novel approach towards resolving the problem of separating dark and blue
humour from offensive humour.

The remainder of the paper is structured as follows. Section 2 gives a detail
about related work along with it’s criticisms. Section 3 presents the proposed
framework. Section 4 presents the dataset used, Sect. 5 presents the experiments
used. Section 6 gives the results and analysis of the experiment conducted in this
study and Sect. 7 concludes the paper (Table 1).
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Table 1. Few examples of jokes used in our dataset

Dark joke 1. My girlfriend is a porn star. She will kill me if she finds out
2. When someone says, “Rape jokes are not funny,” I don’t
care. It’s not like I asked for their consent anyway

Blue joke 1. Sex is not the answer. Sex is the question. “Yes” is the answer
2. How can you tell if a man is sexually excited? He’s
breathing

Insult joke 1. Your mama so fat when she stepped on the weighing scale it
said: “I need your weight, not your phone number.”
2. You were beautiful in my dreams, but a fucking nightmare
in reality

Normal/safe joke 1. What’s red and bad for your teeth? A brick
2. What did the German air force eat for breakfast during
WW2? Luftwaffle

2 Related Work

Humour has always been an important topic for researchers. There has been a
lot of study in humour in the field of linguistics, literature, neuroscience, psy-
chology and sociology. Research in humour has revealed many different theories
of humour and many different kinds of humour including their functions and
effects personally, in relationships, and in society. For the scope of this paper
we are restricting ourselves to off-colour humour that has been explained in the
above sections.

There has been some studies on offensive humour which is usually used a form
of resistance in tragic situations. Weaver [10] in their paper talks how racism
could be undermined by using racial stereotypes by blacks and minority ethnic
comedians. Lockyer [11] in their study analyse how disabled comedians have also
ridiculed stereotypes of the disabled by reversing the offensive comments of the
non-disabled.

The study by Billig [12] examines the relationship between humour and
hatred, which it claims is the topic that is often ignored by researchers of prej-
udice. It analyses websites that present racist humour and display sympathies
with the Ku Klux Klan. The analysis emphasizes the importance of examining
the metadiscourse, which presents and justifies the humour and also suggests
that the extreme language of racist hatred is indicated to be a matter for enjoy-
ment. In the book “Jokes and their Relation to the Unconscious”, Freud refers
to off-colour humour as the “economy of pity” and claims that it is “one of the
most frequent sources of humourous pleasure” and these jokes (off-colour) pro-
vides a socially accepted means of breaking taboos, particularly in relation to sex
and aggression. In [7] the authors analyse the importance of off colour humour
(dark humour) in post terrorist attack discourse. The paper claims that dark
humour is a coping mechanism under oppressive regimes and in crisis situations.
Davies [14] in his book argues that those who engage in racist and sexist jokes
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do not necessarily believe the stereotypes that the jokes express. Maxwell [15]
in his paper brings forth the importance of dark humour as a cognitive and/or
behavioral coping strategy which is considered to be a reaction to a traumatic
event and proposes a model including progressive steps of humour, ranging from
respectful to sarcastic.

Similarly there has been a lot of studies in the field of insult detection.
Mahmud et al. [16] in their paper create a set of rules to extract the seman-
tic information of a given sentence from the general semantic structure of that
sentence to separate information from abusive language but is very limited in
the sense that this system can annotate and distinguish any abusive or insulting
sentence only bearing related words or phrases that must exist in the lexicon
entry. So, it only looks at insulting words and not sentences that are used in an
insulting manner.

Xiang et al. [17] in their work dealt with offensive tweets with the help of
Topical Feature Discovery over a Large Scale Twitter Corpus by using Latent
Dirichlet Allocation model. The work by Ravazi et al. [18] describe an automatic
flame detection method which extracts features at different conceptual levels and
applies multilevel classification for flame detection but is very limited due to the
dataset used by them and does not consider the syntactical structure of the
messages explicitly.

The above works tell us there has been quite a lot of studies in both these
fields but no such computational study in the intersection of these two topics.
This study is the first such attempt which tries to create a separating boundary
between different types of off-colour humor and insults. We discuss our frame-
work used to separate different types of off-colour humour in the next section.

3 Proposed Framework

The domain of jokes we are dealing with, viz. dark humour, blue humour and
insult humour all are generally classified under the umbrella category of NSFW
or Off-Colour Humour. It is due to their apparent similarities that on one glance
they can be dismissed as being of one and the same type. As we go to finer levels
of granularity it becomes evident that two separate buckets can be defined even
inside off-colour humour, one pertaining to insults resulting in insult humour
and the other consisting of dark humour and blue humour as shown in the Fig. 1
below. Insults being the common denominator does not mean all insults and non-
jokes can be classified as insult humour, thus defining a demarkation separating
the two is also required.

As mentioned above we are able to define clear boundaries between within
off-colour humour between insulting and non-insulting humour. But in order to
further differentiate between dark and blue humour we identify more features
that can give us a clear distinction between the two. One of the primary indica-
tors in helping us draw this line is the ability to detect and extract sexual terms
leading us to blue humour and dark themes such as violence (murder, abuse,
domestic violence, rape, torture, war, genocide, terrorism, corruption), discrimi-
nation (chauvinism, racism, sexism, homophobia, transphobia), disease (anxiety,
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Fig. 1. Differentiating between Insulting and Non-Insulting Humor

depression, suicide, nightmares, drug abuse, mutilation, disability, terminal ill-
ness, insanity), sexuality (sodomy, homosexuality, incest, infidelity, fornication),
religion and barbarism [2] leading us to dark humour. In order to define strong
outlines we also ensure that even if an insulting joke or an insult contains sexual
content or dark themes the primary focus of such content is on the insult part
and not its sexual content or dark theme (which more than anything aides in
providing a backdrop).

Fig. 2. In this figure Dark and Blue Humor belongs to the category of Non-Insulting
Jokes which are differentiated by dark and blue humor features mentioned in the above
paragraph

The focus of this paper is to classify between these three categories of off-
colour and hence, integrating the task of classification of text between humourous
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and non-humourous has been deemed out of scope and is limited by the creation
of a dataset which consists of only the humourous content.

4 Dataset

To test our hypothesis that automatic classification models can classify between
dark humour, blue humour, Insult humour and (normal humour), we needed
a dataset consisting of all types of above mentioned examples. Since there is
no such corpus available for the task because of limited study in this field, we
collected and labeled our own data. The only data source that was available is
the twitter dataset [17] which has been used to detect offensive tweets but due
to the fact it was very limited in terms of themes and could not have been used
for our study.

The dataset that we created consisted of multiple one-liners. We used one-
liners because they are very small generally and must produce humourous effect,
unlike longer jokes which usually have a relatively complex narrative structure.
These characteristics make this type of humour particularly suitable for use in
an automatic learning setting. The dataset is defined as follows:

– Insult jokes: We collected multiple one-liners jokes from the subreddits
/r/insults and /r/roastme. Apart from those we also mined various jokes
websites and collected jokes with tags “Insult”. After removing duplicates
and verifying manually we were left with nearly 4000 jokes belonging to the
category of insult jokes.

– Dark Jokes: We collected multiple jokes from the subreddit /r/darkjokes
and /r/sickipedia. These subreddits contains one-liner jokes which are highly
moderated. Apart from that we mined various jokes websites and collected
jokes with the tags dark, darkjokes and darkhumour. After removing the
duplicates and manual verification we were left with a final dataset of approx-
imately 3500 jokes under the category of dark jokes.

– Blue Jokes: Blue jokes are the types of jokes which are most famous on
the internet. Since these types of jokes are mainly associated with heavy
nudity, sexual content and slangs we collected one liner jokes from subreddit
/r/dirtyjokes and apart from that we took jokes from various jokes websites
with tags NSFW, dirty, adult and sexual. After duplicates removal and man-
ual verification we were left with approximately 2500 jokes under the category
of blue jokes.

– Normal Jokes/Safe jokes: We collected jokes from subreddits r/cleanjokes
and /r/ oneliners. These subreddits contain clean, non offensive jokes and non
disrespectful jokes. Jokes in this category does not belong to any of the above
category. This types of jokes are referred to as SFW (safe for work) jokes for
all future references. After collecting these jokes we searched for insult words
(talk about a lexical dictionary from the paper opened in one of the tabs).
After duplicates removal we were left were approximately 5000 jokes under
this category.
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The dataset collected is important because of the fact that it is multidimen-
sional in the sense that it contains insulting and non insulting jokes as well jokes
with taboo topics (mentioned in the above section) as well as jokes without these
topics. This leaves us with a combined total of nearly 4000 jokes under the cat-
egory of insult jokes, 3500 under the category of dark jokes (non-insult), 2500
jokes in the category of blue jokes (non-insult) and 5000 jokes from the category
of safe jokes (non insult). Thus we have a 4000 positive examples and 11,000
negative examples. All the dataset that has been mined has been taken from
websites which have strict moderation policies, thus leaving very little room for
error in our dataset.

5 Experiment

Treating the problem of separating different types of jokes as a classification
problem, there are wide variety of methods that can be used which can greatly
affect the results. Some of the features explicitly used were:

– Dark jokes are usually limited to or their main topic is violence (murder,
abuse, domestic violence, rape, torture, war, genocide, terrorism, corruption),
discrimination (chauvinism, racism, sexism, homophobia, transphobia), dis-
ease (anxiety, depression, suicide, nightmares, drug abuse, mutilation, dis-
ability, terminal illness, insanity), sexuality (sodomy, homosexuality, incest,
infidelity, fornication), religion and barbarism. In order to detect these rela-
tions a common sense engine called “Concept Net” [19]. It is a multilin-
gual knowledge base, representing words and phrases that people use and the
common-sense relationships between them. Concept Net was used too see use
of words related to the above mentioned topics.

– Sentiment score of every joke was calculated because of the hypothesis that
off-colour humour tends to have a negative sentiment compared to jokes with-
out any vulgar or any such topics mentioned above.

– It is our hypothesis that most of the insult jokes have mainly first (self-
deprecating humour) and second (directed towards someone) person feature
words like “I”, “you”, “your”. This is done in order to detect insulting jokes
with contains phrases like “your mother”, “your father” which are usually
meant to be insults.

After preprocessing of the data we extracted n-grams from the dataset, pre-
cisely speaking unigrams, bigrams and trigrams and a feature dictionary was
created using of these collected ngrams. We compare results from five differ-
ent classification algorithms mentioned below with different settings along with
features mentioned above.

– We used LDA, which provides a transitive relationship between words such
that each document has a set of words and each word belong to multiple topics
(here categories of jokes) which transitively indicates that each document is
a collection of topics.
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– Used n-grams trained a logistic regression and naive bayes with it.
– Along with this we used brown clustering which helped us to put similar kinds

of words in same cluster and trained a SVM with it.
– We also experimented with CNN’s like Kim et al. [20] work which uses CNN

for sentence classification. A model as shown in [20] was created with pre-
trained vectors from word2vec, which has been trained on google news corpus
and the vectors have dimensionality of 300.

Various experiments were performed on our dataset. For evaluation metrics,
the dataset was randomly divided into 90% training and 10% testing. All the
experiments were performed 10 fold and the final result was then taken to be
average of those results.

6 Analysis

We can see the results of our classifiers in the Table 2 below. In the case of Logistic
Regression, the introduction of features suggested proved to be an important
factor as it increased the accuracy by nearly 10%. LDA had a slight better
result than Logistic Regression without any features but is outperformed by
Logistic Regression when the features such as sentiment scores, first, second
person features and dark words are added. Naive bayes outperforms both LDA
and Logistic Regression when features such as sentiment scores, first and second
person features and dark word are not added, but we see equal results when those
are added. SVM outperforms LDA, Naive bayes and Logistic Regression by a
big margin and thus proving to be a better algorithm to classify. We see that the
feature set used proved to be a very valuable addition to our experiment and an
increase in accuracy in every case when those features are introduced. Finally,
CNN’s are introduced along with word2vec outperforms every other classifier
used in this study. Thus we achieve the best accuracy of 81% using CNN’s with
word2vec.

Table 2. Table showing the accuracies of various classifiers used

Results

Features Accuracy

Logistic Regression 59%

LR + Ngrams 62%

LR + Ngrams + features mentioned 69%

LDA 61%

Naive Bayes + Ngrams + features mentioned 69%

SVM 68%

SVM + Ngrams + features 74%

CNN + word2vec 81%
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7 Future Work

Given the constraints of the scope of the paper as well as the research con-
ducted we have not attempted to integrate the differentiate humourous and
non-humourous text in our study. This could also be incorporated in the pipeline
to match with other studies. Also, in this paper we have restricted sexual topics
in dark humour (not to be confused with sexuality in blue humour) but in real-
ity, there are some dark jokes which have some common features with blue jokes
or talks about nudity and profanity. This can be taken up for future work and
this whole system could be implemented on various social media platforms to a
more holistic classification to insults in social media and practice free speech.
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Abstract. Analysis of the character structure characteristics can lay an infor-
mation foundation for the intelligent processing of square Hmong characters.
Combined with the analysis of character structure characteristics, this paper
presents a definition of the linearization of square Hmong characters, a definition
of equivalence class division of the structure of square Hmong characters, and
proposes a decision algorithm of structure equivalence class. According to the
above algorithm, the structure of square Hmong characters is divided into eight
equivalent classes. Analysis of the statistical properties, including the cumula-
tive probability distribution, complexity, and information entropy of square
Hmong characters appearing in practical documents, shows that, first, more than
90% of square Hmong characters appearing in practical documents are com-
posed of two components, and more than 80% of these characters possess a left-
right, top-bottom, or lower-left-enclosed structure, second, the number of mean
components in a square Hmong character is slightly greater than 2, third, the
information entropy of the structure of Hmong characters is within the interval
(1.19, 2.16). Results reveal that square Hmong characters appearing frequently
in practical documents follow the principle of simple structure orientation.

Keywords: Information entropy � Probability distribution
Square Hmong character � Statistical analysis

1 Introduction

Analysis of character structure characteristics is the basis of character attributes anal-
ysis, and plays an important role in the intelligent generation and character recognition.
In the field of Chinese information processing, many methods for intelligent character
generation, recognition and other related processing methods based on the analysis of
character structure characteristics were proposed. Instituse put for-ward a refinement
method for smoothing Chinese character images using the nearest neighbor pixel
correlation function to filter out noise that affects the structure characteristics of Chi-
nese characters [1]. This method uses the nearest neighbor pixel correlation function to
filter out noise that affects the structure characteristics of Chinese characters. Moreover,
according to the structure characteristics of Chinese characters, Shin et al. proposed a
method for generating handwritten Chinese characters on the basis of stroke
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correspondence [2]. Liu et al. presented a method for acquiring knowledge related to
the basic elements required for intelligent generation of Chinese characters [3]. Tan
et al. analyzed the structure characteristics of Chinese characters and presented a
method of radical extraction using affine sparse matrix factorization for printed Chinese
character recognition [4]. Dobres et al. discussed the influence of factors, such as font
design difference, fine stroke difference, and color contrast polarity difference, on the
scanning time of readable subtitles by analyzing the structure characteristics of Chinese
characters [5].

In the past few decades, studies on the structure characteristics of Tibetan and
Korean characters had also explored. Ai et al. carried out a statistical analysis of the
glyph structure of Tibetan characters [6]. Cai et al. classified the structure of Tibetan
characters and developed a statistical system model of glyph characters by analyzing
the structure characteristics of Tibetan [7]. Kwon used the division of the Korean
character structure to achieve rough classification in the process of syllable matching to
preprocess alphabet division in the Korean character matching process [8]. Xu et al.
utilized the rules of character structure to implement post-processing of handwritten
Korean text [9]. Meanwhile, Cui et al. calculated the contribution of the information
provided by letters at different positions in the spatial structure to the structure clas-
sification of Korean characters, further explored the distribution structure of Korean
text information [10].

Square Hmong characters are ideograms with a fixed structure, and they are
commonly used in the daily life of Hmong people in the Wuling mountain area of
China. Information processing for square Hmong characters has not been extensively
studied. Mo et al. conducted a number of studies on computer coding, keyboard input,
glyph generation, and font creation of square Hmong characters [11–13]. However, the
structure characteristics of square Hmong characters have not been investigated so far.

To address this limitation, this paper presents a classification method for square
Hmong characters on the basis of structural distance. The method is implemented based
on a linear representation of square Hmong characters and provides a convenient means
to analyze the statistical characteristics of the structure of square Hmong characters in
practical documents.

The rest of this paper is organized as follows. Section 2 introduces square Hmong
characters and their linear representation. Section 3 introduces the proposed classifi-
cation method and decision algorithm for the structure of square Hmong characters.
Section 4 presents an analysis of the statistical characteristics of the structure of square
Hmong characters in practical documents. Section 5 provides the conclusions.

2 Square Hmong Characters and Their Linear
Representation

2.1 Word Information Principles of Square Hmong Characters

Square Hmong characters were created in the late Qing Dynasty for use by local
Hmong people to record Hmong songs. According to [14, 15], the word information
principles of square Hmong characters can be summarized from two aspects.
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(1) Several simple Chinese characters, Chinese radicals, and symbols without pro-
nunciation and meaning (such as * and X) are used to represent the component
of phonetic-symbol, meaning-symbol, or shape-symbol.

(2) The “one word and one syllable” method is utilized to mark a morpheme or word.

The structure of square Hmong characters can be divided into four types, namely,
left-right, top-bottom, part-enclosed, and internal-external structures. The part-enclosed
structure can be further classified into upper-left-enclosed, lower-left-enclosed, and
upper-right-enclosed types.

Several typical examples of square Hmong characters with different structures are
listed in Fig. 1.

According to the word information principle, if a square Hmong character consists
of three or more components, two or three of these components can be combined into a
simple Chinese character. This Chinese character is regarded as a component of the
square Hmong character. A statistical analysis of the 1,129 square Hmong characters
indicated that most Hmong characters are composed of two components, and only a
few Hmong characters with left-right and top-bottom structures are composed of three
components.

2.2 Linearization Representation of Square Hmong Characters

Definition 1 Linearization of square Hmong characters: The process of decom-
posing a square Hmong character into a uniquely identified component sequence
according to its spelling order is called linearization.

To unify the description, we decompose all square Hmong characters into com-
ponent sequences with a uniform length. When a component of a position in the
sequence does not exist, the symbol “e” is used to replace the missing component.
According to the 16 types of components shown in Table 1, the uniform length of a
component sequence can be 16 when a square Hmong character is linearized.

Fig. 1. Examples of square Hmong characters in different structures.
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Considering that a two-component square Hmong character can be regarded as a
three-component square Hmong character lacking a component, the right component
(Cr) can be regarded as a right-left component (Crl) when the right-right component
(Crr) is absent. The bottom component (Cb) can also be regarded as a bottom-left
component (Cbl) when the right-bottom-right component (Cbr) is absent. Therefore,
only 14 types of components are required. That is, any square Hmong character can be
decomposed into a 14-component combination sequence.

2.3 Linearization Function and Component Extraction Function

Definition 2 Linearization function of square Hmong characters: Assuming that R
is a finite set of square Hmong characters, w is a square Hmong character (w 2 R), and
Ci (i = l, 2, …, 14) is a finite set of components, the mapping (f) in Eq. (1) is called the
linearization function of square Hmong characters.

f : R ! Cl � Crl � Crr � Ct � Cbl � Cbr � Colu � Cird � Cold � Ciru � Coru � Cild � Coa � Cia ð1Þ

A component combination sequence is practically a regular expression. Thus, f is a
regular replacement from R to Ci that converts a square Hmong character into a
uniquely identified component sequence. Assume that the components included in
w are marked as si (i = 1, …, 14) and arranged in the order of “Cl-Crl-Crr-Ct-Cbl-Cbr-
Colu-Cird-Cold-Ciru-Coru-Cild-Coa-Cia.” Then, f(w) can be expressed by

f wð Þ ¼ s1s2s3s4s5s6s7s8s9s10s11s12s13s14 ð2Þ

Table 1. Components of square Hmong characters

Number Name Mark

1 left component Cl

2 right component Cr

3 top component Ct

4 bottom component Cb

5 upper-left-external component Colu

6 lower-right-internal component Cird

7 lower-left-external component Cold

8 upper-right-internal component Ciru

9 upper-right-external component Coru

10 lower-left-internal component Cild

11 external component Coa

12 internal component Cia

13 right-left component Crl

14 right-right component Crr

15 bottom-left component Cbl

16 bottom-right component cbr
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Considering that a square Hmong character contains only two or three components,
valid components can only be found in two or three positions. Other locations are
empty and marked as “e”. Figure 2 shows the linearization of the 10 characters in
Fig. 1.

Definition 3 Component extraction function of square Hmong characters: The
function of extracting the i-th component from linearization result f(w) is called the
extraction function of component si. It is denoted as fi(w) and expressed as

fi wð Þ ¼ si i ¼ 1; 2; . . .; 14ð Þ ð3Þ

With the component extraction function, the linearization result f(w) of w can also
be expressed by

f wð Þ ¼ f1 wð Þf2 wð Þf3 wð Þf4 wð Þf5 wð Þf6 wð Þf7 wð Þf8 wð Þf9 wð Þf10 wð Þf11ðwÞf12 wð Þf13 wð Þf14 wð Þ ð4Þ

3 Equivalence Class of the Structure of Square Hmong
Characters and Its Judgment

3.1 Definition of Structural Distance

Structural distance is used to measure structural differences between different charac-
ters. The structural distance of square Hmong characters is defined as follows.

Definition 4 Structural distance of square Hmong characters: Given square
Hmong characters w1 and w2, the structural distance between w1 and w2 is expressed as
Distance(w1, w2). The calculation formula of Distance(w1, w2) is shown in Eq. (5).

Fig. 2. Examples of linear representation of square Hmong characters.
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Distance w1;w2ð Þ ¼
X14

i¼1

fi w1ð Þh fi w2ð Þ ð5Þ

Where, operation h is defined as

x h y ¼ 1; for 8ðx; yÞ 2 fðx; yÞjðx ¼ e and y 6¼ eÞ or (x 6¼ e and y ¼ eÞg
0; for 8ðx; yÞ 2 fðx; yÞjðx 6¼ e and y 6¼ eÞ or (x ¼ e and y ¼ eÞg

�
ð6Þ

Equations (5) and (6) show that the distance between two characters with the same
structure is 0, and the distance between two characters with a different structure is a
positive integer. For example, Distance(w1, w2) = 0, Distance(w1, w3) = 1, Distance
(w1, w4) = 4, Distance(w1, w6) = 5, Distance(w1, w7) = 4, Distance(w3, w6) = 6,
Distance(w3, w7) = 5, and Distance(w4, w5) = 0.

3.2 Structure Equivalence Class of Square Hmong Characters
and Its Division

Definition 5 Equivalent structure relation: Given square Hmong characters w1 and
w2, when Distance(w1, w2) = 0, w1 and w2 have an equivalent structure relation.

Definition 6 Structure equivalence class of square Hmong characters: As shown in
Eq. (7), a given Hmong document (D) is divided into m disjoint subsets Di (i = 1, 2,
…, m) according to the equivalence structure relation.

D ¼ D1 [D2 [ . . .[Dm

Di \Dj ¼ /; for all i 6¼ j ði; j ¼ 1; 2; . . .;mÞ
�

ð7Þ

If it exists,

Distance w1;w2ð Þ ¼ 0; for 8w1;w2 2 Di

[ 0; for 8w1 2 Di; 8w2 2 Dj ði 6¼ j; i; j ¼ 1; 2; . . . ;mÞ
����

ð8Þ

Then, Di (i = 1, 2, …, m) is the i-th structure equivalence class. Square Hmong
characters belonging to the same set Di have the same structure. Square Hmong
characters belonging to different Di have different structures.

Eight equivalence classes of the structure of square Hmong characters can be
calculated by using Eq. (8). The structure description of each equivalence class is
shown in Table 2.
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3.3 Judgment of Structure Equivalence Class of Square Hmong
Characters

The position of each component in the spatial structure of a square Hmong character
can be regarded as an attribute of the character. According to the linear representation
of a square Hmong character, if A(i) is used to represent the i-th attribute, each char-
acter has 14 attributes A(1), A(2), …, A(14). This attribute value only indicates whether
a certain type of component exists in a character, and its range is {0, 1}. “1” means that
such a component exists, and “0” means that such component does not exist.

The process of determining the structure equivalence class of a square Hmong
character is divided into two stages. In the first stage, the value of each attribute A(i)
(i = 1, 2, …, 14) is calculated. In the second stage, the structure equivalence class of
this character is determined according to the combination of attribute values. The
decision process is described in Algorithm 1.

Table 2. Equivalence classes of the structure of square Hmong characters and structure
description

Class
number

Structure
description

Linear
representation

Structure type

Class 1 Cl-Cr s1s2 left-right structure with two
components

Class 2 Cl-Crl-Crr s1s2s3 left-right structure with three
components

Class 3 Cu-Cd s4s5 top-bottom structure with two
components

Class 4 Cu-Cdl-Cdr s4s5s6 top-bottom structure with three
components

Class 5 Colu-Cird s7s8 part-enclosed structure with two
components

Class 6 Cold-Ciru s9s10 part-enclosed structure with two
components

Class 7 Coru-Cild s11s12 part-enclosed structure with two
components

Class 8 Coa-Cia s13s14 part-enclosed structure with two
components

160 L.-P. Mo et al.



Algorithm 1. Structure equivalence class decision algorithm 
Input: Given square Hmong character w
Output: Number of structure equivalence class Tw

Steps: 
Step 1: Linearize w to a uniquely identified component sequence f(w) using Equa-

tion (2). 
Step 2: Extract the i-th component fi(w) (i=1,2,…,14) from f(w) according to Equa-

tion (3) and check whether fi(w) is “ε”. If so, set A(i)=0; otherwise, set A(i)=1. 
Step 3: Check the values of each attribute A(i) (i=1,2,…,14) of w and determine Tw

according to the combination of A(i) values. 
(1) If A(i)=1 (i=1,2) and A(j)=0 (j=3,5,…,14), then Tw=Class 1. 
(2) If A(i)=1 (i=1,2, 3) and A(j)=0 (j=4,5,…,14), then Tw=Class 2. 
(3) If A(i)=0 (i=1,2, 3), A(j)=1(j=4, 5), and A(k)=0 (k=6,7,…,14), then Tw=Class 3. 
(4) If A(i)=0 (i=1,2,3), A(j)=1 (j=4,5,6), and A(k)=0 (k=8,9,…,14), then Tw=Class 

4.  
(5) If A(i)=0 (i=1,2,…,6), A(j)=1 (j=7,8), and A(k)=0 (k=9,…,14), then Tw=Class 

5.  
(6) If A(i)=0 (i=1,2,…,8), A(j)=1 (j=9,10), and A(k)=0 (k=11,…,14), then

Tw=Class 6. 
(7) If A(i)=0 (i=1,2,…,10), A(j)=1 (j=11,12), and A(k)=0 (k=13,14), then Tw=Class 

7. 
(8) If A(i)=1 (i=1,2, …,12) and A(j)=1 (j=13,14), then Tw=Class 8.  
(9) In other cases, w is not a valid square Hmong character. 

4 Analysis of the Statistical Characteristics of the Structure
of Square Hmong Characters

4.1 Cumulative Probability Distribution of the Structure of Square
Hmong Characters

The occurrence probability of the i-th equivalence class of the structure of square
Hmong characters in a given document D can be calculated by

Pi ¼ Dij j
Dj j i ¼ 1; 2; . . .;mð Þ ð9Þ

Where, |D| and |Di| indicate the number of characters in documents D and Di,
respectively, and m is the number of equivalence classes.

Document D1 consists of all square Hmong characters that have been collected, and
documents D2, D3, and D4 are composed of square Hmong characters appearing in
[14], [15], and [16], respectively. The probability distribution of the equivalence class
of the structure of square Hmong characters in each of the four documents (D1, D2, D3,
and D4) is shown in Fig. 3.
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The following points are determined from Fig. 3.

(1) Class 1 (Cl-Cr), Class 3 (Cu-Cd), and Class 6 (Cold-Ciru) have high probability
characteristics. In documents D1, D2, D3, and D4, the cumulative probabilities of
these three classes are as high as 0.9672, 0.9405, 0.9028, and 0.8250, respec-
tively. The high probability of Class 1 (Cl-Cr) is particularly significant.

(2) Class 2 (Cl-Crl-Crr), Class 4 (Cu-Cdl-Cdr), Class 5 (Colu-Cird), Class 7 (Coru-Cild),
and Class 8 (Coa-Cia) have a significantly low probability characteristic. In doc-
uments D1, D2, D3, and D4, the cumulative probabilities of these five classes are as
low as 0.0328, 0.0595, 0.0972, and 0.1750, respectively.

(3) In documents D1, D2, D3, and D4, the cumulative probabilities of the occurrence
of Class 2 (Cl-Crl-Crr) and Class 4 (Cu-Cdl-Cdr) are extremely low at only 0.0053,
0.0119, 0.0278, and 0.050, respectively.

Eight equivalence classes of the structure of square Hmong characters in the
practical documents are not evenly distributed. More than 80% of the characters
appearing in the practical documents belong to Class 1, Class 3, and Class 6, and more
than 90% of them consist of two components.

4.2 Complexity of the Structure of Square Hmong Characters

The results on the cumulative probability distribution of the structure of square Hmong
characters reflect the simplicity of the structure. This simplicity can be verified by
calculating the complexity of the structure of square Hmong characters. Complexity
can be expressed by the average number of components in each square Hmong
character appearing in the practical documents. Length is calculated by

Length ¼
Xm

i¼1

Pili ð10Þ

Fig. 3. Probability distribution of the equivalence class of the structure of square Hmong
characters
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Where, Pi is the probability of occurrence of various structures derived from Eq. (9)
and li is the number of components in the i-th equivalence class.

In documents D1, D2, D3, and D4, the Length values calculated with Eq. (10) are
2.0053, 2.0119, 2.0278, and 2.0500, respectively. This result fully confirms the sim-
plicity of the structure of square Hmong characters.

4.3 Information Entropy of the Structure of Square Hmong Characters

Information entropy is used to describe the distribution characteristics of square Hmong
characters with different structures in the same document. A large entropy value
equates to a large number of structure equivalence classes included in the document
and to a uniform distribution of square Hmong characters with different structures. On
the contrary, a small entropy value equates to a few structure equivalence classes
included in the document and to a concentrated distribution of square Hmong char-
acters in a few classes.

Given document D, the information entropy of the structure of square Hmong
characters is calculated as

Entropy Dð Þ ¼ �
Xm

i¼1

Pilog2Pi ð11Þ

Where, Pi and m are similar to those in Eq. (9).
Figure 4 presents the information entropy of the structure of square Hmong char-

acters in documents D1, D2, D3, and D4. As shown in Fig. 4, the structure of square
Hmong characters in the four documents reveals a first-order approximation of the
information. The entropy is small, falling in the interval (1.19, 2.16). The results also
show that the probability of occurrence of various structures appearing in the practical
documents is extremely uneven.

Fig. 4. Information entropy of the structure of square Hmong characters in the practical
documents
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5 Conclusion and Future Work

In this work, we study the linear representation of square Hmong characters and the
classification method for the structure of square Hmong characters. We also analyze the
statistical properties of the structure of square Hmong characters appearing in practical
documents. The analysis results can be used as a basis for the design of a heuristic rule
in the post-processing of an intelligent input and recognition system for square Hmong
characters. The study provides a good foundation for the further investigation of the
application of the structure characteristics of such characters.

Notably, this study focuses on character structure and not on specific characters. To
comprehensively understand the application characteristics of square Hmong characters
in different areas, a variety of practical documents with different themes, styles, and
nature must be collected. An in-depth analysis of the differences in the use of specific
characters should be conducted, and the effectiveness of specific characters should be
evaluated.
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Abstract. Short-term prediction of stock market trend has potential application
for personal investment without high-frequency-trading infrastructure. Existing
studies on stock market trend prediction have introduced machine learning
methods with handcrafted features. However, manual labor spent on hand-
crafting features is expensive. To reduce manual labor, we propose a novel
recurrent convolutional neural network for predicting stock market trend. Our
network can automatically capture useful information from news on stock
market without any handcrafted feature. In our network, we first introduce an
entity embedding layer to automatically learn entity embedding using financial
news. We then use a convolutional layer to extract key information affecting
stock market trend, and use a long short-term memory neural network to learn
context-dependent relations in financial news for stock market trend prediction.
Experimental results show that our model can achieve significant improvement
in terms of both overall prediction and individual stock predictions, compared
with the state-of-the-art baseline methods.

Keywords: Stock market prediction � Embedding layer
Convolutional neural network � Long short-term memory

1 Introduction

Financial information on the internet has increased explosively with the rapid devel-
opment of the internet. Daily financial news, as an important resource of financial
information, contains a large amount of valuable information, such as the changes in
senior management of listed companies and the releases of new products. The infor-
mation is highly useful for investors to make crucial decisions on their personal
investment. The key issue on generating a high return on the stock market lies in how
well we are able to successfully predict the future movement of financial asset prices.
Therefore, it is necessary to fully exploit the financial information from news for stock
market trend predictions.

Existing studies have addressed stock market trend prediction using various
machine learning methods, such as Support Vector Machines (SVMs) [1–4], Least
Squares Support Vector Machines (LS-SVMs) [5–7] and Artificial Neural Networks
(ANNs) [8–10]. Most of these studies have focused on extracting effective features for
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training a good prediction model [11–14]. Feature selection and feature engineering
have been fully investigated for the improvement of performance. For example, Kogan
et al. [11] addressed the volatility of stock returns using regression models based on
financial reports to reduce the financial risk. Schumaker et al. [12] used SVM with
several different textual representations, bag of words, noun phrases, and named
entities for financial news article analysis. However, handcrafted features cost much
manual labor and partly limit the scalability of the learned models. How to automat-
ically generate effective features for stock market predictions remains a great challenge.

Recently, deep learning models have exhibited powerful capability in automatically
generating effective features, and been successfully applied in different natural lan-
guage processing tasks. Existing studies on stock trend prediction have also focused on
automatically generating effective features based on deep neural network models. For
example, Hsieh et al. [13] integrated bee colony algorithm into wavelet transforms and
recurrent neural networks for stock prices forecasting. Ding et al. [14] proposed con-
volutional neural network to model the influences of events on stock price movements.
However, how to accurately model the relationship between financial news and stock
market movement poses a new challenge for stock market trend prediction.

In this paper, we attempt to introduce deep neural network based models for stock
market trend prediction. Deep neural network models, such as convolutional neural
network and long short-term memory network, have been widely used in natural
language processing tasks [15–19]. We address two key issues for applying deep neural
network based models in this task. One is how to generate effective entity embedding
based on the contents of financial news, and the other is how to incorporate the
complex mutual relationship between financial news and stock market movement into
the prediction model.

In order to construct useful word embedding for financial news contents, we
introduce an entity embedding method [20] to represent financial news. This method
actually introduce an entity embedding layer between one-hot input layer and neural
network model for automatically learning entity embedding for news contents. To
predict stock market trend of the listed companies, we first extract key influential
information from daily financial news. We then propose a convolutional recurrent
neural network to represent the news for extracting key information. The proposed
network can capture the context-dependence relations in financial news, and use their
internal memory to process arbitrary sequences of inputs for better prediction.
Experimental results show that the proposed model outperforms other baseline models
and effectively predicts the stock market trends.

The main contribution of this paper is as follows: (1) We introduce an entity
embedding layer to automatically learn distributed representation of financial news
contents without any handcrafted feature. (2) We propose a recurrent convolutional
neural network to extract the key information from financial news and model context-
dependent relation for predicting stock market movements. (3) We conduct extensive
experiments to evaluate the proposed model. Experimental results show that our model
achieves significant improvement in terms of the prediction accuracy.
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The rest of the paper is organized as follows: Sect. 2 introduces the overall
framework and details of our model; Sect. 3 provides our experimental results and
comparative analysis of the experimental results; Sect. 4 concludes the paper and
introduces our future work.

2 Methodology

In this section, we introduce details about the proposed model. We first illustrate the
overall framework of our model for stock market trend prediction shown in Fig. 1. The
whole framework includes four modules: the financial data acquisition module, the data
preprocessing module, the data labeling module and the model training module.

The financial data acquisition module crawls financial data from Yahoo Finance1.
We acquire two types of data, financial news and stock prices, for model training. The
financial news are used as the information source of model inputs, and the stock prices
are used as the source of the ground truth labels for model targets.

The data preprocessing module transforms the webpages into texts by removing
useless data, such as images and links. This module also preprocesses the stock prices
data by removing stopwords, stemming the contents, and counting the term frequency
in news for subsequent processing.

The data labeling module then matches the financial news with stock prices based
on their timestamps, which is used to generate ground truth labels for model training at
different levels, including the day-level, week-level and month-level matching labels.

The model training module is the core of our predictive model, the recurrent
convolutional neural network model (RCNN). This module includes three layers, the
embedding layer, the convolutional layer and the long short-term memory (LSTM)

The Data Acquistion Module

Financial news Stock prices

Yahoo Finance

The Data Preprocessing Module

Stopword
Removal

Noise
Removal

Stemming Term
Frequency

The Model Training Module The Data Labeling Module

Day-level Matching Label

Month-level Matching Label

Week-level Matching Label

Entity Embedding Layer

LSTM Layer

Convolutional Layer

Fig. 1. The overall framework of our model

1 https://finance.yahoo.com/.
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layer. We illustrate these layers in Fig. 2. The embedding layer learns entity embedding
based on the financial news contents, the convolutional layer extracts the key local
information of news, and the LSTM layer captures the relationship of dependency
context for final prediction of stock market movements by a dense neural network
(NN) layer. We introduce the details about each layer in the following subsections.

2.1 The Embedding Layer

For the embedding layer, we first count the term frequency of the crawled financial
news to build a financial entity dictionary with high frequency entity terms. We then
align the input sentences with diverse lengths using the financial dictionary as the
inputs of the embedding layer. We adopt a state-of-the-art embedding method [20] to
map the words to matrix. The used embedding method can represent key financial
entities into vectors in Euclidean spaces, and map similar values close to each other in
the embedding space to reveal the intrinsic properties of the categorical variables. The
method can effectively represent financial entities into a vector space as the inputs of
the following convolutional layer. Specifically, we first map each state of a discrete
variable based on term frequency to a vector for learning vector representations of
entities as follows.

ei : xi ! xi ð1Þ

The mapping is equivalent to build an extra layer on top of the input one-hot
representations. We encode the inputs as follows.

ui : xi ! dxia ð2Þ

where dxia is Kronecker delta and the range of a is the same as xi. If mi is the number of
possible values of xi, then dxia becomes a vector of length mi, where the element is non-
zero when a ¼ xi. Given the input xi, the output of this fully connected layer is defined
as follows.

xi �
X

a

wabdxia ¼ wxib ð3Þ

Convolution
layer

LSTM
layer

Embedding
layer

NN
layer

Fig. 2. Recurrent convolutional neural network
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where b is the index of the embedding layer and wab is the weight between the one-hot
encoding layer and the embedding layer. It can be seen that the mapped vector rep-
resentations of the entities are actually the weights of embedding layer. The weights are
the parameters in the neural network, and can be learned during model training.

We provide a toy example of our data in Fig. 3 for better understanding the
embedding layer. The example is taken from Apple news in April 26, 2016. The raw
input of the example is “apple becomes the dow’s worst performer”. We preprocess the
sentences by removing stopwords and stemming, and then we obtain the sentence “appl
becom dow worst perform”. Based on pre-built financial entity dictionary, we map the
input sentence to the matrix using the entity embedding method, which will be taken as
the inputs for the convolutional layer.

2.2 The Convolutional Layer

Convolutional neural networks (CNN) are inspired by biological processes and are
designed to use minimal amounts of preprocessing for encoding abundant semantic
information in different natural language processing tasks. Convolutional neural net-
works, as variations of multilayer perceptrons, include three characteristics, local
connectivity, parameter sharing and pooling. These characteristics make CNN an
effective network model in extracting key information in texts

In our model, we use CNN as the convolutional layer, which treats the outputted
matrix of the embedding layer as inputs for modeling the key information of financial
news. The number of columns of the matrix is the dimensionality of the entity
embedding, which is taken as the number of the feature maps of the convolutional
layer. The number of rows of the matrix is taken as the number of convolutional
kernels. We perform convolutional operation on the columns of the input matrix using
max pooling to extract the critical information affecting stock movements. The outputs
of the convolutional layer are then regarded as the inputs of the following LSTM layer.

We illustrate our convolutional layer in Fig. 4. The convolutional layer uses con-
volutional operation with max pooling to extract semantic and context information
from financial news, and embeds the information into low dimensional representations
for tracking the stock market movement.

appl

becom

dow

worst

Embedding layerIndex

Fig. 3. A toy example for using the embedding layer to automatically learn distributed
representation of financial entities.
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2.3 The LSTM Layer

Recurrent neural network model (RNN) is widely used in NLP tasks, which equivalents
to the multilayer feedforward neural network. Long short-term memory network
(LSTM), as a variation of RNN, avoids the gradient vanish issue in RNN and uses
historical information through the input, forget and output gate.

We adopt LSTM as a layer in our model. Our model takes the outputted matrix of
the convolutional layer as the inputs of the LSTM layer for capturing the relationship of
dependency contexts for final prediction of stock market movements. The rows of the
matrix are taken as the hidden units of the LSTM layer, and the last hidden unit of the
LSTM layer is then regarded as the inputs of the LSTM layer. LSTM has been proved
to be effective in capturing temporal sequential information in other natural language
processing tasks. Since financial data comprises abundant temporal information, we use
LSTM to capture latent information in financial news, particularly to model the rela-
tionship between the stock market movement and the news. We illustrate the LSTM
layer used in our model in Fig. 5.

Finally, we use a dense neural network layer to classify the financial news for
predicting stock movements. We then evaluate our model using extensive experiments.

convolution layer

Fig. 4. Using convolution layer to extract the key information from financial news

LSTM layer NN layer

Fig. 5. Using LSTM to extract the context-dependent relation from financial news
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3 Experiments

3.1 Experimental Setup

In this section, we introduce the experimental setup and report the experimental results
for evaluating the proposed model. We fetch the financial news using a web crawler
from Yahoo Finance focusing on the shares of listed companies. The date range of the
fetched news is from October, 2014 to May, 2016. The obtained data involves 447
listed companies, such as Apple Inc. (AAPL), Google Inc. (GOOG) and Microsoft Inc.
(MSFT). We provide the statistics of our data in Table 1.

We crawl historical stock prices from Yahoo Finance website, and use the prices to
generate ground truth labels of the financial news. Specifically, if the stock price moves
up in the next day, we label the current day’s financial news as 1, indicating it is useful.
Otherwise, if stock price moves down in the next day, we labeled the current day’s
news as 0, indicating it is useless for stock market trend prediction.

In addition, we use the headlines of financial news as the training data in our
experiments following the work by Ding et al. [14] and Tetlock et al. [21], which
showed that news titles are more useful than news contents for the prediction of stock
market trend. In order to detect diminishing effects of reported events on stock market
volatility, we label news at day level, week level and month level, respectively. Our
preliminary experimental results show that week-level and month-level labels are of
little use for stock trend prediction. Therefore, we adopt the day-level labels in the
following experiments, which is the same setting as other existing studies on stock
movement prediction [22–24].

In our experiments, we compare our model with two state-of-the-art baseline
models. One is to represent financial news using bag of words features and SVM
classifier proposed by Luss et al. [23], denoted as SVM. The other adopted neural
tensor network to learn distributed representations of financial events, and used con-
volution neural network model for predicting the stock market [14], denoted as
E-CNN. We evaluate the performance of prediction in terms of two standard evaluation
metrics, the accuracy (Acc) and the Matthews correlation coefficient (MCC). We
conduct 5-fold cross validations to evaluate the results, and report the average results
for fair comparison.

Table 1. Statistics of the used data

Statistics Quantity

The number of listed companies 447
Date range of financial news 2014.10–2016.05
The number of the news 322,694
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3.2 Experimental Results and Analysis

Hyper-parameter Selection
Compared to the baseline models, we introduce the embedding layer to automatically
learn the entity embedding of financial news, and then used the convolutional layer and
the LSTM layer to extract critical information and the context-dependent relation for
final prediction. There are six hyper-parameters used in our model, including the length
of the inputs, the dimensionality of the embedding layer, the length of each CNN
kernel, the number of CNN kernels, the dimensionality of the LSTM layer and the
number of iterations. We switch these parameters for the baseline models and our
model on the development set for selecting the optimal parameters. We report the
selected optimal parameter in Table 2.

Experimental Results
We report our experimental results in this section. In the experiments, we train four
different neural network models to demonstrate the effectiveness of the proposed
embedding layer and the LSTM layer. We introduce these models as follows and report
the experimental results in Table 3.

• E-CNN: The model proposed by Ding et al. [14], which is one of the state-of-the-
art models for predicting stock market trend. The model includes an event
embedding layer and one CNN layer.

• EB-CNN: We use the model to examine the effectiveness of the proposed
embedding layer for financial entity representation. The model includes the pro-
posed embedding layer and the CNN layer.

Table 2. The hyper-parameters of our models

Hyper-parameters E-CNN EB-CNN E-CNN-LSTM EB-CNN-LSTM

Length of the inputs 30 30 30 30
Dim. of embedding layer 50 128 50 128
Length of CNN kernel 3 3 3 3
Number of CNN kernels 250 250 64 64
Dim. of LSTM layer – – 70 70
Number of iterations 30 30 30 30

Table 3. The results of experiments

Experiments Accuracy MCC

SVM [23] 58.42% 0.1425
E-CNN [14] 63.44% 0.4198
EB-CNN 64.56% 0.4265
E-CNN-LSTM 65.19% 0.4356
EB-CNN-LSTM 66.31% 0.4512
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• E-CNN-LSTM:We use this model to examine the effectiveness of the LSTM layer.
The model includes the event embedding, the CNN layer and the LSTM layer.

• EB-CNN-LSTM: This model is the proposed model, including the entity embed-
ding layer, the CNN layer and the LSTM layer.

From the table, we observe that the EB-CNN model achieves better prediction
performance than the E-CNN model, which indicates the effectiveness of entity
embedding used in our model. One possible explanation for this finding is that the
entity embedding layer better encodes semantic information of financial entities for
word and entity representations for financial news, while the event embedding layer
used in E-CNN is designed to solve the sparsity of data and used to extract the key
elements of events for the representation. Therefore, we obtain better performance
using the CB-CNN model.

Furthermore, we observe that the E-CNN-LSTM model outperforms the E-CNN
model, which indicates the effectiveness of the LSTM layer used in our model. We
believe that this is because the LSTM layer contributes to extracting the context-
dependent relationship between the financial news and the stock market trends. The
proposed model finally achieves the best performance among all the baseline models,
which demonstrates that our model is effective in capturing the stock market movement
and predicting the stock market trends. We illustrate the experimental results with the
change of the number of iterations in Fig. 6. The figure clearly shows that our model
outperforms other baseline models with the number of iterations changing from 0 to 30.

Comparisons on Individual Stock Predictions
To further evaluate our model, we compare our approach with the baseline models in
terms of individual stock predictions. We select nine companies as the individuals from
our dataset. These companies cover high-ranking companies (GOOG, MSFT, AAPL),
middle-ranking companies (AMAT, STZ, INTU), and low-ranking companies (HST,
ALLE, JBHT). The ranking of companies are based on the S&P 500 from the Fortune
Magazine2. We report the accuracy of individual stocks in Fig. 7.

Fig. 6. Comparison of different models

2 http://fortune.com/.
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From the figure, we can observe that our model achieves robust results in terms of
the selected individual stocks. In addition, our model achieves relatively higher
improvements on those lower fortune ranking companies, for which fewer pieces of
news are available. For the baseline methods, the prediction results of low-ranking
companies dramatically decrease. In contrast, our model achieves more stable perfor-
mance. This is because our model uses the entity embedding layer to learn powerful
distributed representations based on the news from these low-ranking companies.
Hence, our model yields relatively high accuracy on prediction even without large
amounts of daily news.

Diminishing Effects of the News
In order to detect diminishing effects of the news on stock market volatility, we label
news in the next one day, next two day, and next three day, respectively. We train our
model and the baseline models based on the different levels of labels, and report the
experimental results in Fig. 8.

Fig. 7. Comparisons on individual stock prediction. Companies are named by ticker symbols.

Fig. 8. Development results of different labels for the models
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From the figure, we observe that our model achieves the best performance at dif-
ferent levels of labels compared to the baseline models. This finding exhibits the
robustness and stability of our model. Besides, we observe that the effects of news on
stock market prediction weakened over time, which indicates that daily prediction on
stock market trend is necessary. We also use the news at a level of more than 3 days.
The experimental results show that the influence of financial news is almost disap-
peared and useless for the prediction.

4 Conclusion and Future Work

In this paper, we propose a novel recurrent convolutional neural network model to
predict the stock market trends based on financial news. In our model, we introduce an
entity embedding layer to automatically learn distributed representation of financial
entities without any handcrafted feature. We propose a recurrent convolutional neural
network to extract the key information from financial news and model context-
dependent relation for predicting stock market movements. The proposed network
includes a convolutional layer and a long short-term memory layer for capturing
abundant semantic information from the financial news. We conduct extensive
experiments to evaluate the proposed model. Experimental results show that our model
achieves significant improvement in terms of the prediction accuracy. In our future
work, we will explore more effective model for predicting the stock market trend in
consideration of temporal characteristics of news. We will also attempt to integrate
external financial knowledge to optimize our model and improve the performance of
stock trend prediction.
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Abstract. This paper describes the methods for the DeepIntell who
participated the task1 in the NLPCC2018. The task1 is to label the
emotion in a code-switching text. Note that, there may be more than
one emotion in a post in this task. Hence, the assessment task is a multi-
label classification task. At the same time, the post contains more than
one language, and the emotion can be expressed by either monolingual
or bilingual form. In this paper, we propose a novel method of convert-
ing multi-label classification into binary classification task and ensem-
ble learning for code-switching text with sampling and emotion lexicon.
Experiments show that the proposed method has achieved better perfor-
mance in the code-switching text task.

Keywords: Multi-label classification · Binary classification
Sampling · Emotion lexicon · Ensemble learning

1 Introduction

With the widespread popularity of social media, such as Weibo, WeChat, Twit-
ter, etc., the analysis of the content of user articles has played a pivotal role in the
field of natural language processing. Most of the previous emotion classification
problems were conducted in monolingual corpora. However, with the diversifica-
tion of culture, people usually publish some multilingual articles or comments.
[E1-E4] are four examples of code-switching text on evaluation data that contain
both Chinese and English words. In order to detect the emotions better in the
text, it is necessary to consider the emotional expression in all of them. The
assessment task mainly includes automatic classification of emotion (happiness,
sadness, anger, fear, surprise) in code-switching text. Different from monolin-
gual emotion detection, the emotion in code-switching text can be expressed in
either monolingual or bilingual forms. In this task, we focus on Chinese and
English mixed code-switching text. Although Chinese is the major language, it
has been shown that English words are critical for emotion expression.
c© Springer Nature Switzerland AG 2018
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[E1] show happy!
(The show is really nice , I feel very happy today!)
[E2] hold
(I have been teaching the whole day, my throat can’t take it anymore .)
[E3] caffe in
(I’m at caffe in (Zhongshan South Road).)
[E4] , give me five!
(You are really good today, give me five!)

In fact, examples above are essentially different. E1 expresses the emotion
by monolingual form, either Chinese or English. E2 has the bilingual form to
express sadness. English words in E3 can’t express any emotions. E4 expresses
the emotion by English phrase. And the corpus data can be roughly divided into
four categories above. However, if we want to fully uncover the emotions in the
text, using an emotion lexicon as an aid seems like a good choice. Thus, we have
collected the emotion lexicon in Chinese, English and mixture to explore the
emotional information better in the code-switching text.

We adopt the multi-label classification method RCNN and the binary clas-
sification Fasttext [21], RCNN, and CNN [20] for the automatic classification
of emotion. The experiment results show that the methods above have different
advantages and disadvantages for different emotions, so ensemble learning tech-
nique may achieve better results. In addition, pre-processing (sampling) of the
training data will get better scores when using the binary classification method
for emotion recognition.

In fact, the evaluation is essentially a multi-label classification task. To detect
the emotion better in the code-switching text, we propose a method of binary
classification and ensemble learning with sampling and emotion lexicon(BCEL).
For the five emotions of this evaluation: happiness, sadness, anger, fear, and
surprise, we generated five data sets of the same size as the original training set.
However, sentences in each sets are labelled differently. Take happiness as an
example, if a sentence contains this emotion, it is marked as happiness, otherwise
it is marked as non. Then we adopt the binary classification methods to train
five training sets respectively to obtain the optimal model. At the end, we adopt
ensemble learning technique and emotion lexicon for the five optimal models to
obtain the final result.

The rest of the paper is organized as follows. In Sect. 2, we give an overview
on the related work. In Sect. 3, we introduce our methods that we have tried. In
Sect. 4, we describe our BCEL method. Experiment results and discussion are
reported in Sect. 5. Finally, we draw some conclusions and give the future works.

2 Related Work

In this section, we discuss related works on emotion classification and code-
switching text.
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2.1 Emotion Classification

With the increasing number of texts with subjective assessment on the Internet,
text emotion classification has gradually become a research hotspot in the field
of natural language processing. Mostafa [3] used a pre-defined vocabulary of
approximately 6,800 adjectives to perform emotion analysis of microblogs from
multiple company consumers and found that consumers had positive emotions
for well-known brands. Pang Lei et al. (2012) used emotional words and facial
expressions as learning knowledge, using support vector machines, naive Bayes
and maximum entropy to propose an unsupervised emotion classification method
based on Sina Weibo.

A major related research in the emotion classification task is the creation
of emotional resources, such as the creation of emotion lexicons. Xu et al. [8]
apply a graph-based algorithm and multiple types of resources to create a Chi-
nese emotion lexicon. Volkova et al. [9] introduced a dictionary for exploring
language colors, concepts, and emotions. Moreover, most of the relevant studies
have focused on supervised learning methods. Alm et al. [10] achieved text-based
emotion prediction using machine learning methods. Aman and Szpakowicz
[11] implemented sentence-level fine-grained emotion recognition through a
knowledge-based approach. Chen et al. [7] detected emotion-induced events by
analyzing the language architecture. Purver and Battersby [12] trained a fully
supervised classifier using auto-labeled data to achieve multiple types of emotion
prediction without manual intervention. Lin et al. [6] first described the emotion
classification tasks of readers in news texts, and then applied some standard
machine learning methods to train a classifier that recognizes readers’ emotions.

2.2 Code-Switching Text

Code-switching text has received considerable attention in the NLP community.
Several studies have focused on identification and analysis. Ling et al. [13] pre-
sented a novel method for translation in code-switched documents. Solorio and
Liu [14] predicted potential code-switching points in Spanish-English. Lignos and
Marcus [15] tried to identify code-switched tokens and Li et al. [16] added code-
switched support to language models. Peng et al. [17] learned poly-lingual topic
models from code-switching text. Lee et al. [1] proposed a multiple-classifier-
based automatic detection approach to detect emotion in the code-switching
corpus for evaluating the effectiveness of both Chinese and English texts. Wang
et al. [2] proposed a Bilingual Attention Network (BAN) model to aggregate the
monolingual and bilingual informative words to form vectors from the document
representation, and integrate the attention vectors to predict the emotion.

3 Methods

3.1 Fasttext

Fasttext [21] is a text classification tool developed by Facebook. It provides a
simple but efficient method for text representation and text classification. For the
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text classification part, it only has one hidden layer in the architecture so that the
classification process is relatively fast. Fasttext classification function is similar
to word2vec’s continue bag of words (CBOW) algorithm. Firstly, the feature
vector combined with word sequence is linearly projected to middle hidden layer.
Secondly, there is a non-linear activation function which projects middle hidden
layer to the categorization label. The difference between Fasttext and CBOW is
that Fasttext predicts labels while CBOW predicts middle terms.

We adopt Fasttext to train one classifier for each emotion. And then we will
get five classifiers and finally perform five different emotion predictions.

3.2 RCNN(Multi-label)

The structure of RCNN model is shown in Fig. 1. RCNN has a two-layer bidi-
rectional LSTM to extract the context information of each word. It also uses
Embedding to obtain the word information directly. Then the output of LSTM
and Embedding is concatenated, and the concatenating result is performed with
two-layer convolution operation after K-MaxPooling that extracts the local fea-
tures further. Finally, the features are continuously input into a classification
network composed of two-layer fully connected networks.

Fig. 1. The structure of Recurrent Convolutional Neural Networks model

3.3 RCNN(Binary)

The RCNN model adopted in this method is the same as the model used in
the second method, except that the output of model is changed to the binary
classification (idea of the first method). That is, using the RCNN to train five
classifiers according to the emotion category, namely happiness, sadness, anger,
fear, and surprise.

3.4 CNN(Binary)

The Convolutional Neural Networks(CNN) [20] model is shown in Fig. 2. It uses
the word vectors (Word2Vec embedding) to obtain the word information directly.
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Then, the model adopts four-layer convolution and two pooling layers (MaxPool-
ing, AveragePooling) to extract features, in which the MaxPooling is used after
the first two convolution layers, AveragePooling is adopted at the end. After
extracting features using AveragePooling, the features are input into the fully
connected layer continuously for classification.

Fig. 2. The structure of Convolutional Neural Networks model

4 Binary Classification and Ensemble Learning
with Sampling and Emotion Lexicon

Although research on text classification has been carried out for many years,
most of the current studies assume a balanced distribution of samples of various
categories. However, the reality is often not the case. In the actual collection
of corpus, whether it is the product review text or microblogging text, Twitter
text, etc., multi-class classification or binary classification, the distribution of
samples in each category is often very unbalanced. What’s more, the unbalanced
distribution of samples will make the classification results obtained by applying
the neural network classification method heavily biased towards classes with a
large number of samples, thereby greatly reducing the classification performance.
For the data of this evaluation, regardless of multi-label classification or binary
classification, the distribution of samples in the classification is unbalanced. If
the neural network model is adopted only, the performance will be affected.

To address the above challenges, we propose a binary classification and
ensemble learning with sampling and emotion lexicon(BCEL) method. We firstly
take sample on training set and perform ensemble learning with emotion lexicon
finally.

4.1 Sampling

The current mainstream imbalance classification method is based on undersam-
pling and oversampling machine learning classification methods. The main idea
of the method is to use the undersampling or oversampling technique to obtain
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a balanced sample, and then classify the sample by a machine learning classifi-
cation method. However, only a part of samples in training set can be used when
adopting the undersampling technique, thus losing many samples that may be
helpful for classification. Therefore, if the training set is too small, the undersam-
pling method is not advocated. In order to make full use of the existing samples,
we adopt the oversampling method (based on the undersampling technique) so
that the number of positive and negative samples is basically the same. The
basic model is shown in Fig. 3.

Fig. 3. The structure of Convolutional Neural Networks model with sampling

The oversampling technique we adopt is essentially based on undersampling,
and the specific process is as follows: We first use the random undersampling
method to perform undersampling n times for each category of samples (posi-
tive and negative samples for binary classifications). The number of samples we
choose is equal to category which has minimum quantity (In this evaluation, it
is the number of samples with a certain type of emotion). In the end, we get n
sets of balanced samples, and then merge the n sets of balanced samples into a
training set sample for training, as shown in Fig. 4.
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Fig. 4. The oversampling technique based on undersampling

4.2 Ensemble Learning

The idea of ensemble learning is to integrate several individual classifiers when
classifying new instances, and to determine the final classification through a
combination of the classification results of multiple classifiers to obtain better
performance than a single classifier. If a single classifier is compared to a decision
maker, the ensemble learning approach is equivalent to multiple decision makers
making a common decision. Figure 5 shows the basic idea of integrative learning.

After getting multiple classifiers, the last step which is also the most impor-
tant is to adopt combination strategies. Since there are few training data sets,
we use a simple voting method. The specific process is as follows:

1. Using the classifier model with the highest accuracy (P-value) (we’ll call it
H) as the standard, whose prediction is right we think.

2. If the prediction of classifier model H is non (that is, there is no emotion),
we look at the prediction results of other classifier models above, and take
the emotion with the largest number of predictions (that is, other classifiers
except H adopt the principle of the minority obeying the majority).

3. Because there are more posts containing happiness or sadness, therefore we
introduce emotion lexicon for happiness and sadness classification.
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Fig. 5. The basic idea of ensemble learning

5 Experiments

5.1 Datasets

The number of training set is 6000, development set is 728, and the test set
has 1200 posts in this shared task. There may be more than one emotion in a
post. For each post, five basic emotions were annotated, namely happiness, sad-
ness, fear, anger and surprise. The distribution of different emotions in training,
development and test data is shown in Table 1.

Table 1. The distribution of different emotions.

Train Dev Test

Happiness 0.304 0.302 0.408

Sadness 0.181 0.165 0.247

Anger 0.095 0.115 0.093

Fear 0.108 0.117 0.031

Surprise 0.109 0.126 0.053

In this shared task, we strictly use the given training dataset and construct
the emotion lexicon by the emotion ontology of Dalian University of Technology
(DLUT) and some English lexicons from github1.
1 https://github.com/timjurka/sentiment/tree/master/sentiment.

https://github.com/timjurka/sentiment/tree/master/sentiment
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5.2 Experiment Settings

In our experiments, the input is a 300-dimensional vector denotes word embed-
ding. We use the longest word-level (60) length of post in the data to unfold
the BiLSTM networks. The learning rate is initialized to 0.001, and decay rate
per 128 training steps is 0.9. We use a fixed number of epochs and always save
the model with the best F1 score of the development set. The specific model
parameters are set as shown in Table 2.

Table 2. Parameter configurations of our model.

Parameters Configurations

Word embedding dimension 300

Learning rate 0.001

Loss function Softmax,binary-crossentropy

PretrainedVectors Yes

Number of epochs 20,40

Number of negatives sampled 3,20

Number of convolution 64,128,256

Size of kernel 3

Pooling Size 3

Decay rate 0.9

Batch size 128

Vocabulary size 213543

5.3 Results

According to official evaluation requirements, we compute precision (P), recall
(R), and F1-Score for each emotion separately, and calculate the macro averaged
P, R and F1 with all emotions. The official scoring metric is macro-averaged F1-
Score.

We experimented with the mentioned methods above to get a comparison of
the performance of the model on the development set, as shown in Table 3.

Table 3. The F1-Score of each model.

Emotion

F1− Score Model
Fasttext RCNN(B) RCNN(M) CNN CNN(S)

happiness 0.600 0.573 0.611 0.564 0.615
sadness 0.491 0.411 0.364 0.487 0.487
anger 0.489 0.454 0.397 0.482 0.606
fear 0.350 0.395 0.206 0.368 0.429

surprise 0.383 0.322 0.100 0.263 0.378
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As shown in Table 3, Fasttext and CNN model are binary classification.
RCNN(B) is binary while RCNN(M) is multi-label classification. CNN(S) is
binary classification and adopts sampling technique.

To achieve better scores, we introduce ensemble learning with emotion lexicon
to determine the final result of the whole development samples by sub-models
voting. The precision (P), recall (R), and F1-Score for each emotion on the
development set, are shown in Table 4. Table 5 shows the test set scores.

Table 4. The final result by BCEL method on the development set.

P R F1

Happiness 0.609756 0.681818 0.643776

Sadness 0.460122 0.616666 0.527016

Anger 0.501905 0.741379 0.598579

Fear 0.445455 0.502941 0.472456

Surprise 0.289412 0.603478 0.391210

Table 5. The final result by BCEL method on the test set.

P R F1

Happiness 0.776765 0.695918 0.734123

Sadness 0.683128 0.560811 0.615955

Anger 0.613636 0.486486 0.542714

Fear 0.222222 0.324324 0.263736

Surprise 0.366667 0.485294 0.417722

5.4 Discussion

For emotion happiness and sadness, the difference between the positive and neg-
ative examples in quantity is not disparate. Therefore, the data sampling pre-
processing does not significantly improve their performance. In order to improve
the performance of the model for happiness and sadness, we tried to merge the
training results of other models and the regular methods of the lexicon (Chinese
and English). We fused the ensemble learning results of the above five models
with the lexicon rule method. And the lexicon rule threshold k is set to 2, that
is, if the number of certain emotion words in a sentence is greater than or equal
to 2 or the ensemble learning result contains the emotion, then the post has that
emotion. After that, the final results of development and test data are shown in
Tables 4 and 5.
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6 Conclusion

This paper presents an effective approach for code-switching text based on binary
classification and ensemble learning. Firstly, we adopt the method of converting
multi-label classification into binary classification task. At the end, the output of
multiple classifiers is combined to form the final prediction result. However, the
proportion of positive and negative examples in training data is very different,
especially for the three emotions of anger, fear, and surprise. Therefore, we use
the oversampling technique to balance the data and obtain relatively balanced
training samples. However, for emotion happiness and sadness, the difference
between the positive and negative examples in quantity is not disparate, so
we introduced the English and Chinese emotion lexicon to fully explore the
emotion of happiness and sadness. Next we will focus on the interaction between
emotions and the construction of the Chinese-English hybrid dictionary will be
an important aspect in the future.
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Abstract. Most of the previous emotion classifications are based on binary or
ternary classifications, and the final emotion classification results contain only
one type of emotion. There is little research on multi-emotional coexistence,
which has certain limitations on the restoration of human’s true emotions.
Aiming at these deficiencies, this paper proposes a Bidirectional Long-Short
Term Memory Multiple Classifiers (BLSTM-MC) model to study the five
classification problems in code-switching text, and obtains text contextual
relations through BLSTM-MC model. It fully considers the relationship between
different emotions in a single post, at the same time, the Attention mechanism is
introduced to find the importance of different features and predict all emotions
expressed by each post. The model achieved third place in all submissions in the
conference NLP&&CC_task1 2018.

Keywords: Multiple emotion classification � Code-switching texts
Attention mechanism � BLSTM multiple classifiers

1 Introduction

Emotion classification refers to mapping the information to be classified into a pre-
defined emotional category system. Which is widely used in recommendation and
public opinion analysis. According to different emotional granularity, emotion classi-
fication can be divided into binary classification (subjective, objective), ternary clas-
sification (allegative, derogatory, neutral), or multivariate classification. Among them,
multivariate classification can classify the emotions more close to human real emotions.
In 2001, Parrott divided human social psychology into Happiness, Sadness, Anger,
Fear, and Surprise in the results of research on human social psychological and
emotional expression [1].

The code-switching text contains five kinds of emotions (happiness, sadness, anger,
fear, surprise).Each post contains both English and Chinese. Emotions can be
expressed individually or mixed both Chinese and English. Therefore, there are four
forms for expression of emotions: none, Chinese, English and both. None means this
post does not contain any corresponding emotions (E1). Chinese or English means that
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emotions are expressed only by Chinese or English (E2, E3). Both mean that emotions
are expressed in Chinese and English (E4). A single post may also contain multiple
emotions (E5), so it is very different from monolingual and bilingual texts.

E1. party

(At the end of the year, there are more parties, and I’m preparing for the “Gastro
Gamer” party in Thames Small Town…)

E2. , why? why? why?
(Extremely bad mood, why does this happen, why? why? why?)

E3. I’m so happy!
(I’m so happy! Although the sky is still floating*)

E4.

(I have been grumpy and emotional since the first day of school, unstable mindset
too. It’s really time to self-evaluate…sigh.)

E5.
(After making four English Weekly Reports, I discovered that there are two other real
collapses. i hate english)

In recent years, deep learning technology has gradually replaced traditional
machine learning methods and has become the mainstream model of emotional clas-
sification [2]; Socher et al. [3] used the recursive neural network (RNN) model to
perform emotional classification on the Film review data. Kim [4] uses convolution
neural network (CNN) model to classify emotion. Literature [5] uses Long-Short Term
Memory (LSTM) model to comment sentences into word sequences for emotion
classification; Cheng Yu et al. [6] used emotion-based LSTM model to classify Chinese
product reviews.

The above literature has studied the classification of emotion carefully, but there are
two shortcomings: (1) most of the studies are based on the binary or ternary classifi-
cation; (2) there is no consideration for the existence of a variety of emotions at the
same time in a single post. Therefore, there is a certain limitation on the restoration of
human true feelings. Aiming at these two points, this paper proposes a BLSTM-MC
(Multiple classifiers) model for multiple emotional classification of code-switching
texts. By creating multiple classifiers of BLSTM, the model is associated with different
emotional semantic information, At the same time, the Attention mechanism is intro-
duced to different words with different text weights. The experiments use the dataset
provided evaluation by the conference NLP&&CC_task1 2018. the results show that,
the proposed model get third place in all submission results.

A Multi-emotion Classification Method Based on BLSTM-MC 191



2 Related Work

High-quality Word Embedding is one of the important factors for the deep learning
model. The traditional document representation are mostly based on the Bag of Words
(BOW) method. It discards the word order information and the resulting text has
sparseness and high dimensionality. Mikolov, Benkiv, et al. [7] expressed the text
through the neural network training word vector, which solved the above problems
well. Using word2vec to represent text and combining deep learning models such as
convolution neural networks (CNN) [4, 8, 9], recurrent neural networks (RNN) [10, 11]
and so on, emotion classification can be achieved better results than traditional
Machine learning methods.

When sentence-level semantic features are modeled by word vectors, sequence
models such as RNNs are widely used in emotion classification because of sequence
structures in sentences or documents. In 1990, Elman [12] proposed a recurrent neural
network that keeps the nodes in the hidden layers connected, but RNNs have long-
distance dependence and gradient disappearance problems. In 1999, the LSTM pro-
posed by Gers and Schmidhuber et al. [13] solved these problems by interacting with
the information of the memory cells through the design of three sophisticated gating
units. Literature [5] proposed using LSTM to model comment sentences into word
sequences for emotion classification. However, the LSTM training process will lead to
the deviation of weights; the bidirectional LSTM integrates the context information
through the convolutional layer, and connects the two LSTM networks with opposite
timings to the same output at the same time to improve the accuracy of the model.
Cheng Lu [6] used the bidirectional LSTM model based on the attention mechanism to
do emotion classify Chinese of product reviews and achieved good results in both the
two-category and three-category tasks. However, the emotional classification result
contains only one kind of emotion, and the emotional semantic information is lose,
resulting in a single emotional outcome.

To solve the above problems, this paper proposes the LSTM-MC model, con-
structing five BLSTM classifiers to integrate different emotional semantic information,
fully excavate the phenomenon of user multiple emotion coexistence and introduce the
Attention mechanism to express the importance of different features.

3 BLSTM-MC Model

The BLSTM-MC model (see Fig. 1). First, the model enhances context semantic
information by creating five BLSTM classifiers and introducing Attention mechanisms,
and gets deeper features, then returns all the emotional predictions of all posts by
Softmax.

3.1 Word Embedding

This paper uses the Skip-gram model to predict the words in its context window using
the current word. First use the training document to construct a vocabulary, and then
perform a one-hot encoding on the word. The value of each dimension in the one-hot
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encoding is only 0 or 1. The t-th word in the text is expressed as a vector of words:
wt 2 Rd, where d is the dimension of the word vector. If the text length is T, the input
text is represented as:

S ¼ ½w1;w2; � � � ;wT � 2 RT�d ð1Þ

3.2 BLSTM Model

LSTM is applied to the processing of time series tasks (see Fig. 2). The BLSTM is
constructed using the LSTM described by Zaremba et al. [12], and then the BLSTM
model is used to integrate the context information to obtain text features.

Among them, ft; it; ot and c represent three kinds of gate mechanisms, the forget
gate, the input gate, and the output gate, respectively, which control the read, write and
lose operations of memory cell.

The input of this LSTM is a phrase representing the sequence F = (F1, …, Fl−w+1),
the mechanism of which can be described by the following mapping.

Three gates of information flow input:

ft ¼ rðwf � ½ht�1; xt� þ bf Þ ð2Þ

it ¼ rðwi � ½ht�1; xt� þ biÞ ð3Þ

ot ¼ rðwo � ½ht�1; xt� þ boÞ ð4Þ

Fig. 1. BLSTM-MC model
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Memory unit update:

ct ¼ tanhðwc � ½ht�1; xt� þ bcÞ ð5Þ

ct ¼ ft � ct�1þ it � ct ð6Þ

Hidden layer unit update:

ht ¼ ot � tanhðctÞ ð7Þ

The timing t takes values 1; . . .; l� wþ 1f g; ht; ct 2 Rn, which are the hidden state
and memory state at the time t, r and tanh are the sigmoid and the hyperbolic tangent
activation functions, respectively; it; ft; ot; ct are input gates, forgetting gates, output
gates, and new candidate memory states at time t, whose dimensions are equal to the
hidden state dimension; * represents one by one element.

BLSTM includes forward LSTM
���!

and backward LSTM
���!

and these two parts share
parameters. The forward LSTM reads F1 to Fl−w+1 sequentially from the phrase rep-

resentation sequence, and the backward LSTM
���!

reads Fl−w+1 to F1 in turn, and its
functions are shown in Eqs. (8) and (9).

ht
!
; ct
!¼ LSTM

���!ðFt; ht�1
��!

; ct�1��!Þ; t 2 1; � � �; l� wþ 1f g ð8Þ

ht
 
; ct
 ¼ LSTM

 ���ðFt; htþ 1
 ��

; ctþ 1
 ��Þ; t 2 l� wþ 1; � � � ; 1f g ð9Þ

Among them, h0
!
; c0
! and hl�wþ 2

 ����
; cl�wþ 2
 ���� are initialized to zero vectors. ht

!
is the

phrase feature Ft fused with the above information representation, ht
 

is the phrase

feature Ft fusion representation of the following information, and ht ¼ ht
!
; ht
 h i

obtained by concatenating the two is the phrase representation of the fusion context

Fig. 2. LSTM structure diagram
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information. Through the BLSTM layer, the resulting phrase sequence of fusion con-
text information is represented by Eq. (10).

H ¼ ðh1; � � � ; hl�wþ 1Þ 2 R2n�ðl�wþ 1Þ ð10Þ

3.3 Attention Mechanism

The core idea of the attention mechanism is to learn the weights of words in a word
sequence to assign different attention to different content. The Attention mechanism has
been widely used in image recognition [14], image annotation [15] and natural lan-
guage processing [16]. In the Attention mechanism:

ut ¼ tanhðwwHt þ bwÞ ð11Þ

at ¼ softmaxðuTt ; uwÞ ð12Þ

v ¼
X

t
atHt ð13Þ

Among them, ut is the hidden unit of Ht, at is the attention vector, v is the output
vector after processing by the Attention mechanism. uw is the context vector, initialize
randomly at the beginning of the experiment, and continues to improve during the
learning process.

3.4 BLSTM-MC Emotion Classification

As shown in the BLSTM-MC layer in Fig. 1, the BLSTM classifier is constructed for
five categories, respectively: Happiness classifier, Sadness classifier, Anger classifier,
Fear classifier and Surprise classifier. In the Happiness classifier, the code-switching
text expressed by the word vector is used as the input of the classifier, and the BLSTM
will combine contextual contexts to capture textual features. The Attention mechanism
gives the text feature weight to the deep feature vector v, and uses Softmax to regress
the final distribution of the emotion prediction probability and Pi to express the text.
The probability of an emotional i.

Pi ¼ softmaxðwcvþ bÞ ð14Þ

For example, According to the probability, we can see whether the post belongs to
Happiness. The other four classifiers have the same principle as Happiness. The final
emotion prediction will fuse all the emotion prediction results of BLSTM-MC and
correlate different emotion semantic information.
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4 Experiment

4.1 Date Set

In order to verify the validity of the model, this paper uses the data set provided by the
conference NLP&&CC_task1 2018, and the labels of data sets are divided into five
categories, and is the form of Code-Switching Text. The training data set is divided into
training set and validation set according to the 8:2 ratio. Of which there are 1824 posts
in the happiness class, 1086 in sadness, 570 in anger, 648 in fear, 651 in surprise, a

total of 4104 sentences with emotions. However, 675 of the 4104 Posts contain a
variety of emotions, so the total emotion contained in the corpus is 4779, and the
remaining 1896 unmarked emotions. From the data, it is found that the posting of
sentimental coexistence accounts for 16.4% of the total number of emotional corpus,
indicating that the situation of feeling coexistence occupies a large proportion in the
task of emotional classification. The sample of the data set (see Table 1).

4.2 Data Preprocessing and Parameter Setting

Since the data set is a form of code-switching text, this paper uses Google translate API
to translate the data set into Chinese text, and then preprocesses the data set. Then use
the Skip-gram model of the word2vec tool to train the word vector, and the word vector
parameter setting (see Table 2), finally gets a word vector list, the words that do not
appear in the word vector list, random initialization of the word vector, and the
dynamic update of the word vector during the training process.

Table 1. Training data set sample.

Posts Happiness Sadness Anger Fear Surprise

so lovely*
(Translation is really bad, is this? so lovely*)

T F F F T

i
hate english。
(After making four English Weekly Reports, I
discovered that there are two other real collapses.
i hate english.)

F T T F F

Table 2. Word2vec parameter setting.

Model Skip-gram

Window_size 7
Word vector dimension 100
Sampling Negative sampling
Word frequency threshold 10
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This model selects sigmoid as an activation function, the learning rate is 0.01,
Adam is used as an optimizer, Dropout is used to prevent over fitting, and set value to
0.5, the cross entropy is used as the loss function, the batch size (batch_size) is 32, and
the number of training times (n_epochs) is 1000.

4.3 Experiment and Analysis

F1-Score is compute calculated for each emotion separately, and compute the macro
averaged F1 with all emotions, we use the conference NLP&&CC_task1 2018 scoring
metric Marco-F1 as the evaluation standard. The BLSTM-MC model is compared with
the model previously tested on the dataset, including BLSTM and the BLSTM based
on Attention mechanism model, The results (see Table 3)

1. BLSTM: Improved model of RNN proposed by Schmidhuber et al. [13].
2. BLSTM based on Attention mechanism: The emotion analysis model proposed in

the literature [6] for Chinese product reviews.

It can be seen from Table 3 that: Compared with the BLSTM model based on
Attention mechanism, the Marco-F1 value of BLSTM model is reduced by 43%, which
indicates that after joining the Attention mechanism, it can not only capture the impact
of input nodes on output nodes, but also enrich the semantic information and reduce the
information loss in the process of feature extraction.

The Marco-F1 value of the BLSTM-MC model proposed in this paper is higher
54% than that of the BLSTM model’s Marco-F1.which is higher 11% than the Macro-
F1 value of the BLSTM based on the Attention mechanism. It is proved that the
proposed BLSTM-MC model considers the relationship between text emotions well,
solves the problem of the loss of emotional semantic information and improves the
Marco-F1 value of the model.

The results of the BLSTM-MC model experiment were compared with those of two
terms DeepIntell and DUTIR_938. DeepIntell is a team name, which achieved the best
result in the conference NLP&&CC_Task1 2018, DUTIR_938 is a term name, which
achieved second place, we also compared with the median results, which is named
baseline in the table. The results of the experiment (see Table 4).

It can be seen from Table 4 that: The Marco-F1 value of the BLSTM-MC model
used in this article is 0.467, only lower 48% than that of DeepIntell, lower 1% than that
of DUTIR_938, but the values of Sadness and Fear are higher than DeepIntell and
DUTIR_938, the values of each class are also significantly higher than those of the

Table 3. Multi-model classification F1 value.

Model Happiness Sadness Anger Fear Surprise Marco-F1

BLSTM 0.691 0.413 0.543 0.164 0.256 0.413
BLSTM based on
Attention mechanism

0.695 0.634 0.528 0.289 0.136 0.456

BLSTM-MC 0.710 0.652 0.540 0.292 0.139 0.467
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Baseline. Among them, the F1 values of Happiness, Anger and Surprise corresponding
to emotion are slightly lower than those of the other two teams. This paper calls Google
translation to translate them into monolingual texts, because the texts in social media
are relatively informal and require high quality of translation.

5 Conclusions

This paper proposes a BLSTM-MC model for the multi-emotion classification of code-
switching texts. The code-switching text is converted to the word vector with the Skip-
gram model, and the context information is fused by the multi classifiers of BLSTM.
Take full account of the fact that a single post has multiple emotion s at the same time,
mine the importance of different features, and to predict all emotions expressed by each
posts, In code-switching text, each post contains a variety of languages, such as Chi-
nese and English, and Chinese also contains Cantonese and other forms of language,
which is more challenging than monolingual or bilingual texts.
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Abstract. Almost all the state-of-the-art methods for Character-based Chinese
dependency parsing ignore the complete dependency subtree information built
during the parsing process, which is crucial for parsing the rest part of the
sentence. In this paper, we introduce a novel neural network architecture to
capture dependency subtree feature. We extend and improve recent works in
neural joint model for Chinese word segmentation, POS tagging and depen-
dency parsing, and adopt bidirectional LSTM to learn n-gram feature repre-
sentation and context information. The neural network and bidirectional LSTMs
are trained jointly with the parser objective, resulting in very effective feature
extractors for parsing. Finally, we conduct experiments on Penn Chinese
Treebank 5, and demonstrate the effectiveness of the approach by applying it to
a greedy transition-based parser. The results show that our model outperforms
the state-of-the-art neural joint models in Chinese word segmentation, POS
tagging and dependency parsing.

Keywords: Chinese word segmentation
POS tagging and dependency parsing � Dependency subtree
Neural network architecture

1 Introduction

Transition-based parsers [1–4] have been shown to be both fast and efficient for
dependency parsing. These dependency parsers can be very accurate for languages that
have natural separators such as blanks between words, but for Chinese that do not
contain natural separators, these parsers maybe get worse.

One reason for the lower accuracy of Chinese dependency parser is error propa-
gation: Chinese dependency parsing requires word segmentation and POS tagging as
pre-processing steps; once the pipeline model makes an error in word segmentation,
more errors are likely to follow. In order to address the issue, transition-based Chinese
word segmentation, POS tagging and dependency parsing joint model are proposed,
jointly learning the three tasks [5–8]. Modern approaches to joint model can be broadly
categorized into feature engineering joint model and neural joint model. The feature
engineering joint model [5–7] needs to manually define a large number of feature
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templates, and extracts the features from feature templates. The neural joint model [8]
automatically extracts features by neural network such as RNN or LSTM, and then uses
a small number of feature templates for model parsing and decision. These models
perform better than pipeline models, but they ignore the complete dependency subtree
feature, which has been proven to be an effective information for improving model
performance in previous works [9–11].

In this paper, to improve Character-based dependency parsing, we extend the work
of Kurita [8] using bidirectional LSTMs to learn n-gram feature and context infor-
mation, and introduce a novel neural network architecture to encode the built depen-
dency subtrees information, which use richer information and avoiding feature
engineering. The neural network architecture is a stack structure combined with LSTM
cell and Tree LSTM cell, called Stack-Tree LSTM, which can capture all the built
dependency subtrees information. Then the subtree feature and n-gram feature are fed
into a neural network classifier to make parsing decisions within a transition-based
dependency parsing.

In the experiments, we evaluate our parser on the CTB-5 dataset and experimental
results show that F1 scores of the Chinese word segmentation, POS tagging and
dependency parsing reach 97.78%, 93.51% and 79.66% respectively, which are better
than the baseline model in each task.

2 Related Work

In Chinese, the character-based dependency parsing solution was first proposed in
Hatori [5]. He assumed that there was a dependency between the characters in the
internal words, and unified the three tasks in one framework. The benefit of the
solutions is that it can start with the character-level, and Chinese word segmentation,
POS tagging and dependency parsing can be done in a joint framework, which
improves the accuracies of three tasks and does not suffer from the error propagation.
Zhang [6] studied the character-based Chinese dependency parsing by using pseudo
and annotated word structures, and obtained better accuracies on three tasks. Moreover,
they further analyzed some important factors for intra-word dependencies and
demonstrated that intra-word dependencies can improve the performance of the three
tasks. Guo [7] proposed a solution to transform the conventional word-based depen-
dency tree into character-based dependency tree by using the internal structure of
words and proposed a semi-supervised joint model for exploiting 2-g string feature and
2-g dependency subtree feature.

These methods achieve high accuracy on three tasks but rely heavily on feature
engineering, which requires a lot of expertise and is usually incomplete. In addition,
these methods are not able to learn the context information of the sentence being
parsing. Recently, Kurita [8] proposed the first neural joint parsing model and explored
the neural network with few features using n-gram bidirectional LSTMs avoiding the
detailed feature engineering. Our model is similar to theirs. However, these methods
are lacking in that it cannot capture all word dependencies in a subtree and all
dependency subtrees. To provide richer information, we consider all word dependen-
cies by using subtree distributional representation.
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Specific to the subtree representation, Dyer [9] developed the Stack Long Short-
Term Memory (Stack LSTM) architecture, which does incorporate recursive neural
network and look-ahead, and yields high accuracy on the word-level dependency
parsing. However, the architecture has a risk of suffering from gradient vanishing when
dealing with deep subtrees. In this paper, we solve the issue by using Tree LSTM [10]
in the Stack LSTM, which has similar gates to LSTM cell and has the capability to
memorize important information and forget unimportant one.

3 Character-Level Neural Network Parser

In this section, we describe the architecture of our model and its main components,
which is summarized in Fig. 1. Our model is clearly inspired by and based on the work
of Kurita [8], which uses four bidirectional LSTMs to capture N-gram feature. There
are a few structural differences: (1) we use Stack-Tree LSTM to capture dependency
subtrees feature, (2) we use the POS tags to participate in actions decision.

3.1 Transition System

Transition-based dependency parsing scan an input sentence from left to right, and
perform a sequence of transition actions to predict its parse tree. The input sentence is

Fig. 1. The neural joint model for Chinese word segmentation, POS tagging and dependency
parsing. The model consists of four bidirectional LSTM for extracting n-gram feature, Stack
Tree LSTM for extracting subtree feature and MLP for predicting the possible action. Parser state
computation encountered while parsing the sentence “技术有了新的进展”. si represents the
i + 1th element of the top of the stack; b0 represents the first element of the buffer.
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put into a buffer and partially built tree fragments are organized by a stack. Paring starts
with an empty stack and a buffer consisting of the whole input sentence. As the basis of
our parser, we employ the arc-standard system [2] for dependency parsing, one of the
popular transition systems, and follow Hatori [5] to modify the system for character-
level transition, for which the actions are:

• SH (t) (shift): Move the front character b0 from the buffer onto the top of the stack
as a new word, and the POS tag t is attached to the word.

• AP (append): Append the front character b0 of the buffer to the end of the top word
of the stack.

• RR (reduce-right): Add a right arc between the top element s0 and the second top
element s1 on the stack (s1!s0), and remove s0 from the stack.

• RL (reduce-left): Add a left arc between the top element s0 and the second top
element s1 on the stack (s1←s0), and remove s1 from the stack.

In the character-level transition system, while the goal of SH(t) and AP operations
is to construct a new word, where each word is initialized by the action SH(t) whereas
AP makes the word longer by adding one character, the goal of RR and RL operations
is to construct a dependency subtree. In this paper, we examine only greedy parsing,
and this class of parsers is of great interest because of their efficiency. At each time
step, a transition action is taken to consume the characters from the buffer and build the
dependency tree.

3.2 Subtree Feature Layer

Inspired by Dyer [9], we propose a novel neural network (Stack-Tree LSTM) archi-
tecture that integrates Stack LSTM and Tree LSTM, improving the representational
capacity of Stack LSTM and solving the problem of Tree LSTM that all built subtrees
information cannot be captured at the same time. The neural network architecture is
presented in Fig. 2. When the input of the stack node is a subtree, the LSTM cell is
replaced by Tree LSTM cell in the stack. And the inputs of the Tree LSTM cell are the
right child representation and left child representation encoded by the Tree LSTM.

Specifically, when SH operation is performed, the top item on the stack provides
previous time state and a new LSTM cell is pushed into the stack. The new state is
computed by the LSTM cell and the cell’s input is the character vector to be shifted.
Different with SH operation, AP operation updates the stack state by using appended
character string vector.

When RL or RR operation is performed, the representations of top two items are
popped off of the stack and fed into a Tree LSTM cell. Intuitively, the Tree LSTM cell
combines two vectors representations from the stack into another vector, which rep-
resents a new dependency subtree and historical information. For example, in Fig. 1(d),
a new dependency tree is built, where w4 is the head node and w5 is the dependency
node, and the result of the Tree LSTM cell, namely new state, are computed as follows:
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ct ¼ fhead � chead þ fdep � cdep þ it � ~ct ð2Þ

ht ¼ ot � tanh ctð Þ ð3Þ

Where r is the sigmoid activation function, * is the elementwise product. The
resulting vector embeds the subtree in the same space as the words and other subtrees.

At each time step, all built subtrees are encoded by Stack-Tree LSTM, which
integrates all items information to the top item of the stack. By querying the
d-dimensional vector stop of the top item, a continuous-space embedding of the contents
of the current stack state is available. Then the stop is fed into multi-layer perceptron
(MLP) to predict the next possible transition action. When a predicted transition action
is performed, the state of the stack will be updated and the output at the top of the stack
will represent the new stack state.

3.3 N-Gram Feature Layer

A k-dimensional n-gram feature representation of each character is learned in this layer.
Given n-characters input sentence s with characters c1, …, cn, we extract the uni-gram
features ci, bi-gram character string cici+1, tri-gram character string cici+1ci+2 and four-
gram character string cici+1ci+2ci+3, and create four sequences of input vectors uni1:n,
bi1:n, tri1:n, and four1:n, in which all n-gram embeddings are given by the embedding of
words and characters or the dynamically generated embedding of character strings.

Fig. 2. The Stack Tree LSTM consists of LSTM cell and Tree LSTM cell. The figures show
four configurations: (a) a stack with the input of two words w1, w4 and a subtree, (b) the result of
a SH operation to this, (c) the result of a AP operation to (b), and (d) the result of applying a RR
operation. The top pointer is used to access the output of the network.
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And then these four sequences are fed as input to four bidirectional LSTMs respec-
tively. These bidirectional LSTMs capture the input element with their contexts, which
learn a good feature representation for parsing.

In this paper, a simple feature function / cð Þ is used to extract four atomic features
from a parsing configuration, which consists of the top 3 items on the stack and the first
item on the buffer. Given a parse configuration q = (…|s2|s1|s0, b0|…), the feature
function is defined as:

/ cð Þ ¼ ts2 � ts1 � ts0 � tb0 ð4Þ

vi ¼ biLSTMuni ið Þ � biLSTMbi ið Þ � biLSTMtri ið Þ � biLSTMfour ið Þ ð5Þ

Where � is the concatenate operation.

3.4 Actions Decision Layer

This layer learns a classifier to predict the correct transition actions, based on n-gram
features and subtree features extracted from the configuration itself. We implement
three hidden layers composed h rectified linear units (Relu).

First, two feed-forward neural layers with Relu activation function project the
n-gram layer’s output from 4 k-dimensional vector space into a h-dimensional vector
space. The purpose of the two layers is to fine-tune the n-gram feature embedding,
which helps the model to capture deeper n-gram feature and more effective global
information. Next, the resulting embedding h2 is concatenated with the output stop of
Stack-Tree LSTM, and fed into the last hidden layer with Relu activation function.

h3 ¼ max 0;Wcom h2 � stop
� �þ bcom

� � ð6Þ

Where Wcom 2 R
h� hþ dð Þ is the learned parameter matrix, bcom 2 R

h is bias term.
Finally, h3 is mapped into a softmax layer that outputs class probabilities for each

possible transition operation:

p ¼ softmax Wh3ð Þ ð7Þ

Where W 2 R
m�h and m is the number of transition actions.

3.5 Training

Given a set of training examples, the training objective of the greedy neural joint parser
is to minimize the cross-entropy loss, plus a l2-regularization term:

L hð Þ ¼ �
X

i �A
logpi þ k

2
hk k2 ð8Þ

A is the set of all gold actions in the training data and h is the set of all parameters.
The parameters are learned by minimizing the loss on the training data via the Adam
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optimizer [12]. The initial learning rate is 0.001. To avoid overfitting, we use dropout
[13] with the rate of 0.5 for regularization, which is applied to all feedforward
connections.

4 Word and String Representation

In n-gram layer, we prepare the same training corpus with the segmented word files and
the segmented character files. Both files are concatenated and learned by word2vec
[14]. The characters and words are embedded in the same vector space during pre-
training. The embedding of the unknown character string, consisting of character
c1, c2, …, cn, is obtained by the mean of each character embedding v(ci) it contains.
Embeddings of words, characters and character strings have the same dimension.

In subtree feature layer, when a character string becomes a word, the embedding of
the word is queried in the pre-trained embeddings, if not, the same way encoding for
unknown character string is adopted to get the word embedding. Different with Kurita
[8], we use the predicted POS tags in our model, provided as auxiliary input to the
parser. Specifically, the predicted POS tag embedding t of the word is concatenated
with the word embedding w. A linear map is applied to the resulting vector and passed
through a component-wise Relu.

v ¼ max 0;Wword w; t½ � þ bwordf g ð9Þ

The POS embedding and word embedding are learned together with the model.

5 Experiments

5.1 Experimental Settings

In this section, we evaluate our parsing model on the Penn Chinese Treebank 5.1
(CTB-5), splitting the corpora into training, development and test sets, following the
splitting of [15]. The development set is used for parameter tuning. Pre-trained word
and characters embeddings are learned from the Gigaword corpus and word2vec [14],
as segmented by the Stanford Chinese Segmenter [16].

We use standard measures of word-level precision, recall, and F1 score to evaluate
model performance on three tasks, following previous works [5–8]. Dependency
parsing task is evaluated with the unlabeled attachment scores excluding punctuations.
The POS tags and dependencies cannot be correct unless the corresponding words are
segmented correctly.

Dimensionality. Our model sets dimensionalities as follows. Bidirectional LSTM and
Stack Tree LSTM hidden states are of size 200. Embeddings of POS tags used in Stack
Tree LSTM have 32 dimensions. Pre-trained word and character embeddings have 200
dimensions and three hidden layers in classifier have 400 dimensions.
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5.2 Experimental Results and Analysis

Effects of Different Composition Methods in Joint Model. We conducted experi-
ments to verify the capability of the Stack-Tree LSTM (ST-LSTM) on the dependency
tree representations. We compare our ST-LSTM with three popular composition
methods: Stack LSTM [9], recursive convolutional neural network [11], and a com-
position function based on bidirectional LSTM [17]. Table 1 show the comparison of
F1 scores on three tasks. Clearly, our model is superior in terms of POS tagging and
dependency parsing. However, we notice that the composition function of recursive
convolutional neural network outperforms our model on Chinese word segmentation
tasks. A likely reason for the close performance with our model may be the feature of
relative distance between words. In future work, we also try to use distance feature to
improve model performance.

Effects of POS Tags in Joint Model. Furthermore, we also conducted experiments to
test the effectiveness of the predicted POS tagging on each task. We implemented two
model: ST-LSTM and ST-LSTM model without POS tags (–POS). Concretely, we use
predicted POS tagging and pre-trained embedding as word representations in
ST-LSTM, but we only use pre-trained embedding as word representations in –POS.
As shown in Table 3, performance of model without POS tags is weaker than the basic
model in word segmentation and dependency parsing. In contrast, the basic model with
POS tags gives a 0.21% accuracy improvement in dependency parsing.

Final Results. Table 2 shows the final test results of our parser for Chinese word
segmentation, POS tagging and dependency parsing. Considering that the model
proposed can extract the information of children’s nodes, we only implement the
feature function of four features. We also include in the table results from the first joint
parser of Hatori [5], the using inter-word dependencies and intra-word dependencies
parser of Guo [7], the arc-eager model of Zhang [6], the feature based parser of Kurita
[8], and the n-gram bidirectional LSTM greedy model with four and eight features of
Kurita [8].

Overall, our parser substantially outperforms the four features n-gram bidirectional
LSTM model of Kurita [8], both in the full configuration and in the –POS conditions
we report. Moreover, we find that our model can learn better dependency tree repre-
sentations and achieve higher accuracies in each task than other composition function.
And we note that this is a significant improvement in dependency parsing only after

Table 1. Experimental results for different composition functions. S-LSTM, B-LSTM, and
RCNN denote Stack LSTM, bidirectional LSTM and recursive convolutional neural network
respectively. ST-LSTM denotes Stack-Tree LSTM.

Seg POS Dep

S-LSTM 97.71 93.36 79.21
B-LSTM 96.69 92.10 79.02
RCNN 98.03 93.35 79.58
ST-LSTM 97.78 93.51 79.66

210 H. Liu et al.



using predicted POS information in word representation. Our model performs slightly
worse than these joint models using large feature set, but we do not rely on feature
engineering.

6 Conclusion

In this paper, we introduced Stack-Tree LSTM, a novel composition function to encode
dependency subtrees from characters and words for Chinese word segmentation, POS
tagging and dependency parsing. Our model only relies on effectively feature function
and architecture design, and is able to automatically learn these useful features for
making decision. Through a series of experiments, we demonstrated that our approach
provides substantial improvement over the baseline methods, by capturing the subtree
nodes information and more dependency structures.

In the future, we will expand the scale of the experiment and further verify the
effectiveness of the proposed method. In addition, we further explore better way to
learning dependency trees representations.
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Abstract. This paper focuses on automatic question generation (QG)
that transforms a narrative sentence into an interrogative sentence.
Recently, neural networks have been used in this task due to its extraor-
dinary ability of semantics encoding and decoding. We propose an app-
roach which incorporates semantics of the possible question type. We
utilize the Convolutional Neural Network (CNN) for predicting ques-
tion type of the answer phrases in the narrative sentence. In order to
incorporate the question type semantics into the generating process, we
classify the question type which the answer phrases refer to. In addition,
We use Bidirectional Long Short Term Memory (Bi-LSTM) to construct
the question generating model. The experiment results show that our
method outperforms the baseline system with the improvement of 1.7%
on BLEU-4 score and beyonds the state-of-the-art.

Keywords: Question generation · Question type · Answer phrases

1 Introduction

The goal of automatic question generation is to create natural questions from
answer phrases in the narrative sentence, where the generated questions can be
answered by them. Normally, the answer phrases are short texts in the sentence.
Listed below are two questions generated by the same narrative sentence, where
the Snar is an original narrative sentence and the Sque 1 and Sque 2 are the
questions generated respectively based on the answer phrases AP 1 and AP 2.

(1) Snar: maududi founded the jamaat−e−islami party in 1941 and remained
its leader until 1972.
Sque 1: when did maududi found the jamaat-e-islami party?
AP 1: in 1941 and remained its leader until 1972
Sque 2: who found the jamaat-e-islami party?
AP 2: maududi

c© Springer Nature Switzerland AG 2018
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Question generation system is widely applied to many areas, such as reading
comprehension, healthcare administration, knowledge-based question answering
(KB-QA), and so on. For example, we can build a QA knowledge base by the
generated questions and the raw narrative sentences. Incorporating the existing
information retrieval technique into the knowledge base, we can create a practical
QA system easily. In this case, the Snar can serve as the answer, while the Sque

1 or Sque 2 serve as the questions.
It is challenging to generate questions in an automatic way. Not only the

narrative sentence and the generated question share similar semantics, but also
the generated question type should be correct. At the same time, the generated
question ought to be a natural quesiton. As we can see in the example 1), Snar

and Sque 1 share similar semantics, “a person creates a party at some time”, but
are represented in different ways. Furthermore, QG can boil down to a trans-
lation problem. Therefore, existing works usually apply the translation models
to handle this task [1], due to their brilliant ability of semantic encoding and
decoding, especially reordering the sentence.

In this paper, we propose to utilize the question type prediction for phrases to
improve the existing translation model. Adding the question type to the encod-
ing and decoding process provides extra information to specify which type of
question to generate, thus improving the performance of the translation model.
In the beginning, we predict the question type which those ground truth answer
phrases refer to. As shown in example 1), the AP 1 refers to a when type ques-
tion and the AP 2 refers to a who type question. Then the question type is
incorporated into the translation model based on Bi-LSTM [11], with the aim
to provide more information for the encoding and decoding process.

Experiments are conducted on the Stanford Question Answering Dataset
(SQuAD) [16], and the results show that even using such a classification model,
with a precision of about 67%, for question type prediction, our translation
model outperforms the baseline by increasing 1.7% on BLEU-4.

In the section below we discuss related work (Sect. 2), the details of our
approach (Sect. 3) and describe our experiment setup (Sect. 4). We analyze the
results in Sect. 5. Lastly, we conclude the paper in Sect. 6.

2 Related Work

Question generation has attracted the attention of the natural language gener-
ation (NLG) community, since the work of Rus et al. [17]

Heilman et al. [10] use the drafting rules to transform the declarative sen-
tences and reorder the generated questions through the logistic regression (LR)
model. They rank the generated questions and obtain the former 20% as the
generation results, which nearly doubles the percentage of the questions rated as
acceptable by annotators up to 52%. In addition, Liu et al. [13] apply a similar
method to generate Chinese questions.

Du et al. [8] attempt to apply a Bi-LSTM network to generate questions.
They respectively generate questions for sentences and paragraphs and get the
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best performance in automatic evaluation method, and the acceptability is also
higher than the rule-based method by human evaluation. Duan et al. [9] utilize
neural network model based on CNN and Bidirectional Gated Recurrent Unit
(Bi-GRU) [4] model to generate question templates and then transform them
into questions. Furthermore they exploit the generated question to assist QA
[19] and get a better answer. Zhou et al. [20] add the syntactic feature and
part-of-speech feature to the model based on Bi-GRU.

3 Approach

This paper proposes a method which merges question type prediction model and
neural translation model. The former one is a CNN model, which is designed to
predict the possible question type of the answer phrase in the sentence. The
later one is a sequence-to-sequence model based on Bi-LSTM that aims to gen-
erate target questions. The structure of the entire system is shown in Fig. 1. Two
modules are kept intact within a single pipeline stage. AP is an answer phrase
in a sentence and also the focus of the artificial question. We replace the answer
phrase with its interrogative pronoun that fetched from the question type predic-
tion. After processing, a new sentence is used as the input of generate question
model, whose structure is shown in Fig. 2.

Fig. 1. The structure of the entire
system

Fig. 2. Neural translation model

As shown in example 1), a “who” label can be assigned for AP 2. Then we
replace AP 2 with “who” to form a new sentence Snar∗ for the Snar, which is
listed below. Snar∗ contains the semantics of question type and will be used for
question generation.

Snar∗: who founded the jamaat−e−islami party in 1941 and remained its
leader until 1972.

3.1 Question Type Prediction

As shown in Fig. 3, the question type prediction model is a slight variant of
the CNN architecture. The input of the model contains a sentence Snar and
an answer phrase AP. The output is one of the following 13 labels, including
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Fig. 3. The question type prediction model.

“how much, how many, what, how long, which, where, how often, when, why,
whose, who, how, other.”. Not only the meaning of the answer phrase, but also
the effect of the sentence needs to be considered. Given a sentence with n words
Snar = [xc

1, x
c
2, ..., x

c
n] and an answer phrase with m words AP = [t1, t2, ..., tm],

AP ∈ Snar. We use xc
i and tj to denote embedded vector of i-th word in Snar

and j-th word in AP.
In general, let xc

i:i+h−1 refer to the concatenation of word embeddings xc
i ,

xc
i+1, ..., xc

i+h−1 and tj:j+l−1 refer to the concatenation of word embeddings
tj ,tj+1,...,tj+l−1. A convolution operation involves two filters W1 ∈ R

hk and
W2 ∈ R

lk. W1 is applied to a window of h words in a sentence and W2 is applied
to a window of l words in an answer phrase. cxi and cti are generated by:

cxi = f(W1 ∗ xc
i:i+h−1 + bx) and cti = f(W1 ∗ ti:i+l−1 + bt) (1)

here bx ∈ R and bt ∈ R are bias term and f is non-linear function such as the
hyperbolic tangent. W1 filter is applied to produce a feature map. Similarly, the
answer phrase is also manipulated by the filter W2.

c1 = [cx1 , c
x
2 , ..., c

x
n−h+1] and c2 = [ct1, c

t
2, ..., c

t
m−l+1] (2)

We then apply a max-over-time pooling operation [5] over the feature maps
and take the maximum value c = [max c1;max c2] as the feature corresponding
to particular filters. The process is to capture the most feature, one with the
highest value, for each feature map. The pooling scheme naturally deals with
variable lengths of sentence and answer phrases. Upon the hidden layer, we
stack a softmax layer for interrogative pronoun determination:

ylabel = g(W ∗ c + b) (3)

where g is a softmax function, W is a parameter matrix and b is a bias term.
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3.2 Neural Translation Model

The neural translation model is constructed based on Bi-LSTM. The encoder
reads a word sequence of an input sentence Snar∗ = {x1, x2, ..., xs}, which con-
tains the semantics of the possible question type. Let xi refers to i-th word in a
narrative sentence. The decoder predicts a word sequence of an output question
Sque = {y1, y2, ..., yq}, let yi refer to i-th word in a question. The attention mech-
anism used in this model is adopted from Du et al.’s [8] work. The probability
of generating a question Q in the decoder is computed as:

P (Sque) =
|Sque|∏

i=1

P (yi|y<i, ci) (4)

P (yi|y<i, ci) = softmax(Wstanh(Wi[hi; ci])) (5)

the softmax denotes a non-linear function that outputs the probability of gen-
erating yi. hi is computed as:

hi = LSTM(yi−1, hi−1) (6)

here, LSTM [11] generates the new state hi by the representation of previously
generated word yi−1 (obtained from a word look-up table), and previous state
hi−1. ci denotes the context vector, which is computed as:

ci =
∑

i=1,...,|x|
ai,tbi and ai,t =

exp(vaTWbbi)∑
j exp(vaTWbbj)

(7)

where va
T and Wb are weights. bi denotes the ith hidden state of the encoder,

which is the concatenation of the forward hidden state
−→
bi =

−−−−→
LSTM(xi, bi−1)

and the back forward state
←−
bi =

←−−−−
LSTM(xi, bi+1).

4 Experimental Setup

Our method is experimented on the processed SQuAD dataset. In this section, we
firstly describe the corpus. Then we give implementation details of our processing
and the baselines to compare.

4.1 Dataset and Evaluation Methods

The SQuAD corpus is annotated by crowd-workers, we train the prediction
model and the translation model through the processed data. Our data divi-
sion refers to Du et al. [8]. Table 1 provides some statistics on the processed
dataset.

The SQuAD corpus are used for training question type prediction model
and neural translation model and testing. For the former, we can determine the
interrogative labels of answer phrases.
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Table 1. Dataset (processed)
statistic

# pairs(Train) 70484

# pairs(Dev) 10570

# pairs(Test) 11877

Snar: avg.tokens 32.9

Sque: avg.tokens 11.3

AP : avg tokens 3.4

We use simple and useful rules to construct the
data set for the prediction model. In order to fetch
the ground truth question type labels which the
answer phrases refer to, we detect the interroga-
tives in the questions of the SQuAD to determine
whether they contains the former 12 interrogative
labels in Table 1. The matching order is from left
to right. Once the question contains a label, we will
commit the label to the answer phrase and termi-
nate the matching. If not, we will set “other” label.

For the neural translation model, we utilize the ground truth question type
labels for changing the raw sentence in training process (Sect. 3). While in the
test process, we use the question type labels produced by the CNN classifier.
The target is still an artificial question.

We adopt the micro-averaged precision (P), recall (R) and F1 score to evalu-
ate the performance of the prediction model. The evaluation package released by
Chen et al. [3] serves as the evaluation measures for question generation, which
was originally used to score image captions in the generation task. The package
includes BLEU-1, BLEU-2, BLEU-3, BLEU-4 [14], METEOR [7] and ROUGEL

[12] evaluation scripts.

4.2 Implementation Details

We will describe the experimental parameters of the prediction model and the
translation model. The output of the prediction model is a label while that
of the translation model is a natural question. We use 300 dimensional word
embedding pre-trained by the glove.840B.300d [15] for initialization, and fix
the word representations during training. The experimental parameters of the
prediction model and the translation model will be described respectively, and
the parameters of two models are shown in Table 2.

Table 2. Hyperparameters used in our experiments.

Question Type Prediction Model
Parameters Values Parameters Values
Snar filter size 3 Snar length 100
Ap filter size 3 AP length 50
dropout rate 0.5 batch size 64
hidden size 100 - -

Neural Translation Model
Parameters Values Parameters Values
sentence max-length 100 dropout rate 0.3
source vocabulary 40k learning rate 0.5
target vocabulary 28k hidden size 600
batch size 64 layers 2

For the prediction model, the loss function is categorical-crossentropy [6], the
optimizer is Ada [18]. For the translation model, the number of LSTM layer is 2
for both encoder and decoder. It uses SGD [2] for optimization, with an initial
learning rate of 1.0. We start halving the learning rate at epoch 8, and fix the
gradient as 5 when it beyonds 5. During decoding process, we do beam search
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with a size of 5. Finally, the decoding process stops when every beam in the
stack generates the EOS token.

All hyperparameters of our models are tuned in the development set. The
results are reported on the test set.

4.3 Experiment Setup

To prove the effectiveness of our method, we compare it with several competitive
systems. Now we briefly introduce their approaches.

DirectIn is an intuitive yet meaningful baseline in which the longest sub-
sentence is d irectly taken as predicted question. To split the sentence into sub-
sentences, we use a set of splitters, i.e., {“?”, “!”, “,”, “.”, “,”}.

H&S [10] is a rule-based overgenerate-and-rank system. When running the
system, we set the parameter just-wh “false” and set max-length equal the
longest sentence in training set. We take the top question in the ranked list.

NQG-LSTM [8] is a basic encoder-decoder learning system for question
generation. Bi-LSTM is used for the encoder and LSTM is used for decoder.
The system uses the raw question-sentence pairs.

NQG-GRU makes a slight change in NQG-LSTM model.In the model, we
replace LSTM network with GRU network for question generation.

NQG++ [20] is different with NQG-GRU. The copy mechanism is added
the model, and the encoder and decoder share the pre-train vectors. In addition,
we only report the paper’s score without model.

5 Result and Analysis

The experiment report contains the results of the question type prediction model
and the neural translation model. The performance of the former has a direct
impact on the later. We select the best model on the development set.

The prediction model achieves score with 67.78% P, 66.80% R and 60.58% F1
on the test set. According to performance, the labels determined by the model
are used to replace the answer phrases in the sentences, and new sentences
are produced as the source input for the neural translation model to generate
questions. In order to verify the impact of the performance of question type
prediction, we use the same question generation model based on correct labels.
We name the generation system using correct label as “CL-QG”. Table 3 shows
the results of our method and some comparative systems.

According to the results, our performance achieves the state-of-the-art Com-
paring with the rule-based system H&S and DirectIn. The BLEU-4 score is
increased about 2.6%, and the ROUGEL and METEOR value are respectively
17.96% and 54.74%.

Furthermore, the experimental score of NQG-GRU is the lower than NQG-
LSTM, because the representation of sentence is Inadequate. We adopt Bi-LSTM
in neural translation model for question generation. In these methods using
neural translation model, our method performs better than the NQG++ system
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Table 3. Results of generating questions. (n/a: the paper didn’t list results of this
task)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGEL

DirectIn 0.3171 0.2118 0.1511 0.1120 0.1495 0.2247

H&S 0.3850 0.2280 0.1552 0.1118 0.1595 0.3098

NQG-GRU 0.2563 0.0990 0.0518 0.0310 0.0779 0.2846

NQG-LSTM 0.4288 0.2570 0.1728 0.1210 0.1644 0.3967

NQG++ n/a n/a n/a 0.1329 n/a n/a

ours 0.4572 0.2826 0.1934 0.1376 0.1796 0.4245

CL-QG 0.4837 0.3079 0.2151 0.1556 0.1934 0.4574

with the highest performance and far exceeds the baseline NQG-LSTM system.
This shows the question type prediction is helpful for question generation.

Although the recall rate of the prediction model is only about 67%, the
promotion has a significant effect on the question generation performance. Com-
paring with “CL-QG”, there is still room for growth in our method. The per-
formance of the NQG-GRU system is lower, and NQG++ model are unknown
here. So the generation results are shown in Fig. 4. For our qualitative analysis,
we examine the sample outputs generated by H&S and our method. There exists
a large gap between our results and H&S’s. In the first two samples, the H&S
only performs some syntactic transform over the input without paraphrasing,
but our generated questions are “wh”-question and have higher reasoning. In
the third sample, our model can successfully pay attention in “april 26, 1864”.
For the last sentence, the H&S system can not generate a question in that the
sentence’s length beyond its ability. These show that our method is better than
rule-based system.

Even though NQG-LSTM utilizes the semantics of the sentence, the gener-
ated question labels are hardly similar to that of the ground truth questions.
Such as the second sample, NQG-LSTM produces a question of “where” rather
than “what”. Our method easily detects the correct question type. Further-
more, NQG-LSTM model creates a good question by focusing on the answer
phrase “george washington” in the fourth sentence, but it is wrong. We assign
“how many” label to “two bills” through the prediction model and generate
more similar question to artificial question.

Our system has the following advantages in generating questions: (1) Differ-
ent from the systems based on rules, the generated questions are more reasonable
in ours method. (2) Compared with some models based on neural network model,
our method generated questions which are more fitting to the artificial questions.
(3) our method outperforms the state-of-the-art.
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Fig. 4. Sample output questions generated by human, our system, NQG-LSTM and
H&S system.

6 Conclusion

In the paper, we propose a novel method for question generation which integrates
the question type into the generating process. Only in this way can we acquire
the representation of sentence which contains the semantic of question types.
This makes question generation model preform better in that it accesses more
semantic information. In the future, we will improve the performance of the
question type prediction to generate better questions.
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Abstract. User intent identification and classification has become a vital topic
of query understanding in human-computer dialogue applications. The identifi-
cation of users’ intent is especially crucial for assisting system to understand
users’ queries so as to classify the queries accurately to improve users’ satis-
faction. Since the posted queries are usually short and lack of context, conven-
tional methods heavily relying on query n-grams or other common features are
not sufficient enough. This paper proposes a compact yet effective user intention
classification method named as ST-UIC based on a constructed semantic tag
repository. The method proposes to use a combination of four kinds of features
including characters, non-key-noun part-of-speech tags, target words, and
semantic tags. The experiments are based on a widely applied dataset provided
by the First Evaluation of Chinese Human-Computer Dialogue Technology. The
result shows that the method achieved a F1 score of 0.945, exceeding a list of
baseline methods and demonstrating its effectiveness in user intent classification.

Keywords: User intent � Classification � Target Words � Semantic Tag

1 Introduction

The research of human-computer dialogue has become a hot topic in both academia
and industry in recent year [1]. A spoken dialogue system enables users to access
information over the Internet using spoken languages as the medium of interaction [2].
As a vital component of spoken dialog systems, Spoken Language Understanding
(SLU) aims to identify the domain and intent of users as expressed in natural language
speech automatically. SLU is widely available and commonly used in a variety of
application areas, such as mobile phone-based personal assistants like Siri [3, 4]. SLU
typically involves three steps: domain classification, user intent determination and
semantic tagging [5]. In such process, classifying user intents of input queries into a
specific domain is the first and vital step of query semantic analysis in SLU [1, 3, 6, 7].
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Since user intents are usually domain specific, predicting the labels of intents and
domains can be treated as a single classification problem.

Detecting and classifying user intents is a growing research area not only in SLU
but also in the research of search engines [8–11]. Besides, understanding the intent
behind a user’s query may help prune out irrelevant information and personalize
answers, thus improving user satisfaction [8, 9, 12]. For both SLU and Web search
engines, the most challenge of user intent detection and classification is how to
understand the short, lacking of context, and noise-contained queries posted by users
[5]. According to the research in [13], 93.15% of user queries for search engines are no
more than 3 words and the average length is 1.85 words only. Furthermore, spoken
sentences of queries in SLU usually do not follow formal language grammar and
exhibit self-corrections, hesitations, repetitions and other irregular phenomena [14].
Therefore, how to detect user intent accurately and expand the semantic features of a
query to assist user intent classification is an essential step.

According to the existing research [15, 16], the target words of a query can
potentially represent the user intent in a SLU process. To that end, this paper presents a
Semantic Tag-empowered User Intent Classification method named as ST-UIC for user
intent detection and classification. In addition, ST-UIC integrates 4 kinds of features:
character, non-key-noun part-of-speech (POS) tags, target words, and semantic tags,
named as CKTS. A strategy is proposed to identify and extract query target words.
Moreover, a sematic tag repository is automatically constructed for feature expansion
purpose. Based on a publically available dataset, the F1 score on testing dataset reaches
94.5% and outperforms five baseline methods, demonstrating the effectiveness of the
proposed method in user intent classification.

2 Related Work

The user intent classification task defined by Zhang et al. [1] is that, given an input
message, classify the user intent into a specific domain category.With respect to that user
intent is semantic constraint on the sought-after answers, how to effectively identify user
intents to prune out irrelevant information that may mislead the classification process is a
crucial problem.As a vital task of spoken language understanding, there has been existing
representative research with respect to user intent classification (also known as domain
classification) in last decades. One pioneering work was AT&T’s “How May I Help
You?” [17], where the users’ fluently spoken utterances were classified into a number of
predefined intent categories. Later, a variety of practical goal-oriented spoken dialog
systems [5, 6, 18] were built and the research of SLU ranges from determining phrases via
grammars, extracting predefined named entities, detecting users’ intents for classification,
to combinations of users’ intent and named entities [18]. With the increasing use of web
search, user search query logs were applied as a valuable source of unlabeled information
for user intent classification [10, 19, 20]. Hakkani-Tür et al. [19] exploited search queries
from search engine query logs to improve query intent classification in SLU. They
assumed that clicked URL categories could be assigned as the domain labels of user
queries. For example, label “hotels” was assigned to the user query “Holiday Inn and
Suites” when the user clicked the URL “http://www.hotels.com”. Celikyilmaz et al. [20]
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utilized unlabeled queries collected from internet search engine click logs for SLU intent
detection. Those ideas of utilizing query click logs for improving query intent classifi-
cation were similar to the proposed semantic tags expansion in the paper. The difference
was that the domain labels were sentence-level expansion of the query and the proposed
method was word-level.

Besides, most of the previous research in SLU applied manually generated features,
such as grammar information and predefined phrases. Gupta et al. [18] presented a SLU
system which utilized a statistical classifier for intent determination and a rule-based
fixed grammars for named entity extraction. Hernández et al. [21] proposed a simple
model for user intent classification which leveraging only the text including in the
query. The feature they extracted from the query text, including entity names, query
length, transactional terms, interrogative terms and stop words, was verified as simple
yet effective. In Ganti et al. [22] research, co-occurrence between the query keyword
and the tags that associated with the retrieved search results were leveraged as tag ratio
features for avoiding the sparse feature spaces issue in query intent classification task.

Deep learning [3, 7, 23, 24] recently achieved good performance on user intent
classification task in SLU, due to their ability to learn compact and discriminative
features. Experiments presented that proposed methods improved performances over
baseline techniques on a large context-sensitive SLU dataset. Tur et al. [3] presented an
application of deep convex networks (DCNs) for semantic utterance classification. The
results showed that the proposed DCN-based method was effective on a domain
classification task for spoken language understanding. Deng et al. [23] also applied
deep learning techniques kernel version DCN (K-DCN) on a intent classification task
of SLU, which yielded a good classification performance. Although the study of deep
learning has already led to impressive theoretical results, several problems lie ahead
such as requiring large training datasets, time-consuming for parameter tuning, and
involving a difficult optimization [25].

3 The User Intent Classification Method

A Semantic Tag-empowered User Intent Classification (ST-UIC) method is proposed
to identify user intent and expand semantic features for user intent classification. The
ST-UIC method contains five major steps: preprocessing, target word extraction, non-
key-noun POS expansion, semantic tag expansion, and intent classification. The
framework of the method is shown as Fig. 1.

The preprocessing step includes query segmentation and transformation. All
numerics in Chinese character are also converted into Arabic format. Then, a depen-
dency relation-based strategy is proposed for target word extraction. After preprocess-
ing, four proposed features are expanded for classification, i.e. character, non-key-noun
part-of-speech (non-key-noun POS) tags, target words, and semantic tags, named as
CKTS. Both Character and target word features are extracted for maintaining contextual
information and representing the user intent of original queries. For the queries that none
target words are identified, key noun words are extracted instead. Then, key noun words
are further expanded with semantic tags to enrich the semantic information of the query.
The non-key-noun POS feature is proposed as a supplementary strategy to enrich the
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syntactic features of non-key-noun words. Finally, the expanded features are sent to a
trained classifier to obtain user intent categories.

3.1 Target Word Extraction

Based on an existing research [15], the target words of a query substantially represent
the intent of corresponding asker. For instance, the target word of the query
“ ” (‘help me access to the Sina homepage’) is “ ” (‘the Sina
homepage’). This target word represents user intent to some extent. Through expanding
the semantic tags “ ”(‘website’) of the target word “ ”, the
query can be directly linked to the intent category “website”. As the queries come from
a human-computer chit-chat and task-oriented dialogue, the queries are always short
and verb-centered. For example, the same query contains a verb “ ”(‘access’) and
an object “ ”, and these two words can well represent the intent of the query.

By leveraging Chinese Language Technology Platform (LTP) for dependency
relation analysis, we design a strategy for extracting target words from queries. After
analyzing the dependency relations of queries, we found that the target word of the
verb-center query frequently contained in a “VOB” relation. We thus further repre-
sented the dependency relations of a query as “word1←pos: relation: pos!word2”.
For all the dependency relations of a query, we extract the word2 from the relation that
is “VOB”. Therefore, “ ”is extracted as target word of this query.

Websites

Semantic 
Tags HowNet

Training questions Target word 
Extraction

Semantic Tag 
Expansion

Preprocessing Non-Key-Noun 
POS Expansion CKTS

Classifier

Testing questions
User Intent 

Classification

Feature Expansion

Feature ExpansionPreprocessing

Fig. 1. The framework of the proposed ST-UIC method for user intent classification.
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In addition to the typical relations, there are also some other cases that are not verb-
centered, e.g., the query “ ” (‘What is the medication treat-
ment of cervical spondylosis?’). Therefore, a key noun word extraction strategy is
further proposed to deal with the non-verb-center queries for further feature expansion.
We applied jieba, a Chinese text segmentation tool, for keyword noun words extrac-
tion. We use jieba TextRank keyword extraction function with a constraint that extract
words with which POSs are included. After analyzing the queries, the POSs we set are
{N(noun), NS(toponym), NT(organization/group name), NZ(other proper noun), NL
(noun phrase)}. For the same example, the key noun words extracted of the query are
“ ”(‘cervical spondylosis’) and “ ”(‘medication’). Then, the extracted key
noun words set KNw will be expanded with semantic or syntactic features.

3.2 Semantic Tag Expansion

The input queries are always short and lack of context. We thus propose to expand the
semantic information of queries. HowNet, a bilingual general knowledge base that
describing relations between concepts as well as relations between concept attributes, is
utilized for key noun words’ semantic expansion in this process. Each word in a HowNet
taxonomy has an upper concepts in word’s definition. For instance, the upper concepts
of word “ ”(‘diabetes’) in query “ ”(‘what does diabetes need to
pay attention to?’) is “disease ”. Therefore, after upper concepts expansion, the
query can directly link to the category “health”. We further reconstruct the HowNet
corpus into a repository only containing words which POS is “Noun” and the corre-
sponding upper concepts as semantic tags. Yet, HowNet is not large enough to covering
all word concepts especially new words, such as “ ”and “ ”. Therefore, a
new semantic tag repository is constructed. Words and corresponding semantic tags are
extracted from the websites such as Hudong Wikipedia. For instance, word
“ ”and corresponding semantic tags “ ”(‘Internet’) are
extracted from the websites. All the words and semantic tags are structured as a tuple,
i.e. (word,<semantic tags>). The newly constructed repository contains 255,824 words
and their associated semantic tags. For all key noun words extracted from the process,
ST-UIC match words in the repository to retrieve matched semantic tags as features.

f ðwÞ ¼ semantic tag; if w in KNw

POS tag; otherwise

�
ð1Þ

Yet, not all queries are containing target words or key noun words. For example,
queries of chit-chat category such as “ ” (‘what are you doing’) may not
contain nouns. For this circumstance, the non-key-noun POS feature is proposed as a
supplementary strategy to enrich the syntactic features. For those that are not key noun
words, the corresponding POS tags are expanded as features. Therefore, the feature
expansion function f(w) is as Eq. (1), here w is the word in key noun word set KNw

extracted by previous process.
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4 Evaluation and Results

A standard dataset provided by iFLYTEK Corporation and the First Evaluation of
Chinese Human-Computer Dialogue Technology (ECDT) [1] is used. All the data are
mapped to a taxonomy containing 2 coarse grained categories and 31 fine grained
categories. In this paper, the original train and develop data are used as Training
dataset A, containing 3068 labeled queries. The original test data is used as Testing
dataset A, containing 667 labeled queries.

To evaluate the stability of the proposed method, five experiments are conducted.
The evaluation measures are the four widely used statistical classification measures:
Accuracy, Precision, Recall and F1 score (F1).

The first experiment is to test the effectiveness of the proposed feature and to find out
the optimal combination of features for the user intent classification. The proposed
feature are Target Words (TWs), Semantic Tags (STs) and non-Key-noun POS tags
(nK-POS). In the contrast, the commonly used feature Characters (C), Segment words
(SWs) and Part-of-Speech tags (POS) are adopted as baseline features. Training on the
Training dataset A with the same typical Logistic Regression (LR) classifier, the per-
formance on the Testing dataset A are calculated and presented in Table 1. From the
results, Comparing to use C or SWs alone, the F1 score of using C + SWs increased
from 0.864 and 0.904 to 0.918. However, when adding SWs to the best result #11, the
performances on all metrics decrease. The results of #1 and #2 indicate that the character
feature is more useful and contains more semantic information than the segment word
feature. As shown in the result #10, #11, #12 and #13, #14, #15, the proposed non-key-
noun POS produce better performance than the commonly used POS. And comparing
the result #7, #8, #9 with #13, #14, #15, adding the POS feature, the performance turn to
be decreased. The proposed combination features C + nK-POS + TWs + STs (CKTS)

Table 1. The performance comparison of using different features on user intent classification.

# Features Accuracy Precision Recall F1

1 SWs 0.855 0.932 0.826 0.864
2 C 0.888 0.934 0.887 0.904
3 C + SWs 0.910 0.945 0.900 0.918
4 C + nK-POS 0.901 0.936 0.893 0.911
5 SWs + nK-POS 0.870 0.932 0.846 0.878
6 C + SWs + nK-POS 0.904 0.939 0.895 0.913
7 SWs + TWs + STs 0.901 0.942 0.877 0.901
8 C + TWs + STs 0.907 0.946 0.904 0.920
9 C + SWs + TWs + STs 0.930 0.961 0.917 0.936
10 SWs + nK-POS + TWs + STs 0.897 0.937 0.880 0.902
11 C + nK-POS + TWs + STs 0.936 0.962 0.932 0.945
12 C + SWs + nK-POS + TWs + STs 0.931 0.958 0.921 0.937
13 SWs + POS + TWs + STs 0.892 0.931 0.865 0.890
14 C + POS + TWs + STs 0.919 0.956 0.903 0.926
15 C + SWs + POS + TWs + STs 0.918 0.955 0.895 0.919
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outperform the other types of feature combinations, demonstrating the effectiveness of
proposed feature on user intent classification.

To better evaluate the robustness of proposed feature combination, both SWs and
CKTS are applied to 5 commonly used classifiers including Support Vector Machine
(SVM), Perceptron (PPN), Random Forest (RF), Gaussian Naive Bayes (GaussianNB)
and k-Nearest Neighbor (KNN). The experiment results on fine-grained classification
are shown in Fig. 2, where the proposed CKTS contributes every classifier than SWs,
demonstrating the usefulness of the proposed features on user intent classification task.

In the third experiment, the stability of the proposed method is tested with different
sizes of training data. The training dataset A is randomly divided into 5 training subsets
containing 600, 1200, 1800, 2400, and 3000 queries respectively. The results are
measured in accuracy, precision, recall and F1. As illustrated in Fig. 3, our method
receives a stable performance on all evaluation metrics. Moreover, when only 600
queries are used, which are less than testing queries (667), the F1 of user intent
classification still achieves 0.854, only 0.01 less than the baseline 0.864 in Table 2.
This also verifies the effectiveness of proposed method.

To verify the strength and weakness of proposed method on different categories, we
conduct the fourth experiment. The results, as shown in Table 2, presented that the
proposed method achieves a precision of 1.000 on 20 of 31 fine-grained categories.
Moreover, for the categories such as “bus”, “calc”, “contacts” etc., the proposed method
gain the precision and F1 of 1.000 as well. For the categories “app”, “music”, “epg”, and
“radio”, the proposed method obtain lower recall of 0.667, 0.864, 0.806, and 0.875.

Fig. 2. The performance comparison 5 different classifiers on fine-grained classification using
SWs and CKTS.
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The last experiment presents the comparisons of our method with existing user intent
classification methods as baselines. The baselines are top five methods won the chal-
lenge in the shared task organized by the official ECDT website1. Using the same
training and testing datasets, we compare the performance on all the fine-grained

Fig. 3. The performance of our method with the increasing size of training datasets.

Table 2. The performance on fine grained categories of proposed method

Fine-
grained
categories

Precision Recall F1 Fine-
grained
categories

Precision Recall F1

App 0.857 0.667 0.750 Music 0.905 0.864 0.884
Bus 1.000 1.000 1.000 News 1.000 1.000 1.000
Calc 1.000 1.000 1.000 Novel 1.000 0.875 0.933
Chat 0.847 0.980 0.909 Poetry 1.000 0.882 0.938
Cinemas 0.778 0.875 0.824 Radio 1.000 0.875 0.933
Contacts 1.000 1.000 1.000 Riddle 1.000 1.000 1.000
Cookbook 0.978 0.989 0.983 Schedule 1.000 0.900 0.947
Datetime 1.000 0.833 0.909 Stock 1.000 0.875 0.933
Email 1.000 1.000 1.000 Telephone 0.952 0.952 0.952
Epg 0.967 0.806 0.879 Train 1.000 1.000 1.000
Flight 1.000 0.952 0.976 Translation 1.000 1.000 1.000
Health 1.000 0.944 0.971 TVchannel 0.885 0.958 0.920
Lottery 1.000 1.000 1.000 Video 0.750 0.934 0.832
Map 0.917 0.957 0.936 Weather 1.000 1.000 1.000
Match 1.000 1.000 1.000 Website 1.000 0.778 0.875
Message 1.000 1.000 1.000

1 http://ir.hit.edu.cn/SMP2017-ECDT-RANK.
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categories in F1. From the result, as presented in Table 3, our method achieves a best F1
of 0.945. As reported on ECDT website, SIGSDS and Whisper apply a deep learning
method (Long Short-Term Memory, LSTM, and Convolutional Neural Network, CNN)
with manually constructed domain dictionaries. Our method obtains a comparable
performance by adopting a traditional Logistic Regression with feature expansion.

5 Conclusions

Aiming for user intent identification and classification, this paper proposed a method
called ST-UIC based on dependency relation analysis for target word extraction.
Moreover, a semantic tag repository, containing 255,824 words and corresponding
semantic tags, was automatically constructed for feature expansion. Using a publicly
available dataset, five experiments were conducted for evaluating the effectiveness of
ST-UIC method through a comparison with five baseline methods. The results pre-
sented that ST-UIC achieved the best performance in the comparison, demonstrating its
effectiveness for user intent classification tasks.
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Abstract. This paper tackles the task of event detection, which involves
identifying and categorizing the events. Currently event detection remains a
challenging task due to the difficulty at encoding the event semantics in com-
plicate contexts. The core semantics of an event may derive from its trigger and
arguments. However, most of previous studies failed to capture the argument
semantics in event detection. To address this issue, this paper first provides a
rule-based method to predict candidate arguments on the event types of possi-
bilities, and then proposes a recurrent neural network model RNN-ARG with the
attention mechanism for event detection to capture meaningful semantic regu-
larities form these predicted candidate arguments. The experimental results on
the ACE 2005 English corpus show that our approach achieves competitive
results compared with previous work.

Keywords: Event detection � Argument prediction � Recurrent neural network

1 Introduction

Event extraction is divided into two subtasks, event detection (or trigger extraction) and
argument extraction. The former focuses on identifying event triggers and categorizing
their event types, while the latter aims to extract various arguments of a specific event
type and assign them roles. Commonly, event triggers are single verbs or nominal-
izations that evoke some real-world events, while event arguments are composed of
entity instances and play a certain role in an event. For example, in the sentence “He
died in the wave of kidnappings in Iraq”, event detection should recognize the token
“died” as the trigger of the event type died and argument extraction should identify the
entities “He” and “Iraq” as the arguments of this died event, and assign them the roles
Victim and Place, respectively. This paper focuses on event detection because it is still
the bottleneck of event extraction for its low performance.

Pipeline models are widely used in previous studies (Liao and Grishman [1]; Hong
et al. [2]), where argument extraction is the subsequent stage of event detection.
Therefore, argument information cannot be applied to event detection directly. How-
ever, event arguments are very effective for event detection. Take the following two
sentences as examples:
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S1: Iraqis have fired sand missiles in this war.
S2: MSNBC has fired Phil Donahue.

The sentences S1 and S2 have the same trigger word “fired”. With the argument
information, it is easy to identify S1 as an Attack event due to the entity “missiles”
(Weapon) and S2 as an End-Position event due to the entity “Phil Donahue” (Person).

Unfortunately, during the stage of event detection, we do not know which entities
act as the arguments of events. Most previous methods (e.g., Ji and Grishman [3]; Liao
and Grishman [1]; Hong et al. [2]) approximatively used the either syntactically or
physically nearest entities to the trigger as argument features. However, many argu-
ments are far from their triggers in either syntactically or physically distance. Besides,
neural network models (Nguyen and Grishman [4, 5], Chen et al. [6]; Sha et al. [7])
were applied to event detection, most of them focused on sequence and chunk infor-
mation from specific contexts, ignoring the effect of argument information.

Arguments are capable of providing significant clues to event detection, how to
provide accurate argument information to event detection is vital to the performance of
event detection. To tackle this issue, we first propose a method to predict candidate
arguments on the event types of possibilities and then apply them to a recurrent neural
network to detect events. The experimental results on the ACE 20051 English dataset
show that our model outperforms the state-of-the-art baselines.

2 Related Work

Various methods have been proposed for event detection. Early research has primarily
focused on local-sentence representations, such as the lexical features (e.g., full word,
POS), syntactic features (e.g., dependency features) and external knowledge features
(WordNet) (Ahn [8]). Currently, global inference and joint model are widely used in
event detection. Ji and Grishman [3] combined global evidence from related documents
with local decisions. Gupta and Ji [9], Liao and Grishman [1] and Hong et al. [2]
proposed cross-event and cross-entity inference for the event extraction task.

Representation-based approaches have been introduced into event detection very
recently, which represent candidate event mentions by embeddings and fed them into
neural networks (Chen et al. [6]; Nguyen and Grishman [4, 5]). Furthermore, Nguyen
et al. [10] employed bidirectional RNN, which could jointly extract event trigger and
arguments. However, joint model only makes remarkable improvements to argument
extraction, but insignificant to event detection. Sha et al. [7] employed a dependency
bridge recurrent neural network (dbRNN) for event extraction, which simultaneously
applying tree structure and sequence structure in RNN to capture sequence and syntax
information from specific context. Unfortunately, it totally ignored importance of
arguments for event detection. Liu et al. [11] proposed a three-layer Artificial Neural
Networks (ANNs) model on annotated arguments and the words around them to model

1 https://catalog.ldc.upenn.edu/LDC2006T06.
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the event detection task. It exploits argument information explicitly for event detection
via supervised attention mechanisms, which construct gold attention for each trigger
candidate based on annotated arguments in the training procedure.

3 Approach

We first propose a rule-based method to predict candidate arguments and then intro-
duce RNN-ARG (Recurrent Neural Networks with Arguments) to detect events. In our
model, we incorporate a Bi-LSTM (Bi-directional Long Short-Term Memory) to model
the preceding and following information of a word and use another Bi-LSTM model
with the attention mechanism to learn the representation of trigger and arguments.

3.1 Argument Prediction

When we cannot recognize event type from the semantics of trigger directly, it is very
important to consider argument semantics. Most of previous studies adopted the syn-
tactically or physically nearest entities to the trigger to represent argument semantics.
Due to upstream errors from the syntax parsing and the diversity of sentence expres-
sion, this method always introduces many pseudo arguments to vent detection and then
harms the precision. Another method is to consider all of the entities in the event
sentence as arguments. Obviously, it will introduce more pseudo arguments to event
detection. In this paper, we propose an event arguments prediction method to predict
based on the event types of possibilities and the corresponding entity types, which can
act as event roles following the definitions of event types.

In an event, the event type dominates its argument numbers and argument types,
i.e., roles. Hence, we must detect the event type firstly and then select candidate
arguments following the definition of the event type. Unfortunately, we do not know
the event type before event detection. However, we can enumerate all possible types of
a trigger word according to the annotation training data. In particular, 85.6% of the
trigger words in the training set only refer to one event type, 11.7% of them belong to
two distinct event types, and the rest (2.7%) has three or more event types.

Firstly, we enumerate all possible types of a candidate trigger w. If w does not
appear in the training set, we first calculate the similarities between w and each
annotated trigger in training set using WordNet similarity. Then we find a trigger tri in
the training set, who has the highest similarity with w. For instance, in S3 the candidate
trigger “discussed” does not appear in the training set and its most similar trigger is
“talked”.

S3: Chretien/PER said that he/PER and Bush/PER, who/PER had not spoken since
late February/TIME, discussed issues including Iraq/GPE and aid to Africa/GPE.

Secondly, we select top two high frequency event types of the candidate trigger
w (if w does not occur in the training set, we use tri to replace it) according to the
statistics on the training set. Because “discussed” does not occur in the training set, we
use its similar trigger “talked” to find event types. The trigger word “talked” belongs to
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the event type Phone-Write (60%) and Meet (40%). Hence, we choose the top two
event types Phone-Write and Meet for the trigger “discussed”.

Finally, we extract the candidate arguments on entity type matching. For an event
type i, we first extract all entity types, who can act as a role (we do not consider the role
Place and Time because they do not have obvious event type discrimination) of this
event type following the event definition, and store them to the list EntTypei. Then from
the list of the annotated entities in the event mention, we extract the entities whose
types belong to EntTypei, as candidate arguments. For example, the event type Phone-
Write only has one role Entity, which can fill entities whose type are PER/ORG. Hence
the list of entities [Chretien, he, Bush, who] can act as candidate arguments of Phone-
Write event, due to their entity types PER or ORG.

3.2 RNN-ARG Model

The RNN-ARG model is showed in Fig. 1. The model contains two Bi-LSTM neural
networks. Specifically, we first use a Bi-LSTM to encode semantics of each word with
its preceding and following information. Then we add an attention-based Bi-LSTM
neural network to capture the semantics of trigger and arguments.

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

output

LSTMB

LSTMF

Attention 
layer

Hidden 
Layer

SoftMax

Concatenate 

Lookup

α

w w w w

a1 a2 a3 an
e1 e2 e3 en

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

w1 w3 wn
e1 e2 e3 en

w2

rfvbv

He Irapdied in

bv fv

Fig. 1. The architecture of the model RNN-ARG (here the trigger candidate is “died”)
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• Bi-LSTM

In the sentence encoding phase, we take all the words of the whole sentence as the
input and each token wi into a real-valued vector xi using the concatenation of the
following two vectors:

(1) Word Embedding Table: Word embeddings are able to capture the meaningful
semantic resularities (Bengio et al. [12]) and we train the word embeddings using
Skip-Gram2 (Mikolov et al. [13]) algorithm on the NYT corpus3.

(2) Entity Type Embedding Table: Following existing work (Li et al. [14]; Chen
et al. [6]; Nguyen and Grishman [4]), we exploit the annotated entity information
as additional features. We randomly initialize embedding vectors for each entity
type (including “None” which refers to an undefined entity type) and update it in
the training procedure.

The transformation from the token wi to the vector xi essentially converts the input
sentence W into a sequence of real-valued vectors X ¼ x1; x2; . . .; xnð Þ, to be used by
recurrent neural networks to learn a more effective representation.

At each step t, the LSTM accepts current input xt and previous hidden state ht-1 to
compute hidden state. We run LSTMF from the beginning to the end of sequence, and
run LSTMB from the end to the beginning of the sequence, while producing sequences

of vectors for forward propagation ~ht ¼ LSTMF xt;~ht�1
� �

and another for the back-

ward propagation h
 
t ¼ LSTMB xt; h

(

tþ 1

� �
respectively. Afterwards we concatenate the

vectors ht ¼ ~ht; h
 
t

h i
for each time step, and ht is reduced into a single vector as the

current state. The LSTM holds a state representative as a continuous vector passed to
the subsequent time step, and it is capable of modeling long-range dependencies due to
its gated memory. Afterwards, we concatenate of the hidden states fv of the LSTMF and
bv of the LSTMB as the final output of Bi-LSTM, instead of averaging the last hidden
vectors of the LSTMF and LSTMB.

• Bi-LSTM with Attention

Different from sentence encoding which used the entire sentence as input of Bi-
LSTM. In this encoding phase, we take the candidate trigger and its predicted arguments
as the input of an event. We use w to denote the current candidate trigger, [a1, a2,…, an]
to denote the candidate arguments/entities in the list, which is extracted by argument
prediction method, and [e1, e2, …, en] to denote the entity types of the candidate
arguments in the list. The element at position i of the input sequence is resolved by a
vector vi as follows:

vi ¼ w� ai � ei ð1Þ

2 https://code.google.com/p/word2vec/.
3 https://catalog.ldc.upenn.edu/LDC2008T19.
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where ⊕ is the concatenation operator. Note that, both w, ai and ei are originally in
symbolic representation. Before entering the recurrent neural network, we transform
them into real-valued vector by two look-up tables, Word Embedding Table and Entity
Type Embedding Table. For the recurrent setup, we use a layer of LSTM networks in a
bidirectional manner. The forward and backward LSTMs traverse the sequence vi,

producing sequences of vectors ~ht and h
 
t respectively. Then the output at time t is

ht ¼ ~ht; h
 
t

h i
. Finally, this model acquires weighted sum over ht by using attention, and

calculates the final vectors of the argument semantics. The attention mechanism lets the
model decide the importance of each predict argument by weighing them when con-
structing the representation of the sequence. The attention layer contains the trainable
vector x (of the same dimensionality as vectors ht) which is used to dynamically
produce a weight vector a over time steps t as follows.

a ¼ softmaxðxTtanh Hð ÞÞ ð2Þ

where H is a matrix consisting of vectors ht. The output layer r is the weighted sum of
vectors in H:

r ¼ HaT ð3Þ

This representation vector r obtained from the attention layer is a high-level
encoding of the trigger and arguments, which is used as input to the final softmax layer
for the classification.

• Final Classification

Finally, we concatenate the sequence feature bv and f v which are learned from the
Bi-LSTM, and argument semantic r, which is the output of attention based Bi-LSTM,
as a single vector F = [bv, fv, r]. To compute the confidence of each event type, the
feature vector F �R4d , where d is the dimension of hidden state vector, is fed into a
classifier. We exploit a softmax approach to identify trigger candidates and classify
each trigger candidate as a specific event type as follows.

O ¼ WsFþ bs ð4Þ

where Ws �R
n� 4dð Þ is the transformation matrix and O �Rn is the final output of the

network, n is equal to the number of the event type including the “None” label for the
candidate trigger which do not belong to any event type. For regularization, we also
employ dropout (Kim [15]) on the penultimate layer.

3.3 Model Training

We define all of the parameters for the stage of trigger classification to be trained as
h ¼ E;ET; lf ; lb; rf ; rb;x;Ws; bsð Þ. Specifically, E is the word embedding, ET is the
embedding of the entity type, lf and lb are parameters of forward-LSTM and
backward-LSTM, rf and rb are parameters of another forward-LSTM and
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backward-LSTM. x is parameters of attention layer,Ws and bs are all of the parameters
of the output layer.

Given an input example x, the network with parameter h outputs the vector O,
where the i-th value oi of O is the confident score for classifying x to the i-th event
type. To obtain the conditional probability p ijx; hð Þ, we apply a softmax operation over
all event types:

p ijx; hð Þ ¼ eoiPm
k¼1 eok

ð5Þ

The model can be trained in an end-to-end way by back propagation, where the
objective function (loss function) is the cross-entropy loss. Given all of our (suppose T)
training examples (xi; yi), we can then define the negative log-likelihood loss function
as follows:

J hð Þ ¼ �
XT

i¼1 log pðy
ið Þjx ið Þ; hÞ ð6Þ

To compute the network parameter h, we train the model by stochastic gradient
descent over shuffled mini-batches with Adam (Kingma and Ba [16]) rule.

4 Experiments

We first introduce the experimental setting and then report the experimental results and
analysis.

4.1 Experimental Setting

We evaluate our model on the ACE 2005 English corpus and use the same data split and
annotated entity mention as the previous work (Liao and Grishman [1]; Hong et al. [2];
Li et al. [14]; Nguyen and Grishman [4]). This data split includes 40 newswire docu-
ments for the test set, 30 other documents for the development set and remaining 529
documents as the training set. Besides, we report the micro-average Precision (P), Recall
(R) and F1-score (F1), following the standards defined in (Ji and Grishman [3]). In our
evaluation, we extract all annotated trigger words in the training set and use them to find
the candidate triggers in the test set. Finally, 85.3% of trigger mentions are selected as
candidates.

Hyper-parameters are tuned on the development set. We set 300, 50 dimensions for
the word embeddings, the entity type embeddings, respectively. The hidden layer vector
dimension of LSTM is 128. To prevent overfitting, we inherit the values for the other
parameters from (Kim [15]), the dropout rate is set to 0.5, the mini-batch size is 50.

4.2 Experiments Results

We compare our model with the following baselines: (1) CNN (Chen et al. [6]), which
exploits a dynamic multi-pooling convolutional neural network for event detection;
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(2) JointM (Nguyen et al. [10]), which employs a bi-directional RNN to jointly extract
event triggers and arguments; (3) dbRNN (Lei et al. [7]), which proposes a novel
dependency bridge recurrent neural network (dbRNN) for event extraction; (4) ANN-
ATT (Liu et al. [11]), which leverages additional arguments information for event
detection.

Table 1 shows the results of the above five models and RNN-ARG achieves the
comparably F1-score. Compared with two simple neural networks models CNN and
JointM, our model RNN-ARG significantly improves the F1-score on event detection
(trigger classification) by 2.5 and 2.3, respectively. This verifies that combined neural
networks model is an appreciate model for the task of event extraction to capture more
event semantics, and the attention layer is effective for capture more valuable infor-
mation to extract an event when using recurrent neural networks.

Compared with dbRNN, which carry syntactically related information when
modeling each word by enhancing Bi-LSTM with dependency bridges. Our model only
used two simple recurrent neural networks, but it still performs comparably with the
enhanced model. In particularly, two models have achieved the same highest recall.
This result justifies the effectiveness of the argument semantics and our RNN-ARG to
detect events. With the additional predicted argument information, our RNN-ARG can
learn more vital information from triggers, arguments and their combination.

Compared with ANN-ATT, which also introduces argument semantics to their
model, RNN-ARG has achieved a very close F1-score on event detection, with the
higher recall (+3.5%). ANN-ATT used annotated arguments to train attention mech-
anism and it only captured existed combination of trigger and arguments, ignoring
other possible combination of trigger and arguments. However, our argument predic-
tion can enumerate all possible arguments and provide more argument semantic
information. Its disadvantage is it will introduce lots of pseudo arguments to our RNN-
ARG to reduce the precision.

4.3 Analysis

To analyze the effectiveness of the argument semantics, we conduct the following
models for comparison: (1) ALLENT, which regards all entities in the event mention

Table 1. Comparison of event detection models on ACE.

Model Trigger
identification

Trigger
classification

P R F P R F

CNN 80.4 67.7 73.5 75.6 63.6 69.1
JointM 68.5 75.7 71.9 66.0 73.0 69.3
dbRNN N/A N/A N/A 74.1 69.8 71.9
ANN-ATT N/A N/A N/A 78.0 66.3 71.7
RNN-ARG 75.3 71.5 73.4 73.6 69.8 71.6
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as candidate arguments; (2) ARG-1, which predicts arguments based on only top one
high frequency event type on the training set; (3) ARG-1 w/o Att, which refers to
ARG-1 without the attention mechanism; (4) RNN-ARG, our model which predicts
arguments based on top two high frequency event types on the training set; (5) ALL-
TYP, which predicts arguments based on all possible event types on the training set.

Table 2 shows the results of the above five models and RNN-ARG achieves the
highest F1-score. In the training set, most trigger words only refer to 1–2 distinct event
types. 85.6% of the trigger words refer to one event type, 11.7% of the trigger words
belong to two distinct event types. These figures also justify that ARG-1 can achieve a
relatively high F1-score.

The statistics on the trigger words belonging to two distinct event types shows that
63.1% of the distribution on event type is larger than 3:7. This figure ensures that RNN-
ARG outperforms ARG-1 in F1-score. Besides, the F1-score of ALLTYP is smaller
than that of RNN-ARG, because it will introduce many pseudo arguments to the model.

ALLENT takes all the entities in the sentence containing the event mention as
predicted arguments, and it obviously introduces many pseudo arguments to the model
and then lead to ambiguity. Thus, its F1-score is lower than those of the other four
models. Besides, ARG-1 outperforms ARG-1 w/o Att in F1-score and this result shows
that the attention mechanism can optimize the final output vector, and mine richer
semantic information from triggers and arguments.

Moreover, we also analyze the error results in our model RNN-ARG. Table 1
shows that 21.6% of pseudo instances are identified as event mentions by mistake. The
main reason is that a trigger word may have more than one tense (especially support
verbs, such as “sent”, “go”). Annotation ambiguity is also a problem and many event
mentions are not annotated in the ACE corpus. For example, the trigger word “shot” in
the sentence “she was shot herself”, which actually contains an Attack event and a Die
event, only be assigned one event type for the annotation rule: each trigger mention
only has one event type.

16.7% of trigger mentions in the test set belong to unknown trigger words (never
appear in the training set), these mentions cannot be identified due to our candidate
selection mechanism mentioned in Subsect 4.1. Otherwise, those nominal triggers

Table 2. Experimental results of the variants of RNN-ARG on ACE.

Model Trigger
identification

Trigger
classification

P R F P R F

ALLENT 77.9 67.4 72.3 74.8 64.8 69.4
ARG-1(w/o Att) 78.5 67.6 72.6 76.2 65.3 70.3
ARG-1 75.2 71.0 73.1 72.8 68.7 70.7
RNN-ARG 75.3 71.5 73.4 73.6 69.8 71.6
ALLTYP 77.9 68.5 72.9 75.4 66.4 70.6
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(5.8%) (such as “tours” and “missions”) are hard to be recognized, because they lack
enough event arguments to indicate their event type. Finally, some trigger words may
belong to more than one event type, and they are easy to be identified wrongly.

5 Conclusion

Arguments are capable of providing significant clues to event detection. This paper
proposes a novel RNN-ARG model with the attention mechanism and predicted
arguments to detect events. The experimental results show the effectiveness of our
model. Our future work will focus on extracting accurate arguments and giving
effective representation to detect events.
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Abstract. Event coreference resolution is a challenging NLP task due to this
task needs to understand the semantics of events. Different with most previous
studies used probability-based or graph-based models, this paper introduces a
novel neural network, MDAN (Multiple Decomposable Attention Networks), to
resolve document-level event coreference from different views, i.e., event
mention, event arguments and trigger context. Moreover, it applies a document-
level global inference mechanism to further resolve the coreference chains. The
experimental results on two popular datasets ACE and TAC-KBP illustrate that
our model outperforms the two state-of-the-art baselines.

Keywords: Event coreference � Decomposable Attention Network
Global inference

1 Introduction

Event coreference resolution is vital for many NLP applications, such as topic detection
(Allan et al. [1]), information Extraction (Li et al. [2]) and question answering (Nar-
ayanan and Harabagiu [3]). It is to determine which event mentions in texts refer to the
same real-world event and then cluster them to a unique coreferential event chain. Take
the following two event mentions as samples:

S1: A Cuban patrol boat with four heavily armed men landed on American shores.
S2: These bozos let four armed Cubans land on our shores.

The event mention in S1, whose event trigger is “landed”, and the mention in S2
with trigger “land” refer to the same real-world Movement event, and are coreferential
event mentions.

This paper focuses on document-level event coreference resolution. Document-
level event coreference chains are challenging to resolve. Sometimes, coreferential
event mentions in the same document can look very dissimilar (“killed/VB” and
“murder/NN”), have event arguments partially or entirely omitted, or appear in distinct
contexts compared to their antecedent event mentions, partially to avoid repetitions.

To capture the semantic information hiding in event trigger, event argument and the
structure among the trigger and its arguments, this paper introduces a novel neural
network, MDAN (Multiple Decomposable Attention Network) (Parikh et al. [4]), to
resolve document-level event coreference from different views, i.e., event mention,
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event arguments and trigger context. This model can capture the different features from
different views to better represent the event semantics. To resolve conflicts between
different event mention pairs, this paper applies a document-level global inference
mechanism to further resolve the coreference chains. The experimental results illustrate
that our model outperforms the two state-of-the-art baselines on two popular datasets,
the ACE 2005 corpus and the TAC KBP 2015 corpus. The contributions of this paper
are as follows:

It constructs a novel neural network model MDAN for document-level event
coreference resolution to capture different event semantics from multiple views.

It introduces event arguments to MDAN to better represent event semantics.
It applies a document-level global inference mechanism to further resolve the

coreference chains.
The rest of this paper is organized as follows. Section 2 overviews the related work.

Section 3 describes our MDAN model for event coreference resolution. Section 4
evaluates our approach and shows its effectiveness over two baselines. Section 5
concludes the paper with future work.

2 Related Work

Event coreference is much less studied in comparison to the large number of work on
entity coreference. The studies on event coreference resolution are usually divided into
within-document level and cross-document level.

Early work on document-level event coreference resolution mostly built on insights
gained from the entity coreference literature (Cybulska and Vossen [5], Bejan and
Harabagiu [6], Ng and Cardie [7]). Recent approaches focused on exploiting event
specific structure and resolution model. Chen and Ji [8] modeled event coreference
resolution as a spectral graph clustering problem that optimizes the normalized-cut
criterion. Liu et al. [9] introduced a rich-features method with a large amount of
features for propagating information between events and their arguments. Lu et al. [10]
proposed a joint inference model based Markov logic networks to correct the mistakes
from the pairwise event coreference resolver. Currently, neural networks are widely
used in many NLP applications. To our knowledge, there is only one study employed
neural networks for document-level event coreference. Krause et al. [11] introduced the
Convolutional Neural Network (CNN) to event coreference. It is divided into two parts.
The first part gives a representation for a single event mention and the second part is
fed with two such event mention representations plus a number of pairwise features for
the input event-mention pair, and calculates a coreference score.

3 MDAN for Event Coreference Resolution

The architecture of the model MDAN for event coreference resolution is shown in
Fig. 1 and our model MDAN contains four parts, i.e., multi-similarity module, pairwise
module, classifier module and global inference module.
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Two event mentions are coreferential when they are similar in tokens, event
structures, triggers, arguments, context of trigger, etc. The multi-similarity module first
compute the similarity vectors of two event mentions from multiple views (i.e., event
mention view, argument view and trigger context view), and then concatenate them
into a vector to represent their final similarity. The advantage of multi-similarity
module is that it can capture different semantic information from different views to
represent different similarities of an event pair. The details of a single similarity module
are shown in Fig. 2. Inspired by Parikh et al. [4], we introduce Decomposable
Attention Network (DAN) as our similarity module. DAN outperforms several simi-
larity models in our experiments, such as Siamese CNN Network, etc. Its advantage is
that the soft attention in DAN can capture important hiding features and avoid noise.
This similarity module containing the soft attention is suitable to learn the similarity of
two event mentions in our experiments.

The pairwise module fed with pairwise features between two event mentions and
maps them to a vector. Pairwise features reveal the similarities on various kind attri-
butes (e.g., trigger and event type) of event mentions. These attributes can be regarded
as the auxiliary of the multi-similarity module. Both the multi-similarity module and
the pairwise module are the kernel components of MDAN, and we use them to capture
the hidden features inside event mention.

The classifier module is to classify an event mention pair to coreference or not. The
input of this module is the combination of the event similarity vector from the multi-
similarity module and the pairwise vector from the pairwise module.

The global inference module is to optimize the results from the classifier module to
form a more complete event chain, based on the merging and cutting rules.

In our model MDAN, the inputs of the multi-similarity module and the pairwise
module are the extracted features from an event mention pair, while the output of the
classifier module is the confidence score that two event mentions are coreferential. The
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input of the global inference module are all the confidence scores of two event men-
tions in a document and its output is the optimized results of event chains.

3.1 Input

Following Krause et al. [11], the input of the model MDAN is two event mentions e1
and e2 with annotated trigger, event type/subtype, event arguments, and event attri-
butes (e.g., modality), etc. We extract the features from these two event mentions and
the features used in Krause et al. [11] are employed in our model as follows.

Event features: (Multi-similarity module)

• Sentential features: words in sentences (event mentions) (F1); relative positions of
words based on triggers (e.g., that of the word “shores” in S1 is 3) (F2)

• Context features: context around trigger (the windows size is set to 5, e.g., “with
four heavily armed men landed on American shores” in S1) (F3).

Pairwise features: (Pairwise module)

• Event type and subtype is the same or not (F4)
• Distance between event mentions (numeric values) (F5)
• Event modality is the same or not (F6)
• Overlap in arguments or not (F7).

To further capture the semantic information in sentence structures and arguments
(Haghighi and Klein [12]), we provide the additional features as follows:

Event features: (Multi-similarity module)

• Sentential features: POS of words in sentences (event mentions) tagged by NLTK
tools (F8)

• Argument features: arguments in sentences (F9) and their entity types (F10).

For each event mention, we first embed the features (F1–F3 and F8–F10) in the sets
of the sentential features, context features and argument features to six vectors, where
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the features F1, F3 and F9 are embedded by word2vec and the others are embedded
randomly. Then we concatenate the vectors from F1, F2 and F8 into the vector Sen, the
vectors from F9 and F10 into the vector Arg. Besides, the vector Cont is the vector
from F3. In Fig. 1, Sen1, Cont1 and Arg1 are the vectors of the sentential features,
context features and argument features for event mention e1, while Sen2, Cont2 and
Arg2 are the vectors for event mention e2.

3.2 Multi-similarity Module

Multi-similarity module contains three DAN-based similarity models showed in Fig. 2.
Each DAN-based similarity model compute the similarity between two event mentions
e1 and e2 on three different views, i.e., sentence, context and argument views, by using
pairwise vector Sen1-Sen2, Cont1-Con2 and Arg1-Arg2 as input, respectively.

In each similarity model, we first employ the attention mechanism to calculate the
weights of input vectors X1 and X2 (i.e., Sen1-Sen2, or Cont1-Con2, or Arg1-Arg2),
for extracting important information from two given event mentions. Our soft align-
ment layer computes the attention weights wij as the similarity of words in the
tuple <X1, X2> as Eq. (1) where function F is a feed-forward neural network, and X1i
is the vector of ith word in the vector X1:

wij ¼ F X1ið ÞT �F X2j
� � ð1Þ

Then we use softmax to compute the weight of vectors. Vectors X1 and X2 are
normalized as V1 and V2 as follows, where ‘X1 and ‘X2 is the length of X1 and X2, V1i
is ith word of X after adding attention weight values:

V1i ¼
X‘X1

j¼1

exp wij
� �

P‘X1
k¼1 exp wikð ÞX1j 8i 2 1; . . .; ‘X1½ �

V2i ¼
X‘X2

j¼1

exp wij
� �

P‘X2
k¼1 exp wikð ÞX2j 8i 2 1; . . .; ‘X2½ �

ð2Þ

Equation (3), which can be viewed as a noisy channel, is to compute the cosine
distance of two vectors, so we can get the similarity scores of two vectors S1 and S2 as
follows:

S1 ¼ sim X2;V1ð Þ ¼ X2T � V1; S2 ¼ sim X1;V2ð Þ ¼ X1T � V2 ð3Þ

Then we concatenate X2, V1 and S1 into a comparison vector CV1, and the same
for comparison vector CV2:

CV1 ¼ X2;V1; S1½ �; CV2 ¼ X1;V2; S2½ � ð4Þ

Next, we use pooling to reduce the complexity of representation. Maximum
Pooling (MaxPool) and Averaging Pooling (AvgPool) are two main approaches of
pooling. However, AvgPool may weaken strong activation values, and MaxPool may
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lead to overfitting. So we compute both average pooling (i.e., PV1avg and PV2avg) and
max pooling (i.e., PV1max and PV2max), and concatenate all of them to produce the
vector Ve:

PV1avg ¼
X‘CV1

i¼1

CV1i
‘CV1

; PV1max ¼ max‘CV1i¼1 CV1i ð5Þ

PV2avg ¼
X‘CV2

j¼1

CV2j
‘CV2

; PV2max ¼ max‘CV2j¼1 CV2j ð6Þ

Ve ¼ PV1avg;PV1max;PV2avg;PV2max
� � ð7Þ

3.3 Pairwise Module

The pairwise module is to judge the similarity between two event mentions on the
pairwise features. This model is very simple. We first transfer the numeric values of to
the vector X3, and then feed them into a feed-forward network to get the vector Vp for
extracting features hiding in pairwise features.

3.4 Classifier Module

We first concatenate Ve from the multi-similarity module and Vp from the pairwise
model into the vector Vf to represent the final semantic relation between two event
mentions.

V f ¼ Ve;Vp
� � ð8Þ

The final vector Vf is fed into a final multilayer perceptron (MLP) classifier, which
has three hidden layers with RELU activation, as following:

Vh ¼ a Wh � V f þ b
� � ð9Þ

where a is the activation function, Wh and b are parameters. Finally, we can get the
coreference score with the output of sigmoid layer:

Score ¼ sigmoid Wout � Vh þ boutð Þ ð10Þ

The objective function of model is set as following:

ð11Þ

where h ¼ fWX1; WX2; WV1; WV2; WCV1; WCV2; We; Wp; W f ; Wh;Wout; boutg: To
prevent overfitting, we utilize dropout and batch normalization.
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3.5 Global Inference Module

To ensure consistent outputs on a document, we propose a document-level global
inference module to solve the conflicting decisions in MDAN. We transfer the pairwise
results to form coreference chains. The coreferential events are characterized as
reflexive, symmetric and transitive. We utilize the transitive property in coreferential
events following the merging and cutting rules.

Merging: if both event mention pairs (ei, ek) and (ek, ej) are coreferential, coreferential
relation must hold between ei and ej, with event mention ek as a bridge to link ei and ej.

Cutting: if event mention pairs (ei, ek) are coreferential and (ek, ej) are not corefer-
ential, the pair (ek, ej) are not coreferential. If this constraint is in conflict with the
merging rule, the merging rule is prior to this cutting rule.

To avoid the conflicts of the above four rules, we count the numbers of coreference
and not coreference judgements, respectively, and make final decisions with Eq. (12)
as follows.

argmaxx x � CR ei; ej
� �þ 1� xð Þ � CUR ei; ej

� �� � ð12Þ

where x is a binary indicator. If x equals to 1, the event mention pair (ei, ej) is
coreferential; otherwise, they are not coreferential. CR(ei, ej) and CUR(ei, ej) are the
count of the results Coref(ei, ej) and Uncoref(ei, ej) infer by above four rules.

4 Experiments

In this section, we first introduce the experimental setting and then evaluate our model
MDAN on two corpora to justify its effectiveness and report the experimental results.
Finally, we give the analysis on the experimental results.

4.1 Experimental Setting

In our experiments, we mainly evaluate our MDAN model on the ACE 2005 English
corpus, following most previous studies on document-level event coreference resolu-
tion. This corpus contains 599 documents in six genres. This corpus annotated events
with 8 event types and 33 event subtypes. In our evaluation, we use the same training
and test set as Krause et al. [11]1. Every event mention is paired with every event
mention in the text. Besides, we also report the results of our MDAN on another widely
used corpus, the TAC KBP 2015 English corpus which is annotated with event nuggets
that fall into 38 types and coreference relations between event mentions. Table 1 shows
the statistics on the above two corpora.

In the evaluation, we set the dimensions of the POS, entity type, and relative
position embeddings as 50 and k = 10−4, which parameters of embedding matrix are
randomly initialized. We initialize word embeddings via pre-trained embeddings of

1 https://git.io/vwEEP.

252 J. Fang et al.

https://git.io/vwEEP


GloVe and set the dimensions as d0 = 50. Besides, we employ mini-batch SGD
algorithm to optimize our models and the model training is run for 15 epochs, after
which the best model on the valid dataset is selected.

We compare all systems using four standard F1 metrics in previous work: a link-
level metric MUC, a mention-level metric B3, an entity-level metric CEAFe and an
average pairwise-positive and pairwise-negative F1-score metric BLANC. (Vilain et al.
[13]) We also use the average scores (AVG) of the above metrics as comparison metric.

4.2 Experimental Results

To evaluate the performance of our MDAN model on document-level event corefer-
ence resolution, we compare it with two strong baselines: a state-of-the-art classifier
model (Liu et al. [9]) with more than 100 features and a state-of-the-art neural network
model (Krause et al. [11]). Table 2 illustrates the performance comparison on three
models based on annotated event mentions.

The results in Table 2 show that our model MDAN outperforms two baselines on
all three metrics and their averages, with an average gain of 9.32 and 8.36 in F1-scores,
respectively. Compared to baseline Krause, our MDAN improves the F1-scores on
three metrics BLANC, B3 and MUC by 9.98, 1.76 and 13.36, respectively. These
results confirm that our decomposable attention network and the global inference
mechanism are better than their CNN model and rules on transitive closure.

We also evaluate our MDAN model on another popular event coreference corpus,
the TAC KBP 2015 English corpus. Table 3 shows the F1-scores of our MDAN and
the top system (TAC-TOP) [12] in the 2015 TAC KBP Event Nugget Evaluation Task.
Due to this corpus did not annotate argument tags, we use PractNLPTools2 to extract
event arguments automatically.

Table 1. Statistics on the ACE and TAC KBP corpora.

Corpus #Documents #Sentences #Event mentions # Event chains

ACE 2005 599 15494 5268 4046
TACKBP 2015 360 15824 12976 7415

Table 2. Performance of the model MDAN & competitors on ACE corpus.

System BLANC B3 MUC AVG
P R F1 P R F1 P R F1 F1

Liu 70.01 70.88 70.43 88.86 89.90 89.38 48.75 53.42 50.98 70.26
Krause 71.80 75.16 73.31 86.12 90.52 88.26 45.16 61.54 52.09 71.22
MDAN 80.87 86.28 83.29 89.34 90.71 90.02 65.69 65.21 65.45 79.58

2 https://github.com/biplab-iitb/practNLPTools.
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Table 3 shows that our model MDAN outperforms TAC-TOP in all metrics and
this result further ensures the effectiveness of our MDAN. Compared with the work of
TAC-TOP (Mitamura et al. [14]), which used additional semantic resources and
additional annotated datasets, we did not use any external resources.

4.3 Analysis

Compared to the baselines, our improvements mainly derive from three aspects:
(1) argument information, (2) MDAN model and its attention mechanism, and
(3) global inference mechanism. Table 4 shows the performance when we remove the
argument information, or the attention mechanism, or the global inference mechanism
from MDAN, respectively.

If we remove the argument information from MDAN, Table 4 shows that the F1-
scores on the metrics BLANC, B3 and MUC are reduced −7.93, −1.43 and −4.36,
respectively. These results prove that argument information is helpful to identify event
mentions and their coreference, because event semantics not only derives from trigger
semantics, but entity semantics.

Table 4 also shows that the attention mechanism is helpful to prevent the inter-
ference from the uncorrelated features and improves the F1-scores on the metrics
BLANC, B3, and MUC significantly. The principle of our attention mechanism is to
weight different input information. Compared with MDAN w/o Opt, We found our
MDAN’s recall decreased, because the vectors with low attention weight values will be
ignored.

We also use the Krause’s rules to replace our global inference mechanism, and the
results are shown in Table 4 (MDAN w/o Opt). The results show that our global
inference mechanism outperforms Krause’s rules on all metrics. The reason is that our

Table 3. F1-scores of MDAN and top system (TAC-TOP) on the 2015 TAC-KBP event nugget
evaluation task. (Lu and Ng [15])

System BLANC B3 MUC CEAFe AVG

TAC-TOP 76.91 82.29 68.08 74.12 75.35
MDAN 76.97 82.36 69.88 76.65 76.46

Table 4. Performance of our MDAN without argument information (Arg)/attention mechanism
(Att)/global optimization method (Opt).

System BLANC B3 MUC AVG
P R F1 P R F1 P R F1 F1

MDAN 80.87 86.28 83.29 89.34 90.71 90.02 65.69 65.21 65.45 79.58
w/o Arg 73.66 77.44 75.36 88.2 88.98 88.59 61.31 60.86 61.09 75.01
w/o Att 64.61 80.51 67.91 73.12 92.76 81.78 45.37 74.63 56.43 68.7
w/o Opt 68.76 79.5 72.37 77.81 91.61 84.15 49.5 71.73 58.57 71.69
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global inference mechanism applies both merging and cutting rules to optimize the
results of the neural network model and then can balance the output results.

5 Conclusion

This paper introduces a novel neural network MDAN to resolve document-level event
coreference from different views. Moreover, it applies a document-level global infer-
ence mechanism to further resolve the coreference chains. The experimental results
illustrate that our model outperforms the two state-of-the-art baselines on two popular
datasets ACE and TAC-KBP. Our future work is to expand our model to cross-
document and multi-language event coreference resolution.
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Abstract. Event-Event Relation Detection (RD2e) aims to detect the
relations between a pair of news events, such as Causal relation between
Criminal and Penal events. In general, RD2e is a challenging task due to
the lack of explicit linguistic feature signaling the relations. We propose
a cross-scenario inference method for RD2e. By utilizing conceptualized
scenario expression and graph-based semantic distance perception, we
retrieve semantically similar historical events from Gigaword. Based on
explicit relations of historical events, we infer implicit relations of target
events by means of transfer learning. Experiments on 10 relation types
show that our method outperforms the supervised models.

Keywords: Relation detection · Cross scenario · Semantic distance

1 Introduction

Event relation refers to the way in which an event exerts an influence on the
other, such as Conditionality, Causality, Concession, etc. For example, the event
“Snowden was trained as a secret agent” is the necessary condition of the event
“he successfully escaped scrutiny”.

The goal of a RD2e system is to automatically detect the implicit relations
between event mentions, some of which occur in a single document while others
different documents (cross-document relations). In this paper, we limit our dis-
cussion to the ground-truth event mentions that have been manually extracted
from news articles. As defined in ACE and KBP (Ji and Grishman, 2008; Liao
and Grishman, 2010), an event mention is a text span that contains a trigger
and the closely related arguments.

In this paper, we propose a cross-scenario inference approach, which performs
with minimal supervision. The fundamental behind the inference approach is
that if there are some historical events similar to the target events, and the
relations between the historical events are explicit, thus the implicit relations of
the target can be inferred accordingly using those explicit relations. For example,
we can determine the unknown relation in (1) as conditionality, because such a
relation is held between the similar historical events in (2) and has been explicitly
signalled by the conjunction “thus”.
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 257–267, 2018.
https://doi.org/10.1007/978-3-319-99501-4_22
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(1) Target: Edward Snowden was trained as a secret agent. The certification

would have given him some of the skills he needed to escape scrutiny. (in 2013)

T1 : Snowden was trained as a secret agent. T2 : Snowden escaped
scrutiny.
ST1 : Person AND Education-teaching AND People-by-vocation
ST2 : Person AND Avoiding AND Scrutiny

(2) Historical: Edward Howard, a CIA case officer, was trained as a spy and

thus eluded FBI surveillance. (in 1993)

H1 : Howard was trained as a spy. H2 : Howard eluded surveillance.
SH1 : Person AND Education-teaching AND People-by-vocation
SH2 : Person AND Avoiding AND Scrutiny

Methodologically, we leverage FrameNet, a frame-level semantic dictionary,
to the description of event scenarios, transforming the words in an event mention
to the semantic frame tags by looking-up. This allows the similarity computing
at the level of semantics, and makes it easy to match semantically similar event
scenarios (see the frame tags in ST1&T2 and SH1&H2). In addition, we utilize the
labelled conjunctions (e.g., “thus”) in the corpus of Penn Discourse Tree Bank
(PDTB), so as to reinforce the explicit-to-implicit relation inference.

The rest of the paper is organized as below: Sect. 2 overview the related work;
Sect. 3 presents the inference approach; Sect. 4 gives a refined scenario model;
Sect. 5 provides the test results; we conclude the paper in Sect. 6.

2 Related Work

Girju et al. [8] use lexico-syntactic patterns of noun phrases (NPs) and verbs,
<cause-NP, causal verb, effect-NP>, to automatically extract the Causal rela-
tion within one sentence. Soon thereafter, Chang and Choi [5] revise Girju et al.
(2002)’s pattern, using lexical pair (LP) and cue phrase (e.g., due to) to gener-
ate the new version, <LP, cue, LP>. The LP and cue-phrase probabilities are
estimated in raw corpus by EM procedure, and jointly used in a naive Bayes
classifier. Abe et al. [1] go further by using co-occurrence probability.

Sufficient attentions have been given to the optimization of causal relation
recognition from different aspects: fine-grained causal relation classification [10],
feature selection [3], syntactic, graphical and sophisticated patterns [11], use of
discourse structure [6], rule generation [21], and domain adaptation [22].

The pilot study on event-oriented temporal relation derives from Mani et al.
[14] and Lapata and Lascarides [12], both of whom focus on machine learn-
ing of temporal relations. In the past decade, the SemEval [20] has promoted
a great deal of experimental study, including on the grammatical, syntactic,
semantic and ordering feature-based temporal relation classification [4], and the
validate of sequence labeling and Markov Logic [25]. SemEval-2015 [16] defines
cross-sentence and cross-document event ordering tasks, both of which go a step
further than the previous challenges. Most recently, deep neural networks have
shown promising results. Santo et al. [24] proposed the Ranking CNN(CR-CNN)
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model with a class embedding matrix. Miwa and Bansal [17] similarly observed
that LSTM-based RNNs are outperformed by models using CNN due to limited
linguistic structure captured in the network architecture.

3 Cross-Scenario Inference

3.1 Scenario Expression and Conceptualization

We model the scenario as a vector of scene elements. Given an event mention,
we use the content words (nouns, verbs, adjectives and adverbs) in the mention
as the representation of the scene elements. They are able to cover most types
of scene elements, such as objects (e.g., participants and attributes), activities
(event triggers) and status (time, locations, surroundings and other conditions):
Mention- Edward fled in 1983. Scenario- <Edward, fled, 1983>; Concept-
<PER, Fleeing, 19830000>.

We conceptualize a scenario by transforming scene elements (content words)
into their semantic frames. We brief the definition of frame semantics in the
next section. In addition, we conceptualize named entities with the labels of
entity types, including Person, Location and Organization. We generalize time
expressions with the pattern yyyy\mm\dd. The granularity is set as day. See a
conceptualized scenario in the above example.

3.2 Frame Semantics (FrameNet)

Semantic frame is defined as the concept of lexical units (words or phrases)
that share similar semantic context [7]. It helps to identify the homogeneous
lexical units. It is noteworthy that such units aren’t definitely synonymous. For
example, both the word boat and plane comply with the frame Vehicle but are
different in sense.

Scenario conceptualization by semantic frame facilitates the discovery of
semantically similar event mentions. See the following examples, which adhere
to the same scenario at the level of semantics: Mention1- He took a plane and
ran away. Mention2- He fled on a boat. Concept- <PER, Fleeing, Vehicle>.

We obtain the frames of words from FrameNet. FrameNet is a machine-
readable lexical database of English [23]. It alphabetically indexes more than
10,000 frames. Each frame tag (Nam) corresponds to a cluster of lexical units
(Lus) that evoke the frame, along with the related frames (also named as frame-
to-frame relation, abbr., Ffr). Listed in Table 1 are the components of the frame
Avoiding. The key behavioral elements in (1) and (2), i.e., escape and elude, both
are the Lus of Avoiding.

3.3 Explicit-To-Implicit (ETI) Relation Assignment

Let the scenarios of a pair of target events be < et1, et2 >. We assume that the
relation of the events is determined by their scenarios, i.e., Rt

imp ⇐< et1, et2 >,
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Table 1. Semantic frame (e.g., scrutiny).

Nam Avoiding

Def An agent avoids an undesirable situation under certain circumstances

Ffr Inherits from Intentionally act; Is inherited by Dodging and Evading

Lus avoid (v), avoidance (n), escape (v), elude (v), keep away (v), etc.

where Rt
imp denotes an unknown (implicit) relation. For a pair of historical

events that contain an known (explicit) relation Rh
exp, similarly, we have that

Rh
exp ⇐< eh1, eh2 >. If the scenarios of the historical events are conceptually

similar to that of the target, we can conclude that Rt
imp is very likely to be the

same as Rh
exp. So, we produce the ETI relation assignment:

Rt
imp ⇐ Rh

exp, if < et1, et2 >⇔< eh1, eh2 >

We name the above assignment process as cross-scenario inference. Figure 1
shows an inference process from the historical defection events H1 and H2 to
the targets T1 and T2 (The full contents of the events can be accessed in (1)).

Fig. 1. Cross-scenario relation inference. Either “u→f” or “f←u” refers to a translation
process from a lexical unit (word or phrase) to its semantic frame in a specific context.
The left column shows historical events, the middle column shows conceptual scenario
and the right column shows the targets.

It is strictly required by cross-scenario inference to obtain historical events
that contain an explicit relation. The relation is used as prior knowledge to sup-
port ETI relation assignment, assigning explicit relation of reliable homogeneous
historical events to the target.

3.4 Connective-Relation (C-R) Alignment

If two event mentions is connected by a connective, or included in the scope of the
connective [27], they contain an explicit relation. We detect the explicit relation
type by a connective-relation alignment approach. The connective “thus”, for
example, aligns with (i.e., signals) the conditional relation.



Cross-Scenario Inference Based Event-Event Relation Detection 261

Table 2. Partial relation-connective mapping table

Causal- because Competitive- unlike

Temporal- before Concessive- however

Subevent- involving Disjunctive- except

Conjunctive- in addition Conditional- in order to

We aligns a connective with its relation type by searching it in a one-to-many
relation-connective mapping table (See a part of the table in Table 2).

We initialize the table based on the ground-truth connectives and relation
samples in PDTB 2.0 corpus1 [19]. We filter the ambiguous connectives. For
example, the connective “since” is ambiguous because it may signal a causal

relation (meaning“in view of the fact that”) or temporal (“from a past time until
now”). We collected all pairs of events that contain an explicit relation before-
hand from 8.2M documents in the 2003 English Gigaword2. They’re employed as
the only data available for the acquisition of the desired similar historical events.

3.5 Scenario Similarity Calculation

We acquire similar historical events based on scenario similarity to the target.
We use a frame-based vector space to model event scenarios, in which each
dimension indicates a semantic frame. We instantiate the vector by weighting
the frames with 1 and 0. Given a frame, it will be weighted by 1 if the word of
the frame occurs in the event mention, otherwise 0. We measure the similarity
by the cosine metric. Then, we measure the joint similarity between a pair of
historical events and the target based on maximum likelihood principle:

tuple(ehi, etj) = argmaxS(ehi, etj), i, j ∈ 1, 2 (1)

S(eh1, eh2, et1, et2) =
S(ehi, etj)S(ehi, etj)

exp(S(ehi, etj) − S(ehi, etj))
(2)

where, ehi and etj are, respectively, the historical and target events that yield
the maximum S, while ehi and etj are the other two. The exponential function,
i.e., exp(∗), ensures that the value of the denominator is nonzero.

3.6 Confidence Level Computing

We search similar events from the data source mentioned in Sect. 3.4, and rank
them by scenario similarity to the target. We use top n search results as eligible
Reference Source (RS, i.e., set of similar historical events) for cross-scenario
inference.
1 https://www.seas.upenn.edu/∼pdtb/.
2 https://catalog.ldc.upenn.edu/LDC2003T05.

https://www.seas.upenn.edu/~pdtb/
https://catalog.ldc.upenn.edu/LDC2003T05
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For the case that there is only one type of relation Rexp occurred in RS,
we directly assign it to Rimp of the target events as the RD2e result. If there
are multiple types occurred, we will evaluate their confidence, and select the
most confident one as the RD2e result. Given a type of relation, we measure its
confidence level based on the probability it occurred in RS and the ratings:

C(�) =
f(�)

∏
i∈n rank(�)

(3)

where, � is a relation type, f(�) denotes the frequency of � occurred in RS. For
a reference sample that contains �, rank(�) denotes its rating in the similarity-
based ranking list of RS.

4 Graph Based Scenario Modeling

It was found that some lexical units’s senses adhere to a semantic frame at
different levels, some strictly, others loosely. In the cases, the scenario modeling
mentioned in section 2.5 fails to identify the difference, assigning the same weight
to the units at the dimension of the frame, either 1 if they occur in event men-
tions, otherwise 0. This causes biases in similarity calculation among scenarios.
In this section, we use a lexicon-frame graph to improve scenario modeling.

4.1 Hybrid Lexicon-Frame Graph

Given a lexical unit u, if its sense conforms to a frame f and the semantic distance
is d, the weight of f can be measured by the reciprocal of d, i.e., wu(f) = 1/d.

Fig. 2. Hybrid lexicon-frame subgraph

In order to facilitate the measurement
of semantic distance, we built a hybrid
lexicon-frame graph based on Ffr. Ffr is
a connection between frames, indicating
a semantic relation. There are totally 8
Ffr types defined in FrameNet, includ-
ing Inheritance, Subframe, Precedence,
Perspective, Inchoation, etc. By tracing
along the Ffrs in an end-to-end man-
ner, we can find out new semantically
related unit-frame, unit-unit or frame-
frame pairs. They are useful for the gen-
eration of a hybrid directed lexicon-frame
graph. In practice, we only obtained a col-
lection of subgraphs because the manufactured Ffr edges are incompleted. We
brought the subgraphs into use in our experiments. See an example in Fig. 2.

For two nodes in the graph, we specify the length of the shortest path between
the nodes as their semantic distance. The length is measured by the number of
edges between the nodes. We take into consideration all frames that are directly
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or indirectly connected with a lexical unit in the graph, and use them as seman-
tically related to the unit. Based on the semantic distance, the refined scenario
model will assign a weight wu(f) to every frame f related to a unit u, for every
unit occurred in the event mention. Still, it assigns 0 to other frames. escape →
Avoiding → Intentionally act.

4.2 Probabilistic Scenario Model

We employ a probabilistic matrix as a substitute for VSM. Each matrix row is an
uneven projection on all semantic frames, denoting the probability distribution of
a specific lexical unit over the frames. The probability is estimated by semantic
distance in the same way as the weighting method wu(f), except that it is
normalized by the sum of the weights:

pu(f) =
wu(f)

∑
f wu(f)

(4)

Accordingly an event scenario is represented as a lexicon-frame matrix, where
each row indicates the probability model pu(f) of a lexical unit u over all frames.
If a unit doesn’t occur in the mention, the probability pu(f) over the frames in
the corresponding row will all be set as 0. Thus, the similarity between events
can be estimated by the agreement of their lexicon-frame probability matrixes.

Technically we use the Kullback-Liebler (KL) divergence [15] as a measure of
the agreement A(*,*). A significant KL divergence is equivalent to little agree-
ment. The agreement between matrixes is fully determined by that between all
their rows. In addition, we involve the standard deviation in the measurement of
partial agreement between a row in a matrix and all in another. The deviation
is employed to reduce the effect of general rows on the measure of agreement. A
general row corresponds to a unit who has similar pu(f) over the usual frames.
We measure the full agreement between scenarios by:

S(eh, et) ∝ A(Ph, Pt) =
G

DKL(Ph, Pt)
, g(u) =

√ ∑
f∈F (p(f) − p(f))2

n − 1
(5)

DKL(Ph, Pt) =

n∑
i=1

n∑
j=1

∑
f∈F

pui,h
(f) log

pui,h
(f)

puj,t
(f)

, G =

n∑
i=1

n∑
j=1

gh(ui)gt(uj) (6)

5 Experiments

5.1 Corpus and Evaluation Metric

We follow Yu et al. [9] relation schema (see Table 3). We collected 828 event
mentions from 24 expository texts in the American National Corpus (ANC)3.
3 https://framenet.icsi.berkeley.edu/fndrupal/fulltextIndex.

https://framenet.icsi.berkeley.edu/fndrupal/fulltextIndex
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There are 968 pairs of events found related to each other, in which 569 are
structurally adjacent, 330 cross-sentence and 69 cross-document. Three students
who major in computational linguistics were employed to label the relations.
The agreement among them is fairly good (kappa = 0.69 at worst).

In addition, we annotate the relations for 303 pairs of related events in 159
ACE2005 news stories . They were used for the purpose of evaluating the cross-
domain stability of our RD2e system. We employ Precision (P), Recall (R) and
F-score (F) as the evaluation metrics.

5.2 Main Results

We test our basic RD2e on ANC. The frame-based VSM was used. Table 4 shows
the performance for each existing relation type in ANC. The performance for
the two temporal relation types (Bef. & Eql.) is different from the true state.
Annotators were unable to detect temporal relations for most samples in ANC
due to lack of visible evidence, except the 80 ones shown in Table 3. The scores
of Bef. & Eql., hence, are yielded only for them not all. For uncommon relation
types (Table 3), our RD2e shows poor recall (Table 4). We suggest that if a
relation type is uncommon, there is little explicit and definitive evidence in
neither our mind nor an electronic database available for inferring it.

Table 3. Relational Schema

Relation(REL.) Num

Before(Bef.) 29

Equal(Eql.) 51

Opposite(Opp.) 91

Variance(Var.) 31

Cause(Cas.) 131

Condition(Con.) 197

Conjunction(Coj.) 203

Concession(Coc.) 43

Coreference(Cor.) 89

Sub-event(Sub.) 103

Table 4. Performance for all types

REL. # P # R # F

Bef. 0.61 0.31 0.41

Eql. 0.82 0.25 0.38

Opp. 0.51 0.67 0.58

Var. 0.65 0.30 0.41

Cas. 0.79 0.66 0.72

Con. 0.61 0.43 0.50

Coj. 0.39 0.73 0.51

Coc. 0.85 0.16 0.27

Cor. 0.57 0.29 0.38

Sub. 0.31 0.69 0.43

We built RD2e systems by using different models proposed in the paper,
including word-level and frame-level scenario description along with VSM and
probability (PRO) matrix models. We evaluate them on both ANC and ACE. See
performance in Table 5. It is illustrated that the frame based scenario conceptu-
alization and the generalized probability model are both conducive to cross-
scenario inference. Moreover, they show better stability than the word-level
model in different domains.
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Table 5. Performance (F) on ANC and ACE

System construction # ANC # ACE

Lexical Unit+VSM 0.45 0.41

Frame+VSM 0.51 0.50

Frame+PRO 0.56 0.53

We reproduce some state-of-the-art relation detection methods. Some of them
were employed in determining discourse-oriented structural relations between
adjacent text spans, such as the supervised relation classification (CLA) based on
syntactic constituent and dependency [13] or multiple types of linguistic features
[18], as well as language model (LG) based connective and relation prediction
[26]. Others focus on event-event relation problems, such as the use of coocur-
rence (Coo) information of pairwise phrases or pattens for relation analysis [2].
We evaluate the methods on the samples of different structures in ANC.

Table 6. F-measure for event pairs in adjacent (ADJ), CroS and CroD structures

System construction # ADJ # CroS # CroD

Syntactic Features (CLA) 0.50 N/A N/A

All features (CLA) 0.61 N/A N/A

Connective (LG) 0.51 0.30 0.33

Phrase (Coo) 0.49 0.39 0.35

Pattern (Coo) 0.56 0.41 0.40

Our best 0.55 0.59 0.53

Table 6 shows their performance and our best. The classifiers didn’t yield any
performance for both the structurally cross-sentence (CroS) and cross-document
(CroD) test samples, as in the cases, the syntactic features are non-existent and
therefore unavailable. Beyond that, we can see that our unsupervised cross-
scenario inference method yields insignificant performance loss for the cross-
sentence and cross-document samples. It means the method is more credible
than others when provided few available structural-level linguistic features.

6 Conclusion

We propose a cross-scenario inference method for event-event relation detection.
It outperforms the state of the art in low resource settings. This can facilitate
the fast detection of relations for the newly occurred related events, although
the detection results are not quite exact (pseudo relations). Encouraged by this
observation, we will focus on the refinement of pseudo relations by using semi-
supervised learning method.
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Abstract. Mining sub-event relations of major events is an important
research problem, which is useful for building event taxonomy, event
knowledge base construction, and natural language understanding. To
advance the study of this problem, this paper presents a novel dataset
called SeRI (Sub-event Relation Inference). SeRI includes 3,917 event
articles from English Wikipedia and the annotations of their sub-events.
It can be used for training or evaluating a model that mines sub-event
relation from encyclopedia-style texts. Based on this dataset, we formally
define the task of sub-event relation inference from an encyclopedia, pro-
pose an experimental setting and evaluation metrics and evaluate some
baseline approaches’ performance on this dataset.

1 Introduction

Event relation inference is an important research topic because event relations
are not only indispensable for constructing event knowledge bases but also help-
ful for natural language understanding and knowledge inference. As one of the
most important event relations, sub-event relation knowledge has been proved
to be useful in many applications [2,6,14,19–23]. For example, the sub-event
knowledge sub(Battle of the Atlantic, World War II ) can greatly help textual
entailment (e.g. (1)) and knowledge inference (e.g., (2)) task.

(1) He died in the Battle of the Atlantic. → He died in World War II.
(2) time(World War II, 1939-1945) → time(Battle of the Atlantic, years
during 1939-1945)

Despite the significance of general sub-event knowledge, there is little work
on mining the sub-event knowledge from the web, which may be due largely to a
lack of datasets. To advance the research of this problem, this paper presents a
dataset called SeRI (Sub-event Relation Inference). SeRI contains 3,917 event
articles1 from English Wikipedia, and the annotations for their sub-events, which
1 Event articles refer to the articles that describe a major event in Wikipedia, like
Fig. 1.
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Fig. 1. The event article of Battle of the Atlantic event in Wikipedia. The red rectangle
provides with the annotation information and the underlined phrases are mentions of
other events, linking to the corresponding event articles. (Color figure online)

can be used for training and evaluating a model for mining sub-event relations
from an encyclopedia. Based on this dataset, we formally define the task of sub-
event relation inference from an encyclopedia, propose an experimental setting
and evaluation metrics and evaluate some baseline approaches’ performance on
this dataset.

The main contributions of this paper are:

– We release a dataset2 for studying sub-event relation inference from an ency-
clopedia.

– We formally define the task of sub-event relation inference from an encyclo-
pedia and propose an experimental setting and evaluation metrics.

– We evaluate some baseline approaches’ performance on this dataset.

2 SeRI Dataset

SeRI is a dataset we propose for studying sub-event relation inference. For con-
structing SeRI, we first need to find event articles on Wikipedia. In this paper,
we use those 21,275 event articles identified by EventWiki [8] as our research
targets. We keep the events with “partof ” relation annotation in their infoboxes
(shown in Fig. 1) and use the annotation as their sub-event relation annotations.

It should be noted that the partof annotations in infoboxes are mainly for
direct sub-event relations. However, sub-event relations are transitional and there
are many indirect sub-event relations that are not annotated in EventWiki.
Therefore, we add the annotations of indirect sub-event relations through transi-
tivity rules. The step is necessary to annotate some long-distance sub-event rela-
tions that are often not explicitly expressed in Wikipedia. For example, given the
annotation from EventWiki that sub(Battle of Netherlands, Battle of France),

2 Please contact the first author to request the access to the dataset.



270 T. Ge et al.

sub(Battle of France, Western Front) and sub(Western Front, World War II ),
according to the transitivity, long-distance sub-event relations such as sub(Battle
of Netherlands,World War II ) will be added to our annotation.

The resulting SeRI dataset has 3,917 Wikipedia articles (i.e., 3,917 events)
and their sub-event annotations.

3 Task Overview

If an event ei is a part of event ej , we say ei is ej ’s sub-event and ej is ei’s
sup-event. There are many event articles (e.g., World War II ) with reference
links in an encyclopedia, as Fig. 2 depicts. The goal of this task is to harvest as
much sub-event knowledge as possible from an encyclopedia. Strictly speaking,
for an event ei, we should identify all the other events in an encyclopedia to see
if they are the sub-events or sup-events of ei. In this sense, we must infer the
sub-event relation over all the possible event pairs, which results in expensive
cost of computation. Instead of the brutal-force solution, we propose a heuristic
assumption that if an event ei is a sub-event or sup-event of another event ej ,
then ei should be mentioned by the article of ej or ej should be mentioned by
the article of ei. This assumption is reasonable because if the sub-event relation
holds between ei and ej then ei and ej should be strongly related and either of
them should be mentioned by the other. Based on the assumption, we identify
sub-event relations over the event pairs in which one event is mentioned (i.e.,
linked) by the article of the other event. For simplicity, we call such event pairs
candidate event pairs.

Battle of the Atlantic World War II

Background

_____________________________________________________ 
____________________________________________________ 
____________________________________________________ 
________________________________________

_____________________________________________________ 
____________________________________________________ 
____________________________________________________ 
________________________________________

Early skirmishes

Course of War

Chronology

Submarine warfare_____________________________________________________ 
____________________________________________________ 
____________________________________________________ 
________________________________________

_____________________________________________________ 
____________________________________________________ 
____________________________________________________ 
________________________________________

_____________________________________________________ 
____________________________________________________ 
____________________________________________________ 
________________________________________

_____________________________________________________ 
____________________________________________________ 
________________________________________

Background
_____________________________________________________ 
____________________________________________________ 
____________________________________________________ 
________________________________________

_________________________________________________ 
_________________________________________________ 
_______________________________________________ 
__________________________

Western Europe (1939-40)_________________________________________________ 
__________________________

___________________________________________________ 
________________

Impact
_____________________________________________________ 
________________________________________

British situation_____________________________________________________ 
____________________________________________________ 
________________________________________

Outcomes
_____________________________________________________ 
____________________________________________________ 
____________________________________________________ 
________________________________________

Pacific War
_____________________________________________________ 
____________________________________________________ 
____________________________________________________ 
________

Overview
_____________________________________________________ 
____________________________________________________ 
________________________________________

Historical background
_____________________________________________________ 
____________________________________________________ 
____________________________________________________ 
________________________________________

Allies re-group
_____________________________________________________ 
____________________________________________________ 
________________________________________

Beginning of the end in Pacific
_____________________________________________________ 
____________________________________________________ 
________________________________________

Final stage
_____________________________________________________ 
____________________________________________________

War crimes
_____________________________________________________ 
____________________________________________________ 
________________________________________

War breaks out in Pacific (1941)

mention of Battle of the Atlantic mention of World War II mention of Pacific War

Fig. 2. An illustration of the basic structure of an encyclopedia in which articles are
interconnected by the reference links.
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We give the formal definition of the sub-event inference task: given a set of
candidate event pairs S = {〈ei, ej〉} in an encyclopedia, the goal is to identify
all sub-event pairs 〈e∗

i , e
∗
j 〉 from S so that e∗

i is a sub-event or sup-event of e∗
j . In

other words, for each pair 〈ei, ej〉 ∈ S, a model should be able to correctly predict
its label r ∈ {none, sub, sup} that indicates the sub-event relation between ei
and ej . In our SeRI dataset, there are totally 7,373 candidate event pairs with
relation label annotation r ∈ {none, sub, sup}.

4 Baseline Models

For the task of harvesting sub-event knowledge from an encyclopedia, how an
event article links to (i.e., refers to) another is an important clue for inferring the
sub-event relation between them. For example, it can be easily inferred that the
Battle of the Atlantic is a sub-event of the World War II through analyzing the
sentence corresponding to a reference link from Battle of the Atlantic to World
War II, as Fig. 3 shows.

Fig. 3. The sentence that corresponds to the first link from Battle of the Atlantic to
World War II in Fig. 2.

As Fig. 2 depicts, there may be multiple reference links from both directions
between an event pair. Given the value of the reference links for sub-event rela-
tion inference, we propose a link-based classification model that predicts an event
pair’s sub-event relation through the reference links between them.

For an event pair 〈ei, ej〉 (i.e., an instance), we first find all the reference
links between them. Then, we consider each link as a sub-instance and describe
it using various features.

4.1 Features

As discussed previously, each link ei
l−→ ej , which denotes the lth link from the

article of ei to ej , corresponds to a sentence that mentions ej in the article of
ei. We extract the following features to describe the link:

– Context words of ej : we extract the context words (i.e., last 5 words and next
5 words) surrounding the mention of ej in the article of ei as features. We
denote this feature as fc .
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– N-grams that start or end with the mention of ej : we extract 2-, 3- and 4-
grams that start or end with ej as features. For generalization, ej is replaced
with “TARGET” in feature strings. We denote this feature as fg .

– Dependency parse: We extract all dependency arcs that contain ej as features.
In addition, we also use the part-of-speech tag of the word in a dependency
arc as features. We denote this feature as fp .

– Section name: In addition to the sentence-level features that are commonly
used by traditional relation extraction models, we propose to use the section
name feature. For example, for the reference link from World War II to Battle
of the Atlantic in Fig. 2, one can observe that the mention of Battle of the
Atlantic is in the section called Course of war in the article of World War
II. In this case, we extract “course of war” as the section name features. We
denote this feature as fs .

After extracting the features of a reference link between an event pair 〈ei, ej〉,
we can represent the features as a tuple to represent the link:

f = (fc ,fg ,fp ,fs , d) (1)

where the last element d ∈ {→,←} indicates the direction of the link.
We represent an event pair instance 〈ei, ej〉 by concatenating the features

of all the links between the event articles in the pair to train the link-based
classifier and infer the sub-event relation in the following way:

y∗ = arg max
y

P (y|ConCatL
l=1(f

(l))) (2)

where l is the l-th link between ei and ej , f (l) is the features of l-th link between
ei and ej , and ConCat is the operation that concatenates the features of all
the links between ei and ej .

4.2 Bi-directional Training Instance Generation

Although we do not consider the order of the items in a pair (i.e., we consider
〈ei, ej〉 and 〈ej , ei〉 are the identical pair), it is necessary to specify the order of
an pair when generating training and test instances for a classifier because the
label of the instance depends on the order3. For example, if the label of a pair
instance (ei,ej) is sub, then the label of a pair instance (ej ,ei) should be sup.

Therefore, for an event pair 〈ei, ej〉, we specify the order of the items to
generate training and test instances. Specifically, for training instance genera-
tion, we generate bi-directional pair instances (i.e., 2 pair instances (ei,ej) and
(ej ,ei)). There are two reasons for the bi-directional training instance genera-
tion: First, the bi-directional training instances will provide different views for
the model to learn to predict sub and sup, which is important because the test
3 To distinguish from a pair which is denoted as 〈ei, ej〉 for which we do not consider
the order of items, we say a pair instance denoted as (ei,ej)) when we consider the
order of items in a pair.
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instance could be in any order. Bi-directional training instances allow the model
to handle the test instances with any order; Second, the bi-directional training
instance generation can alleviate the imbalance of labels because the number of
the training instances with sub and sup will be identical.

5 Experiments

5.1 Experimental Setting

As we mentioned before, SeRI has 3,917 Wikipedia articles (i.e., 3,917 events)
and 7,373 candidate event pairs in total. Each candidate event pair has a label
r ∈ {none, sup, sub} indicating the sub-event relation. In our experiments, we
use 80% of candidate event pairs as the training set and test on the remaining
20% of the pairs. Note that in the split, we split event pairs instead of event
articles because it is very common that an event article’s sub-event relation is
not complete and it might have sub-event relation with new added event articles.
Therefore, splitting event pairs is a more practical setting than splitting event
articles. The label distribution is shown in Table 1.

Table 1. Label distribution in training and test set

Train Test

Label none sub+sup none sub+sup

Number of instances 3,824 2,112 893 544

Ratio 64.4% 35.6% 62.1% 37.9%

In our experimental setting, we do not use any structured information (i.e.,
infoboxes) since we want a model to be general so that it can applied to any ency-
clopedia articles regardless of the existence of the infoboxes for discovering the
sub-event knowledge that has not been explicitly expressed in an encyclopedia.

As traditional relation extraction tasks, we use Precision, Recall and F-score
for evaluation:

Precision =

∣
∣{〈ei, ej〉 | ˆri,j = r∗

i,j}
∣
∣

|{〈ei, ej〉| ˆri,j ∈ {sup, sub}}|

Recall =

∣
∣{〈ei, ej〉 | ˆri,j = r∗

i,j}
∣
∣

∣
∣{〈ei, ej〉|r∗

i,j ∈ {sup, sub}}∣∣

F -score =
2 × Precision × Recall

Precision + Recall

where ˆri,j and r∗
i,j are the prediction and gold standard relation of 〈ei, ej〉

respectively.
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5.2 Experimental Results

We conduct experiments test the baseline approaches mainly for answering the
following three questions:

– Whether are the features used in the link-based classifier effective?
– Whether is generating bi-directional training instances necessary?
– How well a baseline model can perform?

We use Stanford CoreNLP [16] to do POS tagging and dependency parsing
and maximum entropy classifier as the link-based classification model.

Table 2. Performance of baseline models. Uni- and Bi-directional indicate if the train-
ing instances are generated using bi-directional generation strategy.

Model Uni-directional Bi-directional

P R F P R F

Link-based classifier (1): Context 51.8 65.8 58.0 68.4 61.4 64.7

(2): (1)+N-grams 52.6 72.4 61.0 70.6 63.1 66.6

(3): (2)+Dependency parse 52.7 71.1 60.5 69.7 65.3 67.4

(4): (3)+section name 63.0 76.8 69.3 77.8 73.7 75.7

Table 2 shows the performance of various approaches. For the link-based clas-
sifier with bi-directional training instance, the proposed features are all effective
in inferring the sub-event relations, especially the section name features. The rea-
son of the significant improvement (8.3% F-score gain) brought by the section
name features is that they provide totally different views from the sentence-level
features such as n-grams and can nicely address the cases where n-gram and
parse features cannot help.

By comparing uni-directional and bi-directional training instance genera-
tion, we can easily observe the superiority of the bi-directional training gen-
eration strategy. For the models using the same feature set, the model adopt-
ing bi-directional training generation strategy outperforms the uni-directional
counterpart by approximately 6.0% F-score gain. As we discussed before, the
improvement is mainly owing to that bi-directional training instances provide
more information for the model and alleviate the label imbalance problem.

According to Table 2, it is observed that the best baseline model can achieve
a good performance of 75.7% F-score. Given this is a preliminary study on this
task, we expect to see more results of various approaches by future work that
studies on this dataset.

At last, we show the example of sub-event knowledge discovered by our model
on the test set in Fig. 4. As observed, the results can be used for building an
event hierarchy tree, which will be useful for event knowledge base construction
and management as well as many other applications like knowledge inference
and question answering.
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World War 
II

Pacific War Battle of 
France

Invasion of 
Poland

Battle of 
Jordan

Battle of 
Kock

Battle of 
Hel

Battle of 
Corregidor

Battle of 
Vella Gulf

Battle of 
Leyte Gulf

Battle of 
Manado Battle of Zeeland

Fig. 4. An event tree derived from the predictions of our model on the test data.

6 Related Work

There is some previous work on extracting temporal and causal relation between
events [1,3–5,7,9–11,17,18,24]. As for the studies regarding sub-events, most
of them study either fine-grained events in a sentence or a document [2] or
hierarchies of events (topics) in a text stream [12,13,23]. Even though they are
very useful for understanding a document or the relation of events in a text
stream, they do not focus on harvesting knowledge and the relations identified
by their models are less likely to be used as general knowledge. In contrast, this
paper mainly studies the acquisition of sub-event knowledge which can be used
as world knowledge for a variety of applications.

Another research branch related to our task is hypernymy detection (e.g.,
[15]), whose goal is to discover the hypernymy between general words. In con-
trast to hypernymy detection, our targets are events which contain much richer
information and sub-event relations that are more complicated because it is com-
mon that there is no co-occurrence of the mentions of two events in a sentence.

7 Conclusion and Future Work

In this paper, we study a novel dataset SeRI and define a new task – harvest-
ing sub-event knowledge from an encyclopedia. We propose a link-based clas-
sification baseline model with features of encyclopedia-style documents, which
achieves decent results on our dataset.

Following the preliminary study on event relations, we plan to study advanced
approaches for this task and do more empirical studies on this dataset, and
make an effort to keep enlarging the dataset. We expect more research could
be conducted regarding this task, which would contribute to event knowledge
discovery and event knowledge base construction.
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dation of China under Grant No. 61772040. The contact author is Zhifang Sui.



276 T. Ge et al.

References

1. Abe, S., Inui, K., Matsumoto, Y.: Two-phased event relation acquisition: cou-
pling the relation-oriented and argument-oriented approaches. In: Proceedings of
the 22nd International Conference on Computational Linguistics, vol. 1, pp. 1–8.
Association for Computational Linguistics (2008)

2. Araki, J., Liu, Z., Hovy, E.H., Mitamura, T.: Detecting subevent structure for
event coreference resolution. In: LREC, pp. 4553–4558 (2014)

3. Chambers, N., Cassidy, T., McDowell, B., Bethard, S.: Dense event ordering with
a multi-pass architecture. Trans. Assoc. Comput. Linguist. 2, 273–284 (2014)

4. Chambers, N., Jurafsky, D.: Unsupervised learning of narrative schemas and their
participants. In: Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Process-
ing of the AFNLP, vol. 2, pp. 602–610. Association for Computational Linguistics
(2009)

5. Chambers, N., Jurafsky, D.: Unsupervised learning of narrative event chains. In:
ACL, vol. 94305, pp. 789–797. Citeseer (2008)

6. Daniel, N., Radev, D., Allison, T.: Sub-event based multi-document summariza-
tion. In: Proceedings of the HLT-NAACL 03 on Text Summarization Workshop,
vol. 5, pp. 9–16. Association for Computational Linguistics (2003)

7. Do, Q.X., Chan, Y.S., Roth, D.: Minimally supervised event causality identifica-
tion. In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pp. 294–303. Association for Computational Linguistics (2011)

8. Ge, T., Cui, L., Chang, B., Sui, Z., Wei, F., Zhou, M.: Eventwiki: a knowledge
base of major events. In: Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018) (2018)

9. Ge, T., Cui, L., Ji, H., Chang, B., Sui, Z.: Discovering concept-level event associ-
ations from a text stream. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y.
(eds.) ICCPOL/NLPCC -2016. LNCS (LNAI), vol. 10102, pp. 413–424. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50496-4 34

10. Hashimoto, C., Torisawa, K., Kloetzer, J., Oh, J.H.: Generating event causality
hypotheses through semantic relations. In: Twenty-Ninth AAAI Conference on
Artificial Intelligence (2015)

11. Hashimoto, C., et al.: Toward future scenario generation: extracting event causality
exploiting semantic relation, context, and association features. In: Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics,
Baltimore, USA. Association for Computational Linguistics, June 2014

12. Hu, L., Li, J., Zhang, J., Shao, C.: o-HETM: an online hierarchical entity topic
model for news streams. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D.,
Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9077, pp. 696–707. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-18038-0 54

13. Hu, L., et al.: Learning topic hierarchies for wikipedia categories. In: ACL (2015)
14. Im, S., Pustejovsky, J.: Annotating lexically entailed subevents for textual inference

tasks. In: Twenty-Third International Flairs Conference (2010)
15. Levy, O., Remus, S., Biemann, C., Dagan, I., Ramat-Gan, I.: Do supervised dis-

tributional methods really learn lexical inference relations? In: HLT-NAACL, pp.
970–976 (2015)

16. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky,
D.: The stanford corenlp natural language processing toolkit. In: ACL (System
Demonstrations) (2014)

https://doi.org/10.1007/978-3-319-50496-4_34
https://doi.org/10.1007/978-3-319-18038-0_54


SeRI: A Dataset for Sub-event Relation Inference from an Encyclopedia 277

17. Mirza, P.: Extracting temporal and causal relations between events. In: ACL (Stu-
dent Research Workshop), pp. 10–17 (2014)

18. Mirza, P., Tonelli, S.: An analysis of causality between events and its relation to
temporal information. In: COLING, pp. 2097–2106 (2014)

19. Mulkar-Mehta, R., Welty, C., Hoobs, J.R., Hovy, E.: Using granularity concepts
for discovering causal relations. In: Proceedings of the FLAIRS Conference (2011)

20. Pohl, D., Bouchachia, A., Hellwagner, H.: Automatic sub-event detection in emer-
gency management using social media. In: Proceedings of the 21st International
Conference Companion on World Wide Web, pp. 683–686. ACM (2012)

21. Shen, C., Liu, F., Weng, F., Li, T.: A participant-based approach for event sum-
marization using twitter streams. In: HLT-NAACL, pp. 1152–1162 (2013)

22. Unankard, S., Li, X., Sharaf, M., Zhong, J., Li, X.: Predicting elections from social
networks based on sub-event detection and sentiment analysis. In: Benatallah, B.,
Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS,
vol. 8787, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11746-1 1

23. Xing, C., Wang, Y., Liu, J., Huang, Y., Ma, W.Y.: Hashtag-based sub-event dis-
covery using mutually generative lda in twitter. In: Thirtieth AAAI Conference on
Artificial Intelligence (2016)

24. Yoshikawa, K., Riedel, S., Asahara, M., Matsumoto, Y.: Jointly identifying tem-
poral relations with markov logic. In: Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, vol. 1, pp. 405–413. Association for
Computational Linguistics (2009)

https://doi.org/10.1007/978-3-319-11746-1_1
https://doi.org/10.1007/978-3-319-11746-1_1


Densely Connected Bidirectional LSTM
with Applications to Sentence

Classification

Zixiang Ding1, Rui Xia1(B), Jianfei Yu2, Xiang Li1, and Jian Yang1

1 School of Computer Science and Engineering, Nanjing University of Science
and Technology, Nanjing, China

{dingzixiang,rxia,xiang.li.implus,csjyang}@njust.edu.cn
2 School of Information Systems, Singapore Management University,

Singapore, Singapore
jfyu.2014@phdis.smu.edu.sg

Abstract. Deep neural networks have recently been shown to achieve
highly competitive performance in many computer vision tasks due to
their abilities of exploring in a much larger hypothesis space. However,
since most deep architectures like stacked RNNs tend to suffer from the
vanishing-gradient and overfitting problems, their effects are still under-
studied in many NLP tasks. Inspired by this, we propose a novel multi-
layer RNN model called densely connected bidirectional long short-term
memory (DC-Bi-LSTM) in this paper, which essentially represents each
layer by the concatenation of its hidden state and all preceding layers
hidden states, followed by recursively passing each layers representation
to all subsequent layers. We evaluate our proposed model on five bench-
mark datasets of sentence classification. DC-Bi-LSTM with depth up to
20 can be successfully trained and obtain significant improvements over
the traditional Bi-LSTM with the same or even fewer parameters. More-
over, our model has promising performance compared with the state-of-
the-art approaches.

Keywords: Sentence classification · Densely connected
Stacked RNNs

1 Introduction

With the recent trend of deep learning, various kinds of deep neural architectures
have been proposed for many tasks in speech recognition [2], computer vision [13]
and natural language processing (NLP) [6], which have been shown to achieve
better performance than both traditional methods and shallow architectures.
However, since conventional deep architectures often suffer from the well-known
vanishing-gradient and overfitting problems, most of them are not easy to train
and therefore cannot achieve very satisfactory performance.

To address these problems, different approaches have been recently proposed
for various computer vision tasks, including Highway Networks [16], ResNet [3]
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 278–287, 2018.
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Bi-LSTM Bi-LSTM Bi-LSTM

like
this

movie

I

1st-layer reading memoryOriginal input sequence 2nd-layer reading memory 3rd-layer reading memory

Fig. 1. The architecture of DC-Bi-LSTM. We obtain first-layer reading memory based
on original input sequence, and second-layer reading memory based on the position-
aligned concatenation of original input sequence and first-layer reading memory, and
so on. Finally, we get the n-th-layer reading memory and take it as the final feature
representation for classification.

and GoogLeNet [17,18]. One of the representative work among them is the
recently proposed Dense Convolutional Networks (DenseNet) [5]. Different from
previous work, to strengthen information flow between layers and reduce the
number of parameters, DenseNet proposes to directly connect all layers in a
feed-forward fashion and encourages feature reuse through representing each
layer by concatenating the feature-maps of all preceding layers as input. Owing
to this well-designed densely connected architecture, DenseNet obtains signif-
icant improvements over the state-of-the-art results on four highly competi-
tive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and
ImageNet).

Motivated by these successes in computer vision, some deep architectures
have also been recently applied in many NLP applications. Since recurrent neu-
ral networks (RNNs) are effective to capture the flexible context information
contained in texts, most of these deep models are based on the variants of RNNs.
Specifically, on basis of Highway Networks, Zhang et al. [23] proposed Highway
LSTM to extend stacked LSTM by introducing gated direct connections between
memory cells in adjacent layers. Inspired by ResNet, Yu et al. [21] further pro-
posed a hierarchical LSTM enhanced by residual learning for relation detection
task. However, to the best of our knowledge, the application of DenseNet to
RNN has not been explored in any NLP task before, which is the motivation of
our work.

Therefore, in this paper, we propose a novel multi-layer RNN model called
Densely Connected Bidirectional LSTM (DC-Bi-LSTM) for sentence classifica-
tion. In DC-Bi-LSTM, we use Bi-LSTM to encode the input sequence, and regard
the sequence of hidden states as reading memory for each layer. The architecture
of DC-Bi-LSTM is shown in Fig. 1. We evaluate our proposed architecture on five
sentence classification datasets, including Movie Review Data [11] and Stanford
Sentiment Tree-bank [15] for fine-grained and polarity sentiment classifications,
TREC dataset [9] for question type classification and subjectivity classification
dataset [10]. DC-Bi-LSTM with depth up to 20 can be successfully trained and
significantly outperform the traditional Bi-LSTM with the same or even fewer
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parameters. Moreover, our model achieves indistinguishable performance in com-
parison with the state-of-the-art approaches.

2 Model

In this section, we describe the architecture of our proposed Densely Connected
Bidirectional LSTM (DC-Bi-LSTM) model for sentence classification.

2.1 Deep Stacked Bi-LSTM

Given an arbitrary-length input sentence S = {w1, w2, . . . , ws}, Long Short-
Term Memory (LSTM) [4] computes the hidden states h = {h1, h2, . . . , hs} by
iterating the following equations:

ht = lstm(ht−1, e(wt)). (1)

where e(wt) ∈ Rm is the word embedding of wt.
As shown in Fig. 2(a), deep stacked Bi-LSTM [1,14] uses multiple Bi-LSTMs

with different parameters in a stacking way. The hidden state of l-layer Bi-LSTM
can be represented as hl

t , which is the concatenation of forward hidden state
−→
hl
t

Network Inputs

Dense Bi-LSTM

Average Pooling

Soft-max

(a) Deep Stacked Bi-LSTM (b) DC-Bi-LSTM

like itI I like it

Fig. 2. Illustration of (a) Deep Stacked Bi-LSTM and (b) DC-Bi-LSTM. Each black
node denotes an input layer. Purple, green, and yellow nodes denote hidden layers.
Orange nodes denote average pooling of forward or backward hidden layers. Each red
node denotes a class. Ellipse represents the concatenation of its internal nodes. Solid
lines denote the connections of two layers. Finally, dotted lines indicate the operation
of copying. (Color figure online)
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and backward hidden state
←−
hl
t . The calculation of hl

t is as follows:

hl
t = [

−→
hl
t ;

←−
hl
t ], specially, h0

t = e(wt), (2)
−→
hl
t = lstm(

−−→
hl
t−1, h

l−1
t ), (3)

←−
hl
t = lstm(

←−−
hl
t+1, h

l−1
t ). (4)

2.2 Densely Connected Bi-LSTM

As shown in Fig. 2(b), Densely Connected Bi-LSTM (DC-Bi-LSTM) consists of
four modules: network inputs, dense Bi-LSTM, average pooling and soft-max
layer.

(1) Network Inputs
The input of our model is a variable-length sentence, which can be repre-
sented as S = {w1, w2, . . . , ws}. Like other deep learning models, each word
is represented as a dense vector extracted from a word embedding matrix.
Finally, a sequence of word vectors {e(w1), e(w2), . . . , e(ws)} is sent to the
dense Bi-LSTM module as inputs.

(2) Dense Bi-LSTM
This module consists of multiple Bi-LSTM layers. For the first Bi-LSTM
layer, the input is a word vector sequence {e(w1), e(w2), . . . , e(ws)}, and

the output is h1 = {h1
1, h

1
2, . . . , h

1
s} , in which h1

t = [
−→
h1
t ;

←−
h1
t ] as described

in Sect. 3.2. For the second Bi-LSTM layer, the input is not the sequence
{h1

1, h
1
2, . . . , h

1
s} (the way stacked RNNs use), but the concatenation of all

previous outputs, formulated as {[e(w1);h1
1], [e(w2);h1

2], . . . , [e(ws);h1
s]}, and

the output is h2 = {h2
1, h

2
2, . . . , h

2
s}. For the third layer, whose input is

{[e(w1);h1
1;h

2
1], [e(w2);h1

2;h
2
2], . . . , [e(ws);h1

s;h
2
s]}, like the second layer does.

The rest layers process similarly and omitted for brevity. The above process
is formulated as follows:

hl
t = [

−→
hl
t ;

←−
hl
t ], specially, h0

t = e(wt), (5)
−→
hl
t = lstm(

−−→
hl
t−1,M

l−1
t ), (6)

←−
hl
t = lstm(

←−−
hl
t+1,M

l−1
t ), (7)

M l−1
t = [h0

t ;h
1
t ; ...;h

l−1
t ]. (8)

(3) Average Pooling
For a L layer Dense Bi-LSTM, the output is hL = {hL

1 , h
L
2 , . . . , h

L
s }. Average

pooling module reads in hL and calculate the average value of these vectors,
the computation can be formulated as h∗ = average(hL

1 , h
L
2 , . . . , h

L
s ).

(4) Soft-max Layer
This module is a simple soft-max classifier, which takes h∗ as features and
generates predicted probability distribution over all sentence labels.
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2.3 Potential Application Scenario

From a semantic perspective, the dense Bi-LSTM module adds multi-read con-
text information of each word into their original word vector in a concatenation
way: h1 is the first reading memory based on the input sentence S, h2 is the sec-
ond reading memory based on S and h1, hk is the k-th reading memory based
on S and all previous reading memory. Since the word vector for each word is
completely preserved, this module is harmless and can be easily added to other
models that use RNN. For example, in the task of machine translation and dia-
log system, the Bi-LSTM encoder can be replaced by dense Bi-LSTM module
and may bring improvements.

3 Experiments

3.1 Dataset

DC-Bi-LSTM are evaluated on several benchmark datasets. Movie Review
Data(MR) is a popular sentiment classification dataset proposed by Pang and
Lee 2005 [11]. Stanford Sentiment Treebank(SST-1) is an extension of MR [15].
And each review has fine-grained labels, moreover, phrase-level annotations on
all inner nodes are provided. SST-2 is the same dataset as SST-1 but used in
binary mode without neutral sentences. Subjectivity dataset(Subj) is from Pang
and Lee 2004 [10], where the task is to classify a sentence as being subjective
or objective. TREC is a dataset for question type classification task [9]. The
sentences are questions from 6 classes.

3.2 Implementation Details

In the experiments, we use publicly available 300-dimensional Glove vectors, the
number of hidden units of top Bi-LSTM (the last Bi-LSTM layer in dense Bi-
LSTM module) is 100, for the rest layers of dense Bi-LSTM module, the number
of hidden units and layers are 13 and 15 respectively.

For training details, we use the stochastic gradient descent (SGD) algorithm
and Adam update rule with shuffled mini-batch. Batch size and learning rate
are set to 200 and 0.005, respectively. As for regularization, dropout is applied
for word embeddings and the output of average pooling, besides, we perform L2
constraints over the soft-max parameters.

3.3 Results

Results of DC-Bi-LSTM and other state-of-the-art models on five benchmark
datasets are listed in Table 1. Performance is measured in accuracy. We can see
that DC-Bi-LSTM gets consistently better results over other methods, specifi-
cally, DC-Bi-LSTM achieves new state-of-the-art results on three datasets (MR,
SST-2 and Subj) and slightly lower accuracy than BLSTM-2DCNN on TREC
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and SST-1. In addition, we have the following observations:

– Although DC-Bi-LSTM is a simple sequence model, but it defeats Recursive
Neural Networks models and Tree-LSTM, which relies on parsers to build
tree-structured neural models.

– DC-Bi-LSTM obtains significant improvement over the counterparts (Bi-
LSTM) and variant (LR-Bi-LSTM) that uses linguistic resources.

– DC-Bi-LSTM defeats all CNN models in all datasets.

Above observations demonstrate that DC-Bi-LSTM is quite effective com-
pared with other models.

Table 1. Classification accuracy of DC-Bi-LSTM against other state-of-the-art mod-
els. The best result of each dataset is highlighted in bold. There are mainly five
blocks: (i) traditional machine learning methods; (ii) Recursive Neural Networks mod-
els; (iii) Recurrent Neural Networks models; (iv) Convolutional Neural Net-works mod-
els; v) a collection of other models. SVM: Support Vector Machines with unigram fea-
tures [15] NB: Na-ive Bayes with unigram features [15] Standard-RNN: Standard
Recursive Neural Network [15] RNTN: Recursive Neural Tensor Network [15] DRNN:
Deep Recursive Neural Network [6] LSTM: Standard Long Short-Term Memory Net-
work [19] Bi-LSTM: Bidirectional LSTM [19] Tree-LSTM: Tree-Structured LSTM
[19] LR-Bi-LSTM: Bidirectional LSTM with linguistically regularization [12] CNN-
MC: Convolutional Neural Network with two channels [8] DCNN: Dynamic Convolu-
tional Neural Network with k-max pooling [7] MVCNN: Multi-channel Variable-Size
Convolution Neural Network [20] DSCNN: Dependency Sensitive Convolutional Neu-
ral Networks that use CNN to obtain the sentence representation based on the context
representations from LSTM [22] BLSTM-2DCNN: Bidirectional LSTM with Two-
dimensional Max Pooling [24].

Model MR SST-1 SST-2 Subj TREC

SVM [15] - 40.7 79.4 - -

NB [15] - 41.0 81.8 - -

Standard-RNN [15] - 43.2 82.4 - -

RNTN [15] - 45.7 85.4 - -

DRNN [6] - 49.8 86.6 - -

LSTM [19] - 46.4 84.9 - -

Bi-LSTM [19] 81.8 49.1 87.5 93.0 93.6

Tree-LSTM [19] - 51.0 88.0 - -

LR-Bi-LSTM [12] 82.1 50.6 - - -

CNN-MC [8] 81.1 47.4 88.1 93.2 92.2

DCNN [7] - 48.5 86.8 - 93.0

MVCNN [20] - 49.6 89.4 93.9 -

DSCNN [22] 81.5 49.7 89.1 93.2 95.4

BLSTM-2DCNN [24] 82.3 52.4 89.5 94.0 96.1

DC-Bi-LSTM (ours) 82.8 51.9 89.7 94.5 95.6
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3.4 Discussions

Moreover, we conducted some experiments to further explore DC-Bi-LSTM. For
simplicity, we denote the number of hidden units of top Bi-LSTM (the last
Bi-LSTM layer in dense Bi-LSTM module) as th , for the rest layers of dense
Bi-LSTM module, the number of hidden units and layers are denoted as dh and
dl respectively. We tried several variants of DC-Bi-LSTM with different dh, dl
and th, The results are shown below.

(1) Better parameter efficiency
Better parameter efficiency means obtaining better performance with equal
or fewer parameters. In order to verify DC-Bi-LSTM has better parameter
efficiency than Bi-LSTM, we limit the number of parameters of all models
at 1.44 million (1.44M) and conduct experiments on SST-1 and SST-2. The
results are shown in Table 2.

Table 2. Classification accuracy of DC-Bi-LSTM with different hyper parameters. We
limit the parameters of all models at 1.44M in order to verify DC-Bi-LSTM models
have better parameter efficiency than Bi-LSTM.

dl dh th Params SST-1 SST-2

0 10 300 1.44M 49.2 87.2

5 40 100 1.44M 49.6 88.4

10 20 100 1.44M 51.0 88.5

15 13 100 1.40M 51.9 89.7

20 10 100 1.44M 50.2 88.8

The first model in Table 2 is actually Bi-LSTM with 300 hidden units, which
is used as the baseline model, and the results are consistent with the paper
[19]. Based on the results of Table 2, we get the following conclusions:

– DC-Bi-LSTM improves parameter efficiency. Pay attention to the second
to the fifth model, compared with baseline model, the increase on SST-
1(SST-2) are 0.4% (1.2%), 1.8% (1.3%), 2.7% (2.5%) and 1% (1.6%),
respectively, with the parameters not increased, which demonstrates that
DC-Bi-LSTM models have better parameter efficiency than base-line
model

– DC-Bi-LSTM models are easy to train even when the they are very deep.
We can see that DC-Bi-LSTM with depth of 20 (the fifth model in Table 3)
can be successfully trained and gets better results than baseline model. In
contrast, we trained deep stacked LSTM on SST-1, when depth reached
more than five, the performance (For example, 30% when the depth is 8,
which drops 19.2% compared with baseline model) drastically decreased.

– The fifth model performs worse than the fourth model, which indicates
that too many layers will bring side effects when limiting the number of
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parameters. One possible reason is that more layer lead to fewer hidden
units (to ensure the same number of parameters), impairing the ability
of each Bi-LSTM layer to capture contextual information.

(2) Effects of increasing depth (dl)
In order to verify that increasing dl does improve performance of DC-Bi-
LSTM models, we increase dl gradually and fix dh at 10 . The results on
SST-1 and SST-2 are shown in Table 3.

Table 3. Classification accuracy of DC-Bi-LSTM with different hyper parameters. We
increase dl gradually and fix dh at 10 in order to verify that increasing dl does improve
performance of DC-Bi-LSTM models.

dl dh th Params SST-1 SST-2

0 10 100 0.32M 48.5 87.5

5 10 100 0.54M 49.4 88.1

10 10 100 0.80M 49.5 88.4

15 10 100 1.10M 50.6 88.8

20 10 100 1.44M 50.2 88.8

The first model in Table 3 is actually Bi-LSTM with 100 hidden units, which
is used as the baseline model. Based on the results of Table 3, we can get the
following conclusions:

– It is obvious that the performance of DC-Bi-LSTM is positively related
to dl. Compared with baseline model, DC-Bi-LSTM with dl equal to 5,
10, 15 and 20 get improvements on SST-1 (SST-2) by 0.9% (0.6%), 1.0%
(0.9%), 2.1% (1.3%) and 1.7% (1.3%) respectively.

– Among all models, the model with dl equal to 15 works best. As dl con-
tinues to increase, the accuracy does not further improve, nevertheless,
there is no significant decrease.

(3) Effects of adding hidden units (dh)
In this part, we explore the effect of dh. The number of layers in dense Bi-
LSTM module (dl) is fixed at 10 while the number of hidden units (dh) is
gradually increased. The results on SST-1 and SST-2 are shown in Table 4.
Similarly, we use Bi-LSTM with 100 hidden units as baseline model (the first
model in Table 4). Based on the results of Table 4, we can get the following
conclusions:

– Comparing the first two models, we find that the second model outper-
forms baseline by 0.7% on SST-1 and 0.8% on SST-2, which shows that
even if dh is equal to 5, DC-Bi-LSTM are still effective.

– As dh increases, the performance of DC-Bi-LSTM steadily increases. One
possible reason is that the ability of each layer to capture contextual
information is enhanced, which eventually leads to the improvement of
classification accuracy.
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Table 4. Classification accuracy of DC-Bi-LSTM with different hyper parameters. We
increase dh gradually and fix dl at 10 in order to explore the effect of dh models.

dl dh th Params SST-1 SST-2

10 0 100 0.32M 48.5 87.5

10 5 100 0.54M 49.2 88.3

10 10 100 0.80M 49.5 88.4

10 15 100 1.10M 50.2 88.4

10 20 100 1.44M 51.0 88.5

4 Conclusion and Future Work

In this work, we propose a novel multi-layer RNN model called Densely Con-
nected Bidirectional LSTM (DC-Bi-LSTM) for sentence classification tasks. DC-
Bi-LSTM alleviates the problems of vanishing-gradient and overfitting and can
be successfully trained when the networks are as deep as dozens of layers. We
evaluate our proposed model on five benchmark datasets of sentence classifica-
tion, experiments show that our model obtains significant improvements over
the traditional Bi-LSTM and gets promising performance in comparison with
the state-of-the-art approaches. As future work, we plan to apply DC-Bi-LSTM
in the task of machine translation and dialog system to further improve their
performance, for example, replace the Bi-LSTM encoder with dense Bi-LSTM
module.

Acknowledgments. The work was supported by the Natural Science Foundation of
China (No. 61672288), and the Natural Science Foundation of Jiangsu Province for
Excellent Young Scholars (No. BK20160085).

References

1. El Hihi, S., Bengio, Y.: Hierarchical recurrent neural networks for long-term depen-
dencies. In: NIPS (1996)

2. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: ICASSP (2013)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

5. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected
convolutional networks. In: CVPR (2017)

6. Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in lan-
guage. In: NIPS (2014)

7. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

8. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1408.5882


Densely Connected Bidirectional LSTM 287

9. Li, X., Roth, D.: Learning question classifiers. In: COLING (2002)
10. Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity

summarization based on minimum cuts. In: ACL (2004)
11. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment catego-

rization with respect to rating scales. In: ACL (2005)
12. Qian, Q., Huang, M., Lei, J., Zhu, X.: Linguistically regularized LSTMs for senti-

ment classification. arXiv preprint arXiv:1611.03949 (2016)
13. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.

Comput. Vis. 115(3), 211–252 (2015)
14. Schmidhuber, J.: Learning complex, extended sequences using the principle of his-

tory compression. Neural Comput. 4(2), 234–242 (1992)
15. Socher, R., et al.: Recursive deep models for semantic compositionality over a

sentiment treebank. In: EMNLP (2013)
16. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: NIPS

(2015)
17. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
18. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-

tion architecture for computer vision. In: CVPR (2016)
19. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from

tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075
(2015)

20. Yin, W., Schütze, H.: Multichannel variable-size convolution for sentence classifi-
cation. arXiv preprint arXiv:1603.04513 (2016)

21. Yu, M., Yin, W., Hasan, K.S., dos Santos, C., Xiang, B., Zhou, B.: Improved
neural relation detection for knowledge base question answering. arXiv preprint
arXiv:1704.06194 (2017)

22. Zhang, R., Lee, H., Radev, D.: Dependency sensitive convolutional neural networks
for modeling sentences and documents. arXiv preprint arXiv:1611.02361 (2016)

23. Zhang, Y., Chen, G., Yu, D., Yaco, K., Khudanpur, S., Glass, J.: Highway long
short-term memory RNNs for distant speech recognition. In: ICASSP (2016)

24. Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., Xu, B.: Text classification improved by
integrating bidirectional LSTM with two-dimensional max pooling. arXiv preprint
arXiv:1611.06639 (2016)

http://arxiv.org/abs/1611.03949
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1603.04513
http://arxiv.org/abs/1704.06194
http://arxiv.org/abs/1611.02361
http://arxiv.org/abs/1611.06639


An End-to-End Scalable Iterative
Sequence Tagging

with Multi-Task Learning

Lin Gui1,2, Jiachen Du1, Zhishan Zhao3, Yulan He2, Ruifeng Xu1(B),
and Chuang Fan1

1 Harbin Institute of Technology (Shenzhen), Shenzhen, China
xuruifeng@hit.edu.cn

2 Aston University, Birmingham, UK
3 Baidu Inc., Beijing, China

Abstract. Multi-task learning (MTL) models, which pool examples
arisen out of several tasks, have achieved remarkable results in language
processing. However, multi-task learning is not always effective when
compared with the single-task methods in sequence tagging. One possi-
ble reason is that existing methods to multi-task sequence tagging often
reply on lower layer parameter sharing to connect different tasks. The
lack of interactions between different tasks results in limited performance
improvement. In this paper, we propose a novel multi-task learning archi-
tecture which could iteratively utilize the prediction results of each task
explicitly. We train our model for part-of-speech (POS) tagging, chunking
and named entity recognition (NER) tasks simultaneously. Experimental
results show that without any task-specific features, our model obtains
the state-of-the-art performance on both chunking and NER.

Keywords: Multi-task learning · Interactions · Sequence tagging

1 Introduction

Sequence tagging is one of the most important topics in Natural Language Pro-
cessing (NLP), encompassing tasks such as part-of-speech tagging (POS), chunk-
ing, and named entity recognition (NER). In recently years, neural network (NN)
based models have achieved impressive results on various sequence tagging tasks,
including POS tagging [1,2], chunking [3,4], and NER [5,6].

One of the challenges for sequence tagging tasks is that there is not enough
training data to train a good model. Heavy handcrafted features and language-
specific knowledge resources are costly to develop in new sequence tagging tasks
[5]. To overcome this problem, multi-task learning (MTL) models have been
proposed.

MTL is an important mechanism that aims to improve the generalization of
model performance by learning a task together with other related tasks [7]. Sev-
eral NN based MLT models have been applied to various sequence tagging tasks
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 288–298, 2018.
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[4,8,9]. These models use shared representations constructed by some lower lay-
ers, then stack several task-specific upper layers to learn task-relevant represen-
tations. However, representation sharing in lower NN layers only captures weak
interactions between different tasks. That perhaps one reason of that multi-task
learning is not always effective compared with single-task methods in sequence
tagging [10].

To improve MTL performance, we propose a unified multi-task learning
framework for sequence tagging which could iterative utilize predicted tags of
each task explicitly. Essentially, our model predicts tags of all tasks with several
iterations. The learned distributions of task-specific prediction in every iteration
are merged with the shared representations for tag sequence prediction in the
next iteration. The iterative training mechanism gives the model capability to
refine prediction results of one task by simultaneously considering prediction
results of other tasks.

In particular, we propose a CNNs-Highway-BLSTM as base model for
sequence tagging. Character-level and word-level convolutional neural networks
(CNNs) are used to capture morphological features and a Highway network is
implemented to keep valuable features by an adaptive gating units. These fea-
tures are fed into a Bidirectional Long Short-term Memory Network (BLSTM)
for task-specific prediction. According to our iterative training mechanism, the
distribution of prediction can be concatenated with shared representations from
Highway layer output and sent into BLSTM in the next iteration. The experi-
mental results show that our base model outperforms the state-of-the-art meth-
ods on Chunking and NER with iterative training process.
The main contributions of this paper are:

– We propose a new framework to explicitly make use of predicted tags from
one task as additional features for other tasks and hence better capture inter-
actions between different tasks in multi-task learning.

– We proposed a CNNs-Highway-BLSTM as a base model for sequence tagging.
– We evaluate our model on several benchmarking datasets and achieve the

state-of-art performance on both chunking and NER.

2 Our Approach

In this section, we will first describe a general framework of multi-task learning
for sequence tagging and introduce our idea of iterative training. We will then
propose a base sequence tagging model which includes lower layers of character-
level CNN, word-level-CNN, Highway network and BLSTM that shared across
all tasks. At the end of this section, we will present the details of model training.

2.1 Multi-task Learning

Multi-task Learning (MTL) aims to improve model generalization by learning
multiple tasks simultaneously from shared representations based on the assump-
tion that features learned for each task can be helpful for other tasks. In addition,
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pooling samples of several tasks could also potentially generalize model well [7].
As we focus on sequence tagging here, both inputs and outputs are in the vector
form. Given an input sequence x, the MLT model outputs a tagging sequence−→
y(i) for different tasks. The model typically consists of two kinds of parameters:
task-specific parameters h(i), which are in the upper layer of the architecture
shown in Fig. 1, and the parameters h(shared) shared across all tasks, which are
in the lower layer of the architecture shown in Fig. 1.

In MTL, it is reasonable to assume that tags predicted for one task can
be useful features for other tasks. For instance, a word with POS tag “noun” is
more likely to be a named entity compared to others tagged as cardinal numeral.
Conventionally, lots of NLP systems use features obtained from the output of
other preexisting NLP systems [4].

In order to explicitly use the tag prediction results from one task in others
in MTL, we propose an iterative training procedure for MTL as shown in Fig. 1,
in which steps enclosed in a dashed box are repeated for a number of iterations.
The inputs to each iteration consist of:

1. h(shared), features extracted from data by a shared layer;

2. y = [
−−→
y(1),

−−→
y(2)], concatenated prediction probabilities of all tasks from the

previous iteration.

Both inputs are concatenated and fed to BLSTM. It is worth noting that
BLSTM is shared across all tasks and it is separated from h(shared) because it
participates in all iterations. Our proposed iterative training procedure (Fig. 1)
allows the model to incorporate the predicted results of all tasks as additional
features in the next iteration. With BLSTM, the model extends tags interaction
to the sentence level. To ensure that the predicted results at each iteration is
close to the true tag sequence, we define a cost function by taking into account
the differences between the predicted and true tag sequences in all iterations and
for all tasks:

cost =
1
T

T∑

i=1

L(−→yt ,−→y∗), (1)

L(−→yt ,−→y∗) =
1
M

M∑

m=1

αmL̃(
−−→
y
(m)
t ,

−−−→
y(m)∗) (2)

where
−−→
y
(m)
t is the prediction probabilities sequence of task m at iteration t,

−−−→
y(m)∗

is the ground-truth label sequence of task m, T is the number of iterations, M
is the number of tasks, αm is the weight of different tasks, L̃ is the cross entropy
function. For task m, the final prediction result is a mean of predictions across
all iterations:

−−→
y(m) =

1
T

T∑

i=1

−−→
y
(m)
t (3)
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2.2 Basic Sequence Tagging Model

In the previous subsection, we have introduced the iterative training procedure
and the cost function used in MTL. Since the predicted tag sequence will be
used as additional features in next iteration of model training, a strong base
sequence tagging model is needed for obtaining better performance. In this
section, we will propose a NN-based sequence tagging model, which is called
CNNs-Highway-BLSTM. It starts with character-level and word-level CNNs to
capture morphological and contextual features. Next, a Highway network is used
to keep valuable features across word-level CNNs by using transform and carry
gates. These features are input into a BLSTM for capturing sequence long-term
dependencies. The output of BLSTM is fed into different task-specific output
layers.

Word-Level CNN. The word-level CNN takes an input sentence, called Word
Representation, as a sequence of words x = [x1, x2, ..., xn] where each word
is represented as a d-dimensional vector, and returns another sequence S =
[s1, s2, ..., sn] which represents local information about the sequence at every
word of the input. A narrow convolution is applied between x and a kernel
W ∈ R

kd of width k. �k
2 � and �k−1

2 � padding vectors are added to the head
and tail of sequence to make sure the sequence length does not change after the
convolution layer.

Character-Level CNN. Character-level CNNs have been shown to be an effec-
tive method to extract morphological features from characters of words [2,11].
Given a word, we first apply its character embedding to a CNN layer and then
take the max-over-time pooling operation [4] to capture the most important fea-
tures for each feature map. The vector output from the max-over-time pooling
layer is the character-level representation of the word, called Character Repre-
sentation. This representation is then concatenated with the word embedding as
the input to word-level CNNs.

Highway Network. In our experiments, simply stacking multiplayer word-
level CNNs makes the performance worse. Instead, we implement a highway
network [12] after the CNN layer to keep valuable features across word-level
CNNs. Highway layer allows part of si to be carried unchanged to the output
while the reset to go through convolutional transformations.

BLSTM. In the next step, the output of highway network will be obtained
for the input of a Long Short-term Memory Network (LSTM) [13], which was
proposed to address this issue of learning long-term dependencies by maintains
three multiplicative gates which control the information to forget and to pass
on to the next step. In sequence tagging task, we apply a Bidirectional LSTM
(BLSTM) to make use of past (left) and future (right) information by present
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each sequence forwards and backwards to two separate hidden states. The two
hidden states are then concatenated to form the final output.

Iteration i-1

Label 
Distribution

Shared Feature

LSTM

Multi-task

Iteration i

Label 
Distribution

Shared Feature

LSTM

Multi-task 

Shared Feature

Fig. 1. MTL with recurrent iterative framework.

2.3 The Final Model

Our final MTL architecture is illustrated in Fig. 1. When iterative training
begins, we initialize prediction probabilities of all tasks with zero vectors, as
input of BLSTM for a unified form. It is worth noting that parameters in each
iteration are not shared. Following previous work [4], our task-specific hidden
layer h(i) only includes task-specific fully connected output layers.

3 Experiment

3.1 Experimental Setup

We test our model on three NLP sequence tagging tasks: POS tagging on Penn
TreeBank (PTB), chunking on CoNLL 2000 and named entity recognition (NER)
on CoNLL 2003.

POS assign a unique tag to each word, which indicate its syntactic role,
such as noun, verb and so on. Chunking, or shallow parsing, assigns each word
with its phrase type. NER labels each word into other or four categories: Person,
Location, Organization, or Miscellaneous. We use the BIOES tagging scheme for
chunking and NER tasks. For the preprocessing, we follows previous work [5].
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In the training of model, we fine turn the parameter on the validation dataset.
For the chunking task on CoNLL 2000 data, we split 10% training data for
validation because the benchmark only provide training data. Since the test
data for chunking in the CoNLL 2000 shared task is part of the validation data
in the standard POS, we simply remove part of repeat samples from validation
data of POS task. The size of training data we used in our multi-task learning
is smaller than the standard task.

All the experimental result reported in our paper is with p-value less than
0.01 by t-test. For the metrics in evaluation, we follow the standard metrics
on three benchmark respectively. In detail, for the POS tagging task, we use
Accuracy to evaluate the performance. For the chunking and NER tasks, we
evaluate the result by F1-measure.

3.2 Experimental Results

In this section, we first explore the effectiveness of recurrent iteration mecha-
nism on several experiments. Then we report the results of our model on the
benchmark and compare to the previously-reported state-of-art results.

Table 1. The impact of recurrent iteration.

Length POS Chunking NER

T=0 97.54 95.31 90.52

T=1 97.58 95.47 91.16

T=2 97.56 95.54 91.31

T=3 97.56 95.58 91.30

T=4 97.55 95.58 91.26

T=5 97.55 95.57 91.24

Impact of Iterative Training. In this section, we first explore the effectiveness
of our proposed iterative training procedure. Then we report the results of our
model on the benchmarking datasets in comparison to previously reported state-
of-the-art results.

Table1 shows how the results with the increasing number of iterations for the
iterative training of our proposed base sequence tagging model. When iterative
training just once (T=0), the model is common form MTL model as illustrate
in Fig. 1. It can be observed that iterative training has little impact on POS
tagging, but it improves the performance of both chunking and NER signifi-
cantly, especially in the first two iteration. For computational efficiency, we set
the number of iteration to 3 in the later experiment.

To understand the effect of the predicted tag sequences from one task on the
others, we drop tag prediction results from one task at a time during the iterative
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Table 2. The effect of excluding the predicted tag sequences from one task at a time
during iterative training.

Models POS Chunking NER

Full 97.56 95.58 91.30

Without POS 97.52 95.41 90.70

Without Chunking 97.53 95.51 90.93

Without NER 97.52 95.52 90.75

training process (i.e. the input of BLSTM at each iteration only includes the pre-
diction results of two tasks and h(shared)). From the results presented in Table 2,
we find that POS tags have more noticeable influence on NER and chunking.
Chunking tags also have some impact on NER, but do not influence much on
POS tagging. NER tags do not contribute much to POS tagging or chunking. We
also notice that NER tag sequences from previous training iteration are helpful
for tagging prediction in the next iteration.

Comparison with Existing Systems. We first compare our method with
the previous multi-task learning method [4], which used CNNs as base model, in
Table 3. It can be observed that with our proposed base sequence tagging model
and the iterative training process, our approach outperforms the method in [4]
significantly on NER, noticeably on chunking and slightly on POS tagging.

Table 3. Compare with existing multi-task learning method.

Models POS Chunking NER

Collobert et al., 2011 97.22 94.10 88.62

Our approach 97.56 95.58 91.30

We also compare our results with methods developed specifically for POS
tagging, chunking and NER in Table 5, respectively. For POS tagging, the best
performing model is the one proposed in [14] where an accuracy of 97.78%
was achieved by using character-level and word-level BLSTM model. The word
embeddings used in their model are trained by themselves and are not publicly
available. [1] achieved an accuracy of 97.55% by using CNN as the character-level
model and BLSTM-CRF as the word-level model. Our model slightly outper-
forms [1] demonstrating the effectiveness of using CNN-Highway for modeling
word-level local features. Overall, our model outperforms all the other systems
apart from [14], including the ones using handcrafted features. For chunking
methods, [15] won the CoNLL2000 challenge with an F1-score of 93.48% by
using SVMs. The previous state-of-the-art F1-score of 95.23% was reported
in [16] by using a voting classifier scheme with carefully handcrafted features.
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Table 4. Compare with existing POS tagging methods, Chunking Methods and NER
Methods. (The methods with handcraft features have been marked with †.)

Methods POS Tagging Chunking NER

Sha adn Pereira, 2003 - 94.30 -

Shen et al., 2005 † - 95.23 -

Collobert et al., 2011 97.29 94.32 89.59

Lample et al., 2015 97.78 - 90.94

Ma et al., 2016 97.55 - 91.21

Huang et al., 2015 97.55 - 90.10

Our approach 97.56 95.58 91.30

Our multi-task learning model outperforms all the existing methods on chunk-
ing, partly attributing to the additional training data from POS tagging and
NER tasks and also common features extracted by the shared lower layer.

For NER methods, with the same data pre-processing as ours, [5] obtained
an F1-measure of 90.94% by using the character-level BLSTM and word-level
BLSTM-CRF model. [17] achieved an F1-score of 91.20% using the joint NER
and entity linking model with heavily handcrafted features. With our proposed
iterative training process, our model improves upon [17] by 0.10% in F1-score. To
the best of our knowledge, the previous best result of 91.21% was reported in [1]
with a BLSTM-CNNs-CRF model. Our model further boosts the performance
by 0.09% and achieves the state-of-art performance.

3.3 Case Study

To validate our assumption of iterative training, we choose an example in test
set of chunking task to show the iterative tagging results in Table 5:
Ex.1 The Canadian Wheat Board reported six ships loading

In Table 6, the top row illustrates the ground truth of POS and Chunk labels,
and the next three rows show the iterative tagging results in validation phase. We
can obverse that, without iterative training, our model is not able to predict the
right chunking label of word “loading”. However, the POS label of “loading” is
correctly predicted and it is used to help correct the label of chunking when T=1.
In second iteration, by leveraging the sequential property of text, our model also
replaces the chunking label of “ships” from “E-NP” to “I-NP”. We also find
that, with increasing number of iterations, the tagging results of our model just
remain stable.

4 Related Work

In recently years, a number of neural architectures have been proposed for
sequence tagging. [3] proposed a BLSTM-CRF model for sequence tagging
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Table 5. Tagging results of different iterations

Tag Reported Six Ships Loading

Ground POS VBD CD NNS NN

Chunk S-VP B-NP I-NP E-NP

T=0 POS VBD CD NNS NN

Chunk S-VP B-NP E-NP S-VP

T=1 POS VBD CD NNS NN

Chunk S-VP B-NP E-NP E-NP

T=2 POS VBD CD NNS NN

Chunk S-VP B-NP I-NP E-NP

T=3 POS VBD CD NNS NN

Chunk S-VP B-NP I-NP E-NP

T=4 POS VBD CD NNS NN

Chunk S-VP B-NP I-NP E-NP

tasks. The experimental results on POS tagging, chunking and NER tasks have
obtained impressive results. However, the handcrafted features they used make
the model less flexible. [6] proposed a hybrid of BLSTM and CNNs for NER
based on character-type, capitalization and lexicon features. To reduce hand-
crafted features, [2] proposed CharWNN, which stacks a convolutional layer to
capture word morphology and shape features. It obtains the state-of-the-art
accuracy on English POS tagging. More recently, [5] proposed a BLSTM-CRF
model for NER based on character-level and word-level information. [1] pro-
posed a LSTM-CNNs-CRF model for POS tagging and NER, which included
character-level CNN layers and word-level LSTM-CRF layers. Both [1,5] uti-
lized neural network that learns character-level representation of words instead
of using handcrafted features. All models mentioned above are trained on a single
task and can not leveraged datasets of related tasks.

More recently, multi-task learning has been applied to various sequence tag-
ging tasks, including name error recognition [8], POS [18]. Most of these models
use shared representation constructed by lower layers and task-specific repre-
sentation constructed by upper layers. [4] utilized multi-task learning for POS,
Chunking, and NER joint tagging. However, this work did not consider the pre-
dicted tagging sequences from each individual task and the base model is a
simple CNNs, which limited the performance. [19] jointly trained co-reference
resolution, entity linking, and NER using a single CRF model with added cross-
task interaction factors, which also could capture interaction of tags between
related tasks. However, jointly training a CRF model requires all tasks having
fully labeled training data and the model can not leverage exiting partial labeled
data for training.
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5 Conclusion

In this paper, we have presented a new multi-task learning network architecture
for sequence tagging. In this method, CNNs was used to model both character-
level and word-level representations, and BLSTM was used to capture long range
dependencies. We also utilize a Highway network to further improve the model
performance. A main contribution of our proposed framework is that it can
leverage the predicted tagging sequences between related tasks through the iter-
ative training procedure. Our model achieves the state-of-the-art performance
on chunking and NER, and performs comparably to the best performing model
on POS tagging, without using any external knowledge or handcrafted features.
Since our model does not require any domain- or task-specific knowledge, it can
be applied to other sequence tagging tasks, which will be explored in our future
work.
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20170307150024907, Key Technologies Research and Development Program of Shen-
zhen JSGG20170817140856618.

References

1. Ma, X., Hovy, E.H.: End-to-end sequence labeling via bi-directional LSTM-CNNs-
CRF. In: ACL, pp. 1064–1074 (2016)

2. dos Santos, C.N., Zadrozny, B.: Learning character-level representations for part-
of-speech tagging. In: ICML, pp. 1818–1826 (2014)

3. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991 (2015)

4. Collobert, R., et al.: Natural language processing (almost) from scratch. JMLR
12, 2493–2537 (2011)

5. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: NAACL, pp. 260–270 (2016)

6. Chiu, J.P.C., Nichols, E.: Named entity recognition with bidirectional LSTM-
CNNS. TACL 4, 357–370 (2016)

7. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
8. Cheng, H., Fang, H., Ostendorf, M.: Open-domain name error detection using a

multi-task RNN. In: EMNLP, pp. 737–746 (2015)
9. Søgaard, A., Goldberg, Y.: Deep multi-task learning with low level tasks supervised

at lower layers. In: ACL(2), pp. 231–235 (2016)
10. Alonso, H.M., Plank, B.: When is multitask learning effective? Semantic sequence

predictionunder varying data conditions. In: EACL, pp. 44–53 (2017)
11. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language

models. In: AAAI, pp. 2741–2749 (2016)
12. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In:

NIPS, pp. 2377–2385 (2015)
13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)



298 L. Gui et al.

14. Ling, W., Dyer, C., Black, A.W., Trancoso, I., Fermandez, R., Amir, S., Marujo,
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Abstract. Neural machine translation has become a benchmark method
in machine translation. Many novel structures and methods have been
proposed to improve the translation quality. However, it is difficult to
train and turn parameters. In this paper, we focus on decoding tech-
niques that boost translation performance by utilizing existing models.
We address the problem from three aspects—parameter, word and sen-
tence level, corresponding to checkpoint averaging, model ensembling
and candidates reranking which all do not need to retrain the model.
Experimental results have shown that the proposed decoding approaches
can significantly improve the performance over baseline model.

1 Introduction

Neural machine translation (NMT) has significantly improved the quality of
machine translation in recent years, which has shown promising results on mul-
tiple language pairs [1,4,7,18,21]. It builds upon a single and large neural net-
work directly mapping source sentence to associated target sentence. Recently
relying entirely on an attention mechanism, the transformer model introduced
by Vaswani et al. [21] achieved state-of-the-art results for machine translation.

However, designing a novel and good translation model is a tough work.
Training model is also time-consuming and occupies massive computing
resources. For example, despite its remarkable success, transformer requires
3.5 days with 8 GPUs on training for a big model. Thus instead of modify-
ing model structure, how to make effective use of the existing models to improve
the translation performance is well worth considering.

In this paper, we investigate and practice decoding approaches to boost trans-
lation performance without training model again. As shown in Fig. 1, we address
the problem from three aspects—parameter, word and sentence level. First, we
adapt the checkpoint averaging to get a more robust set of parameters, which
can utilize multiple checkpoints saved at different timesteps in a single model.
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 299–308, 2018.
https://doi.org/10.1007/978-3-319-99501-4_26
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Fig. 1. Our framework for decoding approaches from three aspects: parameters, word
and sentence level.

For word level, we introduce three ensembling strategies to boost word predic-
tion, including checkpoint ensemble, independent ensemble and different ensem-
ble. Finally, we observe that in validation set if each translation candidate with
top sentence-level BLEU score is selected, we can obtain over 18 BLEU points
improvement compared with outputs by beam search algorithm. Inspired by this
observation, we attempt to select better candidates by reranking techniques,
which includes linear regression, pairwise-rank method and minimum bayes risk
(MBR) decoding.

We conducted massive experiments on large-scale English-to-Chinese trans-
lation. Experimental results have shown that decoding approaches can obtain
significant BLEU score improvements over state-of-the-art NMT baseline.

2 Neural Machine Translation

The decoding approaches we discuss can be applied to any neural machine trans-
lation model. Here we choose Transformer [21] as baseline model for later exper-
iments. In this section, we will give a brief introduction of Transformer encoder-
decoder framework.

Given a set of bilingual data D = {(X(i), Y i))}Ni=1 where both X and Y are
a sequence of tokens, the encoder maps a input sequence X = (x1, x2, · · · , xn) to
a sequence of continuous representations z = (z1, z2, · · · , zn) whose size varies
with respect to the source sentence length. The decoder generates an output
sequence Y = (y1, y2, · · · , ym) from the continuous representations. The encoder
and decoder are trained jointly to maximize the conditional probability of target
sequence given a source sequence:

P (Y |X; θ) =
N∏

j=1

P (yj |y<j , x; θ) (1)

Transformer consists of N stacked encoder and decoder layers. Encoder layer
consists of two blocks, which is self-attention block followed by a position-wise
feed-forward block. Decoder layer has the same architecture as encoder layer
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except an extra encoder-decoder attention block. Residual connection and layer
normalization are used around each block.

For self-attention and encoder-decoder attention, a multi-head attention
block is used to obtain information from different representation subspaces at
different positions. Each head corresponds to a scaled dot-product attention,
which operates on a query Q, key K and a value V:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where dk is the dimension of the key.
For the sake of brevity, we refer readers to Vaswani et al. [21] for additional

details regarding the architecture.

3 Methods Description

Many approaches have been proposed to generate better translation results in
decoding [11–13,17,19]. In this section, we introduce three decoding techniques
that boost translation performance by utilizing existing models, which includes
checkpoint averaging, ensembling strategies and different methods of reranking.

3.1 Checkpoint Averaging

Checkpoint averaging is to average trainable parameters which are saved at last
timesteps in a single model, when the model is near convergence. Since we use
Stochastic Gradient Descent algorithm to optimize model, only a mini-batch of
data are used during each step, causing that the parameters may over adapt to
one mini-batch. We can get more robust parameters by checkpoint averaging. As
illustrated in Fig. 2, for example, the value in the red circle of second checkpoint
is 0.30, distinct from the corresponding values of other two checkpoints, which
means that it may be a noise value. After checkpoint averaging it turns to 0.40,
thus a more proper value can be obtained. Vaswani [21] suggested to average the
last 20 checkpoints saved every 10 min. Here we will make experiments on how
many checkpoints to be chosen can obtain the best result.

Fig. 2. Model averaging with the number of three (Color figure online)
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3.2 Different Ensembling Strategies

Model ensembling is a method to integrate the probability distributions of mul-
tiple models before predicting next target word. It has been proved effective
in neural machine translation [12,13,26]. We apply three different ensembling
strategies as following:

– checkpoint ensemble. We use the checkpoints saved at different times in a
single training model, which do not need to train several models from scratch.
It is a cheap way to obtain an ensemble model.

– independent ensemble. This strategy needs to train N models indepen-
dently with the same architecture but different initialization ways. Combin-
ing N models in different initialization ways as an ensemble model can help
to avoid local optimization and obtain better results.

– different ensemble. Different ensemble trains N models with both different
architectures and initialization ways, which is expensive but can yield better
and more diverse result.

3.3 Different Reranking Strategies

Reranking is a long-term study in machine translation [11,15,17,19]. In this
paper, we apply three reranking strategies to investigate how to better select
candidates, which includes linear regression, pairwise-rank method and MBR
decoding.

Linear Regression. Linear regression is usually used to model the relation-
ship between a dependent variable and one or more explanatory variables. We
denotes sentence-level BLEU score as dependent variable, sentence-level fea-
tures as explanatory variables. More specifically, we use beam search algorithm
to obtain a list of candidate translations. Since validation set has reference, the
sentence-level BLEU score of each sentence can be calculated. We then use target
side right-to-left model, target-to-source model, n-gram language model, neural
language model and SMT model trained by Moses1 to calculate each sentence’s
feature scores. We first fit a linear regression model for validation set, then adapt
it to test set. For test sentences we estimate the BLEU scores of each candidate,
then select the sentence with top score as final output.

Pairwise Rank. In fact, we do not need to know the exact BLEU score of each
sentence. The only thing we concern is the order of translation candidates. One
of approaches is to reduce the ranking problem as a classification problem by
using pairwise sampling [6]. However, ranks may be unreliable for machine trans-
lation where candidates sometimes can not be strongly distinguished between
each other. To alleviate this problem, we assume the difference among top r
translation candidates is not obvious. Thus, we regard the top r of the n-best
1 http://www.statmt.org/moses/.

http://www.statmt.org/moses/
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candidates as good translations and the bottom k as bad translations, where
r + k ≥ n. Then a classification model is trained to split the good translations
from the bad translations for each sentence. Besides, the following criteria are
proposed:

– We assign a larger margin for the candidates whose ranks are far and a smaller
margin for closer pairs. For example, margin(e1, e20) > margin(e1, e10)

– For the same rank gap, the margin between a high rank and a low rank
is larger than that between two low ranks. For example, margin(e1, e10) >
margin(e21, e30). The reason is that the scoring function will be penalized if
it can not separate former case, but not for the latter.

MBR Decoding. MBR decoding is a method to find a candidate with the
least expected loss [19]. It measures the similarity of each candidate translation
instead of the quality against reference. The Bayes risk of each candidate y is
computed by:

R(y) =
∑

y′∈E

Δ(y, y′)p(y′|x) (3)

The term Δ(y, y′) is calculated by 1 − BLEU(y, y′), which denotes the discrep-
ancy between candidate y and candidate y′. The term p(y′|x) is the generating
probability of each candidate given by a NMT model. The candidate with lowest
Bayes risk means that it is similar to the most candidates in the evidence space.

4 Experiments

4.1 Dataset

We perform our experiments on corpus provided by AI Challenger—the English-
Chinese Machine Translation track2. This corpus contains about 10 million par-
allel English-Chinese sentences which are collected from English learning web-
sites and movie subtitles. In our experiments, we first filter the bilingual corpus
according to the following criteria:

– Sentences which contain less than 3 words or more than 100 words are
removed.

– We use fast align toolkit to learn a word alignment of sentences pairs. Sen-
tence pairs whose alignment ratio is lower than 0.3 are removed.

– We sort sentence pairs by perplexities and remove the bottom 5 percent sen-
tence pairs.

After filtering we retain about 9 million pairs of training data. We also use
monolingual sentences to train n-gram and neural language model for later use in
reranking. The English side is preprocessed by tokenizer and lowercaser scripts
in Moses. The Chinese side is segmented by our in-house toolkit. We learn a
BPE [14] model with 80k merge operations for both English side and Chinese
side, and extract 83k and 78k subwords as source and target vocabularies. The
evaluation metric is BLEU as calculated by the multi-blue.perl script.
2 https://challenger.ai/competition/translation.

https://challenger.ai/competition/translation
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4.2 Training Details

We adopt the Transformer model as our baseline model3. All hyper parameter
settings are set the same as transformer big single gpu if not specifically men-
tioned. The dimension of word embedding is set to 1024. The size of attention
block is 1024 with 16 heads and the size of feed forward block is set to 4096.

We train the baseline model for a total of 300K steps with Adam optimizer [8]
on three GPUs. We set the initial learning rate to 0.1 and apply decay method
described in Vaswani et al. [21]. Dropout was applied on residual layer to avoid
over-fitting, which is 0.1. At test time, we employ beam search with beam size
4. As for reranking, we set beam size as 50 to generate a list of candidates.

4.3 Results and Comparison on Different Approaches

In this section, we first separately compare different strategies in each approach.
Then we report the final results by combining all these approaches. All of the
first lines in every table are the baseline model without using any decoding
approaches.

Effects on the Number of Checkpoints for Averaging. We first test how
many checkpoints to be used can get better results. Figure 3 shows the effect
on the number of checkpoints for averaging. We obverse that the BLEU scores
by applying checkpoint averaging are all above baseline model. As the num-
ber of checkpoints increases, the set of parameters becomes more robust which
brings more BLEU scores improvement. However too many checkpoints may
contaminate parameters with scores decreasing. In our experiments, averaging
40 checkpoints saved in ten-minute interval obtains the best results. Compared
with the time needed for training the whole model from scratch, checkpoint
averaging only takes a few minutes before decoding, so it is a free way to boost.

Comparison of Different Ensembling Strategies. Table 1 shows the BLEU
scores with different ensembling strategies. To be fair, all the three ensembling
strategies use five models for ensembling. Specifically, checkpoint ensemble uses
checkpoints saved at five different time during a single model training pro-
cess; independent ensemble uses two models initialized by uniform algorithm,
two by normal algorithm and one by orthogonal; different ensemble uses two
6-layer encoder-decoder structures with uniform and normal initializer, two 8-
layer structures with 24 heads, 960 hidden size and 32 heads, 1024 hidden size
respectively, and one 10-layer encoder with 6-layer decoder structure. Model
ensembling can indeed boost translation result, while the improvements by three
ensembling strategies are different. Among these strategies, different ensemble
outperforms the other two strategies by about 1.2 and 0.6 points respectively.
This strategy is expensive for training but more likely to yield better and more
diverse results. This is consistent with the wisdom that there is no free lunch.
3 https://github.com/tensorflow/tensor2tensor.

https://github.com/tensorflow/tensor2tensor
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Fig. 3. Translation results (BLEU score) on checkpoint averaging.

Table 1. Translation results (BLEU score) on different ensembling strategies.

System BLEU

Baseline 29.40

Checkpoint ensemble 29.55(+0.15)

Independent ensemble 30.18(+0.78)

Different ensemble 30.76(+1.36)

Comparison of Different Reranking Strategies. In our experiment, we first
generate 50-list of translation candidates by beam search algorithm, then calcu-
late sentence-level BLEU for each candidate on validation set. To our surprise,
we observe a remarkable gap between the output generated by beam search algo-
rithm and the candidate selected by sentence-level BLEU. As illustrated in Fig. 4,
if we select each candidate with top 1 sentence-level BLEU, the corpus-level
BLEU can reach 47.50; even if we select all the candidates with 20th sentence-
level BLEU, we can also get a final BLEU of 29.77. However, the BLEU score
of the output generated by beam search algorithm is only 29.40. Thus we think
reranking has a great potential to further improve translation performance. We
then attempt three reranking strategies. From Table 2, we observe that linear
regression and MBR decoding can significantly improve the BLEU scores, while
pairwise rank cannot well distinguish between the good translation candidate
with the bad one. One possible reason is that the selected sentence-level fea-
tures may not linearly separable. Though reranking by linear regression obtains
an improvement, it heavily relies on the selected features which are expensive
to extract. From this perspective, MBR decoding is the best strategy since all
it needs is just a list of translation candidates. Although these strategies can
improve the BLEU scores, it is still far away from the best result. We will fur-
ther investigate this challenge in the future.
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Fig. 4. Translation results (BLEU score) based on sentence-level BLEU.

Table 2. Translation results (BLEU score) on different reranking strategies.

System BLEU

Baseline 29.40

Linear regression 30.10(+0.70)

Pairwise rank 29.88(+0.44)

MBR decoding 30.13(+0.73)

Results Combining Three Approaches. We choose the best strategy in each
approach mentioned above, which are the averaging of 40 checkpoints, different
ensemble and MBR decoding respectively. Combining all these approaches, we
can obtain significant BLEU score improvements over baseline model. We list
the BLEU scores of our proposed model in Table 3. Specifically, after checkpoints
averaging, we can get an improvement of 0.54 BLEU points over baseline. We
further obtain 0.99 BLEU points improvement with different ensembling strate-
gies. By applying reranking method, another improvement of 0.69 BLEU scores
can be achieved. It confirms the effectiveness of these decoding techniques.

Table 3. Translation results (BLEU score) for English-to-Chinese translation.

System BLEU

Baseline 29.40

+checkpoint averaging 29.94(+0.54)

+model ensembling 30.93(+1.53)

+reranking 31.62(+2.22)
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5 Related Work

Recently many novel structures and methods have been proposed to improve the
translation quality in neural machine translation. Most of the existing approaches
focus on designing better models [10,20,21], augmenting data with large-scale
monolingual corpus [2,25], integrating SMT techniques [5,16,22]. In spite of
modifying the model structure, our work mainly focuses on improving translation
quality by using decoding techniques, which is somehow easier to implement.

Vaswani et al. [21] proposed to use checkpoint averaging method to obtain
lower variance and more stable translation results. However, they did not explain
how to choose checkpoints and how many checkpoints to be used can obtain bet-
ter results. Sennrich et al. [13] first applied the method of checkpoint ensembling
in WMT16, then they further tried independent ensembling in WMT17 [12],
which achieved a significant improvement compared to the former strategy.

To get better final output, various reranking methods have been explored.
Shen et al. [15] introduced two novel perceptron-inspired reranking algorithms
that improve on the quality of machine translation. Kumar [19] presented MBR
decoding for statistical machine translation aiming to minimize expected loss
of translation errors under loss functions that measure translation performance.
However, these methods are mainly applied to statistical machine translation.
Here, we apply them to neural machine translation to explore how good the
selected candidate can be by each reranking strategy.

6 Conclusion

In this work, we boost translation performance by making effective use of the
existing models with three decoding techniques. Experiments have shown that
these decoding techniques can obtain significant improvement over baseline. We
point out that reranking has a great potential for improving translation per-
formance, however, a wide gap between the oracle selection still exists. In the
future, we will further investigate a better way to shrink this gap.
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Abstract. Corpus is an essential resource for data driven natural language
processing systems, especially for sentiment analysis. In recent years, people
increasingly use emoticons on social media to express their emotions, attitudes
or preferences. We believe that emoticons are a non-negligible feature of sen-
timent analysis tasks. However, few existing works focused on sentiment
analysis with emoticons. And there are few related corpora with emoticons. In
this paper, we create a large scale Chinese Emoticon Sentiment Corpus of
Movies (CESCM). Different to other corpora, there are a wide variety of
emoticons in this corpus. In addition, we did some baseline sentiment analysis
work on CESCM. Experimental results show that emoticons do play an
important role in sentiment analysis. Our goal is to make the corpus widely
available, and we believe that it will offer great support to sentiment analysis
research and emoticon research.

Keywords: Emoticon � Sentiment analysis � Corpus

1 Introduction

Sentiment analysis, also called opinion mining, is the field of study that analyzes
people’s opinion and sentiments towards entities such as products, events and topics
and so on [1].

The problem of sentiment analysis has been of great interest in the past decades
because of its practical applicability. For example, consumers can seek advices about a
product to make decisions in the consuming process. And vendors are paying more and
more attention to online opinions about their products and services. Hence, sentiment
analysis has attracted increasing attention from many research communities such as
machine learning, data mining, and natural language processing.

Recently, people increasingly use emoticons on social media to express their
feelings. The sentiment of a message is often affected by the emoticons that appear in
the text. For example, given two movie reviews: “It’s not Hollywood style :-)” and “It’s
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not Hollywood style :-(”, though the text information is the same, but both reviews
represent different sentiment due to different emoticons used.

For further research, we need large scale corpora with emoticons. However, most
existing corpora are based on texts but ignore the emoticon information. This restricts
the research for sentiment analysis and emoticon. So we established a large scale
Chinese Emoticon Sentiment Corpus of Movies (CESCM). On CESCM, we have done
a lot of experiments, and the experiment results show that the emoticon information
help to analyze sentiment better (see the result in Sect. 4). This indicates that emoticons
have great influence on the emotion of the whole text.

The remaining paper is structured as follows. Section 2 briefly discusses related
work about sentiment dataset and emoticon. Section 3 describes the process of creating
the corpus and gives the statistics of the corpus. Section 4 gives the experiment results
based on CESCM. Section 5 presents a conclusion.

2 Related Work

Movie reviews are popular resource for sentiment analysis research. For example,
Cornell Movie Review Data [2, 3] (MRD) is a commonly used sentiment analysis
corpus that includes three datasets: sentiment polarity datasets, sentiment scale datasets,
and subjectivity datasets. The Stanford Sentiment Treebank, referred as SST-1, is the
first corpus with fully labeled parse trees. Based on the SST-1, SST-2 is created simply
with neutral reviews removed from SST-1. And SST-2 is used for the binary classi-
fication task [4–6]. Stanford’s Large Movie Review Dataset (LMRD) is used for binary
sentiment classification and contains more substantial data compared with previous
benchmark datasets [8]. Reviews from IMDB and YELP have also been used for some
related research. And there is the Chinese Opinion Analysis Evaluation (COAE) [7],
which contains product, movie, and finance reviews. Another is Chinese Sentiment
Treebank [8, 9].

At present, some people have noticed the role of emoticon and carried out a series
of work about emoticon. Someone consider emoticons as noisy labels in their sentiment
classification models [10–12]. [13, 14] exploit emoticons in lexicon-based polarity
classification. As an important research direction, emoticons are attracting more and
more attention. So it is critical to building an corpus with emoticons to support sen-
timent analysis research.

Despite many corpora have been created for sentiment research, there still lacks
large enough corpus with emoticons. For improving sentiment analysis research, we
established a large scale Chinese Emoticon Sentiment Corpus of Movies (CESCM). In
the next part, we will describe the process of creating the corpus and gives the statistics
and analysis of the corpus.
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3 Corpus Construction

In this section, we introduce the process of creating CESCM. First of all, we collect a
lot of review data. Then, we build a common emoticon set and filter the movie review
data based on the set. Next, we clean the data to get rid of redundant movie review data.
Finally, we successfully constructed the corpus and analyzed it. We will describe the
four key steps in detail.

3.1 Data Collection

Quality and scale are two most important aspects of a corpus. We collect the review
data from famous Chinese movie review websites www.douban.com, which is the
largest and best movie review site in China. On this website, there are a lot of short
reviews about each movie. Each review is made up of one or several sentences. And
each review has a star label. The number of star ranges from 1 to 5. People express their
attitudes and preferences through movie reviews and star ratings. In addition to using
text, there are many emoticons used in the reviews, such as emoticon “: )” or “: (”. So
we use crawler technology to collect the reviews and the corresponding labels from the
website.

To study the usage of emoticon in text, we first constructed a common emoticon
set. This emoticon set includes 510 emoticons that cover most of the popular emoticons
on the web. We collected and collated these emoticons from the Internet by artificial
methods and there are various styles of emoticons. For instance, emoticons in Western
style have the eyes on the left, followed by nose and the mouth such as “:-)”, and
emoticons in Japanese style such as “(*_*)” (Also known as “Kaomojis”). In addition,
we also selected some of the emoticons from the Unicode character set such as “ ”.
Some examples of the emoticon set were shown in Table 1.

We build CESCM based on the emoticon set. After we collected a great deal of
movie reviews, we use these emoticons as necessary conditions to extract all reviews
containing emoticon. In the end, we obtained a large number of movie review original
resources with rich emoticon information.

3.2 Data Cleaning

The original data contains many false, dirty or unusable data. It can also be called
“noise data”. We utilize various strict rules for noise filtering to obtain high quality
corpus data. There are several major rules below.

(1) We remove the reviews without star label or content.
(2) We remove the reviews unrelated to the movie. Such as website link, advertising

and meaningless characters or gibberish.
(3) We limit reviews length from 3 to 50 words. Too long or too short will affect the

quality of the corpus. Figure 1 gives the statistic of the movie reviews length after
processing. We can see that the length of most reviews is between 5 and 20 words.

Note that we just list part of rules as example. There are more strict rules employed
at this step.
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3.3 Data Annotation

Table 2 shows some examples. To better understand the meaning, we translate the
review into English.

In the CESCM, each review is labeled as stars, and the star number ranges from 1 to
5. These labels are given by people who have seen the movie and represent their
evaluation of the movie. 1 means very negative; 2 means negative; 3 means neutral; 4
means positive; 5 means very positive.

Table 1. Review examples
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Fig. 1. The length distribution of reviews
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Besides fine-grained (five classes) analysis, this corpus can also be used for binary
analysis. For this purpose, we marked each review with a new label based on its star
label, just positive and negative. Reviews with 4 and 5 stars belong to positive, and
others belong to negative.

3.4 Statistics and Analysis

After the process above, we obtain 47,250 high quality movie review data finally, and
each movie review contains at least one emoticon. To our best knowledge, CESCM is
the first large scale Chinese sentiment corpus with emoticons. We do a comparison
with other popular sentiment analysis corpus, which are widely employed in sentiment
analysis. The statistical summary of these corpora is presented in Table 3.

Compared to others, CESCM is larger and contains abundant information of
emoticons. And each review contains at least one emoticon, and some reviews contain
multiple different emoticons.

In order to better understand CESCM, Table 4 gives the statistic of different
emoticons in each movie review. We can see that most reviews contain only one
emoticon. There are 3374 reviews contain two emoticons, but only a few number of
reviews contain 3 or more emoticons.

Table 2. Review examples
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Figure 2 gives the distribution of emoticons. There are in total 175 different
emoticons appear in CESCM. Figure 2 shows the proportion of top 15 emoticons and
other emoticons. We can see that the emoticon “= =” is used most. And we found that
people were more likely to use this kind of emoticons with rich meaning in real-world.

Figure 3 gives an example of the distribution of emoticon sense. We chose a typical
emoticon “: )” as illustration. From Fig. 3, we can see that “: )” is mostly employed as
positive token. It should be noted that different emoticons may have different distri-
bution of emoticon sense.

Table 3. The size of corpora

Corpora Total size

MR [2] 10,662
SST-1 [4] 11,855
SST-2 [4] 9,613
Sentiment-Li [8] 13,550
CESCM 47,250

Table 4. Statistic of the emoticon count in each review

#Emoticon/Review Reviews count

1 43683
2 3374
3 183
4 9
5 1

Fig. 2. Emoticons distribution in CESCM
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4 Experiment

In this section, we design experiment combination with our corpus. And we also
introduce some baseline results on our corpus for other researchers to compare, as well
as to understand the nature of the corpus. These approaches are widely used as
baselines in sentiment analysis work, We report the experiment result on two tasks:
fine-grained (5-class) and binary analysis (2-class).

4.1 Methods

Majority Method. It is a basic baseline method, which assigns the majority sentiment
label in training set to each instance in the test set.

Feature Based Method
NB. We train a Naive Bayes classifier with TFIDF as text feature.
SVM. We train a SVM classifier with TFIDF as text feature.

Neural Network Method
Fast-text. Fast-text is a simple model for sentence representation and classification [15].
CNN. This approach utilizes convolutional neural networks (CNN) for sentiment
classification just like work [16]. We employed max and kmax pooling respectively.
LSTM. LSTM based model is applied from the start to the end of a sentence. LSTM
uses the last hidden vector as the sentence representation [17, 18]. LSTM_2 used 2-
layer LSTM and Bi-LSTM represents bidirectional LSTM model.
Models with Emoticon Information. For baseline purpose, we just add the emoticon
information on reviews simply as input fed to the models mentioned above.

4.2 Result

Table 5 gives experiment results for fine grained (5-class) and binary (2-class) senti-
ment predictions. The metric is accurate rate of predicted sentiment label.

Our experiment was divided into two groups, one group uses emoticons and the
other does not.

very negative
negative
neutral
postive
very postive

Fig. 3. Emoticon “: )” usage distribution
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In both groups, majority performs worst, because it is just a simple statistic method
without any semantic analysis. NB and SVM perform similar as a representative of
machine learning methods. However, the performance of NB and SVM is poor com-
pared with the method based on neural network. In the method of neural network,
LSTM performs generally better than CNN and Fast-text.

From comparison between two groups, we can see that the methods in second
group outperforms the corresponding method in group one. For CNN-based models, it
usually increases by more than 1.4% in fine-grained and 0.4% in binary. For LSTM-
based models, it usually increases by more than 2.1% in fine-grained and 0.3% in
binary. This proves that emoticons play an important role in emotional analysis.

From the result, we can see that combination with the emoticon information boosts
the performance of some simple methods. This not only proves the importance of
emoticons, but also the potential of our corpus in both sentiment analysis research and
emoticon analysis.

5 Conclusion

In this paper, we introduce a high quality and large sentiment corpus of Chinese movie
reviews (CESCM). The corpus consists of 47,250 reviews with emoticon information.
By explaining the data creation process and providing the results of the baseline
algorithms, we hope to help researchers to better understand the nature of CESCM. We

Table 5. Experiment results of different approach

Information Method Fine-grained Binary

Without emoticons Majority 27.03% 50.88%
NB 35.68% 67.09%
SVM 34.98% 66.94%
Fast-text 39.47% 77.86%
CNN_max 40.99% 78.12%
CNN_kmax 40.79% 78.16%
LSTM 39.97% 78.62%
LSTM_2 40.10% 78.29%
Bi-LSTM 41.35% 78.31%

With emoticons Majority 27.03% 50.88%
NB 38.50% 70.20%
SVM 37.30% 71.30%
Fast-text 39.55% 79.09%
CNN_max 42.39% 78.64%
CNN_kmax 42.78% 78.62%
LSTM 42.47% 79.01%
LSTM_2 42.24% 80.04%
Bi-LSTM 43.60% 80.13%
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believe that the corpus described in this paper will offer great help to researchers for
future research on emoticons and sentiment analysis.
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Abstract. Affective analysis has received growing attention from both
research community and industry. However, previous works either can-
not express the complex and compound states of human’s feelings or rely
heavily on manual intervention. In this paper, by adopting Plutchik’s
wheel of emotions, we propose a lowcost construction method that
utilizes word embeddings and high-quality small seed-sets of affective
words to generate multi-dimensional affective vector automatically. And
a large-scale affective lexicon is constructed as a verification, which
could map each word to a vector in the affective space. Meanwhile, the
construction procedure uses little supervision or manual intervention,
and could learn affective knowledge from huge amount of raw corpus
automatically. Experimental results on affective classification task and
contextual polarity disambiguation task demonstrate that the proposed
affective lexicon outperforms other state-of-the-art affective lexicons.

Keywords: Affective analysis · Affective lexicon
Knowledge representation

1 Introduction

Affective analysis is a rapidly developing area of Natural Language Processing
that has received growing attention from both research community and industry
in recent years [18,21]. It helps companies to know what customers feel about
their products, and it helps a political party or government to know what the
voters feel about their actions and proposals. On the other hand, it helps cus-
tomers or voters to choose wisely and in an informed way by knowing what their
peers feel about a product or a political candidate. With this, affective analysis
and opinion mining are of great importance for aiding economy and democracy.

Affective resource plays an important role in the analysis. In fact, researchers
in related area can hardly progress much without a good pool of affective lex-
icon, although there really exist many available affective resource. Most of the
current affective lexicons, e.g., NTUSD [11], only tells whether the given word
is positive (+1) or negative (−1), and even some words are divided into the
two parts simultaneously. However, human’s affects are complex and compound
states of feelings that result in physical and psychological reactions influencing
both thought and behavior.
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 319–329, 2018.
https://doi.org/10.1007/978-3-319-99501-4_28
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Fig. 1. Comparison between one-dimensional vs. multi-dimensional representation

Although there are many advantages for building a multi-dimensional emo-
tional resource, traditional methods encountered many problems: (1) Substantial
human labors consumption. Constructing dictionaries is a labor-intensive task.
(2) High degree of subjective. The disagreement among annotators makes the
quality of annotation varies significantly.

Moreover, most of the current affective lexical resources could not overcome
the elusive nature of emotions and the ambiguity of natural language. E.g.,
traditional affective lexicon only tells “pity” and“envy” are both negative, and
regards their affective information as the same (Fig. 1). But it is far from real-
ity [16]. In Multi-Dimensional representation, Aptitude dimensionality of “envy”
is positive implying the affirmation of one’s abilities, while the same dimension-
ality of“pity” is inversely negative (Fig. 1). Only the fine-grained lexicon could
tell the difference.

To solve this problem, we propose a construction method that utilizes word
embeddings and high-quality small seed-sets of affective words to generate multi-
dimensional affective vector automatically. As a test and verification, we con-
struct a large-scale affective lexicon. Unlike existing affective lexicon, our lexicon
is a multi-dimensional vectorized lexical resource, which is based on the psycho-
logical model of affect and grounded in a continuous affective space (denoted as
φ senti).

Overall, the main contributions of this paper include: (i) By bridging the gap
between the semantic space(Ψ sema) and the affective space (Φ senti) following
Plutchik’s wheel of emotions, our lexicon gains vectorized description ability of
the fine-grained affective states. (ii) The construction of our lexicon uses little
supervision or manual intervention, and could learn affective knowledge from
huge amount of raw corpus automatically. (iii) Experimental results on several
representative affective analysis tasks demonstrate that the proposed lexicon is
efficient, and outperforms the best baseline affective lexicons.

2 Related Works

2.1 Psychological Models of Affect

For a long time before AI researchers’ concern, the study of affect has been
one of the most confused (and still open) chapters in the history of psychology.
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Fig. 2. Plutchik’s wheel of emotions

Psychologists have developed many different affective models. Over the recent
years, the adoption of psychological models of affect has become a common trend
among researchers and engineers working in the sphere of affective analysis [14].

The well-known wheel of emotions is an affective categorization model devel-
oped starting from Plutchik’s studies on human emotions [16]. The conceptual
scheme of the wheel of emotions is illustrated in Fig. 2. In this model, Plutchik
suggested eight basic bipolar emotions, whose different levels of activation make
up the total emotional states of the mind (shown as Fig. 1). Actually, Plutchik’s
wheel of emotions is based on the idea that the mind is made of different inde-
pendent dimensionalities and that emotional states result from setting these
dimensionalities on different values.

Apparently, this model is particularly useful to recognize, understand and
express affects in the context of HCI. Therefore, Plutchik’s wheel of emotions is
leveraged as the theoretic basis of our work.

2.2 Common Affective Lexical Resource

Generally, affective lexicon is important for HCI. [22] classified affective lexicons
into three basic types. (i) The ones only containing affective words, such as the
Never-Ending Language Learner (NELL) [5]. They can not able to tell whether
the texts have positive or negative affects; (ii) The ones containing both affective
words and affective polarities, such as National Taiwan University Sentiment
Dictionary (NTUSD) [11] and HowNet [6]. They lack the semantic relationship
among the words and cannot distinguish the extent of the affect expressed by
the words; (iii) The ones containing words and relevant affective polarity values
(i.e., affective polarity and degree), such as SentiWordNet [7], WordNet-Affect
[20] and SenticNet [3].

Based on the theory of wheel of emotions, SenticNet is proposed as the
state-of-the-art affective lexical resource for affective analysis [4]. However, their
deficiency is concluded as follows: (i) They have a complicated process of con-
struction. And it is difficult to expand to other languages; (ii) they did not
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fully utilize large-scale unlabelled data and can not unsupervisedly mine the
affects implied from statistics. The proposed construction procedure as our lex-
icon demonstrated tries to overcome the above-mentioned drawbacks.

3 The Proposed Affective Lexical Resource

In this section, we present the construction method of the proposed Affective
lexicon. The method is comprised of three base modules: (1) Distributional word
representation learning for all words in the lexicon; (2) Affective seed-set con-
struction of each basic affect defined in Plutchik’s wheel of emotions; (3) Con-
struction of vectorized affective representations. We mainly introduce the second
step and the third step here.

3.1 Constructing the Affective Seed-Set

The affective seed-set plays an important role in the proposed lexicon to align
the semantic space and the affective space. To achieve the complete description
of the given basic affect, the seed-set should have full coverage of basic emotional
state of the mind, and avoid incorporating the domain-specific affective words.

In Plutchik’s model, affects are reorganized around 4 independent dimen-
sionalities. We follow [2] to reinterpret the 4 dimensionalities as Pleasantness,
Attention, Sensitivity and Aptitude. The set of these four dimensionalities is
denoted as D = { Plsn, Attn, Snst, Aptt}. Each dimensionality has 6 basic
affects which determine the intensity of the perceived emotion. Afterwards, we
aims at generating affective seed-set for each basic affect in Table 1.

Table 1. Basic affects in different affective dimensionalities used in the proposed
lexicon.

Affective Dim Pleasantness(Plsn) Attention(Attn) Sensitivity(Snst) Aptitude(Aptt)

Basic Affect Ecstasy(+1) Vigilance(+1) Rage(+1) Admiration(+1)

Joy(+0.6) Anticipation(+0.6) Anger(+0.6) Trust(+0.6)

Serenity(+0.2) Interest(+0.2) Annoyance(+0.2) Acceptance(+0.2)

Pensiveness(−0.2) Distraction(−0.2) Apprehension(−0.2) Boredom(−0.2)

Sadness(−0.6) Surprise(−0.6) Fear(−0.6) Disgust(−0.6)

Grief(−1) Amazement(−1) Terror(−1) Loathing(−1)

We mainly utilize the following dictionaries to expand these basic affect by
synonym expansion respectively, and construct our affective seed-sets, which will
be used to generate the affective lexicon.

Youdao Dictionary1: As the first translation software based on search engine
technology, it consists of a huge number of buzzwords in the Internet by its novel
web interpretation function.
1 http://www.youdao.com/.

http://www.youdao.com/
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Webster’s International Dictionary2: As the synthesizer of the structural lin-
guistics in U.S., it consists of More than 450 thousand words, and is reported as
the largest single volume English dictionary in the word.

Thesaurus Synonym Dictionary3: It provides huge amount of the synonym
relationships among words.

WordNet4 : It assigns each synset with a positive score, a negative score and
an objective score. The positive/negative score represents the extent to which
the word expresses a positive/negative emotion.

With these dictionaries, affective seed-set is constructed as follows: given
basic affect w, (i) obtain the synonyms of w, and then obtain the synonyms of
the obtained synonyms; (ii) filter all of the synonyms manually by discarding the
words whose affect orientation is wrong. Finally, we totally obtain 24 seed-sets
for 24 basic affective words, and each seed-set consists of about 100 affective
words. For example, “good spirits”,“rapture”, “be on cloud nine”,“passion” ,
“well-being”,“melody” , “happiness” etc., belong to the seed-set of the basic
affect Ecstasy.

3.2 Constructing the Lexicon

Based on the word embeddings for all the words in the vocabulary and the affec-
tive seed-sets constructed above, we aims at generating 4-dimensional affective
vector for each word w in the vocabulary, as follows:

vector(w) = (Plsn(w), Attn(w), Snst(w), Aptt(w)) (1)

Take Pleasantness dimensionality as an example, we describe how to gen-
erate affective value of word w in this dimensionality, as follows:

Step 1. As discussed above, we have constructed 6 affective seed-sets for
Pleasantness dimensionality, namely Ecstasy, Joy, Serenity, Pensiveness,
Sadness and Grief . The vector of word w in a basic affect is calculated according
to its most similar N words. Cosine distance is utilized to measure the similarity.

Step 2. The minimum cosine distance between the given word w and the aver-
age distance of the N words means the maximum correlation, which is denoted
as maxCorrelation here, and the affective strength value of the corresponding
basic affect is denoted as x (x ∈ −1,−0.6,−0.2, 0.2, 0.6, 1] as shown in Table 1).

Step 3. For word w, the affective value in Pleasantness dimensionality could
be formulated as:

Plsn(w) = x ∗ sigmoid(α ∗ (maxCorrelation − φ)) (2)

wherein, φ denotes the threshold determining whether the given word w is
close to this affective dimensionality. If maxCorrelation < φ, we think that
the given word w does not belong to this affective dimensionality. In this case,

2 http://www.merriam-webster.com/dictionary.
3 http://www.thesaurus.com.
4 http://wordnet.princeton.edu/wordnet/.

http://www.merriam-webster.com/dictionary
http://www.thesaurus.com
http://wordnet.princeton.edu/wordnet/
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sigmoid( α ∗(maxCorrelation− φ)) returns 0, and we believe the given word
w has no obvious affective orientation in Pleasantness dimensionality. Whereas,
if maxCorrelation > φ, we think that the given word w could be clustered
into this basic affect. In our study, the value of φ is set of 0.29, which is the
average distance among all word vectors in semantic space. Another parameter
α decides whether assign the word w with this affective dimensionality, when
maxCorrelation is close to the average distance φ. The larger value of α is, the
bigger the slope of Plsn(w) becomes.

So far, the proposed affect lexicon has been generated completely. It totally
consists of 62,101 affective vectors.

4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of the pro-
posed affective lexicon, by applying it in sentence-level and word-level affective
analysis. Moreover, we carry out affective vector analysis on the affective space
Φ senti established by the lexicon to investigate whether it could adequately
reflect affect diversity but not semantic difference.

4.1 Experiments Setup

Comparative Affective Lexical Resources. We compare the proposed lex-
icon with other widely-used affective lexical resources, including SenticNet and
SentiWordNet. SenticNet [3] is a widely used affective lexical resource for opin-
ion mining based on the hourglass model, which is derived from Plutchik’s wheel
of emotions. Similar with our lexicon, it describes each word with 4 indepen-
dent dimensionalities. SentiWordNet [1] was developed based on WordNet [8]. It
assigns different affective values to each of the synonyms under different parts-
of-speech (POS). The statistics of all the alternative affective lexical resources
are illustrated in Table 2.

Parameter Settings. In our experiments, the word embeddings are trained
using CBOW model. The context window size is set to 8, the number of negative
samples is set to 5, and the dimension of vectors is 300. We trained the word
embeddings using the Wikipedia corpus with the size of 13.3 GB.

Table 2. The statistics of comparative affective lexical resources.

Lexicon Format Quantity

SenticNet word,Pleasantness,Attention, Sensitivity,Aptitude 30,000

SentiWordNet POS,ID,PosScore,NegScore, SynsetTerms,Gloss 117,659

Our lexicon word,Pleasantness,Attention, Sensitivity,Aptitude 62,101



Construction of a Multi-dimensional Vectorized Affective Lexicon 325

Fig. 3. The comparison of results with different values of parameter α on affective
classification task

The size of selected seed words in each affective seed set (i.e. N) is set to 5.
We tune the parameter α (in Eq. (2)), and study its influence on the performance
of the lexicon in affective classification task on dataset Comments BBC. As
shown in Fig. 3, the parameter α is set as 20 to get the best experimental per-
formance.

4.2 Sentence-Level: Affective Classification

We use the affective classification task [15] to evaluate the effectiveness of the
pro-posed lexicon.

Datasets. Three datasets are utilized for experiments. The statistics are illus-
trated in Table 3.

Comments BBC is collected from BBC News Reviews. Tweets STF is a
manual labeled tweet dataset from specific domains. IMDB provides a highly
polar movie reviews sets.

Since the first two datasets only provide testing data, we apply the training
set of the IMDB as their training set, and 5,000 of IMDB’s testing set as
their development set. For the last datasets, we use 33% of the data as the
development set. Besides, the neutral sentences are removed for all datasets.

Table 3. Datasets for affective classification task.

Datasets #Positive #Negative #Total

Comments BBC [23] 99 653 752

Tweets STF [9] 182 177 359

IMDB [12] 25,000 25,000 50,000

Settings. We evaluate the effectiveness of the above lexicons by employing
them as the lexical features. Following [19], we run a GRU network for affec-
tive classification. On the input layer in the GRU network, each word will be
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represented as a 4-dimensional vector. A GRU layer with a dropout (0.5) is
followed by a dense layer with the sigmoid as the activation function. We use
the Adam algorithm [10] to optimize the parameters. All the models are trained
over 50 epochs with a batch size of 64. Additionally, we add four syntactic fea-
tures (i.e., noun, verb, adjective and adverb) to connect with the lexical features.
Macro-F1 is used here as the evaluation metric.

Table 4. The results of affective classification task.

F1 Comments BBC Tweets STF IMDB

SenticNet [17] 0.568 0.702 /

SentiWordNet 0.593 0.682 0.677

SenticNet 0.575 0.639 0.683

Our lexicon 0.637 0.707 0.706

Results. The results are given in Table 4. Since SenticNet is a closed paid soft-
ware, we can’t reproduce the original method proposed in [17]. Hence we refer the
experimental results about SenticNet reported in [17]. We can observe that the
proposed lexicon outperforms other lexicons: (i) on dataset Comments BBC,
it exceeds SenticNet by 6.9%, and exceeds the best baseline lexicon SentiWord-
Net by 4.4%; (ii) on dataset Tweets STF, it exceeds SenticNet by 0.5%, and
exceeds SentiWordNet by 2.5%; (iii) on dataset IMDB, it exceeds the best base-
line lexicon SenticNet by 2.3%. We contribute the enhancement to the modeling
ability of the lexicon, which could capture more expressive and discriminative
affective information.

It is noted that IMDB is not utilized in Ribeiro’s work and their work could
not be reproduced. Thus the results of their method on IMDB is not presented
in Table 4.

4.3 Word-Level: Contextual Polarity Disambiguation

We conduct the Contextual Polarity Disambiguation task on all lexicons, which
is a perennial task in SemEval5. The task aims to determine whether a given
word is positive or negative in its context (Table 5).

Table 5. Datasets for contextual polarity disambiguation task.

Dataset #Positive #Negative #Total

SemEval2015-Task10-A 5,316 2,839 8,155

5 http://alt.qcri.org/semeval2015/task10/.

http://alt.qcri.org/semeval2015/task10/
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Datasets. The official dataset of contextual polarity disambiguation task in
SemEval2015 utilized. We also use 33% of the training data as the develop-
ment set.

Settings. We follow [13] to extract features from the target word as well as
from the context. Different from [13], we only use the lexical features to focus
on lexicon evaluation and use GRU to implement the experiment similar as
Sect. 4.2. All settings are in accordance with the experiments in Sect. 4.2, except
the input form of target word and its context.

Results. Table 6 show the experimental results of contextual polarity disam-
biguation task.

Table 6. The results of contextual polarity disambiguation task in SemEval2015-
Task10-A.

Macro-F1 SemEval2015-Task10-A

SentiWordNet 0.627

SenticNet 0.664

Our lexicon 0.696

From these tables, we could conclude that our lexicon exceeds the best
baseline lexicon SenticNet by 3.2%, and exceeds SentiWordNet by 6.9% on
SemEval2015. We conclude that our proposed multi-dimensional vectors could
express potential affective states of the given word, covering all the possible affect
which this word may imply, and hence does not have to change with context. It
suggests the high description ability of the lexicon might alleviate the problem
of word’s ambiguous affective representation forms.

4.4 Affective Space (Φ senti) Analysis

As discussed above, during the construction of the proposed lexicon, an affective
space (Φ senti) is generated. We would like to evaluate the words closed to each
other in Φ senti whether share the similar affective orientation and sense or not.
We select four words as target words. To find their nearest words in Φ senti, the
cosine similarity is applied here.

From Table 7, it could be found that, given the target word, its closest words
reveal the similar affective information. It demonstrates the word distribution in
the affective space meets our common sense.

We also compare the affective space (Φ senti) with the semantic space (Ψ
sema). Taking the word happy as an example: in semantic space (Ψ sema) the
closest words with happy are sad, pleased, glad, delighted, and unhappy. These
words share similar context but inconsistent affect. It verifies that the proposed
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Table 7. The results of word sentiment similarity in affective space Φ senti

Target word Words with minimum distance in Φ senti

Adjective Happy glad, okay, excited, honestly, assured. . .

Upset dismayed, irritated, unnerved, unhappy, embarrassed. . .

Noun Bliss ageless, enchanted, lively, radiant, beauteous. . .

Disaster epidemic, famine, repressed, anarchy, oppressive. . .

lexicon has fulfilled our hypothesis in mapping the semantic space (Ψ sema) to
a new affective space (Φ senti).

5 Conclusion and Future Works

This paper presented a novel method to construct the affective lexicon by bridg-
ing the gap between the semantic space (Ψ sema) and the affective space (Φ
senti) following Plutchik’s wheel of emotions. We constructed a affective lexicon
which provide vectorized description ability of the fine-grained and compound
affective states. It can be observed by experimental results that our lexicon out-
performs other lexicons on affective classification task and contextual polarity
disambiguation task.

The future research will focus on specific domain oriented affect transfer
representing and constructing.
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17. Ribeiro, F.N., Araújo, M., Gonçalves, P., Gonçalves, M.A., Benevenuto, F.:
SentiBench-a benchmark comparison of state-of-the-practice sentiment analysis
methods. EPJ Data Sci. 5(1), 1–29 (2016)

18. Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. TKDE
28(3), 813–830 (2016)

19. Stojanovski, D., Strezoski, G., Madjarov, G., Dimitrovski, I.: Finki at SemEval-
2016 task 4: deep learning architecture for Ttwitter sentiment analysis. In: SemEval
2016, pp. 149–154 (2016)

20. Strapparava, C., Valitutti, A., et al.: WordNet affect: an affective extension of
WordNet. In: LREC, vol. 4, pp. 1083–1086 (2004)

21. Talavera, E., Radeva, P., Petkov, N.: Towards Egocentric Sentiment Analysis. In:
Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2017.
LNCS, vol. 10672, pp. 297–305. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74727-9 35

22. Tang, D., Wei, F., Qin, B., Yang, N., Liu, T., Zhou, M.: Sentiment embeddings
with applications to sentiment analysis. TKDE 28(2), 496–509 (2016)

23. Thelwall, M.: Heart and soul: sentiment strength detection in the social web with
sentistrength. In:Cyberemotions: Collective emotions in cyberspace (2013)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-74727-9_35
https://doi.org/10.1007/978-3-319-74727-9_35


Convolution Neural Network with Active
Learning for Information Extraction

of Enterprise Announcements

Lei Fu1,2, Zhaoxia Yin1, Yi Liu2, and Jun Zhang3(&)

1 Key Laboratory of Intelligent Computing and Signal Processing,
Ministry of Education, Anhui University,
Hefei 230601, People’s Republic of China
2 PKU Shenzhen Institute, Shenzhen, China

3 Shenzhen Securities Information, Co., Ltd., Shenzhen, China
zhangjun@cninfo.com.cn

Abstract. We propose using convolution neural network (CNN) with active
learning for information extraction of enterprise announcements. The training
process of supervised deep learning model usually requires a large amount of
training data with high-quality reference samples. Human production of such
samples is tedious, and since inter-labeler agreement is low, very unreliable.
Active learning helps assuage this problem by automatically selecting a small
amount of unlabeled samples for humans to hand correct. Active learning
chooses a selective set of samples to be labeled. Then the CNN is trained on the
labeled data iteratively, until the expected experimental effect is achieved. We
propose three sample selection methods based on certainty criterion. We also
establish an enterprise announcements dataset for experiments, which contains
10410 samples totally. Our experiment results show that the amount of labeled
data needed for a given extraction accuracy can be reduced by more than
45.79% compared to that without active learning.

Keywords: Text classification � Active learning
Convolutional neural networks � Enterprise announcements

1 Introduction

At present, information extraction has become an important branch of the NLP field.
The task of information extraction is to obtain target information accurately and
quickly from a large amount of data and improve the utilization of information. The
information extractions of enterprise announcements help the users identify concerns
quickly. Therefore, this paper addresses information extraction task for enterprise
announcements which is a type of document that publicly informs the society of
important issues and extracts the information about investment and other specifically.
We extract the key information through text classification. There are many methods for
text classification. Currently, the mainstream method implements text classification
through deep learning.
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There is no doubt that deep learning has ushered in amazing technological advances
on natural language processing(NLP) researches, applied to various tasks such as text
classification [1], machine translation [2], document summarization [3]. But in the deep
learning environment, there is a bottleneck that is manual collection of sample labels is
expensive and time-consuming. Convolutional neural networks (CNN) [4] is common
model in deep learning and many natural language processing tasks and has great
classification performance. In order to obtain great classification performance, a large
amount of manually-labeled data is needed. Therefore, the low efficient manual
labeling work has become a problem that restricts the development of text classification
tasks. Active learning [5, 6] is motivated for solving the problem. Active learning is an
iterative process of selecting useful samples as training data. And the size of the
training data set should be as small as possible while maintaining classification per-
formance. Therefore, the kernel of active learning is to choose a useful sample set. This
paper proposes an active learning method to improve the effect of deep learning for text
classification task.

Based on the deep learning architecture, this paper proposes a novel active learning
algorithm, which is to judge the useful data according to the category probability
strategy. It solves the problem that the applying deep learning to text classification
require a lot of manual data annotation.

In this paper, Sect. 2 describes the related work of this study. Section 3 gives a
description of the principles of CNN and active learning methods. Section 4 introduces
the experimental results and analysis. Section 5 concludes the paper and outlines the
future work.

2 Related Work

At present, there are a lot of research about active learning. Most of the early work can
be found in the classical survey of Settles [7]. It covers acquisition functions such as
information theoretical methods [8]. And Bayesian active learning method typically
uses a non-parametric model like Gaussian process to estimate the expected
improvement by each query [9] or the expected error after a set of queries [10]. [9]
presented a discriminative probabilistic framework based on Gaussian Process priors
and the Pyramid Match Kernel and introduced an active learning method for visual
category recognition based on the uncertainty estimates provided by the GP-PMK. [10]
presents an active learning method that directly optimizes expected future error. A re-
cent approach by Gal & Ghahramani [11] shows an equivalence between dropout and
approximate Bayesian inference enabling the application of Bayesian methods to deep
learning. The Support Vector Machines [12] of active learning method presented two
novel multi-label active learning strategies, a max-margin prediction uncertainty
strategy and a label cardinality inconsistency strategy, and then integrate them into an
adaptive framework of multi-label active learning. The Query by committee [13] active
learning method is to train a committee of learners and query the labels of input points
where the committee’s predictions differ, thus minimizing the variance of the learner by
training on input points where variance is largest. The Expectation-Maximization
(EM) [14] with active learning (uses a modified QBC) for text classification modify the
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Query-by-Committee (QBC) method of active learning to use the unlabeled pool for
explicitly estimating document density when selecting examples for labeling. Then
active learning is combined with Expectation-Maximization in order to “fill in” the
class labels of those documents that remain unlabeled.

In our research work, the active learning is mainly applied to the image [15] and
rarely applied to the text for the deep learning method. Proposed in this paper, the
certainty criterion applies active learning to text classification tasks in deep learn fields.

3 Proposed Method

Figure 1 shows the framework diagram of CNN based on active learning. This section
mainly introduces the classification method of CNN and the principle of active learning
method. Convolution neural network can reduce the parameter quantity through the
local connection and weight sharing to greatly reduce training complexity and over-
fitting. Meanwhile weight sharing also gives the convolutional network tolerance for
translation. Active learning methods can effectively reduce the number of training
samples, therefore significantly reducing training time and manual tagging workload.

3.1 Convolutional Neural Network

CNN is a deep neural network and has made a major breakthrough in computer vision
and speech recognition, and mainly contains the convolution layer and the pool layer.
By convolutional operations at different scales are implemented on long text, more
comprehensive features can be extracted.

Candidate set U Train set T

Unlabeled set
(U-T)

CNN Model

Labeling 
people

Randomly select 
samples and label Model training

Prediction

Sample selection

Manual annotation Active Learning

Fig. 1. CNN based on active learning
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Figure 2 shows the framework of the CNN. xi indicates the k-dimensional word
embedding of the i-th word of a text. A text x1:n which is length n is represented as:

x1:n ¼ x1 � x2 � � � � � xn ð1Þ

� indicates a concatenation operation. In general, let xi:iþ j indicate xi; xiþ 1; � � � ;
xiþ j. A filter is a window of size h words and produces a new feature by a convolution
operation, a convolution operation corresponding to a filter w 2 Rhk. For example,
feature ci is generated from a window size h words wi:iþ k�1 by:

ci ¼ f w � xi:iþ k�1 þ bð Þ ð2Þ

Here, b denotes the bias term, f denotes a nonlinear function such as rectifier or
tanh. Applying a filter to each window fx1:h; x2:hþ 1; � � � ; xn�hþ 1:ng in the text to
generate a set of feature maps:

c ¼ c1; c2; � � � ; cn�kþ 1½ � ð3Þ

c 2 Rn�hþ 1. Then the largest feature map of the group of feature maps c is selected
to represent the group of features by the maximum pooling operation.

A filter extracts a feature. Therefore, multiple features are extracted by multiple
filters (windows of different sizes). These features are connected in the full connection
layer to get the text feature vector and sent it to Softmax layer to get its corresponding
category. The model uses a cross-entropy function as a loss function, which measures
the probability error of each independent classification task.

3.2 Active Learning

At present, the supervised algorithms require a lot of labeled training data, and the
result of the experiment is affected the quality of the data in deep learning. This paper
introduces active learning into the CNN to classify long text. In essence, active learning

x1

x2

x3

Xn-1

xn

Xn-2

.  .  .  .  .  .

Word embedding Convolution layer Pooling layer Fully connected layer

Fig. 2. CNN model diagram
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is an iterative training process of selecting a useful sample from unlabeled sample data
and obtaining its label.

The three sample selection methods based on certainty criterion proposed in this
paper chooses the next sample to be annotated from the unmarked sample U based on
certainty criterion, which has three kinds of sample selection methods.

The First Method: Selecting the sample with probability range of [1/C − a, 1/C + b].
The probability of the sample belongs to this range is the uncertainty sample. And if the
sample is wrongly predicted, it has a large impact on the classifier and meets the
selection requirements.

The Second Method: Selecting the sample with probability range of ([0, c] [ [d,1]).
The probability of the sample belongs to this range is the certainty sample. And if the
sample is wrongly predicted, it has a large impact on the classifier and meets the
selection requirements.

The Third Method: this method is to select / of the first method and (1-/) of the
second method, where / is obtained based on engineering experience.

The total number of categories is C, and the constants of a, b, c, and d are based on
engineering experience. Using these three probabilistic selection methods, each sample
selected is a useful sample data, so it also has the greatest influence on the classifier.
The influence of the remaining samples on the classifier is gradually weakened.

The specific steps of active learning based on certainty criterion are as follows:

Probability Selection Strategy
Input: Uncategorized the candidate sample set U.
Output: Classifier fc. 
Begin:
Step 1. Selecting i samples from the candidate sample set U and correctly 

labelling their categories to construct the initial training set T; 
Step 2. Using the training set T to train the classifier fc; 
Step 3. Using the classifier fc to classify the sample (U-T) remaining in the 

candidate set, and selecting the sample that meets the requirements 
(Within a specified range of probabilities and label errors predicted) 
for annotation;

Step 4. Using labeled data and training set T to train a new classifier fc; 
Step 5. If the accuracy reaches β, the algorithm terminates and returns fc; 

Otherwise returns to step 2);
End.

For active learning, the classifier doesn’t passively accept the data provided by the
user, but instead actively asks the user to label the sample that is selected by the current
classifier. Through continuous selection of indistinct samples to iteratively train obtain
a satisfactory classifier. Theoretically, active learning can significantly reduce the
number of required samples compared to random selection with similar experimental
results [16].
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4 Experiment

For verifying the validity of our method, we conduct a series of experiments on our
self-built enterprise announcements dataset. Note that we apply the CNN as the basic
deep learning classification method.

4.1 Data Set

We crawl the enterprise announcements as our dataset on the Internet. And each
enterprise announcement is segmented to form the corresponding text segment
according to the title. The detail is listed in Table 1. In order to the convenience of
experiment, the text segments are annotated manually in advance. In other words, the
categories of the text segments are divided into Investment and Other labels. The
corresponding meaning of the labels is listed in Table 2.

4.2 Experimental Setting

The dimension of the CNN model is Dim = 64, the number of convolution kernel is 3,
and the convolution kernel size are 2, 3 and 4. According to the observation of all
enterprise announcements, their length is about 400 words. Therefore, all enterprise
announcements are fixed to 400 words. If the length of sample is greater than 400

Table 1. Data set

Date set Total (number) Investment (number) Other (number)

Train 8554 2669 5885
Valid 916 101 815
Test 940 120 820

Table 2. Corresponding meaning of the labels

Label Corresponding meaning

Investment The content of the text block is related to investment
Other Other represents text blocks that have nothing to do with investment

Table 3. Method and probability values

Probability one Probability two Probability third

The first
method

(0.1,0.9) (0.125,0.875) (0.15,0.85)

The second
method

[0,0.1] [ [0.9,1] [0,0.1] [
[0.95,1]

[0,0.05] [ [0.9,1]

The third
method

(0.125,0.875) [ ([0,0.1] [
[0.95,1])

(0.125,0.875) [
([0.0.05] [
[0.9,1])

(0.15,0.85) [ ([0,0.1] [
[0.95,1])
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words, we select the foregoing 400 words. Otherwise, tag <pad> is added for com-
plementation until achieving 400 words. Besides, for our dataset, this paper proposes
three group values for each method in Table 3.

Through our empirical study, the parameters are set the appropriate value. The a of
the third method is 0.5. When the learning rate of lr is set 0.01, the effect of model is
best. Furthermore, the F1-measure don’t increase significantly after 30 consecutive
epochs and the model stopped updating iterations. In this experiment, Word2vec of
Google Company is used to pre-train the unlabeled 700 MB Chinese Sogou corpus into
a word embedding table of Dim = 64. Therefore, the trained words embedding can
represent the words accurately.

4.3 Evaluation Index

General text classification evaluation criteria use accuracy (P), recall (R) and F1-
measure (F) as an indicator. Accuracy rate is the correct rate of information related to
the need to pay attention; recall rate is the proportion of information retrieved; the F1-
measure can be thought of as a weighted average of model accuracy and recall, with a
maximum of 1 and a minimum of 0. F1-measure is calculated as follows:

F1¼ 2TP
2TPþFN þFP

ð4Þ

In this experiment, TP indicates that the predicted sample label of model is
Investment, and the actual label is Investment; FP indicates that the predicted sample
label of model is Investment, and the actual label is other; FN indicates that the
predicted sample label of model is other, and the actual label is Investment; TN
indicates that the predicted sample label of model is other, and the actual label is other.
In this paper, the F1-measure of experimental result is represented.

4.4 Experimental Results and Analysis

In the Tables 4, 5 and 6, the first row is the probability value and the first column is the
number of iterations, the middle content is the F1 value (a used percentage of all data).
x indicates the prediction probability of sample.

Table 4. Experimental results of first method

0.1 < x < 0.9 0.125 < x < 0.875 0.15 < x < 0.85

Step 1 0.79 (42.66) 0.79 (42.66) 0.79 (42.66)
Step 2 0.77 (46.20) 0.78 (45.24) 0.78 (45.28)
Step 3 0.79 (51.43) 0.80 (47.99) 0.80 (50.15)
Step 4 0.80 (53.59) 0.82 (50.22) 0.81 (56.09)
Step 5 0.81 (56.04) 0.81 (52.26) 0.84 (58.02)
Step 6 0.83 (58.23) 0.83 (54.58) 0.85 (59.40)
Step 7 0.85 (58.67) 0.85 (55.62) 0.84 (60.97)
Step 8 0.84 (60.10) 0.85 (57.21) 0.84 (62.68)
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When using all of the training data, the F1 value of results 0.85, which is compared
with our methods as the baseline method. Tables 4, 5 and 6 are the experimental results
of our three methods.

Table 4 shows the experimental results of our first method by using three different
sets of probability range values. From Table 4, we can find that only 55.62% of the
sample data can arrive the expected experimental result 0.85, when the selection
probability range is (0.125, 0.875). The effect of this experiment is the best for the first
method.

Table 5 shows the experimental results of our second method. And we also apply
three different sets of probability range values. From Table 5, we can see that only
55.70% of the sample data can arrive the expected experimental result 0.85, when the
selection probability range is [0, 0.1] [ [0.95, 1]. The effect of this experiment is the
best for the second method.

Table 6 is the experimental results of our third method, which select 50% of the
first method and 50% of the second method. From Table 6, it can be observed that only
54.21% of the sample data can arrive the expected experimental result 0.85, when the
selection probability range is ([0, 0.05] [ [0.9, 1]) [ (0.125, 0.875)). The effect of this
experiment is the best result of third method and also the best result of these three
methods. The result of experiment shows that our active learning approach requires
45.49% less training data. When F1 reaches a certain value, F1 tends to a stable state.
In the meantime, there are few samples taken through the category probability strategy
each time. Furthermore, those experiment results indicate we can achieve the expected
experimental results without using all the data. As these useful samples, selected for
each time, have a large impact on the classifier, we can use a small amount of data to
achieve the same effect as a large amount of data.

Table 5. Experimental results of second method

x <= 0.1 or x >= 0.95 x <= 0.05 or x >= 0.9 X <= 0.1 or x >= 0.9

Step 1 0.79 (42.66) 0.79 (42.66) 0.79 (42.66)
Step 2 0.78 (45.92) 0.77 (45.45) 0.77 (46.08)
Step 3 0.83 (47.99) 0.82 (48.01) 0.81 (48.19)
Step 4 0.85 (55.70) 0.85 (56.18) 0.85 (55.94)

Table 6. Experimental results of third method

(x <= 0.1 or x >= 0.95)
or 0.125 < x < 0.875

(x <= 0.05 or x >= 0.9)
or 0.125 < x < 0.875

(x <= 0.1 or x >= 0.95)
or 0.1 < x < 0.9

Step 1 0.79 (42.66) 0.79 (42.66) 0.79 (42.66)
Step 2 0.79 (44.54) 0.77 (44.41) 0.78 (45.56)
Step 3 0.80 (48.23) 0.80 (49.32) 0.81 (51.46)
Step 4 0.82 (50.41) 0.81 (51.18) 0.83 (58.23)
Step 5 0.83 (52.84) 0.83 (52.91) 0.84 (59.11)
Step 6 0.84 (54.72) 0.85 (54.21) 0.85 (59.82)
Step 7 0.85 (55.41) 0.83 (56.14) 0.84 (60.02)
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5 Conclusion

In this paper, we propose a certainty criterion under the framework of deep learning to
solve the problem of requiring a lot of manual data annotation. The certainty criterion
has three selection method based on certainty criterion of classification. Through these
three selection methods, the convolutional neural network is trained on the selected
data iteratively, so that the model can achieve the expected results. In the experiment, it
can be found that 45.49% of the manually labeled work can be saved in the best result.
In our further work, we will investigate more text classification algorithms combined
with our proposed method and apply our proposed method to other areas.
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Abstract. The correct definition and recognition of sentences is the basis of
NLP. For the characteristics of Chinese text structure, the theory of NT clause
was proposed from the perspective of micro topics. Based on this theory, this
paper proposes a novel method for construction NT clause. Firstly, this paper
proposes a neural network model based on Attention and LSTM (Attention-
LSTM), which can identify the location of the missing Naming, and uses
manually annotated corpus to train the Attention-LSTM. Secondly, in the pro-
cess of constructing NT clause, the trained Attention-LSTM is used to identify
the location of the missing Naming. Then the NT clause can be constructed. The
accuracy of the experimental result is 81.74% (+4.5%). This paper can provide
support for the task of text understanding, such as Machine Translation,
Information Extraction, Man-machine Dialogue.

Keywords: NT clause � Attention-LSTM � Text understanding

1 Introduction

In Natural Language Processing (NLP), many tasks centers on text analysis, such as
Machine Translation, Information Extraction and so on. The basic unit of a text is
sentence, so the correct definition and cognition of sentence is very important for NLP.

How to define a sentence? Bloomfield proposed “Any sentence is an independent
form of language, and should not be included in any larger form of language by any
grammatical structure. The sentence can be divided by this fact.” [1]. He emphasized
the independence of sentences and the maximum of inclusion. For Indo-European
languages, the basic pattern of sentences can be summed up as “subject-predicate” by
virtue of whose linguistic characteristics [2]. Relatively speaking, there is no formal
rule defining a Chinese sentence yet. Despite the odds, scholars have been trying to
study Chinese sentences.

Zhu [3] defined sentence in such a way: “There is a pause before and after the
sentence, and intonation represented the relative complete meaning of the language
form”. In the process of sentence cognition, pause and intonation are partially verifi-
able, but “relatively complete meaning” lacks operational standards. When Xing [4]
annotated complex sentences, the principle was that full stop, sign and question mark
separated sentences. However, the use of these punctuations in real texts is often
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arbitrary and lacks the constraints of linguistic norms. And, such sentence is incomplete
in structure and meaning.

Cao [5] proposed the concept of Topic Chain, and defined that a topic can be shared
by more than one sub-clauses. He regarded topics and subjects as two coexisting
elements in a text. So the concept of his topic is narrower, and the topic chain structure
can’t cover the full text of Chinese texts.

Song [6], from the microscopic topic level, put forward the concept of Naming and
Telling, defined the concept of Naming Structure, and formed NT clause theory. The
theory of NT clause reveals the organization form of Chinese text in micro topic level,
and proved its high coverage and operability in a number of corpus.

Based on the theory of NT clause, this paper uses an attention-LSTM model to
identify Naming of punctuation sentences to construct NT clause in the text, which
provides support for further text understanding.

2 NT Clause Theory

2.1 Basic Concepts

Punctuation Sentence (PS): It is a string of words, which is separated by commas,
semicolons, periods, exclamation marks and question marks from text.

Example 1 Zhongshu Gao Fortress Besieged)

(Songnian Gao works hard, who is the chief of the dean of teaching, and is so
shrewd that he still opens his eyes, wears glasses and can’t be vague when
sleeping.)

According to the definition of PS, there are 6 PSs in Example 1. Although PSs are not
necessarily independent in structure and meaning, it has pause and intonation, which is
the basic element of the sentence. The structure of the sequence of PS is constrained by
grammar, so PS has a certain grammatical meaning. PS can be applied to the full text
without ambiguity, so it is suitable for machine processing. All in all, PC is the basic
unit of NT clause.

Naming-Telling: In the context of a text, if one component in PS is mentioned by
other PS, the former is called the latter’s Naming, and the latter is the former’s Telling.
Each Naming governs one or more PS as its Telling. The structure of this Naming-
Telling relation is called the Naming Structure (NS). Using newline-indent schema to
represent the header, each PS occupies one line, and indents to the right, and shrinks to
the right side of the upstream Naming. Example 1 can be represented as Fig. 1.
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NT Clause: In many PSs, the Naming is missing and the propositional elements are
incomplete. After a PS has been supplemented to the component that appears in context
and should be used as a Naming of this PS, it is called as Naming Sufficient Clause
(NSC). NSC consists of Naming and Telling, therefore it is also called NT clause. If a
PS’s head is not missing, it is called a Naming Structure Independent Sentence (NSIS),
also referred to as an Independent Sentence (IS). In Example 1, ① is a IS. The NT
clause of all PSs in Example 1 is shown as Fig. 2.

2.2 Construction NT Clause

In the case of human understanding, they can recognize the missing words of each PS
in turn, that is to say, they can obtain NT clauses from PSs. This process relies on the
semantic relationship between words and PSs, and it is also restricted by formal pat-
terns. How does the machine carry out the same process?

In previous studies, some traditional methods have been used to construct NT
clause [7–10], and the accuracy of single PS is 77.24% [10], sequence PS is 67.37%
[10]. In recent years, the neural network has developed and perfected gradually. It has
strong representation ability, can obtain grammar and semantic information in the
context and has good performance on many Natural Language Processing tasks. Long
short-term memory (LSTM) networks is a special form of recurrent neural networks
(RNNs) [11]. It can process sequence data and obtain context information of data.
Neural Attention Model is first used for machine translation. Bahdanau et al. utilized an
attention-based contextual encoder to constructs a representation based on the gener-
ation context [12].

,
(Songnian Gao works hard,)

(who is the chief of the dean of teaching)

(who is so shrewd that he still opens his eyes

wears glasses

and can’t be vague when sleeping.)

Fig. 1. The representation of Example 1

, 
(Songnian Gao works hard,)

(Songnian Gao is the chief of the dean of teaching)

(Songnian Gao is so shrewd that he still opens his eyes when sleeping.)

(Songnian Gao is so shrewd that he still wears glasses when sleeping.)

(Songnian Gao is so shrewd that he can’t be vague when dreaming.)

Fig. 2. NT clauses of all PSs in Example 1
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The core goal of Attention is to select more critical information among many
information sources for the goal of current task. Therefore, this paper constructs a
neural network model based on Attention and LSTM to construct NT clause.

3 Method of Construction NT Clause Based on Attention-
LSTM

In this paper, the Chinese word is represented as w, and the PS in the text is represented
as c ¼ w1;w2; . . .;wi; . . .;wmf g, where wi is the ith word in c and m is the number of
words in c. The NT clause of c is represented as t ¼ w1;w2; . . .;wj; . . .;wl

� �
, where wj

is the jth word in t and l is the number of words in t. The PS sequence is represented as
C ¼ c1; c2; . . .; ci; . . .; cnf g, where ci is the ith PS in C and m is the number of words in
C, it is defined that ci;i is the ith word wi of PS ci in C, the default is c1 is an
Independent Sentence. The NT clause sequence corresponding to the PS sequence is
represented as T ¼ t1; t2; . . .; ti; . . .; tnf g, where the default is c1 ¼ t1, and ti;j is the jth

word wj of the NT clause ti in T .
In order to construct NT clause, this paper proposes a model based on Attention-

LSTM, which can identify the location of the missing Naming. This task can be divided
into two tasks: the first task is to construct the NT clause of a single PS; the second task
is the dynamic construction of the NT clause sequence for sequence PS. In the first task
the trained Attention-LSTM is used to identify the location of the missing Naming.
Then the NT clause of a single punctuation sentence can be constructed. This paper
focuses on the first task.

3.1 Attention-LSTM Model

In this paper, the input of Attention-LSTM is the NT clause ti of PS ci and the next PS
ciþ 1 in the text, in which i represents the position of the PS in text, the target output
index predi is the location of the missing Naming of the ciþ 1 in ti, which can be
represented as AttentionLSTM ti; ciþ 1ð Þ ¼ index predi. The framework of Attention -
LSTM model constructed is shown in Fig. 3, which has four parts: Word Embedding,
Contextual Embedding, Attention -LSTM Layer, Output Layer.

Word Embedding maps each word in ti and ciþ 1 to a hight-dimensional vector
space. This paper uses pre-trained word vectors to obtain the fixed word embedding for
each word. The output of Word Embedding are two matrices: T 2 Rm�d for ti and
C 2 Rn�d for ciþ 1, where d is the dimension of word vector.

Contextual Embedding uses a BiLSTM on top of Word Embedding to obtain
contextual information from surrounding words, so that if refines the embedding of the
words. Hence H T 2 Rm�2d can be obtained from T 2 Rm�d , and H C 2 Rn�2d from
C 2 Rn�d , where column is 2d-dimensional because of the concatenation of the outputs
of the forward and backward BiLSTM, each with d-dimensional output. Note that in
order to ensure consistent representation performance, the same BiLSTM is respec-
tively used in T and C.
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Attention-LSTM Layer tries to match ti against ciþ 1. At position p of ti, it first uses
the standard word-by-word attention mechanism [13] to obtain attention weight vector:
ap 2 Rn. apq indicates the degree of matching between the pth token in ti with the qth

token in ciþ 1. Then this paper uses the attention weight vector: ap to obtain a weighted
version of H C and combine it with the current token of ti to form a vector lp 2 R2d .
After each token in ti is processed, L 2 Rm�2d is obtained, and fed into a BiLSTM.

After this BiLSTM, H 2 Rm�4d is obtained, where column is 4d-dimensional
because of the concatenation of the outputs of the forward and backward BiLSTM,
each with 2d-dimensional output.

The input to Output Layer is H, which encodes the match information between ti
and ciþ 1. H is fed into LSTM, and the expected output is the probability matrix of
index at each location: P 2 Rm, where pk is the probability of index as k. Finally, P is
fed into Softmax, the result is index predi.

3.2 Construction of NT Clause for a Single PS

When constructing NT clause for a single PS, the input is the NT clause ti of PS ci and
the next PS ciþ 1 in the text, in which i represents the position of the PS in text, the
target output is the NT clause tiþ 1 of PS ciþ 1. This paper first uses the Attention -
LSTM model to predict position: index predi, and then generates NT clause:
t prediþ 1 ¼ ti;1; ::; ti;index; ciþ 1;1; . . .; ciþ 1;m

� �
. For example, Example 1 can be divided

into 6 processes of constructing NT clauses for a single PS, such as
and (who is

the chief of the dean of teaching)} as input, target output is index pred2 = 1,
t pred2 = (Songnian Gao is the chief of the dean of teaching)}.

Fig. 3. The architecture of attention-LSTM model
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4 Experiments

4.1 Dataset

The data used in this paper is a big sequence PSs with 11,790 PSs, which is derived
from the Encyclopedia of fish. After manual annotation, it has already formed a
sequence of NT clauses. When constructing NT clause, data can be represented in
triples: ti; ciþ 1; indexið Þ, where ti is NT clause of ci, ciþ 1 is next PS of ci, index is align
position. This paper transforms the original data into triples of this format, and a total of
11789 data are obtained, which is called All-DATA. Part of All-DATA is shown as
follows.

In All-Data, this paper carries out a statistical analysis of the number of data
corresponding to different index. The statistical results are shown in Fig. 4. It can be
seen that the index range is 0–24 in All-Data. Note that index ¼ 0 means that ciþ 1 is an
Independent Sentence. The distribution of index is very uneven, of which index ¼ 1
has the largest number of data, and index is mainly distributed between 0–10,
accounting for 99.14% of the total data. Except for 0, with the increase of index, the
number of data is getting smaller and smaller.

The training of Attention-LSTM requires a large number of data. Therefore, this
paper divides the All-Data according to the proportion of 9:1. 9/10 of All-Data as
ALSTM-Dataset, which is used to train Attention-LSTM model. 1/10 of All-Data as

Fig. 4. Distribution of index in all-dataset
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Test-Dataset to do experiment on the construction of NT clause. In addition, the
distribution ratios of different index in different dataset are calculated respectively, and
the results are shown in Fig. 5.

It is can be seen that the lines of All-Data and ALSTM -Dataset almost overlap, and
have little difference compared with Test-Dataset’s. Therefore, the distribution ratio of
index is almost the same in different datasets, and the three datasets can be regarded as
undifferentiated datasets.

4.2 Attention-LSTM Model Details

All sequence in All-Dataset are tokenized by Jieba1, a segmentation tool Pre-trained
word vectors used in this paper is trained by word2vec module in gensim2 from
BaiduBaike croups3, the dimension d is fix to 200. This paper uses the AdaDelta [14]
optimizer, with a minibatch size of 64 and an initial learning rate of 0.5, for 30 epochs.
A dropout [15] rate is 0.3 in LSTM and BiLSTM.

4.3 Training on Attention-LSTM

For training the Attention-LSTM model, this paper divides ALSTM-Dataset into Train-
Data and Valid-Data according to the proportion of 9:1, in which Train-Data is used to
train model, and Valid-Data is used to verify the model performance. In the training
process, the result of each epoch is shown in Fig. 6, where line of Train-Acc almost
overlap with Train-F1. In 0–5 epoch, Accindex and F1-Score of Train-Data and Valid-
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Fig. 5. Distribution of index in different dataset

1 https://pypi.python.org/pypi/jieba/.
2 https://radimrehurek.com/gensim/moels/word2vec.html.
3 https://baike.baidu.com/.
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Data rapidly increased. In 5–29 epoch, the results on the Train-Data is obviously better
than Valid-Data, the phenomenon of over fitting appeared.

In order to verify the stability and reliability of the model, 10-fold cross-validation
is carried out. The SNT-Dataset data is divided into 10 parts: 9 of them as training data,
the remaining as the test data, then the mean value of the 10 results is regarded as the
accuracy of the model. The results of 10-fold cross-validation are shown in Fig. 7.

From Fig. 7, we can see that the maximum difference between results is 0.05%, and
the fluctuation is small. Therefore the model has reliable stability.
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Fig. 6. Training process of model
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Fig. 7. Results of 10-fold cross-validation in first task
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4.4 Experiment on the Construction of NT Clause for a PS

In the process of constructing single NT clause for a PS, This paper separately uses 10
trained models, which were trained in the 10-fold cross-validation process to construct
NT clause for 1,158 punctuation sentences in Test-Dataset. The results are shown in
Fig. 8:

From Fig. 8, we can see that the maximum difference between results is 0.04%, and
the fluctuation is small. Therefore the model has reliable stability. Finally, Accindex is
81.74% and F1-Score is 80.65%.Accindex is improved by 4.5%.

This paper also analyzes the model performance in different index data, as shown in
Fig. 9 (some index are not listed in the diagram because they did not appear in the
prediction results).

As can be seen from Fig. 9, index distribution of the result is basically the same as
that in All-Data, which indicates that although index distribution is unbalanced, the
effect on the model is less. The results of different index are closely related to the
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Fig. 8. Results of 10-fold cross-validation in first task
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number of data. In general, the more data there is, the higher accuracy it shows, such as
0–9. However, when the data is small, the results are fluctuating and not reliable
enough, such as 10–24.

5 Conclusion

This paper briefly describes the theory of NT clause and proposes a novel method
based on Attention-LSTM model for construction NT clause. In the experiment, dataset
is taken from Fish BaiduBaike corpus, and it is extracted after the data is manually
labeled and processed, then it is used to train Attention-LSTM model. The results show
that the method has certain advantages.Accindex is 81.74%(+4.5). However, there are
some deficiencies in this research, because the performance of neural network model
depends on the quantity and quality of training data, and the number of different index
data is different in this paper. Therefore, the performance of the model varies greatly on
different indexes. Future work in this same direction of study is to add more features
into the model, such as POS, grammar and so on, so as to reduce the difference on
different index. All in all, NT clause construction based on NT clause theory can benefit
other text understanding tasks, such as Machine Translation, Information Extraction,
Man-machine Dialogue.
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Abstract. Complaint orders in mobile customer service are the records of
complaint description, which professional knowledge and information on cus-
tomer’s complaint intention are kept. Complaint orders classification is impor-
tant and necessary to be established and completed for further mining, analysis
and improve the quality of customer service. Constructed corpus is the basis of
research. The lack of complaint orders classification corpus (COCC) in mobile
customer service has limited the research of complaint orders classification. This
paper first employs K-means algorithm and professional knowledge to deter-
mine complaint orders classification labels. Then we craft the annotation rules
for complaint orders, and then construct complaint orders classification corpus.
The corpus consists of 130044 complaint orders annotated. Finally, we statis-
tically analyze the corpus constructed, and the agreement of each question class
reaches over 91%. It indicates that the corpus constructed could provide a great
support for complaint orders classification and specialized analysis.

Keywords: Mobile customer service � Complaint orders classification corpus
K-means � Annotation rules

1 Introduction

Complaint orders are the description of customer’s complaint and recorded by cus-
tomer service staff, in order to do the mining work and analyze the complaint intention
in future. Identifying categories of complaint orders is called complaint orders classi-
fication. Research on complaint orders classification in mobile customer service and
capture the semantic information is significant for capturing customer’s intention and
specialized analysis. Therefore, it is necessary to construct complaint orders classifi-
cation corpus (COCC) in mobile customer service.

Current modes of constructed corpus contain expert tagging, crowdsourcing tag-
ging (such as Amazon Mechanical Turk1, Crowd Flower2), group tagging. Considering

1 Available at https://www.mturk.com/.
2 Available at https://www.crowdflower.com.
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accuracy, reliability and economy, this paper focuses on constructing COCC in mobile
customer service based on group tagging. An annotated complaint order is taken from
COCC.

Complaint order 1:

(******customer complains that two school newsletters have been opened, but
functional fees for three school newsletters are charged. The customer requires to find
out the cause and responds to the explanation, please handle it. cost question).

In complaint order 1, complaint order is separated into two parts by tabulator key,
which are the content of complaint order and question category.

Recently, the corpus in public are appearing in dialogue [1], micro-blog [2–4],
linguistic [5, 6], medical [7], etc. However, there is no public research on COCC in
mobile customer service. The lack of COCC has limited the research of complaint
orders classification.

This problem motivates us to construct COCC. Firstly, based on K-means algo-
rithm and business knowledge, we divide complaint orders into 8 categories: marketing
activities question, unknowing customization question, information security question,
service question, cost question, business processing question, network question, and
business use question. Secondly, business experts craft detailed annotation rules. Each
complaint order is annotated by two skilled annotators respectively. Then, we
repeatedly discuss and revise about bifurcation points with annotators, business experts
without participation in annotating the corpus, aiming at determining inconsistent
labels of complaint orders, then we construct the COCC. Finally, we statistically
analyze the constructed corpus. As we know, COCC is the first publicly available and
large dataset in mobile customer service field so far, which could provide a great
support for classifying complaint orders, mining semantic information and conduct
specialized analysis.

2 Related Work

Researches on corpus constructed have attracted considerable attention [8–12]. In
customer service field, Yin et al. [13] identify 8 new metrics, named as tones, to
describe emotional information by collecting and labeling online conversations of
customer service on Twitter. They solve the problem that conventional metrics do not
fit emotion analysis of online customer service conservation. Quan and Ren [14]
introduce a blog emotion corpus for Chinese emotional expression analysis, which
contains manual annotation of eight emotional categories (expect, joy, love, surprise,
anxiety, sorrow, angry and hate), emotion intensity, etc. Chen and Nie [15] describe a
parallel text mining system that finds parallel texts automatically on the Web, and
generate Chinese-English parallel corpus for training a probabilistic translation model
which translates queries for Chinese-English cross-language information retrieval.
Feng et al. [16] propose Uyghur emotional words corpus construction based on CRFs.
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Yang et al. [17] construct the corpus for named entities and entity relations on Chinese
Electronic Medical Records, which comprises 992 medical text documents, and inter-
annotator agreement of named entity annotations and entity relation annotations attain
0.922 and 0.895, respectively. However, due to the domain specificity, it is very
difficult to be applied to the mobile customer service field. Moreover, there is no COCC
in mobile customer service. In accordance with the characteristics of customer’s
complaint intention, we select data and construct COCC.

We select data from June, 2016 to May, 2017 comes from China Mobile Client
Service System of 31 provinces. 60 million data are randomly selected, and the number
of complaint orders from each province is roughly the same. To ensure privacy, we
replace mobile phone number, address and other information in the complaint order
with “******”. Finally, we use 130044 complaint orders with more standardized
format to construct COCC. Compared with other corpus, COCC takes full consider-
ation of the structure, grammar and expression of complaint orders, such as region-
alism, diversity and wide coverage, etc.

3 The Research and Construction of Complaint Orders
Classification Corpus (COCC)

3.1 Classified Labels for Determining of Complaint Orders Based
on K-Means and Professional Knowledge

The process of combining K-means and professional knowledge to determine classi-
fication labels for complaint orders is shown in Fig. 1. This process contains 5 phases:
preprocessing, features extract, K-means cluster, classified label numbers for deter-
mining, classified label names for determining.

(1) In preprocessing phase, firstly, we process desensitization of mobile phone
number, address and other information in the complaint orders. Then, the corpus
is preprocessed with LTP segmentation toolkit3. Finally, we use Word2Vec
toolkit4 to train word embedding (the dimension of word embedding is 100) on
the complaint orders corpus.

(2) In features extract phase, we statistically analyze the data and extract two features
for comparison: (a) n-gram features (including unigram, bigram, trigram), we
extract n-gram features and use tfidf for sentence representations. (b) sentence
representations feature, we adopt the way of each word embedding summation in
the order to obtain sentence representations.

(3) In K-means cluster phase, we use K-means algorithm (5�K� 12) to cluster
complaint orders based on unigram, bigram, trigram and sentence representations
features respectively. From the cluster results, we can see that: (a) the effect based
on unigram feature is not ideal, which may due to that unigram features do not
utilize contextual information. (b) we vary K from 5 to 12 with an interval of 1, the

3 Available at https://github.com/HIT-SCIR/ltp.
4 Available at https://code.google.com/p/word2vec/.

The Research and Construction of Complaint Orders Classification Corpus 353

https://github.com/HIT-SCIR/ltp
https://code.google.com/p/word2vec/


performance based on trigram features is still not good. This may due to that trigram
features are easy to generate data sparsity and cause probability distortion.
(c) Clustering results based on sentence representations feature are also unsatis-
factory, the reason is that:① complaint orders are too long, which may bring noises
to obtain sentence representations by the way of word embedding summation. ②
templates of complaint orders are similar, which result in low discriminability of
sentence representations. So this paper performs cluster experiments based on
bigram features by varying K from 5 to 12 with an interval of 1.

(4) In classified label number for determining phase, we use error square sum of
elbow method to determine the number of classified labels is 8. The relationship
between error square sum and K is an elbow shape. The corresponding K value of
elbow is the real clustering number of data.

(5) In classified label names for determining phase, 500 complaint orders from each
class are randomly selected and given to the business experts for analysis based on
bigram features and K ¼ 8, aiming to determining the classification label names.

3.2 Annotation Rules

Making annotation rules of COCC is difficult, because it involves complicated pro-
fessional knowledge. we craft the following annotation rules of each class based on the
analysis of complaint orders and professional knowledge in mobile customer service.

(1) marketing activities question

Complaint orders that customer complains marketing activities are annotated “mar-
keting activities question”. For example, customers are not satisfied with the rules of
marketing activities, and complain that they can’t participate in marketing activities.

Annotation rule: the object of complaint order is about marketing activities, such as
participation or withdrawal of marketing activities, dissatisfaction with rules about
marketing activities, disagrees of propaganda and practical, without receiving gifts
about marketing activities (including telephone fees/flow) on time, quality problems
(including error telephone fees), etc.

complaint orders data

n-gram features
features extract 

analysis

word embedding

K-means cluster

preprocessing

 classified label numbers for determining

   classified label names for determining

Fig. 1. The process of determining classification labels for complaint orders
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(2) unknowing customization question

Without being aware of it, customer complains that some businesses are opened,
cancel, change should be annotated unknowing customization question, such as
unsubscribe.

Annotation rule: complaint orders that the customer clearly state that a product/
business has been opened, changed or cancelled without being aware of it, are con-
cluded “unknowing customization question”. The cost query arising from unknowing
customization is classified as “unknowing customization question”.

(3) information security question

Complaint orders that the customer’s personal information or privacy information is
got damage should be annotated “information security question”, such as password
stolen.

Annotation rule: complaint orders about crank call/short messages, telephone
fraud/short messages, adverse website report, subscriber information revealing, card
replication, monitoring, telephone poisoning, etc., should be classified “information
security question”.

(4) service question

Complaint orders about service channels, business related service attitude and service
quality, etc., should be annotated “service question”, such as slow process for solving
problem.

Annotation rule: complaint orders related to various service channels in mobile
customer service should be labeled as “service question”, which contains: service atti-
tude, service quality, service aging, service channels can’t provide normal service, etc.
For service flow regulation of service channels, service opening time, discontent with
service boundaries, service problem from official business channel, etc. For example, the
adjustment of service time during Spring Festival, scope of service at night.

(5) cost question

Complaint orders about tariff and consumption situation should be annotated “cost
question”, such as accounting query, charge after cancelling.

Annotation rule: complaint orders are annotated as cost question should meet either
of two situations: (a) the customer have the accounting query for the use of tariff or
some products/businesses, including the disagree of telephone fees, without using so
much, charge after cancelling, having free resources but charging, etc. (b) the customer
clearly state that he do not use flow but generate fees, such as the flow can’t access to
the Internet.

(6) business processing question

Complaint orders about the failure to provide specific business/products for the mobile
business and results in fault problems in the process of handling, are annotated
“business processing question”. such as involving products or business, the failure to
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open, cancel, change, the suite is not successfully processed, the invoice can’t be
printed, the flow is not reached, the fixed tariff can’t be cancelled, etc.

Annotation rule: When judging, confirm whether the object of complaint order is a
product or business provided by Mobile Corporation. If so, we annotate complaint
orders about products/business failed to open, change, cancel as “business processing
question”. Moreover, complaint orders about payment problems (such as fees
recharged and fees reached is different) and unsuccessful registration of real-name
system are also labeled “business processing question”.

(7) network question

Complaint orders about going online, talking quality of speech, signal intensity, etc. are
annotated “network question”, such as no signal, weak signal.

Annotation rule: if complaint orders are about network and there are clear official
notifications, which should be annotated “network question”. If there is no reference to
the surrounding people, it does not belong to the “network question”. If the customer
expresses the specific position in the complaint order, it is still classified as “network
question”, although it does not mention other people conditions.

(8) business use question

Complaint orders about a fault caused by the operation of the specific products/
business should be annotated “business use question”, such as integral reduction
without reason, display error 678 of broadband connection, broadband can’t access to
Internet.

Annotation rule: when judging, we need to confirm whether the object of complaint
order is a product or business provided by the Mobile Corporation. If so, as long as the
product/business can’t provide the service normally, it should be annotated as “busi-
ness use question”. Moreover, complaint orders about broadband use problems, and
integral use problems (including exchange telephone fare, call duration, short mes-
sages, the failure of virtual products to reach and logistics problems of exchanging
integral for material object, etc.) also should be annotated “business use question”.

3.3 Annotation Process

This paper takes complaint order as the annotated unit (no matter how many sentences
are included, each complaint order has only one annotated label). Annotation process is
shown in Fig. 2. Firstly, we analyze characteristics of complaint order, and craft
detailed annotation rules. Secondly, rule makers explain annotation rules to annotators
from the annotation team, and annotators carry out annotation on complaint orders.
Finally, rule makers check annotated results, and we carry on the repeated discussion
and revision about bifurcation points with annotators, business experts without par-
ticipation in annotating the corpus, to determine inconsistent labels of complaint orders,
then COCC is construct finally.
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3.4 Basic Rules for Complaint Orders Classification Corpus

Understanding the customer’s problem and taking customer’s complaint intention as
the main consideration is the premise of annotating the corpus. three kinds of complaint
orders are discarded as follows:

• duplicate order: complaint order has no specific complaint content and only a
number of the previous complaint order, which is directly marked as “duplicate
order”.

• template order: a single template built for the order, which has no free text infor-
mation about customer’s complaint intention, is labeled as “template order”.

• invalid order: complaint order that customer’s description is not clear, and it is hard
to find the customer’s complaint point, is labeled as “invalid order”.

To ensure the accuracy and effectiveness of the annotated COCC, annotators must
strictly obey the following annotation rules in annotation process.

(1) On the basis of customer requirement

When annotating, it is necessary to fill in the customer requirement from the per-
spective of customers. As long as the customer expresses the intention whether the
requirement is reasonable or not, the intention of complaint order should be annotated.

(2) Abandon business experience

The purpose of annotation is to let the system learn the rules of COCC from massive
data. As the system does not have business knowledge and reasoning ability, in
annotation process, the business experience can’t be considered and result annotated
can’t be obtained based on reasoning.

(3) Avoid speculation

When annotating complaint orders, annotators can’t dig into the subjective conjecture,
and can’t speculate on customer’s complaint intention beyond the intention expressed
in the complaint order.

(4) Purely lean on literals

To ensure the effectiveness and accuracy of the annotated data, annotators should
purely on literals in the complaint order, and do not make associations and experience
judgments beyond literals.

complaint orders data craft annotation rules
annotator1 unify the disagree 

annotation results

annotated result1

annotated result2annotator2

discuss

revise

the final complaint orders classification corpus 

Fig. 2. Annotation process for the corpus
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3.5 Annotation Explanation of Bifurcation Points

Although clear labeling rules have been formulated, there are still bifurcation points
due to some subjectivity in annotation process, and the flexibility and complexity of
complaint orders recorded, which lead to the disagreement of annotation results.
Bifurcation points are as follows:

• Whether the broadband problem is network question. We think that broadband is a
product provided by Mobile Corporation, rather than a network service, so the
broadband problem is annotated “business use question”.

• Query fees problem generated by unknowing customization is prone to confusion.
If the customer has clearly expressed that he did not subscribing the related busi-
ness, and the fee is only caused by unknowing customization, the order should be
annotated “unknowing customization question”.

• Unknowing customization question and marketing activities question are easy to
confuse. If we have verified that the customers subscribing the business from
marketing activities, according to the special situation that “subscribing marketing
activities without being aware of it should be labeled as marketing activities
question” to unify them.

• Service question and business processing question are easy to confuse. Business
processing question is only appearance of the customer’s complaint. If the cus-
tomer’s final complaint intention is that some businesses fail to be processed because
of the mistake made by the staff, this order should be annotated as “service question”.

4 Statistics and Agreement Analysis

4.1 Statistics for Complaint Orders Classification Corpus (COCC)

COCC consists of 130044 complaint orders annotated5. Table 1 shows the statistical
information about COCC, it indicates that:

(1) The three highest proportion of complaint orders are business use question,
marketing activities question and cost question. Analyzing the Top3 questions of
complaint orders are of great significance for quickly locating the categories of
customer complaints and improving the quality of service. Moreover, information
security question is only 2.29%, the main reason is that: the specialty of the
mobile customer, the Mobile Corporation is strict with the management of cus-
tomer’s privacy information, which leads to the number of complaint orders
belonging to information security question is very less.

(2) The average length of complaint orders from 8 categories is between 200 and 800
characters, among them the average length of the complaint orders from infor-
mation security question is the longest, reaching 772.31 characters. This may due

5 Available at https://github.com/zhng1200/COCC.
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to that the complaint order’s template from information security question is too
long, and more detailed information is added by the customer service staff when
they record the content of complaint order.

4.2 Agreement Analysis

Each complaint order is annotated the only question label, so the recall is 100%. The
accuracy is used as the agreement (the number of complaint orders annotated by two
annotators is same/the total number of complaint orders � 100%.) to measure the
annotated effect. Table 2 shows the agreement analysis on COCC. Result1&2 is the
agreement between the first annotation results and the second annotation results.
Result1&final is the agreement between the first annotation results and the final anno-
tation results, and result2&final is the consistency between the second annotation results
and the final annotation results. It shows that:

(1) The agreements of 8 question labels reach over 91%. Artstein and Poesio [18]
show that the agreement of annotated corpus reaches 80% can be considered as
trustworthy. So the corpus we construct is reliable.

(2) The first column’s agreements are generally lower than that the second column
and the third column. This may due to that: the annotated results are influenced by
subjective factors, and the final COCC is obtained by unifying the difference
between the first annotated results and the second annotated results.

(3) The agreement of cost question and service question are relatively low, and the
agreement of marketing activities question, network question and unknowing
customization question are relatively high. Because the characteristics and dis-
tinctions of each question is different. For example, compared with other classes,
cost question and service question annotation are more complicated.

Table 1. Statistical information about COCC

Classified label names #complaint
orders

%complaint
orders

Avg. length of
complaint orders

Network question 10262 7.89 413.13
Cost question 17901 13.77 274.14
Marketing activities question 22702 17.46 418.38
Business use question 46438 35.71 452.63
Business processing question 11831 9.10 329.49
Service question 10004 7.69 383.91
Unknowing customization
question

7925 6.09 344.82

Information security question 2981 2.29 772.31

(#complaint orders: the number of complaint orders. Avg. Length: The average number of
Chinese characters.)
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The agreement of COCC reaches over 91%. It indicates that COCC is effective and
could provide a great support for classifying complaint orders, mining semantic
information to carry on the specialized analysis.

5 Conclusion and Future Work

This paper constructs complaint orders classification corpus which consists of 130044
annotated complaint orders. Firstly, we combine K-means and professional knowledge
to determine classification labels of complaint orders. Secondly, we craft detailed
annotation rules and annotate the complaint orders. Finally, we statistically analyze the
constructed corpus, and the agreements of each question class reach over 91%. As
mentioned above, the purpose of corpus constructed is to study complaint orders
classification, and to enrich the semantic information for thematic analysis. Our future
work will focus on studying complaint orders classification on COCC, and to extract
and integrate semantic information in mobile customer service field.
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Abstract. The graph models are an important method in automatic text sum-
marization. However, there will be problems of vector sparseness and infor-
mation redundancy in text map to graph. In this paper, we propose a graph
clustering summarization algorithm based on network representation learning.
The sentences graph was construed by TF-IDF, and controlled the number of
edges by a threshold. The Node2Vec is used to embedding the graph, and the
sentences were clustered by k-means. Finally, the Modularity is used to control
the number of clusters, and generating a brief summary of the document. The
experiments on the MultiLing 2013 show the proposed algorithm improves the
F-Score in ROUGE-1 and ROUGE-2.

Keywords: Text summarization � Network representation learning
Graph clustering � Modularity

1 Introduction

Automatic text summarization is extracting a piece of concise text that can represent the
important content of the original text from a large amount of text. It is an effective
method to help people obtain main information quickly and efficiently. It saves users’
time and resources, and solves the problem of information overload on the Internet.
After the summarization was first proposed by Luhn [1] in 1958, it was used in
grammatical, single and descriptive texts such as scientific literature and news. In
recent years, Internet texts generated by users have the characteristics of large quantity,
wide coverage, subjective and nonstandard language. These problems have challenged
the traditional approaches based on statistics, topics. The graph-based methods abstract
the semantic relationship between sentences as the vertex relationship of graph.

However, in the case of Internet texts with many fields and redundant contents, it
will make the graph sparse and lead to a decline in the quality of summary. Network
representation learning is an effective method for solving graph sparseness and
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reducing computational complexity in recent years. The principle is to use deep
learning to map high-dimensional networks to dense low-dimensional vectors, and then
use the low-dimensional vectors for further calculation. We propose a graph based
summarization algorithm based on the learning algorithm. The vertices of network
which represent the text were mapped into low-dimensional dense vectors through
representation learning, and then use graph clustering to select appropriate sentences as
the summary.

The remained of the paper is organized as follows. In Sect. 2, we summarize the
research related to summarization based on the graph model, and analyze the existing
problems. In Sect. 3, we introduce the summarization algorithm based on the repre-
sentation learning. In Sect. 4, we show the experimental data, methods, and results. In
Sect. 5, we summarize the method of this article. The contribution of this paper is to
propose using network representation to solve the sparseness problem of graph, and use
graph clustering to solve the redundancy problem in summary.

2 Related Work

Automatic text summarization can be divided into two types: abstractive and extractive.
Abstractive method generates summary by understanding the main content of the text,
it uses the NLP technology to understand the text. And it requires that the main content
of a text be understood like human, and use a writing technique similar to human to
“write” the summary, therefore the abstractive method is very difficult. After several
decades of development, no good results have been achieved. With the development of
deep learning, some researchers have also begun to use neural networks to achieve
certain progress in abstractive summarization. DRGN [2] uses recurrent neural net-
works (RNN) to make the summary, however, there is still the problem that the
generated summary information is inconsistent with the original text, and there are
meaningless contents when summarizing multiple sentences.

Extractive method uses sentences as the basic elements; through the various
characteristics of sentences, the importance of each sentence is calculated and the
appropriate sentence is selected as the summary of the text. The types of extractive
method can be divided into methods based on statistics, topics, graph models and
machine learning. Graph model algorithm has a wide range of applications in the
extractive way, because the topological structure of the graph can reveal important
information and relationships between elements in the text; it can reflect more infor-
mation than other non-graph model methods, so the summarization based on graph
model become a prominent current method in recent years.

The earliest graph model work was proposed by Mani and Bloedorn [3], and the
general graph model uses text elements such as sentences or words as the vertices of
the graph, the relationships and information between the text elements represent the
edges. Most of the graph-based methods are scoring graph vertices; they calculate the
importance of the sentences in graph model, and get the summary by the sentence
score. Such methods are generally called graph sorting algorithms, it has been proved
that they are indeed effective in summarization.
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LexRank [4] is a typical graph sorting algorithm, it constructs sentences graph by
using the sentences in the text as vertices and using PageRank to score the vertices in
the graph and obtain the most important sentences in the text. Ferreira [5, 6] incor-
porates the construction of multiple knowledge extension graph edges and takes into
account the semantic relationships to construct sentence graphs, which makes the
information richer and better results in more specialized text fields such as thematic
information or linguistic knowledge. Giannakopoulos [7] uses words as the vertices of
the graph model to extract the important components of the document using N-Gram
graphs; it makes the entire process of the proposed summarization system provide rich
information about the complex and contextual relationships between characters or
words n-grams.

However, there are still the following problems in the above method:

1. Since the algorithms are based on vertex sorting, redundant content may appear in
extracted summary sentences. For example, when there are two sentences in the text
expressing the same content, the sorting algorithm will give the two sentences an
approximate score, it will make two similar sentences in the summary.

2. The sparseness of graphs reduces the quality of summary. If the amount of text
information is large, the graph model will be large and sparse, and the quality of the
summarization will be affected to a large extent.

Based on the above problems, we propose a graph clustering automatic summa-
rization algorithm based on network representation learning. This method constructs a
sentence graph, and maps the graph vertex as a low-dimensional dense vector through
the learning algorithm to solve the problems of graph sparseness and algorithm exe-
cution efficiency. Then we use the graph clustering to select the appropriate sentences
as summaries, while integrating the group relations between sentences, we also solve
the redundant information of the text.

3 Our Method

3.1 Graph Construction Through Sentence Similarity

First we need to construct a sentence graph, let G ¼ V ;Eð Þ be a graph, where V ¼
v1; v2; . . .; vnf g is the set of nodes, vi ¼ w1;w2; . . .;wnf g represents a sentence of text

T , where wi represents a word. And E is the set of edges, we need to add undirected
edges between sentences by calculating the similarity between sentences. Before cal-
culating the sentence similarity, we need to vectorize the sentences. Here we use the TF
and IDF values of the words in the sentence to construct the vector of the sentence.

In information retrieval, TF-IDF [8] or TFIDF, short for term frequency–inverse
document frequency, is a numerical statistic that is intended to reflect how important a
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word is to a document in a collection or corpus. TF (Term frequency) is defined by the
formula:

tf w; Tð Þ ¼ tw
nw

ð1Þ

Where tw is the number of occurrences of word w in text T , nw is the total number
of the words. And IDF (Inverse document frequency) is defined by the formula:

idf w; sð Þ ¼ log
ns

1þ df w; sð Þ ð2Þ

Where ns is the total number of text sentences, df w; sð Þ is the number of sentences s
that contains the word w.

Then we use the bag-of-words to represent each sentence s as an n-dimensional
vector a ¼ a1; a2; ::; anð Þ, where n is the number of all words in the text T and
ai ¼ tf wi; Tð Þ � idf wi; sð Þ. The similarity between two sentences is defined as the
angle cosine of two sentence vectors:

tf � idf � cosine x; yð Þ ¼
P

w2x;y tf
2 w; Tð Þidf w; xð Þidf w; yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xi2x tf xi; Tð Þidf xi; yð Þð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

yi2y tf yi; Tð Þidf yi; yð Þð Þ2
q ð3Þ

Given the e, for any two sentences si and sj in the sentences set S; if
tf � idf � cosine si; sj

� �� e, we add an undirected edge eij between vi and vj to the
graph G. The method we use to build sentence graph is presented in Algorithm 1.

Algorithm 1 Build Sentence Graph
Input: Text ,Threshold
Output: Sentence Graph 
1:  Build with nodes, is the sentences number of 
2: for to do
3: for to do
4:
5:              add to
6: end for
7: end for

In the construction of graph G, the choice of the threshold e will affect the
sparseness of the graph. If e is too large, it will cause the graph G to be too sparse and
there are too many isolated points. If e is too small, the graph G will be too dense to
affect the result of the last cluster. Figure 1 shows the results of a graph constructed
using 10 sentences as examples.
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3.2 Automatic Text Summarization via NRL

Network representation learning (NRL) algorithm refers to the algorithm for learning
vector representation of each vertex from the network data, and the “network” refers to
information networks such as social networks, web linked networks, and logistics
networks. These networks are usually represented by data structure of “graph”.
Although graphs can be represented by adjacency matrices, adjacency matrices have
great problems in computational efficiency, and the vast majority of adjacency matrices
are 0, and the data is very sparse. This kind of data sparsity makes the application of
fast and effective statistical learning methods difficult. Therefore, researchers turn to
learning low dimensional dense vector representations for vertices in the network.
Formally, the goal of NRL is to learn a real vector av 2 Rd for each vertex v 2 V , in
which the dimension d of the vector is far smaller than the total number of vertices Vj j.

In 2013, the famous “word2vec” [9] used probabilistic neural networks to map
words in natural language into low dimensional vector space, and then Perozzi et al.
proposed DeepWalk [10] on the basis of the Skip-Gram model of “word2vec”, for the
first time the technology of deep learning was introduced into the NRL field. DeepWalk
generalizes the idea of the Skip-Gram model that utilizes word context in sentences to
learn latent representations of words, to the learning of latent vertex representations in
networks, by making an analogy between natural language sentence and short random
walk sequence. Given a random walk sequence with length L, v1; v2; . . .; vLf g, fol-
lowing Skip-Gram, DeepWalk learns the representation of vertex vi by using it to
predict its context vertices, which is achieved by minimize the optimization problem
�logPr vi�w; . . .; viþwf gnvijU við Þð Þ, where vi�w; . . .; viþwf gnvi are the context vertices
of vertex vi within w window size. Subsequent work node2vec [11] and LINE [12] have
further improved DeepWalk.

In order to remove redundant information in the document, we cluster the sentence
vectors, clustering can group together similar sentences. When we select a summary
sentence, we only need to select representative sentences from each cluster to compose
the summary of the text; the clustering algorithm here we choose the k-means. One
problem of the k-means algorithm is the choice of the number of clusters. In order to
get better clustering results and solve the problem, we paper introduces “Modularity” to
obtain the optimal number of clusters.

Fig. 1. Different e sentence diagrams (from left to right e values is 0.05, 0.1, 0.15)
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“Modularity” [13] is one measure of the structure of networks or graphs. It was
designed to measure the strength of division of a network into modules (also called
groups, clusters or communities). Networks with high modularity have dense con-
nections between the nodes within modules but sparse connections between nodes in
different modules. Given a community division C, the modularity is defined as:

Q ¼ 1
2m

X
ij

Aij � kikj
2m

� �
d Ci;Cj
� � ð4Þ

Where A is the adjacency matrix, ki is the degree of vertex vi, d Ci;Cj
� �

is defined as:

d Ci;Cj
� � ¼ 1 Ci ¼ Cj

0 Ci 6¼ Cj

�
ð5Þ

For different k of k-means, we select the clustering result with the largest modu-
larity as the final sentence clustering result, and then select the vertex sentence with the
largest degree in each cluster as the candidate summary sentence. The details of the
method we used to generate automatic summarization via NRL is presented in
Algorithm 2, here the NRL algorithm we used is the node2vec.

Algorithm 2 Auto Summarization via NRL
Input: Sentence graph ,Text ,dimension
Output: Sentence of text summarization 
1:
2:
3:
4: for to do
5:
6:
7:
8:
9: end for
10:

node2vec

4 Experiment

4.1 Datasets and Evaluation Method

We used the MultiLing 2013 dataset in our experiment; it contains a collection of texts
in 40 languages, each text collection contains 30 single text files, and there are about
100–300 sentences in each single text. In the experiment, we select the data set of the
English language as the experimental data set to generate a summary for each single text.
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For evaluation, we used the automatic summary evaluation metric, ROUGE [14].
ROUGE is a recall-based metric for fixed-length summaries which is based on n-gram
co-occurrence. It reports separate scores for 1, 2, 3, and 4-gram matching between the
model summaries and the summary to be evaluated. In the experiment, we mainly used
ROUGE-1 and ROUGE-2 evaluation standards. And the ROUGE-N is defined by the
formula:

ROUGE � N ¼
P

S2ref
P

gramn2S countmatch gramnð ÞP
S2ref

P
gramn2S count gramnð Þ ð6Þ

Where n stands for the length of the n-gram, gramn and countmatch gramnð Þ is the
maximum number of n-grams co-occurring in a candidate summary and a set of ref-
erence summaries.

4.2 Results

We evaluate the performance of our method against the following automatic text
summarization algorithms:

• Text-Rank [15]: A graph-based ranking model using PageRank for text processing
and text summarization.

• LSA [16]: A summarization methods based on LSA, which measure a content
similarity between an original document and its summary.

The number of summary sentences used for Text-Rank and LSA is 10; for our
method we set e ¼ 0:14 for Algorithm 1 and d ¼ 20 for Algorithm 2. Table 1 lists the
average results of 30 documents ROUGE-1, and Table 2 lists the average results of 30
documents ROUGE-2.

From the evaluation results on the MultiLing 2013 single text dataset; we can see
that our method is better than the text-rank and LSA on the F-score of ROUGE-1 and

Table 1. Comparison of the results of the three algorithms ROUGE-1 (e ¼ 0:14; d ¼ 20)

Method Avg_Recall Avg_Precision Avg_F-Score

Text-Ran 0.5676 0.3268 0.4019
LSA 0.4386 0.3515 0.3876
Our 0.4446 0.4445 0.4332

Table 2. Comparison of the results of the three algorithms ROUGE-2 (e ¼ 0:14; d ¼ 20)

Method Avg_Recall Avg_Precision Avg_F-Score

Text-Ran 0.1214 0.1305 0.1256
LSA 0.1026 0.0839 0.0916
Our 0.1355 0.1372 0.1326
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ROUGE-2. And the results of text-rank and our algorithm are all better than the LSA
algorithm which based on semantic analysis. This shows that the graph model is indeed
better than the traditional statistical method in summarization the algorithm. It can also
be seen that the graph model represented by the learning algorithm has improved on the
summary result.

4.3 Parameter Sensitivity

There are two important parameters e and d in our method, we analyzed the F-score of
ROUGE-1 and ROUGE-2 under different e-values and dimensions d on the data set,
the result is shown in Figs. 2, 3 and 4:

Experiments show that when e is less than 0.14, the F value of ROUGE-1 and
ROUGE-2 increases with the increase of e. When e is greater than 0.14, the summary
results begin to decline. This is consistent with our previous analysis that sentences are
too dense or sparse will affect the effectiveness of the summary, and map the sentence
to low dimensional vector will result in better quality of text summary.

From Figs. 3 and Fig. 4, the effect of the dimension on the Rouge value can be seen
that when the value of the dimension d is between 20 and 30, the result of the summary
is the best, and the overall trend of the summary results is decreasing with the increase
of the dimension. This shows that embedding a sentence into a low-dimensional vector
space not only improves the efficiency of the algorithm but also improves the quality of
the summarization.
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5 Discussion and Conclusion

In this paper, we use network representation learning to propose a new summarization
algorithm based on graph model. This method is slightly better than the other two
methods on the MultiLing 2013 document set. The NRL has attracted much attention
since 2014. The current research is still at the initial stage and there is no representation
learning method for the sentence graphs of the text. This paper only studies the
clustering-based summarization methods after expressing the vector representation of
the sentences through learning. In the future work, there are many works worthy of
further research and exploration in the study of sentence graph and sentence vector
based summarization algorithms.

Acknowledgement. This work is supported by the Ministry of education of Humanities and
Social Science project (17YJCZH260), the Next Generation Internet Technology Innovation
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Abstract. Sentiment classification is an important task in the community of
Nature Language Processing. This task aims to determine the sentiment category
towards a piece of text. One challenging problem of this task is that it is difficult
to obtain a large number of labeled samples. Therefore, a large number of
studies are focused on semi-supervised learning, i.e., learning information from
unlabeled samples. However, one disadvantage of the previous methods is that
the unlabeled samples and the labeled samples are studied in different models,
and there is no interaction between them. Based on this, this paper tackles the
problem by proposing a semi-supervised sentiment classification based on
auxiliary task learning, namely Aux-LSTM, which is used to assist learning the
sentiment classification task with a small amount of human-annotated samples
by training auto-annotated samples. Specifically, the two tasks are allowed to
share the auxiliary LSTM layer, and the auxiliary expression obtained by the
auxiliary LSTM layer is used to assist the main task. Empirical studies
demonstrate that the proposed method can effectively improve the experimental
performance.

Keywords: Sentiment classification � Auxiliary task � Auto-annotation samples

1 Introduction

With the development of the social media, people are accustomed to commenting on
characters, events and products on the internet to express their opinion and sentiment.
Sentiment analysis is a hot research direction that is produced under such a back-
ground, and text sentiment classification is the basic task in sentiment analysis.
Specifically, the task of text sentiment classification is to determine the sentiment
orientation of a text, i.e., positive and negative. For example, the text “This book is
simply boring!” is considered as a negative sentiment. There are a large number of
product comments in the electronic commerce platform. Correctly identifying the
sentiment of these comments helps to understand the evaluation of the products,
thereby improving the product quality and providing better service to customers. From
the perspective of customers, they can judge the quality of products by analyzing the
sentiment of comments, so as to make correct choices.
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Early research on sentiment classification mainly focus on supervised learning
using only labeled samples [1, 2]. However, supervised learning requires a large
number of labeled samples, studies in recent years have used semi-supervised learning
method to reduce the dependence on labeled samples. For example, collaborative
training (Co-training) [3], label propagation (LP) [4] and deep learning [5] are widely
used in semi-supervised sentiment classification task. This paper mainly focuses on the
method of semi-supervised sentiment classification.

At present, several studies have verified the effectiveness of the semi-supervised
sentiment classification method, i.e., the use of unlabeled samples can improve the
performance of sentiment classification. However, these existing methods have their
own advantages and disadvantages, so it is difficult to determine which algorithm is
suitable for which domain of sentiment classification. For example, the co-training
algorithm can achieve good performance in the domain of Book and Kitchen, while the
LP algorithm has better performance in the domain of DVD and Electronic [6].
Therefore, the semi-supervised sentiment classification method of integrated learning is
also produced, which can improve the performance of sentiment classification through
multiple semi-supervised learning methods. The above methods are aimed at reducing
the error of annotating unlabeled samples in semi-supervised learning.

However, the unlabeled samples and labeled samples in the above semi-supervised
learning algorithm are usually studied in two different models, ignoring the loss cor-
relation information between models. In order to further study the link between the
labeled samples and unlabeled samples information, and reduce the error of annotating
unlabeled samples, we propose a semi-supervised sentiment classification method
based on auxiliary task learning. The method firstly annotates unlabeled samples
automatically, so as to obtain auto-annotated samples. Then, two sentiment classifi-
cation tasks, the main task and the auxiliary task, are designed respectively according to
the human-annotated samples and the auto-annotated samples. The main task obtains
the auxiliary representation through the auxiliary LSTM layer, which is shared with the
auxiliary task, and adds this auxiliary representation to the main task to assist the main
task to complete the sentiment classification. The experimental results show that the
proposed method in this paper can effectively improve the semi-supervised sentiment
classification performance by utilizing the information of unlabeled samples.

The rest of our paper is structured as follows. Section 2 briefly discusses the related
work. Section 3 gives the overall framework. Section 4 describes the algorithm of
obtaining auto-annotated samples. Section 5 describes the semi-supervised sentiment
classification based on auxiliary task learning in detail. Section 6 gives experimental
settings and experimental results. Finally, the last section is the conclusion of this
paper.

2 Related Work

Early sentiment classification research mainly focus on supervised learning. Ye et al.
[1] compare three supervised machine learning algorithms of Naïve Bayes, SVM and
the character based n-gram model for sentiment classification of the reviews on travel
blogs for seven popular travel destinations in the US and Europe. Pang et al. [2]
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introduce a variety of classification methods into the task of sentiment classification
and achieves good classification results.

Since supervised learning requires a large number of labeled samples, the semi-
supervised learning method has gradually attracted the attention of researchers. Wan [3]
takes two different languages (English and Chinese) as two different views and adopts
co-training method to semi-supervised sentiment classification. Zhu and Ghagramni [4]
propose a graph-based semi-supervised learning method, namely label propagation
(LP). The basic idea is to use the relationship between the samples to establish a
relational complete graph model. In the complete graph, the nodes include labeled and
unlabeled samples, and the edges represent the similarity of the two nodes. The labels of
the nodes are transmitted to other nodes according to similarity. Xia et al. [7] make use
of the original and antonymous views in pairs, in the training, bootstrapping and testing
process, all based on a joint observation of two views. Sharma et al. [8] propose a semi-
supervised sentiment classification method that uses sentiment bearing word embedding
form to generate continuous ranking of adjectives with common semantic meaning. Yu
and Jiang [9] borrow the idea from Structural Correspondence Learning and use two
auxiliary tasks to help induce a sentence embedding that supposedly words well across
domains for sentiment classification.

Different from traditional semi-supervised learning method, this paper proposes a
semi-supervised sentiment classification method based on auxiliary task learning,
which is constructing the joint loss function of the main task and the auxiliary task. It
eliminates the need to add auto-annotated samples to human-annotated samples for
modeling, thereby reducing the error of annotating unlabeled samples.

3 Overall Framework

Figure 1 shows the overall framework of semi-supervised sentiment classification
based on auxiliary task learning. The basic idea is making human-annotated samples,
i.e., labeled samples, and auto-annotated samples to learn from each other to assist
completing the sentiment classification. Specifically, two sentiment classification tasks
are designed, i.e., a main task and an auxiliary task. The main task implements the
sentiment classification of human-annotated samples. The auxiliary task implements
the sentiment classification of auto-annotated samples. The two tasks share the auxil-
iary LSTM layer, i.e., the auxiliary task completes the auxiliary sentiment classification
through the auxiliary LSTM layer, and the main task completes the main sentiment
classification with the auxiliary expression obtained by the auxiliary LSTM layer.
Finally, joint learning the loss function of the two task to improve the performance of
the main task.
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4 Automatic Labeling Method for Unlabeled Samples

In order to complete the experiment of the semi-supervised sentiment classification
method proposed in this paper, we need to obtain the label of the unlabeled samples.
Firstly, we use the information gain (IG) algorithm [10–12] to extract 1000 positive
feature words from positive labeled samples and 1000 negative feature words from
negative labeled samples. The extraction method of positive feature words is to cal-
culate the IG value of each word appearing in the positive samples, sort the IG values in
descending order, and take the words corresponding to the first 1000 IG values as the
positive feature words. The extraction method of negative feature words is the same as
the positive feature words. Then, the unlabeled samples are divided into positive and
negative categories according to the number of positive and negative feature words
included in each sample in the unlabeled sample, wherein only the occurrence or non-
occurrence of the feature words is considered, and the frequency is not considered. The
specific algorithm is shown in Fig. 2:

Automatic 
annotated

Auxiliary taskMain task

Human-annotated 
samples

Auto-annotated 
samples Unlabeled samples

Main LSTM layer Auxiliary LSTM 
layer

Main output Auxiliary output

Fig. 1. The overall framework

Input:
Positive feature set P ; 
Negative feature set N ; 
Unlabeled samples U ; 

Output:
Auto-annotated samples T

Procedure: 
Loop until 
1) Calculate the number of positive words CP contained in the sample ac-

cording to the set P
2) Calculate the number of negative words CN contained in the sample ac-

cording to the set N
3) If CP>CN, label the sample as positive

If CP<CN, label the sample as negative
If CP=CN, label the sample randomly 

4) Add the new auto-annotated sample into T

U = ∅

Fig. 2. The algorithm of obtaining auto-annotated samples
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5 Semi-supervised Sentiment Classification Based
on Auxiliary Task Learning

This section mainly introduces semi-supervised sentiment classification method based
on auxiliary task learning. First, we introduce the basic LSTM neural network. Second,
we propose a method of the sentiment classification of human-annotated samples
sharing the auxiliary LSTM layer with the sentiment classification of auto-annotated
samples, so as to make full use of the information of the unlabeled samples.

5.1 LSTM Model for Sentiment Classification

Long Short-Term Memory Network (LSTM) is a special kind of Recurrent Neural
Network (RNN) and it aims to learn long-dependency correlations in a sequence [13].
We adopt the standard LSTM layer used by Graves [14].

First, the one-hot feature representation of the text T is used as an input to the
LSTM layer and a new representation h is obtained. The formula is as follows:

h ¼ LSTMðTÞ ð1Þ

Then, the output of the LSTM layer is propagated to the fully connected layer, and
the output of the fully connected layer h� is obtained by weighting the activation
function, i.e.,

h� ¼ denseðhÞ ¼ /ðhThþ bÞ ð2Þ

where / is a non-linear activation function, and “Relu” is used as an activation function
[15]. “Relu” will cause the output of some neurons in the network to be 0, which
reduces the dependence between parameters and is closer to the biological activation
model, alleviating the occurrence of overfitting. hT is the weight matrix and b is the
bias.

In order to reduce the model complexity and prevent the network from overfitting
the training samples, we add the dropout layer after the fully connected layer. The
dropout layer randomly ignores some hidden units in the network during training. This
paper uses the dropout layer as a hidden layer in the network:

hd ¼ h� � Dðp�Þ ð3Þ

where D denotes the dropout operation and p� denotes the dropout probability. hd is the
output of h� after the dropout layer operation.

Finally, using the softmax layer to complete the classification task, the predicted
probability is obtained by the following formula:

p ¼ softmaxðWdhd þ bdÞ ð4Þ

where Wd and bd are the parameters for the softmax layer. p is the conditional prob-
ability distribution over the two categories of sentiment, i.e., positive and negative.
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5.2 Aux-LSTM Model for Semi-supervised Sentiment Classification

Figure 3 shows the overall architecture of the semi-supervised sentiment classification
method based on auxiliary LSTM (Aux-LSTM), which mainly includes one main task
and one auxiliary task.

• The main task-using human-annotated samples

This part describes the main task of the semi-supervised sentiment classification
method, consisting of the main LSTM layer and the auxiliary LSTM layer:

hmain1 ¼ LSTMmainðTinput1Þ ð5Þ

hmain2 ¼ LSTMauxðTinput1Þ ð6Þ

where Tinput1 represents the one-hot feature representation of the human-annotated
samples. hmain1 and hmain2 represent the output through the main LSTM layer
(LSTMmian) and the auxiliary LSTM layer (LSTMaux) respectively.

Then, we feed hmain2 to the fully connected layer and get an auxiliary representation
Raux through a dropout layer:

Raux ¼ denseðhmain2Þ � Dðp�Þ ð7Þ

Fully connected 
layer

1inputT 2inputT

1mainh

⊕

auxR

2mainh auxh

d
auxh

auxR

Dropout layer

Softmax layer

1inputT 2inputT

Main LSTM layer Auxiliary LSTM 
layer

Auxiliary LSTM 
layer

Auxiliary task 
output

Auxiliary task 
output

Fully connected 
layer

Dropout layer

Fully connected 
layer

Dropout layer

Softmax layer

Main task output

Fig. 3. Overall architecture of Aux-LSTM for semi-supervised sentiment classification
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We can obtain a novel representation after concatenating above two representation
hmain1 and Raux and use them as the input of a fully connected layer followed by a
dropout layer in the main task:

hdmain ¼ denseðhmain1 � RauxÞ � Dðp�Þ ð8Þ

where � denotes the concatenate operator.
Finally, softmax layer is used to complete the classification, refer to 5.1 for details.

• The auxiliary task-using auto-annotated samples

This part describes the auxiliary task of the semi-supervised sentiment classification
method. The auxiliary LSTM layer, which is the LSTM layer shared by the main task
and the auxiliary task, has the same input sequence and weight as the auxiliary LSTM
layer in the main task:

haux ¼ LSTMauxðTinput2Þ ð9Þ

where Tinput2 denotes the one-hot feature representation of the auto-annotated samples.
Then, we use the output of the auxiliary LSTM layer as the input to the hidden

layer:

hdaux ¼ denseðhauxÞ � Dðp�Þ ð10Þ

Finally, softmax layer is used to complete the classification, refer to 5.1 for details.

• Joint learning-using both human-annotated and auto-annotated samples

In order to better learn the parameters of the auxiliary LSTM layer in the model, we
weighted the loss function of the main task and the auxiliary task to obtain the joint
learning loss function, i.e.,

loss ¼ kðlossmainÞþ ð1� kÞðlossauxÞ ð11Þ

where k denotes the weight parameter, here we set 0.75 to reduce the noise of the
auxiliary task. lossmain is the loss function of the main task, while lossaux is the loss
function of the auxiliary task. We take Adam [16] as our optimizing algorithm.

6 Experiments

6.1 Experimental Settings

In this paper, we use the corpus of Amazon product reviews, which is annotated by
Blitzer et al. [17]. The corpus consist of four domains: Book, DVD, Electronics, and
Kitchen. In the experiment of each domain, we select 100 instances as labeled data for
training and 400 instance are used as test. The task of the experiment is to determine
whether the sentiment of a text is positive or negative. According to the number of
unlabeled samples, we make four sets of experiments. The number of training samples
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for each set of auxiliary tasks, i.e., the number of auto-annotated samples, is 750, 950,
1200, and 1450 respectively. The test samples for each set of experiments in auxiliary
task is the same as the main task.

The classification feature used in the experiment is the one-hot representation of
text. Specifically, we first construct a dictionary in descending order of occurrence
frequency of word features in all corpus, and then use the subscripts of the word in the
dictionary, thereby constructing the feature vectors of the samples. We use the LSTM
neural network as the basic classification algorithm. The specific parameter settings of
the LSTM neural network model are shown in Table 1.

We employ accuracy to measure the performance of the classification. It gives an
average degree of the similarity between the predicted and ground truth label sets of all
test samples, i.e.,

Accuracy ¼ 1
m

Xm

i¼1

1yi¼y0i
ð12Þ

where m is the number of all test samples, yi is the true label and y
0
i is the estimated

label.

6.2 Experiments

For thorough comparison, we implement the following approaches to semi-supervised
sentiment classification:

• ME: We employ the maximum entropy classifier in the MALLET Machine
Learning Toolkit1. All parameters of the algorithm are set to default values. Here we
only use the human-annotated samples to train the classification model.

• Co-training: The idea of the Co-training algorithm is to train multiple classifiers
with multiple independent views, and then iteratively expands labeled samples and
retrains them using that new labeled samples. In the implementation, we use each
feature subspace as a representation view of text, and multiple feature subspaces
correspond to different views.

Table 1. Parameters setting in LSTM

Parameter description Value

Dimension of the LSTM layer output 128
Dimension of the full-connected layer output 64
Dropout probability 0.5
Epochs of iteration 30

1 http://mallet.cs.umass.edu/.
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• LP: LP algorithm uses the relationship between the samples to establish a relational
complete graph model. In the complete graph, the nodes include labeled and
unlabeled samples, and the edges represent the similarity of the two nodes. The
labels of the nodes are transmitted to other nodes according to similarity.

• Semi-stacking: Li et al. [18] integrate two or more semi-supervised learning
algorithms from an ensemble learning perspective. Specifically, they apply meta-
learning to predict the unlabeled samples and proposed N-fold cross validation to
guarantee a suitable size of the data for training the meta-classifiers.
LSTM: We use the standard LSTM model, which includes a LSTM layer, a fully
connected layer, and a dropout layer. The method used here for unlabeled samples
is to train the one-hot feature with the labeled and unlabeled samples.

• Aux-LSTM: The method of the auxiliary LSTM described in Sect. 5.

In this paper, four sets of experiments are conducted on sentiment classification
based on different numbers of auto-annotated samples. Figure 4 shows the experi-
mental results which the number of the auto-annotated samples is 2900.

From Fig. 4, it can be seen that the results of sentiment classification using auto-an-
notated samples are significantly better than those using only human-annotated sam-
ples, i.e., ME. The method of Co-training has significantly improved in the domains of
DVD, Book and Kitchen, but has not improved in the Electronic. However, the method
of LP has slightly improved in the domains of DVD, Electronic and Kitchen, but there
is almost no improvement in the Book. Semi-stacking combines the advantages of the
Co-training and LP algorithms, and the accuracy in the four domains is significantly
improved. The results of our method (Aux-LSTM) in four domains are clearly superior
to those using only human-annotated samples for sentiment classification. Although
performance similar to the Semi-stacking method was achieved in the domain of
Kitchen (accuracy is 0.2% lower), performance in the DVD, Book, and Electronic was
significantly higher than other semi-supervised methods. For example, in the domains
of DVD, Book, and Electronic, our method has improved 4%, 2.3% and 2.8%
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Fig. 4. Performances of different approaches to semi-supervised sentiment classification in four
domains (The number of the auto-annotated samples is 2900)
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respectively compared with Co-training method. This result fully shows that the Aux-
LSTM model can effectively reduce the impact of incorrect auto-annotated samples on
the semi-supervised sentiment classification task, and can better improve classification
performance than other traditional semi-supervised sentiment classification methods.

7 Conclusion

This paper proposes a semi-supervised sentiment classification method based on
auxiliary task learning. The method first annotates the unlabeled samples automatically
with IG algorithm to obtain the auto-annotated samples. Then, it assists in sentiment
classification of the human-annotated samples (main task) through the sentiment
classification of the auto-annotated samples (auxiliary task). Finally, joint learning the
loss function of the two task to improve the performance of the main task. The
experimental results show that the semi-supervised sentiment classification method
proposed in this paper can make full use of unlabeled samples to improve the per-
formance of sentiment classification, and is superior to the current mainstream semi-
supervised sentiment classification methods.
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Abstract. Abstractive summarization based on seq2seq model is a popular
research topic today. And pre-trained word embedding is a common unsuper-
vised method to improve deep learning model’s performance in NLP. However,
during applying this method directly to the seq2seq model, we find it does not
achieve the same good result as other fields because of an over training problem.
In this paper, we propose a normalized encoder-decoder structure to address it,
which can prevent the semantic structure of pre-trained word embedding from
being destroyed during training. Moreover, we use a novel focal loss function to
help our model focus on those examples with low score for getting better
performance. We conduct the experiments on NLPCC2018 share task 3: single
document summary. Result showed that these two mechanisms are extremely
useful, helping our model achieve state-of-the-art ROUGE scores and get the
first place in this task from the current rankings.

Keywords: Summarization � Seq2Seq � Pre-trained word embedding
Normalized encoder-decoder structure � Focal loss

1 Introduction

Summarization is the task to compress a piece of text to a shorter version that contains
the main ideal of the original. There are two main approaches to summarization:
extractive and abstractive. Extractive method is taking some sentences directly from the
source text. While Abstractive method is generating novel words and sentences not
featured in source text. Abstractive is more difficult than extractive because it trans-
forms the source text to summary in human-like style, which require its incorporation
of real-world knowledge. Recently, due to the success of seq2seq model with attention
mechanism [1, 2], abstractive approaches get greatly development and most of studies
are based on this model [3–5].

However, although these systems are promising, they are based on large-scale
corpus, which may not perform well in small dataset. NLPCC2018 share task 3 is a
single-document-summary task with small training dataset, which only contains 50,000
articles with summary. To get the better performance on this small corpus, we try to use
the pre-trained word embedding like [4] but do not get the corresponding improvement
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because of that the semantic structure of pre-trained word embedding is very easy to be
destroyed during training, causing the model to diverge (see Fig. 2 from Sect. 2).

After many attempts, we present a novel normalized encoder-decoder structure to
solve this problem, in which we add a normalization layer in both encoder and decoder
to prevent the semantic structure of pre-trained word embedding from being damaged
by over training, which has an incredible effect in our experiments.

What’s more, inspired by the reference [6], we also identify the same sample
imbalance problem in text summarization that there is a small part of examples from the
whole dataset the model difficultly fits well and gets low score on it. we propose a
novel focal loss function to force our model pay more attention on those hard examples
during training for getting better performance. This loss function is from above paper
and has never been used in text summarization.

We apply our models in NLPCC2018 share task 3, and the experimental results
show that these two mechanisms are extremely useful and help us achieve state-of-the-
art ROUGE scores, getting the first place in this task finally.

2 Our Models

In this section, we describe (1) baseline sequence-to-sequence model (2) copy and
coverage mechanisms (3) our normalized encoder-decoder structure and focal loss.

2.1 Sequence-to-Sequence Attentional Model

Our baseline model is similar to that of [7]. After being segmented, Chinese sentence
was transformed to tokens w_si, which will be fed into the encoder (a single-layer bid-
reaction LSTM), producing a sequence of encoder hidden state h_si, abstractly com-
puted as:

h si ¼ f ðh si�1; w siÞ ð1Þ

Where f computes the current hidden state given the previous hidden state h_si−1
and source tokens w_si and can be either an Elman RNN unit, a GRU, or a LSTM unit.
In this paper, we use LSTM unit as encoder and decoder.

During decoding, the structure is the same as encoder in addition to an input of last
hidden state h_tt−1, abstractly computed as:

h tt ¼ f ðh tt�1; ½w tt�1; h tt�1�Þ ð2Þ

Them, an attentional hidden state is produced as follows:

~ht ¼ tanhðWc½ct; h tt�Þ ð3Þ

eti ¼ vT tanhðWa½h tt; h si� þ baÞ ð4Þ
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at ¼ softmaxðetÞ ð5Þ

ct ¼
X

i
atih si ð6Þ

At first, we calculate the attention distribution ai as the concat attention in [7] (4)
(5). Next, the attention distribution is used to produce a weighted sum of the encoder
hidden states, known as the context vector ct (6). At last, an attentional hidden will be
calculate by (3), where the Wc is learnable parameter.

Finally, we produce the vocabulary distribution Pvocab by h
�
:

pvocab ¼ softmaxðWvocab
~hþ bvocabÞ ð7Þ

During training, the loss for time step t is the negative log likelihood of the target
word’s vocabulary probability Pvocba(w_tt) for that time step:

losst ¼ � log pvocabðw ttÞ ð8Þ

2.2 Copy and Coverage Mechanisms

Pointer-Generator Network
To deal with the out-of-vocabulary (OOV) words problem, we take the pointer-
generator network, which was proposed from [5] as copy mechanism (see Fig. 1).
A copy probability Pcopy 2 [0,1] will control the model whether generate the target
word from Pvocab (7) or from at.

pcopy ¼ rðWT
~h
~hþ bcopyÞ ð9Þ

Where ~h is an attentional hidden state calculated by Eq. (3).
The final word distribution is presented as follow:

PðwÞ ¼ pcopyPvocab þð1� pcopyÞ
X

wi¼w
ati ð10Þ

Note that if the pcopy is zero, the model will copy the word from the ith word of
source sequence text whose ati is the Maximum value in at. Otherwise, if pcopy is one,
The model will generate target word from vocabulary distribution.

The loss function is the same as Eq. (8) by replace pvocab with P(w).

Coverage Mechanism
We also apply coverage mechanism [5] to prevent the model generate the same word
repeatedly. In each decoder step t, we will calculate a coverage vector

cot ¼
Xt�1

k¼1
ak ð11Þ
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The cot will be used to prevent each word from being generated more than once by
the penalty loss as follow:

losstcov ¼
XL
k¼1

minðcotk; atkÞ ð12Þ

Where the L is the length of source text.
Finally, the total loss function for training the model is the weighted sum of

negative log-likelihood P(w) (10) and coverage loss (12), and the k will be set to 1 as
hyperparameter:

Loss ¼ 1
T

XT
t¼1

ð� logPðwtÞþ klosstcovÞ ð13Þ

2.3 Normalized Encoder-Decoder Structure and Focal Loss

Normalized Encoder-Decoder Structure
Conventional seq2seq abstractive models are built for training on the large-scale corpus
such as CNN/Daily Mail dataset (with 287,113 training examples) [8] and Gigaword
corpus (with 5 million examples) [9], which may cause their hardly performing well on
small datasets. We try to use pre-training word embedding such as word2vec [10] to
deal with this problem.

However, during our experiments, we find that directly loading the pre-trained
word embedding to model cannot make a good result, even make the model eventually
diverge because of over training problem (see Fig. 2).

The semantic structure of pre-trained word embedding is very easy to be destroyed
during training the whole seq2seq model even if fixed it before training.

Fig. 1. Copy mechanism in the model. In the decoder step t, the final P(w) is calculated by the
sum of attention distribute at and vocabulary distribution Pvocab
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After several trials, we find that using normalization layers can protect the semantic
structure of word embedding from being destroyed during training, which is a new
feature and never have been proposed in NLP.

Normalization layer was proposed for accelerating model’s training. In this paper,
we find it have ability of keeping the semantic structure of word embedding. we propose
a normalized encoder-decoder structure (see Fig. 3). We add a normalization layer [11]
between RNN and Embedding layer, apply this structure in both encoder and decoder.
The result (see Fig. 5 from the Sect. 4) shows that our model is effectively prevent the
model from diverging and maximizing the performance of pre-trained word embedding.

xnorml ¼ c
x� �xffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ e

p þ b ð14Þ

In Eq. (14), �x is the mean value of x, r2x is the variance, c and b are learnable
parameters.

Focal Loss
Inspired by the approach in reference [6], there may have the same sample imbalance
problem in text summarization. The training difficulty of each example in the training
data is not the same. Moreover, the training difficulty of each word in a sentence
(example) is also not the same, which can be represented by the P(w) from Eq. (10).
The P(w) means that a word is an easy training example where its P(w) closed to 1
because the model can predict it with confidence of one hundred percent, while it will
be a difficultly training word if its P(w) is small to zero.

Fig. 2. The accuracy curve of baseline model with pre-trained word embedding.

Fig. 3. Normalization layer will normalize the word vector before being put in RNN network,
which will be applied in both encoder and decoder.
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Consequently, we need to assign a soft weight to each word’s loss for the model
can pay more attention on those whose P(w) is small for get better performance on it.
The focal loss for it will be presented like follow:

lossfocal lossðwtÞ ¼ að1� PðwtÞÞcð� logðPðwtÞÞ ð15Þ

Where the að1� PðwtÞÞc is the weight of lossw. When the P(wt) is small, the
lossfocal_loss of this word will be enlarged by its weight, which will lead the model
optimizing on this word’s loss more. While if the P(wt) is large to one, the lossfocal_loss
will be close to zero, and it does not provide any help for the final optimization.

The a and the c are hyperparameters, we will set them for 0.25 and 1 for
respectfully in this experiment.

The final loss will calculate by lossfocal_loss and coverage loss (12) like this:

Loss ¼ 1
T

XT
t¼1

ðlossfocal lossðwtÞþ klosstcovÞ ð16Þ

3 Dataset and Experiments

3.1 TTNews Corpus

We training our model on the TTNews corpus provided by NLPCC2018 share task 3.
We use all the news to pre-trained the word embedding. We take 5,000 news with
summary as training set. We take 1,239 examples from the NLPCC2017 test set
(because there are some examples in training set redundantly) as validation set. Finally,
we will predict the summary for the NLPCC2018 test set (with 2,000 examples).

3.2 Experiments

We do with two main experiments. Firstly, we train the following five models
(1) baseline model, (2) baseline model + word2vec, (3) baseline model + fixed
word2vec, (4) normalized encoder-decoder model, (5) normalized encoder-decoder
model + word2vec, comparing their accuracy to prove the validity of our model.

Secondly, we will take the best model from the first result, changing its NLL
(negative log likelihood) into Focal Loss to do contrast experiment.

For all experiments, our basic seq2seq models have 600-dimensional hidden states
bid-LSTM encoder and 1200-dimensional hidden states LSTM decoder. And each
encoder and decoder only have 1 layer. We use a vocabulary of 60k words for both
source and target and set embedding size as 400, and all the models are using copy and
coverage mechanisms.

What’s more, We use Adam as our optimizing algorithm by default hyperparam-
eters (learning rate a = 0.001, two momentum parameters b1 = 0.9 and b2 = 0.999
respectively, and ɛ = 10−8).
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During training and at test time we do not truncate the article or the summary. We
train on a single Titan XP GPU with a batch size of 2. At test time our summaries are
produced using beam search with beam size 5.

We trained all models for about 100,000 iterations, because we will get the best
model in the first 4 epochs for preventing over fitting. Each epoch take about an hour.

We tried different truncated text to train the model, but we found it will reduce the
model performance. We try different a and c of FL and found that the model with FL
will outperform than with NLL in the same learning rate when a = 0.25 and c = 1.

4 Validation and Result

4.1 Accuracy Evaluation

For quickly evaluating training model’s performance on validation set, we count a
accuracy, which is obtained by dividing the number of words appearing both in pre-
diction summary and in target summary by total number of target summary words. The
equation is presented as follow, in which the n is the number of examples.

acc ¼ 1
n

Xn
i¼1

numberðwpredict \wtargetÞ
numberðwtargetÞ ð17Þ

We draw the training accuracy curve of baseline model+word2vec and of nor-
malized encoder-decoder model+word2vec with the iteration numbers as X-axis and
the accuracy as Y-axis (see Figs. 4 and 5).

Fig. 4. The training accuracy curve of baseline model with pre-trained word embedding.

Fig. 5. The training accuracy curve of normalized encoder-decoder model with pre-trained word
embedding.
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Figures 4 and 5 show that the accuracy curve of baseline model with pre-trained
word embedding will be shock to zero suddenly after 15,000 iterations. While for
normalized encoder-decoder model, it is improving stably with the increase of iteration.
Consequently, it is no doubt that our normalized encoder-decoder model is truly useful
for keeping the semantic structure of pre-trained word embedding from being destroyed
during training.

Moreover, to prove the superiority of our model, we train the five models and gets
their accuracy on validation set after each epoch. The result is showed as Fig. 6.

There are three conclusions we can get from above Fig. 6. Firstly, directly loading
the pre-trained embedding to baseline model will lead a terrible result that model will
diverge during training even if fixed it (see curve (2) and curve (3)). Secondly, simply
using normalized encoder-decoder model without pre-trained word embedding will not
bring a significant improvement to result (see curve (1) and curve (4)). Finally, as we
see, the normalized encoder-decoder model with pre-trained word embedding get a
very high accuracy on validation set, which is at least 5% higher than others.

Consequently, there is a reason to believe that our model can maximum the per-
formance of pre-trained word embedding.

We also evaluate normalized encoder-decoder model + word2vec with NLL
(negative log likelihood) and with FL (focal loss) on validation (see Fig. 7). The model
with FL is about 2% accuracy higher than that with NLL, in which we can learn that FL
can really improve the model’s performance compared with NLL.

Fig. 6. The accuracy curves of the following five models on validation set: (1) baseline model,
(2) baseline model+word2vec, (3) baseline model+fixed word2vec, (4) normalized encoder-
decoder model, (5) normalized encoder-decoder model+word2vec.
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4.2 ROUGE

We evaluate our models with the standard ROUGE metric [12]. We report ROUGE-F2,
ROUGE-F4 and ROUGE-SU* for our validation set (with 1,239 examples) by the
official ROUGE script (version 1.5.5) as NLPCC2018 share task 3 require.

We also evaluate our models through online evaluation. NLPCC2017 share task 3
testset: https://www.biendata.com/competition/nlptask03/ and NLPCC2018 share task
3 testset: https://biendata.com/competition/nlpcc2018/.

Showed as the follow Table 1, the performance of each model evaluated by
ROUGE is the same as evaluated by Accuracy.

Our model with focal loss achieve much better scores than others in each ROUGE
points (Despite there is some discrepancy between the data we evaluate and the online
assessment because of the lack of the specific value of rouge script’s parameter using in
online evaluation).

What’s more, our best model (NLPCC2018_DLUT_815) is also the best model in
NLPCC2018 share task 3 competition, getting the 31.292 average ROUGE scores,
which is 1.3 points higher than the second place.

Fig. 7. The accuracy curves for normalized encoder-decoder model with NLL and with FL

Table 1. ROUGE-F from validation set and average ROUGE from NLPCC2017 and
NLPCC2018 online evaluation

Models ROUGE-F2 ROUGE-F4 ROUGE-SU* Testset 2017 Testset 2018

(1) baseline model 0.48764 0.18675 0.64069 0.30524 /

(2) baseline model+word2vec 0.14633 0.01136 0.14545 0.08666 /

(3) baseline model+fixed wor2vec 0.14425 0.01129 0.14396 0.08592 /

(4) normalization encoder-decoder
model + NLL

0.49177 0.18714 0.64607 0.30544 /

(5) normalization encoder-decoder
model + word2vec + NLL

0.50220 0.19615 0.65490 0.31650 /

(6) normalization encoder-decoder
model + word2vec + FL

0.51779 0.20895 0.66309 0.32450 0.31292
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5 Conclusion

In this work, we presented a normalized encoder-decoder model to maximize the effect
of pre-trained word embedding. What’s more, a focal loss we take to help model fit
those difficultly training examples better. The experiments proved these two mecha-
nisms had obviously improved the performance of seq2seq model applying in text
summarization.

Finally, we applied our model on NLPCC2018 share task 3: single document
summary, achieving state-of-the-art ROUGE scores and getting the first place from the
current rankings.

Acknowledgments. This research is supported by the National Key Research Development
Program of China (No. 2016YFB1001103).
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Abstract. In this paper, we report technique details of our approach for
the NLPCC 2018 shared task knowledge-based question answering. Our
system uses a word-based maximum matching method to find entity
candidates. Then, we combine editor distance, character overlap and
word2vec cosine similarity to rank SRO triples of each entity candidate.
Finally, the object of the top 1 score SRO is selected as the answer of
the question. The result of our system achieves 62.94% of answer exact
matching on the test set.

Keywords: Question answer · Knowledge base · Entity linking
Relation ranking

1 Introduction

Automatic open-domain question answering has attracted great attention with
the development of Natural Language Processing (NLP) and Information
Retrieval (IR) techniques. One of the typical tasks named Knowledge-Based
Question Answering (KBQA) is defined to retrieve a specific entity from knowl-
edge base as the answer to a given question.

The challenge of retrieval-based KBQA is how to match unstructured natural
language questions with structured data in knowledge base. To understand a
question, it is necessary to figure out the topic entity and relation chain inside the
question. Thus, topic entity linking and relation ranking are the most important
modules in our system.

2 Related Work

Knowledge-based question answering is a challenging task in the field of NLP.
The mainstream approaches can be divided into three categories: semantic pars-
ing based [1–5], information extraction based [6–8] and retrieval based [9–11].
c© Springer Nature Switzerland AG 2018
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The semantic parsing based approaches translate natural language questions
into a series of semantic representations in logic forms. They query the answer
in knowledge base through the corresponding query statement. Yih et al. [12]
present a semantic parsing method via staged query graph generation. Convo-
lution neural network is used to calculate the similarities between question and
relation chains.

The information extraction based approaches extract topic entities from ques-
tions and generate a knowledge base subgraph with the topic entity node as
the center. Each node in the subgraph can be used as a candidate answer. By
examining the questions and extracted information according to some rules or
templates, they obtain the feature vectors of the questions. A classifier is then
constructed to filter candidate answers based on input feature vectors. Yao and
Van Durme [13] associate question features with answer patterns described by
Freebase. They also exploit ClueWeb, mined mappings between knowledge base
relations and natural language text, and show that it helps both relation predic-
tion and answer extraction.

The idea of retrieval-based method is similar to that of information extrac-
tion based methods. The question and candidate answers are mapped to dis-
tributed representation. The distributed representations are trained on labeled
data, aiming to optimize the matching function between the question and the
correct answer. Zhang et al. [14] combine bi-directional LSTM with an attention
mechanism to represent the questions dynamically according to diverse focuses
of various candidate answers.

These approaches work well on the English open dataset WebQuestion. How-
ever, their performances on a Chinese KBQA dataset have not been presented
before.

3 Our Approach

Figure 1 shows the system architecture of our approach. For each question, the
system finds the entity candidates firstly. And then entity ranking and relation
ranking are conducted seperately to assign each entity candidate and relation a
rank score. Finally, in the answer ranking stage, the system finds the top 1 triple
according to the entity score and relation score. The object entity of the top 1
triple is the answer of the question.

3.1 Entity Linking

Since the entity in the knowledge base has various name, such as Chinese name,
English name, nick name, alias and so on, we build a Entity Map which maps
these names to the original entity. In order to detect the topic entity in the ques-
tion, we use a word-based maximum matching method to find entity candidates.
First of all, the question is segmented by ltp1 [15] segmenter. Then, we join the

1 http://ltp.ai/.

http://ltp.ai/
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Fig. 1. System architecture

words in the question one by one and search it in the Entity Map. If it exists in
the keys of Entity Map, the corresponding value to the key will be added to a
entity candidates list.

Here is an example: consider the question,
. After segmentation, we get a list of words

. Then we filter stop words
and question words , because they are impossible to be part of

entity. After that, two sub-list of words are left, which are
and . Then, we do word-based maximum matching for each sub-list.
For sub-list, , we first join all the words
and search it in the Entity Map. Apparently, it is not a entity. Then, we shorten
the string length by one. Now, we search and in the Entity
Map separately. They are both existing entity, so they are added to the entity
candidates list. For sub-list , we conduct the same operation. In the
end, we get entity candidates:

3.2 Ranking

The knowledge base consists of millions of Subject-Relation-Object (SRO)
triples. Each subject entity has dozens of Relation-Object pairs, each relation
corresponding to only one object entity. Therefore, finding the answer to the
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question is equal to rank the relations of the subject entity and the object entity
corresponding to the top one relation is supposed to be the answer.

After entity candidates have been found in the entity linking section, we can
now collect all SRO triples of theses entities from the knowledge base. In this
section, we combine editor distance score, character overlap score and word2vec
cosine similarity score to rank each entity candidate and their relations.

Edit Distance. The edit distance is a way of quantifying how dissimilar two
strings are to one another by counting the minimum number of operations
required to transform one string into the other. The edit distance score we used
is a variant of the original edit distance. Suppose that the original edit distance
of two strings s1 and s2 is notated as ed(s1, s2), the edit distance score we use is

scoreed = 1 − ed(s1, s2)
max(len(s1), len(s2))

(1)

Character Overlap. The character overlap is the number of overlapped char-
acters in two strings. Greater character overlap suggests that the two strings are
more topic related. We notate the character overlap score as scoreco.

scoreco =
|set(s1)| ∩ |set(s2)|
|set(s1)| ∪ |set(s2)| (2)

Word2vec Cosine Similarity. We train a word2vec model with a 20G
chinese news corpus so that we can obtain a vector for each chinese word in
the vocabulary. Then the string vector is computed as

v(s) =
∑

wi∈s

v(wi) (3)

so the word2vec cosine similarity of two strings is computed as the cosine simi-
larity of two string vectors.

scorew2v =
v(s1) · v(s2)

||v(s1)|| · ||v(s2)|| (4)

Related Score. The related score of two string is defined as:

scorerelated = scoreed + scoreco + scorew2v (5)

Entity Ranking. We rank entity candidate by how many object entity of the
candidate are related with question.

Consider the question . Suppose that there are
more than one entities in the knowledge base and they have different nation-
alities such as etc. and different occupations such as
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etc. When we calculate the related score of each entity candi-
date and the question, apparently the related score of the entity of which the
nationality is and the occupation is will be higher than that of others.
In experience, if the related score is greater than a threshold λ, then we think
that the object entity is related with the question. So entity score is computed
as

scoreaward = (1 + scoreed) × (1 + scoreco) × (1 + scorew2v) (6)

scoreS = 1 ×
∏

o∈S

scoreaward(O,Q) (7)

scoreaward(O,Q) =

{
scoreaward(O,Q) scoreaward(O,Q) ≥ λ

1 scoreaward(O,Q) < λ
(8)

We tune the value of λ from 1.0 to 2.0, gap 0.1, and find that when λ = 1.5 it
achieves the best result on the training data.

Relation Ranking. Before calculating the score, we remove the string cor-
responding to the entity candidate and related object entity for simplify-
ing the computation. For example, after removing the string, the question

becomes .
In addition, we also do question word extension. In some cases, the relation

of entity does not appear in the question. For example, the relation to the ques-
tion is supposed to be or (both refers to “birthday” in English),
however, neither of them exists in the question. So, we map to
and , the latter is called the extension of question word.

Finally, we rank relations of each entity candidate by calculating the related
score of each relation with the quesiton and the extension of question word.

scoreR = α × scorerelated(R,Ext) + β × scorerelated(R,Q ∪ Ext) (9)

where, R refers to relation, Ext refers to the extension of question word, and
Q∪Ext refers to the union of question and ext. The α and β are weight factors.
We set α to be 0.47 and β to be 0.53 according to the experiment.

Answer Ranking. For a SRO triple, we calculate the score as below:

scoreSRO = scoreR × scoreS (10)

scoreS =

{
scoreS scoreaward(O,Q) < λ

1 scoreaward(O,Q) ≥ λ
(11)

where O refers to Object of SRO triple, Q refers to the question and λ is set to
be 1.5 according to the experiment.

If the scoreaward(O,Q) ≥ λ, it suggests that the object is a known fact and
can not be the answer of the question shown as Eq. (11).

We rank SRO by multiplying the score of each relation and the score of
corresponding entity candidate and get the Object from the top 1 SRO as the
answer.
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4 Experiments

4.1 Dataset

In this paper, we use the dataset provided by the NLPCC 2018 open domain
KBQA shared task. The dataset includes 24,479 single-relation question-answer
pairs for training, a Chinese knowledge base with 43M SRO triples, and 7M
mapping data from mentions to entities. The test set contains 618 questions.

Since the mapping data is not what our system desires, we rebuild a Entity
Map from mentions to entities with no word segmentation.

4.2 Setup

The word embeddings used in our system is pre-trained by gensim2. We use the
skip-gram model [16] and the dimension is set to be 300.

4.3 Results

The results of our system achieves 62.94% of answer exact matching on the test
set, which ranks 3rd place in the final leaderboard.

4.4 Error Analysis

We analyze the causes of the error cases (229 in total). 37.6% of errors are caused
by entity linking and 27.9% are caused by relation ranking. 16.6% of errors are
attributed to that the desire answer of the quesiton is the subject entity of the
SRO triple and we can not use object entity to infer subject entity.

In addition, 5.2% of errors are caused by the confliction of knowl-
edge base. For example, to the question ,
our answer is , while the official answer is .
However, in the knowledge base, the entity contains both triples

.
For the last 16.6% of errors, in fact, we find the correct answers, but the

official system judge them as incorrect ones. For example, to the question
, our answer is , while the official answer

is 1970. And in the preprocessing stage, we convert all characters in the knowl-
edge base from full-width to half-width and convert all upper case letter to
lower case, which also cause the official system to judge our correct answer as
wrong one. For example, to the question , our
answer is , while the official answer is . If these
cases caused by wrong judgement and knowledge base confliction are revised,
the answer exact matching of our results will be 69.42%.

2 https://radimrehurek.com/gensim/.

https://radimrehurek.com/gensim/
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5 Conclusion

In this paper, we report technique details of our approach for the NLPCC 2018
shared task knowledge-based question answering. Our system uses a word-based
maximum matching method to find entity candidates. Then, we combine editor
distance, character overlap and word2vec cosine similarity to rank SRO triples
of each entity candidate and get the object of the top 1 score SRO as the answer
of the question.

We also try to use deep learning in entity linking and question-relation match.
However, for entity linking, since the questions of test set are greatly different
from that of training set, the model can not generalize from training data to test
data. For question-relation match problem, it seems to be quite difficult to match
thousands of questions to millions of relations, even by deep learning. And the
number of relations in the training set is 4,385, however the number of that in the
knoweldge base is up to 587,576. It is impractical to train a relation match model
from such a small dataset. Even though, after replacing the provided mention2id
with the entity extension built by us and revising some errors in the knowledge
base, we also achieve good results with statistic and rule-based methods.

References

1. Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: struc-
tured classification with probabilistic categorial grammars. In: UAI (2005)

2. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing proba-
bilistic CCG grammars from logical form with higher-order unification. In: EMNLP
(2010)

3. Liang, P., Jordan, M.I., Klein, D.: Learning dependency-based compositional
semantics. In: ACL (2011)

4. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from
question-answer pairs. In: EMNLP (2013)

5. Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: ACL (2014)
6. Bast, H., Haussmann, E.: More accurate question answering on freebase. In: Infor-

mation and Knowledge Management (2015)
7. Fader, A., Zettlemoyer, L., Etzioni, O.: Open question answering over curated and

extracted knowledge bases. In: Knowledge Discovery and Data Mining (2014)
8. Yao, X.: Lean question answering over freebase from scratch. In: ACL (2015)
9. Bordes, A., Chopra, S., Weston, J.: Question answering with subgraph embeddings.

In: EMNLP (2014)
10. Bordes, A., Weston, J., Usunier, N.: Open question answering with weakly super-

vised embedding models. In: ECML (2014)
11. Dong, L., Wei, F., Zhou, M., Xu, K.: Question answering over freebase with multi-

column convolutional neural networks. In: ACL (2015)
12. Yih, W., Chang, M.-W., He, X., Gao, J.: Semantic parsing via staged query graph

generation: question answering with knowledge base. In: ACL (2015)
13. Yao, X., Van Durme, B.: Information extraction over structured data: question

answering with freebase. In: ACL (2014)



400 H. Ni et al.

14. Zhang, Y., Liu, K., He, S., Ji, G., Liu, Z., Wu, H., Zhao, J.: Question answering over
knowledge base with neural attention combining global knowledge information.
arXiv:1606, p. 00979 (2016)

15. Che, W., Li, Z., Liu, T.: LTP: A Chinese language technology platform. In:
Proceedings of the 23rd International Conference on Computational Linguistics:
Demonstrations, pp. 13–16. Association for Computational Linguistics, August
2010

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space, 7 September 2013. arXiv:1301.3781v3 [cs.CL]

http://arxiv.org/abs/1606
http://arxiv.org/abs/1301.3781v3


A Sequence to Sequence Learning
for Chinese Grammatical Error

Correction

Hongkai Ren1,2, Liner Yang1,2(B), and Endong Xun1,2

1 Beijing Advanced Innovation Center for Language Resources, Beijing, China
2 School of Information Science, Beijing Language and Culture University,

Beijing, China
renhongkai27@gmail.com, yangtianlin08@gmail.com, edxun@126.com

Abstract. Grammatical Error Correction (GEC) is an important task
in natural language processing. In this paper, we introduce our system
on NLPCC 2018 Shared Task 2 Grammatical Error Correction. The task
is to detect and correct grammatical errors that occurred in Chinese
essays written by non-native speakers of Mandarin Chinese. Our system
is mainly based on the convolutional sequence-to-sequence model. We
regard GEC as a translation task from the language of “bad” Chinese
to the language of “good” Chinese. We describe the building process of
the model in details. On the test data of NLPCC 2018 Shared Task 2,
our system achieves the best precision score, and the F0.5 score is 29.02.
Our final results ranked third among the participants.

Keywords: Grammatical Error Correction
Convolutional Sequence to Sequence Model
Neural machine translation

1 Introduction

The rapid development in China attracts people from all over the world to learn
Chinese. Chinese is a historically influential and versatile language. Chinese is
unique in many aspects as opposed to English and other languages. One of the
distinction worth mentioning is its lack of verb conjugations and plural suffixes.
Besides, the sentence expression is very flexible, which means that the rearrange-
ment of word order in various ways may not impact on the sentence meaning.
While handling grammatical complexity comes very naturally to native Chinese
speaker, to be proficient and competent is very challenging to CSL (Chinese as
Second Language) learners. Therefore, it is practical to develop a system auto-
matically correcting grammatical errors, which is the goal of the NLPCC 2018
Shared Task 2.

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 401–410, 2018.
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English grammar correction has been studied for many years with great
progress. In particular, after Ng et al. [13] organize the CONLL-2013 shared task,
a large number of methods based on statistics and neural networks emerge, which
greatly promote the study of English grammar error correction. Chollampatt
et al. [1] propose the phrase-based statistical machine translation (SMT) app-
roach, in which GEC is firstly treated as a translation task. By training the
model to “translate” the “bad” English into the “good” English, they carry
out very promising results. Following the previous work, several neural encoder-
decoder approaches have been put forward for this task. Chollampatt et al.
[2] firstly employ a convolutional encoder-decoder model that achieved good
performance for GEC. Among those, Junczys-Dowmunt et al. [9] demonstrate
parallels between neural GEC and low-resource neural MT. They successfully
adopt several methods from low-resource MT to neural GEC, and achieve the
state-of-the-art results on this task.

While English Grammatical Error Correction is being intensively studied for
years, the same task on Chinese is poorly focused until very recently. In 2014, Yu
et al. [10] organize a Shared Task on Grammatical Error Diagnosis (GED) for
Learning Chinese as a Foreign Language (CFL). The goal of this shared task is to
develop computer-assisting tools for GED of several kinds (i.e., redundant word,
missing word, word disorder, and word selection). The task had led researchers to
focus on Chinese grammar errors correction in computational linguistics. Until
2017, Rao et al. [14] organize the IJCNLP 2017 Shared Tasks on CGED, where
the task still solely concentrates on the detection of the grammatical errors
rather than the automatic generation of corrections. The NLPCC 2018 Task 2
gives NLP researchers an opportunity to develop the Chinese grammatical error
correction system.

This paper is organized as follows: Sect. 2 describes the GEC shared task.
Section 3 illustrates the details of our structure. In Sect. 4, we present our exper-
iment in details, including the data preprocessing and results. In Sect. 5, we
introduce some related work both in English and in Chinese. Last but not least,
the conclusion and a prospect of future work are given in Sect. 6.

2 Grammatical Error Correction

With the expanding influence of China, learning Mandarin Chinese has grown in
popularity around the world. Even though the study of second language learning
has started many years ago, the research of CSL still has a long way to go.

The goal of the NLPCC 2018 Shared Task 2 is to evaluate algorithms and
systems for the automatic detection and correction of grammatical errors from
second language learners of Chinese. Given a Chinese sentence, a GEC system is
expected to correct four types of grammatical errors, including redundant words
(R), missing words (M), bad word selection (S) and disorder words (W).

A grammatical error correction system is evaluated by how well its proposed
corrections or edits match the gold-standard edits. A sentence is first segmented
before evaluation is carried out on a set of sentences. The metrics measured
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at the testing stage are: Precision, Recall and F0.5. Let gi is the set of gold-
standard edits for sentence, and ei is the set of system edits for sentence. The
measurements are defined as follows:

P =
∑n

i=1 |ei∩gi|∑n
i=1 |ei| , (1)

R =
∑n

i=1 |ei∪gi|∑n
i=1 |gi| , (2)

F0.5 = (1+0.52)×R×P
R+0.52×P , (3)

where the intersection between ei and gi is defined as:

ei ∪ gi = {e ∈ ei|∃g ∈ gi ,match(e, g)}. (4)

We choose F0.5 which emphasizes precision twice as much as recall as our F-
measure for that when a grammar checker is put into actual use, the accuracy of
its corrections is profoundly valued in order to gain users’ acceptance. Negligence
in offering a correction is not as bad as giving a wrong one. The NLPCC 2018
Shared Task 2 use the MaxMatch (M2) scorer1 [4] as the official scorer. The M2

scorer efficiently searches for a set of system edits that maximally matches the
set of gold-standard edits specified by an annotator.

3 Methodology

Sequence-to-sequence model has been proven to be powerful in many tasks such
as machine translation [12], speech recognition [3] and text summarization [15].
Our model for the task of GEC, inspired by the work of Gehring et al. [6], is
based on a fully convolutional encoder-decoder architecture with multiple layers
of convolutions and attention mechanisms. Most grammatical errors are often
localized and dependent more heavily on the nearby words. Therefore, we take
advantage of the convolutional neural networks (CNNs), as it can capture local
context more effectively than RNNs by performing on smaller windows over the
word sequences. Wider contexts and interactions between distant words can also
be captured by a multilayer hierarchical structure of convolutions. Moreover, an
attention mechanism that assigns weights over the source words based on their
relevance is used when predicting the target word. One benefit of our model is
that only a fixed number of nonlinear operations are implemented on the input
disregarding its length, whereas when using RNNs, the number of nonlinear
operations is proportional to the length of the input, diminishing the effects of
distant words. In the following section, we will describe our model in details.

3.1 Convolutional Sequence to Sequence Model

We embed input source sentence S given as a sequence of m source words
s1, · · · , sm then lookup embedding vector from embedding matrix for each word
1 http://www.comp.nus.edu.sg/∼nlp/software.html.

http://www.comp.nus.edu.sg/~nlp/software.html
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Fig. 1. The architectures of convolutional sequence-to-sequence model.

si as wsi ∈ R
d. We also equip our model with a sense of order by embedding the

absolute position of input elements p = (p1, · · · , pm) where pj ∈ R
d. Both are

combined to obtain input sentence representations s = (w1 + p1, · · · , wm + pm).
We proceed similarly for output elements that were already generated by the
decoder network to yield output element representations that are being fed back
into the decoder network g = (g1, · · · , gn). Position embeddings are useful in our
architecture since they give our model a sense of which portion of the sequence
in the input or output it is currently dealing with.

In this section, we will describe our model in details. The encoder and decoder
are made up of L layers each, share a simple block structure that computes inter-
mediate states based on a fixed number of input elements. Each block contains
a one dimensional convolution and a non-linearity. The goal of this framework
is to estimate the conditional probability p(yi+1|y1, · · · , yi, S), where S is an
input sentence and {y1, y2, · · · , ym} is the corresponding output sequence. The
architecture of the network is indicated in Fig. 1.
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Encoder. Pass the source token embeddings, s1, · · · , sm, over the linear layer to
get the input vectors of the first encoding layer, h0

1, · · · , h0
m, where h0

i ∈ R
d and

h is the input and output dimension of all encoder and decoder layers. In the first
encoder layer, convolution kernel is parameterized as W ∈ R

(2d×kd), bw ∈ R
2d

and takes as input X ∈ R
k×d which is a concatenation of k input elements

embedded in d dimensions and maps them to a single output element Y ∈ R
2d

that has twice the dimensionality of the input elements. Paddings (denoted by
in Fig. 1) are added at the beginning and end of the source sentence to retain
the same number of output vectors as the source tokens after the convolution
operations.

Y = [A B] ∈ R
2d (5)

This is followed by a non-linearity using gated linear units (GLU) [5]:

GLU(Y ) = A ⊗ σ(B) (6)

where A,B ∈ R
d are the inputs to the non-linearity, ⊗ and σ represent element-

wise multiplication and sigmoid activation functions, respectively. To enable deep
convolutional networks, we add residual connections from the input vectors of
each encoder layer to the output of the layer. The output vectors of the 1th

encoder layer are given by,

hl
i = GLU(Y ) + hl−1

i i = 1, · · · ,m (7)

Each output vector of the final encoder layer, hL
i ∈ R

h, is linearly mapped to
get the encoder output vector, ei ∈ R

d, using weights We ∈ R
d×h and biases

be ∈ R
d:

ei = Weh
L
i + be i = 1, · · · ,m (8)

Decoder. Each decoder layer has its own multi-step attention. To compute the
attention, we combine the current decoder state yl

n ∈ R
h with an embedding of

the previous target element tn−1:

zln = Wzy
l
n + bz + tn−1 Wz ∈ R

d×h bz ∈ R
d (9)

The attention weights αl
n,i are computed by a dot product of the encoder output

vectors e1, · · · , em with zln and normalized by a softmax:

αl
n,i =

exp(eTi zln)∑m
k=1 exp(eTk zln)

i = 1, · · · ,m (10)

The addition of the source embeddings helps to better retain information about
the source tokens. The conditional source context vector xl

n is a weighted sum
of the encoder outputs as well as the source embeddings:

xl
n =

m∑
i=1

αl
n,i(ei + si) (11)
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The context vector xl
n is then linearly mapped to cln ∈ R

h. The output vector
of the lth decoder layer, gln, is the summation of cln, yl

n, and the previous layer’s
output vector gl−1

n .

gln = yl
n + cln + gl−1

n (12)

The final decoder layer output vector gLn is linearly mapped to dn ∈ R
d. Dropout

[18] is applied at the decoder outputs, embeddings, and before every encoder and
decoder layer. Finally, we compute a distribution over the T possible next target
elements yi+1 by transforming the top decoder output dn via a linear layer with
weights Wo and bias bo:

p(yi+1|y1, · · · , yi, S) = softmax(Wodn + bo) ∈ R
T (13)

4 Experimental Setup

4.1 Data

We conduct our experiment on the dataset of NLPCC 2018 Evaluation Task
2, which is collected from Lang-8 website2, a multilingual language learning
platform providing language exchange Social Networking Service, with native
speakers from more than 190 countries and 90 languages.

The full dataset, containing 1,220,069 sentence pairs, has no validation set.
We randomly split the whole dataset into two parts: a validation set with 5k
sentence pairs that have inconsistency between the source sentence and the target
sentence and a training set with all the remaining 1,215,876 sentence pairs. In
our experiments, we found that adding the sentence pairs that are identical
on both sides could improve the result. Therefore we add all sentences with no
grammatical error into the training set. The test data contains 2k sentence pairs.
The statistic of the dataset shows in Table 1.

Table 1. Statistics of training, validation and test data. Unchanged refers to unchanged
sentence pair. Changed refers to changed sentence pair. Src refers to source wrong
sentences. Trg refers to target correct sentences.

Unchanged Changed Words (Jieba) Characters

Training Src 123,500 1,091,569 15,532,349 25,102,706

Training Trg 123,500 1,091,569 16,261,275 26,318,823

Validation Src – 5,000 63,974 103,543

Validation Trg – 5,000 67,342 108,965

Test Src – 2,000 37,420 61,314

2 http://lang-8.com/.

http://lang-8.com/
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Table 2. Examples of two word segmentation methods.

4.2 Data Preparation

Word Segmentation. Since the evaluation criteria is based on the word-level,
we firstly segment the large corpus using jieba3 toolkit, which is a Python module
for Chinese word segmentation. As is well known, Chinese word segmentation
constantly faces the difficulty of multi-granularities. Remarkably, jieba deals with
this kind of problem with flying colors. By comparing the experimental results
of word segmentation with other word segmentation tools, we found that using
jieba can achieve superior performance.

Subword. The subword method is initially proposed by Byte Pair Encoding
(BPE) which is an effective data compression technique. Sennrich et al. [17]
adopted BPE for word segmentation in neural machine translation (NMT) task
which helps to solve the problem of rare and unknown words. The task of gram-
matical error correction has the similar problem like out-of-vocabulary (OOV)
words in the summary generation. Hence, we apply this BPE algorithm to our
task, which splits rare words into multiple frequent subwords. The results of the
two segmentation methods are showed in Table 2. In our experiments, the use of
BPE algorithm can greatly enhance the performance of the model. For detailed
comparison results, see Sect. 4.3.

Word Embeddings. Word representations learned from large corpus have
shown to be beneficial in many NLP tasks, such as part-of-speech tagging, depen-
dency parsing and machine translation. We initialize the word embeddings for
the source and target words with pre-trained word embeddings learned from a
unlabeled large corpors. Word segmented by jieba tool, and rare words in this
Chinese corpus are split into subword units by Byte Pair Encoding algorithm
as we use similar preprocessing for the training dataset that is used to train the
network. We use the structured-skipngram model in Wang2Vec tool [11] to train
word vectors, which can solve syntax problems well and have information about
the words order. In our experiments, the use of pre-trained word embedding
can greatly enhance the performance of the model than initializing the network
randomly. For detailed comparison results, see Sect. 4.3.

4.3 Experiment Results

We adopt the widely used MaxMatch Scorer toolkit for evaluation. Table 3 shows
the results. Our basic model (CS2S) with no use of any additional knowledge
3 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba
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or strategy achieves 18.11 in F0.5. The F0.5 score increase to 20.11 with the
utilization of pre-trained word embedding. By adapting the BPE algorithm to
the preparation of the dataset, the performance boosts by 9.69 in F0.5 (from
18.11 to 27.80). The results are consistent with our intuition that the BPE is
supportive to the seq2seq model by upgrading its ability to generate unknown
words.

Led by the previous experiments, we equip our model with both pre-trained
embedding and BPE algorithm (CS2S+BPE+Emb). This model achieves 29.02
in F0.5. Last but not least, we initialize the parameters of the fully equipped
model with 4 different seeds. By ensembling the 4 models saved with different
initializations, our approach achieves an F0.5 score of 30.57, surpassing the best
published result of 29.91 in F0.5 (TeamID is Fighter Plane) previously. Due to
time suppress, we couldn’t submit the results of the ensembled model.

Compared to English GEC, the best F0.5 score we gain is an unsatisfying
30.57. To some extent, it lies on the scale of task and the deficiency of training
data. So there is much to be explored for the task of Chinese GEC.

Table 3. Results on test dataset. +BPE refers to using byte pair encoding algorithm
to preprocess data. +Emb indicates of using pre-trained embedding. Ensemble refers
to merging results of 4 models with different initialization.

System P R F0.5

CS2S 21.28 11.36 18.11

CS2S+Emb 23.22 13.10 20.11

CS2S+BPE 40.27 12.90 27.80

CS2S+BPE+Emb 41.73 13.08 29.02

CS2S+BPE+Emb (ensemble) 47.63 12.56 30.57

5 Related Works

Grammatical Error Detection and Correction in CONLL-2013 and CONLL-
2014 shared Task attracted a lot of English NLP researchers. Many different
approaches were proposed by those participants, e.g. hand-crafted rules, statis-
tical model, translation model and language model.

Statistical machine translation [8] has achieved good results, which can
correct various types of errors and complex error patterns. However, SMT-
based systems suffer from limited generalization capabilities compared to neural
approaches and are unable to access longer source and target contexts effec-
tively. To address these issues, several seq2seq approaches relying on RNNs were
proposed for GEC.

At present, encoder-decoder frameworks are widely used for tasks like
machine translation. Yuan et al. [19] first applied a popular neural machine
translation model, RNNSearch. Ji et al. [7] proposed a hybrid word-character
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model based on the hybrid machine translation model, by adding nested levels
of attention at the word and character level. More recently, Schmaltz et al. [16]
used a word-level bidirectional LSTM network trained on Lang-8 and NUCLE
with edit operations (insertions, deletions, and substitutions) marked with spe-
cial tags in the target sentences.

More recently, Gehring et al. [6] propose an architecture for sequence to
sequence modeling that is entirely convolutional. The model is equipped with
gated linear units and residual connections, and also use attention in every
decoder layer and demonstrate that each attention layer only adds a negligi-
ble amount of overhead. It performs well on some published dataset, because
convolutional networks do not depend on the computations of the previous time
step and therefore allow parallelization over every element in a sequence, so
training and decoding speed is faster.

Due to the similarity between MT and GEC illustrated above, an encoder-
decoder model can also be employed for the latter, where the encoder network
is used to encode the potentially erroneous source sentence in vector space and
a decoder network generates the corrected output sentence by attending to the
output of the encoder stack.

6 Conclusion and Future Work

This paper describes our system in the NLPCC 2018 Shared Task 2 for GEC. We
explored a seq2seq model based entirely on convolutional neural network. The
application of BPE-based algorithm to split rare words into multiple frequent
subwords makes the GEC model more capable of handling OOV problem. We
achieved highest precision scores and F0.5 score is 30.57.

At this stage, we believe the task is far from solved. Lots of improvements
can be made to our current model. In the future, we will continue to work on this
problem. Possible future directions include combining grammatical error correc-
tion with other related multi-task models, adding more features to the model
and adapting pre-trained language model. Aside from the model architecture,
due to the flexibility and intricacy of Chinese grammar, how to evaluate the
automatic grammatical correction also remains a big challenge. In our future
work, we will investigate better measurements and criteria for evaluation. Our
code is released at https://github.com/blcu-nlp/NLPCC 2018 TASK2 GEC.
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Abstract. Emotion detection in code-switching texts aims to identify the
emotion labels of text which contains more than one language. The difficulties
of this task include problems in bridging the gap between languages and cap-
turing crucial semantic information for classification. To address these issues,
we propose an ensemble model with sentiment words translation to build a
powerful system. Our system first constructs an English-Chinese sentiment
dictionary to make a connection between two languages. Afterwards, we sep-
arately train several models include CNN, RCNN and Attention based LSTM
model. Then combine their classification results to improve the performance.
The experiment result shows that our method has a good effect and achieves the
second place among nineteen systems.

Keywords: Emotion detection � Code-switching � Neural networks
Sentiment words translation

1 Introduction

With the rapid development of the Internet, more and more people tend to express their
emotions through text in the online community. Emotion detection has become a hot
research topic. Previous work on emotion detection mostly focused on analyzing
emotions from monolingual text [1]. However, many users often post code-switching
texts in social media, and some researchers start to study how emotions are expressed
with code-switching texts.

Code-switched emotion detection is a challenging task in emotion analysis which
aims to assign emotion labels to code-switching texts. Code-switching texts contain
more than one language [2]. For example, the code-switching instances below show
that happiness emotion in [a] is expressed by monolingual form and sadness emotion in
[b] is expressed by bilingual form.

[a] , have a nice time。 (happiness)
(The happy vocation has begun, have a nice time.)
[b] 。 (sadness)
(I have been teaching the whole day, my throat can’t take it any more)

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 411–419, 2018.
https://doi.org/10.1007/978-3-319-99501-4_37
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Most existing methods respectively focus on emotion detection [3–6] and code-
switching text analysis [7, 8]. Relatively few researches [9, 10] consider detecting
emotion in code-switching text. The problems of this task are how to bridge the gap to
between two languages and how to model the code-switching text to detect emotion.

Motivated by the significant improvements of deep neural networks in many NLP
tasks [11], we propose an effective ensemble model with sentiment words translation to
tackle these problems. Our system mainly consists of three parts. Firstly, we utilize
both Chinese and English sentiment lexicons and an English-Chinese dictionary to
translate the English sentiment words in a sentence to Chinese. Afterwards, we sepa-
rately train several models include CNN, RCNN and Attention based LSTM model.
Finally, we ensemble their classification results to improve the performance.

The main contributions of our work can be summarized as follows:

• We construct an English-Chinese sentiment words dictionary to build a connection
between bilingual forms.

• We propose an ensemble of neural networks to detect emotion which can extract
local features, focus on silent parts and capture contextual information of a whole
sentence.

• Experimental result indicates that our approach outperforms several base methods
and has a good effect.

2 Related Works

Most existing emotion detection methods focus on the monolingual text. Yang et al.
propose an emotion-aware topic model to build a fine-grained domain-specific emotion
lexicon [4]. Li et al. build a factor graph to incorporate both the label and context
dependency for emotion classification [5]. Neural networks are also introduced because
of the good performance in many NLP tasks. Abdul-Mageed et al. use gated recurrent
neural networks (GRNNs) for fine-grained emotion detection [6]. Emotion detection
can be formalized as the task of classifying whether the post belongs to the given
emotion or not. There are some neural networks proposed for text classification,
including convolutional neural network (CNN) [12], recurrent convolutional neural
network (RCNN) [13], and hierarchical attention network (HAN) [14]. Inspired by
these neural networks, we propose an ensemble model to combine the virtues of them.

Recently with the trends of code-switching text on social media, several methods
have been proposed to detect emotions of bilingual texts. Lee et al. construct a Chinese-
English code-switching corpus for emotion detection and combine maximum entropy
based Chinese text classifier and English text classifier [1]. Wang et al. use both the
machine translation based bilingual information and sentimental information to build a
relation between two languages [9]. Wang et al. apply a bilingual attention model to
focus on important words on both monolingual and bilingual contexts and combine the
attention vectors to predict the emotion [10].
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3 System Preprocessing

3.1 Text Preprocessing

Many texts contain hyperlinks to other web pages which are senseless for emotion
detection. We use regular expression to replace all the links with the token URL.

We convert all the English characters into lower case and remove some special
tokens such as ‘\xa0’ and ‘\u3000’.

We further segment the tokens which contain bilingual words. For example, split
‘high ’ into ‘high’ and ‘ ’.

3.2 Word Embeddings

Word embeddings are continuous low-dimensional vector space representations of
words which can better capture semantic and syntactic information. Word embeddings
play an important role in sentiment analysis with neural networks [11]. The pre-trained
word embeddings from a large task-related unlabelled data can enhance the perfor-
mance of classifiers. In our experiments, all word embeddings are initialized by
word2vec [12], the word vectors are pre-trained on a large unlabelled corpora which is
collected from Sina Weibo. We measure the performance of some bilingual pairs from
our pre-trained word embeddings, we find some English words and their Chinese
translation have been mapped to close vector space. Thus, in this paper, we only
translate the English sentiment words.

3.3 Sentiment Words Translation

Sentiment words are vital for emotion detection. If the English sentiment words in text
have been mapped to a wrong space, the neural model can’t predict the emotion
correctly. To bridge the gap between two languages, we build an English-Chinese
sentiment words dictionary. Firstly we use iciba dictionary1 to translate all of English
sentiment words [16] to Chinese. Then choose the word from candidate translation
which is also included in a Chinese sentiment lexicon2 as the only translation. Finally
we get an English-Chinese sentiment dictionary with the length of 4040 and we utilize
it to map the English sentiment words in text to the Chinese sentiment words.

4 Ensemble Model

In this paper, we respectively implement three models include CNN, RCNN and
Attention based LSTM. For each model we first embed every word in the sentence into
a word vector space so that a sentence can be represented as a matrix X = [x1,x2,…,xt]

1 http://dict-co.iciba.com/search.php?word=good.
2 DUTIR Chinese Sentiment Lexicon: http://ir.dlut.edu.cn/EmotionOntologyDownload.aspx.
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where xt2Rd and t is the length of sequence. After that, we use different networks to
obtain the sentence representation individually. Finally, we apply the same classifi-
cation layer to get prediction probabilities.

4.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) uses the convolution layers to learn local fea-
tures of text. Our model of CNN, illustrated on Fig. 1 is similar to Kim [12].

We apply several filters of different sizes to the words representation matrix X to
extract n-gram features, with general formulations:

ci ¼ f WXi:iþ h�1þ bð Þ ð1Þ

We then feed the extracted feature maps to a max-pooling layer to get the most
important features cmax ¼ maxi¼1 ci. We combine all the cmax of each filter into one
vector s to represent the whole sentence.

4.2 Long Short-Term Memory (LSTM)

For Attention and RCNN, we use Bi-LSTM to get contextual information of sentence.
Let’s first briefly introduce LSTM. Long Short-Term Memory network (LSTM) can
avoid gradient vanishing and expansion, it is good at learning long-term dependencies

Fig. 1. CNN
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and modeling sequences [17]. There are three gates and a memory cell in the LSTM
architecture. Formally, LSTM cell can be computed as follows:

ik ¼ r Wixk þVihk�1þ bi
� � ð2Þ

fk ¼ r W f xk þV f hk�1þ b f
� � ð3Þ

ok ¼ r Woxk þVohk�1þ boð Þ ð4Þ

ck ¼ fk � ck�1þ ik � tan h Wcxk þVchk�1þ bcð Þ ð5Þ

hk ¼ ok � tan h ckð Þ ð6Þ

Where W and V are the weighted matrix and b are biases. r is the sigmoid function
and ⊙ is element-wise multiplication. hk is the vector of hidden layer which is the final
word representations for text.

Since words in a sentence have strong dependence on each other and bi-directional
LSTM can better capture the contextual information in text, we employ the bi-
directional LSTM network which consists of a forward and a backward LSTM to learn
the representation of each word in a sentence.

~hk ¼ LST~MðxkÞ
h
 
k ¼ LSTM

 ðxkÞ
hi ¼ ½~hk; h

 
k�

ð7Þ

4.3 Attention Based LSTM

Each word has different levels of importance on the representation of the sentence
semantic. For example, ‘nice’ plays a more critical role than ‘have’ in summarizing the
example sentence [a] from Sect. 1. Thus, we introduce an attention mechanism to
capture the important information in a sentence. Our model of attention based LSTM is
illustrated on Fig. 2.

After obtaining the hidden state ht by Bi-LSTM, we use a non linear transformation
layer to get ut as a representation of ht. We use dot product function between ut and a
word level vector v to get the relative importance and a softmax transformation to get
the final attention signal at. Then we can get the weighted representation of sentence s
with the attention signal and it can be used as features for text classification.

ut ¼ tanh Waht þ bað Þ ð8Þ

at ¼
exp uTt v

� �
P

t exp uTt v
� � ð9Þ

s ¼
X
t

atht ð10Þ
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4.4 Recurrent Convolutional Neural Network (RCNN)

LSTM is good at capturing the long contextual information. However, it can’t suffi-
ciently model the whole sentence since later words are more dominant than earlier
words in LSTM. CNN is good at capturing local features while can’t capture long gram
features. Thus, we use RCNN to tackle these problems. In RCNN network we first
apply a Bi-LSTM layer to capture the information h in text which is the same as the Bi-
LSTM layer of attention model. Then we further apply a CNN which is identical to
Sect. 4.1 on the hidden representation ht to get the sentence representation s.

4.5 Final Predictions

After getting the sentence vector s, we apply a MLP (Multi-Layer Perception) layer and
softmax function to produce the prediction probability.

p ¼ softmax W2r W1sþ b1ð Þþ b2ð Þ ð11Þ

We have five emotions, so we separately train our model for each emotion. Each
model is an individual binary classifier. Cross-entropy loss is used as the objective
function for training. We also weight the loss function by inverse the frequency of each
class for handling the imbalanced data problem.

We have three models for each emotion. Soft voting strategy is used to ensemble
these models to reduce variance and improve performance. That means, given a sen-
tence and an emotion, we can get three 2-dimensional output probabilities and average
them to identify whether the text expresses the emotion or not.

4.6 Parameters

In our experiments, all word vectors are initialized by word2vec, and out of vocabulary
words are initialized by sampling from the uniform distribution U(−0.01,0.01). The
dimension of word vectors is 640.

Fig. 2. Attention based LSTM model
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We employ Adam [18] with initial learning rate of 0.0005 for the optimization of
models. After the first 3 epochs, we reduce learning rate decay by a factor of 10. We
use early stopping which means stop training when the performance of development set
doesn’t improve in 5 epochs and dropout with rate of 0.2 to avoid overfitting. We set
the batch size to 50. For LSTM based models, hidden output size is 300. For CNN
based models, filter windows of 2, 3, 4 with 250 feature maps each.

We use the development sets to tune the hyper parameters and select the best model
based on performance on the development set, and evaluate on the test set.

4.7 Results Analysis

We conduct the experiment on the dataset of NLPCC 2018 Evaluation Task 1 which
contains 6000 instances for training, 728 for development set and 1200 for test set.
Each post contains five emotion labels, i.e. happiness, sadness, fear, anger and surprise.
The results of system are evaluated by macro-averaged F1 Score.

We compare the performance of different configurations on Table 1. It shows that
the basic neural networks significantly outperforms baseline (SVM model). The
ensemble model which incorporates three models achieves the best performance. The
reason is that our ensemble model is capable of extracting local features, focusing on
silent parts and capturing contextual information which will contribute to sentence
representation and text classification.

We have also found that single model CNN and Attention based LSTM get similar
effect. While RCNN achieves the best performance among the single models, because
the RCNN model fully considers local features and contextual information. Moreover,
systems which ensemble two single models also outperform the other individual
models, which demonstrate the effectiveness of ensemble model. Due to the small
number of instances and some posts are also hard to classify by manual annotation, we
can see the F-score of some emotions is below 0.4.

Table 2 shows the performance of our system (DUTIR_938) compared with the
top, the third and the median ranked team. Our system ranks second among the nine-
teen teams. However, for the comparison with the top system, our system is over 9%

Table 1. Performance results of different models on the test data.

Models Happiness Sadness Anger Fear Surprise MacF1

Baseline 0.587 0.500 0.390 0.108 0.128 0.342
Ensemble NN 0.715 0.521 0.541 0.166 0.396 0.468
CNN 0.671 0.507 0.493 0.177 0.404 0.450
RCNN 0.709 0.541 0.532 0.171 0.344 0.459
ATTENTION 0.685 0.543 0.495 0.191 0.336 0.450
CNN + RCNN 0.694 0.513 0.543 0.193 0.380 0.464
CNN + ATT 0.679 0.530 0.534 0.203 0.387 0.466
RCNN + ATT 0.686 0.525 0.530 0.166 0.360 0.453
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lower in Sadness and Fear emotion detection. We think the word embedding layer and
quality of sentiment words translation are the most important factors. Some sentiment
related words can’t be mapped to correct vector space even with the fine tuning of word
embeddings and will result in misclassification.

5 Conclusion and Future Work

In this paper we use bilingual sentiment lexicons and an English-Chinese dictionary to
build a connection between two languages and then we explore a method which en-
sembles several neural networks to detect emotion. Our method can also reduce the
impact of data imbalance and boost the performance. Our submission result ranks the
second place in all of teams and shows the effectiveness of our method.

We find that the translation of bilingual sentiment related words plays an important
role in code-switching text emotion detection, for the future work, we will try to utilize
more external knowledge to better bridge the gap to between two languages.

Acknowledgements. This work is supported by National Natural Science Foundation of China
(61562080, 61632011, 61572102, 61702080).
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Abstract. User profiling and personalized recommendation plays an important
role in many business applications such as precision marketing and targeting
advertisement. Since user data is heterogeneous, leveraging the heterogeneous
information for user profiling and personalized recommendation is still a chal-
lenge. In this paper, we propose effective methods to solve two subtasks
working in user profiling and recommendation. Subtask one is to predict users’
tags, we treat this subtask as a binary classification task, we combine users’
profile vector and social Large-scale Information Network Embedding (LINE)
vector as user features, and use tag information as tag features, then apply a deep
learning approach to predict which tags are related to a user. Subtask two is to
predict the users a user would like to follow in the future. We adopt social-based
collaborative filtering (CF) to solve this task. Our results achieve second place in
both subtasks.

Keywords: User tags prediction � User following recommendation
User modeling � Collaborative filtering � Deep learning

1 Introduction

With the rapid development of the Internet, a large amount of user information has
been generated on the Internet. User profiling [1] can effectively use this information to
analyze user’s attributes, and it is widely used both in recommendation system and
precise advertisement [2]. Social media is one of the most important components of
Internet, and it has become essential for people’s life. People like to share all kinds of
information through social applications, which makes the user research based on social
media become more and more important. Users usually use a set of phrases called tag
to indicate their personal characteristics such as hobbies and interests and characters on
social network. Many social networking services provide tag recommendation function
for users to help them set the tags. We can use users’ tags to solve problems such as
community discovery [3]. Meanwhile, users like to make friends who have a lot in
common through social networks. And friend recommendation is a very important
function of social networking services, therefore, it has been the focus of social net-
work research.
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This shared task contains two subtasks. Subtask one gives users’ other information
except tags, we need predict which tags are related to a user. Subtask two gives users’
following relationship and other provided information, we need predict the users a user
would like to follow in the future. We regard subtask one as a classification problem
and subtask two as a recommendation problem. We will introduce the two subtasks
respectively in the following sections.

1.1 Subtask One

As an important function of social networking services, user tag recommendation has
become the focus of research. The classic methods include content-based user tag rec-
ommendation method [4, 5] and graph-based user tag recommendation method [6–8].
Yamaguchi et al. [9] proposed a method to predict the tags which are related to a user by
using Twitter list. Twitter list is an official functionality to list users may share infor-
mation about the topic represented in list name. So they extracted the phrases from list
names as user’s tags, and exploited the relationship between tags and users, then rec-
ommended the most relevant tags to the users. Wu et al. [10] considered all of user’s
tweets as a document, then adopted TextRank [11] to extract keyphrases from it and
treated the keyphrases as user’s tags. In addition to tweets, there are complex relation-
ships and links among users in social networks, which can be used in user tag recom-
mendation. Lappas et al. [12] believed that users had many different interests. The reason
why a user follow others is that they have the same interests. Therefore, they used the
underlying social endorsement network to extract useful tags for users. And Chen et al.
[13] proposed a method that recommended tags of the users who a user followed to a
user. Because they considered that a user tended to follow the users who had the same
interests with him. Since deep learning has been successfully used in many research
fields, it is gradually applied to user tag recommendation task.

For subtask one, we propose a deep learning approach to predict which tags are
related to a user. There are three parts in our approach, we will elaborate in the next
section.

1.2 Subtask Two

Friend recommendation is a very popular personalized service in social networking
services. Collaborative filtering(CF) [14] is the classic approach to the recommendation
problem, which is comprised of two main methods, model-based CF and memory-
based CF. The latter includes user-based CF [15] and item-based CF [16]. And friend
recommendation is also a recommendation problem, there is some research on it. Bian
et al. [17] proposed a method called MatchMaker, which was based on personality
matching and collaborative filtering. It leveraged the mutual understanding and social
information among users in social networks. Agarwal et al. [18] proposed an implicit
rating model, for estimating a user’s affinity toward his friends, which uncovered the
strength of relationship, utilizing both attribute similarity and user interaction intensity.
It was also a CF-based framework. Users usually share their check-in location in social
networks, and the check-in data can be used for friend recommendation. Lin et al. [19]
considered that customary location a user checked in can represent his social circle, so
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they achieved friend recommendation based on social circle similarity which was
computed by the distance between the two geographical locations.

For subtask two, we propose a social-based collaborative filtering method and rules
to realize users’ friend recommendation. We will elaborate in the next section.

2 Method

2.1 Subtask One

We regard this subtask as a binary classification task and propose a deep learning
framework to solve it. We encode user’s personal information such as age, province
and city into a vector, use the Large-scale Information Network Embedding(LINE) [20]
to encode the social network information into a vector, and join these two vectors into a
vector as the user features. Although a user’s tags are desensitized, they still contain a
lot of semantic information. By encoding them into a vector as the tag features, and
then we join these two features as the sample feature, finally we apply our model to
achieve the subtask.

As is shown in Fig. 1, the architecture of our model consists of three components:
(1) Embedding layer to encode user and tag information; (2) Fully connected layer to
obtain user and tag features from the embedding layer; (3) Output layer to predict a
user’s tags.

Embedding Layer
Embedding approach is convenient for us to capture the relationship between key
information from data. Therefore, each information about user and tag is encoded into a
real-valued vector by build embedding matrix Iemb 2 Pn

i V
i � N in the embedding

Fig. 1. Architecture of our proposed method
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layer, where Vi denotes the dimension of the each information vector and N is the
number of users.

We mainly adopt profiles data as the user information to generate user embedding
vector, including user ID, gender, province and city. According to the data of the social
ties, one user has followed many users. We connect users who have social relationships
with each other and eventually form a social network. We use LINE approach to map
all the users nodes in the network to a d-dimensional vector, and try to keep the original
network structure. Finally, we merge the user IDs, genders, provinces, cities and social
information embedding vectors together as user matrix.

For tag information, tag ID can reflect the relevant characteristics of tag. So the tag
matrix consists of the embedding vector of tag IDs.

Fully Connected Layer
We extract user features from the merged user matrix by fully connected layer. Next,
we merge the user features with the tag features. We use the fully connected layer again
to get connection between user and tag.

Output Layer
Finally we use sigmoid function to predict a user’s tags. The sigmoid function is a
probabilistic classification algorithm that classifies by probability distribution. The
calculation result is from 0 to 1. We consider that if the output probability is greater
than 0.5, the tag is related to the user, otherwise the tag is not related to the user.

2.2 Subtask Two

Friend recommendation based on the proportion of common friends
We usually know that, if A and B are friends, and B and C are friends, then A is also
likely to be willing to make friends with C. Therefore, we can achieve friend recom-
mendation by calculating the proportion of common friends of two users. But there is
also a problem here, the ratio of the total number of friends of a user to the number of
common friends is usually very likely to have a certain influence on the friends to be
recommended. So first, we use the ratio of the number of common friends to the total
number of friends to weight them, and then recommend top-10 of results to a user.

Friend recommendation based on social-based collaborative filtering
As the saying goes, birds of a feather flock together, and people always like to make
friends with like-minded people. The like-minded people mean that the people who
have interests in the same. Therefore, we can also recommend friends by computing the
similarity between users.
We use collaborative filtering (CF) to achieve the similarity computation between uses.
One of the main functions of collaborative filtering is to make recommendations. Users
can be analyzed based on their historical data. And recommend similar users based on
their different preferences. Collaborative filtering is divided into user-based collabo-
rative filtering algorithms and article-based collaborative filtering algorithms.

The key to achieve the friend recommendation through a social-based CF method is
to find users similar to the target user. In this subtask, we use the data which describes
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user’s following relationship to compute similarity between users. We denote the user
set as U ¼ u1; u2; u3; . . .; umf g, and denote every user’s following user set as
F ¼ f1; f2; f3; . . .; fnf g, at the same time, we also create a matrix S 2 RM�N indicates
users and the users they follow, and if user i follows user j, Sij ¼ 1, otherwise Sij ¼ 0.
To simplify the calculations, we normalize each line of the matrix S to get a new
similarity matrix Muf .

Muf ¼ Norm Sð Þ � NormðSÞT ð1Þ

Where,Muf 2 RM�M and each element mij represents the similarity between user i
and user j. With the user similarity, we can use another matrix multiplication to obtain
the score of new friends for each user as follow:

P ¼ Muf � S� S ð2Þ

Where, P 2 RM�N and each element p represents the score for user i and user j.

Friend recommendation based on the most-popular rule
On social networking platforms, such as Weibo, people tend to follow well-known users
whose common feature is that they have a high number of followers, so we use this rule
to make friend recommendation and recommend the most popular users to a user.

3 Experiments and Results Analysis

3.1 Subtask One

Dataset and Evaluation
We use profiles data, tags data and socials data for subtask one. The number of unique
users in the tags file is 11995. We split tags data to form an offline training set and test set
by users group. For all users, split out 75 percent of the users with tags from tags data to
get training set, the rest as the offline test set. Since the provided data contains only
positive samples, we choose the top 20 tags of the frequency of occurrence to build
negative samples. If user has no relationship with the top 20 tags, the combination of the
user and tag serves as a negative sample. Our offline training set contains 9,796 users,
each user has multiple tags, the total number of combination of users and tags is
176,619, the number of negative samples is 117,746, the number of positive samples is
58,873. The rest 2,399 users with tags for the test set, the total number of data is 47,980.
The number of training set tag space is 18,496, and the tag space of test set is top 20.

The dimension of user ID’s embedding vector is 128. We map the gender f and m
to 1 and 0 respectively. The dimensions of embedding vector of province and city are
both 32. Each node in the user social network represents a user. We use the LINE
method to train the node vector and set the vector dimension to 100.

The quality of subtask one is evaluated by F1@K (K = 3), and we also list P@K,
R@K for analysis. The calculation formula is as follows:
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Pi@K ¼ Hij j
K

ð3Þ

Ri@K ¼ Hij j
Vij j ð4Þ

F1i@K ¼ Pi@K � Ri@K
Pi@KþRi@K

ð5Þ

P@K ¼ 1
N

XN

i¼1
Pi@K ð6Þ

R@K ¼ 1
N

XN

i¼1
Ri@K ð7Þ

F1@K ¼ 1
N

XN

i¼1
F1i@K ð8Þ

Where Hij j is the correctly predicted tags for user i’s top K prediction, Vij j is the correct
tags for user i. Pi@K, Ri@K, F1i@K is the precision, recall and F1 for a user i. N is the
user count.

Experimental Results and Analysis
We evaluate our method in test set. First we evaluate the deep recommendation model
with user features from profiles data. Then we merge the features of the social network
with the trained user features through fully connected layer. Finally, we merge user’s
social feature and profile information as user features together. The results are shown in
Table 1.

Based on the results in Table 1, we find that the method combine profile data with
user social information as embedding layer has the best performance. This demon-
strates that social network information is effective in tag recommendation. The social
information can better represent the commonalities between users.

3.2 Subtask Two

Dataset and Evaluation
We use social network data for subtask two. We split social data to form an offline
training set and test set by friend(user2) groups. For each friend, split out 75 percent of

Table 1. The result of each method (K = 3).

Method P@K R@K F1@K

Profile 4.175% 3.349% 3.652%
Fully connected layer + social 5.669% 3.418% 3.876%
profile + social 5.992% 3.505% 4.037%
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the social data to get the training set, so that all the friend already appear in the training
set. Then we filter out the users who don’t exist in the training set from the rest of social
data to become test data set.
The quality of subtask two is evaluated by F1@K (K = 10), and we also list P@K and
R@K for analysis. The calculation formula is the same as subtask one.

Experimental Results and Analysis
We evaluate our method on the offline test set. The results are shown in Table 2.

Based on the results in Table 2, we find that the social-based CF has the best
performance. This demonstrates that social network information is effective in User
Following Recommendation. Because the users that have common friends are similar.
It is effective to recommend the friends that the similar users have to a user.

4 Conclusion and Future Work

In this paper, we elaborate our methods and ideas on User Profiling and Recommen-
dation shared tasks. For subtask one, we take it as a classification problem and adopted
a deep learning method to predict user’s tags. We focus more on data analysis and the
combination of features. Our online submission results are based on fully connected
layer with social information result. However, we find that profile with social features
is much more effective than the method. And there are too few tag features in the
method, and we don’t use the tweet data and check-in data. In the future, we are going
to use tag co-occurrence relationship to train a LINE vector to rich tag features in this
subtask and split the users into two groups, the users that have tweets is divided into
one group, the rest users is divided into another group, then construct a dual channel
model to predict user tags.

For subtask two, we treat the task as a recommendation problem. We adopt a
social-based collaborative filtering method. Since the number of users’ common friends
is small, the results of this method are not ideal. The collaborative filtering method can
gain the similarity between users, so as to realize the friend recommendation. In this
subtask, we only use social data. In the future, we can try to calculate similarity by
using check-in data and profile data, and then combine multiple approach results to
achieve the recommendation.

Acknowledgments. This research is supported by the National Key Research Development
Program of China (No. 2016YFB1001103).

Table 2. The result of each method (K = 10).

Method P@K R@K F1@K

The proportion of common friends 0.202% 0.210% 0.213%
Social-based CF 0.679% 0.762% 0.679%
Most-popular rule 0.642% 0.747% 0.640%
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Abstract. This paper presents the overview of the shared task, emotion
detection in code-switching text, in NLPCC 2018. The submitted systems are
expected to automatically determine the emotions in the Chinese-English code-
switching text. Different from monolingual text, code-switching text contains
more than one language, and the emotion can be expressed by either mono-
lingual or bilingual form. Hence, the challenges are: how to integrate both
monolingual and bilingual forms to detect emotion, and how to bridge the gap to
between two languages. Our shared task has 19 team participants. The highest F-
score was 0.515. In this paper, we introduce the task, the corpus, the partici-
pating teams, and the evaluation results.

Keywords: Emotion detection � Code-switching text
Annotation and evaluation

1 Introduction

With the rapid development of Web 2.0, emotion analysis in social media has become
of great value to market predictions and analysis [1–3]. Previous researches on emotion
analysis have mainly focused on emotion expressions in monolingual texts [5–7].
However, in informal settings such as micro-blogs, emotions are often expressed by a
mixture of different natural languages. Such a mixture of language is called code-
switching. Specifically, code-switching text is defined as text that contains more than
one language (‘code’). It is a common phenomenon in multilingual communities [4].

In this shared task, the submitted systems are expected to automatically determine
the emotions in the Chinese-English code-switching text. It is more difficult to detect
emotions in code-switching texts than in monolingual ones since emotions in code-
switching posts can be expressed through one or two languages [9–12]. Hence, tra-
ditional automatic emotion detection methods which simply consider monolingual texts
would not be readily applicable.

2 Data

In this task, we provide training, development, and testing data. Each post in dataset
contains two language text (Chinese and English), we call such post as code-switched
text. Following are some examples of code-switched posts with different emotions.
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[E1] , high (happiness)
(The bride played the drums at the wedding, everyone was very high!)

[E2] , have a nice time. (happiness)
(The happy vacation has begun, have a nice time.)

[E3] , hold (sadness)
(I have been teaching the whole day, my throat can’t take it anymore.)

For each post, five emotions were annotated, namely happiness, sadness, fear,
anger and surprise. The number of samples of different emotions in training, devel-
opment, and testing data is in Table 1, respectively.

3 Participants

There are 46 teams registered the share task, and 19 teams submitted their final results.
The teams that have submitted the results are shown in Table 2.

Table 1. Samples of different emotions

Train Dev Test

Happiness 1824 220 490
Sadness 1086 120 296
Anger 570 84 111
Fear 648 85 37
Surprise 651 92 68

Table 2. Introduction of participating teams

Team name Organization name

DeepIntell Research team of DeepIntell co., Ltd.
DUTIR_938 Dalian University of Technology

Shining University of South China
lxzlx624 University of South China
xiamx-rali Université de Montréal – Laboratoire RALI

zzuhhjx University of Zhengzhou
Team_1 Beijing Guangnian Infinity Technology Co., Ltd.

CASIA-ED Research Center for Brain-inspired Intelligence
cmos_nlp Move online text algorithm group
Yang_NEU Northeastern University

rax Peking University
NLP@WUST Wuhan University of Science and Technology

scau_geek South China Agricultural University
Lab1010 Southwest University
The Dream Team of NLP Nanjing University Science and Technology

GDUFSLEC Guangdong University of Foreign Studies
CSUNLP Guangdong University of Foreign Studies

CQUT_301_1 Chongqing University of Technology
BISTU_IIPI Beijing Information Science and Technology University
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4 Evaluation

4.1 Evaluation Metric and Baseline

We compute precision (P), recall (R), and F1-Score for each emotion separately, and
compute the macro averaged P, R and F1 with all emotions. Our official scoring metric
is macro-averaged F1-Score.

We implement a simple baseline on training data, and test on the development data.
The performance is shown in Table 3. We use SVM1 as the classification method, and
unigram as features.

4.2 Submission Results and Discussions

There are 19 teams submitted their valid results, the results are shown in Table 4. As
Table 4 given, DeepIntell, DUTIR_938 and Shining have better results than others. In
particular, DeepIntell converts multi-label classification into binary classification task
and employ ensemble learning for code-switching text with sampling and emotion
lexicon. DUTIR_938 also use ensemble separately trains several models include CNN,
RCNN and Attention based LSTM model. Then combine their classification results to
improve the performance. Shining considers the relationship between different emo-
tions in a single post, at the same time, the attention mechanism is employed to find the
importance of different features and predict all emotions expressed by each post.

Table 3. Performance of baseline

P R F1

Happiness 0.610 0.691 0.648
Sadness 0.307 0.650 0.417
Anger 0.299 0.667 0.413
Fear 0.256 0.788 0.386
Surprise 0.142 0.391 0.208

1 http://svmlight.joachims.org/.
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5 Conclusion

This paper briefly introduces the overview of emotion detection in code-switching text
shared task at NLPCC 2018. There are 19 participants having submitted final results.
And some participants get exciting results in this corpus. Meanwhile, we release a large
code-switching text emotion corpus for more large-scale research in emotion and
bilingual analysis.

Acknowledgment. We would like to thank the participants for their valuable feedback and
results. We should thank Dr. Sophia Yat Mei Lee and Helena Yan Ping Lau for their excellent
works on corpus annotation and analysis. The work is supported by the National Natural Science
Foundation of China (61331011, 61751206), and the Early Career Scheme (ECS) sponsored by
the Research Grants Council of Hong Kong (No. PolyU 5593/13H).

Table 4. Evaluation results

Team Happiness Sadness Anger Fear Surprise Marco-F1

DeepIntell 0.734 0.616 0.543 0.264 0.418 0.515
DUTIR_938 0.715 0.521 0.541 0.166 0.396 0.468
Shining 0.710 0.652 0.540 0.292 0.139 0.467
lxzlx624 0.734 0.637 0.570 0.204 0.164 0.462
xiamx-rali 0.624 0.494 0.457 0.200 0.366 0.428
zzuhhjx 0.692 0.428 0.406 0.186 0.376 0.418
Team_1 0.594 0.510 0.440 0.143 0.310 0.399
CASIA-ED 0.596 0.417 0.510 0.130 0.337 0.398
cmos_nlp 0.632 0.414 0.352 0.161 0.265 0.365
Yang_NEU 0.568 0.432 0.351 0.207 0.255 0.363
rax 0.576 0.421 0.392 0.103 0.306 0.360
NLP@WUST 0.630 0.374 0.287 0.146 0.354 0.358
scau_geek 0.615 0.480 0.398 0.000 0.230 0.345
Baseline 0.587 0.500 0.390 0.108 0.128 0.342
Lab1010 0.385 0.458 0.271 0.061 0.063 0.248
The Dream Team of NLP 0.480 0.350 0.160 0.062 0.137 0.238
GDUFSLEC 0.491 0.131 0.190 0.045 0.299 0.231
CSUNLP 0.441 0.354 0.033 0.093 0.149 0.214
CQUT_301_1 0.246 0.161 0.093 0.053 0.049 0.121
BISTU_IIPI 0.456 0.007 0.018 0.000 0.000 0.096
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Abstract. In this paper, we give an overview for the shared task at the
CCF Conference on Natural Language Processing & Chinese Computing
(NLPCC 2018): Automatic Tagging of Zhihu Questions. The dataset
is collected from the Chinese question-answering web site Zhihu, which
consists 25551 tags and 721608 training samples in this shared task.
This is a multi-label text classification task, and each question can have
as much as five relevant tags. The dataset can be assessed at http://tcci.
ccf.org.cn/conference/2018/taskdata.php.

Keywords: Automatic tagging · Multi-label classification
Text classification

1 Introduction

The task aims to tag questions in Zhihu with relevant tags from a collection
of predefined ones. This is a multi-label classification problem, several tags can
be relevant to a given question. With the rise of social media, the text data
on the web is growing exponentially. Furthermore, the label space is relatively
huge compared to traditional text classification tasks. Make it is impractical for
a human being to accurately assign tags to all those data. Machine learning
methods are quite suitable for this task, and accurate tags can benefit several
downstream applications such as recommendation and search.

Formally, the task is defined as follows: given a question with its title xt =
(xt1 , xt2 , · · · , xtn) and description xd = (xd1 , xd2 , · · · , xdm

), where xtj denotes
the jth word in the title. The objective is to find its possible relevant tags in the
predefined tag set. More specifically, given a specific tag tagi, we need to find a
function to predict whether tagi is relevant to the current question with title xt

and description xd.

p(tagi|xt, xd) = f(xt, xd, tagi, θ) (1)

where θ is the parameter of the function.
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2 Data

In this task, we provide training, development, and test data. Each question in
the dataset contains a title, an unique id and an additional description. The
labels are tagged collaboratively by users from the community question answer-
ing web site Zhihu. To improve the quality of the data, we removed infrequency
tags, and relabeled manually to build development and test dataset.

There are 25551 tags and 721608 training samples in training data, 8947
samples in development data and 20597 samples in test data. Some samples
from training dataset are shown in Table 1.

The dataset is different from widely used text classification datasets. Firstly,
the label space is relatively huge and there is a data imbalance problem. Table 2
shows the statistics of the numbers of training samples for each label, we can see
that almost 30% labels only have 5 to 10 training samples, while there still are
some labels may have more than 5000 training samples. Secondly, the task is a
multi-label problem and the number of labeled tags is not fixed for each question
with a range from 1 to 5, Table 3 shows the statistics of the numbers of labeled
tags for each question. Thirdly, since the dataset is collected from Zhihu whose
contents are all generated by users, the text styles vary from user to user, Fig. 1
shows the length distributions of titles and descriptions respectively.

Table 1. Training samples from the dataset.

Table 2. Statistics of the numbers of training samples for each label.

Number of training samples 5 to 10 10 to 50 50 to 500 500 to 1000 1000 to 5000 5000+

Count of labels 7651 11988 5158 422 296 36

Percentage of labels(%) 29.94 46.92 20.19 1.65 1.16 0.14

Table 3. Statistics of the numbers of labeled tags for each sample in training data.

Number of labeled tags 1 2 3 4 5

Count of samples 134190 123397 151553 143388 169080

Percentage of samples(%) 18.60 17.10 21.00 19.87 23.43
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Fig. 1. Length distributions of training data.

3 Evaluation

For each question in the test set, the model is required to predict as much
as five relevant tags, and the tags are sorted by their predicted probabilities.
Specifically, the number of predicted tags for a given question can be less than
5 or even be 0 if the model can’t find enough relevant tags to the question.

The results are evaluated on the F1 measure. We compute the positional
weighted precision. Let correct numpi

denotes the correct count of predicted
tags at position i, and predict numpi

denotes the count of predicted tags at
position i.
The precision, recall and F1 measure are computed as following formulas:

F1 = 2 × P × R

P + R
(2)

P =
∑5

i=1 correct numpi
/log(i + 2)

∑5
i=1 predict numpi

/log(i + 2)
(3)

R =
∑5

i=1 correct numpi

ground truth num
(4)

4 Baseline Implementations

Text classification is an important task in Natural Language processing with
many applications, including search query classification, sentiment analysis,
news categorization, which have been studied for years. In recent years, Deep
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Learning on text classification has gained much attention due to its prominent
achievement.

We have implemented several deep learning baseline models on text classifi-
cation, which are effective and widely used in recent years, including LSTM [1],
FastText [2] and CNN [3]. The results of the baselines are listed in Table 4.

Table 4. Results of baselines.

Method Weighted
precision

Recall F1

LSTM 33.47 46.15 38.80

CNN 34.62 46.87 39.82

FastText 32.79 48.52 39.13

5 Participants Submitted Results

There are total 15 participants actively participate and submit their predictions
on the test set. The number of submissions is limit to 5 in total, and we report
the best result for each participant. The predictions are evaluated and the results
are listed in Table 5.

Table 5. Participants Submitted Results.

Participant Weighted
precision

Recall F1 Number of
submissions

P1 0.5251 0.7783 0.6271 1

P2 0.5384 0.6380 0.5840 3

P3 0.5267 0.5123 0.5194 5

P4 0.5048 0.4692 0.4863 4

P5 0.5031 0.4664 0.4841 1

P6 0.3859 0.5502 0.4536 2

P7 0.3423 0.4759 0.3982 2

P8 0.3743 0.3770 0.3756 4

P9 0.2882 0.4157 0.3404 5

P10 0.2880 0.4100 0.3383 5

P11 0.2894 0.3427 0.3138 1

P12 0.2996 0.3221 0.3104 5

P13 0.2431 0.3477 0.2861 5

P14 0.4333 0.1546 0.2279 2

P15 0.1614 0.1242 0.1404 1
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6 Conclusion

Text classification has been studied for years, several text classification datasets
have been studied extensively in recent years. In this task we collected a new
text classification dataset, which addresses two problems: (1) the label space is
relatively huge, (2) the training samples are very imbalance. We contributed the
dataset to the research community for further study.
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Abstract. In this paper, we present an overview of the Grammatical
Error Correction task in the NLPCC 2018 shared tasks. We give detailed
descriptions of the task definition and the data for training as well as
evaluation. We also summarize the approaches investigated by the par-
ticipants of this task. Such approaches demonstrate the state-of-the-art
of Grammatical Error Correction for Mandarin Chinese. The data set
and evaluation tool used by this task is available at https://github.com/
zhaoyyoo/NLPCC2018 GEC.

1 Introduction

Grammatical Error Correction (GEC) is a challenging task in natural language
processing and it has attracted more and more concerns recently. This year, we
organize the first shared task of GEC for Mandarin Chinese, with a focus on
speech errors produced by Chinese learners. In particular, our task is defined
as to detect the grammatical errors in the essays from non-native speakers and
return the corrected texts [1]. The previous research on grammatical errors in
Chinese is mainly devoted to error detection [2], while our shared task also
include automatic correction of such grammatical errors. To the best of our
knowledge, this task provides the first benchmark data set for GEC for Chinese.

The goal of the task is to develop techniques to automatically detect and cor-
rect errors made by writers of CSL (Chinese as a Second Language). We provide
large-scale Chinese texts written by non-native speakers in which grammatical
errors have been annotated and corrected by native speakers. Blind test data is
used to evaluate the outputs of the participating teams using a common scoring
software and evaluation metric.

A total of 23 teams signed up for the shared task and six of them sub-
mitted final results. This overview paper provides detailed descriptions of the
shared task and it is organized as follows. Section 2 gives the task definition.
Section 3 presents a detailed introduction of the data sets and annotation guide-
lines. Section 4 provides the evaluation metric and Sect. 5 introduces different
approaches from participants. Section 6 shows the final results and Sect. 7 gives
the conclusion of the paper.
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2 Task Definition

Automatically correcting grammatical errors is a challenging task which has
attracted an increasing attention recently. The goal of this shared task is to detect
and correct grammatical errors present in Chinese essays written by non-native
speakers of Mandarin Chinese. Given annotated training data with corrections
of grammatical errors and blind test data, the participating teams are expected
to submit automatically corrected version of texts in test data. An example of
mistaken quantifiers under the task definition is shown in Table 1.

Table 1. An example of the input and the output under the task definition.

3 Data

This section presents the released training and test data in the shared task.

3.1 Training Data

The training data provided in the shared task is collected from http://lang-8.
com/, a language-learning website where native speakers freely choose learners’
essays to correct. Following [3], we collect a large-scale Chinese Mandarin learn-
ers’ corpus by exploring “language exchange” social networking services (SNS).
There are about 68,500 Chinese Mandarin learners on this SNS website. By
collecting their essays written in Chinese and the revised version by Chinese
natives, we set up an initial corpus of 1,108,907 sentences from 135,754 essays.

As correcting specifications are not unified and there is lots of noise in raw
sentences, we take a series of measures to clean up the data. First, we drop
words surrounded by <spanclass = “sline”> since this indicates redundant con-
tents. As for other kinds of tags, correctors use them in different ways. We just
remove the tag and remain inner words for consistency and clarity. Learners
often ask questions in their native languages, bringing about extra noise into the
corpus. We need to get rid of sentences with too many foreign words by checking
their Unicode values. There is one more situation where writers use Chinese pho-
netic alphabet to represent the word that they want to express but do not know
how to write it in Chinese characters. Such nonstandard sentences are excluded
from final dataset. To improve compactness, we also drop rather simple sen-
tences such as (Hello everyone), (Good night). According to our
observation, writers sometimes provide optional corrections using “/”, “or”, “

(or)” or “ (or)”. In such situations, the first correction is

http://lang-8.com/
http://lang-8.com/
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reserved. Moreover, to explain the reason why the original sentence is ungram-
matical, correctors may write comments in the position of revised sentences. We
utilize a rule-based classifier to determine whether to include the sentence into
the corpus.

Through above cleaning operations, we finally sort out a Chinese Mandarin
learners’ corpus of 717,241 sentences from writers of 61 different native lan-
guages. Among these sentences, there are 123,501 sentences considered to be
correct, 300,004 sentences with one correction, 170,407 sentences with two correc-
tions and the maximum number of corrections about one sentence is twenty-one.
Sample sentences are shown in Table 2. Besides, we use PKUNLP tool (http://
www.icst.pku.edu.cn/lcwm/pkunlp/downloads/libgrass-ui.tar.gz) for word
segmentation.

Table 2. Sample sentences from the training data.

3.2 Test Data

The test data is extracted from PKU Chinese Learner Corpus. PKU Chinese
Learner Corpus is constructed by Department of Chinese Language and Litera-
ture, Peking University. The goal is to promote research on international educa-
tion and Chinese interlanguage. And it is composed of essays written by foreign
college students. We collected 2,000 sentences from the corpus and release the
source sentences and the segmented version.

To obtain gold edits of grammatical errors, two annotators annotated these
sentences. The annotation guidelines follow the general principle of Minimum
Edit Distance. This principle regulates how to reconstruct a correct form of a
given sentence containing errors and it selects the one that minimizes the edit
distance from the original sentence [4]. This means that we choose to follow
the original intention of the writer as much as possible. Following [2], errors are
divided into four types: redundant words (denoted as a capital “R”), missing
words (“M”), word selection errors (“S”), and word ordering errors (“W”). The
first annotator marked the edit alone, and the second annotator was asked to
check the annotation and make a revision if he thought the current edit was
not appropriate. We release evaluation results on both the two kinds of gold
annotations and their integration.

4 Evaluation Metric

We use the MaxMatch (M2) Scorer for evaluation [5]. M2 Algorithm is a widely
used method for evaluating grammatical error correction. The general idea is

http://www.icst.pku.edu.cn/lcwm/pkunlp/downloads/libgrass-ui.tar.gz
http://www.icst.pku.edu.cn/lcwm/pkunlp/downloads/libgrass-ui.tar.gz
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computing the phrase-level edits between the source sentence and the system
output. Specifically, it will choose the system hypothesis that holds the highest
overlap with the gold edits from annotators. And [1] extends the M2 Scorer to
deal with multiple alternative sets of gold-standard annotations, in which case
there are more than one corrections that are reasonable for the current sentence.

Suppose the gold edit set is {g1, g2, ..., gn}, and the system edit set is {e1,
e2, ..., en}. The precision, recall and F0.5 are defined as follows:

P =
∑n

i=1 |ei ∩ gi|∑n
i=1 |ei| (1)

R =
∑n

i=1 |ei ∩ gi|∑n
i=1 |gi| (2)

F0.5 = 5 × P × R

P + 4 × R
(3)

where the intersection between ei and gi is defined as

ei ∩ gi = {e ∈ ei|∃g ∈ gi(match(e, g))}. (4)

Take the sentence in Fig. 1 as an example, suppose the source sentence
is “ (With the development of
communication technology, our life is becoming more and more convenient.)”,
the set of gold edits g and the set of system edits e are shown in this figure.
Then there will be P = 1, R = 2/3, F0.5 = 10/11.

Fig. 1. An example of the evaluation metric.

5 Approaches

There are altogether 18 submissions from six teams, at most three submissions
per team. The detailed information of participants is shown in Table 3.

Most of the systems treat the GEC problem as a machine translation (MT)
task. Rule-based models and language models are also explored. AliGM [6] pro-
poses two modules for this problem: the correction module and the combination
module. In the former module, correction candidates are generated for each input
sentence with two statistical models and one neural model. The statistical models
include a rule-based model and a statistical machine translation (SMT) -based
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Table 3. The detailed information of participants.

System Organization

AliGM Alibaba Group

CU-Boulder Department of Linguistics, University of Colorado Boulder

YouDao Department of ML & NLP, Youdao

BUPT Beijing University of Posts and Telecommunications

PKU Institute of Computational Linguistics, Peking University

BLCU School of Information Science, Beijing Language and Culture
University

model. The neural model refers to a neural machine translation (NMT) -based
model. In the latter module, they combine these models in a hierarchical manner.
CU-Boulder uses a Bi-LSTM model with attention to make corrections. And they
use the character-level minimum edit distance (MED) to select the correction
version among multiple candidates. Joint voting of five models is implemented
to advance the performance. YouDao [7] also casts the problem as a machine
translation task. It is worth noting that they use a staged approach and design
specific modules targeting at particular errors, including spelling, grammatical,
etc. BUPT uses a two-stage procedure method. In the first stage, they adopt neu-
ral models for error detection. In the second stage, they use a statistical method
following [8]. PKU uses a character-based MT model to deal with this prob-
lem. Besides, they propose a preprocessing module for the correction of spelling
errors. First, the error detection is based on the binary features including co-
occurrence probability, mutual information and chi-square test. Then confusion
sets are introduced to generate candidates at the detected point. The final cor-
rection is the candidate with the highest language model probability. To improve
the precision score, they set a high threshold. In addition, they check each cor-
rection with confidence levels in a post-processing stage. BLCU [9] proposes a
system mainly based on the convolutional sequence-to-sequence model.

6 Results

We perform evaluations on all the eighteen submissions regarding to both of the
two kinds of gold annotations and their integration. The best performance of
each system referring to the integrated gold standard edits is shown in Table 4.

From Table 4, we can see that grammatical error correction for Chinese lan-
guage is a challenging task. There still remains large gaps between automatic
GEC systems and native speakers. In detail, YouDao gets the highest recall and
F0.5 score while BLCU wins the highest precision score. Both of the two systems
treat the GEC problem as a MT task. By contrast, the rule-based models and
language models perform unsatisfactorily.
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Table 4. Evaluation Results

System name Precision Recall F0.5

YouDao 35.24 18.64 29.91

AliGM 41.00 13.75 29.36

BLCU 41.73 13.08 29.02

PKU 41.22 7.18 21.16

CU-Boulder 30.07 6.54 17.49

BUPT 4.22 1.49 3.09

7 Conclusion

This paper provides the overview of the Grammatical Error Correction (GEC)
shared task in NLPCC 2018. We release a large Chinese learner corpus and
briefly introduce participants’ methods. The final results show that it is still a
challenging task which deserves more concern.
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Abstract. In this paper, we give an overview of multi-turn human-
computer conversations at NLPCC 2018 shared task. This task con-
sists of two sub-tasks: conversation generation and retrieval with given
context. Data-sets for both training and testing are collected from
Weibo, where there are 5 million conversation sessions for training and
40,000 non-overlapping conversation sessions for evaluating. Details of
the shared task, evaluation metric, and submitted models will be given
successively.

Keywords: Multi-turn conversation · Conversation generation
Conversation retrieval · Sequence matching

1 Task Background

Building multi-turn conversation system in open-domain is a research hotpot
in academia and draws mounting attention in the industry. In earlier years,
researchers mainly design rule-based or template-based systems for task-oriented
conversation. With the access to myriad conversation data, it is prompting to
develop conversation systems for open-domain. Existing open-domain conversa-
tion systems in recent few years can be roughly summarized as two categories:
retrieval-based models and generation-based approaches.

Most conversation generation approaches are based upon the sequence to
sequence framework [1]. For example, Vinyals and Le propose to utilize such
a sequence to sequence model for addressing the issue of conversation genera-
tion [2]. However, the simple sequence to sequence model can not adequately
model context information in conversations. With limited context information,
improper or even unrelated output will be yielded by conversation systems. To
address the obstacle of “out of context”, context-sensitive conversation gen-
eration approach was proposed [3,4]. Serban et al. [5,6] further propose to
model conversation context as a hierarchical structure to avoid data sparsity.
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 446–451, 2018.
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Besides, specific information in context are extracted such as topic [7], diver-
sity [8,9], and persona [10], for generating conversations.

For retrieval-based conversation systems, it can be constructed as a sequence
matching problem by computing the matching degree of candidate responses and
user-issued query. Yan et al. [11] treat responses retrieval as a ranking problem
through incorporating multi-dimension ranking evidences, where conversation
context in a continuous session in multi-turns is also captured. To better extract
matching information from conversation context, the sequential matching net-
work is designed and achieves the state-of-art performance [12].

Although substantial progress of multi-turn human-computer conversation
has been achieved by either retrieval-based or generation-based systems, there
are still room for improvement. Herein the NLPCC 2018 shared task 5 is designed
for putting Chinese multi-turn conversation forward. This task consists of two
sub-tasks: conversation generation and response retrieval. There are 10 teams
targeting at conversation generation and 5 teams for response retrieval.

2 Task Description

2.1 Task Formulation

The multi-turn conversation generation task is formulated as follows: given the
previous n−2 sentences in an continuous conversation session X = (x1 , ..., xn−2)
as context and the (n− 1)-th sentence xn−1 as query, the goal is to generate the
response xn. Table 1 gives two conversation sessions used for generation.

Table 1. Two conversation sessions used for generation.

For the sub-task of response retrieval in multi-turn conversations, it can be
defined as follows: given the context X = (x1 , ..., xn−2) and query xn−1, the
proper response xn will be retrieved from 10 response candidates {c1, c2, ..., c10}.
As illustrated in Table 2, c4 is the right answer for the given query and will be
selected.
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Table 2. An example of response retrieval.

2.2 Datasets

The datasets employed in this task are collected from Sina Weibo, which con-
tain training set and testing set. We clean the datasets by removing emojis and
repeated utterances. For conversation generation, there are 5,000,000 conversa-
tion sessions in the training set and extra 40,000 conversation sessions in the
testing set. Each session contains at least 3 sentences. As for response retrieval,
there are 5,000,000 conversation sessions for training and non-overlap 10,000 ses-
sions for testing. Participants are asked to submit at least one system for either
one of the sub-tasks or both.

2.3 Evaluation Metric

It is still challenging for evaluating the results of conversation generation.
Although automatic evaluation is not aligned with user experience, we still use
BLEU score [13] as the evaluation metric for conversation generation insomuch
as human evaluation is not affordable for this task. For the sub-task of response
retrieval, we use precision of selected candidates as the evaluation metric.

3 Results Statistics

Ultimately, 10 teams submitted their results for the sub-task of conversation gen-
eration and 5 teams participated in the response retrieval. As shown in Table 3,
the best result for conversation generation is yielded by the system Yiwise-DS,
i.e. 16.58. It can be seen that other five systems also achieve presentable results,
e.g. G930, Lmll, BD-chatbot. Table 4 shows the evaluation results of response
retrieval. The best performance is generated by ECNU and Wyl-buaa achieves
a comparable results while other systems have a large space for improvement.
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Table 3. Results for conversation generation.

Submitted systems Score

DialogMind 5.24

BLCU-NLP 0.19

Yiwise-DS 16.58

Jiaoyanqiaowuwang 1.54

Laiye-rocket 12.05

G930 12.85

BD-chatbot 15.51

Phantomgrapes 11.51

Lmll 12.98

ECNU 0.91

Table 4. Results for response retrieval.

Submitted systems Precision

BLCU-NLP 10.54

Yiwise-DS 26.68

Laiye-rocket 18.13

Wyl-buaa 59.03

ECNU 62.61

4 Representative Systems

In this part, we give a brief analysis of 4 representative systems in NLPCC
2018 shared task 5, where there are 2 systems for conversation generation and
response retrieval respectively.

For conversation generation, G930 re-implements the VHRED model [6] or
part of KgCVAE [9] on the Weibo Dataset released by NLPCC 2018. The
VHRED model utilizes the latent variable for addressing the wording novelty
issue of RNNs. The hierarchical encoder of VHRED can effectively take con-
versation context into account and thus yields relatively good responses. The
Lmll model augments HERD [5] with keywords and an attention mechanism for
addressing the issue of topic irrelevance in generated responses.

For response retrieval, Wyl-buaa presents a novel RCMN model for address-
ing the relationship between utterances in context through utilizing the self-
matching information in context. To obtain the relevance between response and
each utterances in both word-level and sentence-level, the Sequential Matching
Network (SMN) [12] is used. The SMN and the RCMN are further combined as
an ensemble model and achieve rank second in the shared task of NLPCC 2018.
ECNU presents a framework that combines NLP features, SMN, and memory-
based matching network (MBMN) for addressing the issue of response selection.
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Specifically, the MBMN is designed for learning global context information and
important long-distance dependence on the query, while SMN is utilized for mod-
eling sequential relationships of contexts. Inspired by the performance improve-
ment yielded by NLP features, three features are designed in this system. The
overall combination of the three parts achieves rank 1st in all teams.

5 Conclusion

In this paper, we present the details of NLPCC 2018 shared task 5, including task
formulation, datasets, evaluation metrics, results of submitted systems, and rep-
resentative systems. This task investigates the performance of various systems on
Chinese multi-turn conversations. We release a large corpus which contains more
than 5 million multi-turn conversation sessions. There are 10 teams targeting at
conversation generation and 5 teams at retrieval. As presented, there is still
a long way for both multi-turn conversation generation and response retrieval
models. It is expected that there are more and more researchers focusing on
multi-turn conversation and moving the state-of-art forward.
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Abstract. We give the overview of the open domain QA shared task in the
NLPCC 2018. In this year, we release three sub-tasks including Chinese
knowledge-based question answering (KBQA) task, Chinese knowledge-based
question generation (KBQG) task, and English knowledge-based question
understanding (KBQU) task. The evaluation results of final submissions from
participating teams will be presented in the experimental part.
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1 Background

Question Answering (or QA) is a fundamental task in Artificial Intelligence, whose
goal is to build a system that can automatically answer natural language questions. In
the last decade, the development of QA techniques has been greatly promoted by both
academic and industry fields, and many QA-related topics have been well studied by
researchers from all over world.

In order to further advance QA-related research in China, we organize this open
domain QA shared task series in the past several years via NLPCC, and in this year, we
release following 3 sub-tasks: (1) Chinese Knowledge-based Question Answering
(KBQA); (2) Chinese Knowledge-based Question Generation (KBQG); and (3) Eng-
lish Knowledge-based Question Understanding (KBQU). You can see that comparing
to previous two shared tasks, we retain the KBQA task and add KBQG and KBQU as
two new tasks. The reason of adding these two new tasks is that we think the capa-
bilities of asking questions in a proactive way and understanding user utterances in a
deep way are very important to building human-computer interaction engines, such as
search engine, chitchat bot, and task bot.

2 Task Description

The NLPCC 2018 open domain QA shared task includes 2 sub-tasks for Chinese
language: KBQA and KBQG, and 1 sub-task for English language: KBQU.
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2.1 KBQA Task

For KBQA task, we provide a train set and a test set. In train set, both questions and
their golden answers are provided. In test set, only questions are provided. The par-
ticipating teams should predict an answer for each question in test set, based on a given
large-scale Chinese KB. If no answer can be predicted for a given question, just set the
value of <answer id=”X”> to an empty string. The quality of a KBQA system will be
evaluated by answer exact match. An example in train set is given below:

We provide a large-scale Chinese KB to participating teams, and it includes
knowledge triples crawled from web. Each knowledge triple has the form: <Subject,
Predicate, Object> , where ‘Subject’ denotes a subject entity, ‘Predicate’ denotes a
relation, and ‘Object’ denotes an object entity. A sample of knowledge triples is given
in Fig. 1, and the statistics of the Chinese KB is given in Table 1.

Fig. 1. An example of the Chinese KB.

Table 1. Statistics of the Chinese KB.

# of Subject Entities 8,721,640
# of Triples 47,943,429
# of Averaged Triples per Subject Entity 5.5
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2.2 KBQG Task

For KBQG task, we provide a train set and a test set. In train set, both triples and their
golden questions are provided. In test set, only triples are provided. The participating
teams should generate a natural language question for each triple in test set, and this
generated question can be answered by the object entity of the given triple. The quality
of a KBQG system will be evaluated by BLEU-4. An example in train set is given
below:

2.3 KBQU Task

For KBQU task, we provide a train set and a test set. In train set, both questions and
their golden logical forms are provided. In test set, only questions are provided. The
participating teams should predicate a logical form for each question in test set. The
quality of a KBQU system will be evaluated by logical form exact match. An example
in train set is given below:

<question id=”X”> what is fight songs of Maryland
<logical form id=”X”> (lambda ?x (sports.team.fight_song Maryland ?x))

3 Evaluation Results

There are 19 submissions to the KBQA task, and Table 2 lists the evaluation results.

Table 2. Evaluation results of the KBQA task.

Organization System name Answer extract
match

Central China Normal University CCNU-319 0.3900
天津深思维科技有限公司 DeeperThought 0.4498
Chinese Academy of Sciences, Institute of
Automation

Dream_on_Road 0.4676

Dalian University of Technology DUTIR_9147 0.2832
East China Normal University ECNU 0.5275
Guangdong University of Foreign Studies GDUFSLEC 0.0971
China Academy of Engineering Physics Lawe 0.3366
AI Lab, Lenovo Research LEQAU 主系统 0.5647
AI Lab, Lenovo Research LEQAU副系统a 0.5696

(continued)
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There are 9 submissions to the KBQG task, and Table 3 lists the evaluation results.

There are 3 submissions to the KBQU task, and Table 4 lists the evaluation results.

Table 3. Evaluation results of the KBQG task.

Organization System name Character
BLEU-4

Southwest University AQG 0.4723
Southwest University AQG-PAC_greedy_relation_predict 0.4360
Southwest University AQG-PAC_soft_relation_predict 0.4188
Southwest University AQG-question_sentence&relation_predict 0.4141
Central China Normal
University

CCNU-319 0.4131

Peking University ICL-1 0.4781
Peking University ICL-2 0.3820
Southeast University LPAI 0.3647
Central China Normal
University

unique AI group 0.3652

Table 2. (continued)

Organization System name Answer extract
match

AI Lab, Lenovo Research LEQAU副系统b 0.5502
NetDragon Websoft Inc NDers 0.6294
Northeastern University NEUQA 0.5825
Peking University Pkult 0.4984
Southeast University SEU- WDS-

KBQA
0.6926

Soochow University SUDA-HLT 0.4337
University of Science and Technology of China USTC-NELSLIP 0.5647
Xi’an Jiao Tong University XJBot 0.6294
Zhejiang University Yiwise-KBQA 0.6359
Central China Normal University zilean 0.5023
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4 Conclusion

This paper briefly introduces the overview of this year’s 3 open domain QA shared
tasks. In the future, we plan to provide more QA datasets for Chinese QA field. In the
future, we will build more datasets for QA research, such as multi-turn QA dataset and
cross-lingual QA dataset.

Table 4. Evaluation results of the KBQU task.

Organization System name Logical form exact match

AI Lab, Lenovo Research LEQAU 主系统 0.3020
AI Lab, Lenovo Research LEQAU 副系统a 0.3060
AI Lab, Lenovo Research LEQAU 副系统b 0.1900
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Abstract. In this report, we give an overview of the shared task about
single document summarization at the seventh CCF Conference on Natu-
ral Language Processing and Chinese Computing (NLPCC 2018). Short
summaries for articles are consumed frequently on mobile news apps.
Because of the limited display space on the mobile phone screen, it is
required to create concise text for the main idea of an article. This task
aims at promoting technology development for single document summa-
rization. We describe the task, the corpus, the participating teams and
their results.

Keywords: Text summarization · TTNews corpus · NLPCC 2018

1 Introduction

Summarizing documents is an important task in today’s fast pace daily life. Self
publishing media producers are creating millions of articles every day. Therefore
it is impossible to digest every piece fully. Automatic summarization technologies
provides concise text snippets which can be consumed in short and fragmented
time. Some mobile news reading apps such as Toutiao app provide a mode for
summary view – summary text are displayed along with their titles, therefore
they do not require users to click into the article page to read the full content.
Some media publishers compile a summary article with daily highlights about
certain topics of interest. Both case require techniques to automatically generate
concise summaries for long text.

Document summarization methods can be categorized into two classes:
extractive summarization and abstractive summarization [3]. The extractive
summarization attempts to extract key sentences or key phrases from the origi-
nal document, and then reorders these fragments into a whole piece. While the
abstractive summarization focuses on generating new text and expressions which
are based on the understanding of this document. Additionally, the document
summary can be produced from a single document or multiple documents [3].
This shared task focuses on summarizing from a single document.

c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 457–463, 2018.
https://doi.org/10.1007/978-3-319-99501-4_44
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2 The Task

Traditional news article summarization techniques have been widely explored on
the DUC and TAC conferences, and existing corpora for document summariza-
tion are mainly focused on western languages, while Chinese news summariza-
tion has seldom been explored. In the shared task of previous year’s conference
(NLPCC 2017), we prepared a corpus of news articles in Chinese, along with
ground truth summaries [1]. This year, we continue to offer the single document
summarization task. The goal is to generate a concise summary text for a give
long article in Chinese. We provide a large corpus with both original document
and ground truth summary for training. In addition, we have a separate cor-
pus for evaluation. Only the documents nor the summaries are provided for the
evaluation set. To further promote research in semi-supervised summarization
techniques, we also prepare an additional set of documents, without reference
summaries.

3 The Dataset

The provided dataset is referred as TTNews corpus in the following. It contains
a training set and a test set. For the training set, it contains a large set of news
articles browsed on Toutiao app and corresponding human-written summary
which was used on news pushing and viewing on Toutiao app. The summaries
are written by experts from Bytedance Inc 1, the parent company running the
Toutiao app. Furthermore it contains another large set of news articles without
summary. For the test set, it just contains the news articles. The news articles
are from a variety of different sources and meanwhile contain of different topics,
such as sports, foods, entertainments, politics, technology, finance and so on.
As far as we know, TTNews corpus is the largest corpus for single document
summarization in Chinese. There are 50,000 news articles with summary and
50,000 news articles without summary in the training set, and 2000 news articles
in the test set. Note the training set remains the same as previous year’s shared
task [1], while the testing set are freshly baked. As shown in Table 1, the mean
length of the short summary is 45 Chinese characters. The example of a news
article and its reference summary is shown in Table 2.

3.1 Data Format

The training data contains two files, one for the articles with summaries and the
other without summaries. Each line of the file contains a string of record in json
format. Each record contains two fields: “article” and “summarization”.

For evaluation, every line contains a record, in json format, with “index”,
“article”, and “summarization” fields. The ‘summarization’ field is empty in
the distributed data. Each submission must contain a single file with the name

1 http://www.bytedance.com.

http://www.bytedance.com
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submission.txt. Each line of the submission file must contain one line of json
string, with corresponding fields ‘index’ and “summarization”.

All files are encoded in UTF-8.

Obtaining the dataset: You may download the training data from http://lab.
toutiao.com/wp-content/uploads/2017/nlpcc2017textsummarization.zip.
The testing data is available at http://lab.toutiao.com/wp-content/uploads/
2018/05/nlpcc2018textsummarization eval.zip

Use of The Data: You are free to use the data for research purpose. If you only
use the training corpus, please cite the overview paper [1] with the following bib
entry.

@InProceedings{hua2018overview,
author="Hua, Lifeng and Wan, Xiaojun and Li, Lei",
editor="Huang, Xuanjing and Jiang, Jing and Zhao, Dongyan

and Feng, Yansong and Hong, Yu",
title="Overview of the NLPCC 2017 Shared Task:

Single Document Summarization",
booktitle="Natural Language Processing and Chinese Computing",
year="2018",
pages="942--947",
isbn="978-3-319-73618-1"

}

Table 1. Statistics of the TTNews corpus

# articles avg. Article length avg. Summary length

Training (w/ summary) 50000 994 45

Training (w/o summary) 50000 1526 -

Testing 2000 733 36

4 Evaluation Metric

We used ROUGE for automatic evaluation metric. ROUGE is the acronym name
of Recall-Oriented Understudy for Gisting Evaluation, and contains a set of met-
rics used for automatic document summarization, machine translation evaluation
and other tasks in NLP [2]. We defined the mean value of ROUGE-1, ROUGE-
2, ROUGE-3, ROUGE-4, ROUGE-L, ROUGE-SU4, ROUGE-W-1.2 scores as
the overall evaluation score. And we used ROUGE-1.5.5 toolkit to compute the
overall score. Note that the length of each summary was limited to 60 Chinese
characters at our shared task, so we used “-l 60” as the command line param-
eter for truncating longer news summary.

http://lab.toutiao.com/wp-content/uploads/2017/nlpcc2017textsummarization.zip
http://lab.toutiao.com/wp-content/uploads/2017/nlpcc2017textsummarization.zip
http://lab.toutiao.com/wp-content/uploads/2018/05/nlpcc2018textsummarization_eval.zip
http://lab.toutiao.com/wp-content/uploads/2018/05/nlpcc2018textsummarization_eval.zip
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Table 2. Sample article and summary

5 Participating Teams and Submissions

Each team was allowed to submit at most 10 runs of results in the period of this
shared task. The best score of the up to 10 submissions will be selected as the
final score of each team. The participants were allowed to use any NLP resources
and toolkits, but not allowed to use any other news articles with reference sum-
maries. There were 18 teams submitting their final results in this shared task.
The participating teams are shown in Table 3. Both extractive summarization
and abstractive summarization techniques were developed by the participating
teams.

6 Evaluation Results

There are 18 submitted teams in this shared task, and the results are shown
in Table 4. As the table shows, WILWAL, Summary++, and CCNU NLP are
among the top three winners with the highest scores.

6.1 Representative System

We analyze the submission from the team Summary++, who ranked the sec-
ond place in the final standing. Their solution is a modified version of pointer
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Table 3. Participating teams

Team name Organization

WILWAL Wisers Information Limited, Wisers AI Lab

Summary++ Computational Linguistics Lab at Tsinghua University
School of Humanities

CCNU NLP Huazhong Normal University School of Computer
Science

freefolk Peking University, National Engineering Research
Center For Software Engineering

NLPCC2018 kakami NLPCC2018 kakami

Casia-S Research Center for Brain-inspired Intelligence,Institute
of Automation, Chinese Academy of Science

Felicity Dream Team Natural Language Processing Lab, Soochow University

dont lie dont lie

CQUT 301 1 Chongqing University of Technology

lll go lll go

NLPCC2018 LHZ FD NLPCC2018 LHZ FD

DLUT 815 Dalian University of Technology

The Dream Team of NLP Nanjing University Science and Technology

CMOS Doc Summarizer China Mobile

CQUT 301 2 Chongqing University of Technology

NLP@WUST College of Computer Science and Technology, Wuhan
University of Science and Technology

Networking Technology Lab at Beihang University
School of Computer Science

Coordinate System University of Electronic Science and Technology of
China, School of Computer Science and Engineering,
Computational Intelligence Laboratory

generator network [4]. The pointer generator uses a decoder with a mixture of
generation from sequence-to-sequence model and a pointer to words in the source
sentence. Two modifications are made based on this. Firstly, they proposed to
use character embedding instead of word embedding, therefore there is no need
to segment the words in Chinese. Secondly, they proposed to add one additional
coverage vector in the decoding, which is useful in machine translation task.
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Table 4. Evaluation results

Team name Score

WILWAL 0.2938

Summary++ 0.2853

CCNU NLP 0.2827

freefolk 0.2814

NLPCC2018 kakami 0.2783

Casia-S 0.2739

Felicity Dream Team 0.2721

dont lie 0.2707

CQUT 301 1 0.2599

lll go 0.2561

NLPCC2018 LHZ FD 0.2293

DLUT 815 0.2170

The Dream Team of NLP 0.2133

CMOS Doc Summarizer 0.1638

CQUT 301 2 0.1629

NLP@WUST 0.1628

0.1024

Coordinate System 0.0452

7 Conclusion

This paper briefly introduces the overview of single document summarization
shared task at NLPCC 2018. There are 18 participants with successful sub-
missions, which is a significant growth from the last year’s shared task. Quite
a few participants get exciting results in this corpus. Meanwhile, we release a
large Chinese news articles and reference summaries corpus (TTNews corpus)
for more large-scale research in Chinese document summarization.
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Abstract. In this paper, we give the overview of the social media user mod-
eling shared task in the NLPCC 2018. We first review the background of social
media user modeling, and then describe two social media user modeling tasks in
this year’s NLPCC, including the construction of the benchmark datasets and
the evaluation metrics. The evaluation results of submissions from participating
teams are presented in the experimental part.

Keywords: User modeling � Social media � Recommendation

1 Background

With the widespread of social media websites in the internet, and the huge number of
users participating and generating infinite number of contents in these websites, the
need for personalization increases dramatically to become a necessity. One of the major
issues in personalization is building users’ profiles, which depend on many elements;
such as the used data [1, 2], the application domain they aim to serve [3, 4], the
representation method and the construction methodology [5, 6]. Another major issue in
personalization is personalized recommendation, which can be divided into different
methods including contented based methods [7, 8], collaborative filtering based
methods [9, 10], and hybrid methods [11, 12].

In the industry field, many influential user modeling products have been built, such
as Netflix movie recommendation system, Amazon item recommendation system, etc.
These kinds of systems are immerging into every user’s life.

Under such circumstance, in this year’s NLPCC shared task, we call the social
media user modeling task that cover both personalized recommendation and user
profiling tasks.

The remainder of this paper is organized as follows. Section 2 describes the pro-
vided dataset. In Sect. 3, we describe the detail of these two shared tasks. Section 4
describes evaluation metrics, and Sect. 5 presents the evaluation results of different
submissions. We conclude the paper in Sect. 6, and point out our plan on future user
modeling activities.
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2 Data Description

The data, collected from a social media platform, contains the following five aspects:

(1) profile.txt describes users’ profiles. Currently gender, province and city are
provided.

user gender province city tags

(2) tags.txt describes users’ tags. Each line contains a user and related tag.

(3) social.txt describes users’ following relationship, where user1 follows user2 on
this social media platform.

user 1 user2

(4) tweets.txt describes what user posted. Each line contains a user and the posted
tweet.

user tweet

(5) checkins.txt describes users’ location visits. The format is as follows, where POI is
the location user visits, cate1, cate2, cate3 is the category of the POI in a hier-
archical level. lat and lng is the latitude and longitude information and Name is the
location name.

user POI cate1 cate2 cate3 lat lng name

All the files are UTF-8 encodes and tab separated.

3 Task Description

Given the social media dataset including the following heterogenous information:
users’ profiles (gender, province, city, tags), social ties (following relationship), users’
published tweets, and users’ location visits, the NLPCC 2018 social media user
modeling shared task includes two shared tasks for social media dataset: User Tags
Prediction task and User Following Recommendation task.

3.1 User Tags Prediction Task

Given users’ other information except tags, predict which tags are related to a user.

user tag
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3.2 User Following Recommendation Task

Given users’ following relationship and other provided information, predict the users a
user would like to follow in the future.

4 Evaluation Metrics

The quality of User Tags Prediction (UTP) and User Following Recommendation
(UFR) subtasks will both be evaluated by F1@K,

Pi@K ¼ Hij j
K

; Ri@K ¼ Hij j
Vij j ; F1i@K ¼ Pi@K � Ri@K

Pi@KþRi@K

F1@K ¼ 1
N

XN

i¼1

F1i@K

where Hij j is the correctly predicted item set (item refers to tag in UTP and user in
UFR) for user i ‘s top K prediction, Vij j is the ground truth item set for user i. Pi@K,
Ri@K and F1i@K is the precision, recall and F1 for a user i.

In UTP, we set K ¼ 3.
In UFR, we set K ¼ 10.

5 Evaluation Results

There are totally 39 teams registered for the above two shared tasks, and 4 teams
submitted their results for UTP subtask and 3 teams submitted their results for UFR
subtask. Table 1 and Table 2 lists the evaluation results respectively.

Table 1. Evaluation results of the User Tags Prediction (UTP) subtask.

F1@3

Team 1 0.046268361
Team 2 0.033795288
Team 3 0.000124505
Team 4 0

Table 2. Evaluation results of the User Following Recommendation (UFR) subtask.

Accuracy

Team 1 0.011645037
Team 2 0.004177592
Team 3 0.00000101

466 F. Zhang and X. Xie



6 Conclusion

This paper briefly introduces the overview of this year’s two social media user mod-
eling shared tasks. We have 39 teams registered and 4 teams submitted final submis-
sions. In the future, we plan to provide more social media datasets and call for new user
modeling tasks.
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Abstract. This paper presents the overview for the shared task at the 7th CCF
Conference on Natural Language Processing & Chinese Computing (NLPCC
2018): Spoken Language Understanding (SLU) in Task-oriented Dialog Sys-
tems. SLU usually consists of two parts, namely intent identification and slot
filling. The shared task made publicly available a Chinese dataset of over 5.8 K
sessions, which is a sample of the real query log from a commercial task-
oriented dialog system and includes 26 K utterances. The contexts within a
session are taken into consideration when a query within the session was
annotated. To help participating systems correct ASR errors of slot values, this
task also provides a dictionary of values for each enumerable type of slot.
16 teams entered the task and submitted a total of 40 SLU results. In this paper,
we will review the task, the corpus, and the evaluation results.

Keywords: SLU � Intent identification � Slot filling

1 Introduction

In task-oriented dialog systems, understanding of users’ queries (expressed in natural
language) is a process of parsing users’ queries and converting them into some
structure that machine can handle. The understanding usually consists of two parts,
namely intent identification and slot filling. For example, given the utterance “给我来

一首谭咏麟的朋友”, the user’s intent is to play a song, and “谭咏麟” fills one slots
(singer) and “朋友” fills another (song).

Intents are global properties of utterances, which signify the goal of a user. Slots, on
the other hand, are local properties in the sense that they span individual words rather
than whole utterances. And the words that fill slots tend to be the only semantically
loaded words in the utterance (i.e., the other words are function words). In the dialog
systems, each type of intent corresponds to a particular service API, and the slots
correspond to the parameters required by the API. SLU helps the dialog system to call
the right back-end service using the right parameters to satisfy users’ goals.

Traditionally, both of intent identification and slot filling are considered one
utterance at a time by the SLU process, and the context information (including both the
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preceding queries in the same session and the user’s situation information) is ignored
by SLU and then handled by the dialog manager. The high cost to construct and
maintain corpus is the main reason why the context information is not used in the SLU
process. Usually, each utterance occurs within the context of a larger discourse between
a person and a dialog system. Table 1 shows some example sessions, where without the
context information from previous intra-session utterances we can’t correctly do intent
identification and slot filling for the utterance “取消” (utterance u2 in session s1,
utterance u2 in session s2, utterance u2 in session s3) and “蒙曼” (utterance u3 in
session s4). As the SLU process occurs in the early stage of a dialog system, well
utilizing the context information can help avoid cascaded errors throughout the rest of
the system.

Numerous techniques for SLU have been proposed, including traditional machine
learning methods and hand-crafted features [1, 2, 4], deep learning methods [3, 5, 6],
incorporating context information [1, 3], jointly optimizing intent detection and slot
filling [5]. Despite this progress, direct comparisons between methods have not been
possible because different datasets and domains are used in past studies.

The NLPCC 2018 Shared Task 4 (Spoken Language Understanding in Task-oriented
Dialog Systems) provides a common testbed and evaluation suite for the SLU process.
The shared task made publicly available a corpus of over 5.8 K sessions including 26 K
utterances, which is a sample of the real query log from a commercial task-oriented
dialog system. 16 teams entered the task, submitting a total of 40 SLU results.

Table 1. Example sessions, including session id SID and utterance ids UID in each session.
Each utterance has an associated intent, while the corresponding slots are shown within each
utterance using XML style tags.

SID UID Intent Utterance

s1 u1 music.play 来一首<singer>冷漠</singer>的歌

s1 u2 music.pause 取消

s2 u1 navigation.
navigation

导航去<destination>锡山紫金城</destination>

s2 u2 navigation.
cancel_navigation

取消

s3 u1 phone_call.
make_a_phone_call

呼叫<phone_num>4000008</phone_ num>

s3 u2 phone_call.cancel 取消

s4 u1 Others 说话

s4 u2 phone_call.
make_a_phone_call

打电话给

s4 u3 phone_call.
make_a_phone_call

<contact_name>蒙曼</contact_name>

s4 u4 navigation.
navigation

<destination>增城宾馆</destination>

s4 u5 music.play 放音乐
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This paper is organized as follows. First, Sect. 2 provides an overview of the task,
the data and the evaluation metrics, all of which will remain publicly available to the
community (NLPCC Shared Task 4, 2018). Then, Sect. 3 summarizes the results of the
task. Finally, Sect. 4 briefly concludes.

2 Task Overview

2.1 Problem Statement

Spoken language understanding (SLU) comprises two tasks, intent identification and
slot filling. That is, given the current query along with the previous queries in the same
session, an SLU system predicts the intent of the current query and also all the slots
associated with the predicted intent.

Included with the data is an ontology, which gives details of all the intents and the
corresponding slots. To simplify the task, the dictionaries (e.g., singer, song, etc.) are

Table 2. Ontology and requirement in the task.

Intent Slot Provide-Slot-Dictionary Do-Error-Correction

music.play Song YES YES
Singer YES YES
Theme YES YES
Style YES YES
Age YES YES
Toplist YES YES
Emotion YES YES
Language YES YES
Instrument YES YES
Scene YES YES

music.pause – – –

music.prev – – –

music.next – – –

navigation.
navigation

Destination NO NO
custom_destination YES YES
Origin NO NO

navigation.open – – –

navigation.
start_navigation

– – –

navigation.
cancel_navigation

– – –

phone_call.
make_a_phone_call

phone_num NO NO
contact_name NO NO

phone_call.cancel – – –

Others – – –
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provided for the slots with enumerable values while the slots with the non-enumerable
values (e.g., phone_num, destination, contact_name, etc.) should be handled by rules or
machine learning models. The textual strings, fed into a dialog system as input utter-
ances, are mostly the transcripts translated from spoken language by ASR (Automatic
Speech Recognition) and thus subject to recognition errors. If the enumerable slot
values contain ASR errors, the SLU system should do slot value correction against the
provided slot dictionaries. The non-enumerable slots don’t need to do this for sim-
plification. Table 2 gives details on the ontology used in this task.

The task studies the problem of SLU as a corpus-based task - i.e., the SLU systems
are trained and tested on a static corpus of dialogs. The task is to re-run the SLU
process on these dialogs - i.e., to take as input the dialogs translated from spoken
language by ASR, and to output the SLU results. This corpus-based design was chosen
because it allows different SLU systems to be evaluated on the same data.

2.2 Data

The dataset adopted by this task is a sample of the real query log from a commercial
task-oriented dialog system, which is an in-car voice interface product. The data is all
in Chinese. The evaluation includes three domains, namely music, navigation and
phone call. Within the dataset, an additional domain label ‘OTHERS’ is used to
annotate the data not covered by the three domains (as shown in Table 2). To simplify
the task, we keep only the intents and the slots of high-frequency while ignoring others
although they appear in the original data.

The entire data can be seen as a stream of user queries ordered by time stamp. The
stream is further split into a series of segments according to the gaps of time stamps
between queries and each segment is denoted as a “session”. The annotation was
achieved by first running an existing SLU system over the transcriptions, and then
crowdsourcing to check the labels. Finally, the authors re-checked the labels by hand.
The contexts within a session are taken into consideration when a query within the
session was annotated. Table 1 gives some example sessions with annotations.

The entire dataset was randomly split into training and test dataset with a ratio of
4:1 at the session dimension. The statistics of the datasets are shown in Table 3. To
help participating systems correct ASR errors, this task also provides a dictionary of
values for each enumerable type of slot. Note that dictionaries are pruned such that they
include all the values occurring in the dataset, but do not necessarily include all the
values in real world. The statistics of the dictionaries are show in Table 4.

2.3 Evaluation

Depending on whether or not external resources can be used, the task can be divided
into two types:

• Close evaluation – use only the training dataset provided by the task for model
training and tuning, and output the results (in the evaluation stage) based only on
the provided test set, not on any other dataset or resources.
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• Open evaluation – can use any datasets and resources (in addition to the provided
training dataset) for model training and tuning; and output the results (in the
evaluation stage) based only on the provided test set, not no any other dataset or
resources.

Table 3. The statistics of the datasets, where “# of” stands for “number of”.

Item Train dataset Test dataset

# of sessions 4,705 1,177
# of utterances 21,352 5,350
Average session length 4.54 4.55
Average utterance length 5.93 6.08
# of error slot values 306 83
Intent music.play 6,425 1,631

music.pause 300 73
music.prev 5 4
music.next 132 34
navigation.navigation 3,961 1,038
navigation.open 245 55
navigation.start_navigation 33 4
navigation.cancel_navigation 835 207
phone_call.make_a_phone_cal 2,796 670
phone_call.cancel 22 18
Others 6,598 1,616

Table 4. The statistics of the dictionaries.

Slot dictionary Size

Song 6,870
Singer 2,667
Theme 140
Style 102
Age 139
Toplist 69
Emotion 135
Language 41
Instrument 30
Scene 145
custom_destination 3
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Besides, we divided the task into another two sub-tasks: intent identification, and
intent identification plus slot filling. In addition to the close and open evaluation, we
got the following four sub-tasks:

• Sub-task 1: Intent Identification – Close;
• Sub-task 2: Intent Identification – Open;
• Sub-task 3: Intent Identification and Slot Filling – Close;
• Sub-task 4: Intent Identification and Slot Filling – Open.

However, it’s very hard to do a close evaluation as the participating systems may
use different Chinese word segmentor, word embedding, Name Entity Recognizer and
dictionary resources. After the discussion with the participating teams, finally only
Sub-task 2 and Sub-task 4 were retained in the final report, and Sub-task 1 and Sub-task
3 not.

For Sub-task 2, in order to balance the importance of each intent, we use F1macro of
all the intents (not including the intent OTHERS) as the evaluation metric, calculated as
the following equations,

Pmacro ¼ 1
N

XN

i¼1

# of queries correctly predicted as intent ci
# of queries predicted as intent ci

;

Rmacro ¼ 1
N

XN

i¼1

# of queries correctly predicted as intent ci
# of queries labelled as intent ci

;

F1macro ¼ 2
1=Pmacro þ 1=Rmacro

:

For Sub-task 4, the evaluation metric is as given by the following equation,

P ¼ # of queries correctly parsed
# of queries

;

where “# of queries” is the number of queries in the test set (including the queries with
intent annotated as ‘OTHERS’). “# of queries correctly parsed” denotes the number of
queries for which the predicted intent and the predicted slot values (including the
corrected values if correction is needed) are both exactly same as the annotations.

3 Results and Discussion

Altogether 16 teams participated in both of sub-tasks. Each team could submit a
maximum of 3 results for each sub-task (Sub-task 2 and Sub-task 4), and both sub-tasks
had 40 submitted entries in total. Table 5 gives the results on the metrics for each sub-
task entry. As can be seen, the best result of Sub-task 2 is achieved by AlphaGOU.
entry3, F1macro ¼ 0:96157; and the best result of Sub-task 4 is also achieved by
AlphaGOU.entry3, P ¼ 94:916% .
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Table 5. Results of the evaluation.

Team ID Sub-task 2 Sub-task 4
Entry F1micro F1macro Entry P

AlphaGOU 1 0.97090 0.96039 1 94.486%
2 0.97234 0.96109 2 94.785%
3 0.97365 0.96157 3 94.916%

CVTE_SLU 1 0.93390 0.92951 1 87.383%
2 0.93454 0.93163 2 87.533%
3 0.92675 0.91964 3 86.318%

DeepIntell 1 0.91659 0.60858 1 84.804%
2 0.91942 0.67917 2 83.607%
– – – 3 83.907%

DLUFL_SLU 1 0.93881 0.91612 1 88.112%
2 0.94039 0.89501 2 88.710%
3 0.93863 0.88936 3 88.243%

FAQRobot-wds 1 0.90584 0.86891 1 83.084%
2 0.92594 0.91236 2 82.075%
3 0.91481 0.88031 3 83.364%

HappyRogue 1 0.92785 0.76696 1 87.570%
2 0.94211 0.89966 2 89.869%
3 0.94105 0.89249 3 89.794%

HCCL 1 0.94873 0.92637 1 89.121%
2 0.93211 0.91558 2 87.458%
3 0.93339 0.91148 3 90.729%

ISCLAB 1 0.94474 0.85473 1 90.710%
laiye_rocket 1 0.93212 0.90285 1 79.813%
Learner 1 0.94886 0.91546 1 90.841%

2 0.95197 0.93271 2 90.804%
3 0.95223 0.94193 3 90.523%

orion_nlp 1 0.93065 0.88945 1 84.636%
2 0.93038 0.90068 2 84.336%
3 0.93035 0.88690 – –

rax 1 0.93811 0.90409 1 88.168%
2 0.93619 0.86398 2 87.028%
3 0.93091 0.81014 3 86.430%

scau_SLU 1 0.94913 0.92989 1 78.374%
2 0.94881 0.92962 2 78.486%
3 0.94906 0.92972 3 79.720%

SLU-encoder 1 0.91981 0.87178 1 84.467%
2 0.91978 0.87167 2 84.766%
3 0.92023 0.87177 3 84.822%

SMIPG 1 0.91650 0.85222 1 82.972%

(continued)
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Table 5 also lists the metrics F1micro and F1macro for Sub-task 2. We could
see that the metric F1macro is always less than the metric F1micro for all the entries.
CVTE_SLU.entry2 gets the least gap between F1micro and F1macro, which is 0.00291.
DeepIntell.entry1 gets the greatest gap, which is 0.30801. The F1 metrics of all the
intents for the two entries are shown in Fig. 1. In our released dataset, the example size
of different intents is very different, and the maximum size is 895 times of the mini-
mum. Because macro-averaging weights the metric toward the smaller classes, Teams
should optimize the model performance for smaller classes (e.g. intents music.prev,
navigation.start_navigation, and phone_call.cancel in Sub-task 2).

Figure 2 shows the results on slot filling (not combining the step of intent identi-
fication) of Sub-task 4 from AlphaGOU.entry3, which achieved the 1st place of Sub-
task 4. Only the slots, whose sample size is larger than 100, are shown. One reason for
the high performance of ‘singer’ and ‘song’ slots is that we released the slot dic-
tionaries including all the values occurring in the dataset. The rich training data and

Table 5. (continued)

Team ID Sub-task 2 Sub-task 4
Entry F1micro F1macro Entry P

2 0.91616 0.84256 2 82.916%

Team_4 1 0.85826 0.68953 1 74.785%

Fig. 1. Intent identification results of Sub-task 2 from CVTE_SLU.entry2 and DeepIntell.
entry1, and the sample size (including both of train and test datasets) for each intent. The F1
metrics for intents music.prev, navigation.start_navigation, and phone_call.cancel are all 0, and
the sample size for these intents is 9, 37, and 40, respectively.
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obvious features is the main reason for the high performance of the destination slot.
The main reason for the relative low performance of the contact_name slot is that,
firstly we didn’t release the users’ contact name lists because of the privacy protection,
secondly the ASR performance of contact names is very poor.

Figure 3 shows the results on slot value correction (not combining the steps of
intent identification and slot filling) of Sub-task 4. We can see a big difference for the
performance. The top right 3 points are given by the 3 entries of Team 1, who has
achieved a precision of around 0.75 and a recall of around 0.76. 18 points lie in the
bottom left corner (0, 0), which means that 18 entries from 8 teams didn’t correct slot
value errors.

3.1 Some Representative Systems

In this section, some representative systems will be briefly introduced. While most of
the systems use the neural networks, the 1st places of the two sub-tasks are achieved by
the AlphaGOU system using the traditional techniques.

AlphaGOU system is a hybrid of context-independent model and context-
dependent rules; the former is a pipelined framework which includes slot boundary
detection, slot type classification, slot correction and intent classifier. Although all the
used techniques are very traditional, the system achieved promising results.

Learner system uses a hierarchical LSTM based model. The dialog history is
memorized by a turn-level LSTM, which is used to assist the intent identification and
slot filling.

Fig. 2. Slot filling results (not combining the step of intent identification) of Sub-task 4 from
AlphaGOU.entry3, where P stands for Precision, R for Recall, and F1 ¼ 2

1=Pþ 1=R. The results

are computed from the utterances whose intent identification is correct.
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ISCLAB system proposes a neural framework, named SI-LSTM model, which
combines intent identification and slot filling together, and the slot information is used
for determining the intent while the intent type is used to rectify the slot filling
deviation.

4 Conclusion

In this paper, we present the overview of the NLPCC 2018 Shared Task: Spoken
Language Understanding in Task-oriented Dialog Systems. The dataset adopted by this
task is a sample of the real query log from a commercial task-oriented dialog system,
which is an in-car voice interface product. The data is all in Chinese. The contexts
within a session are taken into consideration when a query within the session was
annotated. The entire dataset was randomly split into train and test dataset with a ratio
of 4:1 at the session dimension. In the evaluation, two sub-tasks are designed. Sub-task
2 is intent identification, and Sub-task 4 is intent identification and slot filling. Both
sub-tasks had 40 submitted entries in total. The best result of Sub-task 2 is achieved by
AlphaGOU.entry3, F1macro ¼ 0:96157, and the best result of Sub-task 4 is also
achieved by AlphaGOU.entry3, P ¼ 94:916% .

Acknowledgement. We are very grateful to the colleagues from our company for their efforts to
annotate the data. And we also would like to thank the participants for their valuable feedback.

Fig. 3. Slot value correction results (not combining the steps of intent identification and slot
filling) of Sub-task 4, where one point represents one entry result. P stands for Precision, and R
stands for Recall.
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Abstract. Multi-label topic classification aims to assign one or more
relevant topic labels to a text. This paper presents the WiseTag system,
which performs multi-label topic classification based on an ensemble of
four single models, namely a KNN-based model, an Information Gain-
based model, a Keyword Matching-based model and a Deep Learning-
based model. These single models are carefully designed so that they are
diverse enough to improve the performance of the ensemble model. In the
NLPCC 2018 shared task 6 “Automatic Tagging of Zhihu Questions”,
the proposed WiseTag system achieves an F1 score of 0.4863 on the test
set, and ranks no. 4 among all the teams.

Keywords: Topic classification · Tagging · Multi-label

1 Introduction

Multi-label topic classification aims to assign one or more relevant topic labels
to a text. It can contribute to many downstream natural language processing
applications including recommendation, user profiling and information retrieval.
In the NLPCC 2018 shared task 6 “Automatic Tagging of Zhihu Questions task”,
participants are required to build a multi-label model that assigns relevant tags
to a question from a set of predefined topic tags. Specifically, participants are
given a training dataset of questions collected from Zhihu, a Chinese community
question answering website, where each question in the dataset contains a title,
an unique id and an additional description. The predefined tag set contains over
25,000 topic tags, and the task is to assign at most 5 topic tags to each question.

There are two major challenges in this task. First, the high dimensionality
and sparsity of the output space increases the difficulty of model training. Sec-
ond, the quality of the training data is inconsistent, since the questions are tagged
collaboratively by users from the Zhihu community. Only the development and
testing datasets are relabeled manually for the shared task.

To address the above challenges, we propose an ensemble model combining
four single models that are trained based on different features and algorithms.
Experimental results on the test set show that the ensemble model is more
accurate and robust than the individual models, and ranks no. 4 among all
participating teams with a F1 score of 0.4863.
c© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11109, pp. 479–489, 2018.
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The remainder of the paper is as follows. Section 2 reviews related work on
multi-label topic classification. Section 3 details our WiseTag system including its
overall architecture, data pre-processing steps, design of each single model and
the ensemble model. Section 4 describes the evaluation setup and experimental
results, and finally Sect. 5 concludes the paper.

2 Related Work

Generally, multi-label classification algorithms [12] can be classified into two
categories, namely problem transformation methods and algorithm adaptation
methods.

Problem Transformation Methods. These methods focus on transforming the
multi-label classification problem into other existing well-studied problems.
Widely used algorithms include Binary Relevance [13] which transforms the
multi-label classification problem into a set of binary classification problems;
Calibrated Label Ranking [14] which transforms multi-label classification into
label ranking, and Random k-labelsets [15] which transforms the multi-label
classification problem into the multi-class classification problem. However, the
computation costs of these methods will be very high since there are over 25,000
labels to predict in the task at hand. We therefore do not consider these methods.

Algorithm Adaptation Methods. These methods aim to adapt existing single-label
learning algorithms to the multi-label setting. For example, K-Nearest-Neighbors
(kNN) has been extended to ML-kNN [16] for multi-label classification, Decision
Tree has been extended to ML-DT [17], Support Vector Machine (SVM) has been
extended to Rank-SVM [18], etc. After the consideration of the computational
cost of the model, we only choose kNN model for further experiments.

More recently, researchers turn to use deep learning-based models for multi-
label classification. In the recent Zhihu Machine Learning Challenge [19], all
the wining solutions adopt Convolutional Neural Network (CNN) or Recurrent
Neural Networks (RNN) models. The evaluation results show that deep learning
models achieve the state-of-the-art solution for multi-label classification problem.
Therefore, we will consider CNN and RNN model in this paper.

3 System Description

3.1 Overview

Figure 1 depicts the overall architecture of the WiseTag system. The system
takes both title and description of a question as input, and generates the top-5
topic tags along with their predicted scores as output. First, the system performs
data pre-processing including data cleaning and word segmentation. Second, the
pre-processed data are fed into four different topic tagging models, namely the
KNN model, the Information Gain (IG) model, the Keyword Matching (KM)
model, and the Deep Learning (DL) model respectively. Finally, an ensemble
model combines the four prediction results to output the top-5 predicted topic
tags and their scores.
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Fig. 1. Overview of the WiseTag system

Table 1. Samples of duplicated data

Table 2. Samples of question detail irrelevant to question titles and topic tags

3.2 Data Pre-processing

The following pre-processing steps are performed on each input question:

1. Deduplicate the training data to remove instances having the same question
title, descriptions, tag names and tag ids. Table 1 shows a duplicated data
example.

2. Remove question descriptions (question detail) that are redundant or irrele-
vant to the question titles or topic tags. Table 2 shows some samples of such
question detail which we identified based on data analysis.

3. Convert all characters to half-width and convert all characters to lowercase.
4. Perform word segmentation on question title and description using the Lan-

guage Technology Platform (LTP) [5] engine.
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5. Revise LTP’s word segmentation results based on common phrases in the
training set identified by the Pointwise Mutual Information (PMI) [8]
algorithm.

3.3 KNN Model

KNN [10] is a simple and widely used model for classification, and often proven
to be effective for text classification problems. For a given question, we first
identify its top 10 (k = 10) similar questions and their assigned tags from the
training set based on cosine similarity of TF-IDF [11] features. Then, we take
the normalized frequencies of these tags as their predicted scores for the given
question.

We observe that the KNN model performs well on short questions, but more
frequent tags tend to dominate the predictions for new questions.

3.4 Information Gain (IG) Model

Information Gain (IG) is used to measure how much information a word con-
tained in a question provides about the tag of the question. In the training phase,
the IG of each word v is first computed for each tag t, denoted as IG(v, t). It
is then normalized such that

∑
t∈T IG(v, t) = 1, where T denotes the set of all

predefined tags. In the prediction phase, the normalized IGs of all words in a
given question are summed with respect to each tag separately. The summations
are then normalized to obtain the predicted scores of the tags. The IG model
has built-in feature selection property, therefore, we consider it to be one of our
single models.

This model might suffer from over-fitting but has high interpretability
because the tags are inferred based on the occurrence of the high-IG words.
We observe that it outperforms the other single models except for the Deep
Learning model.

3.5 Keyword Matching (KM) Model

We implement a rule-based classifier based on keyword matching. This model
is motivated by our observation that some questions are simply labeled using
keywords they contained. The KM model counts the predefined tags a given
question contains, and takes the normalized tag frequencies as their predicted
scores for the question. Table 3 shows some sample questions with their matched
keywords (highlighted in red) and predicted tags.

In general, the KM model is able to identify some very specific topics, such
as human and school names, thus serves as a good single model candidate for
our ensemble model.
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Table 3. Samples of keyword matching model prediction

3.6 Deep Learning (DL) Model

Deep learning models often report the state-of-the-art performance in text clas-
sification tasks, so it is necessary to include one in our ensemble model. During
the initial investigation, several DL models including CNN [3], RNN [23] and
fastText [2] have been attempted on the given dataset. However, preliminary
experimental results showed that RNN and fastText model are difficult to con-
verge, which we attribute to the high dimensionality of the output layer. Thus,
we choose CNN as our deep learning model for further experiments.

Figure 2 depicts the architecture of our CNN model, inspired by the 1st
Place Solution for Zhihu Machine Learning Challenge [9]. The first layer is an
embedding layer with dimension (150 * 50), which allows a maximum of 150
words as input and the embedding size is set to 50. Note that 150 words are
able to capture enough information, since the average lengths of question title
and description are 13.17 and 70.84 words respectively. On top of the embedding
layer, there are five parallel convolution layers with kernel sizes ranging from 1
to 5. The output of the convolution layers are concatenated and fed into a dense
layer. A dropout layer with rate 0.5 is added after the dense layer to avoid over-
fitting. The dense layer is fully connected with the output layer with sigmoid
as the activation function. The embedding layer adopts a word2vec embedding
pre-trained using the given training set with Gensim [6]. The CNN model is
implemented in the Keras framework [7].

3.7 Ensemble Model

To improve classification accuracy, WiseTag uses an ensemble model to combine
the four aforementioned models M = {KNN, IG,KM,DL} as follows:

ensemble model =
∑

m∈M

wm ∗ m (1)

where wm is the weight assigned to model m.
The final evaluation only accepts up to 5 predicted labels per question. Hence,

we output a tag only if it is ranked among the top-5 by our system with a pre-
dicted score above a decision threshold. In order to obtain the optimized weights
of the different models and the decision threshold, we use the tool Hyperopt [1]
for parameter tuning. The Hyperopt supports Tree-structured Parzen Estima-
tors (TPE) algorithm, which is better than random search and grid search [20].
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Fig. 2. CNN architecture

4 Experiments

4.1 Dataset

The original training set contains 721,608 instances, which are questions col-
lected from Zhihu. Each question contains a title, an unique id and an additional
description; and is tagged collaboratively by users from the Zhihu community.
The average lengths of question title and description are 22.23 and 116.29 char-
acters respectively, or 13.17 and 70.84 words respectively after performing word
segmentation. There are 3.13 tags per question on average. After deduplication,
only 721,531 instances are left for further training. The development and test
sets contain 8,946 and 20,596 questions respectively, with their labels manually
relabeled for the evaluation task at hand.

4.2 Evaluation Metrics

Each question in the test set will be assigned at most 5 predicted topic tags,
sorted by their predicted relevant scores (or probabilities). Performance is
evaluated based on the F1 measure with positional weighted precision. Let
correct numPi denote the number of correctly predicted tags at position i, and
predict numPi denote the number of predicted tags at position i. The precision,
recall and F1 measure are computed as follows:

F1 =
2 ∗ P ∗ R

P + R
(2)

P =
∑5

i=1 correct numPi/log(i + 2)
∑5

i=1 predict numPi/log(i + 2)
(3)

R =
∑5

i=1 correct numPi

ground truth num
(4)
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4.3 Experimental Results

In order to understand the effectiveness of different modules and parameters, we
carry out an extensive series of experiments.

We first study the impact of different pre-processing tasks on classification
performance based on the validation set, where the training data is split into two
parts, with 90% for training, and the remaining 10% for validation. Specifically,
three pre-processing settings are evaluated:

– raw ltp: which uses the LTP engine for word segmentation.
– character conversion + raw ltp: which performs character conversion (half-

width and lowercase normalization) and uses the LTP engine for word seg-
mentation.

– character conversion + raw ltp + PMI : which performs character conversion,
uses the LTP engine for word segmentation, and then performs the proposed
word segmentation revision based on common words identified by the PMI
algorithm.

Table 4 presents the results, which show that the proposed revised word seg-
mentation with character conversion + raw ltp + PMI settings achieves con-
sistent improvement over the raw ltp method under different neural network
architectures (Table 5).

Table 4. Impact of pre-processing tasks on classification performance

Pre-processing tasks Dense layer dimension Validation score

raw ltp 1024 0.4015

character conversion + raw ltp 1024 0.4031

character conversion + raw ltp + PMI
(proposed)

1024 0.4044

raw ltp 2048 0.3751

character conversion + raw ltp 2048 0.3758

character conversion + raw ltp + PMI
(proposed)

2048 0.3779

Next, we empirically evaluate the impact of different parameters on the CNN-
based DL model. The results with IDs (2, 3, 4) in Table 4 show the effects
of varying the filter number, which produces the best performance when set
to 512. The results with IDs (1, 4) show that with the same filter number, a
larger kernel size increases classification performance. According to [22], Adam
optimizer performs better than Stochastic Gradient Descent (SGD), so we only
evaluate Adam with different numbers of the restarts. The results with IDs (4,
5) show that Adam [21] with 2 restarts achieves better validation score than
Adam optimizer under the same parameter settings.
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Table 5. Impact of different parameters on the DL model

ID Filter kernel size Filter number Optimizer Validation score

1 2, 3, 4 512 Adam 0.4067

2 1, 2, 3, 4, 5 1024 Adam 0.4066

3 1, 2, 3, 4, 5 256 Adam 0.4045

4 1, 2, 3, 4, 5 512 Adam 0.4083

5 1, 2, 3, 4, 5 512 Adam (with 2 restarts) 0.4157

Table 6. Comparison of different single models

Data set Model Precision Recall F1

Validation KM 0.1846 0.2005 0.1922

KNN 0.3949 0.3141 0.3499

IG 0.3931 0.3784 0.3856

DL 0.4373 0.3985 0.4170

Dev KM 0.2395 0.2618 0.2501

KNN 0.4327 0.3317 0.3755

IG 0.4141 0.3999 0.4069

DL 0.4681 0.4218 0.4437

This finding is consistent with that in [4], which reveals that Adam with 2
restarts and learning rate annealing is faster and performs better than SGD with
annealing. In particular, we set the learning rate to 0.001 and train the model
until convergence. We then halve the learning rate and restart by loading the
previous best model.

The optimal parameters of the CNN model we adopted are {‘batch size’:
128, ‘Filter number’: 512, ‘Kernel size’: (1, 2, 3, 4, 5),‘Dense layer size’: 512,
‘Threshold’: 0.15 }.

Table 7. Evaluation on dev and test set

Data set Model Precision Recall F1

Test Ensemble Model (1) 0.5048 0.4692 0.4863

Ensemble Model (2) 0.4878 0.4839 0.4858

Best single model (DL) 0.4715 0.4258 0.4475

Dev Ensemble Model (1) 0.5041 0.4646 0.4835

Ensemble Model (2) 0.4870 0.4800 0.4835

Best single model (DL) 0.4681 0.4218 0.4437
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Table 8. Model weights in ensemble model

Model/weight KNN IG KM DL Threshold

Ensemble (1) 0.28 0.29 0.15 0.28 0.0759

Ensemble (2) 0.3445 0.2803 0.1432 0.2318 0.07812

Table 9. Evaluation results of the task 6 (Top-10 teams)

Rank Team Score

1 Tomwindows 0.6271

2 YiWise-QT 0.5840

3 NEUTag 0.5194

4 WILWAL 0.4863

5 Team Wang 0.4840

6 Dream driver 0.4536

7 iipnku 0.3981

8 HCY FANS 0.3756

9 scau AT 0.3404

10 CQUT 301 1 0.3383

... ... ...

In Table 6, we give the comparisons of different single models. The CNN-
based DL model outperforms other models on both validation and dev datasets,
while KNN and IG achieve comparable results.

Finally, we compare the performance of the ensemble models and the single
models as shown in Table 7. Clearly, the ensemble models achieve significantly
better results than the best single model on both dev and test datasets. Note
that the difference between Ensemble Model (1) and Ensemble Model (2) is that
the former use the weights optimized by the Hyperopt tool, while the later uses
the weights designed based on rule of thumb that the weight is in proportion
to the model’s validation score. The weights of ensemble model are shown in
Table 8. The final evaluation results of task 6 are presented in Table 9. Our team
WILWAL ranks no. 4 with an F1 score of 0.4863 (evaluated on Ensemble Model
(1)) on the test set.

5 Conclusion

This paper describes the proposed WiseTag system which performs multi-label
topic classification based on an ensemble model. This ensemble model is built
upon four diversified models, including: a KNN-based model, an Information
Gain-based model, a Keyword Matching-based model and a Deep Learning-
based model. Experimental results on the NLPCC-2018 shared task 6 show that
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the proposed model is effective, and ranks no. 4 with an F1 score of 0.4863.
In our future work, we plan to investigate into semi-supervised approaches to
multi-label topic classification.
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